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Over the past two decades, healthcare providers substantially increased their use of elec-

tronic health record (EHR) systems. EHRs are primed to become the core of the data

driven healthcare system, with the potential to serve as a platform for population health an-

alytics, predictive model development and implementation, and coordination with patients

to manage their health information. However, research with EHRs introduces the risk of

exposing patient records and business practices to nefarious actors. Creating infrastructure

to deliver predictive methods to clinical records while protecting patient privacy is key to

building a reliable healthcare analytics platform. In addition, the quality of data from these

systems is not fully validated for all use cases, such as assessing population health. Val-

idating the utility of EHRs for use as a population health platform is necessary to fully

realize the vision of the data driven health system. Patient involvement in their health is

essential to maximize positive patient outcomes. While many vectors exist for patients to



access their health information, they are still limited in their ability to contribute to their

health data. More solutions are needed to further promote patient involvement with their

healthcare information. In this dissertation, I focus on three areas with four aims for building

a safe, private, and accessable data analytics platform on the EHR. The aims are to: (1)

Evaluate the University of Washington EHR as a generalizable public health repository; (2)

Pilot a ”Model to data” framework as a method to deliver predictive analytic methods to

clinical records; (3) Scale the ”Model to data” pipeline to host a community challenge, se-

curely delivering outside models to EHRs; and (4) Develop a patient portal to enable patient

interaction with their health data and the return of clinically actionable research results.
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Chapter 1

INTRODUCTION

1.1 Background

The past two decades have seen a substantial rise in the use of electronic health record (EHR)

systems [1]. While the primary drivers of EHR adoption were the 2009 Health Information

Technology for Economic and Clinical Health Act and the data exchange capabilities of

EHRs [2], secondary use of EHR data to improve clinical decision support and healthcare

quality also contributed to large-scale adoption [3]. EHRs contain a rich set of information

about patients and their health history, including doctors’ notes, medications prescribed,

and billing codes [4]. The widespread adoption of this rich source of data has driven research

excitement around the idea of data driven healthcare, where trends from the EHRs inform

clinical practice.[5, 6]

The realization of this data driven health future is arriving on many fronts. Machine

learning approaches can provide insights into large and complex EHR datasets in a more au-

tomated and scalable manner [7, 8]. Hospitals and clinics have already begun to implement

predictive analytics solutions to optimize patient care, including models for 30-day readmis-

sions, mortality, and sepsis.[9][10] Population health surveillance is already being carried out

for specific diseases using clinical data collected in routine medical care.[11, 12, 13, 14, 15]
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Because EHRs, in many cases, have been shown to accurately reflect the disease prevalence

of the locally served population[12, 16], EHRs could serve as automated and scalable public

health surveillance platforms. And recently, studies have looked at the effect of patients

being given access to their clinical notes, where they are able to read the doctors notes as

well as enter their own notes [17, 18, 19]. These studies have shown that patients responded

positively to having increased access to their EHR data. All of these trends are pushing the

EHR to be a one stop shop for healthcare management and coordination, population health

surveillance, and predictive analytics development and implementation.

Achieving this vision of the data driven healthcare system is not barrier free. Healthcare

institutions face the challenge of balancing patient privacy and EHR data utilization.[20] Reg-

ulatory policies such as the Health Insurance Portability and Accountability Act (HIPAA)

and the Health Information Technology for Economic and Clinical Health Act (HITECH)

place the onus and financial burden of ensuring the security and privacy of patient records

on the healthcare institutions hosting the data. A consequence of these regulations is the

difficulty of sharing clinical data within the research community for the development and

evaluation of clinical prediction models. Methods and infrastructure are needed to protect

patient privacy while allowing researchers to use EHR data.

Another barrier is the inconsistent quality of EHR data for different use cases. For

instance, studies showing that EHRs reflect accurate population health trends also find

many exceptions to this claim, such as vaccination rates.[12, 16] In addition, these studies

typically only look at diseases that are of interest to public health officials (ex. tuberculosis
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and diabetes) leaving other diseases out of their validations. If EHRs are to be generalized

population health surveillance systems, more validation and assessment is needed.

And while many portals exist linking patients with their health records, there is limited

opportunity for patients to interact with and edit their health data. Patient involvement

in contributing to their health records will be important as we move toward a data driven

health system. Informatics solutions are needed to better link patients with their health

information to enable a more personalized approach to elucidating the state of their health.

1.2 Dissertation Aims

In this thesis, I addressed the highlighted deficiencies through the following aims:

1.2.1 Aim 1: Evaluate the University of Washington EHR as a generalizable public health

repository.

I used statistical methods to detect events that cause traumatic injury at the University

of Washington Medical Center. I compared statistical enrichments and trends to expected

population health events to assess longitudinal accuracy of the clinical data when compared

to gold standard events.

1.2.2 Aim 2: Pilot a Model to Data framework as a method to deliver predictive analytics

methods to protect health information.

I carried out a pilot study that implemented the ”Model to data” framework, enabling a

model developer to build a mortality prediction model using hidden EHR data.
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1.2.3 Aim 3: Scale the Model to Data pipeline to host a worldwide community challenge,

delivering outside models to electronic health records.

I leveraged the pilot study from Aim 2 to host a community challenge where challenge partic-

ipants built 180-day mortality prediction models using the ”Model to data” infrastructure.

Model accuracy was evaluated using standard predictive accuracy methods.

1.2.4 Aim 4: Develop a patient portal to enable the return of research study results from

REDCap to patients.

I developed a WordPress plugin that linked patients with their research study results in

the REDCap research data management platform. The plugin and its capabilities were

showcased in the patient-driven research project FindMyVariant.

1.3 Dissertation Overview

This work serves to advance the knowledge about methods and tools for interacting with

health data from the prespective of both the researcher and patient in a secure and eth-

ical manner as well as advancing the body of literature enhancing trust in the EHR as a

generalizable population health platform.
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Chapter 2

EVALUATING THE EHR AS A GENERALIZABLE PUBLIC
HEALTH REPOSITORY

2.1 Introduction

2.1.1 Electronic Health Records and Meaningful Use

The past decade has seen a substantial increase in the rate of Electronic Health Record (EHR)

adoption in healthcare.[1] While the primary drivers of EHR adoption have been the 2009

HITECH act and the data exchange capabilities of EHRs,[2] secondary use of EHR data to

improve patient safety and health is a key benefit of large-scale adoption.[3] EHRs contain a

rich set of information about patients and their health experiences, including doctor’s notes,

medications prescribed, and billing codes.[4] As hospitals improve data capture quality and

quantity, opportunities arise for meaningful use of the data outside the clinic.

2.1.2 Electronic Health Records and Public Health

Public health surveillance – monitoring disease prevalence, and the conditions and behaviors

that affect prevalence – is a core component of preventive medicine. Surveillance is conven-

tionally categorized as either ‘active’ (wherein a health authority contacts care providers or

the public to assess conditions) or ‘passive’ (wherein care providers are mandated to report

certain conditions to the health authority).[14] For example, the Center for Disease Con-
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trol’s Behavior Risk Factor Surveillance System (BRFSS),[21] in which trained interviewers

contact tens of thousands of respondents by phone each year, is an active system. By con-

trast, the National Highway Transport Safety Administration’s Fatality Analysis Reporting

System, in which state transportation departments report motor vehicle crashes to a central

system, is a passive system.

With the increasing adoption of EHRs, automated and scalable public health surveillance

has become possible. Clinical data that is collected in routine medical care can be algorith-

mically processed for syndromic surveillance, a passive reporting technique wherein patient

cases of a particular disease or condition relevant to population health (frequently, but not

exclusively infectious disease) are automatically flagged and reported to appropriate author-

ities in real time. EHRs have been shown to be a reliable data source capable of facilitating

syndromic surveillance.[11, 12, 13, 14, 15] The prevalence estimation of EHRs have also been

shown to accurately reflect the known prevalence of a served region. For example, when

compared to the gold standard BRFSS dataset, Klompas et al. found that an EHR-based

diabetes prevalence detection algorithm was nearly as accurate as the BRFSS dataset.[12]

Perlman et al. found that measures of smoking prevalence, obesity rates, hypertension, and

diabetes that were derived from the EHR were as accurate as the gold standard BRFSS

datasets.[16] The reliability of different conditions often differs by healthcare system, but as

more sites adopt EHRs, the estimates should improve for more conditions.[16]

Previous efforts to use EHRs for public health reporting have revolved around using

syndromic surveillance to electronically report cases to a data repository external to the
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EHR. For instance, Klompas et al. developed a platform for integrating EHR data for use

in public health called the Electronic medical record Support for Public Health (ESP).[22]

The platform enabled automated systems to pull relevant records from the EHR, and then

aggregate data for visualization and analysis in an application called RiskScape.[11] A more

recent example of integrating clinical data into a repository for public health surveillance

was the Public Health Community Platform (PHCP), an attempt by multiple public health

organizations (APHL, ASTHO, JPHIT) to standardize and develop a platform for EHR

to cloud-based public health data sharing and electronic case reporting.[22, 23] While the

pilot study faced several challenges, it demonstrated long-term feasibility for widespread

integration between clinical practice and public health.

2.1.3 The EHR as a Generalizable Population Health Surveillance Platform

While syndromic surveillance typically focuses on the detection and prevalence estimation of

specific conditions, EHR databases can act as a generalized population health surveillance

system, giving insight into previously unmonitored diseases. For instance, Melamed et al.

showed the utility of EHRs to link diseases to seasonal trends.[24] Other seasonal detection

methods using EHR data have been used to model seasonal influenza outbreaks, seasonal

blood pressure controls, and seasonal effects on early child development.[25, 26, 27] While

these studies show that EHRs can be used for accurate population health trends, each of

these have looked at only one category of disease at a time.

In this paper, we explore the utility of the EHR as a generalizable event and trend
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detection platform. In contrast to previous studies, we don’t look for seasonal trends of

specific diseases, but rather look for unusual coding trends for all traumatic injuries because

they have known seasonal trends [24, 25, 26] and gold standard events by which we can

validate a generalizable event detection method (e.g., we expect the 4th of July to have a

spike in firework accidents). Our goal is to test whether a general event detection method can

use a live EHR system to alert public health officials to possible actionable environmental

events. We look at deviations from seasonal and temporal trends in medical information

collected in routine clinical care, conceptualizing these deviations as events of potential

interest to authorities tasked with monitoring population health. We externally validate

flagged code/time period combinations, confirming that a holiday or rare event was likely

the cause of the unusual injury pattern.

Throughout this paper, we use the term “detection” to refer to the association of statis-

tical trauma trends with individual dates or seasons (e.g., can we “detect” winter or July

4th based on relative diagnosis code frequencies?). We look for diagnosis codes that are

statistically “enriched” (a greater proportion of overall visits than would be expected due

to chance alone) for different periods of time. We define a code as “enriched” when that

code is significantly associated with a given period of time.[28] For instance, we expect in-

juries from snow sports like skiing, snowboarding, and snowmobiling to be “enriched” in the

winter months. We compare trends found to expected trends from literature and common

knowledge to test the validity of this event detection technique.
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2.2 Methods

2.2.1 Data Source

We obtained a data set (diagnoses by date) from the UW Medicine (the University of Wash-

ington Health System) enterprise data warehouse (EDW). The EDW includes patient data

from over 4.5 million patients spanning 25 years, and representing various clinical sites across

the UW Medicine system including University of Washington Medical Center, Harborview

Medical Center, and Northwest Hospital and Medical Center.

“Injury and poisoning” is a category of clinical affliction that includes any traumatic

injury or poisoning and is coded as E-codes (E000-E999) or 800-999 codes using the ICD-9-

CM diagnosis coding standard or S00-T99 or V00-Y99 codes using the ICD-10-CM coding

standard, as defined in the CDC’s guidelines for traumatic injury and poisoning.[29, 30]

From the EDW, we selected records of all visits between January 1, 1994 and May 2, 2017

for patients who were over the age of 18 as of May 2, 2017 and where, for each visit, at least

one ICD-9-CM code or ICD-10-CM code in the “Injury and poisoning” category was recorded.

