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Abstract

Computational Methods
for the Analysis of Molecular Dynamics Simulations

Noah C. Benson

Chair of the Supervisory Committee:
Professor Valerie Daggett
Bioengineering

Proteins are macromolecules that are involved in virtually every biological pro-
cess and structure. The three-dimensional structure of these molecules is ex-
tremely important as a window into how they work but is extremely difficult to
predict, as direct observation of their motion and the folding pathway is possi-
ble only through very limited experimental techniques. Nonetheless, observing
protein structure alone has proven insufficient for understanding how proteins
fold or behave natively. Molecular dynamics (MD) is a computational technique
by which protein dynamics can be examined at resolutions well beyond the ca-
pabilities of experiment. The decrease in cost of computer resources have lead
biologists to turn to MD more frequently in recent years, yet MD simulations
produce data in quantity and complexity well beyond the capabilities of con-
ventional biological analysis techniques. We have curated a database of protein
native-state and thermal unfolding simulations, which is the largest database
of unfolding simulations to date. We examine this database using two existing
and three novel analysis methods and demonstrate the utility of each for high-
throughput analysis. Finally, we demonstrate that these methods can be used

to generate and support novel hypotheses concerning protein motion.
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Chapter 1

PROTEIN DYNAMICS AND THE DYNAMEOMICS
DATABASE

1.1 Summary

Studying protein dynamics at high resolution is only possible through com-
putational techniques, the most detailed and accurate of which is molecular
dynamics (MD) simulation. The dwindling cost of computational resources has
lead to increased use of MD in the biological community, yet interpretation of
the highly complex and data-rich trajectories produced by MD can require in-
tense human resources. Current analysis techniques capable of rapidly and in-
tuitively characterizing MD simulations lag behind the the community’s needs
and ability to generate data. In order to enable the development of such tech-
niques, to provide a contextual reference for the behavior of proteins, and to
study the unfolding behavior of proteins, we have performed MD simulations of
the native state and thermal unfolding pathways of over 1000 proteins. These
proteins were chosen to represent the majority of globular folds. These data
have been organized using a novel database approach, which has been designed
both to be easily comprehensible and to connect several disparate data types
and sources. This database can be easily mined so as to maximally facilitate
further research. In this chapter, we describe the organization of this database
and provide examples of how it can be mined and what types of analysis needs

it exposes that we propose to fill.



1.2 Introduction

The motion, or dynamics, of proteins is critical to understanding how proteins
fold (Daggett and Fersht, 2003; Schaeffer et al., 2008), produce mis-folding dis-
ease states (Chiti and Dobson, 2006; Daggett, 2006), and function (Karplus and
Kuriyan, 2005; Glazer et al., 2009). Though difficult to study experimentally,
these dynamics are not random but rather are determined by the net sum of
fundamental forces incident on a protein from itself and its environment. These
forces, which act on each atom of the protein, are simple individually, but ex-
tremely complex in union, and, similar to the n-body problem, are not known
to be concisely predictable. Determining the sub-states, conformations, and
modes of a proteins is thus very difficult. Numerical integration using New-
ton’s laws of motion and a set of potential functions is possible, however, and
forms the basis of molecular dynamics (MD) (Karplus and McCammon, 2002;
Beck and Daggett, 2004). MD is a well-developed technique that allows for very
high temporal and spacial resolution; thus it often serves as a hypothesis gen-
eration engine as well as a means of studying phenomena not easily accessible

to experiment (Fersht and Daggett, 2002; van der Kamp et al., 2008).

In recent years, large-scale simulations of proteins have become increas-
ingly common. These simulations can generate massive amounts of data. Com-
mon time resolutions are on the picosecond or smaller scale, and it is not un-
common for simulations to exceed tens or hundreds of nanoseconds. Large
protein systems can contain tens of thousands of atoms; thus uncompressed in-
dividual trajectories can be terabytes in size. Databases of protein simulations,
such as the MoDEL project (Rueda et al., 2007), P-found (Silva et al., 2006), and
BioSimGrid (Murdock et al., 2005; Ng et al., 2006), contain even larger quan-
tities of data and demonstrate the demand for such simulation warehouses.

These databases can be considered extensions of the Protein Data Bank (PDB)



(Berman et al., 2000), in that they provide similar structural information but
add the dimension of time.

Here we describe our own MD simulation database, the Dynameomics
project, which is the largest database of its kind. Dynameomics includes not
only native-state simulations (proteins simulated at 298 K), but also seeks to
provide a resource for the study of protein unfolding by simulating proteins
at high temperature (498 K). As a research-enabling project as well as a re-
search project itself, the Dynameomics database has been carefully organized
and annotated. We will describe this organization as well as the work-flow
and meta-data required to support and create it. Finally, we will discuss the

implications of database and the research questions that it now poses.

1.3 Generation of the Dynameomics Database

1.3.1 Protein Selection

Proteins share similar structures in nature, and several classifications of fold
families, called domain dictionaries, have been proposed, each of which has a
unique approach to classifying proteins and protein subunits into related do-
mains. One goal of the Dynameomics project is to cover as diverse a set of pro-
tein folds as possible so as to examine all possible native-state and unfolding
dynamics. In order to do this, we combined the major fold domain dictionaries
(Murzin et al., 1995; Cuff et al., 2009; Dietmann and Holm, 2001) into a single
Consensus Domain Dictionary (CDD) (Day and Daggett, 2003; Schaeffer et al.,
2010). This process consisted of two steps: (1) identification of all domains in
each protein structure stored in the PDB, and (2) identifying ‘metafolds’ for
which at least two of the domain dictionaries have at least an 80% sequence
overlap. Filtering was performed to make sure that redundancies in sequence

did not bias the CDD. Our CDD currently contains 1,695 metafolds, which en-



capsulate 80,062 domains.

Dynameomics aims to simulate at least one representative structure from
each of these domains. These ‘fold representatives’ were chosen based on struc-
ture quality, size, biomedical relevance, availability of experimental data, au-
tonomy of the structure, and absence of complex cofactors. A rank was given
to metafolds based on their populations (i. e., those metafolds to which a larger
number of structures were assigned received higher ranks). Preference was
given to the highest ranking metafolds when choosing which proteins to sim-
ulate first. Those that were ultimately chosen for simulation are referred to
as simulation ‘targets’. To date, we have simulated at least one representative
from 807 of our 1,695 metafolds; this represents 81% of the domains in the CDD.
The remaining metafolds were almost exclusively of low-rank and did not have
suitable simulation targets, generally due to problems associated with simu-
lating them outside of the context in which their structures were determined.

Figure 1.1 shows an example of one such domain.

In addition to the 807 targets chosen to represent the diversity among pro-
tein fold families, Dynameomics includes 29 proteins with disease-causing sin-
gle nucleotide polymorphisms (SNPs). While these simulations are a subset
of the folds represented in Dynameomics project, we ran additional simula-
tions of variants of these proteins encompassing 200 single-point mutations
(649 simulations total) for at least 30 ns. These proteins include p53 and 8-
oxoguanine glycosylase (cancer), DJ-1 (Parkinson’s disease), superoxide dismu-
tase (amyotrophic lateral sclerosis), catechol O-methyltransferase (alcoholism
and aggression in schizophrenia), transthyretin (amyloidosis), and thiopurine
S-methyltransferase (drug-metabolism disorders). The goal of these SNP sim-

ulations is to enable research on the dynamic effects of point mutations.



1.3.2 Protein Preparation

Coordinates for the targets to be simulated were obtained from the PDB. In
some cases, targets had missing atoms or residues due to experimental limi-
tations; these were built into the PDB prior to additional preparation. During
preparation, all His residues were changed to one of four states: Hie (Ne¢ pro-
tonated), Hid (N6 protonated), Hin (neither N4 or Ne¢ protonated) or Hip (both
Né and Ne protonated). These states were chosen based on the proximity of
residues that might lead to a preference of one of the four; for example, a Ser
OH group near the Ne would indicate a preference for Hid due to the nearby
positively charged hydrogen. A strong preference was given for Hie and Hid.
During preparation of the unfolding trajectories, Cys residues were addition-
ally reduced to Cyh. Proteins then underwent a brief energy minimization
prior to solvation in a periodic water box using experimental density for the

temperature of interest.

1.3.3 Protein Simulation

Simulations were performed using our in-house developed MD simulation
package, in lucem molecular mechanics (i/mm) (Beck et al., 2008; Beck and
Daggett, 2004). All atoms were explicitly simulated with parameters defined
in our force field (Levitt et al., 1995). Waters were also explicitly represented
and used a flexible 3-center water model (Levitt et al., 1997). Further details
of the simulation and preparation protocol have been presented elsewhere
(Beck et al., 2008). Each target underwent at least one native-state (298 K)
simulated for at least 31 ns as well as at least 3 long (at least 31 ns) and 2
short (at least 2 ns) unfolding (498 K) simulations. Coordinates were saved
every 0.2 ps for the short unfolding simulations and every picosecond for the

other simulations.



1.3.4 Analysis and Quality Control

Each complete simulation was analyzed with a set of analyses that are stan-
dard in MD research. These include measurements of the root mean square
deviation (RMSD), root mean square fluctuation (RMSF), solvent accessible
surface area (SASA), (®, V) angle propensities, radius of gyration, number of
native and non-native contacts, and secondary structure content using the dic-
tionary of secondary structure of proteins (DSSP) (Kabsch and Sander, 1983).
Examples of these analysis can be found in Figure 1.2. Further details about
standard analysis are outlined by Beck et al. (2008) and given in Section 7.2.

An important part of analysis was determining if our simulations were real-
istic. Due to the many variables involved in preparation and execution of a sim-
ulation, that certain proteins will simply not be stable in our force field. This
is can be due, for example, to the protein being simulated in an unusual con-
text (e. g., without a binding partner), having a poorly parameterized co-factor,
or having a poor quality structure. Due to the fact that the simulation condi-
tions are slightly different than the experimental conditions in which proteins
are characterized, we expect some moderate changes in the structure during
simulation. Often this includes a slight expansion of the structure and small
rearrangements of secondary structure. In addition, fluctuations are expected
because proteins are not static entities but rather are in constant motion. The
goal of our initial quality control was to determine when a target’s rearrange-
ments and fluctuations went beyond what was appropriate for a protein in so-
lution. We determined that this occurred when one of three instability criteria
was met: (1) the protein’s hydrophobic core became exposed to solvent, (2) the
protein lost entire elements of secondary structure, or (3) the protein does not

find a stable rearrangement by the end of the simulation.

Searching each simulation for these events by hand is a daunting task, so



we developed a method for automatically placing simulations in high-risk and
low-risk categories. To do this, we first calculated the ‘canonical’ or median
structure using the protein’s core only. The protein core was defined as the set
of residues whose SASA was fewer than 40 A? and was used because loop and
tail rearrangements are common and generally of little consequence in terms
of stability. The median structure is the single structure in the simulation that
has the lowest mean RMSD to every other structure in the simulation; alter-
nately, it can be thought of as the physical structure that is closest to the mean
structure. We then calculated two values: the median RMSD (mRMSD) and
the median RMSF (mRMSF), again using only the protein core. The mRMSD
is the RMSD between the starting structure and the median structure; it mea-
sures the amount of rearrangement that has occurred over the course of the
simulation from the experimental structure. The mRMSF is the mean RMSF
using the median structure as a reference. In other words, this is the aver-
age RMSD from the median structure to every other structure. The mRMSF
measures the overall stability of the rearranged state. Conceptually, these two
values can be thought of as the distance from the experimental structure to the
solution structure (mRMSD) and the overall stability of the solution ensemble
(mRMSF). An unusually high mRMSD indicates that the protein has under-
gone an unusually large amount of rearrangement from its experimental struc-
ture while an unusually high mRMSF indicates that the protein’s rearranged
state is unusually unstable. High values of one or the other can be tolerated
in certain circumstances (e. g., for largely unstructured proteins), but they of-
ten indicate that something is wrong. A plot of the proteins in Dynameomics

according to mRMSD and mRMSF is shown in Figure 1.3.

In general, most simulations had low values of mRMSD and mRMSF
(Fig. 1.3). To categorize a simulation as high-risk, we calculated the Euclidean

norm of the (mRMSD, mRMSF) vector, which we call the stability norm.



Equation 1.1 describes the formula for the stability norm p for a simulation
with structures (si, sz, ...s7) and median structure s,, in terms of the function
Dpgus(a,b), which is the RMSD between a structure a and a structure b. For
any simulation, if its stability norm was > 3.5 A, it was categorized as high-
risk. These simulations were then examined by hand to determine if any of

the instability criteria were met.

T 2
p= J (71; > Prts(om, s») + (Drars(m, 1)) LD

Of our initial 821 simulation, 19 of them (2.3%) were deemed unstable; 5 of
these had viable replacements, leaving us with 807. Notably, all of the struc-
tures that were deemed unstable were experimentally determined by NMR.
The simulations that were rejected as well as the reasons for rejection are given
in Table 1.1. The highest rank of those that could not be replaced was 633.

In addition to these quality control metrics, we also compared our simula-
tions to experimental data when available. This involved comparison to nuclear
Overhauser effect (NOE) crosspeaks during native-state simulations, in which
we find good agreement (Beck et al., 2008). Although experimental data for
unfolding simulations is very limited, we have found good agreement with ex-
periment in past unfolding studies (Daggett et al., 1998; Ladurner et al., 1998;
Mayor et al., 2003; Daggett, 2006).

1.3.5 Database Organization

One of the foremost challenges of the Dynameomics project was organizing
such a diverse set of data in a way that was both internally consistent and
externally comprehensible. Biology is a field that is often defined by exceptions
to the established rules, and proteins are no exception to this. Representing

even as simple a concept as protein structure in a logical format can be chal-



lenging. The Dynameomics database desired not only to represent this funda-
mental data, but to merge it seamlessly with data from many different kinds of
analyses and a variety of external databases. Critically, whatever schema was
adopted also needed to enable external users, who may not be well-versed in
computer and database technologies, to examine the data. Finally, data access
had to be flexible and fast in order to enable research of both a biological and
informatic nature.

The Dynameomics database was implemented in Microsoft SQL Server
2008 (Microsoft, 2008). SQL Server was chosen because it supports a wide
variety of interfaces including several that enable custom user-developed tools.
Our simulation package, iimm (Beck et al., 2008), in fact, can transfer data
directly to the Dynameomics database. Additionally, we have developed a va-
riety of tools that allow users to navigate the database without having to learn
the details of the database schema. One such tool, Dynamanal, is described in
detail in Appendix A, while a Mathematica (Wolfram Research, 2008) library
for communication with the Dynameomics database is described in Appendix
B. The database is organized into several sections, each of which represents a
unique piece of the overall project but which are connected through a complex
schema. These parts are the Prep database, the Simulation database, and the
Directory database.

The Directory database is the central organizing repository. This database
is highly curated and connects the many types of data in a coherent schema.
Because the Dynameomics database is so large, it had to be fragmented into
many smaller databases and distributed across several servers (Simms et al.,
2008), each if which hosts a unique subset of the data. The Directory database
allows one to immediately determine which server, database, and table con-
tains a particular piece of the overall database.

The Prep database is also highly curated and contains all the information
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related to the work-flow and process behind Dynameomics. This includes all
the relevant data about target selection, preparation, simulation parameters,
and quality control. Even fold members that were not simulated are rep-
resented in this database. Conceptually, should the Simulation database be
wiped out for some reason, the Prep database would contain all the informa-

tion required to regenerate it.

The Simulation database is by far the largest database and contains all of
the 3D coordinates and analyses of the simulations for the 807 targets. In ad-
dition to containing all of the time-course data encapsulated by Dynameomics,
the Simulation database stores structural definitions of each simulation. These
structure definitions are an extension to the standard PDB structures, as they
link traditional PDB concepts such as residue number and icode, to concepts

that are easily understood by a computer, database, or SQL query.

The Dynameomics database is 4 magnitudes of order larger than the PDB
and stores > 10® structures in over 53 TB. Proteins range from 29 to 417
residues in size with an average size of 137. The total length of simulation time
is over 180 us. The number of proteins and protein domains simulated that are
fold representatives or other metafold members is over 1000. The length of
these soluble proteins ranges between 29 and 417 residues, with an average
size of 137. The majority of targets do not contain co-factors: 22 domains con-
tain zinc, 9 heme and 2 calcium. Over 70% of the starting structures were
determined by X-ray diffraction (average resolution: 2.06 A), the others were
obtained by protein NMR. Additional statistics regarding the data, including
distribution of source organisms and enzyme classifications, are reported by

van der Kamp et al. (2010).
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1.4 Implications of Dynameomics

The Dynameomics project was designed not only to explore native-state and
unfolding dynamics but also to serve as a scientific repository from which addi-
tional research, both biological and informatic in nature, could be engendered.
Although Dynameomics has already enabled several interesting discoveries
about protein dynamics, these discoveries fall far short of its potential. Here,
we will discuss some examples of the data observed from the database as well

as some of the challenges that prevent further research from moving forward.

1.4.1 Native-state Dynamics

A single native-state simulation, let alone an entire database of native-state
simulations, contains a great deal of information. Although traditional anal-
ysis methods are common and established ways of characterizing a protein’s
dynamics, they suffer from a few shortcomings. Primary among these is the
fact that, because they were originally developed for use on single structures,
they tend to view a dynamic simulation as a set of single frames rather than as
a dynamic evolving trajectory. SASA, for example, gives a measurement of sol-
vent accessibility for each frame, but this measurement is independent of every
other frame. Beyond this, traditional analyses do not tend to summarize data
but to expand on data. While this can be desirable, large sets of simulations can
make this kind of analysis difficult or intractable and may require techniques
that, at least initially, summarize data and relate it to physical properties of a
protein’s trajectory. In chapter 2 we explore a technique for summarizing and
visualizing the dynamics of a proteins and demonstrate that it can be used to
facilitate biochemical discovery.

Native-state dynamics tend to be very subtle in nature compared to un-

folding simulations. Often, when significant events occur in a native-state



12

protein simulation, they are difficult to locate due to the very small changes
that comprise them. A perfect example of this phenomenon can be found in a
set of methyltransferases whose SNP variants are part of the Dynameomics
project. The proteins catechol O-methyltransferase (COMT), L-isoaspartate
O-methyltransferase (PIMT), thiopurine S-methyltransferase, and histamine
N-methyltransferase all have very similar folds, each with a mutation in a con-
gruent spot at least 16 A from the active site. These SNPs are known to cause
significant effects on the protein’s behavior and are associated with disease,
but the mechanism by which this occurred was not previously understood.
Although explanations for these phenomena were developed using simula-
tions in the Dynameomics database (Rutherford et al., 2006; Rutherford and
Daggett, 2008; Rutherford et al., 2008b; Rutherford and Daggett, 2009a,b,
2010), the individual effects of each mutation were extremely elusive. The
research made it clear that computational methods and tools for comparing
similar simulations and for searching simulations for unusual or interesting
events were severely lacking. Our research on wavelet analysis, which develops
and tests methods designed to solve these problems, is discussed in chapters
3 (searching simulations) and 4 (comparing simulations). Additional research
using graph theoretic methods to index and compare individual residues based

on their chemical environments is discussed in chapter 5.

1.4.2 Unfolding Dynamics

Unfolding simulations tend to be very dramatic in comparison to native-state
simulations thus have very different analysis needs. For example, Jonsson
et al. (2009) used a conformational clustering method Li and Daggett (1994)
to identify transition states in 183 high ranking targets in Dynameomics and
used these data to characterize several features of the protein unfolding tran-

sition state. This method, however, is considerably less useful in native-state
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simulations, in which all conformations tend to be extremely similar.

Because unfolding is a fast process that is characterized largely by changes
to a protein’s topology and hydrophobic core, we hypothesized that metrics ana-
lyzing the relationship between a part of the protein to the whole of the protein
might be more useful in unfolding studies. Chapter 6 discusses our research
into one such metric, the betweenness centrality of graph theory, that has shed
considerable light on how protein’s move through their transition states to their

denatured states and back.
1.5 Conclusions

The Dynameomics project is an immense project around which considerable
research has already been and will continue to be precipitated. The careful or-
ganization of the project facilitates the exploration of novel topics while the raw
diversity and size of the database allows hypotheses to be formed and tested
efficiently. Nonetheless, the project has exposed critical holes in the existing
methodology for MD analysis and research. In this thesis, we explore our so-
lutions to these holes and present the novel findings they have allowed us to

discover.
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Table 1.1: Simulations rejected by quality control.

PDB Code Reason for Rejection

1j1h Opening of hydrophobic core

Ljyt Opening of hydrophobic core

1t23 Opening of hydrophobic core

leOg Continuous rearrangements/no stable state
1iba Continuous rearrangements/no stable state
1k0Oh Continuous rearrangements/no stable state
Tuw?2 Continuous rearrangements/no stable state
Liyr Continuous rearrangements/no stable state
2afp Continuous rearrangements/no stable state
7hsc Continuous rearrangements/no stable state
1b9g Nontrivial secondary structure rearrangements
1fu9 Nontrivial secondary structure rearrangements
lhyw Nontrivial secondary structure rearrangements
1i42 Nontrivial secondary structure rearrangements
1kkx Nontrivial secondary structure rearrangements
Inr3 Nontrivial secondary structure rearrangements
1q3j Nontrivial secondary structure rearrangements
Iqué Nontrivial secondary structure rearrangements
Ivpu Nontrivial secondary structure rearrangements
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Figure 1.1: The human P1/Mahoney Poliovirus (1al2) with chain 4 highlighted.
Chain 4 is a fold representative in the Dynameomics CDD, but is clearly not
self-contained and would be an inappropriate simulation target.
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Chapter 2

DYNAMEOMICS: LARGE-SCALE ASSESSMENT OF
NATIVE PROTEIN FLEXIBILITY

2.1 Summary

Structure is only the first step in understanding the interactions and func-
tions of proteins. In this paper, we explore the flexibility of proteins across a
broad database of over 250 solvated protein molecular dynamics simulations
in water for an aggregate simulation time of 6 us. These simulations are from
our Dynameomics project, and these proteins represent approximately 75% of
all known protein structures. We employ principal component analysis of the
atomic coordinates over time to determine the primary axis and magnitude of
the flexibility of each atom in a simulation. This technique gives us both a
database of flexibility for many protein fold families and a compact visual rep-
resentation of a particular protein’s native-state conformational space, neither
of which are available using experimental methods alone. These tools allow us
to better understand the nature of protein motion and to describe its relation-
ship to other structural and dynamical characteristics. In addition to reporting
general properties of protein flexibility and detailing many dynamic motifs, we
characterize the relationship between protein native-state flexibility and early
events in thermal unfolding and show that flexibility predicts how a protein
will begin to unfold. We provide evidence that fold families have conserved
flexibility patterns, and family members who deviate from the conserved pat-
terns have very low sequence identity. Finally, we examine novel aspects of

highly inflexible loops that are as important to structural integrity as conven-
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tional secondary structure. These loops, which are difficult if not impossible to

locate without dynamic data, may constitute new structural motifs.
2.2 Introduction

Much scientific effort has been spent attempting to catalog, describe, observe,
and understand protein structure and function. Even when the structure of
a protein is known, this knowledge is often not sufficient to elucidate details
of the protein’s function or its mode of action, both of which are pieces of in-
formation that are frequently of much greater importance to biologists than
structure. As biologists increasingly seek to understand and modify aspects of
cellular behavior and as protein databases gather more high-resolution three-
dimensional structures, the ability to understand key features of a protein’s
dynamic behavior becomes more important.

Flexibility is critical in determining protein behavior and function. Because
proteins are not static entities (as they are represented in structural databases)
and because crystal structures do not necessarily represent a protein in its ac-
tive conformation, any attempt to determine potential biochemical interactions
of a protein from these data suffers from a lack of information about its motion.
A quantitative description of a protein’s flexibility provides a summary of its
dominant dynamical modes and significant information about potential confor-
mations available to it. Flexibility may also provide insight into unfolding and
folding pathways because a protein is most likely to start unfolding, and to fin-
ish folding, at a site that is highly mobile. Thus, flexibility may affect not only
function but also unfolding and stability.

Molecular dynamics (MD) is a common method for determining protein mo-
tion over time. MD provides the researcher with snapshots of a protein’s confor-
mation at regular time intervals. These data, when saved at frequent enough

intervals, behave as a stop-motion photography film and can be analyzed by
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mathematical and statistical techniques to further explore protein motion.

The Dynameomics project (Beck et al., 2008) is a large-scale effort to simu-
late a protein from every protein fold family (Day and Daggett, 2003). The Dy-
nameomics database (Kehl et al., 2008; Simms et al., 2008) currently contains
450 proteins, each of which has been simulated for at least 21 ns at a temper-
ature of 298 K. Additionally, it contains at least two unfolding simulations of
each protein at 498 K for 31 ns and at least three short (2 ns) simulations at
498 K. These simulated target proteins form a data set that spans a consider-
able portion of the protein universe, representing > 75% of all known protein
folds.

Here we focus on the analysis of general features of protein flexibility of
the native-state proteins in the Dynameomics project, resulting in a database
of protein flexibilities. For three of these highly populated folds, we compared
36 family members to determine if flexibility is conserved across a fold family.
Then we compare native-state flexibility with unfolding behavior to explore the
relationship between flexibility and the mechanism of early unfolding. Finally,
we searched our database of flexibilities for unstructured regions whose flexi-
bility was uncharacteristically low, and we use these findings to demonstrate
how flexibility may be useful for determining intrinsic properties of structure

that are difficult to elucidate with other techniques.
2.3 Methods

Simulations were performed with explicit water using our in-house developed
simulation package in lucem molecular mechanics (Beck et al., 2008; Beck and
Daggett, 2004) and our previously described protein and water force fields
(Levitt et al., 1995, 1997). Simulation details can be found elsewhere (Beck
et al., 2008). For each simulation, atomic coordinates from all but the first

nanosecond of our trajectories were downloaded from our in-house developed
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data warehouse (Simms et al., 2008) into Mathematica Version 5.2 (Wolfram
Research, 2005) for analysis. The first nanosecond was omitted to allow for
equilibration. For each picosecond of the simulation, the protein structure was
aligned to the initial structure using a rigid least squares fitting of Ca atoms
with the structure’s center of mass held at the origin (Kearsley, 1989). The co-
ordinates of each non-hydrogen atom were centered by subtracting the atom’s
mean position. Principal component analysis (PCA) was performed on these
centered coordinates via singular value decomposition of their correlation ma-
trix. This procedure yields, for each atom, three principal component vectors,
u1, up, and uz, each of which encapsulates a variance s, s,, and s3, respectively,
the sum of which is the total variance of the atom’s trajectory. These values
were placed back into our database for further analysis. The first principal
component, u;, which encapsulates the largest portion of the variance in the
trajectory, was taken as the primary axis of flexibility while the standard de-
viation of the trajectory along that axis, b = ,/s], was taken as the primary
measure of the flexibility in angstroms (A). The flexibility vector for a given
atom was thus taken to be bu,, the vector in the direction of the first principal
component whose length is the standard deviation of the movement along that
axis. The total number of proteins/simulations analyzed was 253 (5.56 us total)
and the total number of atoms analyzed was 505,702 in 32,306 residues. These
253 targets include the 188 targets described in Table S1 of Beck et al. (2008),
as well as the 65 targets listed in Table 2.1 here.

Once this flexibility information was collected and placed in the data ware-
house, various statistical analyses and visual inspections of the trajectories
were performed. Flexibility was visualized in two ways. The first involved
plotting the flexibility vector (bu,) for each atom onto the mean structure of
the simulation; the vectors were also plotted in reverse because the principle

component represents a trend along an axis with the atom at the origin. The
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second method involved coloring the reference structure based on its calculated

flexibility (b) along the sequence.