For each patient record, we collected patient visit information which included de-identified

patient ID, diagnosis coding method (ICD-9-CM or ICD-10-CM), visit number identifier,

admission date and time, diagnosis codes (ICD-9-CM or ICD-10-CM), and diagnosis code

description. These data represent just over 3,000,000 unique trauma-related visits to the

UW medical system made by over 650,000 unique individuals.
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2.2.2 Data Cleaning

UW Medicine adopted the ICD-10-CM billing code system in mid-2015. In order to en-

sure we had consistent data throughout, we mapped ICD-10-CM codes to their ICD-9-CM

equivalents, using the Center for Medicare and Medicaid Services (CMS) General Equiva-

lence Mappings.[31] Since ICD-10-CM has more detailed coding descriptions than ICD-9-CM,

there is a potential for data loss when converting from ICD-10-CM to ICD-9-CM. While this

may be an issue in some studies, we were more interested in the high level view of UW’s

patient population, and this data loss was not a major concern for this study. We used

a custom tool, DxCodeHandler (https://github.com/UWMooneyLab/DxCodeHandler), to

handle code conversion, ICD hierarchy traversal, and diagnosis code manipulation (Addi-

tional File 1).

2.2.3 Obtaining Count Data

Per our selection criteria, each patient visit included one or more ICD-9-CM or ICD-10-CM

billing codes representing the billing information for the patient visit. We attributed all

codes appearing in a visit to the day that visit occurred such that each day was considered

a collection of independent code counts. We also included all higher level categories in

the ICD hierarchy along with the low level codes. For example, a day that had the code

E880.0 (Accidental Fall on or from Escalator) would also have E880 (Accidental Fall from

Stairs or Steps), E880-E888 (Accidental Falls), and E000-E999 (External Causes of Injury or

Poisoning) counted on that day. This incorporation of multiple category levels was necessary
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because some real world events enrich different classes of injury such as large classes of

injury (e.g. 800-829, Fractures), mid-level classes of injury (e.g. 989, Toxic Effect of Non-

medicinal Substances), or specific injury types (e.g. 854.06, Intracranial injury with loss of

consciousness).

2.2.4 Binomial Test and Hypothesis Testing

For each diagnosis code, both billable and parent codes, we tested the null hypothesis that the

prevalence of each diagnosis code, when calculated against all trauma visits, was consistent

across time. We tested this hypothesis using a binomial test, where we tested whether

a diagnosis code is more or less prevalent in a given time period when compared to the

expected prevalence if the null hypothesis were true. If a code-time period pair had a p-

value less than the Bonferroni cutoff, we said that the code is enriched for that tested time

period. We used an α = 0.01 when calculating the Bonferroni cut off for each experiment.

We ran this test for every code that appears more than 10 times in our dataset for all four

seasons and for all 365 (non-leap year) days. For each code-time period pair, we generated

a score by calculating the -log(p-value) from the binomial test.

2.2.5 Enrichment of Seasons

To find seasonal statistical enrichment of ICD-9-CM billing codes we summed daily counts

of each of the 4,582 poisoning and injury billing codes within each season. We defined winter

as December - February, spring as March - May, summer as June - August, and autumn as
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September - November. For each season/code pair, we performed a binomial test, treating

the sum of all codes in that season as the trials, and the count of the code in question for

that season as the successes. The expected rate of appearance for each code in question was

established by calculating its proportion of all trauma visits across all seasons and years.

Thus, the p-value from this test is interpretable as the probability that these many codes

or more would be seen in a given season under the null hypothesis that codes are evenly

distributed across the year. We used a Bonferroni correction at n = 18, 328(4x4582). We

also filtered out codes that appeared less than 10 times over the course of the 24-year period.

2.2.6 Enrichment of Dates

We used an analogous method to detect code enrichments for days of the year. Again, we

computed the sum of codes occurring on each of the 365 (non-leap-day) days of the year.

For each code/day pair, we performed a binomial test using the total number of codes used

on that day as the number of trials, and the number of times the specific code of interest

was used as the number of successes. The expected rate was derived from the baseline rate

of appearance for the code of interest per day across the entire year when compared to

the total number of trauma visits on that given day. We calculated a Bonferroni cutoff at

n = 1, 672, 430(4582x365). We counted codes as enriched if the p-value was less that the

Bonferroni correction and the daily rate of the code was greater than the baseline expected

rate of the code (we did not look at depletions). We also filtered out codes that appeared

less than 10 times over the course of the 24 year dataset period.
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2.2.7 IRB Considerations

We received an IRB non-human subjects research designation from the University of Wash-

ington Human Subjects Research Division to construct a dataset derived from all patient

diagnoses from the EDW over the age of 18. (IRB number: STUDY00000669) Data was

extracted by an honest broker, the UW Medicine Research IT data services team, and no

patient identifiers were available to the research team.

2.3 Results

2.3.1 Statistical Enrichment of Seasons

We detected patterns of seasonal enrichment consistent with our expectations about seasonal

behavior. For example, in winter, we found enrichment of not only accidents from snow sports

such as skiing and snowboarding, among others, but also cold weather-related ailments such

as frostbite and hypothermia. Other codes that may be related to snow sport accidents

such as head injuries, sprains, and strains were also enriched (Table 2.1). Spring begins to

have more fair weather activities such as outdoor related ailments like allergies and sporting

accidents (Table 2). Summer sees disproportionate numbers of accidents related to outdoor

activities in warm weather such as bites and stings from bugs, firework accidents, bicycle

accidents, and water transport accidents (Table 3). While autumn is the least distinctive of

the seasons, it has a unique enrichment for vehicle accidents (Table 4). This may be because

autumn contains high traffic holidays (Thanksgiving, Labor Day) and increased levels of rain

in Seattle.
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ICD 9 Code Description Winter Code Counts Average Counts in Other Seasons Percent Increase P Value Scores

E885.4 Fall From Snowboard 831 115 622.61 0.00 750.00

E885.3 Fall From Skis 593 122 386.07 2.59E-221 507.92

991 Effects of Reduced Temperature 2027 995.33 103.65 5.16E-217 498.02

E885 Fall on Same Level From Slipping, Tripping, or Stumbling 10738 9019 19.06 6.67E-140 320.46

996-999 Complications of Surgical and Medical Care 134022 135432 -1.04 3.24E-137 314.28

995.29 Unspecified Adverse Effect of Other Drug, Medicinal and Biological Substance 5019 3751.33 33.79 1.61E-134 308.07

996 Complications Peculiar to Certain Specified Procedures 88630 88559 0.08 4.72E-122 279.36

E930-E949 Adverse Effects From Substance in Therapeutic use 16422 15087.67 8.84 1.60E-92 211.37

E820 Nontraffic Accident Involving Motor-driven Snow Vehicle 239 51.33 365.61 7.72E-87 198.28

995.2 Other and Unspecified Adverse Effect of Drug, Medicinal and Biological Substance (due) to Correct Medicinal Substance Properly Administered 8648 7517.33 15.04 7.82E-86 195.97

991.2 Frostbite of Foot 372 118.67 213.47 1.25E-85 195.5

E003.2 Activities Involving Snow (alpine) (downhill) Skiing, Snow Boarding, Sledding, Tobogganing and Snow Tubing 148 19.67 652.41 1.50E-80 183.8

E901.0 Accident due to Excessive Cold due to Weather Conditions 334 104.67 219.1 6.42E-79 180.04

E003 Activities Involving Snow and ice 169 27.67 510.77 1.81E-78 179.01

E901 Excessive Cold 474 201.33 135.43 1.25E-69 158.65

E880-E888 Accidental Falls 38739 38299.67 1.15 1.37E-68 156.26

991.6 Hypothermia 760 414 83.57 1.01E-64 147.36

E885.9 Fall From Other Slipping, Tripping, or Stumbling 8953 8067.67 10.97 3.03E-63 143.95

990-995 Other and Unspecified Effects of External Causes 29795 29270 1.79 1.69E-60 137.63

Table 2.1: The top 20 most enriched codes for winter. Enriched codes include accidents from
snow sports such as skiing and snowboarding as well as cold weather-related ailments such
as frostbite and hypothermia. Other codes that may be related to snow sport accidents such
as head injuries, sprains, and strains were also enriched. We report by percent increase as
well as -log(p). We compare the number of codes found in winter to the average code counts
of the other three seasons.

Dx Code Descriptions Spring Code Counts Average Count in Other Seasons Percent Increase P Value Scores

840-848 Sprains and Strains of Joints and Adjacent Muscles 138376 132163.33 4.7 1.04E-66 151.93

995.3 Allergy, Unspecified 6304 5087 23.92 5.55E-61 138.74

990-995 Other and Unspecified Effects of External Causes 31010 28865 7.43 3.84E-36 81.55

905-909 Late Effects of Injuries, Poisonings, Toxic Effects, and Other External Causes 50277 47594 5.64 9.62E-35 78.33

995 Certain Adverse Effects not Elsewhere Classified 27996 26012 7.63 2.36E-34 77.43

980.9 Toxic Effect of Unspecified Alcohol 328 167.67 95.62 7.71E-28 62.43

844 Sprains and Strains of Knee and leg 18141 16806.33 7.94 1.71E-24 54.73

908.6 Late Effect of Certain Complications of Trauma 648 431 50.35 2.05E-22 49.94

E917.0 Striking Against or Struck Accidentally by Objects or Persons in Sports 2471 2020.33 22.31 3.06E-22 49.54

842 Sprains and Strains of Wrist and Hand 12683 11674.33 8.64 2.29E-20 45.22

848 Other and Ill-defined Sprains and Strains 16380 15278.67 7.21 8.61E-19 41.60

854 Intracranial Injury of Other and Unspecified Nature 17691 16558 6.84 2.01E-18 40.75

854 Without Mention of Open Intracranial Wound 17515 16401.67 6.79 5.34E-18 39.77

905 Late Effects of Musculoskeletal and Connective Tissue Injuries 23970 22703.33 5.58 4.87E-17 37.56

905.4 Late Effect of Fracture of Lower Extremities 9711 8915 8.93 7.21E-17 37.17

842.12 Sprain of Metacarpophalangeal (joint) of Hand 1659 1344.33 23.41 1.05E-16 36.79

842.1 Hand 5902 5296.67 11.43 2.50E-16 35.93

919.9 Other and Unspecified Superficial Injury of Other, Multiple, and Unspecified Sites, Infected 78 27.33 185.4 2.06E-15 33.82

854 Intracranial Injury of Other and Unspecified Nature Without Mention of Open Intracranial Wound, Unspecified State of Consciousness 13228 12381.67 6.84 3.94E-14 30.86

996 Complications Peculiar to Certain Specified Procedures 90209 88032.67 2.47 9.98E-14 29.94

Table 2.2: The top 20 most enriched codes for spring. Enriched codes include allergies,
sprains and strains, and sports related injury. We report by percent increase as well as
-log(p). We compare the number of codes found in spring to the average code counts of the
other three seasons.
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Dx Code Descriptions Summer Code Counts Average Count in Other Seasons Percent Increase P Value Scores

E826-E829 Other Road Vehicle Accidents 5872 3166 85.47 5.54E-314 721.3

919 Superficial Injury of Other Multiple and Unspecified Sites 7846 4621 69.79 2.28E-301 692.25

E923.0 Accident Caused by Fireworks 480 44 990.91 2.97E-296 680.48

910-919 Superficial Injury 30366 22597.33 34.38 1.10E-290 667.65

919.4 Insect Bite, Nonvenomous, of Other, Multiple, and Unspecified Sites, Without Mention of Infection 2483 1067.33 132.64 7.41E-251 575.95

E826.1 Pedal Cycle Accident Injuring Pedal Cyclist 3933 2021.33 94.57 3.24E-246 565.26

997.91 Complications Affecting Other Specified Body Systems, Hypertension 1040 297.67 249.38 5.61E-220 504.84

940-949 Burns 45311 36094.67 25.53 3.83E-209 479.9

989.5 Toxic Effect of Venom 3019 1535.67 96.59 1.57E-195 448.56

E905.3 Sting of Hornets, Wasps, and Bees Causing Poisoning and Toxic Reactions 759 188 303.72 4.56E-195 447.49

800-829 Fractures 264689 231748.33 14.21 3.25E-171 392.56

E905 Venomous Animals and Plants as the Cause of Poisoning and Toxic Reactions 1006 350 187.43 1.06E-156 359.14

E830-E838 Water Transport Accidents 629 163 285.89 4.56E-153 350.78

989 Toxic Effect of Other Substances, Chiefly Nonmedicinal as to Source 3464 2016 71.83 8.47E-141 322.53

959.8 Other Specified Sites, Including Multiple Injury 17695 13440 31.66 1.21E-140 322.17

E923 Accident Caused by Explosive Material 927 335.67 176.16 1.66E-134 308.04

997.9 Complications Affecting Other Specified Body Systems 1262 535.67 135.59 3.50E-132 302.69

E826 Pedal Cycle Accident 5176 2631.67 96.68 0.00E+00 750

E900-E909 Accidents due to Environmental Factors 5367 3562.33 50.66 1.22E-116 266.9

E906.4 Bite of Nonvenomous Arthropod 1548 762 103.15 2.52E-111 254.66

Table 2.3: The top 20 most enriched codes for summer. Enriched codes include accidents
related to outdoor activities in warm weather such as bites and stings from bugs, burns,
firework accidents, bicycle accidents, and water transport accidents. We report by percent
increase as well as -log(p). We compare the number of codes found in summer to the average
code counts of the other three seasons.