2.3.1 Analysis of Secondary Structure

Each secondary structure element was separated and categorized for analysis.
Atoms were considered part of a secondary structure element if they existed in
that element for at least 75% of the simulation according to the DSSP algorithm
(Kabsch and Sander, 1983). Turns were determined according to the criteria
outlined by Kuntz (1972) and labeled as such if the residue was not previously
part of another secondary structure element and was in a turn conformation
for at least 75% of the simulation. In the case of a-helices and §-sheets, the di-
rections of the flexibility vectors were compared to the principal components of
the Co atoms of their respective secondary structure units (i. e., the consecutive

Ca atoms belonging to a -strand or a-helix).

2.3.2 Comparison of Fold Family Flexibility

Three fold families were examined to compare the flexibilities of family mem-
bers: engrailed homeodomain three-helix bundles (3HB), Src homology 3 (SH3)
domains, and ubiquitin-like folds (UBX). Twelve proteins from each family
were analyzed, details of which can be found in Table 2.2. Correlations of
flexibility were calculated for each pair of proteins in a single family using
equivalent residue ranges based on the DaliLite server’s alignment of the mean

structures (Holm and Park, 2000).

2.3.3 Comparison of Native-State Flexibility to Early Unfolding Events

Unfolding trajectories were simulated at 498 K for at least 31 ns Day and
Daggett (2005). Three proteins were chosen (lenh, Ishg, and 1ubq), one from
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each fold family, each of whose native-state flexibility vectors were compared

to their unfolding pathways.

2.4 Results

Here, we focus on the use of principal components of atomic trajectories to
analyze the main chain Ca flexibility of proteins in MD simulations using a
technique formally described by Teodoro et al. (2003). This technique provides
the magnitude and primary axis of an atom’s movements. We performed the
analysis on all targets in our Dynameomics project for which we had completed
at least 21 ns of simulation at 298 K and for which all of our standard analyses

had been run, a total of 253 proteins when this project began.

2.4.1 GGeneral Properties of Flexibility

The data collected in the analysis of the 253 solvated protein MD simulations
yielded several broad statistics concerning flexibility (Tab. 2.3). The distribu-
tion of flexibilities of all simulations can be seen in Figure 2.1a. Approximately
85% of the first principal components covered more than half of the variance of
a given atom’s trajectory. The distribution of the portion of variance covered by
the first principal component is shown in Figure 2.1b. If atoms with very low
flexibilities (< 0.5 A) are excluded, 91% of the first principal components cover
more than half of the variance. If only those atoms with higher than average
flexibility are examined, this percentage climbs to 98%, and among the upper
outliers (flexibility > 1.7 A) the flexibility covers a mean of 76 + 10% of the vari-
ance. The distribution of the flexibility of all atoms can be seen in Figure 2.1c.
Less than a third of the variance in all atoms is covered by the final two prin-
cipal components together. The ellipsoid formed by the standard deviations

along each principal component for an atom represents that atom’s probable



24

occupancy. The mean anisotropy of these ellipsoids, defined as the ratio of the
shortest to the longest semi-axes of the ellipsoid, for Ca atoms in our simula-
tion was 0.48, excluding upper outliers. This indicates that the atoms in our
data set have distributions about their mean positions that are marginally less
spherical than the experimentally derived data set from 68 proteins examined
by Kondrashov et al. (2007), whose mean anisotropy was 0.51.

The average correlation of a protein’s flexibility to the mean Ca root-mean-
square fluctuation (RMSF) about the average was 0.74. The correlation be-
tween the average C root-mean-square deviation (RMSD) and the average flex-
ibility was 0.75. The average correlation between Ca, Cv, and C( flexibility
and mean solvent-accessible surface area (SASA) by residue was 0.25, 0.33,
and 0.47, respectively. The Spearman correlation between flexibility and hy-
drophobicity (Black and Mould, 1991) by amino acid type was 0.58; if Pro is

excluded, this correlation rises to 0.65.

2.4.2 Properties of Secondary Structure Flexibility

In general, both $-strands and a-helices have flexibility vectors that are more
parallel to their principal axes (i. e., stretching/compressing the structure) at
their termini than in the middle. Histograms of the absolute values of the
dot products of the flexibility vectors with the principal components of the sec-
ondary structure units, representing the degree of alignment of the vectors to
the principal axes (1 indicating parallel vectors and 0 indicating perpendicular
vectors), are shown in Figure 2.2. In the case of a-helices with at least two
turns, the principal axis (the first principal component of the Ca atoms) of the
helix is approximately parallel to the axis of the helix while the secondary and
tertiary axes point outward toward the loops. In the case of 5-strands, the prin-
cipal axis of the strand lies along the backbone of the strand. A summary of

the flexibilities of Ca atoms by residue and secondary structure can be found



25

in Table 2.4.

2.4.3 Fold Family Flexibility

We examined 12 proteins from each of three fold families: one all a-helical-the
three-helix bundle fold (3HB), one all 3-sheet — the SH3 fold family, and one
with both an a-helix and S-sheet — the ubiquitin fold family (UBX) (Table 2.2).

The threea-helix bundle fold (3HB) contains members that are among the
fastest folding and unfolding proteins. Each protein contains relatively rigid
a-helices and flexible loop regions. The mean C flexibility for the a-helices and
loops is 0.76+0.31 A and 1.43+0.83 A, respectively. Residues of the a-helices flex
perpendicular to the axis of the helix (Fig. 2.3a) in all cases except two helices
of Ie17. The residues flexing highly parallel in 1e17 are E13, L14, 115, Q17,
A18, and I19 in the first helix (Fig. 2.3b) and 129, A30, Q31, 132, Y33, E34, and
R38 in the second (Fig. 2.3c). Other helices in the 3HB family tend to contain
Glu, Lys, Val, and Phe residues but fewer Leu and Ile residues. Table 2.6 shows
the comparison of a collection of 3HB proteins with an average correlation of
the magnitude of the flexibility of 0.76 with values ranging from 0.70 to 0.92.
The final member is a significant outlier (1kkx vs. Ienh) with R = 0.38.

The SH3 fold family consists of highly inflexible 3-strands in barrel-like
orientations. The mean flexibility of these 3-strands is 0.47 + 0.21 A and of the
loop regions is 1.29 A +0.68 A. No obvious global patterns exist in the directions
of the flexibilities. Table 2.6 shows a collection of the SH3 family members
compared to each other with an average correlation of flexibility magnitudes of
0.81 with values ranging from 0.73 to 0.96. There is a significant outlier with
R = 0.45 (1gcp vs. 1ihv).

The UBX fold contains both $-sheets and an a-helix; all of the UBX mem-
bers studied have the helix docked against the -sheet except for 1kot, which

additionally contains several external helices. The mean flexibility of the $-
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strands is 0.53 &+ 0.27 A, and 0.53 + 0.24 A for a-helices. In each of the UBX
proteins, the residues of the helix and strands exposed to each other flex more
readily along the axis between them. Table 2.6 shows a collection of UBX fam-
ily members compared to each other with an average correlation of flexibility
magnitudes of 0.72 with values ranging from 0.61 to 0.77. A significant outlier
with R = 0.44 (1kot vs. 1h8c) is also included.

Overall, the correlation in flexibility between family members is highest
when the sequence identity is high. The correlation between sequence identity
and per-residue flexibility correlation is 0.76. The 3HB family members studied
here have the lowest average sequence identity (Tab. 2.6). In addition to the
comparisons provided, correlations were calculated between every possible pair
of simulated proteins in a given family. The correlations tended to be high, with
a small number of outlying low values. Of the 198 intrafamily protein pairs,
only 11 had correlations below 0.1; excluding these, the average correlation
between the flexibility magnitudes of two proteins in the same family was 0.62.
Of the 11 pairs with low correlation, all belonged to either the 3HB or UBQ

family, and their average sequence identity was 9% + 6%.

2.4.4 Native-State Flexibility and Early Unfolding Events

The native-state flexibility of the engrailed homeodomain (Ienh), of the
3HB family, was compared to early events in its thermal unfolding pathway
(Fig. 2.4a). The protein can be broken down into segments in order of decreas-
ing flexibility: its N terminus (1.48 A); (H3C) the C-terminal end of H3; (L1)
the flexible residue Y25 between H1 and H2; H3; (L2) the joint between H2
and H3; H2; and H1 (0.31 A). The first significant unfolding event (within the
first 0.1 ns) is the undocking of H3 in conjunction with the lifting of the flexible
N-terminal tail (regions N and L2). This is followed by unwinding of the

flexible C terminus (H3C). These events begin very early, around 0.3 ns, with
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a stretching of the helix toward the C terminus, and they are complete by 3.5
ns, before the other two helices have begun to unwind significantly. Another
early unfolding event is the movement of H1 from a position parallel to H2 to
a skew position at approximately a right angle. The helices pivot around Y25
between 0.7 ns and 2.4 ns. The N-terminal end of H3 begins to unwind around
1.6 ns (H3 and L2) and is complete by 3.2 ns; the N-terminal end of H1 does

not begin to unwind until 3.8 ns.

The native-state flexibility of the SH3 domain of alpha spectrin (I1shg) was
similarly compared to early events in its thermal unfolding (Fig. 2.4b). This
protein is very inflexible overall (0.5 A) and, in order of decreasing main-chain
flexibility, consists of the C terminus (0.9 A); (H) a single a-helical turn near
the C terminus; (NT) the NT Src Loop; (DL) the Distal Loop; (RT) the RT Loop;
and (S) four g-strands. The flexibility vectors of the end of the C terminus and
of the helical turn have very strong components in the direction away from and
toward the protein. The first event in the unfolding pathway of Ishg (in the first
0.3 ns) is an extension of the C terminus (region C) away from the protein in the
direction that the flexibility vectors point, accompanied by the undocking of RT
(H and RT). From 0.1 to 0.2 ns, S2 and S3 (separated by NT) shift alignment.
Around 0.3 ns, S4 pivots on DL and separates from S3. This is accompanied,
around 0.5 ns, by the twisting of RT and the pivoting of S1 around RT. It is not
until 0.8 ns that any of the 3-strands bend significantly (S).

The protein ubiquitin (I1ubgq) is an inflexible protein (0.5 A) consisting of four
B-strands (S) and an a-helix (between S2 and S3) connected by four loops. Its
most flexible regions are the four C-terminal residues (2.29 A), (L1) Loopl, (L3)
Loop3, and (L4) Loop4. The flexibility vectors of the C terminus point away
from the body of the protein (Fig. 2.4c). By 0.6 ns of the simulation, the entire
protein expands via the separation of S2 from S1 and the undocking of the helix

from L4 via movement of L1 and L3. Although the C terminus is highly flexible



28

and moves considerably, it does not play a significant role in unfolding. Around
0.3 ns, L4 extends, eventually leading to the separation of S4 from S3 and S1
(between 0.5 and 0.7 ns).

2.4.5 Inflexible Loops

There are 21 loops or unstructured regions consisting of > 6 residues in the
ensemble of targets with an average Ca flexibility of > 0.5 A and an additional
353 moderately flexible unstructured regions with an average of < 1.0 A. Seven
of the highly inflexible loops are buried or partially buried in a protein, but 14
of them are exposed to solvent. Table 2.6 details these 21 regions; we highlight
three of these regions below.

The ribosomal protein L.14 (Iwhi) has a highly inflexible loop (mean flexibil-
ity is 0.47 A) with sequence A11, D12, N13, S14, G15, A16, and R17 (Fig. 2.5a).
A domain from bovine mitochondrial F1-ATPase (Ielq, residues 24-93), of the
a/B-subunits F1 ATPase/thrombin family, has a highly inflexible region (0.37
A) exposed to solvent with sequence L44, R45, N46, V47, Q48, A49, and E50
(Fig. 2.5b). A loop near the ice-binding surface of type III antifreeze protein
from ocean pout (Iops, residues 2-65), of the 3-clips II family, has a highly in-
flexible region with a mean flexibility of 0.45 A and with sequence V26, T27,
N28, P29, 130, G31, and 132 (Fig. 2.5b).

2.5 Discussion

2.5.1 General Properties of Flexibility

Large-scale MD flexibility analysis has never been applied to data mining on
the scale of hundreds of proteins. By employing the basic technique of Teodoro
et al. (2003) with our database of MD simulations, we have collected consider-

able information regarding the general flexibility of proteins, as well as uncov-
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ered both anomalies and patterns concerning protein dynamics.

The distribution of the variance captured by the first principal components
of the Co trajectories and the correlation with the more conventional Ca« RMSF
supports the validity of using the first principal component of the trajectory
as a measurement of an atom’s flexibility. The most flexible Ca atoms have
first principal components that cover the greatest portion of their total vari-
ance, and very inflexible Ca atoms have principal components that cover less
of their variance. This observation suggests that the atoms for which flexibil-
ity analysis is most like RMSF are those that are least flexible. This obser-
vation additionally suggests that highly rigid atoms, such as those found in
B-strands, undergo small fluctuations with less directed distributions about a
mean position, while very flexible atoms, such as those in loops, oscillate along
predictable trajectories. The primary difference between flexibility and RMSF
is encapsulated in these observations; while RMSF measures all fluctuations
from a mean structure, flexibility analysis isolates the key features of the mo-
tion of an atom. In addition to giving a direction to the atom’s motion, flexibility
filters out an atom’s less significant and noisy motions and gives a measure of
the fluctuation of an atom along its most significant mode. The distribution of
flexibility shows that very few atoms are highly rigid compared to the number
that are slightly flexible (> 1 A) and that a small number of atoms are very

flexible (> 5 A), which occurs primarily in tails and loops.

The correlation between average Ca RMSD and flexibility shows that highly
flexible proteins are very poorly captured by a small number of static structures
and supports the notion that flexibility should be taken into account in dock-
ing and other structure analyses. The correlation between average Ca RMSF
and flexibility is expected because of the underlying similarity in what they
measure. This correlation supports the fact that they are related without sug-

gesting that they are the same. One might expect a high correlation to SASA,
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because surface residues would seem to be more mobile than buried residues.
However, the correlations between SASA and flexibility are low because SASA
is a very noisy measurement, although there is a higher correlation for side
chain atoms.

The agreement of the anisotropy of atomic flexibilities to the anisotropy de-
rived from crystallographic anisotropic displacement parameters, as examined
by Kondrashov et al. (2007), strongly supports the validity of this flexibility
metric. The slight decrease in the anisotropy of our simulations (0.48 vs. 0.51)
may be due either to differences in the sampling of the data sets (68 vs. 253 pro-

teins) or to the dynamical differences between atoms in solution and in crystals.

2.5.2 Properties of Secondary Structure Flexibility

The flexibility of individual amino acids by secondary structure tends to be
highly variable due to the large data set and effects of averaging. A few excep-
tions to this emerge, however, notably the rigidity of His and Trp in 8-strands
or Ile in a-helices. These data suggest that the insertion of, for example, His
into a $-strand or Ile into an a-helix would cause it to be more rigid. Addition-
ally, it is apparent that the flexibilities of hydrophilic and polar residues are
slightly higher on average than those of hydrophobic and nonpolar residues
(Table 2), with a few exceptions. This trend can be easily explained by the ten-
dency of nonpolar residues to cluster tightly with other nonpolar residues as
opposed to polar and hydrophilic residues, which often interact with solvent.
The correlation (R, = 0.65, excluding Pro) between hydrophobicity and flexibil-
ity additionally supports this explanation. The appearance of cystine (Cys) as
the least flexible amino acid is not surprising because we separated reduced
cysteine (Cyh) and oxidized cystine.

The dot products of the Ca. atoms with the principal axes of their secondary

structure measure the angle that the motion of the atom makes with the sec-
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ondary structure element. Both the principal axis of a secondary structure unit
and the flexibility vector for any given Co atom are unit vectors; thus the dot
product will always range from 0 (perpendicular vectors) to 1 (parallel vectors).
The distributions of these dot products are noisy due to the relative rigidity of
secondary structure combined with the previous observation that rigid atoms
have less ordered distributions about a mean than highly flexible atoms, which
tend to flex more strongly along a single axis. Nonetheless, slight trends are
apparent. In both o-helices and $-strands, there is a slight tendency for the
flexibility vectors of a secondary structure unit’s Ca atoms to be perpendicular
to its primary axis and for its second principal component to be parallel to the
flexibility vectors. In the case of a-helices, this trend indicates that the flexi-
bility vectors point most strongly outward/inward, away from and toward the
center of the helix. In the case of 3-strands, this trend indicates that flexibility
vectors point least strongly along the backbone of the strand and more strongly
in the direction of the bends of the backbone (the direction of the second prin-
cipal axis) than from side to side. The trend is more pronounced in a-helices
than g-strands, which can be predicted by the higher flexibility of a-helices as
well as the tendency of 3-strands to curve and bend (thereby preventing the
principal axis from being as consistent). Additionally, in the case of a-helices,
the trend is slightly more pronounced at the ends of helices than for the middle
residues, showing that the ends of helices flex more readily outward from the

central axis.

2.6.3 Trends in Fold Family Flexibility

The examination of the flexibilities of fold families begs the question of whether
there are fundamental rules that tie sequence and local structure to flexibility.
The average flexibilities of secondary structure within a fold family differ from

the overall averages, suggesting that some trends between the flexibilities of
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members of various fold families exist. The secondary structure of the 3HB and
SHS3 fold families consist only of a-helices and only of 3-sheets, respectively. In
both 3HB and SH3, the flexibilities of their secondary structures are lower than
expected from the overall averages. The lack of trends in the flexibility vectors
in the SH3 fold family, which is rich in g-strands, agrees with the previous
observation that 3-strands are highly inflexible and therefore tend to have less
directed fluctuations. These data, along with the observations concerning the
trends in the directions of the flexibility vectors in the 3HB and UBX families
and the high correlations between fold family members, suggest that there are
motifs in the specific flexibilities of fold families, though these trends may be
subtle. Additionally, the correlation between a protein’s sequence identity and
the closeness of its flexibility to other family members suggests that sequence
modulates the flexibility. For example, Ie17, whose helical flexibility vectors
varied from the other members of the 3HB family, has helical sequences that
are quite different from the other family members; features such as the lack of
Lys and presence of Ile, a highly inflexible residue in a-helices, explain some of

these differences.

Additionally, the high correlations of the magnitude of the flexibility be-
tween equivalent structural regions of family members suggest that families
have characteristic flexibility patterns. Notably, comparison of arbitrary o-
helices to each other and arbitrary 3-strands to each other produces very low
correlations (mean correlation < 0.2), so the relationship observed here is not
dependent only on the makeup of secondary structure in each family. Not every
member of a fold family adheres strictly to these flexibility patterns, however,
as shown by the small number of pairs of proteins with low flexibility correla-
tions. This is not surprising considering the structure and sequence diversity
of the fold families examined and demonstrates that the local chemical envi-

ronment of a residue, and not just its local backbone configuration and chain
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topology, determine its flexibility. Nonetheless, the high correlation between
most pairs of fold family members indicates that the similarity between two
proteins’ flexibilities correlates with the similarity of their structures and se-
quences. Future work will extend this observation to examine in detail how the

local chemical environment of a residue influences its flexibility.

2.5.4 Native=State Flexibility and Early Unfolding Events

The comparison to unfolding simulations shows a relationship between the
flexibility of a residue at 298 K and the early steps in the thermal unfolding
pathway in the proteins examined here. There is a nearly step-by-step corre-
lation between high flexibility and the order of unfolding. These data suggest
that native-state dynamics are closely related to unfolding and folding dynam-
ics, in agreement with our findings in the first simulations of protein unfold-
ing (Daggett and Levitt, 1992). Later, Hespenheide et al. (2002) explored the
relationship between flexibility and unfolding pathways in simulations of 10
monomeric proteins and compared the results to hydrogen-deuterium exchange
experiments (Li and Woodward, 1999). They found that the folding cores of
proteins with the greatest structural stability against denaturation could be
determined by flexibility. Here we extend this work to the level of hundreds of
proteins, further tying flexibility to instability by showing that flexible Ca sites

are the most likely candidates for early unfolding.

2.5.5 Inflexible Loops

The sheer number of inflexible loops (21 with flexibility 0.5 A and 353 with flex-
ibility < 1.0 A) is surprising and suggests that there may be a number of struc-
tured loops that are not recognized as secondary structure, although they are

as rigid as conventional secondary structure. Because the inflexible secondary
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structure units that form a protein’s backbone and core generally determine its
structure, it is useful to consider the possibility of additional rigid structural
units that may be important in the determination of structure. This hypothesis
was examined before by Leszczynski and Rose (1986) in their study of Q-loops.
While many of the loops examined here have occasional ) character, partially
due to the broad definition of Q-loops, many of them do not share the motif of
being tightly packed internally. The three cases examined here are each inter-
esting for different reasons. The second loop in Iwhi (ribosomal protein L14
family) contains a pair of hydrogen bonds between the side chains of Asp 12
and Ser 14. Notably, this loop is highly conserved among species and is respon-
sible for mediating interactions between the neighboring loops in the 3-barrel
of this protein (Davies et al., 1996). The loop in Ielq (o/3 subunits of F1 ATPase
family) sits at the interface between and subunits of ATPase (Abrahams et al.,
1994) and contains a pair of hydrophobic residues (Leu 44 and Val 47) in close
proximity, forming a small hydrophobic cluster. Such interactions indicate that
sequence is an important predictor of flexibility. The loop in Iops (antifreeze
protein III-like family) does not contain hydrogen bonds or sites for potential
hydrophobic interactions, though it is highly hydrophobic. The C-terminal end
of the protein runs through it, however, which may lock it down. This loop pro-
vides rigid support for the ice-binding surface of this antifreeze protein (Yang

et al., 1998).

Each of the 21 least flexible regions fit into one of five categories: (1) those
that are sterically hindered, (2) those with internal hydrophobic contacts, (3)
those with internal polar contacts, (4) those with partial secondary structure
character, and (5) those with external contacts. Internal hydrophobic contacts
between side chains appear to play a stabilizing role in many of these, and such
contacts represent the most commonly appearing motif. These loops specifi-

cally coincide with the (2-loop motif. The regions with hydrophobic internal
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contacts often had backbones with characteristic and very high curvature such
that close contacts could be made between side chains at the center. The distri-
bution of amino acids in all of the inflexible loop regions, as well as in only the
21 least flexible regions, contained no significant deviations from the distribu-
tion of amino acids in all proteins; however, the distribution of amino acids in
those regions with internal hydrophobic contacts was heavily skewed toward
Leu and Pro and moderately skewed toward Val and Ile. Gly and Thr are the
only other amino acids with a high frequency in this set. Pro appears near the
point of highest curvature in several of these regions and may be important
for forming this motif by introducing a kink in the segment. Future analysis
will explore the extent to which these observations are examples of structural
motifs that imply a predictable quality to flexibility based on sequence and
structure and whether these potential motifs can further be tied to structural

stability.
2.6 Conclusions

Protein flexibility is a useful means of extracting information from individual
protein trajectories as well as related sets of trajectories. Protein flexibility
bears a strong relationship to unfolding and can be used to predict early steps
in unfolding. The ability of flexibility to elucidate regions of interesting struc-
ture has been demonstrated by the identification of inflexible loops that consti-
tute new structural motifs. Finally, the correlation of flexibility with structure
and the inherent flexibility differences between fold families are potentially
very useful for understanding how different arrangements of structure can lead

to different dynamics and function.
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Table 2.3: Flexibilities for various atom groups over all simulations analyzed.

Atom Group Mean (A)

All atoms?! 1.257 + 0.94
Ca 1.009 + 0.76
Cvy 1.250 £+ 0.84

Backbone Atoms! 1.013+0.75
Side-chain Atoms! 1.332 4+ 0.97

! Hydrogen atoms were not included.
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Figure 2.1: General properties of protein flexibility. (a) Histogram of proteins
by average flexibility (square root of the variance represented by the first prin-
cipal component of an atom’s trajectory). (b) Histogram of the portion of the
variance covered by the first principal component of each atom’s trajectory.
High coverage means that most of the movement of that atom is encapsulated
by its flexibility. (¢) A histogram of the flexibilities of all atoms analyzed.
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Figure 2.2: Histograms of the absolute values of the dot products of the prin-
cipal axes of secondary structure elements with the end or middle residues of
each. A dot product of 1 indicates parallel vectors while a dot product of 0 indi-
cates perpendicular vectors. The y-axis of each graph is the number of proteins,

while the z-axis is the dot product.
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Figure 2.3: Protein backbones with flexibility vectors shown as vectors with
lengths equal to the Ca flexibility in angstroms. (a) An a-helix of 1f43 with
flexibility vectors perpendicular to the principal axis of the helix. (b) First a-
helix of Ie17 with flexibilities parallel to the principal axis of the helix. (c)
Second a-helix of Ie17 with flexibilities parallel to the principal axis of the
helix. Backbones are colored black to white by flexibility with darker regions
being the least flexible.
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Figure 2.4: Flexibility representation, unfolding snapshots, and significant un-
folding events of three proteins. All proteins are colored blue-green-red by flex-
ibility magnitudes. Flexibility vectors are shown in red. Vectors are displayed
at twice their length for clarity. (a) Engrailed homeodomain (Ienh); the transi-
tion state is at 362 ps. (b) a-Spectrin (Ishg); the transition state is at 110 ps.
(e) Ubiquitin (1ubq); the transition state is at 611 ps.
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Figure 2.5: Three proteins with inflexible regions with each inflexible region
colored in black. In each row, the right column contains the protein with the
surface of the inflexible region shown colored black to white by Ca flexibility
with darker regions being the least flexible. (a) The ribosomal protein L14. The
inflexible loop begins with residue 11 on the left and loops around to residue 17
on the right. Side chains for S12 and D14 are shown and colored by atom. Hy-
drogen bonds are shown by dotted lines. (b) Bovine mitochondrial F1-ATPase.
Side chains for residues L.44 and V47 are displayed. (¢) Ocean pout antifreeze
ITI protein.
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Chapter 3
WAVELET ANALYSIS OF PROTEIN MOTION

3.1 Summary

As high-throughput molecular dynamics simulations of proteins become more
common and the databases housing the results become larger and more preva-
lent, more sophisticated methods to quickly and accurately mine large numbers
of trajectories for relevant information will have to be developed. One such
method, which is only recently gaining popularity in molecular biology, is the
continuous wavelet transform, which is especially well-suited for time course
data such as molecular dynamics simulations. We describe techniques for the
calculation and analysis of wavelet transforms of molecular dynamics trajecto-
ries in detail and present examples of how these techniques can be useful in
data mining. We demonstrate that wavelets are sensitive to structural rear-
rangements in proteins and that they can be used to quickly detect physically
relevant events. Finally, as an example of the use of this approach, we show
how wavelet data mining has led to novel discoveries that appear to be related

to the mechanism of the protein vé resolvase.
3.2 Introduction

Molecular dynamics (MD) has become a common method for studying the mo-
tion of proteins over time, and it is the only available technique for examining
continuous fine granularity motion at atomic resolution. By numerically inte-
grating Newton’s equations of motion, one can produce a series of snapshots

of a protein’s trajectory through time. These snapshots, when saved at suffi-
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ciently high resolution, serve as stop-motion photography and provide a great
deal of information about how proteins behave.

The Dynameomics project (Beck et al., 2008; van der Kamp et al., 2010) is a
large-scale MD effort to simulate a representative from every protein fold fam-
ily (Day and Daggett, 2003). The Dynameomics database (Kehl et al., 2008;
Simms et al., 2008) currently contains over 2200 proteins, each of which has
been simulated for at least 31 ns at a temperature of 298 K. Additionally, it
contains at least two unfolding simulations of each protein at 498 K for 31
ns and at least three short (2 ns) simulations at 498 K for a total of ~11,000
simulations. These simulated target proteins are selected from our updated
consensus domain dictionary (Schaeffer et al., 2010) based on procedures de-
veloped by Day et al. (2003) These targets constitute a data set that spans a
considerable portion of the protein universe, representing more than 80% of all
known protein domains. The majority of the remaining 20% of the domains are
not in fact autonomous self-contained folds. Consequently, the simulation por-
tion of the Dynameomics project is complete; thus we now turn to mining and
using this database.

Because of the incredible amount of information stored in the Dynameomics
database, which contains 104 times as many structures as the Protein Data
Bank (PDB) Berman et al. (2000), analysis is often challenging. Although a
vast array of analysis techniques exist for the examination of individual tra-
jectories, these techniques are designed to shed light on the cause and effect
of events specific to one protein. Determining the often subtle similarities and
differences between hundreds of simulations has never before been possible,
and new analysis techniques that focus on hypothesis generation rather than
mere description are necessary.

Wavelet analysis is a signal processing technique that has been around

since the early 1900s (Haar, 1910), but it has only recently begun to gain popu-
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larity in molecular biology (reviewed by Lio (2003)). Wavelets have been specif-
ically suggested as powerful tools in MD Askar et al. (1996), but until now have
remained unexplored in this field. Like the Fourier transform, wavelets give in-
formation about the frequency domain of a signal, but, unlike the Fourier trans-
form, which gives only average information about each frequency, wavelets
give instantaneous information about how a particular frequency is localized in
time. Consequently, one can obtain considerable information about the modes
of a particular signal without losing information about when these modes occur
or how variable they are (Fig. 3.1). The continuous wavelet transform (CWT)
is a wavelet technique that offers high resolution information about a signal at
any scale. For our purposes, a signal is the trajectory of an atom over time. The

CWT is defined as

woon = — [ o () ar Y

where s is the scale of the wavelet, t is time, ¢(7) is the signal over time, ¥ (t) is
the wavelet function, 7 is the variable of integration, and * denotes the complex
conjugate. Conceptually, this is equivalent to sliding a given wavelet function
along the signal and calculating the match of the signal to the wavelet at each
time. The wavelet is scaled (or horizontally stretched) by some amount deter-
mined by the scale s in order to examine various wavelengths in the signal. In
order for wavelets to produce finite values localized in time, they are required to
be localized in time and frequency space, meaning they and their Fourier trans-
forms must approach zero as time or frequency approaches negative or positive
infinity. We additionally require that they have unit power ([ | (w)|2dw = 1
where 1(w) is the Fourier transform of ¥(t)) in order to make them comparable
across scales. Wavelets are also required to have a mean of zero. Examples of

wavelet functions are shown in Figure 3.2.
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For a discrete signal q of length n, the wavelet coefficients W®*-) for a scale
s and a wavelet function ¢ are calculated using Equation 3.2, a discrete version

of Equation 3.1:

1 4 j—k
Wi = 223 g (15F). 32

j=0
The resulting coefficients can then be examined in terms of time and scale
(or wavelength) as shown in Figure 3.1c. The coefficients can be calculated
very efficiently using the discreet Fourier transform and convolution theorem
(Arfken, 1985). Further details including complete Mathematica codes for cal-
culating wavelets are included in Appendix C. Because each wavelet function
has a unique shape, the scale of a wavelet does not always correspond per-
fectly to the wavelength at which it best matches the signal. For example, the
Paul wavelet (Fig. 3.2b), when scaled by s, matches a sine or cosine wave with
a wavelength of approximately 1.389s. The Morlet wavelet (Fig. 3.2b), on the
other hand, would match a wavelength of 1.01s. These parameters can be cal-
culated using the method outlined by Meyers et al. (1993). Parameters as well

as equations for each of the wavelets used in this paper are given in Table 3.1.

Once wavelet coefficients have been calculated, one may determine which
scales and times are significant and which are not. To demonstrate how this
can be done, suppose that we believe our signal follows white noise, meaning
that at every wavelength, the signal will tend to have the same amplitude of
motion. We would thus expect that at any given time ¢ the square of the abso-
lute value of the wavelet coefficient for a wavelength A would be approximated
by the variance of the original signal; note that the absolute value is used be-
cause the wavelet coefficient may be a complex number. Generally speaking,
we can expect that a wavelet coefficient will be normally distributed around
the expected value, thus the square of its absolute value, assuming the coef-

ficients are complex numbers, will be distributed by xZ02/2. By extension, if
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we believe that the mean amplitude of our signal is distributed by the func-
tion v()\) and that the wavelet coefficients will be normally distributed around
their mean amplitudes, then we expect the square of the absolute values of our
wavelet coefficients to be distributed by xZo%v()\)/2. Using this distribution,
we can choose any significance level and examine only those regions of time
whose power is in the upper portion of the expected distribution, just like in
a standard ¢-test. For a more complete theoretical description of the continu-
ous wavelet transform, please refer to Daubechies (1992). A practical guide to
wavelets is discussed by Torrence and Compo (1998). Implementation details,

including an exact algorithm, are given in Appendix C.

We begin by showing what wavelet analysis provides for a simple 3-helix
bundle fold (the engrailed homeodomain, EnHD). Then we analyzed simula-
tions from all 807 of the targets in our Dynameomics database; we demon-
strate the utility of wavelet analysis by focusing on two proteins: endonuclease
A (Icem) and profilin (Iypr). We compare these wavelet spectra to other analy-
sis methods as well as to the trajectories themselves. With these two proteins,
we show that wavelet analysis can be used to discover several kinds of interest-
ing events in a simulation. We then show how wavelet signatures can serve as
an excellent high-throughput metric for identifying subtle features and inter-
actions in a trajectory that are not always obvious using traditional techniques.
As an example, we show how wavelet spectra locate an event in the simulation

of 74 resolvase that explains how the protein achieves the flexibility required

to bind DNA.
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3.3 Methods

3.3.1 Molecular Dynamics Simulations

Simulations were performed with explicit water using our in-house developed
simulation package in lucem molecular mechanics (Beck et al., 2008; Beck and
Daggett, 2004) and our previously described protein and water force fields
(Levitt et al., 1995, 1997). Simulation details can be found elsewhere (Beck
et al.,, 2008). Here we are focusing on the 298 K trajectories. For each sim-
ulation, atomic coordinates from all but the first 1 ns of our trajectories were
analyzed from our in-house developed database (Simms et al., 2008). For each
ps of the simulation, the protein structure was aligned to the initial structure
using a rigid least squares fitting of Ca atoms with the structure’s center of
mass held at the origin (Kearsley, 1989). Haar, Morlet, and Paul wavelet anal-
yses were performed on each Ca atom’s trajectory over time; these wavelet
data were then loaded into Mathematica (Wolfram Research, 2008) for further
analysis. The total number of proteins/simulations analyzed was 807 (~17 us
total), which represents all ‘simulatable’ (self-contained folds) in our new 2009
consensus domain dictionary (Schaeffer et al., 2010), which is an updated ver-

sion of our 2003 domain dictionary (Day and Daggett, 2003).

3.3.2 Wavelet Analysis

We chose to use the continuous wavelet transform because of its ability to re-
tain very finely detailed information at a wide range of wavelengths. Scales

were chosen to fit Equation 3.3,

sp=105-2%8 k=0,1,..59, (3.3)
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giving a range of 60 scales from 105 ps to 17.5 ns. The granularity for our sim-
ulations is 1 ps, so this range of scales captures both the fast (100 ps) and the
relatively slow (10-20 ns) motions that occur in our simulations. Additionally,

the large number of wavelet scales gives a very fine resolution.

Three wavelet functions were chosen in order to capture the variety of mo-
tion that can occur in a simulation. The Morlet wavelet (Goupillaud et al.,
1984) consists of a plane wave tempered by a Gaussian. The Morlet has both
a real and imaginary component, such that it can capture both the amplitude
of the motion and the phase. It best matches motions that are sinusoidal in
nature. The Haar wavelet (Haar, 1910) is a very simple wavelet that is zero
everywhere except for immediately before and after 0 where it is 1 and -1, re-
spectively. The Haar wavelet best matches sudden changes in a signal and
square waves. The Paul wavelet (Addison et al., 2002) is essentially a complex
version of the famous Mexican hat wavelet, which is based on the derivative
of the Gaussian function. It is similar to the Morlet wavelet but decays more
quickly, giving it better resolution in time and lower resolution in frequency.
Notably, the imaginary portion of the Paul wavelet can match sigmoidal sig-
nals quite well. All wavelets were initially scaled so as to have a single period
of approximately 21 ns. Plots of the three wavelets are shown in Figure 3.2.
Example wavelet spectra for the Ca atom of Arg29 of EnHD are show in Figure
3.3. These spectra demonstrate that the Morlet, Paul, and Haar wavelets have
different sensitivities in time and frequency but maintain the same general
trends.

Because the amount of data generated by a single wavelet analysis is so
immense (60 times as much data as the simple z, y, z coordinates), an efficient
method of compression had to be employed. (For perspective, the 807 proteins
hold ~161.5 billion Cartesian coordinates for analysis, not including solvent.)

Based on the observation that wavelet spectra tend to be smooth, we chose to
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save each spectrum by approximating it with cubic splines. For each scale,
s, four splines were fitted using general least-squares for every period of the
wavelet function. For example, a scale of 10.5 ns would be estimated using
8 splines, uniformly distributed. To assure that this technique did not lose
excessive amounts of data, we calculated the total square deviation of each
scale for every atom. In all cases, the mean square deviation was less than

1/100th of the variance of the original values.

In order to determine which pieces of a wavelet spectrum are of interest,
we used the basic significance testing method outlined by Torrence and Compo
(1998). Because the square of the absolute value of a wavelet coordinate is
distributed by x2uA0?/2, where the variance of the signal is ¢ and the mean
expected Fourier power (amplitude) of a particular wavelength ) is u), we only
need to know the mean Fourier power for a wavelength to determine statistical
significance of the oscillations occurring at any given time for that wavelength.
We calculated the Fourier spectrum, f,, for each of our wavelengths over every
atom’s trajectory, g, according to Equation 3.4 and found that the mean Fourier
power, | fi|?, was approximately described by the equation p, = A**3/155 + 20,
where )\ is the wavelength measured in picoseconds. Equation 3.4 is similar to
the calculation of a single Fourier coefficient but at an arbitrary wavelength.
The calculation is made over only part of the signal in order to prevent incom-

plete sinusoidal waves from biasing the magnitude of the calculation.

1 —27i
f=r 3 N—l1e3¥ g, (3.4)
k A

For each wavelet spectrum, we extracted regions whose values were statisti-
cally in the upper 20% of the expected power distribution as strong oscillations
of a particular wavelength. For each scale, s, regions within s/2 ps of the be-

ginning or end of the trajectory were ignored in order to avoid the edge effects
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inherent with a finite signal. Additionally, the first nanosecond was ignored to
allow for equilibration. For each picosecond, the wavelength at which a given
Ca atom was oscillating according to this analysis was recorded. Whenever
multiple frequencies occurred at the same time, the one with the stronger os-
cillation (the greater outlier in its distribution) was used. These data thus
formed an “oscillation map” of the wavelengths that were most prevalent at

every picosecond for each Ca atom in a given protein.

In order to demonstrate the utility of these oscillation maps, we examined
their general properties for all 807 proteins. We hypothesized that an atom
experiencing no significant wavelet oscillations over a time regime would be
characterized by very little motion or by rapid vibrations, likely due to heat.
Similarly, we hypothesized that those residues with low frequency wavelets
would be characterized by structural rearrangements and large motions during
the time of those wavelets. To test this, we randomly chose 100 residues and
time regions from our 807 proteins requiring only that the wavelets for the
residue be of a uniform frequency over that time. Time regions were allowed
to be low frequency (A > 1 ns), high frequency (A < 1 ns), or no frequency (no
significant wavelets) for the entire region in question. These residues were
then scored as either arbitrary vibrations or large movements/rearrangements
with the actual values of the wavelets during each time region concealed. The
results were then tallied and compared. To demonstrate our specific findings,
we present wavelets for two proteins: profilin (ProF; Iypr) and endonuclease A
(CelA; Icem). Finally, to show how wavelets can be used to mine simulations,
we compared the low frequency distributions of all Ca atoms and examined
the simulations of those with the highest low-frequency wavelet content. The
trajectory of one such pair of atoms, G101 and M 103 of v resolvase, revealed a

novel mechanism in which helix oE changes conformation during DNA binding.
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3.4 Results and Discussion

In general, the Morlet and Paul wavelets were a better fit for MD trajectories
than the Haar wavelet. At a given wavelength, the Paul wavelet tended to give
the best resolution in time, the Morlet wavelet tended to give the best resolu-
tion in frequency, and the Haar tended to lag behind both. This comparison is
demonstrated in Figure 3.3 for the simple 3-helix bundle fold of EnHD. There
were no residues in all of our simulations that could be differentiated from
white noise more than 20% of the time using the Haar wavelet; thus, we do not
consider it further (note that nothing in Fig. 3.3c is statistically distinct from

white noise).

In the 807 protein data set, high frequency oscillations (A < 1 ns) were
common, occurring 22% of the time, but they were frequently correlated with
thermal vibrations. Midrange and low frequencies occurred 30% of the time
and were almost always correlated with motions ranging from slight rear-
rangements to loss or gain of secondary structure to broad shifts in back-
bone conformation. When scored by hand, regions of time with no signifi-
cant wavelets correlate with arbitrary vibrations 78% of the time while low
frequency wavelets correlate with structural movements and rearrangements
73% of the time. High frequency wavelets correlated with movements and re-

arrangements 50% of the time and with arbitrary vibrations 50% of the time.

Proteins with very stable trajectories have considerably fewer significant
oscillations than those that were unstable. EnHD, for example, exhibits only
a small amount of motion at the N-terminal tail. Only 20% of the time is
there a significant oscillation with A > 1 ns not occurring in the N-terminal
tail (Fig. 3.4a). Conversely, proteins that undergo considerable rearrangement
from their crystal structures have more low frequency oscillations. The DNA-

binding domain of ADR6 (1kkx) is a protein with a similar topology to the en-
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grailed homeodomain, but which was deemed unstable by our simulation. It
undergoes a large set of helical rearrangements in the beginning of its tra-
jectory after which it moves less but has an exposed hydrophobic core. Low
frequency oscillations occur in 35% of this simulation, most of which correlate
with the protein’s overall shifts (Fiig. 3.4b).

Given that low frequency wavelets correlated strongly with overall re-
arrangements in a protein simulation, we searched all 807 simulations for
wavelet coordinates that whose wavelength was at least 1 ns and whose signif-
icance was in the top 5% of the expected power distribution. Two proteins stood
out: endoglucanase A (CelA) and profilin (ProF). We examine these proteins in

more detail here.

The catalytic core of CelA is an all-helical protein in the o/« toroids family
(Fig. 3.5a). The simulation of CelA contains moderate rearrangement of sev-
eral mobile loops early on and several subtle changes that occur throughout
the simulation. The Paul oscillation map and the root mean square fluctuation
(RMSF) plot for CelA are shown in Figure 3.6a. RMSF is a commonly used
metric for the amount of fluctuation occurring in a residue over time relative
to its average position. Three main regions are of interest in this wavelet map,
the first of which is an empty region around 5-10 ns near residue 125 followed
by the low frequencies around 14 ns. The corresponding structures for these
regions are shown in Figure 3.5b. Another interesting region is the low fre-
quency block near residue 250 throughout the middle of the simulation. The
structures for this region are compared with the region absent of low frequen-
cies at the end of the simulation in Figure 3.5¢. Finally, Figure 3.5d shows the
subtle helical shift that occurs near residue 350 early in the simulation. These
fluctuations are not visible on the RMSF spectrum due to their subtle nature
and their relatively small movements. RMSF and other traditional analyses

often fail to detect small movements, even when they are significant, due to
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their focus on the amount of change rather than the quality of change. Wavelet
analysis finds these motions despite their subtlety because they are ordered

rearrangements.

The protein profilin is a member of the profilin-like family (Fig. 3.7a) that
binds actin and regulates the growth of actin filaments. The simulation of ProF,
in contrast to CelA, undergoes a few fast rearrangements in the first few ns of
the simulation after which little significant motion is observed. The simulation
is very stable with even the most flexible residue having a mean RMSF of only
~0.76 A. When examining the Morlet oscillation map of ProF (Fig. 3.6b), one
is immediately drawn to the low frequency block throughout the middle of the
simulation between residues 55 and 60. This midrange oscillation occurs for a
long period of time and is focused around a band of of residues from A53-N58
(Fig. 3.7). These residues are in a helix near the binding interface with actin,
and S57 participates directly in actin binding. Above this band (further along
the sequence) are several other shorter-lived bands of low-frequency motion
containing 6 other actin-binding residues (M68, L70, R71, H81, D82, and G85).
In the crystal structure, S57 points outward into solvent and away from the
other binding residues, but during time frame highlighted by the low frequency
wavelets from ~4.5 ns until ~14 ns, the helix containing S57 unravels from the
C-terminal end, keeping the loop containing S57 and N58 in tact and pushing
them toward the other active site residues slightly (Fig. 3.7).

Figure 5 shows the RMSF for CelA and ProF over time. For these proteins,
their RMSF profiles are essentially uncorrelated with their wavelet maps.
Notably, there is a slight increase in the RMSF of the region S122-A153 for
CelA during the longer wavelengths near 15 ns. However, regions E245-Y275
and S335-T360 show virtually no distinctive patterns in the RMSF spectra.
Similarly, the regions around S57 and N58 of ProF show little correlation

with the wavelets and, in fact, do not tend to change much over time. Thus,
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wavelet analysis was able to effectively screen for and detect interesting motion
within two unrelated proteins where conventional analysis failed. Searching
a database of multiple simulations of 807 proteins and > 100 us of simulation
time for interesting events is a daunting task. In order to expedite this process,
we hypothesized that individual residues dominated by low frequency move-
ments were most likely to be involved in significant conformational events.
Accordingly, we examined the trajectories of Ca atoms in our simulations that
had the highest portion of significant low frequency (> 1 ns) motion according
to the Paul and Morlet wavelets. Two such atoms, both in the upper 5% of
the distribution, belong to G101 and M103 of +6 resolvase (Igdt). vé resolvase
is a 183-residue protein belonging to the resolvase and DNA invertase family
that forms a homodimer in solution (Yang and Steitz, 1995). It is known that
G101 is a critically flexible residue situated between g-strand 5 and a-helix E
(Fig. 3.8a) that allows aE to pivot away from aD during DNA binding (Li et al.,

2005), but how this event occurs is unclear.

In our simulation of the monomer of 74 resolvase, we observed a slight
unraveling of helix oE and g-strand 5 around 3.5 ns as well as periodically
throughout the simulation (Fig. 3.8b). These movements were the cause of
the low frequency motion highlighted by wavelet analysis. Closer examination
revealed that this separation is accompanied by the formation of an Q-loop be-
tween 35 and oE with G101 at its tip. This loop is stabilized by the movement
of the side-chain of M103 from a solvent-accessible state into a hydrophobic
pocket consisting of 190, F92, and 197 where it displaces the C~ of T99 (Fig. 3.8¢
and 3.8d). During this motion, T99 rotates out of the pocket, maintaining its
hydrogen bond with the amide of 190 and allowing it to easily rotate back into
the pocket when M103 leaves. The result of this event is a slight turning of
oE and a loosening of loop 5E, making further rearrangement of oE, such as

that required for strand exchange, possible. Interestingly, methionine can be
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reversibly oxidized, increasing its polarity and hydrophilicity, a process pro-
posed to be involved in protein regulation (Stadtman et al., 2003; Santarelli
et al., 2006). Theoretically, an oxidized M103 or a mutation such as M103D
could stabilize the solvent-accessible state (oE closed) while a reduced M103 or
a mutation such as M103L could stabilize the Q-loop («E open). Thus, an auto-
mated screen for Ca atoms in the upper 5% of the distribution with respect to
low frequency motion led to the discovery of interesting cyclic conformational

behavior that may be linked to function.

The wavelet analyses explored here are a very effective method of examin-
ing both very large and very subtle types of motions occurring in a protein over
time. We have demonstrated that wavelets are capable of picking out multi-
ple types of distinct movements that occur within a protein that may not be
easy to find via visual inspection of the trajectory or by using traditional anal-
ysis methods (for example, CelA, ProF). Additionally, wavelets are capable of
pinpointing when a change is occurring in time, allowing them to be used as
a high-throughput screening technique for simulations (as with vd resolvase).
It is not surprising that the Haar wavelet fit our data poorly. The Haar is,
by nature, designed for square waves and discrete jumps, neither of which we
observe in our simulations. The Paul wavelet, which approximates the Haar
wavelet in a smooth form, was much more useful for our purposes. Both the
Paul and the Morlet wavelet provided good results, though the Paul is theoret-
ically better suited for analysis across time due to its high temporal resolution.
Although it is initially surprising that wavelets would be able to detect non-
oscillatory movements, such as a helical rearrangement, it should be noted
that a sigmoidal trajectory by an atom can easily match the imaginary part of
an appropriately scaled Paul wavelet (Fig. 3.2b). Thus, the Paul wavelet should
not be thought of purely as an indicator of oscillation, but rather as an indicator

of non-random motions. The fact that wavelet significance testing is not depen-
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dent on the amplitude of the oscillation additionally confers an advantage, in
that large motions do not necessarily drown out smaller motions as is often the
case in analyses such as RMSF. For example, a large hinge motion between two
regions of a protein would not prevent a smaller change in secondary structure
within one region from being detected.

Wavelets show clear sensitivity and specificity to all ranges of structural
rearrangement in a simulation, including many that are not visible using tra-
ditional analyses such as RMSF. This is potentially of great use for studying the
effects of mutation, pH, and/or temperature on a structure, as these changes
can be difficult to detect. The motions highlighted from CelA (Fig. 3.5) demon-
strate the range of wavelet sensitivity, as these motions include a large loop
rearrangement (Fig. 3.5b), a small change in contacts and secondary struc-
ture position (Fig. 3.5¢), and a subtle change in the arrangement of two helices
(Fig. 3.5d).

Wavelets also show promise for detecting biochemically relevant motions
that can be otherwise very subtle and difficult to find. Notably, the Co RMSFs
for the oscillating region in ProF are relatively low and show no particular dis-
tinction over the time range during which the helical unwindings were occur-
ring (Fig. 3.7b). In fact, compared with the oscillation maps, the RMSF profile
shows very little differentiation over time.

Notably, the Paul and Morlet wavelets excel at detecting different kinds of
events. While the Paul wavelet showed excellent sensitivity to changes and
rearrangements in protein structure, the Morlet showed sensitivity to periodic
oscillations. This sensitivity suggests that the Morlet wavelet may be useful in
detecting interactions and communication in long simulations while the Paul
wavelet may additionally be useful in examining changes in simulations and
simulations in which rearrangements are expected to occur, such as in high-

temperature unfolding simulations.
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Perhaps most critically, all of these advantages of wavelets can be used in
a high-throughput fashion to screen and isolate events in large simulations or
sets of simulations, as illustrated with 74 resolvase. Finding an event of in-
terest by hand in even 0.1 us of simulation data of a single protein is a daunt-
ing task and is virtually impossible for our now complete database containing
~11,000 simulations of all protein folds. As high-throughput computation be-
comes more common, methods for mining the resulting data, such as wavelets,

are becoming more important.
3.5 Conclusions

Wavelet analysis is a powerful tool that can be used to quickly and automati-
cally isolate distinct motions of interest in a protein simulation. Due to their
ability to locate subtle changes without being drowned out by larger more
obvious motions, wavelets represent an ideal method for screening simula-
tions to quickly pinpoint changes or structural rearrangements and for com-
paring biochemical differences in simulations, due to mutation, pH, or temper-
ature changes, for example. Additionally, wavelets can be used to scan large
databases of simulations for biochemically relevant events, such as the motion

of a catalytic site and other portions of the structure that may interface with it.
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Wavelength

Wavelength

Frequency Time

Figure 3.1: Comparison of Fourier transform and the continuous wavelet trans-
form. (a) A signal whose frequency increases over time. (b) The absolute value
of the Fourier transform of the signal in a. (¢) The continuous wavelet trans-
form of the signal in a. Notably, the wavelet transform shows clearly that the
signal is increasing in frequency over time while the Fourier transform shows
only that low frequencies are dominant. (d) Plot of the significant wavelength
over time of the signal in (a), calculated by taking the most significant wavelet
wavelength from (c¢) at each time with a minimum significance of 0.2.
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(c) Haar
0 -

-2 0 2

Figure 3.2: Plots of the three wavelets used in this study, as described in Ta-
ble 3.1, each plotted from -4 to 4 with scale s = 1. Solid lines represent the
real parts while dashed lines represent the imaginary parts. (a) The Morlet
wavelet. (b) The Paul wavelet. (¢) The Haar wavelet.
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(a) Morlet

Period (ns)

0 s 10 15 ,,20;
Time (ns)

Figure 3.3: Plots of the wavelet analyses of the Ca atom of R29 of the engrailed
homeodomain (Ienh). The absolute value of each wavelet coordinate is shown
with low values illustrated in blue. No scale is given because wavelet values
are in arbitrary units. (a) The Morlet wavelet. (b) The Paul wavelet. (c¢) The
Haar wavelet. The scales of each are not identical as they are not directly
comparable.
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(a) CelA
N93-A149
“ ¢ “
B
u-Helices [
N330-T360 i a-Helix/Loop
A225-Y275
(b) S122-A153 %

6-9 ns 14-17 ns
(c) E245-Y275

@ 7

8-11ns 17-20 ns
(d) S335-T360

EZ 2.5-55ns g 16-19 ns

Figure 3.5: (a) Protein structures and notable structural features of the pro-
tein Endonuclease A (Icem; CelA) taken at 10 ns in its simulation. (b) Region
S122-A153 of CelA colored red, green, blue, magenta in temporal order. (c)
Region E245-Y275. (d) Region S335-T360. In each instance, the time period
whose wavelet coordinates were significant in the low frequency range are mo-
bile while the time period whose wavelet coordinates were not significant in
the low frequency range is stationary.
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(a) Profilin, 0 ns

Dsz M68

WA

A53- N58

Figure 3.7: Changes in profiling (ProF) binding residue S57. Helix 3, contain-
ing S57, is shown in red. Side-chains of actin binding residues highlighted by
wavelet analysis are shown in black, and the side-chain of S57 is shown in red.
(a) Minimized crystal structure. (b) 5.4 ns, (¢) 11 ns, and (d) 12.7 ns. During
this time period, the a3 twists significantly and unravels from the N-terminal
end, changing the orientation of S57 to the binding site.
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Figure 3.8: The protein +6 resolvase (1gdt). The side-chains of residues forming
a hydrophobic pocket (I90, F92, 197, T99, and M103) are shown in black while
the backbones of residues 99-103 are shown in red. (a) Residues near loop
5E in the minimized crystal structure. (b) Residues near loop 5E at 3.5 ns.
Near 3.5 ns the end of helix oE and part of loop 5E unwind to form an Q-
loop. This motion flips the side-chain of residue M103 into the hydrophobic
pocket shown in black while pushing residue G101 into solvent, stabilizing the
alternate conformation. Both M103 and G101 are known to be important for
the binding and flexibility of o E and were identified as highly significant during
this time range by wavelet analysis.
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Chapter 4

UNDERSTANDING THE MOLECULAR BASIS OF
DISEASE IN SINGLE NUCLEOTIDE POLYMORPHISM
VARIANTS USING WAVELET ANALYSIS

4.1 Summary

Single nucleotide polymorphisms (SNPs) are frequently associated with dis-
ease yet their effects and modes are often very difficult to characterize. Al-
though molecular dynamics (MD) techniques are capable of determining pre-
cise structural and dynamic differences between SNP variants, they are often
difficult and time-consuming to interpret and analyze. Wavelet analysis has
shown promise in quickly screening MD simulations for events of interest, and
could potentially make the comparison and analysis of simulations much eas-
ier, faster, and more quantitative. Here, we use wavelet analysis to analyze
MD simulations of two SNP variants for each of four methyltransferase pro-
teins. The variant proteins each displays subtle structural changes and took
over a year to fully characterize using traditional analyses. We compare the re-
sults of wavelet analysis to those of traditional analyses and demonstrate that
wavelet analysis can quickly and quantitatively determine differences between
two highly similar simulations without requiring the large time investment

that is traditionally needed.