Dx Code Descriptions Fall Code Counts Average Count in Other Seasons Percent Increase P Value Scores

E819.0 Motor Vehicle Traffic Accident of Unspecified Nature Injuring Driver of Motor Vehicle Other Than Motorcycle 1388 832.33 66.76 5.40E-70 159.49

E810-E819 Motor Vehicle Traffic Accidents 41860 39083.67 7.1 1.18E-48 110.36

E819 Motor Vehicle Traffic Accident of Unspecified Nature 17872 16481 8.44 5.12E-29 65.14

E819.1 Motor Vehicle Traffic Accident of Unspecified Nature Injuring Passenger in Motor Vehicle 777 518.33 49.9 1.53E-26 59.44

825 Fracture of one or More Tarsal and Metatarsal Bones 17527 16296 7.55 1.39E-23 52.63

900.9 Injury to Unspecified Blood Vessel of Head and Neck 557 366 52.19 8.43E-21 46.22

847 Sprain of Neck 18864 17707 6.53 8.62E-20 43.90

825 Fracture of Calcaneus, Closed 6243 5581.67 11.85 2.96E-19 42.66

E863.1 Accidental Poisoning by Insecticides of Organophosphorus Compounds 17 0.67 2437.31 1.43E-18 41.09

E980.9 Poisoning by Other and Unspecified Solid and Liquid Substances, Undetermined Whether Accidentally or Purposely Inflicted 565 383.67 47.26 2.74E-18 40.44

E949.6 Other and Unspecified Viral and Rickettsial Vaccines Causing Adverse Effects in Therapeutic use 37 6.33 484.52 6.33E-17 37.30

836 Dislocation of Knee 8608 7889.33 9.11 9.74E-17 36.87

999.9 Other and Unspecified Complications of Medical Care 1538 1241.33 23.9 1.54E-16 36.41

830-839 Dislocation 21369 20276.33 5.39 3.83E-16 35.50

E912 Inhalation and Ingestion of Other Object Causing Obstruction of Respiratory Tract or Suffocation 219 121.33 80.5 1.02E-15 34.52

E812 Other Motor Vehicle Traffic Accident Involving Collision With Motor Vehicle 13813 12965.67 6.54 6.65E-15 32.64

850.9 Concussion, Unspecified 2125 1793 18.52 7.41E-15 32.54

E812.0 Other Motor Vehicle Traffic Accident Involving Collision With Motor Vehicle Injuring Driver of Motor Vehicle Other Than Motorcycle 8037 7412 8.43 7.01E-14 30.29

E849.5 Street and Highway Accidents 7876 7266.67 8.39 1.66E-13 29.43

E881 Fall on or From Ladders or Scaffolding 1663 1386.33 19.96 1.97E-13 29.25

Table 2.4: The top 20 most enriched codes for autumn. Enriched codes include motor vehicle
accidents and sprains of neck. We report by percent increase as well as -log(p). We compare
the number of codes found in autumn to the average code counts of the other three seasons.
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2.3.2 Statistical Enrichment for Days of the Year

To complement our seasonal analyses, we explored enrichment of diagnosis codes for all 365

days of the year. Each date that had a code scored below the Bonferroni threshold was

flagged as having possible significance. We detected 100 days that had at least one code

flagged as enriched. We generated an enrichment score for each of the dates by calculating

the -log(p-value) of the lowest p-value for the date. The top 15 dates with the highest scoring

codes are shown in Figure 2.1. The days in which enrichment of many codes is common are a

mixture of holidays and one time events. For example, there was enrichment of codes related

to fights, firework accidents, and alcohol poisoning on January 1st (Table 5). Analogously,

there was a large increase in the number of firework related accidents and burns on the

4th and 5th of July as well as an increase in the number of off-road vehicle accidents and

poisoning by alcohol (Table 6-7). We also observe an increase in alcohol poisoning, vehicle

accidents, and an increase in possible self-harm on Christmas Eve (Table 8). For tables 5-8,

we limit the reporting of codes to those that had more than 30 appearances over the 24

years of data. This reduces false positives arising from extremely rare codes that appeared

during the baseline period. We also report by percent increase rather than -log(p) for better

interpretability.



17

Dx Code January 1st Average Code Count Daily Average Code Count % Increase Description

E923.0 1.74 0.07 2469.74 Accident caused by fireworks

E923 2.39 0.22 981.77 Accident caused by explosive material

E965 1.39 0.42 235.15 Assault by firearms and explosives

854.06 1.57 0.49 217.75 Intracranial injury with loss of consciousness of unspecified duration

E922.9 1.52 0.54 180.57 Accident caused by unspecified firearm missile

E922 1.87 0.69 171.55 Accident caused by firearm and air gun missile

E860 5.39 2.01 168.36 Accidental poisoning by alcohol, not elsewhere classified

E860-E869 5.96 2.23 167.25 Accidental Poisoning By Other Substance

E860.0 5.17 1.95 165.22 Accidental poisoning by alcoholic beverages

980.8 1.57 0.61 154.88 Toxic effect of other specified alcohols

Table 2.5: The top 10 most enriched codes for January 1st. As expected for New Year’s
Day, the most enriched codes were related to firework accidents, alcohol, and assaults. To
reduce the false positive rate of the code enrichment from extremely rare codes that appeared
during the baseline period, the enriched codes were only counted if they appeared more than
10 times over the 24 year period. We also report by percent increase rather than -log(p) for
better interpretability.

Dx Code Descriptions Fall Code Counts Average Count in Other Seasons Percent Increase

Dx Code July 4th Average Code Count Daily Average Code Count % Increase Description

E923.0 4.26 0.06 6913.3 Accident caused by fireworks

E923 4.91 0.21 2194.4 Accident caused by explosive material

E820-E825 1.70 0.69 147.0 Motor Vehicle Non-traffic Accidents

980.8 1.43 0.61 133.5 Toxic effect of other specified alcohols

948.00 2.87 1.54 85.8 Burn involving less than 10 percent of body surface with third degree burn

948.0 2.87 1.56 83.8 Burn involving less than 10 percent of body surface

948 4.09 2.24 82.5 Burns classified according to extent of body surface involved

E819.2 3.00 1.70 76.2 Motor vehicle traffic accident of unspecified nature injuring motorcyclist

851 2.09 1.22 71.1 Cerebral laceration and contusion

851.8 1.35 0.79 69.9 Other and unspecified cerebral laceration and contusion, without mention of open intracranial wound

Table 2.6: The top 10 most enriched codes for July 4th. As expected for Independence Day,
the most enriched codes were related to firework accidents, burns, and alcohol poisoning. To
reduce the false positive rate of the code enrichment from extremely rare codes that appeared
during the baseline period, the enriched codes were only counted if they appeared more than
10 times over the 24 year period. We also report by percent increase rather than -log(p) for
better interpretability.
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Dx Code July 4th Average Code Count Daily Average Code Count % Increase Description

E923.0 4.26 0.06 6913.3 Accident caused by fireworks

E923 4.91 0.21 2194.4 Accident caused by explosive material

E820-E825 1.70 0.69 147.0 Motor Vehicle Non-traffic Accidents

980.8 1.43 0.61 133.5 Toxic effect of other specified alcohols

948.00 2.87 1.54 85.8 Burn involving less than 10 percent of body surface with third degree burn

948.0 2.87 1.56 83.8 Burn involving less than 10 percent of body surface

948 4.09 2.24 82.5 Burns classified according to extent of body surface involved

E819.2 3.00 1.70 76.2 Motor vehicle traffic accident of unspecified nature injuring motorcyclist

851 2.09 1.22 71.1 Cerebral laceration and contusion

851.8 1.35 0.79 69.9 Other and unspecified cerebral laceration and contusion, without mention of open intracranial wound

Table 2.7: The top 10 most enriched codes for July 5th. As expected for the day after
Independence Day, the most enriched codes were related to firework accidents and burns as
the injured persons from July 4th continue to appear in the hospital. To reduce the false
positive rate of the code enrichment from extremely rare codes that appeared during the
baseline period, the enriched codes were only counted if they appeared more than 10 times
over the 24 year period. We also report by percent increase rather than -log(p) for better
interpretability.

Dx Code Descriptions Fall Code Counts Average Count in Other Seasons Percent Increase

Dx Code July 4th Average Code Count Daily Average Code Count % Increase Description

E923.0 4.26 0.06 6913.3 Accident caused by fireworks

E923 4.91 0.21 2194.4 Accident caused by explosive material

E820-E825 1.70 0.69 147.0 Motor Vehicle Non-traffic Accidents

980.8 1.43 0.61 133.5 Toxic effect of other specified alcohols

948.00 2.87 1.54 85.8 Burn involving less than 10 percent of body surface with third degree burn

948.0 2.87 1.56 83.8 Burn involving less than 10 percent of body surface

948 4.09 2.24 82.5 Burns classified according to extent of body surface involved

E819.2 3.00 1.70 76.2 Motor vehicle traffic accident of unspecified nature injuring motorcyclist

851 2.09 1.22 71.1 Cerebral laceration and contusion

851.8 1.35 0.79 69.9 Other and unspecified cerebral laceration and contusion, without mention of open intracranial wound

Table 2.8: The top 10 most enriched codes for December 24th. The most enriched codes were
related to alcohol poisoning, injury to spleen, and injury undetermined whether accidental of
purposely inflicted. To reduce the false positive rate of the code enrichment from extremely
rare codes that appeared during the baseline period, the enriched codes were only counted
if they appeared more than 10 times over the 24 year period. We also report by percent
increase rather than -log(p) for better interpretability.
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Figure 2.1: The top 15 highest scoring days of the year. The top 15 days with the highest
scoring diagnosis codes. Each of the codes in the table are the most enriched codes on each
of the days in the date column. The black bolded dates are either holidays or are dates that
surround a holiday. The orange bolded dates are associated with known rare events that
clearly explain the enrichment of their codes, namely the Nisqually Earthquake on Feb 28,
2001 and the Hanukkah Eve Windstorm on Dec 15, 2006. The other dates have unusual
patterns of enriched codes such as chlorine gas poisoning and tear gas poisoning, but we
could not find a readily available explanation to confirm some holiday, environmental, or
social event on these days. Since these events appear to have happened on a single day in a
single year and look to be associated with specific events, we have masked the dates due to
the unknown specificity of these events and potential for identification of individuals involved
in these events.
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2.3.3 Rare Events as Case Studies

We detected enrichment of unusual codes on multiple days that did not seem linked to their

respective day by either holiday or seasonal event. Upon further evaluation, we inferred that

we had detected past environmental events that showed up as single day enrichments. Feb

28, Dec 15, May 31, and Nov 8 were four of the days in the top 15 highest scoring days

that followed this pattern (Figure 2.1). Because these enriched days fell in single years, we

were able to search for news stories published on or immediately after these days to see if

we could find the cause of the increase in these unusual codes.

2.3.4 Nisqually Earthquake

In our analysis, February 28th was shown to have an increase in earthquake related accidents,

ICD-9-CM code E909.0. On February 28, 2001, there was a magnitude 6.8 earthquake

centered in Western Washington.[32, 33] All the earthquake codes found on February 28th

in our dataset were from 2001, consistent with there being very few earthquake related

accidents in the EHR except during the major earthquake.