4,2 Introduction

Single nucleotide polymorphisms (SNPs) are ubiquitous mutations that fre-

quently lead to or are associated with disease, altered protein function, or
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changes to a protein’s structure and dynamics. In many cases, the phenotypic
effects of a SNP are known while the underlying mechanism of the mutation
is not. In these cases it is instructive to use molecular dynamics (MD) simu-
lations to study the affects of the SNP on protein structure and dynamics in
order to inform further experimental research. Critical to this process is the

need for MD simulations to be quickly analyzed and easily interpreted.

Methyltransferases comprise a large family of proteins involved in many
aspects of molecular biology including protein/DNA repair (Bugni et al., 2007;
Pahlich et al., 2006; Weinshilboum, 2006), transcriptional regulation (Saito
et al., 2001), hormone signaling, neurotransmission, and drug metabolism.
Multiple SNPs have been identified in several methyltransferases (Saito
et al.,, 2001) including protein L-isoaspartate O-methyltransferase (PIMT),
histamine N-methyltransferase (HNMT), thiopurine S-methyltransferase
(TPMT), and catechol O-methyltransferase (COMT). The variant alleles of
TPMT (A80P), HNMT (T105I), and COMT (V108M) are linked with increased
risk for hematopoetic toxicity (Coulthard and Hogarth, 2005; Deeken et al.,
2007); age-related disease (Ligneau et al., 1998; Morisset et al., 2000; Panula
et al., 1997) and alcoholism (Oroszi et al., 2005; Reuter et al., 2007); and breast
cancer (Dawling et al., 2001; Goodman et al., 2002; Huang et al., 1999; Lavigne
et al., 1997; Matsui et al., 2000; Mitrunen et al., 2002; Sazci et al., 2004; Tan
et al., 2003; Thompson et al., 1998; Wedren et al., 2003; Yim et al., 2001) and
neuropsychiatric disorders (Bilder et al., 2004), respectively, while the PIMT
V1191 heterozygosity is linked to successful aging (DeVry and Clarke, 1999).
These proteins and the effects of their mutations are summarized in Table 4.1.
All of these polymorphisms decrease enzymatic activity and protein stability.
Interestingly, all of the variant residues are located on the protein surface ~16-
20 A from the site at which the enzyme’s co-substrate S-adenosylmethionine

(SAM) binds (Fig. 4.1). Crystal structures of both of the polymorphic variants
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of COMT (Rutherford and Daggett, 2008) and HNMT (Horton et al., 2005,
2001) bound with SAM and a substrate analogue have been solved. The active
sites and overall structures of both variants of each protein are virtually iden-
tical, indicating that the overall changes in the proteins due to the mutation

are extremely subtle.

In order to determine how these mutations affect methyltransferase struc-
ture and dynamics, we performed multiple MD simulations of wild-type and
variant of PIMT (Rutherford and Daggett, 2009b), TPMT (Rutherford and
Daggett, 2008), HNMT (Rutherford et al., 2008b), and COMT (Rutherford
et al., 2006; Rutherford and Daggett, 2009a) apoproteins. Extensive analyses,
including structural visualizations, solvent-accessible surface area (SASA),
root-mean-square fluctuations (RMSF) and deviations (RMSD), and changes
in contacts initially revealed that the introduction of the larger polymorphic
residues (PIMT V1191, HNMT T105I, TPMT A80P, COMT V108M) alters
local side-chain packing, distorting the orientation of active-site residues and
increasing the solvent exposure of the active site ~20 A away from the site of
mutation. Notably, the effects of the V1191 mutation on PIMT structure and
dynamics were very subtle, making it difficult to characterize using conven-
tional analysis techniques at all, while the the ASOP mutation in TPMT caused
the loss of an entire a-helix. Exact descriptions of the subtle structural effects
of these mutations required several years of analysis. In order for MD to in-
form experimental research, novel analyses capable of quickly and confidently
identifying subtle changes such as those that occur in these methyltransferase

and other SNP-associated proteins are necessary.

Wavelet analysis is a technique that is gaining popularity in molecular bi-
ology (reviewed by Lio et al. (Lid, 2003)). This method allows one to search a
particular signal (for us, the trajectory of an atom over time) for a set of mo-

tions at various scales. It is similar to the Fourier transform, which allows one
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to examine the frequencies (different scales of sinusoidal motion) of a signal.
However, unlike the Fourier transform, wavelet analysis retains information
about when a motion is occurring (Fig. 4.2). This makes wavelet techniques
ideal for studying signals in which certain frequencies of motion are dominant
only at a specific time but not necessarily throughout. Wavelet analysis is per-
formed by sliding a wavelet function f(t) along a signal ¢(¢). The wavelet func-
tion is scaled to a variety of sizes, and the resulting wavelet coefficients, W, ,,
represent the likeness of the signal near time ¢ to the motion of interest when
the motion has been scaled by s. Detailed methods for the wavelet analysis of
protein trajectories are given by Benson et al. (Benson and Daggett, 2010a).
Here, we examine the MD simulations of PIMT, HNMT, TPMT, and COMT
apoproteins using wavelet analysis and compare the results for each of the
SNP-associated variants with those obtained through conventional analyses of
the simulations. Triplicate simulations are used to determine if the changes
identified by wavelet analysis are associated with the SNP with statistical con-
fidence. We show that wavelet analysis is a powerful technique for quickly

and quantitatively identifying small differences between MD systems, such as

SNPs.

4.3 Methods

4.3.1 Protein Preparation

The protein preparation and MD simulations of PIMT, HNMT, TPMT, and
COMT have been described in depth elsewhere (Rutherford et al., 2006;
Rutherford and Daggett, 2008; Rutherford et al., 2008b; Rutherford and
Daggett, 2009b). Crystal structures of PIMT (IiIn (Skinner et al., 2000),
residues 2-225), TPMT (2bzg (Wu et al., 2007), residues 17-245), HNMT (2aot
(Horton et al., 2005), residues 5-292), and a homology model of human COMT



86

based on the 2 A crystal structure of rat COMT (Ivid (Vidgren et al., 1994),
residues 4-216), which has 81% sequence identity with human COMT, were
used as starting structures. Notably, the crystal structures of human wild-type
and V108M COMTSs have since been solved (3bwm and 3bwy (Rutherford
et al., 2008a)) and are completely consistent with the homology model; in fact,
the Ca RMSD between Ivid and 3bwm is only 0.4 A. Although simulations
have been performed with the human structures, they have not been analyzed
to the extent required for comparison in this paper. The proteins simulated
include wild-type (119V) and V1191 PIMT; wild-type (105T) and T1051 HNMT;
wild-type (80A) and A8OP TPMT, and wild-type (108V) and V108M COMT.

4.3.2 Molecular Dynamics Simulations

MD simulations of all of the apoproteins were performed using the in lucem
molecular mechanics (i/mm) simulation package (Beck et al., 2008) using proto-
cols and a potential energy function that have been described elsewhere (Beck
and Daggett, 2004; Levitt et al., 1995). The simulations include all hydrogen
atoms and explicit flexible waters (Levitt et al., 1997). Proteins were solvated
in a periodic rectangular box with walls extending at least 10 A from all pro-
tein atoms. The solvent density was set to 0.993 g/ml for water at 37°C (Kell,
1967). Once the solvent density was set, the box volume was held fixed and
the NVE microcanonical ensemble (constant number of particles, volume, and
energy) was employed. A 10 A force-shifted non-bonded cutoff was used and
updated every 2 steps (Beck et al., 2005), and a time step of 2 fs was used in all
calculations. All simulations were a minimum of 31 ns with structures saved
every 1 ps for analysis. Three independent simulations were performed for

each system, for a total simulation time of 744 ns.
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4.3.3 Wavelet Analysis

In order to examine the effects of a mutation on protein motion, we performed
wavelet analysis on all 24 simulations, leaving out the first nanosecond to al-
low for thermal equilibration. We used the Paul wavelet with order 4 (Addison
et al., 2002) (Fig. 4.2b), which is particularly effective in detecting subtle rear-
rangements in simulations (Benson and Daggett, 2010a), with 41 scales from 1
ns to 16 ns according to the formula s, = 25/1° with k € {0,1,...40}. Note that
a maximum scale of 16 ns does not imply that only half of a 31 ns simulation
was analyzed but rather that we did not examine motions that would have re-
quired more than a continuous 16 ns window to occur. The equation for the

Paul wavelet is given in Equation 4.1.

4.1)

Wavelet coefficients were calculated for each Ca atom after translation and
rotation had been removed from the system using a rigid least-squares method
(Kearsley, 1989) as described by Benson and Daggett (Benson and Daggett,
2010a). For each atom at each picosecond, the wavelet coefficients for each
scale were examined and the scale with the strongest confidence as described
by Benson and Daggett (Benson and Daggett, 2010a) was identified as the dom-
inant wavelet for that atom at that time. If no wavelet coefficient at any scale
was significant at the 80% level, the motion at that time was not considered to
match the Paul wavelet.

Dominant wavelets were compared across simulations by counting the num-
ber of picoseconds at which a given wavelet scale was dominant for a particular
variant of PIMT, HNMT, TPMT, or COMT over all three of its simulations.
For a single protein this allows us to calculate 41 p-values per atom, one for

each wavelet scale, using a standard two-tailed student T-test comparing the
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three simulations of wild-type to V108M COMT. These p-values can then be
used to calculate the overall p-value for each atom giving the confidence that
a difference in wavelet-significant motion exists for that atom between the two
variants of COMT. Scales at which no motion was present in either variant
were excluded from the overall p-value calculation while scales at which only
one variant had motion were given a p-value of 0.1. These combined p-values
were compared to results found via traditional analyses of each simulation
by Rutherford et al. (Rutherford et al., 2006; Rutherford and Daggett, 2008;
Rutherford et al., 2008b; Rutherford and Daggett, 2009a,b, 2010).

4.4 Results

The simulations of PIMT show many changes between the 119V and 1191 pro-
teins (Rutherford and Daggett, 2009b). However, all of these changes are ex-
tremely subtle compared to those seen in the simulations of HNMT, TPMT, and
COMT. Traditional analysis techniques identified rearrangements in helices
al, a3, a4, and aC and in strands 83 and 89 (Fig. 4.3a) caused by the V1191
mutation. Wavelet analysis of PIMT highlights a great number of residues, in-
cluding residues in helices oA (H14, K18, N19), oB (K25, V30), o1 (M63, L70),
and a3 (T128) and in strands 51 (L82) and 85 (1179, V182), as well as in the
a2-42 (G100, C101), 85-46 (P184), and 87-aC (L215) loops.

HNMT maintains its overall structure throughout all simulations, but con-
tains several notable differences between the wild-type and T105I proteins
(Rutherford et al., 2008b). These primarily occur around the mutation in he-
lices aA, al, a2, a3, and a4 and in strand 33 (Fig. 4.3b). Wavelet analysis of
HNMT finds 18 residues with significant differences between variants, most
of them also clustered around the mutation site. These encompass helices A
(H12, E17, N24), ol (E28, D37, 144), o2 (E65, L68), a3 (Y98, K99), a4 (R126),
and oB (S177, D180, L182) and loops «2-32 (G80) and a6-36 (L.213).
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The A80P mutation of TPMT disrupts the last turn of helix a2, causing dis-
tortions of the helices near the mutation site (Rutherford and Daggett, 2008).
Helices a2 and o3 move apart from each other and helix a2 unravels slightly
near the C-terminus where the mutation lies. Nearby helices a1 and A are
also affected (Fig. 4.3c). Wavelet analysis finds differences between the vari-
ants throughout the protein, particularly in helices cA (E27, D31, K32), ol
(H52), a2 (M76, A80P, G83), a3 (G95), a4 (T141), and oB (K228). The loops
al-a2 (A39, E43), a1-81 (G59), SA-SB (T113, E114), and $5-56 (H192, P195,
F197).

The V108M mutation of COMT caused a number of subtle changes through-
out the protein (Rutherford et al., 2006; Rutherford and Daggett, 2009a). Pri-
marily, secondary structure elements near the polymorphic site (aB, a2, and
a3) interact differently with the 108V residue than the Met. Additionally, he-
lices a4 and a6 are more prone to distortion in the V108M variant (Fig. 4.3d).
Wavelet analysis shows differences in every helix but o5 (L14; L26, D30; K46;
G70; N100, R101; K128; F179, H182, R184), along with strand 31 (L.63) and
loops aA-aB (E18, P19), aB-al (A39), 51-a2 (A67), a2-32 (P82), and at the
C-terminus (P215).

4.5 Discussion

Overall, there was good agreement between the wavelet analysis described
here and the traditional analysis described by Rutherford et al. However, there
were a small number of disagreements. Generally speaking, wavelet analy-
sis accurately identified residues in protein regions that were highlighted as
different according to previous studies. However, wavelet analyses proved to
be more sensitive than the traditional analyses, identifying some additional
residues that demonstrated dynamic differences between proteins. Although

this is preferable for the purpose of screening simulations for events of inter-
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est, it can be adjusted by requiring a lower p-value or by requiring a higher
significance level in selecting the dominant wavelets.

Among the proteins examined here, wavelets were by far the least accu-
rate at determining the changes that occurred in the simulations of PIMT
(Fig. 4.1a). Only two secondary structures were accurately identified in PIMT:
al and a3, though, notably, the a-helix between them was correctly not iden-
tified. This lack of effectiveness was likely due to the nature of the changes
in PIMT, which were by far the most subtle of all four of the proteins stud-
ies here; according to Rutherford et al. (Rutherford and Daggett, 2010), “PIMT
displayed the subtlest structural effects upon substitution in the hotspot re-
gion.” This suggests that there is a lower limit to the effectiveness of wavelet

screening.

Wavelet analysis was extremely accurate at identifying changes in the
HNMT protein (Fig. 4.1b). The only change that was missed was in 33, which
has increased flexibility in the mutant (105I) simulations (Rutherford et al.,
2008b). Notably, this 3-strand is solvent-exposed and already somewhat flex-
ible; in fact, the difference in flexibility of the Ca atoms between variants is
< 0.25 A. According to Rutherford et al., 33 undergoes a slight reorientation,
but this reorientation happens quickly and is barely visible across simulations.
Additionally, wavelets only identified a single change that Rutherford et al. did
not identify, and this was helix oB. Helix oB is a slightly bent helix that is
highly stable in all simulations. When we examined the wavelet coordinates
for this helix, we noticed a long stretch of low-frequency wavelets from ~ 10
ns to ~ 20 ns located near the C-terminal end of helix oB in the first run of
the 1051 variant only. Upon examination of this trajectory, we discovered that
the C-terminal end of this helix pivots relative to the rest of the helix and
eventually unwinds (Fig. 4.4). Notably, this change is quite subtle and occurs

in only one of the three 1051 simulations. It is fitting, then, that wavelets
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highlighted it with a lower p-value than other changes that occur in these
simulations.

The protein TPMT undergoes several changes similar to HNMT that are
well characterized by wavelet analysis (Fig. 4.1c). Wavelet analysis finds dif-
ferences in all of the areas with observed changes according to Rutherford et
al. (Rutherford and Daggett, 2008) and identifies only two neighboring loops
and two helices, a4 and oB, as significantly different. Although o4 and oB are
not mentioned in by Rutherford et al., it is important to note that there are
slight reorientations associated with them. In the 80A variant, o4 has a less
ordered orientation overall and is shifted from the 80P variant (Fig. 4.5a). Sim-
ilarly, oB is highly disordered in both of the variants but is especially mobile in
the 80P variant (Fig. 4.5b). These changes are both significant compared with
other structural changes that occur in the protein. Thus it is not surprising
that wavelet analysis identified them.

The COMT variants undergo changes similar to those seen in HNMT, prob-
ably due to the similar position and nature of the mutation. Wavelet analysis
correctly identifies oB, o2, a3, o5, and o6 as areas in which significant changes
occur. Interestingly, the strand 31 was the only 5-sheet identified at the p < 0.05
level by wavelet analysis in all four proteins. Upon closer examination of the
wavelet coordinates for this 3-strand, we noticed that run 2 of the COMT 108M
variant had a patch of significant low frequency (A =~ 12 ns) motion occurring
from 6.5 to 18.5 ns during the simulation where 31 and 34 bend apart from each
other during this time range in this run only (Fig. 4.6). Although this motion
was not addressed by Rutherford et al. (Rutherford et al., 2006; Rutherford
and Daggett, 2009a), this motion explains why wavelet analysis highlighted
this particular §-strand.

It is worth highlighting the fact that Rutherford et al. did not discuss three

of the events discovered by wavelet analysis that we discuss here. This is likely
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due to a combination of several things: 1) that the changes were not deemed
structurally relevant to the mutation and its effects, 2) that the changes oc-
curred in single simulations rather than consistently across identical runs, and
3) that the changes were difficult to locate without the aid of wavelet analysis.
While all of these may be legitimate reasons not to report the events, one can-
not argue that these events did not occur. Clearly wavelet analysis is capable
of highlighting changes between variant proteins and structural events in a

simulation that would take considerable effort to uncover without them.
4.6 Conclusions

As simulations become a more common way of exploring biological questions
and generating hypotheses for further experimentation, it is critical that the
initial analyses of these simulations be quick and efficient. Wavelet analysis
has proved to be a very effective technique for accurately identifying all but
the most subtle differences between protein simulations. Not only does wavelet
analysis quantify these differences, but it is capable of identifying changes that
may be missed or extremely elusive by traditional analysis. Critically, wavelet
analysis can be automated and performed quickly, saving considerable time

and effort.
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Figure 4.1: Common polymorphisms in four methyltransferase proteins. Rib-
bon structures of PIMT (1i1n), HNMT (2aot), TPMT (2bzg), and COMT (3bwy)
are shown aligned by the core 7-stranded 3-sheet. Polymorphic residues and
S-adenosylmethionine (SAM) are shown in space-filling representation and col-
ored in red and blue, respectively.
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(A) Signal  (B) Motion of Interest  (C) Result

Positior]
Scale

Time Time

Figure 4.2: Explanation of wavelet analysis. (a) An example signal (e. g. the
motion of an atom over time) whose frequency increases over time. (b) The
Paul wavelet: a sinusoidal wave modified by a Gaussian. The real part is shown
solid while the imaginary part is dashed. (¢) The result of the wavelet analysis,
showing that as time increases, the scale of motion decreases.
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(A) HNMT 105T, Runs 1, 2, and 3
5,10, 15, 20, and 25 ns

Figure 4.4: Helix aB of HNMT. (a) oB in all three runs of the 105T variant at
5, 10, 15, 20, and 25 ns each. (b) aB of run 1 of variant 1051 at 9.5 ns, before
the helix begins to unwind. (e) aB of run 1 of variant 105I at 13 ns. (d) aB of
run 1 of variant 1051 at 18 ns after the helix has begun to unwind.
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(A) TPMT a4

(B) TPMT B

TR AT A
TRMT 804

TPMT 80P

Y St

Figure 4.5: Helices (a) a4 and (b) aB of TPMT shown for triplicate simulations
of both the wild-type (cyan) and A80P (red) variants. Snapshots were taken at
5, 10, 15, and 20 ns for each run for a total of 24 structures shown. Although

aB is generally disordered, there is a noticeable difference in the orientation of
a4 between the two variants.
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COMT 108V, Runs 1.2.and 3 §
COMT 108M, Runs 1 and 3

Figure 4.6: Strands S1 and 84 of COMT. Snapshots are taken from the range
10-16 ns for each simulation. The unique simulation in which the S-strands
spread apart is colored red.
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Chapter 5

A GRAPH THEORETIC APPROACH TO INDEXING
PROTEIN DYNAMICS

5.1 Summary

Graphs are a natural and efficient tool for representing protein structure, yet
graph theoretic approaches remain under-developed in the fields of molecular
biology and molecular dynamics (MD). Many graph theoretic approaches have
been used in the past with varying levels of success, but all have taken very
simplistic approaches to representing the chemistry of a protein. We propose a
novel graph representation of proteins that accurately encapsulates chemical
and steric properties. We use this representation to capture the dynamic chemi-
cal environments of atoms and groups of atoms in MD simulations by analyzing
the probability that a chemical group are in contact at specific times. We use
these probabilities to index the dynamic chemical environment of each chemi-
cal group and demonstrate that these indices can be used to locate structural
regions that are both chemically and dynamically similar but that cannot be
located by simpler means such as searches based on residue packing. Finally,
we compare these indexed chemical environments to chemical shifts from NMR

and find good agreement between the two.

5.2 Introduction

Molecular dynamics (MD) simulations are a powerful and increasingly popu-
lar method for studying the motions of proteins at extremely fine resolution

in time and space. In MD, Newton’s equations of motion are integrated nu-
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merically using a potential function to define interactions between individual
atoms. At regular intervals, coordinates for the atoms in the system are written
out, creating as a time-course movie for further analysis.

The Dynameomics project (Beck et al., 2008; van der Kamp et al., 2010) is a
large-scale project whose goal is to simulate a member from every protein fold
family (Day et al., 2003; Schaeffer et al., 2010). For 807 different fold families,
at least one simulation has been performed for at least 31 ns at 298 K and at
least two long simulation (31 ns) and three short simulations (2 ns) have been
performed at 498 K. The Dynameomics database (Simms et al., 2008) is the
largest database of its kind, containing > 10® structures in over 53 TB; it is

more than four orders of magnitude larger than the PDB.

5.2.1 Graphs

Graph theory is a field that has found an incredibly diverse range of appli-
cations yet whose application to MD and protein chemistry in general has
remained surprisingly rare. A graph G is defined as an ordered pair, (V, E),
where V is a set of vertices or nodes and E is a set of edges connecting nodes
(E C V x V). In a graph, nodes represent objects or pieces of data while edges
represent relationships between them. Graphs can be directed or undirected; in
a directed graph, the edge (u,v) is not the same as the edge (v, u). For example,
in a graph describing evolutionary relationships, an edge (A, B) might indicate
that A is an ancestor of B. Additionally, edges can have weights that describe
their properties; the weight of an edge ¢ is usually written as a function, w(e).
Graphs can also be simple graphs or multi-graphs. In multi-graphs edges of
the form (u,u) are allowed. Finally, graphs may be connected or disconnected;
in a connected graphs, every node is connected to every other node by a path
of edges. In this paper, we will be dealing exclusively with connected simple

undirected weighted graphs, an example of which can be found in Figure 5.1.
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5.2.2 Protein Structure Graphs

Graph representations of protein structure have taken many forms in protein
science, most of which represent individual residues as nodes. Important vari-
ants of this motif include those that represent Ca distances as edges (Webber
et al., 2001; Vendruscolo et al., 2002), those that represent sequence similarity
patterns as edges (Giuliani et al., 2002), and those that represent correlated
motions as edges (Amadei et al., 1993). These methods have been reviewed
by Krishnan et al. (2008). Additionally, edges in a protein structure graph can
represent atom-atom contacts within a certain cutoff distance or as determined

by Delaunay tessellation (Delaunay, 1934; Huan et al., 2004).

Each representation of protein structure has its merits and has been used
to elucidate a large range of structural properties. For example, Ca distance
graphs have been used in the identification of amino acids that play a key
role in folding (Vendruscolo et al., 2002), and contact graphs have been used
to show that functional residues are those with high closeness values (Amitai
et al., 2004). A more complete review of applications of various graph theory

approaches in protein structure can be found in Bode et al. (2007).

Although several representations of protein graphs exist, to our knowledge
no attempt has been made to distinguish between the varied properties of the
amino acids in a protein aside from defining each amino acid as a unique type
of node. While this approach is intuitive, it has the drawback of treating very
similar nodes exactly the way it treats very different nodes. For example, Leu
and Ile are as different as Leu and Arg. Additionally, it can bias calculations
by treating large residues such as Trp identically to small residues such as
Gly. Using such a representation, Trp is bound to be more central to the graph
simply because it is so much larger thus can form contacts with so many more

residues than Gly. Similarly, if a Val contacts the Cn of a Trp while a Leu
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contacts its O, the Val and Leu do not have the same relation as if they were
contacting the Ca and O of a Gly, respectively, yet residue-based graphs will
often treat these cases identically. Accordingly, it does not stand to reason that,
when a Trp that has been identified as important in a graph, the entire Trp
is important. We propose a method of representing graphs that clusters atoms
into nodes based on their chemical properties and covalent bonds. This rep-
resentation conserves the similarity between amino acids and captures their
overall properties without compromising the power of graphs to simplify and

summarize a protein structure for additional analysis.

5.2.3 Protein Structure Comparison

The ability to compare protein structures and substructures is a very important
area of molecular biology. The entire field of docking and computational drug
design is based around the ability to locate structural motifs. Additionally,
the ability to describe the chemical environment of a residue and to detect
when it is similar to that of another is a critical piece of NMR. As important
as these topics are, however, very few strides have been made in them, and
attempts to characterize the often changing chemical environment of a residue
that consider the dynamics of a protein are virtually nonexistent. Here we
propose a graph construction and indexing strategy for proteins that considers
not only the chemical similarity between residues and pieces of residues but

that additionally is capable of characterizing the dynamic nature of proteins.

5.3 Methods

5.3.1 Molecular Dynamics Simulations

Simulations were run using our in-house simulation package, in lucem Molec-

ular Mechanics (ilmm) (Beck et al., 2008), and force fields for protein and
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water that are described elsewhere (Beck and Daggett, 2004; Levitt et al.,
1995, 1997). This paper examines 31 ns each of the 807 proteins from our
Dynameomics project (Beck et al., 2008; van der Kamp et al., 2010) at 298 K
for a total of ~ 17 us.

5.3.2 Graph Construction

Proteins were divided into graph nodes by residue. Atoms in each residue were
clustered according to their bonds and chemical properties, and each cluster
became either a nonpolar, dipolar, positive, negative, partially positive, or par-
tially negative node. Attempts were made to keep nodes approximately the
same size: roughly 2-4 heavy atoms; though a few single atom nodes were al-
lowed, and rings of 5 or 6 atoms were allowed to be a single node (e. g. Phe,
Pro). Nodes with a total charge of > 0.5 or < —0.5 were considered positive
or negative respectively; nodes with a total charge between 0.15 and 0.5 or be-
tween —0.15 and —0.5 were considered partially positive or partially negative,
respectively. Nodes whose net charges were between —0.15 and 0.15 were con-
sidered nonpolar or dipolar depending on the distribution of charge within the
node. Hydrogen atoms were considered part of the heavy atom to which they
were attached and counted as part of that atom’s charge, but were considered
in deciding whether a node was dipolar or nonpolar. The protein backbone was
divided into alternating dipolar (C, O, N) and nonpolar (C«, C3) nodes. Any
atom whose charge was > 0.5 or < —0.5 was restricted from being a member
of a nonpolar, dipolar, or partially-charged node (e. g. Cv in Asp, C§ in Glu).
Figure 5.2 shows two peptides containing each of the 20 amino acids with the
individual nodes circled. The result of this process is a graph in which each
node contains some small number of heavy atoms with similar chemical prop-
erties and edges represent covalent bonds between nodes. Notably, all heavy

atoms are a member of exactly one node.
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5.3.3 Graph Analysis

For each simulation, the covalent graph was established according the the
above rules and maintained throughout the simulation using special covalent
edges between nodes. For every picosecond of simulation, additional edges be-
tween nodes were recorded as contact edges based on an atom-atom cutoff dis-
tance of 4.6 A; two nodes were considered to be in contact if at least one atom
from the first node was within 4.6 A of at least one atom in the second node.
Additionally, Delaunay tessellation (Delaunay, 1934) was applied such that two

atoms were not considered to be in contact if another atom occluded them.

This analysis created an ordered set of graphs, one for each picosecond of
simulation, with identical nodes, identical covalent edges, and a changing set
of contact edges. Because contact edges frequently are inconsistent and rapidly
changing over a period of time in which two nodes would generally be consid-
ered to be “in contact,” we applied a Gaussian smoothing to the edges. For each
potential edge between every pair of non-covalent nodes, v and v, a discrete
time-course signal, C|, ., was constructed with each picosecond, Cuw)(t), equal
to 1 if v and v were in contact and 0 otherwise. A normal Gaussian curve with
a standard deviation of 250 ps and a mean of 0 (N(0, 250)) was convolved with
C (u,) giving the signal g(, ), Where g(,,)(t) is equal to the probability that nodes
u and v will be in contact if a time-point is randomly chosen according to the
normal distribution N(t,250). Thus, g(,,)(t) will be 0 if and only if u and v are
never in contact and will be 1 if and only if © and v are always in contact. If v
and v are always in contact from time 7 — 250 to 7+ 249, then g, .)(7) > 0.68. Put
simply, the value g(,,)(t) is an index of connectedness or probability of contact
of nodes v and v around time ¢. Covalently-bonded nodes are always considered

to have an index of connectedness of 1.
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5.3.4 Node Communication

In order to measure the degree to which two nodes, v and v, communicated
with each other at a time ¢, we define the communication index between two
nodes, «,,(t) to be the reciprocal of the length of the shortest path between u
and v in the graph whose edge weights for any pair of nodes, a and b, are equal
t0 1/g4(t) (or 0o if g4 (t) = 0). This is described in Equation 5.1, where P, 4(t) is
the set of all paths leading from node a to node b at time ¢t and where each path

is a set of edges.

1
2 (apyes 1/ (t)

Kup(t) = min { where S € P(u,v)(t)} (56.1)
Note that because all of our proteins are connected graphs, 0 < &,,(t) < 1. For
example, two nodes that are always in contact would have a communication
index of 1 at all times. If nodes a and b have a probability of contact of 1/2 at
time ¢, nodes b and ¢ have a probability of contact of 3/4 at time ¢, and a and ¢

have no shorter route between them than a-b-c, then «,.(t) = 1/(2+4/3) = 3/10.

To examine the chemical environment of a single node, we created a hash
which counted, for each node, the number of nonpolar, dipolar, positive, and
negative nodes whose indices of communication with the given node were = 1,
> 0.75, > 0.5, > 0.25, and > 0 separately. Partially positive and partially nega-
tive nodes were considered positive and negative respectively due to their rar-
ity. This gave each node’s hash a type (nonpolar, dipolar, positive, or negative)
and a 20-dimensional vector describing the kinds of nodes with which it com-
municated at a given time. Hash vectors were calculated for each of the nodes
at 250 ps intervals. These hash vectors were sorted so that searches could be

performed efficiently.

Several nodes and times were chosen at random from the set of all
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nodes/times in Dynameomics and compared to all other nodes. Nodes with
identical environment profiles were examined for similarity in their surround-
ings, Although it is difficult to quantify a dynamic chemical environment,
several examples are presented here for the reader to evaluate. Additionally,
we hypothesized that two similar nodes in similar chemical environments
would have similar root mean square fluctuation (RMSF) values during the
time window near their matching times. Although the entire set of nodes/times
was far too exhaustive (> 4 - 10° node/time pairs) for an all-versus-all compar-
ison, we compared windowed RMSF values for a random subset of 100 nodes

and their matching node/time pairs.

5.3.5 NMR Chemical Shift Comparison

In order to evaluate whether the chemical environment indices were accurate
in characterizing the chemical environments of particular nodes, we examined
the chemical shifts of the H atoms, as used in Nuclear Overhauser Effect Spec-
troscopy (NOESY). We obtained chemical shifts for 67 proteins with identical
or nearly identical sequences to our proteins, as determined by BLAST, from
the BioMagResBank (Ulrich et al., 2007). Residues from these sequences were
aligned to our proteins using the Needleman-Wunch algorithm, BLOSUM62
matrices, and a gap of —4.

To locate protein nodes with similar chemical environments in terms of
chemical shifts, we calculated an overall chemical environment score based
on expected contacts over the entire simulation. For each node, we counted the
expected number of contacts to each type of node (nonpolar, dipolar, positive,
and negative/partially negative) with a probability of contact greater than 0.75,
greater than 0.5, or greater than 0.25 over the entire simulation. This gave us
counts of the nodes very frequently in contact (probability > 0.75), the nodes

of each type often in contact (probability > 0.5), and the nodes occasionally in
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contact (probability > 0.25) with the node in question, giving us a 12 dimen-
sional vector of expected contacts with each node type at each probability level
over the course of the simulation. The Euclidean distance between the vectors
for each pair of nodes was then taken and the chemical shifts of the 100 pairs
with the most similar chemical environments (all within 0.03 expected contacts

of each other) were compared.

5.3.6 Graph Hubs

Previous research has examined network hubs in protein structure graphs.
Brinda and Vishveshwara (2005) defined a hub as a residue that contacted
at least 4 other residues with an interaction strength (defined by the number
of interacting atoms normalized by the residue sizes) over a certain threshold
and found that large planar residues such as Trp, His, Arg, and Phe were the
most likely to form hubs. Here we extend this research by applying it to a
much larger dataset that includes proteins simulated at 298 K in addition to
minimized crystal and NMR structures using our own higher-resolution graph

definition.

5.4 Results

Graph sizes ranged from very large (1,291 nodes) to very small (101 nodes) with
an average of ~ 3.1 nodes per residue. Nonpolar nodes were by far the most
common, comprising 45.4% of the dataset while dipolar nodes were a second
at 41.3%. Positive and negatively charged nodes made up only 8.3% and 5.0%
respectively.

Chemical environments for nodes with identical environment profiles were
very similar in virtually all cases. In general, the number of node/time pairs

with identical profiles was correlated with the packing density around the
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nodes in question. Loosely packed nodes tended to create more hits than
densely packed nodes. For any given node and time, by far the most common
profile match was the same node at alternate times throughout the simulation.
In addition to being somewhat trivial, these matches were so common that
we will ignore them henceforth. The standard deviations of the RMSF of
node/time pairs with identical communication profiles were uniformly low.
The values ranged from below our level of precision to 0.672 A with a mean
of 0.105 A. The number of node/times with identical profiles and the standard
deviations of their RMSF's were not significantly correlated (r ~ 0.374).

Three node/time pair matches with identical communication profiles are
presented here for the reader’s examination. They were chosen based on
the disparate properties of the queried node and on the relative rarity of the
node/time pair. Figure 5.3 shows the first of these: a comparison between the
negatively charged node made of the O¢ atoms of residues D222 of Arginyl-
TRNA Synthetase (1bs2, Fig. 5.3a) and D316 of Lactate Dehydrogenase (Iceq,
Fig. 5.3b). In each case the node communicated with a positively charged
residue (Arg or Lys), a His, a Tyr, a Phe, and a hydrophobic group (Ile or Val).
Notably, in both cases, the Phe and the Asp which communicate strongly are
adjacent in sequence while the hydrophobic Val/Ile and the positively charged
Arg/Lys are within four residues in sequence.

The residue F22 of Bleomycin Resistance Protein at 20.5 ns (1byl, Fig. 5.4a)
and the phenyl group of W125 in Benzoylformate Decarboxylase at 6.5 ns (15fd,
Fig. 5.4b) also had identical communication profiles. Both groups are located
in hydrophobic pockets of their respective proteins, surrounded closely by hy-
drophobic residues such as Val, Ile, Met, Leu, and the phenyl rings of Trp and
Tyr. Interestingly, both additionally have moderate communication with a His
and Arg residue.

Figure 5.5 shows two positively charged nodes. The first is K203 from Lyti-
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cus Protease 1 at 26.75 ns (Iarb, Fig. 5.5a), and the other is R21 from Human
Lysozyme at 1 ns (1b5u, Fig. 5.5b). Interestingly, each of these nodes has a
nontrivial amount of communication with other positively-charged nodes. Both
communicates with at least two Arg or Lys residues. Additionally, both are im-
mediately in contact with a Tyr and communicate weakly with a Pro and an
Asp.

Overall evaluation of graph nodes of the 100 pairs of nodes whose chemi-
cal environments were most similar over the course of their entire simulation
for found an average difference in chemical shifts of 0.37 ppm (¢ = 0.28 ppm).
If the same value is calculated based on residue type instead of the chemical
environments, the average difference is 0.74 ppm (¢ = 0.60). Notably, the origi-
nal calculation does not implicitly include residue type and frequently matches
backbone nodes without identical residue types; in fact, only 5 of the 100 pairs
of nodes had identical residue types.

The likelihood of a given node, residue, or residue/node (e. g. the positively
charged C+ node of Asp or the dipolar side-chain node of Gln) being a hub was
similar for most residues and residue/nodes. Of the individual nodes, dipolar
nodes were the most likely to be hubs with nonpolar nodes close behind. Nega-
tively and positively charged nodes were each much less likely to be hubs than
either dipolar or nonpolar nodes. Virtually all residues were similarly likely
to be hubs, however, with Ile, Gln, Val, Asn, and Phe at the top. These were
followed by Leu, Trp, Ala, Gly, Thr, Tyr, and Arg.

5.5 Discussion

Our protein structure graphs differ in several critical ways from traditional
graph representations of proteins. Primarily, our graphs break the protein
down into smaller subunits with similar or interdependent chemical proper-

ties, allowing simultaneously for a greater level of specificity in the meaning
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of a contact and for a much simpler set of nodes, making certain graph com-
putations more tractable. The one drawback of our schema is that the number
of nodes increases by a factor of ~ 3. We did not find, however, that the time

required for any calculations became unwieldly as a function of graph size.

The choice of a dynamic measure of communication also confers strong ad-
vantages over previous graph theoretic techniques, which were designed to
study static protein structures. Proteins are not static molecules, and the set
of atoms with which a given atom is in contact changes constantly. One cannot
capture the set of residues that influence a given residue with a single static
structure. Thus, while previous graph theoretic techniques have proven use-
ful for studying protein structure, they must be reevaluated as biologists look
more at the dynamic properties of a protein and not merely the static ones.
By using a multi-layered communication profile that examined not only those
nodes that a given node is constantly or frequently in contact with at a given
time, we implicitly examine short- and long-range contacts. Those nodes that
communicate with a given node with a low probability at time ¢ are likely to be
in direct communication with it at a more distant time. We suspect that it is
this ability to capture all of a node’s influences in a single vector that gives the
technique its high accuracy.

The extremely low standard deviation of RMSF for the average set of
node/time pairs with identical communication profiles is a strong indication
that the profiles accurately capture the critical structural elements of a protein
that contribute to dynamics. This coincides with the fidelity of the matches
shown in Figures 5.3, 5.4, and 5.5. Each of these figures shows similar nodes
with similar contacts at similar positions in their environments. It is addition-
ally clear that a residue-based node system would not have been capable of
finding these matches due to the similar properties but different amino acid

labels of nodes such as Arg and Lys, which can occasionally serve similar roles
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in a protein due to their positive charges.

The comparison of nodes by chemical shifts and graph-based chemical en-
vironments supports the accuracy of the graph representation as a means of
capturing the chemical environment of an individual node. The average dif-
ference in chemical shift of 0.37 ppm may be insufficient for use in NOESY
experiments and structure determination, but it is equivalent to chemical shift
prediction systems such as SPARTA (Shen and Bax, 2007). It is worth point-
ing out that this accuracy was obtained despite the fact that chemical shifts
are based on the H atom only while the graph-based chemical environments
that were compared are for the closest equivalent, which is the O-C-N back-
bone node. Additionally, NMR experiments are performed over hundreds of

ms, while our simulations are performed over only 31 ns.

The finding that dipolar and nonpolar nodes were slightly more likely to
be hubs was expected as one would expect positively and negatively charged
nodes to exist on the surface of the protein away from dense contacts. The
residue-based findings were less predictable, however. Brinda and Vishvesh-
wara (2005) found that planar residues (Trp, His, Phe, Tyr, and Arg) were the
most likely to to form hubs with Ile and Leu likely to form weak hubs when
the threshold for being considered a hubs was weaker (required fewer con-
tacts). Our results support these claims but additionally find that Gln and
Asn are likely to form hubs. Although this may be initially surprising, Asn
and Gln both have side chains with hydrophilic and polar components which
are similar to those of the protein backbone. It is worth noting that our cal-
culations are not directly comparable to those of Brinda and Saraswathi be-
cause while theirs were calculated over crystal structures and were designed
for static structures only, our calculations were performed over trajectories of
dynamic proteins and were designed to consider non-static conformations. For

example, an Asn residue that moved rapidly between states communicating
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with several other residues might not be considered a hub at any given instant
by Brinda and Saraswathi but could be considered one by our calculations.
Thus, our findings should be considered a dynamic extension to their work and
show that Asn and Gln may play a more critical role in protein structure once
a protein is no longer in its low-temperature crystalline state.

One potential critique of our graph construction is that certain residues
appear identical despite being different. The side-chains of an Arg and a Lys
are not, for example, the same, but their graph representations are the same. It
is important to keep in mind, however, that although the nodes are represented
the same conceptually, the atoms that make up the node are still different, thus
the positive node on the Arg is likely to have a different contact profile than the
positive node on the Lys, making it difficult for them to occupy the same place
in a node’s communication profiles spuriously. In fact, it would be very unusual
for an Arg and a Lys to occupy the same position in a profile for a node whose
packing was very dense due to the difference in the size of the nodes. Figure 5.5
shows an Arg and Lys with similar profiles but which are not densely packed,
for example.

It is worth noting that several concepts in this paper can be generalized

readily. Among the most important of these are as follows:

Nodes The nodes that we define to construct our graphs could be specified or
generalized. An obvious generalization of our nodes is to use residues as
nodes, which has been well studied. Alternately, one could use common

chemical groups such as phenyl groups and carboxylic acid groups.

Smoothing The choice of a standard deviation of 250 ps for the Gaussian
smoothing reflected our desire to examine primarily a small window of
time without completely losing the information about contacts as far as

1 ns in time. Very long simulations are being performed now which may



114

benefit from much larger standard deviations.

Probability The communication profiles in this paper were made up of counts
of those nodes with probabilities > 0, > 0.25, > 0.5, > 0.75, and = 1.
Obviously the nodes whose communication probabilities are equal to 1 are
almost exclusively those nodes that are covalently bonded to a given node,
thus occupy a critical role in the profile, but alternate profiles can easily
be constructed if one is more interested in events occurring very close in
time, for example. Additionally, removing the nodes with communication
between 0 and 0.25 from a node’s profile would tend to make the profile

more focused on its immediate neighbors.

Although it is beyond the scope of this paper to examine the full range of pos-
sibilities using the graph theoretic techniques we have shown here, there is
reason to believe that permutations of these techniques would be highly useful

in a great deal of protein structure research.
5.6 Conclusions

We have described and improvement upon previous research in protein struc-
ture graphs and demonstrated their utility in examining protein structure. We
have demonstrated that our metric of node communication profiles is an effec-
tive way to quantify the chemical environment of an individual node or residue
in a protein. We have verified this with comparison to NMR chemical shifts.
Finally we describe ways in which dynamic protein graphs can be generalized

in order to encourage future research with protein graphs.
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Figure 5.1: An example graph showing the distances between cities in Eu-
rope in km. In this graph, the set of nodes is {London, Copenhagen, Amster-
dam, Paris, Prague, Vienna, Munich, Madrid, and Rome}. The set of edges
is {(London, Amsterdam), (Copenhagen, Paris), (Copenhagen, Prague), (Ams-
terdam, Paris), (Paris, Munich), (Paris, Madrid), (Vienna, Rome), (Prague, Vi-
enna)}. The graph is undirected, meaning the edge (Prague, Vienna) is the
same as the edge (Vienna, Prague), and the edges have weights (the distances
between cities). The graph is also simple and connected.
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(a) Arginyl-TRNA Synthetase (b) Lactate Dehydrogenase
D222,10.5ns D316, 29 ns

Figure 5.3: Two negatively charged nodes with identical node communication
profiles and the residues with at least one atom within 10 A. (a) The Oes of
Arginyl-TRNA Synthetase (1bs2) residue D22 at 10.5 ns. (b) The Oes of Lactate
Dehydrogenase (Iceq) residue D316 at 29 ns. Both nodes have close contacts
with either an Arg or a Lys, a His, and either an Ile or a Val residue as well as
more distant contacts with a Tyr and a Phe.
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(a) Bleomycin Resistance  (b) Benzoylformate Decarboxylase

Protein, F22, 20.5 ns W125,6.5ns
M94

Figure 5.4: The residues with at least one heavy atom within 10 A of two phenyl
groups of residues (a) F22 of Bleomycin Resistance Protein (1by!) at 20.5 ns and
(b) W125 of Benzoylformate Decarboxylase (1bfd) at 6.5 ns. Both rings exist
in hydrophobic pockets near residues such as Leu, Val, Ile, and Met. Each is
additionally in loose communication with an Arg and the Ne of either a His or
a Trp.
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(a) Lyticus Protease 1 (b) Human Lysozyme
K203, 26.75 ns R21,1ns

Figure 5.5: Two positively charged nodes and all residues within 10 A of them.
(a) Residue K203 from Lyticus Protease 1 (Iarb) at 26.75 ns. (b) Residue R21
from Human Lysozyme (1b5u) at 1 ns. Both residues have loose but unusual
communication with other positive nodes (Arg or Lys) as well as a Pro, They

both exist in a relatively hydrophobic pocket in close communication with ei-
ther a Val or Ile and a Tyr.
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Chapter 6

GRAPH THEORETIC EVIDENCE FOR A FOUR STEP
PROTEIN FOLDING/UNFOLDING PROCESS

6.1 Summary

Graphs are a powerful tool in many fields for describing the relationships that
exist within complex systems. Although graphs have been used on some oc-
casions to examine protein structure, they remain underused in the area of
molecular dynamics (MD), partly due to the conflict of a discrete representa-
tion (graphs) of an inherently continuous data set (MD trajectories). Here we
analyze the protein unfolding pathway of 183 proteins from our Dynameomics
project by examining a graph theoretic measure, called the betweenness cen-
trality, with graphs representing the dynamic protein structures. We find ev-
idence that the slow separation of hydrophobic aryl rings follows protein core
expansion in unfolding. We further demonstrate that the folding process is
identical to the unfolding process in reverse by examining a refolding simula-

tion of the engrailed homeodomain.

6.2 Introduction

The mechanism by which proteins fold is one of the biggest unsolved mystery
in biology, partly due to the extreme difficulty studying it. Very few methods
exist that allow one to study the structure of a protein as it unfolds. One such
experimental method is ®-value analysis (Fersht et al., 1992), which can reveal
residues critical in the transition state (TS) structure of a protein. Molecular

dynamics (MD) simulation, however, gives a much finer time and spacial reso-
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lution than any experimental technique can currently offer. Although compu-
tational resources are still limited enough to make large-scale studying of the
folding process difficult due to the long timescales on which folding occurs, ther-
mal unfolding, which happens on a much shorter timescale, has been shown to
be the reverse of the folding pathway (Day and Daggett, 2007; McCully et al.,
2008).

The Dynameomics project (Beck et al., 2008; van der Kamp et al., 2010) is a
large-scale project whose goal is to study the unfolding pathway of all proteins
by simulating at least one member of every fold family. For 807 different fold
families, at least one simulation has been performed for at least 31 ns at 298
K and at least two long simulation (31 ns) and three short simulations (2 ns)
have been performed at 498 K. For a subset of 183 of the 498 K simulations,
TSs have been identified (Jonsson et al., 2009) and verified using experimental

®-values (Toofanny et al., 2010).

6.2.1 Protein Structure Graphs

Graphs have found limited application to protein structure research despite
their intuitive application to molecules. Previous representations have tended
to focus on representing each residue in the protein as a node in the graph
with edges being drawn between nodes when they either have a critical num-
ber of atoms in close contact (Huan et al., 2004; Brinda and Vishveshwara,
2005), have Ca atoms within a certain distance (Webber et al., 2001; Vendrus-
colo et al., 2002), have correlated motions (Amadei et al., 1993), or when they
have sequence similarity (Giuliani et al., 2002). These methods have been re-
viewed by Krishnan et al. (2008) and Béde et al. (2007).

Vendruscolo et al. (2002) have preﬁously used protein structure graphs
whose edges were defined by Ca distances to examine the TSs, as determined

by Montecarlo simulation, of six proteins (Vendruscolo et al., 2001). They cal-
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culated the betweenness centrality of each residue (Freeman, 1977), defined as
the number of residue pairs whose shortest connecting path in the graph passes
through the given residue, normalized by the total number of pairs of residues.
Using this metric, they found that 2-4 residues or regions of each protein were
commonly part of the protein nucleus in the TS. Additionally, they found that
these residues could predict the nucleus of the native state, but their equiva-

lents in the native state could not be used to predict the nucleus of the TS.

We have previously described a method for representing the structure of a
protein as a graph by clustering atoms according to their chemical properties
and covalent bonds (Benson and Daggett, 2010b). Figure 5.2 shows how a pro-
tein is divided into these nodes. These clusters of covalently linked atoms are
turned into either dipolar, nonpolar, positive, negative, partially positive, or
partially negative nodes depending on their chemical properties. In this paper,
we further categorize nodes according to Table 6.1. A covalent edge is placed
between two nodes if their constituent atoms are covalently linked, and a con-
tact edge is placed between them if any pair of their constituent atoms is within
4.6 A and is not occluded by another atom according to Delaunay tessellation
(Delaunay, 1934). This is applied to each picosecond of a simulation giving an
ordered set of graphs whose nodes and edges encapsulate the chemistry and

interactions of each piece of the protein.

Using this graph definition, we extended the traditional contact measure-
ments common in static protein structure comparisons by smoothing the con-
tacts over time with a Gaussian. This creates a continuously changing graph
whose instance at any given time represents the dynamic nature of each con-
tact as a probability of being in contact around that time. Additionally, we
defined the communication index between two nodes to be the reciprocal of the
length of the shortest path between them in a reciprocal-weight probability
graph. In other words, if the edges of a protein graph have weights w;((u,v))
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representing the probability of nodes u and v from graph G being in contact
near time ¢, then an alternate graph, G’, can be constructed with edge weights
1/w;((u, v)). The shortest path in G’ between two nodes represents the most ef-
ficient path between the nodes in terms of the probable contact network. Sup-
posing that S, ;(¢) is the set of edges that form the shortest path between nodes
a and b in this inverse-weight graph at time ¢, then the communication index
between nodes a and b is given by Equation 6.1. We write the communication

index of nodes a and b at time t as k,(t).

1
ap(t) = (6.1)
anlt) D ees, () L/w(e)

In other words, if the shortest path between nodes u and v is the path (a; =
u,as,as,...an = v), then kg, (t) = (E75 1/w((as, aiv1))(t)) . Figure 6.1 shows a
small sample example graph with indices of connectedness and communication
labeled. For further explanation of this and other graph concepts, see Benson

and Daggett (Benson and Daggett, 2010b).

The betweenness centrality of a static graph is a graph theoretic concept
used to examine the relative importance of a node to the overall graph. Nodes
that occur in the shortest paths between many pairs of other nodes have higher
betweenness than nodes that appear on few or no shortest paths. For a graph
G = (V,FE) where o,, is the number of shortest paths from node « to node v
(usually 1) and 0, ,(a) is the number of such shortest paths that contain the
node a, then the betweenness centrality, B(a), of a node a is given be Equation

6.2.

BA)= Y Tua(0) (6.2)

(of
u,vEVu#tv#a v

Here we propose an additional metric we call the impact of a node, which
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serves as a dynamic local extension to the notion of betweenness. We use this
metric to study and characterize the unfolding pathways of several proteins

from our Dynameomics project whose TSs have been identified and verified.

The index of communication between two nodes serves as a measure of
closeness within the protein graph, as adapted to a continually changing dy-
namic graph. To examine the importance of a single node to the overall com-
munication within a protein, we define the k-impact of a node v at time ¢ to be
the number of pairs of nodes, not including node u, with communication indices
> k which, if node u is erased from the graph, have communication indices < k.
In other words, this is the number of pairs of nodes which require node u to
communicate above a certain level. Thus, if a node, u, is covalently bonded
with two other nodes, which are restricted from contacting each other by the
node u, then u will have a 1/2-impact of at least 1. This, however, almost never
happens because nodes separated covalently by a single node are almost always
in contact with a high probability, thus 1/2-impact values other than 0 tend to
be rare. Accordingly, 2/5- and 1/3-impact values tend to be concerned primarily
with nodes with which a given node is very frequently but not always in contact
with. For example, Figure 6.4 shows the hydrophobic aryl node of F49 of the
Engrailed homeodomain (Ilenk) and all of the residues for which it facilitates
communication at a 1/3-impact level. This measure of impact generalizes the
betweenness centrality to evaluate the localized part of a protein graph only.
In this paper we are concerned primarily with the overall betweenness and the
1/3-impact of nodes, which can be considered to be the number of pairs of nodes

that require a given node to communicate on a short (~ 0.5 ns) time scale.
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6.3 Methods

6.3.1 Molecular Dynamics Simulations

All Dynameomics simulations were run using our in-house simulation pack-
age, in lucem Molecular Mechanics (:lmm) (Beck et al., 2008), using the Levitt
et al. (1995) force field and an explicit three-centered water model (Beck and
Daggett, 2004; Levitt et al., 1997). Details of the Dynameomics protocol are
given elsewhere (van der Kamp et al., 2010; Beck et al., 2008). This paper
examines 31 ns each of the 183 proteins whose TSs have been identified by

Jonsson et al. (2009).

6.3.2 Graph Analysis

For each simulation, graphs were established for each picosecond according to
the rules described by Benson and Daggett (2010b). Nodes consisted of clusters
of interdependent heavy atoms with similar chemical properties such as the
hydrophobic aryl group of a Tyr residue or the O¢ atoms of an Asp. Each node
was labeled positive, negative, nonpolar, dipolar, partially positive, or partially
negative according to its charges and their distributions. Highly charged atoms
(those with partial charges > 0.5 or < —0.5) were not allowed to be parts of
dipolar or partially charged nodes. Nodes range in size from 1-6 atoms, but the
majority are 2, 3, or 4 atoms with larger and smaller nodes reserved for extreme
cases such as phenyl rings and highly charged atoms. Backbones consisted of
alternating dipolar nodes (each containing the C, O, and N atoms) and nonpolar
nodes (each containing the Ca atom).

Nodes were covalently linked when at least one atom from one node was co-
valently bonded to at least one atom of another node. These bonds were main-
tained throughout the simulation. Nodes were considered in contact when at

least one heavy atom from one node was within 4.6 A of at least one atom from
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another node and was not occluded according to Delaunay tessellation. Contact
edges were calculated for every picosecond. In order to capture the dynamic na-
ture of contact edges, each contact edge was smoothed with a Gaussian, giving,
for each pair of nodes and each time, ¢, a probability that the pair of nodes
will be in contact at a randomly selected time near ¢, if the time is selected
according to a normal distribution centered at ¢ and with a standard deviation
equal to the Gaussian. This is essentially the probability of contact near time
t. These contact probabilities make up a function g, (t) € [0,1] for any pair
of nodes, (u,v), which we call the index of connectedness. We chose a standard
deviation of 250 ps in order to focus on an overall picture of the events near
a given time. The value can be increased or decreased to focus on longer- or
shorter-timescale events. Figure 6.3 shows a comparison of different values
of the standard deviation using a contact between backbone nodes of A43 and
K46 of the engrailed homeodomain’s unfolding trajectory. We found that values
below 250 ps tended to create probability functions that were not very smooth

while values above 250 ps were relatively similar.