2.3.5 Hanukkah Eve windstorm

Our event detection method also discovered a significant increase on December 15 of the ICD-

9-CM code E868.3 (accidental poisoning by carbon monoxide from incomplete combustion

of other domestic fuels). Nearly all the codes were found to have been coded in 2006. The

Hanukkah Eve windstorm of Dec 15, 2006 led to widespread and lengthy power outages. In
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the aftermath, there were news stories about the increase in carbon monoxide poisonings

due to people barbecuing and running generators in their homes without ventilation.[34,

35] Indeed, public health authorities responded with concerns that the dangers of carbon

monoxide poisoning were not widely understood in select communities.[36]

2.3.6 Industrial Accidents

We detected two other single day enrichments: May 31 with an enrichment of E891.3 (Burn-

ing caused by conflagration) and Nov 8 with an enrichment of 987.6 (Toxic effect of chlorine

gas). We were able to link these two enrichments to the May 31, 2004 monorail fire in Seattle

[37] and the November 8, 1994 chlorine spill and fire at the Coastal Dock in Ballard, WA.[38]

2.4 Discussion

We explored the value of UW Medicine EHR data for detecting public health-related envi-

ronmental and seasonal causes of traumatic injury. Our analysis finds that tests for seasonal

and daily enrichment of the frequency of emergency room visits for trauma detects expected

events, including both seasonal trends such as winter sports-related injuries, day-specific

events such as July 4th burns, and rare events such as the Nisqually earthquake.
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2.4.1 Interesting Anomalies

Non-enriched Holidays

While most of our results confirmed expected seasonal and date-specific trends, we were

surprised not to find enrichment of alcohol related injuries on St. Patrick’s Day or the day

following, given that St. Patrick’s Day is associated with increased alcohol consumption.[39,

40] This may indicate the effectiveness of extra police patrols deployed for that day. This

could also be a false negative due to the conservative nature of Bonferroni corrections.

Prior studies have examined date-related events in relation to traumatic injury. One

study found that on April 20th, a date associated with celebrating marijuana consumption,

there was an increase in the number of car accidents.[41] While we did not observe a statistical

enrichment in car accidents, our method did identify a statistical enrichment in burns (940-

949), another potential consequence of marijuana use.[42] Future work could analyze clinical

notes which might allow us to identify if this enrichment is attributable to elevated marijuana

use.

Enrichment of Post-surgical Complications in Winter

We also saw unexpected trends in post-surgical complications, with those terms being en-

riched in the winter months at the very end and beginning of the year. One hypothesis is

that there is a relative increase in the number of surgeries in November and December as

people schedule elective surgeries before insurance deductibles reset in the new year. An

alternate hypothesis is that people defer reporting minor surgical complications until after
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the end-of-year holidays. We were unable to explore these hypotheses for this study because

our data was limited to visits including trauma codes and did not include surgical appoint-

ments. It is also important to note that we saw a relative increase in the number of surgical

complications due to lower numbers of trauma visits in the winter, and not necessarily an

absolute increase in the number of post-surgical complications (Figure 2.2). Since codes

related to post-surgical complications are less specific and are more likely to appear during

trauma visits than other codes discussed thus far, the effect of this “lowered baseline” is

particularly noticeable.

Unlinked Events

There were multiple dates that had significant enrichment of codes on a date where nearly

all the codes came from one year. For instance, there were a large number of visits with

the code 994.9 (other effect of external causes) on one of the masked days. This code is

too vague to understand the common injuries of patients and, at the time of this study, we

did not have access to de-identified clinical notes from which to elicit the causes of these

injuries. There was also no readily available source of news that we found to corroborate

a large number of people being injured by any social or environmental event. We were not

able to discern whether these dates were false positives, whether the codes were entered

incorrectly, or whether there was a common event that caused these injuries. In this paper,

we have masked the specific dates of these unlinked days to protect against the potential

de-identification of patients since the circumstances surrounding these injuries are unknown.



24

Figure 2.2: Comparison of the code count trend differences between 996 and 999 and
800–999The percent deviation from the annual monthly average code count for both the
Complications of Surgical Care (996–999) diagnosis family and the broad category of Injury
and Poisoning (800– 999). By calculating the average monthly code count for each family
and the percent deviation per month from that expected average, we see that both code fam-
ilies follow a similar seasonal pattern of increase in the summer and decrease in the winter
in terms of raw code count. While they follow the same pattern, Complications of Surgical
Care doesn’t decrease as much in the winter, and actually has a spike in December, which is
why our method picks up this diagnosis family as enriched in the winter. Since the number
of trauma visits is used to establish a baseline expected rate of each code count, our method
is detecting relative enrichment and not absolute enrichment
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2.4.2 Study Strengths and Limitations

Our study has several notable strengths. First, the UW Medicine system has used EHRs

for a long time, affording us access to over 20 years of clinical data from a large urban

health care system. Second, UW Medicine’s location in Western Washington lends itself to

year-round yet season-specific outdoor activities whose resulting injuries show up as specific

trauma codes, including snow sports in the winter and boating in the summer. This access

increased our ability to detect seasonal trauma trends.

However, our study also has limitations. First, as with any study of EHRs, we cannot

rule out biases due to site-specific coding practices or changes in practitioner knowledge of

the health record system. However, we have no reason to believe errors caused by these

issues would vary by season or day. Second, the UWMC is mainly a referral institution,

such that many patients visit the system only for specialty services. We also know that only

around 31% of all patients visiting the UW medical system will have their next visit at a UW

clinic.[43] This is mitigated in our study by the fact that we only considered trauma-related

diagnosis codes and that UW Medicine is the only Level I trauma center in Washington,

Alaska, Montana and Idaho. The impact of this known bias decreases since our study looks

at individual admissions and does not require a full picture of each patient odyssey. The

results of our study are not reliant on continuity of care. Nevertheless, further validation

studies are needed to evaluate the representation of the UWMC data in the Seattle Region.

Another future solution would be to run our method at more sites across Washington, feeding

the live statistics into an aggregation mechanism for a more robust population view.
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2.4.3 Using Electronic Health Records for Event Detection

Our method could be used in a live surveillance situation by alerting authorities and doctors

when an unusual increase of cases with a particular diagnosis code show up across multiple

hospitals with linked EHR systems. It could spark an investigation into what is causing

the sudden increase but also could initiate public health policy development that previously

would take longer to assess and carry out. While our method focused on traumatic injury, it

could easily be expanded to include surveillance of all diagnosis codes. A limitation of using

billing codes for surveillance is the delay that occurs between patient care and the billing

process. While this delay is shorter than periodically collecting all the latest billing codes, a

true real-time surveillance system isn’t possible. A possible next step would be to train an

NLP classifier based on the clinical note texts from each visit to “predict” the diagnosis codes

that will be associated with a visit. While not a trivial pursuit, this would enable a near real-

time surveillance system. Aside from predicting diagnosis codes, incorporating clinical notes

into the method could more accurately cluster events and better inform detected trends.

Natural language processing techniques could be used to find “enriched” keywords on the

detected days to add context to the detected events in a data driven automated manner.

2.5 Conclusion

In conclusion, EHR data hold considerable potential for public health surveillance. We ex-

plored the potential to leverage UW Medicine’s enterprise data warehouse to detect seasonal,

holiday, and rare events using diagnosis codes for injuries and poisonings. Our method de-
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tected many of the trends for seasons and specific dates we expected, while identifying several

intriguing new enrichments. Future research should focus on improving our trend and event

detection method to differentiate between one-time effects like the Nisqually earthquake, and

repeat events like Independence Day. Incorporating clinical notes into a detection method

could more accurately cluster events and better inform detected trends. Expanding the

method to all diagnosis codes could detect new non-trauma related events. Our findings

add to the growing body of literature showing that EHRs hold considerable potential as

generalizable population health surveillance platforms.
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Chapter 3

PILOTING A ”MODEL TO DATA” APPROACH IN THE
CONTEXT OF AN EHR ENTERPRISE DATA WAREHOUSE.

3.1 Introduction

3.1.1 Electronic health records and the future of data-driven health care

Healthcare providers substantially increased their use of EHR systems in the past decade [1].

While the primary drivers of EHR adoption were the 2009 Health Information Technology for

Economic and Clinical Health Act and the data exchange capabilities of EHRs [2], secondary

use of EHR data to improve clinical decision support and healthcare quality also contributed

to large-scale adoption [3]. EHRs contain a rich set of information about patients and their

health history, including doctors’ notes, medications prescribed, and billing codes [4]. The

prevalence of EHR systems in hospitals enables the accumulation and utilization of large

clinical data to address specific clinical questions. Given the size and complexity of these

data, machine learning approaches provide insights in a more automated and scalable manner

[7, 8]. Healthcare providers have already begun to implement predictive analytics solutions

to optimize patient care, including models for 30-day readmissions, mortality, and sepsis [9].

As hospitals improve data capture quality and quantity, opportunities for more granular and

impactful prediction questions will become more prevalent.
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3.1.2 Hurdles to clinical data access

Healthcare institutions face the challenge of balancing patient privacy and EHR data uti-

lization [20]. Regulatory policies such as Health Insurance Portability and Accountability

Act and Health Information Technology for Economic and Clinical Health Act place the

onus and financial burden of ensuring the security and privacy of the patient records on the

healthcare institutions hosting the data. A consequence of these regulations is the difficulty

of sharing clinical data within the research community. Research collaborations are often

bound by highly restrictive data use agreements or business associate agreements limiting

the scope, duration, quantities, and types of EHR data that can be shared [44]. This friction

has slowed, if not impeded, researchers’ abilities to build and test clinical models.[44] While

these data host-researcher relationships are important and lead to impactful collaborations,

they are often limited to intrainstitution collaborations, relegating many researchers with no

healthcare institution connections to smaller public datasets or inferior synthetic data. One

exception to this is the patient-level prediction working group in the Observational Health

Data Sciences and Informatics community, which developed a framework for building and

externally validating machine learning models [45]. While the PLP group has successfully

streamlined the process to externally validate model performance, there is still an assumption

that the model developers have direct access to an EHR dataset that conforms to the Ob-

servational Medical Outcomes Partnerships (OMOP) Common Data Model (CDM) [46, 47],

on which they can develop their models. In order to support model building and testing

more widely in the research community, new governance models and technological systems
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are needed to minimize the risk of reidentification of patients, while maximizing the ease of

access and use of the clinical data.

3.1.3 Methods for sharing clinical data

De-identification of EHR data and the generation of synthetic EHR data are 2 solutions to

enable clinical data sharing. De-identification methods focus on removing or obfuscating

the 18 identifiers that make up the protected health information as defined by the Health

Insurance Portability and Accountability Act [48]. De-identification reduces the risk of in-

formation leakage but may still leave a unique fingerprint of information that is susceptible

to reidentification [48, 49]. De-identified datasets like MIMIC-III are available for research

and have led to innovative research studies [50, 51, 52]. However, these datasets are either

limited in size (MIMIC-III [Medical Information Mart for Intensive Care-III] only includes

38, 597 distinct adult patients and 49, 785 hospital admissions), scope (MIMIC-III is spe-

cific to intensive care unit patients), and availability (data use agreements are required to

use MIMIC-III). Generated synthetic data attempt to preserve the structure, format, and

distributions of real EHR datasets but do not contain identifiable information about real

patients [53]. Synthetic data generators, such as medGAN [51], can generate EHR datasets

consisting of highdimensional discrete variables (both binary and count features), although

the temporal information of each EHR entry is not maintained. Methods such as OSIM2 are

able to maintain the temporal information but only simulate a subset of the data specific

to a usecase (eg, drug and treatment effects) [54]. Synthea uses publicly available data to
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generate synthetic EHR data but is limited to the 10 most common reasons for primary

care encounters and 10 chronic diseases that have the highest morbidity in the United States

[55]. To our knowledge, no existing method can generate an entire synthetic repository while

preserving complete longitudinal and correlational aspects of all features from the original

clinical repository.

3.1.4 ”Model to data” framework

The “Model to Data” (MTD) framework, a method designed to allow machine learning re-

search on private biomedical data, was described by Guinney et al [56] as an alternative to

traditional data sharing methods. The focus of MTD is to enable the development of analytic

tools and predictive models without granting researchers direct, physical access to the data.