6.3.3 Unfolding

In order to characterize the unfolding pathways of our proteins, we divided
each protein’s dynamics up into nine regions: (1) native, (2) pre-TS, (3) TS, (4)
TS +0.5ns,(5) TS + 1 ns, (6) TS + 5 ns, (7) TS + 10 ns, (8) TS + 15 ns, and (9)
TS + 25 ns. For each of these regions we examined the betweenness and 1/3-
impact of all nodes in each protein graph structure. Each node category was
examined to determine its importance at different times in the unfolding path-
way, and individual nodes with high 1/3-impact were examined closely during
unfolding simulations to understand how structurally central nodes affected

protein unfolding pathways.
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6.4 Results

During native-state trajectories at 298 K, nodes with high 1/3-impact are al-
most exclusively limited to large hydrophobic side-chains. Ile, Trp, Phe, Tyr,
Leu, and Val are the most common. Figure 6.2 shows three proteins with all
nodes whose 1/3-impact were > 25 at various times in their native-state simula-
tions highlighted. The impact values of nodes are approximately geometrically
distributed and do not change considerably over the course of a 298 K simu-
lation (Fig. 6.5a). This is true for 498 K simulations as well, but there is no
significant correlation between nodes with high 1/3-impact at 298 K and nodes
with high 1/3-impact at 498 K, as demonstrated by Figure 6.5b. The 1/3-impact
of nodes was considerably lower at 498 K than at 298 K, while the betweenness

remained comparable.

The betweenness centrality and 1/3-impact of each node category over the
course of the unfolding simulation are shown in Figures 6.6 and 6.7, respec-
tively. Backbones nodes (C, O, and N atoms) and guanidinium nodes (Arg side-
chain terminus) had the most dramatic increase in betweenness of all node
categories; the betweenness values of both increase steadily through the un-
folding simulation and reach at least twice their initial values. Hydrophobic
aryl groups and hydrophobic branches (Ile, Leu, and Val side-chains) are the
only node categories that drop considerably in betweenness during unfolding,
reaching approximately half their initial values. Carboxylic acids, hydrophobic
linkers (side-chain carbon atoms including and immediately following the Cc),
amides (Gln and Asn polar side-chain heads), and amines (Lys N() steadily in-
crease in betweenness as well though less dramatically than hydrophobic aryl
and hydrophobic branching groups. Other partial rings (His side-chain, non-
aromatic part of Trp side-chain, and Pro side-chain), alcohols, and thiols show

almost no change or variance throughout the unfolding simulation in between-
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ness.

Interestingly, all groups show an initial drop in 1/3-impact; for guanidinium
groups, amines, and carboxylic acids, this is only present between the native-
state and pre-TS time-points; by the TS, they have all increased in 1/3-impact.
For backbones, hydrophobic linkers, alcohols and thiols, and partial rings, the
decrease lasts until just after the transition state then remains steady. Hy-
drophobic aryl rings and branches show 1/3-impact decreases until just after
the TS then shower decreases after that. Backbone atoms have the highest
overall 1/3-impact at all times during the simulations.

All node categories except hydrophobic aryl rings have their largest change
in betweenness immediately following their TS; this is especially noticeable
in guanidinium nodes and amides, both of which increase dramatically and
suddenly. Hydrophobic aryl rings and hydrophobic branch groups both have
a sharp drop in betweenness from values near 3% to closer to 2% following
their TS. In the case of hydrophobic aryl rings, the greatest sudden drops occur
~ 1 ns after the TS, while for hydrophobic branches it follows the TS immedi-
ately. Notably, if large/bulky hydrophobic branches (Ile and Met side-chains)
are separated from the smaller hydrophobic nodes, they show an overall drop
in betweenness identical to other branched side-chains rather than a similarity
to the other large/bulky aryl side-chains. These drops in hydrophobic residue
betweenness represent all of the immediate loss of betweenness following the
transition state as categorized here.

Betweenness and 1/3-impact by node category were remarkably stable. Con-
vergence was observed quickly, and sets of as few as three protein trajectories
produce virtually identical graphs. Variance was low over time for all groups
as well, with the exception of the N-terminal and C-terminal groups, which are
not discussed here for this reason. Alcohols and thiols, partial rings, hydropho-

bic linkers, amines, and carboxylic acids had especially low variance over time
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for both betweenness and 1/3-impact. Guanidinium groups had the highest
variance, but the variance remained stable until ~ 1 ns after the transition
state and can still be confidently viewed as an upward trend.

Although the betweenness and the changes in betweenness seem initially
small, only a few percent, it is worth noting that the betweenness for any pro-
tein graph should be low. This is because the vast majority of pairs of nodes can
be traversed in only a few steps, either along covalent bonds (e. g. from residue
i to residue 7 + 1) or along a single contact. Each of these represents a shortest-
path with no “between” nodes. A change in betweenness of 1% can represent
a substantial change in geometry as well; if a node’s betweenness increases by
1% in a small protein of 200 nodes, this represents an increase of 199 pairs of

nodes whose shortest paths travel through the given node.
6.5 Discussion

The slow increase of backbone betweenness can be seen as a correlate to the ex-
pansion of the overall protein core; in a completely expanded protein, backbone
atoms would be between virtually every pair of nodes. Hydrophobic linkers
hold a similar but lesser position, as an expanded protein requires that more
shortest paths travel through the carbon atoms that link the side-chain group
to the backbone. The extremely low betweenness of all alcohols and thiols was
initially surprising, and suggests that these groups do not play a major role in
structure and structure formation on average. This is partially explained by
their similarity to and preference for contacting water over other residues in
the protein; even charged residues such as Lys will prefer to contact charges
such as Asp in the absence of negatively charged ions.

The extremely high 1/3-impact of backbone nodes is also unsurprising; back-
bone C, O, and N atoms are very close to several graph nodes and are likely to

facilitate communication between them due to their closeness. The initial drop
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in backbone 1/3-impact is most likely due to a loss in hydrogen bonds. This
does not necessarily lead to a drop in betweenness, however. The betweenness
of a node considers the shortest path between every pair of nodes in a protein
and counts those of which it is a member, even those that are quite distant; the
1/3-impact of a node only considers the shortest paths between the nodes that
are in its local environment. Because the local environments of most nodes
lose members as the protein expands (and nodes become further apart), the
1/3-impact must necessarily shrink because there are fewer pairs of nodes with
shortest paths to consider. This explains the initial drop in 1/3-impact of all
nodes. However, although a node’s local environment loses members as the
protein expands, this can lead to an increase in betweenness for some nodes
because the shortest paths for very distant nodes are forced to travel through

the few nodes that still connect in the protein’s core.

Because a smaller environment generally means a smaller 1/3-impact, this
indicates that carboxylic acids, guanidinium groups, and amines increase the
number of nodes in their local environments during unfolding simulations in
order to increase 1/3-impact. This is not particularly surprising considering
that these charged groups will likely seek out other charged groups in the pro-
tein once the hydrophobic core has been disrupted. Notably, however, guani-
dinium groups and carboxylic acids reach levels of 1/3-impact that are observed
in hydrophobic aryl groups and hydrophobic branches during native-state sim-
ulations; this suggests that the arrangements of these nodes relative to the
protein’s overall structure is similar to that of the hydrophobic groups’ in the
native state.

Jonsson et al. (Jonsson et al., 2009) report, in their study of the same 183
protein unfolding simulations examined here, that contacts decrease for hy-
drophobic residues in the TS, especially for Phe, Trp, and Tyr, while simulta-

neously increasing slightly or remaining the same for charged groups such as
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Asp and Lys. It is initially puzzling, then, that we find that the betweenness of
hydrophobic aryl rings and hydrophobic side-chains do not decrease substan-
tially until after the T'S. Hydrophobic aryl rings, especially, have a comparable
betweenness to their native state values until ~ 1 ns after the TS. Hydrophobic
branches similarly remain at their native-state levels until ~ 0.5 ns after the
TS. The 1/3-impact values of both of these groups drop both before and after
the TS, however.

One possible explanation of these data is that the TSs were picked too early
in the simulations; this, however, contradicts the sudden change in every node
category’s betweenness immediately after the TS except for hydrophobic aryl
rings, all of which support the hypothesis that TS were chosen correctly. It
is important to keep in mind, at this point, that betweenness and 1/3-impact
are not functions of contacts. In fact, a smaller number of contacts in a graph
can lead to some nodes having significantly higher betweenness because fewer
shortest-paths are able to travel through local contacts and instead must travel
through the few nodes that make long-range contacts. The 1/3-impact values
follow a similar pattern but are concerned with the smaller graph formed by
the local environment of a node only. Thus, nodes will show a decrease in 1/3-
impact when many contacts are lost but an increase when nearby nodes become

less connected with each other.

In our simulations, we observe that this exact phenomenon drives the
change in betweenness of different kinds of nodes over the course of our
unfolding simulations. We observe a discrete set of events in virtually all
trajectories and propose it as a 4 step method for the early thermal unfolding
of proteins through the transition state. This process is outlined below, and
illustrated by Figure 6.6, which uses the unfolding pathway of barnase as an

example.
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N. Native. The native structure of a protein is characterized by high levels

of betweenness for hydrophobic groups, especially hydrophobic aryl rings,
which occupy the core; the vast majority of shortest-paths must travel
through the core via some subset of these nodes. The core is densely
packed, so these hydrophobic residues have large numbers of contacts.
Notably, hydrophobic branching nodes and hydrophobic aryl rings have
virtually identical betweenness in the native state, though hydrophobic
aryl rings have higher 1/3-impact due to their ability to occlude smaller

nodes from interacting with each other directly.

. Expansion. Before the protein’s TS, the structure remains native-like

but expands significantly, spreading residue side-chains within the core
apart. These internal residues are largely composed of hydrophobic aryl
groups and hydrophobic branches such as those made up of the Cy and
Cés atoms of Leu. The nodes representing these groups have high be-
tweenness initially due to their centrality to the 3D structure. As the pro-
tein expands, they may lose some betweenness on average, but because
they remain in the core of the protein, many shortest-paths must still
travel through them. The 1/3-impact drops more significantly than be-
tweenness due to the expansion of the protein, supporting the notion that
expansion is occurring and that smaller local regions of the protein are
becoming more expanded during this time. Figure 6.6b shows the slight
expansion of the region around Y78 in barnase; although the residues

have spread apart, it maintains its neighborhood of contacts.

. Transition. The protein’s TS is an expanded version of the native state,

and hydrophobic nodes, though still in the core, have lost contact with
many of their neighbors. Hydrophilic residues, on the other hand, main-

tain their contacts and may seek out new contacts with each other in the
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less dense solvent. In Figure 6.6c, Y78 remains in the core and in contact
with I51, but its neighborhood of contacts has dwindled significantly. At
this point, these nodes maintain their betweenness from the expansion
state, as most shortest-paths still travel through the core, thus through
them.

. Hydrophilic Invasion. During the ~ 0.5 ns following the TS, hy-
drophilic residues such as Asp, Lys, Arg, and Glu begin to enter the the
protein’s center along with water while hydrophilic core residues con-
tinue to expand; this creates a dual environment of both hydrophobic and
hydrophilic residues and can be observed via the increase in 1/3-impact
of guanidinium groups, carboxylic acids, and amines, all of which become
more likely to cluster in small groups. Very hydrophobic aryl groups
remain in the core preferentially while most smaller hydrophobic groups
such as Ala, Leu, and Ile become too separated to maintain contacts in the
hydrophobic core due to the protein’s continued expansion. The departure
from the core of the smaller hydrophobic groups leads to a sudden drop in
their betweenness, as they no longer bridge distant regions of the protein.
Hydrophobic aryl groups maintain their betweenness better on average,
as they have not yet been pushed out of the core. The lack of other smaller
side-chains in the core prevents them from maintaining their 1/3-impact,
which has dropped rapidly to a low. This drop occurs because individual
contacts to one or two other nodes can maintain betweenness so long as
they bridge distant regions, but not 1/3-impact, which depends only on
the communication between those nearby nodes. Simultaneously, charged
and hydrophilic groups such as carboxylic acids, amides (Asn and Gln
side-chains) and amines see a sudden jump in betweenness as they begin

to bridge distant protein regions. The combined exodus of hydrophobic
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groups, continued expansion of the protein core, and contacts formed
between hydrophilic residues and polar backbone atoms lead to a jump in
the betweenness of the polar backbone atoms as well. Figure 6.6d shows
Y78 remaining in the protein core while other hydrophobic groups begin
to exit and while charged residues such as K27 and D75 begin to form the

contacts that bridge distant regions of the protein.

. Hydrophobic Decomposition. By ~ 1 ns after the TS, the hydropho-

bic residues that remain in the core are insufficient to hold it together
and the hydrophobic core breaks apart, as is visible in 6.6e, where Y78
no longer maintains its most distant residue contacts. The breaking of
the core leads to a sharp drop in the betweenness of the hydrophobic aryl
groups, which no longer connect with residues in the core. In fact, this
drop brings the betweenness of hydrophobic aryl groups to a level below
that of hydrophobic branches. These smaller hydrophobic groups continue
to lose betweenness as well because those still remaining in the core con-
tinue to exit, but the effect, comparatively, is much smaller. Hydrophilic
residues remain in contact, preserving, and eventually increasing, the be-

tweenness of amines, amides, guanidinium groups, and carboxylic acids.

Unfolding. Following the decomposition of the hydrophobic core, the pro-
tein continues to expand and rearrange, with hydrophobic residues con-
tinuing to lose betweenness as they spread apart and hydrophilic residues
continuing to gain betweenness as they become the only substantial links
between the expanded backbone of the protein. The charged guanidinium
Arg side-chains do especially well at this point, as they are the largest
hydrophilic group, giving them a likeness to aryl rings at lower tempera-

tures.
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This 4 step model for unfolding explains all of the measurements observed
here and in previous unfolding studies (Jonsson et al., 2009). When unfolding
occurs in reverse as folding, we would expect these events to occur backwards.
Early in the refolding process, only hydrophilic residues would be in contact.
These residues would bring large hydrophobic side-chains into contact. Follow-
ing this, hydrophobic residues would invade, leading to the TS, which would
precede general contraction of the core. To test this theory, we examined the
unfolding and refolding pathway observed in a 373 K simulation of the en-
grailed homeodomain (McCully et al., 2008). In this simulation, the initial (un-
folding) transition state occurs at 1 ns while the second (refolding) transition
state occurs at 5 ns. Figure 6.6 shows this pathway. Notably, the increased be-
tweenness of the hydrophilic residues occurs ~ 0.5 ns after the transition state,
as hydrophobic residues separate and hydrophilic residues begin to connect
more strongly. In the reverse of this process, the hydrophilic residues remain
in contact to a lesser extent after the TS, but they are pushed to the edge of the

protein rather than remaining in a central (between) location.
6.6 Conclusions

We have shown evidence from graph theoretic measurements that protein un-
folding through the transition state occurs via a common process, which in-
volves the separation of large aryl rings after the separation of smaller hy-
drophobic contacts. As these aryl rings break apart, hydrophilic interactions
gain dominance. This process involves four steps: expansion, transition, hy-
drophilic invasion, and hydrophobic decomposition. We have demonstrated
with examples how this leads to unexpected changes in betweenness measures
of chemical groups as compared to their contacts over time, and show that large
hydrophobic aryl groups play a different role in this process than smaller hy-
drophobic groups. We further show that the folding process occurs through the
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same mechanism in reverse.
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Table 6.1: Protein structure graph node categories.

Node Category

Residues Atoms

N-termini All
C-termini All
Backbones All

Guanidinium Groups  Arg
Hydrophilic Aryl Rings Phe
Trp
Tyr
Hydrophobic Branches Ile
Leu
Leu
Amides Asn
Gln
Amines Lys
Carboxylic Acid Os Asp
Glu

N-terminal Ns
C-terminal Cs, Os, and OTs
C,O,Ni!

Ne, C¢, Np?
C~, C4, Ce, C2
Cd, Ce, Cn?
Cv, Cé, Ce, C2
Cr, Cé?

Cr, C6?

Ca, CB, Cy2
C~, 04, N§

Cd, Oy, N«

N(¢

(09), (CH)*3
(Oe), (Co)?*

IThe backbone nodes are composed of the C and O atoms of residue i and the

N atom of residue ¢ + 1.

2When more than one node is grouped in one row, each node is specified by

parentheses.

$When multiple atoms (e. g. Cy1, Cy2) exist, both are specified.
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Table 6.1: (continued)

Node Category Residues Atoms
[3] Hydrophobic Linkers Ala Ca, Cj
Cys Ca, Cj
Asp Ca, Cs
Glu Ca, C3, Cv
Phe Ca, Cs
Gly Ca
His Ca, Cs
Ile Ca, Cs
Lys (Ca, CP), (Cr, C4, Ce)?
Leu Ca, Cs
Met (Ca, CB), (Cr, S6, Ce)?
Asn Ca, Cs
Gln Ca, Cj, Cv
Arg (Ca, CB), (Cy, C6)
Ser Ca, CB
Thr Ca, C3, Cy
Tyr Ca, Cs
Partial Rings His (Cv, C6), (Ce, N§), (Ne)®
Pro Ca, C3, Cv, Co
Trp (Ca, CB3, C, Cé), (Ne)3
Alcohols and Thiols Cyh Sy
Ser O~
Thr Oy

3When multiple atoms (e. g. Cy1, Cv2) exist, both are specified.
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(a) Sample graph with edge weights, w

(b) Formula for communication index
1

WA, B) T +w(B,C)" + w(C, D)

Figure 6.1: A small graph of four nodes with probabilities of contact shown
on solid edges and communication indices shown on dashed edges. (a) The
sample graph with probability of contact edge weights shown. (b) The same
graph with an edge between nodes A and D showing the formula for that edge’s
communication index, k. (¢) The same graph with all communication indices
shown. Contact probabilities are assumed to be 0 when not shown. In this
graph, the node B would have a 1/2-impact of 0, a 1/3-impact of 1 (nodes A and
C), a 1/4-impact of 1 (nodes A and C), and a 1/5-impact of 2 (nodes A and C and
nodes A and D). Node C also has a 1/5-impact of 2 and a 1/4-impact of 1, but
has a 1/3-impact of 0.
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(a) Barnase, (b) 6 Resolvase, (c) DNA Primase,
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Figure 6.2: Three proteins with all residues whose 1/3-impact is > 25 and whose
betweenness is > 0.8 during their 298 K simulation shown. (a) 1/3-impact of
Barnase (1a2p) at 5 ns. (b) 1/3-impact of 76 Resolvase (Igdt) at 10 ns. (c) 1/3-
impact of DNA Primase (Idde) at 15 ns. (d) betweenness of Barnase (1a2p) at
5 ns. (e) betweenness of 74 Resolvase (1gdt) at 10 ns. (f) betweenness of DNA
Primase (Idde) at 15 ns. The core of barnase is less densely packed than ¢
resolvase or DNA primase; thus it has fewer 1/3-impact hubs than the other
two. Notably, the elongated helix in v4 resolvase causes several nodes along it
to have a high betweenness even when they have low 1/3-impacts due to the
many shortest-graph-paths that must travel along the helix.
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Figure 6.3: Comparison of standard deviation values for the smoothing of graph
contacts over time. (a) Actual contacts from the unfolding simulation of the
engrailed homeodomain between backbone nodes of residues A43 and K46 over
time. (b) Probabilities of contacts between backbone nodes of residues A43 and
K46 over time as smoothed by a Gaussian with a standard deviation of 50, 250,
500, or 1000 ps.
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Figure 6.4: Residue F49 of the engrailed homeodomain native state simulation
at 5 ns and the residues with which it facilitates communication at a 1/3-impact
level. The 1/3-impact of the aromatic group of F49 (veiled in purple) is 32; from
these 7 residues, 11 different nodes form 32 pairs, each of which requires this
hydrophobic aryl group to communicate at near time ¢t = 5 ns at the 1/3-impact
level. The aromatic group of F20 and the side chain of 1.24 (behind F49) are
one example of these pairs. Notably, not all nodes in each residue contribute to
the impact of F49; only the backbone nodes of R24, for example, are involved.
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Figure 6.5: The 1/3-impact of all nodes over the course of (a) the native-state
and (b) the unfolding simulation of the protein barnase (Ia2p). 1/3-impact
values ranged from 0 to 60 and changed little over the course of the native-
state simulation for any individual node. The 1/3-impact drops considerably
during the unfolding simulation, but is also relatively stable. The transition
state for barnase occurs at 0.24 ns in this simulation.
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Figure 6.6: Mean betweenness centrality over the course of the 498 K simu-
lation by node category. The mean + standard error is plotted with dashed
lines. Time is adjusted so that the transition state of each simulation occurs at
1 ns; all other time points are relative to this with the exception of time point 0,
which summarizes the native state. C-terminal and N-terminal charged groups
are not shown due to low sampling.
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Figure 6.7: Mean 1/3-impact (in node pairs) over the course of the 498 K sim-
ulation by node category. The mean + standard error is plotted with dashed
lines. Time is adjusted so that the transition state of each simulation occurs at
1 ns; all other time points are relative to this with the exception of time point 0,
which summarizes the native state. C-terminal and N-terminal charged groups
are not shown due to low sampling.
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Figure 6.8: Unfolding trajectory of barnase. Snapshots are taken at (a) O ns,
(b) 0.1 ns, (¢) the TS (0.235 ns), (d) 0.8 ns, (e) 1.2 ns, and () 2.2 ns. Residue
Y78 is shown in dark colors in each frame; in all but the last frame all residues
within 10 A of Y78 are shown in light colors. During the time up to the TS, Y78
remains in contact with a large number of hydrophobic side-chains. By the TS,
it has lost many of these contacts but maintains its betweenness by connecting
two disparate parts of the protein through a contact with I51. This contact
is maintained for some time after the TS, during which time charged groups
nearby (e. g. K27 and D75) begin to enter the protein core. By 1 ns after the TS,
Y78 has been ejected and no longer has a high betweenness. By 2ns after the
TS, Y78 has a betweenness of less than 0.01, but a charged Lys (K27) can be
seen connecting regions of the protein via a contact with the backbone of I51.
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Chapter 7

A COMPARISON OF METHODS FOR THE ANALYSIS OF
MOLECULAR DYNAMICS SIMULATIONS

7.1 Summary

Molecular dynamics (MD) is the only technique available for obtaining dynamic
protein data at atomic spacial resolution and picosecond or finer temporal res-
olution. In recent years, decreases in the cost of computational resources have
lead to an increase in the use of MD in biological research, both to examine
phenomena that cannot be resolved experimentally and to generate hypothe-
ses that direct further experimental research; in fact, several databases of MD
simulations have arisen in recent years. MD simulations, and especially MD
simulation databases, can contain massive amounts of data, and analysis of
this data can be a daunting task. Here we compare several MD analysis meth-
ods to show their strengths and weaknesses using the wild-type and R282W
mutant forms of the DNA-binding domain of protein p53. Our analyses in-
dicate that the R282W mutation of p53 destabilizes the L1 Loop and loosens
the H2 Helix conformation but that the loosened L1 Loop can be rescued by
residue H115, preventing the R282W mutation from completely destabilizing

the protein or abolishing activity.

7.2 Introduction

The interpretation and analysis of molecular dynamics (MD) simulations can
be a difficult task. Choosing the wrong analysis technique to test a hypoth-

esis will result in wasted time and inconclusive results; choosing the correct
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analysis technique, on the other hand, requires a working knowledge of both
the hypothesis to be tested and the strengths and weaknesses of the many
techniques available. We compare a wide array of analysis methods applied
to three simulations each of the protein 53 (p53) wild-type (wt) and R282W

mutant proteins.

7.2.1 Model System

P53 is a cell cycle regulator that functions as a tumor suppressor by activating
DNA repair, pausing growth during DNA repair, and inducing apoptosis if DNA
is sufficiently damaged (see, for example, Strachan and Read (1999, chap. 18)).
P53 consists of seven domains including a core DNA-binding domain (DBD;
residues 100-300). Mutations in the P53 gene are the most commonly found
mutations in human tumor cells, with the DBD accounting for most of these
cases (Olivier et al., 2002; Hamroun et al., 2006). Additionally, it has been
shown that the type of mutation is linked to prognosis and has implications for
treatment (Olivier et al., 2006).

One of the many dangerous p53 mutations is the R282W mutation, which is
among the 5 most common p53 mutations (Joerger and Fersht, 2007). R282W
is in the periphery of the DNA-binding surface on the C-terminal helix (H2) and
is known to disrupt the hydrogen bonding network of the local turn-sheet-helix
motif while leaving the overall structure undisturbed (Joerger et al., 2006). The
minimized crystal structure the wt p53 DBD is shown in Figure 7.1 with the
R282W mutant indicated in red. The large guanidinium group of R282 forms
hydrogen bonds that connect the loop and turn supporting H2; these bonds are
lost with the addition of the Trp residue, distorting the L1 loop slightly, in-
cluding DNA-binding residue K120. The overall DNA-binding domain is main-
tained, however, and the mutant is active at low levels.

Interestingly, the p53 protein is unusually unstable and melts at only
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slightly above body temperature (Bullock et al., 2000; Ang et al., 2006). It
has been hypothesized that this instability is linked with its unusually high
flexibility (Cafiadillas et al., 2006), specifically of the L1 and S7-S8 loops
(Fig. 7.1, which may allow p53 to perform its many diverse functions. The
R282W mutation is known to decrease p53’s stability further by 3 kcal/mol
(Bullock et al., 2000). The polar Arg is involved in packing the H2 helix against
the 52-S2’ g-turn, which is slightly disrupted in crystal structures with the
Trp mutant. The R282W mutation does not disrupt the overall structure of the
DNA binding region, however.

7.2.2 Traditional Analyses

The most traditional MD analysis techniques include the root mean square
deviation (RMSD) and the root mean square fluctuation (RMSF). Both of these
are measurements of the distance of an atom or set of atoms from a specific
reference over time. Each is expressed by Equation 7.1, which describes the
RMS value D in terms of a reference structure m and a trajectory structure
q, each of which is an n x 3 matrix containing 3D atomic coordinates (row
vectors my, mq,...my,) for n atoms. In the case of RMSD, the reference matrix
m is usually the initial structure of the simulation or a minimized version of

the crystal structure. For RMSF, the reference is the mean structure.

1 n
D(m,q) =J52nmi—qiu2 7.1)
i=1

The conformational genealogy (Congeneal) (Yee and Dill, 1993) is a mea-
surement of structural relatedness similar to an entire-protein RMSD but
which examines the inter-atomic distances of the Ca atoms in a protein. The

Congeneal distance between two structures of equal length is the Bray-Curtis
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distance between their weighted distance matrices. For two proteins of un-
equal length, n and m such that n < m, it is the minimum Bray-Curtis distance
between the smaller protein’s weighted distance matrix and all the contiguous
n x n sub-matrices of the larger protein’s weighted distance matrix. Congeneal
is distinct from RMSD that it can be used on proteins of unequal size and that
its weighting can cause local structural features to play a larger role in the
measurement, eliminating low scores due to floppy tails or loops.

Another traditional simulation analyses is the solvent accessible surface
area (SASA) (Lee and Richards, 1971), which measures the surface area of a
molecule that is accessible to the solvent, generally water. The calculation of
this measurement is beyond the scope of this paper but algorithms are dis-
cussed in detail by Shrake and Rupley (1973) and Weiser et al. (1999). SASA is
frequently calculated for individual residues and compared over the course of
a simulation to observer solvent exposure events.

Protein dihedral or torsion angle analyses are also common in MD liter-
ature. Dihedral analyses examine rotational angles throughout the protein
structure, especially the (@, V) angles along the protein backbone, which can
be used to identify secondary structure arrangements. The definition of pro-
tein secondary structure (DSSP) (Kabsch and Sander, 1983) also identifies sec-
ondary structure patterns in proteins by examining hydrogen bond patterns
based on a purely electrostatic definition. Both of these methods can be used
to identify secondary structure; the major difference between them is the focus
of DSSP on hydrogen bonds compared to (®, ¥)’s focus on rotational angles. Al-
though both methods have slight biases, we focus only on DSSP due to their
overall similarity.

A final class of traditional analyses are contact-based analysis. These tend
to fall into two categories: fine detail structural analysis (FDSA) and contact

maps. FDSA generally consists of examining trajectories on the basis of inter-
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atomic contacts over time. For example, one could examine all the contacts
made by a single Cy atom of a Val residue. While this method can be extremely
valuable, it is a reorganization rather than a summary of the initial simulation
with only marginally less entropy. In other words, without a firm idea of what
one is looking for, examining an FDSA map is little different than examining a
movie of a protein simulation; thus we do not discuss it further. Contact maps
or matrices, on the other hand, summarize the frequency with which any two
residues are in contact over the course of the simulation, often comparing the
simulation’s contacts to those of a crystal structure. Such maps can be quite
useful for quickly determining the major changes that have occurred over the

course of a simulation.

7.2.83 Flexibility

Flexibility is an analysis, related to principal component analysis, which is ap-
plied to each atom in a simulation individually (Teodoro et al., 2003). This
allows one to immediately determine and summarize the major modes of each
atom of the protein over the course of the simulation while filtering out the less
significant fast vibrations. Flexibility analysis has only recently been applied
to MD trajectories, but it has been used to examine large datasets of protein
simulations (Benson and Daggett, 2008). This study identified basic features
of protein flexibility and demonstrated that proteins in the same fold families
tend to have similar flexibility patterns. It also identified a number of unusu-
ally inflexible loops with structural properties mirroring traditional secondary
structure and demonstrated that the most flexible sites of a protein at room
temperature predict the early thermal unfolding trajectory of a protein.
Flexibility is usually visualized as either a set of displacement vectors plot-
ted on the mean structure from a protein trajectory or as a similar set of vectors

plotted onto a median structure, which is simply the protein structure occur-
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ring in the simulation that has the lowest RMSD to the mean structure. When
the mean structure is used, the vectors plotted are equal but opposite and rep-
resent the principal axis of the atom’s motion scaled by the standard deviation
of the atom along that axis. Mean structures are not always physically realistic
structures, however. Because of this, we use the median and plot arrows from
the atom’s position in the median structure to the ends of its principal axis as
measured from the mean position so as to preserve all data from the flexibility

calculation.

7.2.4 Wavelet Analysis

The continuous wavelet transform is a technique that has been widely used in
fields such as meteorology (Meyers et al., 1993; Torrence and Compo, 1998) and
that has been previously suggested as a tool for the analysis of MD (Askar et al.,
1996). Until recently, however, only discrete versions of the wavelet transform
had been applied to MD (reviewed by Lio (2003)). Recently, the continuous
wavelet transform, which we will refer to simply as wavelet analysis, has been
shown to be quite useful in MD research due to its ability to quickly locate re-
gions in both time and space during which nonrandom motions are occurring
(Benson and Daggett, 2010a). Wavelet analysis is performed, for a single atom,
by searching for instances in its trajectory over time at which its motion is sim-
ilar to that of a particular wavelet function. These wavelet functions can be
stretched and compressed to identify different sizes and shapes of motion in
the trajectory. In this paper, we will use the Paul wavelet function (Addison
et al., 2002), which excels at detecting sigmoid as well as oscillatory motions. A
complete description of the calculations involved in wavelet analysis is beyond
the scope of this paper, but a practical guide is given by Torrence and Compo
(1998) and a guide to the application of wavelet analysis to MD, including sam-
ple codes, is given by Benson and Daggett (2010a). More detailed theoretical
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treatments can be found elsewhere as well (Daubechies, 1992; Meyers et al.,
1993; Addison et al., 2002).

One interesting feature of wavelet analysis is that it lends itself to easy
comparison between sets of simulations of a protein or between simulations of
variants of a protein. Each region of time that matches a particular wavelet
shape matches can be assigned a p-value measuring its significance compared
to random noise. These p-values can be combined across simulations to de-
termine, within statistical significance, if the propensity of an atom to move in
certain ways is different between protein variants. This technique is illustrated

by Benson et al. (2010).

7.2.5 Graph Theory

Graph theoretic techniques involve simplifying a protein structure into a
mathematically tractable and discrete representation called a graph. Graphs
are simply collections of nodes (or vertices) connected to each other by edges.
Generally, nodes represent physical pieces of the protein such as individual
residues while edges represent relationships such as closeness in space or
contacts. Labels can be given to nodes (e.g., residue type) and to edges (e.g.,
distance or number of pairs of atoms in contact) to allow the graphs to capture
more information. Graphs have the immediate advantage that, while they can
capture much of the critical information about a protein structure, they are
computationally easier to manage than coordinates and support a large array
of easily calculated and well studied mathematical metrics.

Graph theoretic approaches to analyzing proteins have made various ap-
pearances in the literature, but few have been applied to MD trajectories. One
rudimentary approach to analyzing a simulation with graphs is simply to visu-
alize the graphs. This technique has shown some promise in examining struc-

tural differences in simulations of dimers (Swint-Kruse, 2004), where a simple
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graph of the protein contacts was sufficient to identify interesting differences
between monomeric contacts. A similar approach has been used to examine
single nucleotide polymorphism (SNP) variants of a protein. Schmidlin et al.
(2009) plotted and examined contacts between residues in superoxide dismu-
tase that differed by a certain threshold in the wt and mutant simulations in

order to identify changes in the contact network.

Recently, protein structure graph analysis has been applied to MD trajec-
tories by breaking a protein into nodes of chemically similar atoms close in
space (Benson and Daggett, 2010b). The graph’s edges, which were formed
by contacts at each frame of the simulation according to Delaunay tessella-
tion (Delaunay, 1934) and a distance cutoff, were then smoothed in time with a
Gaussian. These smoothed edges had weights at every time-point in the range
of [0, 1], which represented the probability of two nodes being in contact near
that time. These edge weights were used to characterize the chemical envi-
ronment of individual nodes by counting the number of contacts at different
probability levels; these counds form a vector that serves as a dynamic envi-
ronment index. These indices could be used either as a method of searching
for nodes with similar chemical environments or to detect sudden changes in a
node’s environment. Additionally, Benson and Daggett (2010b) propose a dis-
tance metric, graph communication, C, which is given in Equation 7.2 where
Sap is the set of edges on the shortest path from node a to node b and where

w(u, v) is the weight (probability of contact) of two nodes, v and v.

1
Cl(a,b) = 7.2
(a,b)= > Wl ) (7.2)
(uyv)esa,b
This communication distance measures the propensity for two nodes to influ-
ence each other either through direct contact or via an intermediate. A com-

munication distance of 1 would indicate that two graph nodes were constantly
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in contact while a communication distance of 4 could indicate either that two
nodes were in contact ~ 25% of the time or that they were each in contact with
another occluding node ~ 50% of the time. In this fashion, graph communica-
tion can capture not only loss of contact but also intermediate rearrangements

that decrease communication between otherwise disconnected nodes.

7.3 Methods

7.3.1 Protein Preparation and Simulation

Simulations were based on the 2.05 A resolution crystal structure of the DNA-
binding domain (residues 96-289) of p53 (Wang et al., 2007), PDB code 2ocj.
The R282W mutation was prepared by substitution to the wt structure and
energy minimization in vacuo using the ENCAD package (Levitt, 1990). Mini-
mization was performed using the Levitt et al. (1995) force field for 1000 steps
of steepest decent minimization. These structures were solvated in a rectangu-
lar box with walls > 10 A from any protein atom with a solvent density of 0.933
g/mL, the experimental density of water at 310 K and 1 atm pressure (Kell,
1967). Solvent was additionally minimized for 1000 steps followed by 1 ps of
dynamics of the solvent only and 500 more steps of solvent minimization. Fol-
lowing this minimization, the entire system was heated for 310 K. Simulations
were performed using our in-house simulation package, in lucem molecular me-
chanics (ilmm) (Beck et al., 2008) using the Levitt et al. (1995) force field and
explicit three-centered flexible water molecules (Levitt et al., 1997). Three sim-
ulations of each variant (wt and R282W) protein were run at 310 K for at least
21 ns each with different random number seeds used during the assignment
of initial velocities. Simulations included all hydrogen atoms and used a force-
shifted non-bonded cutoff of 10 A. The time step used was 2 fs with coordinates

saved every 1 ps. Further simulation details are given elsewhere (Levitt et al.,
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1995; Beck and Daggett, 2004).

7.3.2 Analysis

All analyses were performed using i/mm. RMSD, RMSF, SASA, DSSP, contacts,
correlated motion, flexibility, wavelets, and graphs were calculated. RMSD,
RMSF, correlated motion, flexibility, and wavelets were calculated following
the removal of rotation and translation from the system using a rigid least
squares fit (Kearsley, 1989). SASA was performed using the NACCESS algo-
rithm (Hubbard and Thornton, 1993). DSSP was calculated using the DSSP
algorithm (Kabsch and Sander, 1983). Correlated motion was taken to be the
average of the correlation of two atoms in the z, y, and z directions. Contacts
were calculated using a C-C atom distance cutoff of 5.4 A and a heavy-atom
(C, O, N, S) distance cutoff of 4.6 A for non-adjacent residues. Flexibility was
calculated using the method outlined by Teodoro et al. (2003) and Benson and
Daggett (2008). Wavelets were calculated for all Ca atoms and significance
was evaluated using the noise distribution described by Benson and Daggett
(2010a). Wavelet motions in the top 20% of this noise-distribution were consid-
ered significant. Graphs were generated using the node definitions described
by Benson and Daggett (2010b); two nodes were considered in contact (and
were linked by a contact edge) when they were within 4.6 A and were not oc-
cluded by another atom, as determined by Delaunay tessellation (Delaunay,
1934). All analyses were performed on the first 21 ns of each simulation of both
wt and R282 proteins. All plots were produced using Mathematica (Wolfram
Research, 2008), and protein images were produced using Visual Molecular

Dynamics (VMD) (Humphrey et al., 1996).
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7.4 Results and Comparison of Analyses

Of all the analyses performed here, RMSD and RMSF are the most similar with
the important distinction that RMSD shows the deviation from the minimized
crystal structure while RMSF shows the deviation from the mean structure. In
this sense, RMSF gives a picture of what parts of the protein are moving at
any given time while RMSD gives an overall picture of how much each part of
the protein has changed so far at a given time. RMSF and RMSD plots for all

simulations are shown in Figures 7.2 and 7.3 respectively.

Both RMSF and RMSD tend to stay consistent per residue across each sim-
ulation and tend to be highly related between simulations. In fact, the lowest
correlation of RMSF between any pair of simulations is 0.61 (between wt sim-
ulation 2 and R282W simulation 2) while the highest pairwise correlation is
0.75 (between wt simulation 1 and R282W simulation 1). This correlation is,
in fact, higher than any wt-wt or mutant-mutant correlation. For RMSD, the
lowest pairwise correlation is between wt simulation 1 and wt simulation 3
(R = 0.31) while the highest is between wt simulation 1 and R282W simulation
3 (R =0.63).

Flexibility has a slight relationship to RMSF as well in that it measures the
amount of movement along a principal axis where RMSF measures the amount
of movement generally. Flexibility additionally adds a directional component
to the standard RMSF values (Fig. 7.4). When examining the flexibility plots, it
is immediately obvious that the L1 Loop is considerably more flexible in the wt
simulations than in the R282W simulations, especially wt simulation 2, while
the H2 Helix is both more flexible and more displaced on average from the
S52-S2’ 3-sheet in the R282W simulations. Other regions show more subtle or
indistinguishable differences, though there is a slightly higher flexibility of the
S7-S8 loop in the wt, especially simulation 1.
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The DSSP analysis gives a very clear picture of the loss and gain of sec-
ondary structure (as determined by H-bond patterns) throughout the simula-
tion (Fig. 7.5). Most secondary structure elements are stable throughout both
wt and R282W simulations, specifically S2, S2’, S3, S4, S6, S7, S8, 89, S10, and
H2. S1 is somewhat inconsistent in all simulations, while the L2 loop forms
some helical character in wt simulations 3 and R282W simulation 1. Notably,
the H1 helix is consistent in the wt simulations but inconsistent in two of the

R282W simulations. S5 is consistent everywhere but in wt simulation 3.

Both SASA (Fig. 7.6) and contact (Fig. 7.7) analyses are difficult to interpret
for p53 due the the lack of changes in them between any two simulations gen-
erally. SASA is nearly universally consistent throughout the simulations with
deviations too small to be visible while contact maps are nearly indistinguish-
able from each other without much more detailed analysis. Correlated motion
(Fig. 7.8), on the other hand, is difficult to compare due to the lack of similar-
ity between any two plots. The highest correlation between correlated motion
values for a pair of simulations occurs between wt simulation 3 and R282W
simulation 2 (R = 0.66). In fact, the similarity in correlated motion between wt

and mutant is generally higher than between wt and wt.

Wavelet analysis (Fig. 7.9) suggests a great deal of ordered low-frequency
motion in the wt compared to the R282W simulations. Wavelet maps would
immediately suggest significant motions throughout simulation 1 of the wt be-
tween 5 and 10 ns and near residues 120 and 280 (L1 loop and H2 Helix respec-
tively) in wt simulation 2 from 5 to 15 ns. In simulation 3 of the wt, some motion
is seen near residue 240 (L3 loop) from 5-15 ns. The R282W simulations show
fewer significant motions according to wavelet analysis, but simulation 1 shows
motion near residue 180 (H1 Helix) from 7 to 15 ns while simulation 3 shows
motion scattered throughout the 5-10 ns range, especially in the N-terminus.

The greatest differences in ordered motion, according to wavelet analysis, are
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shown in Figure 7.10. The regions with the most significant differences include
the polymorphic site (H2, L1 tip, S1), the L2 and L3 Loops, and Strand S8 and
its neighbors, S3 and the S5-S6 Loop.

Graph analysis (Fig. 7.11) shows a great deal of consistency in terms of the
overall communication of residue 282 with a few anomalies present. Notably,
the connection between the polymorphic residue and the region near residue
125 (L1 and S2) is slightly weaker in the R282W simulations than in the wt.
This is especially true of R282W simulation 2, which also shows a slightly in-
creased closeness to residue 175 (Helix H1), increased distance from the region
following residue 175 (H1-S5 Loop), and the L3 Loop near residue 240. Addi-
tionally, there is a slightly increased distance in the R282W simulations from
the polymorphic residue to the S7-S8 Loop, most notably in simulation 2. Sim-
ulation 2 of the R282W variant also shows two faint horizontal bands between
3 and 10 ns during which the W282 side-chain has closer communication with
the H1-S5 Loop, Helix H1, and the L3 Loop. Examination of simulation 2 shows
that the larger Trp side-chain fails to hold Helix H2 near the L1 Loop, allowing
it to shift toward the L3 loop. This results in a significant loss of communication
with the L1 Loop and an increase in communication with the L3 Loop. Addi-
tionally, the L3 Loop swings toward Helix H2 during the window from 3-10 ns,
further decreasing the communication distance between them and facilitating

communication with Helix H1.

Interestingly, the RMSD of simulation 1 of the wt shows a sudden jump for
several residues at 10 ns (Fig. 7.3) that is not present in RMSF except as a
faint horizontal line (Fig. 7.2). In fact, no other analysis, with the exception
of wavelet analysis, shows a significant change occurring at 10 ns. Wavelets
show considerable low-frequency motion from 5-10 ns, all of which stops at
10ns (Fig. 7.9). Visual inspection of the trajectory reveals that a considerable

amount of motion occurs between 5-10 ns in several regions of the protein,
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none of which is large in and of itself but all of which add up together to cause
a shift in the protein’s alignment to the crystal structure, leading to a jump
in RMSD following the 10 ns mark. These changes are captured by wavelet
analysis, specifically near residues residue 250 (L3 Loop), 225 (S7-S8 Loop,
Fig. 7.12a), 280 (Helix H2, Fig. 7.12b), 175 (H1 Helix and surrounding loops,
Fig. 7.12c), and most of the N-terminus. In contrast, the region near residue
200 (S5-S6 Loop) shows no significant motion during this time region according
to wavelet analysis, and is stable in the simulation as well (Fig. 7.12d), despite
being solvent exposed. Notably, the overall structure of the protein is well

maintained throughout this time, but individual regions shift considerably.

The L1 Loop shows very dramatic differences between wt and R282W sim-
ulations in flexibility analysis (Fig. 7.4 but relatively little difference in the
RMSF (Fig. 7.2), with the R282W L1 Loop appearing to be slightly more mobile
than that of the wt in RMSF analysis. It is clear from the flexibility analysis
that the loop’s flexibility is decreased along its principal axis in the mutant
simulations. Notably, flexibility also shows that Loop L1 and Helix H2 are
displaced on average in the R282W compared to the wt simulations. In fact,
during wt simulations, the R282 side-chain interacts frequently with the polar
backbone atoms of the L1 loop, holding its base and Helix H2 close together
but allowing its tip to oscillate considerably (Fig. 7.13a). In the R282W simula-
tions, however, this interaction is lost, thus L1 swings widely out into solvent in
the first few ns of simulation (Fig. 7.13b). Interestingly, residue H115 appears
to rescue L1 from being entirely disorganized by interacting with residues of
Strand S2 in the R282W simulations. Although it moves a similar amount in
the mutant, it does so in a less systematic fashion, leading to lower flexibility

along its principal axis.
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7.5 Discussion

Each analysis method examined here has considerable merit for uncovering
specific types of events in MD simulations. When used properly, they have the
ability to greatly decrease the amount of time and energy required to under-
stand an MD simulation while simultaneously quantifying otherwise qualita-
tive observations. In the case of the R282W mutation of p53, several of the
analyses were extremely useful in characterizing the effects of the larger Trp

side-chain on the rest of the protein.

7.5.1 Analyses

Of the 9 analysis methods compared in this paper, the least useful on this par-
ticular system were SASA, correlated motion, and contact analysis. This is
largely due to the nature of the system, however. The p53 wt and R282W sim-
ulations were quite stable and contained no major opening or closing motions
that would have caused a large change in SASA. This is, in and of itself, a
useful observation that the SASA data (Fig. 7.6) support. SASA can be a very
noisy measurement, however; thus it is frequently of greater use in quantify-
ing hypotheses generated from other methods than it is scanning simulations
and forming hypotheses. Contact analysis (Fig. 7.7) has a similar use to SASA
for this particular system. Because the rearrangements that occurred in the
protein were slight, contact analysis showed very few noticeable differences be-
tween simulations. This suggests that the protein maintains its overall struc-
ture well, with few events propagating beyond the local region of the mutation.
However, it is worth noting that even in the regions we should most expect to
see differences in contacts—the interface of H2 (near polymorphic residue 282)
and Loop L1 (near residue 120), there are few distinguishable differences be-

tween simulations. This is likely due to the fact that the swapping of a Trp
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for the positive Arg group, which results in a weaker connection between the
L1 Loop and the H2 helix, did not eliminate the contact altogether but rather
decreased its frequency. Thus, the slight change in contact propensities was
overall too slight to be visible on a traditional contact map.

Graph communication analysis is related to contacts in that it uses the net-
work of contacts in a protein to calculate a communication score that measures
the distance between two parts of the protein in terms of influence. This com-
munication propensity can be very sensitive to small changes, such as those
seen in simulation 2 of the R282W variant (Fig. 7.11, due to the fact that a
reduction in the probability of a single central contact can increase the com-
munication distance of any pair of residues that are near it. Because the R282
residue was the primary link between the H2 Helix to the L.1 Loop, which ad-
ditionally is the primary link between regions of the protein such as the S7-S8
Loop, a decrease in the probability of this contact by the substitution of the Trp
side-chain leads to an increase in the communication distance between residue
282 and the L1 and S7-S8 Loops.

The relative instability of correlated motion (Fig. 7.8) across simulations
suggests that correlated motion would be more useful in a hypothesis evalua-
tion as well. This is not particularly surprising considering that it is rare for
two regions of a protein to have truly correlated or anti-correlated motion over
a long period of time. The correlated motion during a small window of time, for
example during a period in which an enzyme’s active site is exposed, is much
more likely to be useful than the correlated motion of an entire simulation, dur-
ing which time the thermal vibrations of each atom tend to wash out the larger
motions.

The RMSF (Fig. 7.2 and RMSD (Fig. 7.3) are useful measures for each sim-
ulation, as they tend to show differences clearly without being washed out by

similarities (as is the case with SASA and contacts, for example). Although
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the similarities across simulations are far more obvious than the differences
via RMSF and RMSD, some differences are visible. Not surprisingly, the two
measures are closely related, with RMSF often showing motion immediately
before jumps in RMSD, as is the case with wt simulation 1 at 10 ns. In this
fashion, both RMSD and RMSF do a good job of highlighting individual parts

of a simulation that should be examined.

The most powerful technique for pointing out interesting regions of time
for specific residues, however, is wavelet analysis (Fig. 7.9). Wavelet analysis
pinpoints specific residues that are undergoing significant motion at precise
periods of time. In the case of the motion near 10 ns in the wt simulation 1, for
example, wavelet correctly identified the fact that the motion began occurring
near 5 ns and finished near 10 ns (Fig. 7.12), which is not clear from either
RMSF or RMSD analysis. Additionally, wavelet analysis pinpointed significant
events in each simulation, many of which were directly related to the polymor-
phic change. The primary drawback of this type of wavelet analysis is that
it does not directly compare simulations; one must inspect the events high-
lighted by wavelet analysis via other means. It can, however, greatly decrease
the amount of energy required to identify significant events in a simulation.

Comparisons of wavelet analysis (Fig. 7.10) showed several expected results
as well as a few unexpected ones. The significant differences in motion near the
polymorphic site are expected, even if the polymorphic site is highly mobile in
both variants, due to the changes in conformation that occur in the R282W. The
many changes directly near the polymorphic site (S1, S3, L3, L2) are relatively
unsurprising as well, since the polymorphic site has significant communication
with these sites. The changes in the S8 Strand (residues 228-237), however,
were surprising. A close examination of DSSP (Fig. 7.5) shows that S8 has a
slight tendency to lose hydrogen bonds near in the wt, specifically simulations

1 and 3. Flexibility (Fig. 7.4) additionally shows that the conformation of S8 is
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somewhat inconsistent in the wt simulations. In fact, this phenomenon seems
to be caused by the packing of the S1 Strand, which packs more tightly agains
the S2 Strand near the L1 loop in the wt simulations due to the closeness of
the L1 loop to the S2 strand and the H1 Helix. This packing causes the S3
Strand to pack more closely as well, leaving extra space around the N-terminal
end of Strand S8 in the wt simulations. In wt simulation 1, the S8 Strand
packs tightly against S5 and the S5-S6 Loop, and, in all wt simulations, the
N-terminal end of S8 changes conformation slightly to account for the shift in

S3.
DSSP analysis (Fig. 7.5) can show quickly where secondary structure

changes are occurring in a simulation. Because loss or gain of secondary
structure is often associated with highly significant events in a trajectory, this
analysis can be very valuable both for screening simulations and for hypothesis
evaluation. In the case of p53, DSSP shows very clearly that the H1 Helical
propensities for the R282W variant are lower than those for the wt. Addition-
ally, it shows a significant decrease in the 5-strand character of the N-terminus
and L1 Loop. This is likely due to the extension and less ordered oscillation of
the L1 Loop as identified by wavelet analysis and flexibility analysis.
Flexibility analysis (Fig. 7.4) is capable of summarizing an entire simula-
tion immediately by showing both a typical structural conformation and the
primary modes of that structure. Visual inspection of the flexibility plots for
wt and R282W variants of p53 shows immediately that the L1 loop tends to
remain closer to the H2 helix in the wt simulations, which agrees strongly with
experimental results (Joerger et al., 2006). Surprisingly, however, flexibility
analysis also indicates that the motion of the L1 Loop is greater along its prin-
cipal axis in the wt than in the mutant simulations despite the higher RMSF of
the L1 Loop in mutant simulations. Inspection of wt and R282W conformation

(Fig. 7.13) indicates that this is due to the fact that the base of the L1 Loop is
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held tightly in place by the positively charged R282 residue allowing the top of
L1 to bend in an ordered manner. The W282 residue, however, does not hold
the loop in place, allowing it to swing into solvent.

It is clear from flexibility analysis that the L1 Loop in wt simulation 2 has
increased flexibility and a more distant conformation than that of the L1 Loop
in simulations 1 and 3, though the conformation is not as disconnected from
S2 as the conformations of the R282W simualtions. It is worth mentioning
that the median structure in this simulation has an L1 conformation that is
slightly farther from the mean structure than is typical, as indicated by the
largely uni-directional flexibility arrows, which indirectly show the mean posi-
tion. This high flexibility occurs because the L1 Loop is quite mobile during this
simulation (as indicated by wavelet analysis, Fig. 7.9) and bends away from H2
around 12 ns (as indicated by a loss in graph communication, Fig. 7.11). A sim-
ilar opening of the L1 Loop occurs near the beginning of simulation 1 followed
by a closing event at 8.5 ns. These opening events occur in each of the R282W

simulations, but without the R282 side-chain, they do not close.

7.5.2 Effects of the R282W Mutation

The overall effect of the R282W mutation, as observed in our simulations,
agrees with experimental crystal structures (Joerger et al., 2006). The change
from the positively charged Arg to the largely hydrophobic Trp causes the H1
Helix to disconnect from both the L1 Loop and the S2-S2’ 3-sheet. This leads to
a significant rearrangement of active-site residues, including R280 in H1 and
K120 in L1. The L1 loop, meanwhile, partially undocks from the S2 loop where
R282 no longer holds it in place (Fig. 7.13).

Interestingly, the H115 residue seems to rescue the L1 Loop from becoming
completely disordered in the R282W mutation by bonding to residues in the S2
Strand and holding the L1 Loop in place, albeit more loosely. This accounts
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for the decreased but not abolished activity and stability of the R282W mutant
and suggests that a double R282W and H115 mutant would be both less stable
and less active. Interestingly, there are only two known non-silent mutations
to H115, making it one of the most conserved residues in the DBD. One of
these mutations is a deletion resulting in a stop at codon 116 and the other is a
H115Y polymorphism (Olivier et al., 2002; Hamroun et al., 2006). The H115Y
polymorphism has not been experimentally studied extensively, but one study
did find that H115Y mutants of p53 lacked the ability to interfere with the pro-
tein p73, a protein with high sequence similarity to p53 also involved in tran-
scription, while R282W p53 retained the ability to interfere with p73 (Monti
et al., 2003). Because experimental results have shown that p53 is suspected
to inhibit p73 via an interaction in the DBD and because a correlation exists
between efficiency of p53 binding and p53’s inhibition of p73 (Gaiddon et al.,
2001), this suggests that the H115Y mutation may be more damaging to the
L1 Loop than the R282W mutation.