Instead, a researcher sends a containerized model to the data hosts who are then responsible

for running the model on the researcher’s behalf. In contrast to the methods previously de-

scribed, in which the shared or synthetic data were limited in both scope and size, an MTD

approach grants a researcher the ability to use all available data from identified datasets, even

as those data stay at the host sites, while not giving direct access to the researcher. This

strategy enables the protection of confidential data while allowing researchers to leverage

complete clinical datasets. The MTD framework relies on modern containerization software

such as Docker [57] or Singularity [58] for model portability, which serves as a “vehicle,”

sending models designed by a model developer to a secure, isolated, and controlled comput-

ing environment where it can be executed on sensitive data. The use of containerization
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software not only facilitates the secure delivery and execution of models, but it opens up the

ability for integration into cloud environments (eg, Amazon Web Services, Google Cloud)

for costeffective and scalable data analysis. The MTD approach has been successful in a

series of recent community challenges but has not yet been shown to work with large, EHR

datasets [59]. Here, we present a pilot study of an MTD framework implementation enabling

the intake and ingestion of containerized clinical prediction models by a large healthcare

institution (the University of Washington health system, UW Medicine) to their on-premises

secure computing infrastructure. The main goals of this pilot are to demonstrate (1) the

operationalization of the MTD approach within a large health system, (2) the ability of the

MTD framework to facilitate predictive model development by a researcher (here referred to

as the model developer) who does not have direct access to UW Medicine EHR data, and (3)

the feasibility of a MTD community challenge for evaluating clinical algorithms on remotely

stored and protected patient data.

3.2 Methods

3.2.1 Pilot data description

The UW Medicine enterprise data warehouse (EDW) includes patient records from medical

sites across the UW Medicine system including the University of Washington Medical Center,

Harborview Medical Center, and Northwest Hospital and Medical Center. The EDW gathers

data from over 60 sources across these institutions including laboratory results, microbiology

reports, demographic data, diagnosis codes, and reported allergies. An analytics team at the
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University of Washington transformed the patient records from 2010 to the present day into

a standardized data format, OMOP CDM v5.0. For this pilot study, we selected all patients

who had at least 1 visit in the UW OMOP repository, which represented 1.3 million patients,

22 million visits, 33 million procedures, 5 million drug exposure records, 48 million condition

records, 10 million observations, and 221 million measurements.

3.2.2 Scientific question for the pilot of the “Model to data” approach

For this MTD demonstration, the scientific question we asked the model developer to address

was the following: Given the past EHRs of each patient, predict the likelihood that he/ she

will pass away within the next 180 days following his/her last visit. Patients who had a death

record and whose last visit records were within 180 days of the death date were defined as

positives. Negatives were defined as patients whose death records were more than 180 days

away from the last visit or who did not have a death record and whose last visit was at least

180 days prior to the end of the available data. We selected all-cause mortality as the scientific

question due to the abundance and availability of patient outcomes from the Washington

state death registry. As UW has linked patient records with state death records, the gold

standard benchmarks are not constrained to events happening within the clinic. Moreover,

the mortality prediction question has been thoroughly studied [60, 10, 61]. For these reasons,

patient mortality prediction represents a well-defined proof-of-concept study to showcase the

potential of the MTD evaluation platform.
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3.2.3 Defining the training and evaluation datasets

For the purpose of this study, we split the data into 2 sets: the training and the evaluation

datasets. In a live healthcare setting, EHR data is constantly changing and evolving along

with clinical practice, and prospective evaluation of predictive models is important to en-

sure that the clinical decision support recommendations generated from model predictions

are robust to these changes. We defined the evaluation dataset as patients who had more

recently visited the clinic prior to our last death record and the training dataset as all the

other patients. This way the longitudinal properties of the data would be approximately

maintained. The last death record in the available UW OMOP repository at the time of this

study was February 24, 2019. Any record or measurement that was found after this date was

excluded from the pilot dataset and this date was defined as “end of data.” When building

the evaluation dataset, we considered the date 180 days prior to the end of data (August

24, 2018) the end of the “evaluation window” and the beginning of the evaluation window

to be 9 months prior to the evaluation window start (November 24, 2017). We chose a 9-

month evaluation window size because this resulted in an 80/20 split between the training

and evaluation datasets. We defined the evaluation window as the period of time in which, if

a patient had a visit, we included that patient and all their records in the evaluation dataset.

Patients who had visits outside the window, but none within the window, were included in

the training data. Visit records that fell after the evaluation window end were removed from

the evaluation dataset (Fig 3.1, patient 7) and from the training dataset for patients who did

not have a confirmed death (Fig 3.1, patient 3). We only defined the true positives for the
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Figure 3.1: Defining the evaluation dataset. Any patient with at least 1 visit within the
evaluation window was included in the evaluation dataset (gold). All other patient records
were added to the training dataset (blue). Visits that were after the evaluation window end
were excluded from the evaluation dataset and from the training dataset for patients who
did not have a confirmed death (light/transparent blue). A 9-month evaluation window was
chosen as the timeframe as that resulted in an 80/20 split between the training dataset and
the evaluation dataset.

evaluation dataset and created a gold standard of these patients’ mortality status based on

their last visit date and the death table. However, we gave the model developer the flexibility

to select prediction dates for patients in the training dataset and to create corresponding

true positives and true negatives for training purposes.

3.2.4 Model evaluation pipeline

Docker containerized models

Docker is a tool designed to facilitate the sharing of software and dependencies in a single

unit called an image [57]. These images make package dependency, language compilation,

and environmental variables easier to manage. This technology enables the simulation of an

operating system that can be run on any computer that has the Docker engine or compat-
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ible container runtime installed. These containers can also be completely isolated from the

Internet or the server on which they are hosted, an important feature when bringing un-

known codes to process protected data. For this study, the model developer built mortality

prediction Docker images, which included dependencies and instructions for running models

in the Docker container.

Synapse collaboration platform

Synapse is an open-source software platform developed by Sage Bionetworks (Seattle, WA)

for researchers to share data, compare and communicate their methodologies, and seek collab-

oration [62]. Synapse is composed of a set of shared REST (representational state transfer)-

based web services that support both a website to facilitate collaboration among scientific

teams and integration with analysis tools and programming languages to allow computa-

tional interactions [63]. The Synapse platform provides services that enable submissions of

files or Docker images to an evaluation queue, which have previously been used to manage

containerized models submitted to DREAM challenges [62]. We use an evaluation queue to

manage the model developer’s Docker image submissions.

Submission processing pipeline

To manage the Docker images submitted to the Synapse Collaboration Platform, we used a

Common Workflow Language (CWL) pipeline, developed at Sage Bionetworks. The CWL

pipeline monitors an evaluation queue on Synapse for new submissions, automatically down-
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loading and running the docker image when the submission is detected. Executed commands

are isolated from network access by Docker containers run on UW servers.

UW on-premises server infrastructure

We installed this workflow pipeline in a UW Medicine environment running Docker v1.13.1.

UW Research Information Technology uses CentOS 7 (Red Hat Linux) for their platforms.

The OMOP data were stored in this environment and were completely isolated behind UW’s

firewalls. The workflow pipeline was configured to run up to 4 models in parallel. Each

model had access to 70 GB of RAM, 4 vCPUs, and 50 GB of SSD.

3.2.5 Institutional review board considerations

We received an institutional review board (IRB) nonhuman subjects research designation

from the University of Washington Human Subjects Research Division to construct a dataset

derived from all patient records from the EDW that had been converted to the OMOP v5.0

Common Data Model (institutional review board number: STUDY00002532). Data were

extracted by an honest broker, the UW Medicine Research IT data services team, and no

patient identifiers were available to the research team. The model developer had no access

to the UW data.
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3.3 Results

3.3.1 Model development, submission, and evaluation

For this demonstration, a model developer built a dockerized mortality prediction model.

The model developer was a graduate student from the University of Washington who did not

have access to the UW OMOP clinical repository. This model was first tested on a synthetic

dataset (SynPUF),30 by the model developer to ensure that the model did not fail when

accessing data, training, and making predictions. The model developer submitted the model

as a Docker image to Synapse, via a designated evaluation queue, in which the Docker image

was uploaded to a secure Docker Hub cloud storage service managed by Sage Bionetworks.

The CWL pipeline at the UW secure environment detected this submission and pulled the

image into the UW computing environment. Once in the secure environment, the pipeline

verified, built, and ran the image through 2 stages, the training and inference stages. During

the training stage, a model was trained and saved to the mounted volume “model” and during

the inference stage a “predictions.csv” file was written to the mounted volume “output” with

mortality probability scores (between 0 and 1) for each patients in the evaluation dataset (Fig

3.2). Each stage had a mounted volume “scratch” available for storing intermediate files such

as selected features (Fig 3.2). The model developer specified commands and dependencies

(eg, python packages) for the 2 stages in the Dockerfile, train.sh, and infer.sh. The training

and evaluation datasets were mounted to read-only volumes designated “train” and “infer”

(Fig 3.2).
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Figure 3.2: Schema showing the Docker container structure for the training stage and infer-
ence stage of running the Docker image.

After checking that the “predictions.csv” file had the proper format and included all

the patients in the evaluation dataset, the pipeline generated an area under the receiver-

operating characteristic curve (AUROC) score and returned this to the model developer

through Synapse. When the Docker model failed, a UW staff member would look into the

saved log files to assess the errors. Filtered error messages were sent to the model developer

for debugging purposes. See Fig 3.3 for the full workflow diagram.

3.3.2 Model developer’s perspective

The model developer built and submitted models, using 3 sets of features: (1) basic demo-

graphic information (age on the last visit date, gender, and race); (2) basic demographic

information and binary indicators for 5 common chronic diseases (cancer, heart disease,

type 2 diabetes, chronic obstructive pulmonary disease, and stroke)[64]; and (3) the 1000

most common concept ids selected from the procedure occurrence, condition occurrence,
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Figure 3.3: Diagram for submitting and distributing containerized prediction models in a
protected environment. Dockerized models were submitted to Synapse by a model developer
to an evaluation queue. The Synapse Workflow Hook pulled in the submitted Docker image
and built it inside the protected University of Washington (UW) environment. The model
trained on the available EHR data and then made inferences on the evaluation dataset
patients, outputting a prediction file with mortality probability scores for each patient. The
prediction file was compared with a gold standard benchmark. The model’s performance,
measured by area under the receiver-operating characteristic curve, was returned to the
model developer. CWL: Common Workflow Language.
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Training set (n = 956,212) Evaluation set (336,548)

Patients with cancer 66,203 (6.9) 42,195 (12.5)

Patients with heart disease 31,352 (3.3) 23,108 (6.9)

Patients with type 2 diabetes 40,938 (4.3) 28,234 (8.4)

Patients with chronic obstructive pulmonary disease 13,777 (1.4) 8,302 (2.5)

Patients with stroke 5,216 (0.6) 3,927 (1.2)

Other patients 834,591 (87.3) 257,884 (76.6)

Table 3.1: Number of patients in the University of Washington Medicine Observational
Medical Outcomes Partnerships repository who have been diagnosed with cancer, heart
disease, type 2 diabetes, or chronic obstructive pulmonary disease

and drug exposure domains in the OMOP dataset. For model 2, the developer used the

OMOP vocabulary search engine, Athena (“Athena” n.d.), to identify 404 clinical condi-

tion concept ids associated with cancer, 76 condition concept ids with heart disease, 104

condition concept ids with type 2 diabetes, 11 condition concept ids with chronic obstruc-

tive pulmonary disease, and 153 condition concept ids with stroke (Table 1). Logistic re-

gression was used on the 3 sets of features respectively. All model scripts are available online

(https:// github.com/yy6linda/Jamia ehr predictive model).

3.3.3 Model performance

The submitted models were evaluated at the University of Washington by comparing the

output predictions of the models to the true 180-day mortality status of all the patients

in the evaluation dataset. The implementation of the logistic regression model, Model 1,

using only demographic information, had an AUROC of 0.693. Model 2, using demographic

information and 5 common chronic diseases, yielded an AUROC of 0.861. Model 3, using

demographic information and the most common 1000 condition/drug/procedure concepts,
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Figure 3.4: A comparison of the receiver-operating characteristic curves for the 3 mortality
prediction models submitted, trained, and evaluated using the “Model to Data” framework.
AUC: area under the curve; cdp: condition/procedure/drug.

yielded an AUROC of 0.921 (Fig 3.4).