One likely interpretation of these data is that the L1 Loop must stay near
the H2 Helix and the S2 and S2’ strands (in the loop-turn-helix motif) for p53 to
remain active and stable. This is intuitive considering that the binding residue
K120 is positioned at the tip of the L.1 Loop and that significant loosening of
the L1 Loop could easily destabilize the S1 Strand, exposing the hydrophobic
core. However, our results indicate that slight displacement of the L1 Loop is
acceptable, even in wt p53, so long as it does not lose complete contact with S2
and H2. These data fit well with NMR studies finding high flexibility in the
L1 Loop (Canadillas et al., 2006). It is likely, given this interpretation, that
R282 is responsible for encouraging a binding-friendly structural arrangement
in p53 but that H115 is responsible for keeping 1.1 from destabilizing the pro-
tein entirely, and that both residues work together to encourage the optimal

structure.
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7.6 Conclusions

Although all analyses examined here have appropriate and useful applications,
we find that the combination of flexibility analysis and wavelet analysis to
be an extremely powerful combination of course-grain and fine-detail analy-
sis. This is due to the ability of flexibility ananlysis to summarize an entire
simulation into a single image and the ability of wavelet analysis to highlight
important events in a simulation. Using these tools as well as graph com-
munication, DSSP, RMSF, and RMSD, we were able to show that p53 mutant
R282W loosens the connections between the H2 Helix and L1 Loop, causing a
rearrangment of binding residues. We also observed that the residue H115 at
the base of the L1 Loop interacts with the residues in Strand S2, preventing

the L1 Loop from completely losing its overall structure.
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Figure 7.1: Minimized crystal structures and secondary structure map of DNA-
binding domain of p53 (2o¢j) with the polymorphic residue R282W indicated by
a red sphere. DNA binding occurs on the upper surface with Helix H2 binding
to the major groove. Loop L3 and Helix H1 also participate in binding and
normally hold a Zinc ion.
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Figure 7.2: RMSF plots over time of each Ca atom of each of the wt and R282W
mutant p53 simulations. Notably, a horizontal bar can be seen near 10 ns in
the wt simulation 1 (top), while residue 120 has slightly higher fluctuations in
the mutant.
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Figure 7.3: RMSD plots over time of all simulations of both wt and R282W
p53. The C-terminus of the mutant can be observed to have a higher RMSD
than the wt, especially in simulation 2 (center). In the wt simulation 1 (top),
RMSD uniformly jumps at 10 ns.
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Figure 7.5: DSSP plots for all simulations of wt and R282W p53. Secondary
structure consistency is relatively similar in both variants of p53, but the helix
near residue 180 (H1) is slightly less stable in the mutant simulations. In
mutant simulation 1 (top) of p53 only, a slight helical turn forms in the S1 loop
near residue 120.
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Figure 7.6: Plots of the SASA of all simulations of wt and R282W p53. Few
obvious differences can be observed across simulations.
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Figure 7.7: Native and non-native contacts between residues for each simu-
lation of wt and R282W p53. All contacts are plotted as a fraction of time
they occur throughout the simulation with native contacts appearing in white-
to-blue in the upper left of each graph and non-native contacts appearing in
white-to-red in the lower right.
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Figure 7.8: Correlated motion plots of all simulations of wt and R282W p53.
Anti-correlated motion is slightly more prevalent in the wt simulations than
the mutant simulations.
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Figure 7.9: Wavelet analysis of all simulations of the wt and R282W mutant
of p53. The most significant wavelet match at each time is shown for each Ca
atom with white indicating no significant match. Critically, significant low fre-
quency (high wavelength) bands of motion are seen throughout the time range
of 5-10 ns in the wt simulation 1 (top) and scattered through wt simulation 2,
especially near residue 120 (S1 loop). The mutant simulations show less mo-
tion overall, but simulation 1 shows bands of motion near residue 180 (Helix
H1).
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Figure 7.10: Significant differences in ordered motion between the wt and
R282W p53 simulations, as determined by wavelet analysis. The greatest dif-
ferences in motion tend to occur in the loops and the strands near the polymor-
phic site (S1 and S10) with a few significant differences in strands S8 and S4

as well.
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Figure 7.11: Graph communication plots of wt (R282) and R282W variants of
p53. Plots show the distance from residue 282 to each other residue. Com-
munication values are the lengths of the edges in the shortest path connecting
the side-chain of residue 282 to a node of the residue in question where edges
are the inverse probability that two nodes are in contact. A communication of
1 indicates that two nodes are always in contact while a communication of 4
indicates a weaker influence, for example, two side-chains that communicate
via a third intermediate residue.
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(a) Strands S1 and S3, (b) Helix H2, Loop L1
S7-S8 Loop

(c¢) Helix H1, H1-S5
Loop

Figure 7.12: Movements observed in wt simulation 1 of p53 between 5 and 10
ns. Structures are shown for 5, 6, 7, 8, 9, and 10 ns colored blue, cyan, green,
yellow, orange, and red, respectively. (a) Strands S1 and S3, each of which shift
slightly, and the S7-S8 loop, which moves considerably throughout the 5-10 ns
period. (b) The L1 loop and H2 Helix, each of which shifts. The L1 loop shows
the most dramatic rearrangements of all structures during this time. (¢) The
H1 helix and the H1-S5 loop, each of which shift significantly from 5-10 ns.
d the S5-S6 loop, which displays relatively little motion despite being solvent
exposed and near the H1 helix during the 5-10 ns time range.
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Figure 7.13: Snapshots taken sequentially from (a) wt and (b) R282W simu-
lations of p53 featuring the H2 Helix and L1 Loop. In the wild-type, the R282
residue forms contacts with the backbone of loop L1 holding H2 and the base
of L1 close together. This allows the tip of L1 to flex considerably along a sin-
gle axis. The W282 residue, however, does not form these contacts, allowing
H2 and L1 to separate. H115 of L1 forms contacts with the residues of S2 in
this situation, preventing L1 from becoming too disorganized but allowing it to
swing much more randomly into solvent.
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Appendix A

DYNAMANAL: MOLECULAR DYNAMICS ANALYSIS FOR
THE DYNAMEOMICS DATABASE

A.1 Summary

Dynamanal is a web-service designed for easy analysis of molecular dynamics
trajectories associated with the Dynameomics project, www.dynameomics.org.
Because of the size and complexity of the Dynameomcis warehouse and be-
cause many users are not familiar with the database schema, analysis can
be very difficult and time-consuming, especially for researchers not versed
in database techniques. Dynamanal is designed to facilitate quick and
user-friendly analysis of these trajectories. Dynamanal is free as a web-
service and is available online as a trajectory viewing tool incorporated into

http:/www.dynameomics.org/.
A.2 Introduction

The Dynameomics project (Beck et al., 2008; van der Kamp et al., 2010) is
a large-scale molecular dynamics (MD) initiative with the goal of simulating a
representative from every fold family in the Protein Data Bank (PDB) (Berman
et al., 2000). This goal has recently been achieved, and, currently, the project
encompasses 807 fold families and over 920 proteins, each of which has been
simulated for at least 31 ns at 298 K and at least 68 ns at 498 K for a total of
~150 ps. Adjunct simulations of single nucleotide polymorphism (SNP) asso-
ciated proteins, amyloid proteins, and various other systems expand the size

and scope considerably. Due to the size and complexity of these data, a data
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warehouse was constructed (Simms et al., 2008; Kehl et al., 2008) to contain
coordinate data for these simulations as well as data from a standard set of
analyses of the trajectories.

Although this data warehouse is consistently and well organized, it is simul-
taneously difficult to navigate. This is largely because of the complex schema
that is required to link together not only the several types of raw data held
within it but also to connect them to the scientific work-flow and associated
meta-data that generated them. In order to efficiently hold all the relevant
data, the data warehouse had to be distributed into several smaller databases,
each with hundreds of tables. Dynamanal is a web-service attached to the Dy-
nameomics warehouse that not only brings together a large set of useful MD
analyses, but also allows users to visualize these data in multiple ways with-
out the need to understand the details of the database’s organization, while
seamlessly connecting the analyses to the underlying structures.

Dynamanal can be reached by visiting the Dynameomics website at URL
www.dynameomics.org and clicking through to the details of any simulation.
It has been written in Java and is compatible with any operating system or
browser that is properly configured and updated. Figure A.1 shows a screen-
shot of Dynamanal examining the 298 K simulation of the protein Ubiquitin
(Iubg). This instance of Dynamanal can be reached by searching for “lubq”
from the Dynameomics home-page, clicking on the “beta-Grasp (ubiquitin-
like)” fold link, clicking the “Ubiquitin” target link, and finally selecting the
first run of ubiquitin at 298 K.

A.3 Analysis

Dynamanal currently supports seven types of analysis, each of which can
be reached by clicking the appropriate tab. These analyses are root mean

square deviation (RMSD), solvent accessible surface area (SASA), Ramachan-
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dran plots (Phi-Psi), Conformational Genealogy (Congeneal) (Yee and Dill,
1993), number of contacts (Contacts), radius of gyration, and the dictionary of
secondary structure of proteins (DSSP) (Kabsch and Sander, 1983).

RMSD is a measure of the distance of a particular protein conformation
from the starting structure. Dynamanal plots the total or normalized RMSD
of all Ca atoms. Because larger proteins should naturally have higher RMSD
values than smaller proteins, RMSD100 is a normalized measure of RMSD that
estimates what an equivalent RMSD might be for a protein of only 100 residues
(Carugo and Pongor, 2001).

SASA is a measure of the surface area of a particular residue that is acces-
sible to solvent water molecules. It is plotted on a per-residue basis over time,
and can be plotted for specific atoms in a residue, such as backbone atoms only,
or polar atoms only.

Ramachandran plots show the distribution of ¢-i) space that a residue in-
habits over time. Two views are show: traditional Ramachandran plots as well
as a 2D histogram of both ¢ and 1.

The number of contacts is a useful measurement of deviation from a crys-
tal structure over time. It can show the total number of contacts as well as
the number of native and nonnative contacts separately. The radius of gyra-
tion analysis is displayed in a similar manner to contacts; it plots the mass-
weighted RMS of all atoms from the protein’s center of mass. The congeneal
analysis is also plotted in a similar fashion as contacts and radius of gyration.
CONGENEAL stands for conformational genealogy, which is a weighted mea-
sure of the difference between the internal distances of the residues in two
structures (Yee and Dill, 1993).

The final analysis, DSSP, displays secondary structure over time. DSSP
uses hydrogen bonding patterns to determine secondary structure, and can

identify a wide variety including 3-10 helices, 7 helices, bridges, and a-sheet
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in addition to a-helices and 3-sheets via in-house extensions to the standard

DSSP (Kabsch and Sander, 1983; Pauling and Corey, 1951).

A.3.1 Interface

Dynamanal allows the user to zoom in on plots along the z-axis; for contacts,
radius of gyration, RMSD, congeneal, and SASA, this axis is time, while for
DSSP it is residue, and for phi-psi it is simultaneously ¢ and v (on the his-
togram). The zoom may be reset by right clicking on the plot and selecting
“Reset Zoom”. The right-click menu also allows the user to precisely determine
the coordinates of the pixel that is right-clicked on, as well as to save the cur-
rent graph as a PNG, or to download the structure corresponding to the time of

the pixel as a PDB file.

Many graphs have advanced options. For example, the SASA graph allows
the user to select subsets of atoms for display on the graph as well as allowing
the user to display the min/max values as a dotted line. Because there are so
many more time points than pixels on the graph, the plot is shown as the mean
value of the times represented by a single pixel as well as the min and max

values as a dotted line. At a sufficiently high zoom, raw data are displayed.

Dynamanal interfaces with Jmol (Jmol, 2010), allowing a user to easily visu-
alize the structures corresponding to any particular feature of an analysis. To
bring up a structure in Jmol, the user may either enter it in a text box beneath
the Jmol window or may right-click in a graph and the structure corresponding
to the time on the plot is displayed. Both of these methods will bring up the
appropriate structure in the Jmol window, and the latter will mark the time in

the graph with a red line.
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A.4 Conclusions

Dynamanal fills an important hole in the current landscape of tools for MD
simulations by allowing one lab’s simulations to be analyzed and verified by
other scientists. This shift in the normal operations of MD will become more

and more important as MD databases become more common.
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Figure A.1: A screen-shot of Dynamanal viewing analyses of the protein Ubiq-
uitin. The red vertical line on the graph shows the time-point corresponding to
the structure shown in Jmol on the right.
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Appendix B
MATHEMATICA CODES FOR DATABASE ACCESS

In order to facilitate database access and user-developed queries and anal-
yses, we have developed a Mathematica package that handles many difficult
aspects of navigating the Dynameomics database automatically. The entirety

of this packages is given below.

BeginPackage["Dynameomics ‘", {"DatabaselLink ", "JLink*"}];

(x Errors/Messagese x)

MakeKey: :unrecognized = "Specifier ‘1 is not recognized.";
Rows::unspecified = "Key ‘1' is not properly filled.";
Columns: :unspecified = "Key ‘1‘ is not properly filled.";

(» All usage text here =x)

DynamKeyToString::usage =
"Turns a Dynameomics key into a string for a WHERE
clause™;

MakeKey: :usage =
"MakeKey [<rules>] returns a key that matches the
indicated rules. Possible rules are PDB, Run, Temp,
Property, SimID, StructID, CID, Conditions, POD, and
pPH";

PDB: :usage =

"Rule argument to MakeKey";
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Run: :usage =
"Rule argument to MakeKey";
Temp: :usage =
"Rule argument to MakeKey";
Property::usage =
"Rule argument to MakeKey";
SimID::usage =
"Rule argument to MakeKey";
StructID::usage =
"Rule argument to MakeKey";
CID::usage =
"Rule argument to MakeKey";
Conditions::usage =
"Rule argument to MakeKey";
POD: tusage =
"Rule argument to MakeKey";
pH: :usage =
"Rule argument to MakeKey";
FillKey: :usage =
"FillKey[<key>] returns a fleshed out version of <key>
that includes information about possible values for all
fields. This is useful when describing a key.";
KeyDetails::usage =
"Describes a key. If the key has been run through
FillKey, it gives possible values for unspecified
fields.";
KeyQuery::usage =

"KeyQueryl[key, prefix, suffix] runs the query specified



208

by prefix and suffix, filling in the database name and
property table from key. For example, KeyQuerylk,
\"select top 10 *\", \"residue_number=10 order by
residue_number\"]";

BasicQuery::usage =
"BasicQuery[key, string] runs the query specified by
string, replacing any substring TABLE with the
appropriate name of the key’s table.";

Rows: :usage =
"Returns the number of rows in the table specified by a
particular key.";

Columns: :usage =
"Returns a list of the names of the columns in the table
specified by a particular key.";

Query: :usage =
"Query [key, columns, where] returns the results of the
query of key’s table formed over the columns specified
in a string, columns, and the where clause specified as
a string";

RowBuffer::usage =
"Option to Query that specifies the number of rows to
page";

Where: :usage =
"Option to Query that specifies the where clause of the
query";

OrderBy: :usage =
"Option to Query that specifies how the query is sorted

(default: step)";
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GroupBy: :usage =
"Option to Query that specifies how the query is grouped

(default: None)";

SHelix::usage = "The SQL connection to Helix";
$Turn::usage = "The SQL connection to Turn";
$Coil::usage = "The SQL connection to Coil";
SWudang: :usage = "The SQL connection to Wudang";
$Sheet::usage = "The SQL connection to Sheet";
$Strand::usage = "The SQL connection to Helix";

DynamConn: :usage =
"DynamConn [server] returns the SQL connection object for

server if it exists.";

Begin[" ‘Private*"];

If[!ValueQ[DynamDriver],
DynamDriver = "jtds_sglserver"];
(» otherwise: DynamDriver = "sqgljdbc"; x)

JDBCDrivers [DynamDriver];

DynamConnect [server_String, username_String, passwd_String]
:= If[DynamDriver=="]jtds_sglserver",
OpenSQLConnection[JDBC [DynamDriver, server],
Username—>username,
Password->passwd],
OpenSQLConnection [JDBC [DynamDriver, server],

Username—->username,
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Password->passwd] ] ;

DynamDir = DynamConnect ["helix", "worker_bee", "workerbee"];

DynamConn ["HELIX"] = DynamDir;

(» the math database «x)
DynamConn [ "WUDANG"] =
DynamConnect ["wudang", "math_user", "mathuser"];
DynamConn ["TURN"] =
DynamConnect ["turn", "worker_bee", "workerbee"];
DynamConn["COIL"] =
DynamConnect ["coil", "worker_bee", "workerbee"];
DynamConn ["STRAND"] =
DynamConnect ["strand”, "worker_bee", "workerbee"};
DynamConn["SHEET"] =
DynamConnect ["sheet", "worker_bee", "workerbee"];
DynamConn ["STRAND"] =

DynamConnect ["strand"”, "worker_bee", "workerbee"];

$Helix = DynamConn["HELIX"];
$Turn = DynamConn ["TURN"];
$Wudang = DynamConn ["WUDANG"];
$Coil = DynamConn["COIL"];
$Strand = DynamConn["STRAND"];

$Sheet = DynamConn["SHEET"];

DynamGetConn[x_String] :=

(If[!'ValueQ[DynamConn[x]],



DynamConn[x] = DynamConnect [X,

DynamConn[x]) ;

DynamKeyItems =

{{"PDB", "PDB4"},

{"Run", "Run"},

{"Temp", "Temp"},
{"Property", "Property_ Abbrev"},
{"SimID", "Sim_ID"},
{"StructID", "Struct_ID"},
{"CID", "CID"},
{"Conditions", "Conditions"},
{"PID", "PID"},

{"pH", "pH"},

{"Server", "server_name"},
{"DB", "database_name"},

{"PropTable", "Property_table"}};

DynamKeyToString[k_DynamKey] :=
StringDrop]|
StringJoin]|
Apply |
Sequence,

MapThread|

"worker_bee",

"workerbee"]];

If[SameQ[#2, None] || SameQ[Head[#2], List],

StringJoin|

DynamKeyItems[[#1, 2]], "="

’

nn

’
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If[StringQ[#2],
"> #2 <> "'", ToString[#2]] <> " AND "]] &,
{Range[1, Length[First([k]]], First([k]}11],
-51;

FillKey[k_DynamKey] :=
Module{ {tmp, key},
key = DynamKey [
Map [
If [Length[#]==1,First[#],#]&,
Map [
Union,
Transpose |
SQLExecute [DynamDir,
StringJoin|
"select distinct ",
StringDrop|
StringDrop |
ToString|
DynamKeyItems|[[All,2]1]],11,-11,
" from Directory.dbo.Master Property_v where ",
DynamKeyToString([k]11111,
{y, {}1;

If[Total [Map[Length,First[key]l]]l > O,
(tmp="Incomplete key specification:";
Scan/|

If [Lengthl[key[[1,#]]1]1>1,

tmp = StringJoin|



tmp,
"\n "’

DynamKeyItems|[[#,1]],

LU n
. 14

ToStringl[key[[1,#]1]1]¢,
Range [l, Length[DynamKeyItems]]];
Print [tmp];
DynamKey [key [ [1]], {}, {}]),

DynamKey[key[[1]], Columnslkey], {}]11];

KeyDetails[k_DynamKey] :=
Print [
StringDrop [
StringJoin]|
MapThread|

(#1L <> ": " <> ToString{#2] <> "\n")&,
{DynamKeyItems[[A11,1]1]1, k([[1]1}]1],

=111;

MakeKey [x_ Rule] :=

Module [{key=Table [None, {Length [DynamKeyItems]}], tmp},
Scan|
(tmp = Position[DynamKeyItems, ToString[First([#]]];
If [tmp=={},Message [MakeKey: :unrecognized, First[#]]];
key[[tmp[[1,1]]]] = Last(#])&,
{x}];

FillKey[DynamKey [key, {}, {}111];

213
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BasicQuery [k_DynamKey, query_String, OptionsPattern[]] :=
(If[!ValueQ[DynamConn[k[[1,111111,
DynamConn[k[[1,11]]] =
DynamCeocnnect [k[[1,11]], "worker_bee", "workerbee"]];
SQLExecute [
DynamConn[k[[1,111]11],
StringReplace |
query,
{"TABLE"->("[" <> k[[1,12]] <> "]." <> k[[1,131]),
"DB" —-> ("["<>k([[1,12]]<>"]1")}],
ShowColumnHeadings—>OptionValue[ShowColumnHeadings]]);

Options[BasicQuery] = {ShowColumnHeadings->False};

keyQueryStringReplacementsCols = {
"step"->"maintable.step",
"time_step"->"sim.time_step",
"time"->"time=maintable.step*sim.time_Step",
"residue_number"->"id.residue_number",
"residue_id"->"id.residue_id",
"atom_number"->"id.atom_number",
"resnum"->"id.residue_number",
"chain_id"->"id.chain_id",
"icode"->"id.icode",
"atom_name"->"id.atom_name",
"atomnum"->"id.atom_number"};

keyQueryStringReplacementsBody = {
"step"->"maintable.step",

"time_step"->"sim.time_step",
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"time"->"maintable.step*xsim.time_step",
"residue_id"->"id.residue_id",
"residue_number"->"id.residue_number",
"chain_id"->"id.chain_id",
"icode"->"id.icode",
"atom_number"->"id.atom_number",
"resnum"->"id.residue_number",
"resid"->"id.residue_id",
"atom_name"->"id.atom_name",
"atomnum"->"id.atom_number"};
FixStringCols[s_String] :=
Module [ {tmp=StringSplit([s," " """1},
StringJoin|
MapThread|
If[0ddQ[#1],
StringReplace]|
#2,
keyQueryStringReplacementsCols],
#2]&,
{Range[1, Length[tmp]], tmp}]l]];
FixStringBody[s_String] :=
Module [ {tmp=StringSplit([s,"""""]},
StringJoin|
MapThread|
If[0ddQ[#1],
StringReplace [
#2,

keyQueryStringReplacementsBody],
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#21&,
{Range[1l,Length[tmp]], tmp}]ll]l;

(* This needs to be fixed for the new time schema x)
KeyQuery [k_DynamKey, prefix_String,
suffix_String, OptionsPattern[]] :=
(If[!'ValueQ[DynamConn[k[[1,11]]]1],
DynamConn[k[[1,11]]] =
DynamConnect [k[[1,11]], "worker_bee", "workerbee"]];
SQLExecute [
DynamConn [k [[1,11]1]],
FixStringCols[prefix] <>
" from [" <> k[[1l,12]] <> "]." <> k[[1,13]] <>
" as maintable join [" <> k[[1,12]] <>
"].dbo.simulation as sim on " <>
"maintable.sim_id = sim.sim_id " <>
" jJoin [" <> k[[1,12]] <>
"].dbo.ID as id on " <>
"maintable.struct_id=id.struct_id " <>
If[Position[k[[2]],"residue_number"] != {},
" and maintable.residue_number=id.residue_number ",
" <>
If[Position[k[[2]],"atom_number"] != {},
" and maintable.atom_number=id.atom_number ",
" and id.atom_name='CA’ "] <>
"where maintable.sim_id=" <> ToStringl[k[[1,5]]] <>

If[Stringlength[suffix]<1,
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" "
14

" and " <> FixStringBody[suffix]],

ShowColumnHeadings—->OptionValue [ShowColumnHeadings]]);

il

Options [KeyQuery] {ShowColumnHeadings->False};

Rows [k_DynamKey]
(If[Or[SameQ[Last [First[k]],None],
SameQ[Head[Last [First[k]]],List]],
Message[Rows: :unspecified, Firstl[k]]];

BasicQuery [k, "select count(x) from TABLE"][[1,1]11]);

Columns [k_DynamKey] :=
(If[Or[SameQ[Last [First[k]],None],
SameQ[Head[Last [First[k]]],List]],
Message [Columns: :unspecified, Firstl[kll];
Flatten[BasicQuerylk, "select top 0 x from TABLE",

ShowColumnHeadings—->True]]) ;

queryStringReplacementsCols = {
"step"->"maintable.step”,
"time_step"->"sim.time_step",
"time"->"maintable.stepxsim.time_Step",
"residue number"->"id.residue_number",
"residue_id"->"id.residue_id",
"atom_number"->"id.atom_number”,
"resnum"->"id.residue_number",
"chain_id"->"id.chain_id",

"icode"->"id.icode",
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"atom_name"->"id.atom_name",

"atomnum"->"id.atom_number"};

Query[k_DynamKey,cols_String, OptionsPattern[]] :=

Module[{tmp={}, rows=0, r=0, ps=OptionValue[RowBuffer],

where OptionValue [Where],

I

order OptionValue [OrderBy],
grp = OptionValue[GroupBy]},
rows=KeyQuery [k, "select count (x)", where][[1,1]1];
While[r < rows,
AppendTo[tmp,
KeyQuery [k,
StringJoin|

AnnAqp

"select cols,
" from (select rank() OVER (order by ",
StringReplace[order,
queryStringReplacementsCols],
"y*""" as r, ", cols],
StringJoin|
If[StringLength{where]>0, where, "1=1"],
") as a where r between ",
ToStringl[r],
" and ",
ToString[r+ps-1],
" order by r"]11];
r += psl;
Flatten([tmp,1]];

Options[Queryl] = {RowBuffer->25000, Where->"",
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OrderBy—->"step", GroupBy->None};

End[];

EndPackage[];
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Appendix C
WAVELET DETAILS AND IMPLEMENTATION

The wavelet calculations were completed using Fourier transforms. The
exact algorithm is given below in Mathematica code. The FourierConvolve[]
function (below) performs a circular convolution of two signals using the con-
volution theorem. The ScaleWaveletl[f, n, s] function takes a wavelet function
f, an ideal length n, and a stretch s, and returns the wavelet as a signal of
length n stretched by s. The function CWT[signal, f, s0, ds, S] takes the sig-
nal, wavelet function f, and variables s0, ds, and S, and returns the continuous
wavelet transform of the signal with wavelets scaled according to the formula
in Equation C.1.

sk = s502F%: k € {0,1,..8 — 1} (C.1)

For the wavelets used in Chapter 3, the values sy = 100, ds = 1/8, and S = 60

were used, and all values were measured in picoseconds.

FourierConvolve[a_List, b_List] :=
Times[Sqrt{Lengthlal]l],
InverseFourier|
Times [
Fourier[a, FourierParameters -> {0, -1}1,
Fourier[b, FourierParameters -> {0, -1}11,
FourierParameters -> {0, -11}11];
ScaleWavelet [wltfunc_, n_Integer, scale_] :=

Times |
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1/Sqrt[scalel,
Table[N[wltfunc[k/scale]],
{k, -Floor[n/2], Floor[(n - 1)/21}11;
CWT[signal_List, wltfunc_, s0_, ds_, S_Integer] :=
Module[{n = Length[signal],
scales = Table[s0x2" (kxds), {k, 0, S - 1}1},
Map [
FourierConvolve [
signal,
RotateLeft [ScaleWavelet [wltfunc, n, #], Floor[n/21]11] &,
scales]];
Morlet[t_] := Pi"(-1/4)*Exp[-t"2/2]*EXp[2«Pi*xI*t];

Paul [t_] := 8*Sgrt[2/(35%xPi) ]+ (1 - Ixt)"(-5);

For example, if the variable x contained the z-coordinate of an atom over
time, then the continuous wavelet transform, using the Paul wavelet as de-
scribed in Chapter 3, could be obtained with the command wlt=CWT([x, Paul,
105, 1/8, 60]. Thevalue of wlt[[1]] is then the wavelet coefficient vector with a
scale of 105 ps while the value of wlt[[41]] is the wavelet coefficient vector with
a scale of 105 - 2*'/8 ~ 3.66 ns.

Once the wavelet coordinates are collected, significance testing is performed
using the algorithm below. The WaveletSignificance[wlt, scales, x, pval, correc-
tion] function returns the wavelength of the frequency most strongly matched
by the model described in this paper. The wlt parameter is the wavelet coor-
dinates as generated by the CWTI[] function while the scales variable should
be a list of the scales calculated in CWT[]. The x parameter is the same as
that passed to CWTI[] while the pval is the minimum p-value acceptable for the

significance test. Finally the correction parameter is the scale-to-wavelength
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factor described in the paper (1.01 for Morlet, 1.389 for Paul).

WaveletSignificance[wlt_List, scales_List, x_List,
pval_, correction_] :=
Module [
{n = Lengthl[wlt[[11]],
chival = (InverseCDF[ChiSquareDistribution[2], t] /.

t > (1 - pval))/2,

res Table[{0, 0}, {Length[wlt[[1]1]11}],

var Variance[x],
tmp, min},
Scan |
Function[{s},
min = (0.00647* (correctionxscales[[s]])"1.41344 +
19.7527) xchival;
res = Table]
(tmp = Abs([wlt([[s, kll1]1"2/var;
If[res[[k, 2]] < tmp && min < tmp,
{correctionxscales[[s]], tmp},
res[[k]]]),
{k, 1, n}ll],
Range[l, Length[scales]]];

First [Transpose[res]]];

Note that in the case of a wavelet with no imaginary part, the fifth and sixth

lines would be as follows.

chival = (InverseCDF[ChiSquareDistribution(1], t] /.

t -> (1 - pval)),
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