3.3.4 Benchmarking the capacity of fixed computing resources for running predictive models

We tested the capability of running models through the pipeline on increasingly large feature

sets using 2 machine learning algorithms: logistic regression and neural networks. The models

ran under fixed computational resources: 70 GB of RAM and 4 vCPUs (a quarter of the

total available UW resources made available for this project). This tested the feasibility

of running multiple (here, 4) concurrent, high-performance models on UW infrastructure
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Figure 3.5: Runtime and max memory usage for training predictive models in the bench-
marking test.

for a community challenge. A total of 6934 of the features used for this scalability test

were selected from condition concept ids that have more than 20 occurrences within 360

days from the last visit dates of patients in the training dataset. The 2 selected algorithms

were applied to a subset of the features of 1000, 2000, 3000, 4000, 5000, and 6000 selected

condition concept ids. We used the python sklearn package to build a logistic regression

model and keras frameworks to build a 3-layer neural network model (dimension25 ∗ 12 ∗ 2).

For both models, we trained and inferred using the 6 different feature set sizes. We report

here the run times and max memory usage (Fig 3.5). While run times scale linearly with

the number of features, maximum memory usage scales in a slightly superlinear fashion.
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3.4 Discussion

In this pilot project, we implemented the MTD framework in the context of an institutional

enterprise data warehouse and demonstrated how a model developer can develop clinical pre-

dictive models without having direct access to patient data. This MTD evaluation platform

relied on a mutually agreed-upon set of expectations between the data-hosting institution

and the model developer, including the use of (1) a common data model (here, OMOP), (2)

a standard containerization platform (here, Docker), (3) predetermined input and output file

formats, (4) standard evaluation metrics and scripts, and (5) a feedback exchange mechanism

(here, Synapse). While we focused on the specific task of mortality status prediction in this

pilot study, our platform would naturally be generalizable to other prediction questions or

data models. A well-documented common data model (here, OMOP v5.0) is essential to the

successful operation of the MTD approach. This framework, however, is not limited to the

designated OMOP version, nor the OMOP CDM, and could be expanded to the PCORnet

Common Data Model [65], i2b2 [66], or any other clinical data model. The focus of the MTD

framework is to deliver containerized algorithms to private data, of any standardized form,

without exposing the data. With increased computational resources, our platform could

scale up to handle submissions of multiple prediction models from multiple researchers. Our

scalability tests show that complex models on wide feature sets can be trained and evaluated

in this framework even with limited resources (70 GB per submission). These resources,

including more RAM, CPUs, and GPUs, could be expanded in a cloud environment and
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parallelized across multiple models. This scalability makes the MTD approach particularly

appealing in certain contexts as discussed in the following sections.

3.4.1 MTD as a mechanism to standardize sharing, testing, and evaluation of clinical pre-

diction models

Typically, most clinical prediction models have been developed and evaluated in isolation

on site-specific or network-specific datasets, without additional validation on external health

record data from other sites [61]. By implementing an evaluation platform for common

clinical prediction problems, it would be possible to compare the performance of models

implementing different algorithms on the same data and to test the robustness of the same

model across different sites, assuming those sites are using the same common data model.

This framework also motivates researchers to containerize models for future reproduction.

In the long term, we envision that

3.4.2 MTD as a mechanism for enabling community challenges

Community challenges are a successful research model where groups of researchers develop

and apply their prediction models in response to a challenge question(s), for which the gold

standard truth is known only to the challenge organizers. There have been a large number of

successful biomedical community challenges including DREAM [62], CAFA [67, 68], CAGI

[69], and CASP [70]. A key feature of some of these challenges is the prospective evaluation

of prediction models, an often unmet need in clinical applications. The MTD approach
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uniquely enables such an evaluation on live EDW data. Based on our observations in this

pilot study, we will scale up our platform to initiate an EHR mortality community challenge

at the next stage, in which participants from different backgrounds will join us in developing

mortality prediction models.

3.4.3 Lessons learned and limitations

During the iterative process of model training and feedback exchange with the model devel-

oper, we discovered issues that will have to be addressed in future implementations. First, the

model developer had multiple failed submissions due to discrepancies between the synthetic

data and real data. Devoting effort toward improving the similarity between the synthetic

data and the UW data will help alleviate this barrier. Correcting differences in data type,

column names, and concept availability would allow model developers to catch common bugs

early in the development process. Second, providing manually filtered log files (filtered by

UW staff) that are generated by the submitted models when running on UW data as an

iterative process can be cumbersome. We propose that prior to running submitted models

on the UW data, models should first be run on the synthetic dataset hosted in an identical

remote environment that would allow the return of all log files to support debugging. This

would allow any major errors or bugs to be caught prior to the model running on the real

data. Third, inefficiently written prediction models and their containers burdened servers

and system administrators. The root cause of this issue was the model developer’s difficulty

in estimating the computing resources (RAM, CPU) and time needed to run the submitted
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models. We can use the same synthetic data environment as solution 2 to estimate run time

and RAM usage on the full dataset prior to running the model on the real data. Fourth, the

model developer was unaware of the data distributions or even the terminologies for certain

variables making feature engineering difficult. Making a data dictionary with the more com-

monly used concept codes from the UW data available to the model developer will enable

smarter feature engineering. The presented pilot predictive models are relatively simple.

However, the MTD framework is also compatible with more complicated machine learning

algorithms and feature engineering. Future researchers can dockerize their complicated pre-

dictive models with more advanced feature engineering and send them through our pipeline

as docker images. Our pipeline is able to execute these docker images on real data and

return scores. Model interpretation, such as feature importance scores, is also feasible under

this framework if the feature importance calculation is embedded in the docker models and

output to a designated directory in the docker container. After checks for information leak-

age, the UW IT would be able to share that information for the model developer to further

interpret their models. However, the remote nature of the MTD framework limits the op-

portunities for manual hyperparameter tuning which usually requires direct interaction with

data. Hyperparameters are model parameters predefined before the models’ training stages

(eg, learning rate, number of layers in neural networks, etc.). However, automated methods

to tune the hyperparameters work with the proposed pipeline. The emergence of AutoML,

as well as other algorithms including grid and random search, reinforcement learning, evo-

lutionary algorithms, and Bayesian optimization, allows hyperparameter optimization to be
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automated and efficient [71].

3.5 Conclusion

We demonstrate the potential impact of the MTD framework to bring clinical predictive

models to private data by operationalizing this framework to enable a model developer to

build mortality prediction models using protected UW Medicine EHR data without gaining

access to the dataset or the clinical environment. This work serves as a demonstration of the

MTD approach in a real-world clinical analytics environment. We believe this enables future

predictive analytics sandboxing activities and the development of new clinical predictive

methods safely. We are extending this work to enable the EHR DREAM Challenge: Patient

Mortality Prediction as a further demonstration.
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Chapter 4

EVALUATION OF CROWD SOURCED MORTALITY
PREDICTION MODELS ON AN ENTERPRISE DATA

WAREHOUSE USING THE MODEL TO DATA FRAMEWORK.

4.1 Introduction

Applications of machine learning applied to patient data are being widely developed and

implemented in healthcare scenarios [61, 72]. The performance of these methods as they are

used in the clinic - and their associated impact on patient outcomes - are not well under-

stood. An important risk in the design and implementation of machine learning algorithms

is the self-assessment bias, where the implementer and evaluator are the same person or

team, which can result in overfitting and poor generalization [73]. At the same time, health

systems and journals are inundated with new methods and new personalized data platforms

that are overwhelming the ability of healthcare providers to assess effective solutions. This

is further exacerbated by different business practices along with vastly different data charac-

teristics across healthcare institutions. Data can also contain hidden biases, reflecting social

and institutional biases within the healthcare system [74]. Risks of biases in medicine have

been well documented, and models built using biased data will promulgate these biases into

practice through model recommendations [74, 75]. Addressing these issues requires a rigor-

ous, unbiased framework that can evaluate algorithm performance using independent honest
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brokers, assess generalizability over time and across institutions, and report on performance

disparities across sub-populations.

Access and use of EHR data for AI research is complicated by HIPAA laws and associated

re-identification risks. To overcome these barriers to access, we have developed an approach,

”Model to data” (MTD), that delivers analytical models to protected data without sharing

the data directly with model developers [56]. We previously piloted this method on an EHR

dataset from the University of Washington and demonstrated the feasibility of accurate model

development without the model developer having direct access to the patient data [76]. This

approach has two benefits: (1) it protects patient data while allowing researchers to build

machine learning methods and (2) it forces a more standardized and transferable approach to

building models allowing the data host to perform rigorous evaluations of submitted models.

We leveraged this platform to implement the EHR DREAM Challenge: Patient Mor-

tality Prediction to broadly assess machine learning approaches applied to a clinical data

warehouse. We focused on the clinical question of predicting all-cause mortality since the

clinical phenotype is clearly defined, University of Washington merges patient records with

state death records to minimize missingness, and previous mortality prediction methods have

been developed [64, 77, 78, 79]. DREAM Challenges are crowdsourced, biomedical compe-

titions, where the challenge organizers solicit the broader research community to develop

methods to answer a specific set of biomedical questions [62], and to assess these methods

using hidden, gold standard datasets. Community challenges have proven to be a robust

setting for objectively evaluating prediction models since they remove the researcher from
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the evaluation process [67, 68, 69, 80, 70], limiting the self assessment bias [73]. In this Chal-

lenge, we asked participants to predict whether patients would pass away within 180 days of

their last visit to the UW medical system based on that patient’s previous medical history.

We evaluated these models, scoring them based on Area Under the Receiver Operator Curve

(AUROC) and Area Under the Precision Recall Curve (AUPRC).

4.2 Methods

4.2.1 The University of Washington clinical data repository

The UW Medicine enterprise data warehouse (EDW) includes patient records from clini-

cal sites within the UW Medicine system including the University of Washington Medical

Center (Montlake and Northwest Campuses), Harborview Medical Center, UW Neighbor-

hood Clinics, and the Seattle Cancer Care Alliance. In aggregate, this network comprises

more than 300 specialty and primary care clinics. The EDW gathers data from more than

60 sources, including laboratory results, microbiology reports, demographic data, diagnosis

codes, medications prescribed, and procedures performed. An analytics team at the Uni-

versity of Washington transformed the patient records from 2010 to 2019 into a standard-

ized data format, the Observational Medical Outcomes Partnerships Common Data Model

(OMOP CDM v5.0) [46]. For the EHR DREAM Challenge, we selected all patients who had

at least one visit in the UW OMOP repository, which represented 1.3 million patients, 22

million visits, 33 million procedures, 5 million drug exposure records, 48 million condition

records, 10 million observations, and 221 million measurements covering approximately 10
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years of patient histories.

Synthetic data

We derived a synthetic dataset from the SynPuf Synthetic OMOP dataset [81]. Starting

with the original SynPuf dataset we adapted it to our challenge by randomly sampling con-

cepts and terms that occurred more than 100 times in the structured EHR data from the

University of Washington OMOP repository and then populated the tables of the original

SynPuf dataset with these random samples to create a synthetic derivative that more closely

represents the UW OMOP data. We also adjusted the size of the data to match the distri-

bution of records across patients resulting in a synthetic dataset that represented 1,264,000

patients with 6300 true positives, 19,945,000 visits, and 189,605,000 measurements. This

synthetic data was available to participants for local model development and debugging pur-

poses, and was also used in the Challenge platform environment to validate that submitted

models could be successfully executed. (Figure 4.1, Stage 1)

4.2.2 The EHR DREAM Challenge: Patient Mortality Prediction

The challenge infrastructure

The EHR DREAM Challenge was developed and run using a “Model to Data” (MTD) ap-

proach [56, 76]. This method relies on containerization software (Docker) [57], a common

data model (OMOP) [46], a model intake mechanism (Synapse) [63], and a synthetic dataset

for low risk technical validation of submitted models (Synpuf) [81]. Challenge participants
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Demographic
Leaderboard Phase Validation Phase Post Challenge Resplit

Training

(n=979,184)

Validation

(n=284,883)

Training

(n=942,381)

Validation

(n=200,855)

Holdout Test

(n=168,708)

Training

(n=1,067,084)

Validation

(n=273,597)

Age (%)

0-17 6.12 6.38 6.18 7.31 6.04 5.62 9.42

18-34 23.77 22.18 23.84 24.61 20.98 22.07 29.2

35-64 46.82 45.31 46.68 44.84 45.58 47.36 41.12

65-99 22.86 26.03 22.85 23.13 27.33 24.55 20.09

100 + 0.35 0.09 0.37 0.1 0.06 0.34 0.1

Race (%)

White 54.42 64.05 54.39 62.76 66.74 58.07 53.83

Asian 8.36 10.29 8.36 10.59 9.57 8.9 8.44

Black 6.3 7.41 6.22 6.82 8.39 6.81 5.51

Other/Nan 30.93 18.25 31.03 19.83 15.30 26.22 32.22

Gender (%)

Female 52 54.2 51.92 53.82 54 52.59 51.6

Male 47.94 45.78 48.02 46.16 46 47.37 48.35

Other/Nan 0.05 0.01 0.05 0.02 0.01 0.04 0.05

Ethnicity (%)

Hispanic 5.79 6.45 5.78 6.47 7.09 5.80 7.03

Not Hispanic 50.17 77.13 49.90 75.42 80.09 56.09 63.71

Other/Nan 44.04 16.42 44.31 18.11 12.81 38.11 29.26

Mortality Status (%)

Passed 0.83 0.75 0.90 1.12 1.32 0.93 1.33

Alive 99.17 99.25 99.10 98.88 98.68 92.55 98.67

Table 4.1: Demographic makeup as a percentage of the individual data sizes across the
different versions of data used in the DREAM Challenge. All values represent the percentage
of the total number of patients in the dataset of interest. We include a 100+ category as a
standalone age category because that age range is of questionable quality. This gives some
idea to the quality of the data made available.
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Figure 4.1: ”Model to data” architecture to evaluate the performance of EHR prediction
models in the Patient Mortality DREAM Challenge. Models were developed on local en-
vironments using synthetic data that resembled the real private EHR data. Docker images
were submitted through the Synapse collaboration platform to a submission queue. Images
were pulled into the NCATS provided AWS cloud environment and run against a synthetic
dataset for technical validation (Stage 1). Once validated, images were pulled into the UW
Medicine secure infrastructure and run against the private EHR data. Model predictions
were evaluated using Area Under the Receiver Operator Curve (AUROC) and Area Under
the Precision Recall Curve (AUPRC) which were returned to participants through Synapse.
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were required to submit “containerized” models to be applied to protected data by the Chal-

lenge organizers. At no time during the Challenge did participants have direct access to real

patient data. Participants were allowed to submit pretrained models using data they already

have, such as their own institution’s clinical data warehouse. The containerized algorithms

submitted by participants were able to use a training split of the UW dataset to train a

predictive model de-novo, or to further optimize a pretrained model. To enable model de-

bugging prior to evaluation on real clinical data, submitted models were first applied to the

synthetic data to check for technical compliance (Figure 4.1, Stage 1: Model Validation).

Log files generated by the models in the synthetic data environment were returned to par-

ticipants for technical debugging purposes. Following successful execution on the synthetic

data, the models were pulled into a University of Washington secure environment that was

disconnected from the internet where they were trained on the UW OMOP repository. The

UW OMOP repository did not contain patient identifiers. The models had no access to

the internet during training and evaluation. (Figure 4.1, Stage 2: Model Evaluation) The

trained models were tested on a holdout set and the Area Under the Recall Curve (AUROC)

and Area Under the Precision Recall Curve (AUPRC) were returned to participants via the

Synapse platform. No logs, model parameters, or other information other than the perfor-

mance metrics, were returned to participants after models were applied to the UW patient

repository. Participants were allowed a total of 10 hours to train and test their models in

this environment. The models were run on a server environment with access to 70 GB of

RAM, 32 2.3 GHz CPU cores and no GPUs during this process.
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Challenge Question

For this challenge, we asked participants to predict the 180-day all-cause mortality from the

last patient visit at UW Medicine. True positives were defined as patients who had a death

record in the first 180 days of their last visit record and true negatives were defined as patients

who either had a death record more than 180 days from their last visit, or who did not have

a death record. Death records were derived from the medical record and Washington State

death records.

Timeline

The EHR DREAM Challenge lasted from September 9, 2019 to February 23, 2020 and

was conducted in three phases: the open phase, the leaderboard phase, and the validation

phase. During the open phase, participants could submit models for technical validation

using only synthetic data in the Challenge cloud environment (Figure 4.1, Stage 1). During

the leaderboard phase, technically validated models were applied to the leaderboard training

data and evaluated against the leaderboard validation data (Table 4.1). We carried out this

phase in 3 rounds, where each team was allowed 3 successful submissions per round. During

the open and leaderboard phases, new data accumulated in the UW EHR. We gathered this

data (called the “holdout test data”) which represented patients who visited UW medical

facilities during 2019. For the validation stage, models were trained on the leaderboard

training data (excluding the patients transitioned to the holdout test data) and tested on

this new prospectively-collected data. Scores generated from this holdout data were used to
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create final team rankings.

4.2.3 Model evaluation

Challenge Evaluation Metrics

The Area Under the Receiver Operator Curve (AUROC) was used as the primary metric for

assessing model performance. A Bayes Factor, K, (bootstrapped distributions n = 10,000)

was computed to determine if the AUROCs between two models were consistently different.

If two models were found to have a small Bayes Factor (K < 19), we used the Area Under the

Precision Recall Curve (AUPRC) as a tie-breaking metric. Both the AUROC and AUPRC

were computed for all submissions and were used to rank teams on the Challenge leaderboard.

Re-split Data Validation

During the challenge, we used the validation phase holdout test set to build a final ranking

of model performance. This holdout set only contained patients who appeared in the UW

medical system in 2019. This left a 6-month longitudinal gap between the training data

and holdout test data containing the leaderboard validation data which was not used in the

final model scoring. We combined all the datasets (training, validation, and holdout test)

and re-divided the dataset into an 80/20 split between training and testing data using the

same prospective splitting method we used to split the initial leaderboard data. We trained

the models on the 80% training data and evaluated the trained models against the 20% test

data. This allowed us to compare the effect of the 6-month gap on model performance.
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Subpopulation Accuracy Comparison

We evaluated model performance across various subpopulations which were defined by dif-

ferent demographic or clinical features including race, gender, ethnicity, age, and type of last

visit. We compared model accuracy for each subpopulation against the accuracy of every

other subpopulation within the same demographic or clinical group, calculating a paired

Bayes Factor to evaluate the magnitude of accuracy differences. We ran this experiment on

the prospectively gathered validation phase data.

4.2.4 Model Features

The top 5 performing teams were asked to output a list of features with accompanying weights

in order to assess which features were most important in their models. We gathered a list of

information that included the name of the feature, the “concept id”s that were used to build

those features, along with a weight or score that indicated the impact of that feature. Using

these feature importance metrics, we randomized or removed the highest impact features

from the prospective validation phase data and re-evaluated all the models, assessing the

impact each feature had on each of the models. Feature importance was calculated as the

percentage decrease in model performance, where 0% decrease meant there was no decrease

in model performance and 100% decrease meant the model performance had decreased to

0.5 AUROC.
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4.3 Results

The EHR DREAM Challenge on all-cause patient mortality prediction was held between

September 9, 2019 and February 23, 2020 and resulted in 132 successful submissions from 25

teams over the course of the challenge. The overall design and workflow of the challenge is

shown in Figure 4.1. Table 4.1 presents the training, validation, and holdout testing data sets

that were used across the leaderboard and validation Phase. The validation phase training

data contained 942,381 patients while the validation phase holdout testing data contained

168,708 patients, with mortality rates of 0.90% and 1.32% respectively. (Table 4.1)

During the leaderboard phase, of the 25 successfully validated models, ten teams exceeded

AUROC > 0.9. AI4Life led the leaderboard phase - achieving an AUROC = 0.979 (0.977,

0.981) and AUPR = 0.614 (Table 4.3). In the final validation phase, 15 teams submitted suc-

cessfully validated models, with three teams achieving an AUROC > 0.9 (Table 4.3, Figure

4.2). The top performing team, UW-biostat, achieved an AUROC=0.947 (0.924,0.952) and

an AUPR=0.478. Between the leaderboard and validation phases, the average decrease in

AUROC was 0.069 with the top 5 models decreasing by an average of 0.024 and the bottom

8 models decreasing by an average of 0.10. The top 5 models from the validation phase were

ranked second, third, 11th, 10th, and 7th respectively at the end of the leaderboard phase

but were ranked in the top 5 due to having the lowest decrease in performance.

Teams used a variety of machine learning techniques in their submitted models. Of the

15 validated models, 12 were boosted methods (LightGBM [82], XGBoost [83], CatBoost
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Figure 4.2: The Receiver Operator Curves and the Precision Recall Curves from all the
models submitted in the validation phase. The top 5 models were not the top 5 models in
the evaluation phase, but were more robust to longitudinal changes in the data. AUROCs
and AUPRCs are reported in Table 4.3 for the leaderboard data, validation data, and the
Resplit data. Comparison of leaderboard phase to validation phase scores are found in Figure
4.4.
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Leaderboard Phase Validation Phase Post Challenge Resplit
Team

AUROC AUROC 95% CI AUPR AUROC AUROC 95% CI Delong p value AUPR AUROC AUROC 95% CI AUPR

UW-biostat 0.972 (0.969, 0.975) 0.524 0.947 (0.942, 0.951) 1.70E-04 0.478 0.964 (0.961, 0.967) 0.43

Ivanbrugere 0.968 (0.964, 0.971) 0.474 0.938 (0.933, 0.942) 1.96E-07 0.3 0.956 (0.953, 0.96) 0.409

ProActa 0.943 (0.937, 0.948) 0.458 0.91 (0.903, 0.918) 2.84E-03 0.383 0.904 (0.898, 0.91) 0.43

AMbeRland 0.942 (0.937, 0.947) 0.288 0.897 (0.89, 0.903) 4.18E-02 0.163 0.929 (0.924, 0.934) 0.284

DMIS EHR 0.915 (0.91, 0.92) 0.111 0.887 (0.88, 0.89) 5.95E-02 0.093 0.939 (0.936, 0.943) 0.347

PnP India 0.958 (0.954, 0.963) 0.449 0.876 (0.87, 0.883) 1.26E-01 0.182 - - -

ultramangod671 0.882 (0.874, 0.891) 0.289 0.865 (0.856, 0.875) 2.45E-03 0.264 0.868 (0.86, 0.876) 0.37

HELM 0.951 (0.948, 0.955) 0.323 0.842 (0.834, 0.85) 5.65E-01 0.135 - - -

AI4Life 0.979 (0.977, 0.981) 0.614 0.831 (0.82, 0.841) 5.28E-01 0.302 0.971 (0.969, 0.974) 0.63

Georgetown - ESAC 0.938 (0.933, 0.942) 0.168 0.839 (0.832, 0.848) 1.64E-02 0.073 0.938 (0.933, 0.941) 0.272

LCSB LUX 0.956 (0.952, 0.959) 0.307 0.82 (0.81, 0.829) 8.41E-01 0.116 0.936 (0.932, 0.94) 0.201

QiaoHezhe 0.925 (0.92, 0.93) 0.16 0.819 (0.81, 0.827) 2.92E-01 0.073 - - -

chk 0.903 (0.896, 0.908) 0.159 0.808 (0.8, 0.817) 1.38E-05 0.062 0.811 (0.804, 0.818) 0.061

moore 0.955 (0.951, 0.958) 0.313 0.771 (0.757, 0.784) 9.51E-45 0.122 0.947 (0.943, 0.95) 0.377

tgaudelet 0.904 (0.898, 0.91) 0.278 0.807 (0.798, 0.817) 0.201 0.158 (0.151, 0.166) 0.007

Table 4.2: Top 15 teams and the metrics for their highest performing models. 95% confidence
intervals were calculated using bootstrapped (n=1000) distributions. The Delong test p
value was generated by comparing each team’s model with the team’s model ranked below
them. Leaderboard phase scores were generated using the models submitted during the final
validation phase.

[84], Generalized Boosted Regression [85]), 2 were logistic regression, and 1 was a neural

network. Of the top 5 models, 2 were LightGBM, 1 was logistic regression, 1 was CatBoost,

and 1 was Generalized Boosted Regression. Each model used a different feature selection

method ranging from randomly sampling all available concepts (Team IvanBrugere), carefully

selecting a few features from the literature (Team LCSB LUX), and using the structure of

the concept ontologies to roll up low-level granular concepts into broad categories of disease

and drugs as features (Team UW-biostat).
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4.3.1 Top performing model

While UW-biostat’s (University of Wisconsin-Madison, Biostatistics and Medical Informat-

ics) model was not the highest scoring model during the leaderboard phase, their model had

the highest score for the validation phase and had the smallest decrease in performance of any

model between the two phases. The team used ontology-rollup to reduce feature dimension-

ality and used time binning and sample reweighting to capture longitudinal characteristics.

For model development, they trained and tuned a LightGBM model to predict the mortality

risk of each patient. To take into account potential data drift in EHRs [86, 87, 88, 89], the

team upweighted more recent patients during optimization and training of their model. In

order to validate the model’s “future-proof” ability, they ordered the labeled patients by

their last visit date from recent to early and used the top 15% of patients for validation.

4.3.2 Demographic Evaluation

To assess whether models generalized across patient subpopulations, we evaluated model

accuracy across multiple demographic and clinical groups including race, gender, age, eth-

nicity, and last visit type. We generated bootstrapped distributions (n = 10, 000) for each

category in each model and ran paired permutation tests, calculating Bayes factors to assess

the level of evidence for performance differences between subpopulations.

Models were consistently more accurate on Asian patients when compared to any other

racial group (Figure 4.3, Table 3), despite Asian patients only making up 8.4 percent of the

validation data and 9.6 percent of the validation phase training data (Table 4.3). Methods
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Rank UW-biostat IvanBrugere ProActa AMbeRand

1 Age Not for resuscitation Age Age

2 Average pulse Temperature Creatinine in Serum Not for resuscitation

3 Average Diastolic Blood Pressure Albumin in Plasma Heart rate Antineoplastic chemotherapy regimen

4 Average Systolic Blood Pressure History of clinical finding in subject Inpatient Visit Lactate dehydrogenase (LD), (LDH)

5 Latest Systolic Blood Pressure value Natriuretic peptide B [Mass/volume] in Serum or Plasma Blood typing, serologic; ABO Administration of antineoplastic agent

6 Year of last visit Racial Variable (White) Palliative care Patient encounter procedure

7 Latest pulse measurement Antineoplastic chemotherapy regimen Albumin in Plasma Secondary malignant neoplasm of lung

8 Latest Diastolic Blood Pressure Value Protein in Plasma Hematocrit of Blood by Automated count Disorder of lung

9 Latest Glucose measurement Heart rate Neutrophils/100 leukocytes in Blood by Automated count Dexamethasone

10 Indicator: Unknown conditions Essential hypertension Cholecalciferol Bacterial culture

Table 4.3: The top 10 weighted features as reported from the top 4 performing teams.
Features were ordered by their model weight and assigned a rank out of all available features.
Feature names were either reported by the teams or were mapped using the OMOP concept
table from the reported concept ids.

varied in their accuracies for other races with some models (e.g. UW-biostat, IvanBrugere,

Proacta, AMbeRland, DMIS EHR) scoring higher on White patients compared to Black pa-

tients, and others scoring higher on Black patients than White patients (PnP India, HELM,

Georgetown-ESAC, AI4Life) (Figure 4.3, Table 3).

Without exception, models were more accurate on female patients than on male patients

with Bayes factors greater than ten (strong evidence) for nine of the top 15 models (Figure

S4). As the challenge asked participants to predict mortality status 180 days from the last

visit, we examined whether there were differences in model performances based on whether

the last visit was inpatient, outpatient, or an emergency room visit. Most models had

lower accuracy when the last visit was an outpatient visit, with the exception of 3 models

(ultramangod671, Georgetown - ESAC, AI4Life in Figure 4.4). On patients where the last

visit was an emergency room visit, models showed a wide variety of accuracies. In a few

cases, models that had an overall lower model accuracy had higher accuracies on patients in

the emergency room (compare ProActa to PnP India in Figure 4.4).
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Figure 4.3: Bootstrapped distributions (n = 10, 000) of the top 10 model AUROCs broken
down by race. Model predictions were randomly sampled with replacement and scored
against the benchmark gold standard. Comparisons were made between each category of
race and Bayes values calculated to assess the level of evidence for the model having a higher
accuracy on racial category compared to another category. The heat maps represent the log
of the calculated Bayes factors when comparing racial groups within each model. The darker
the red, the stronger the evidence for the racial category being higher than the comparison
category. Bayes factor values range from 10000 to 0.0001. The darker the blue, the stronger
the evidence for the racial category being lower than the comparison category. The color
scale is normalized across all comparisons.
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Figure 4.4: Bootstrapped distributions (n = 10, 000) of the top 10 model AUROCs broken
down by the last visit type of the patients. The visit types evaluated were Inpatient Visits,
Outpatient Visits, Emergency Room visits.
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4.3.3 Assessment of important features

The top five highest scoring teams were asked to adjust their dockerized models to output

their trained features as a list of codes/values with associated weights from their trained

models. In order to compare features across models, these teams reported which terms

(SNOMED, RxNorm, LOINC, etc.) were used during any feature engineering and submitted

brief descriptions of those features. All teams implemented a form of dimension reduction

to operate in a far smaller modeling space than the 1.2 million unique granular concepts

available in the UW dataset. Team UW-biostat derived 1405 weighted features from 1.2

million unique granular concepts; Team IvanBrugere used 1479 weighted features represent-

ing 1479 unique granular concepts; Team Proacta used 224 weighted features representing

22,934 unique granular concepts; Team AMbeRand used 35 weighted features representing

35 unique granular concepts; and Team DMIS’s model used a Principal Component Analysis

to generate principal components as features for their trained model. We were not able to

reliably extract feature importance from their model due to the nature of their model and

due to the current limitations of the ”Model to data” infrastructure.

The top four teams were able to successfully extract the features and weights from their

models and output them into a human readable file. Table 3 reports the top 10 features of

each model, including engineered features (i.e. presence or absence of a category of diagnosis

or drug) and raw concepts from the data (i.e. granular SNOMED or LOINC codes). Some

of the highly weighted features included the age of the patient at their last visit, systolic

and diastolic blood pressure, heart rate, and a code for Do Not Resuscitate. The impact
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of the highest weighted features was evaluated across all methods by either randomizing or

removing features from the validation phase holdout test set. Figure 6 graphs the effect

of these experiments as a percentage decrease in model performance. Age was the most

important feature in most models, with the highest impact representing a 49% decrease in

model performance for QiaoHezhe. While the code for “Not for resuscitation” was among

the more highly weighted in the feature reporting, it was the most impactful feature in only

one model, decreasing ultramangod671’s model performance by 20%, and only causing a 3%

decrease in IvanBrugere’s model and a 2.3% decrease in AI4Life’s model.

4.4 Discussion

Data-driven, machine learning models are increasingly regarded as foundational to any pre-

cision medicine strategy. The assessment of model accuracy and utility in a healthcare

environment is challenged by lack of resources to rigorously evaluate models, limited data

availability, concerns about breach of protected health information confidentiality, and lack of

infrastructure to manage model evaluations. We proposed and implemented an architecture

for an unbiased and transparent assessment of methods that overcomes those limitations, and

in doing so were able to improve existing methodology. We demonstrate how community

challenges can provide an inclusive and rigorous environment for hosting a multisite machine

learning clinical trial.

Using the ”Model to data” framework, 25 international teams were able to submit ma-

chine learning models to a private clinical dataset that otherwise would have remained in-
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accessible to these researchers. This was enabled by leveraging a common data model,

in this case OMOP, a synthetic dataset for technical development and validation, a cloud

environment hosting the synthetic data for pipeline and execution evaluation, standard con-

tainerization software, and a secure environment hosting the private clinical data.

For the first EHR DREAM Challenge, we asked participants to predict 180 day mortal-

ity status of patients in the University of Washington clinical records. We chose all-cause

mortality prediction since clinical records can be linked to state death records, yielding a

more complete gold standard. However, this prediction question is not immune to censoring,

and is still susceptible to an open world limitation as some patients may die out of state or

outside UW clinical care without the ability to map their death to UW clinical records[88]].

Another limitation, as shown both in the selected features (Table 3) and in model accuracy

across last visit type (Figure 4.4) , is that all-cause mortality is not a clinically actionable

question, as models trained for all-cause mortality are not specific enough for clinical action.

Given that some of the highlighted features used to predict death included age, palliative

care, designation for do not resuscitate, and treatments or diagnoses of cancer (neoplasms),

many of the models developed in this challenge were identifying the most obvious patients in

the UW population. However, the highest performing model was assigning the most weight

on specific measurements and their values, not just the presence or absence of a measurement

or condition, and was utilizing the hierarchical design of the available biomedical ontologies

to “roll up” low level granular codes, which does point to the fact that the ”Model to data”

framework can be used in concert with intelligent feature engineering and selection.
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Assessing a wide variety of methods from teams allowed us to evaluate the best approaches

and assess inter-method variability when holding the evaluation data constant. Interestingly,

even though models were trained and evaluated on the same data, there was variance in model

accuracy across different demographic groups. White, Black, and other racial groups showed

differences across models, with some models scoring higher on Black patients than White

patients and vice versa, while Asian patients were consistently more accurate across nearly

all models. This may have to do with the cause of death, as prevalence of different causes

of death may vary between different populations. Unfortunately, we did not have access to

cause of death data at the time of this analysis. With the exception of the 0-17 age group,

method accuracy was inversely correlated with age (Figure A.3). Younger patients who pass

away in 180 days and are coming into the hospital are more likely to have extreme conditions

and have a higher risk of death, while older patients are simply more likely to have diseases

and health problems in general, making it more difficult to predict risk of death. Models

also had varied accuracies from the last visit type, highlighting the need to develop context

specific clinical prediction algorithms, although the two most accurate models were still more

accurate on outpatient visits than all other less accurate models (Figure 4.4). In other cases,

models were aligned in their bias, universally scoring higher on females than males (Figure

(A.2)). We found no meaningful difference in model accuracy between Hispanic versus Non-

hispanic ethnicity. (Figure A.1).

Evaluating models in a pseudo-prospective manner allowed us to assess how models would

perform over time in the UW environment. We found that most models decreased in perfor-



70

Figure 4.5: Comparison of model performance between the leaderboard phase and the valida-
tion phase. All models decreased in AUROC except for HELM while many models increased
in AUPRC. The top 5 team AUROCs decreased the least between the two phases.

mance in the validation phase when compared to the leaderboard phase (Figure 4.5). This is

in line with the literature, as previous studies have shown that the utility of clinical data can

have a half-life of as little as three months [89]. Comparing results from the post challenge

resplit data to the validation phase final results, the majority of models performed better

when the training data was longitudinally closer to the test data (Table 4.3). UW-biostats

explicitly down weighted older data and relied more heavily on the most recent 6-months of

data in the training dataset resulting in their model having the lowest decrease in perfor-

mance of any model. By combining this technique with their “roll up” feature engineering,

UW-biostat’s model proved to be the most robust against longitudinal changes and concept

drift. In contrast, some models dropped by a significant margin. For instance, AI4Life’s
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model was among the most accurate during the leaderboard phase, but dropped to tenth in

the validation phase (Table 4.3). While it is difficult to completely account for their drop,

one possible explanation is their overall lower accuracy on first time visiting patients (Figure

A.4) combined with the increase of first time visitors in the validation data (leaderboard

data - 13.8% compared to validation data - 19.7%). AI4Life’s model had a high score on the

resplit data, indicating that their model was susceptible to concept drift as well. Evaluating

models prospectively or pseudo-prospectively evaluates models in the manner in which they

will be used. Assessing models on prospective hold out data ensures that we understand how

the models will perform in a live clinical setting.

4.4.1 Limitations

For this challenge, we set a submission limit of 10 hours for both the training and testing

stages of model runtime. While this was implemented to limit the burden to the University

of Washington secure servers, this also limited the types of models participants were able

to build and excluded deep learning or more sophisticated, time consuming models. How-

ever, limiting the time also forced participants to carefully consider the efficiency of their

algorithms so extraneous calculations or operations were not run.

Training and evaluating on data from a single site limited our ability to control for

overfitting. While we did prospectively evaluate models on a future holdout set to try

and control for overfitting, evaluation on data from one site does not properly assess model

generalizability. For future assessments, we hope to partner with other hospitals to externally
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validate models.

4.5 Conclusion

Machine learning promises to enhance patient care and improve health outcomes; however,

if not properly vetted and evaluated, risks and negative effects may be introduced. These

risks include breach of privacy in the development and assessment of methods, inaccuracy

or methodological bias when deployed, and the graduate loss of accuracy over time as data

and business practices change. This study highlights these challenges by showing that while

highly accurate methods are possible, even methods from the best of the best data scientists

have considerable variability and that variability (such as differences in accuracy based on

race or gender) may not be detectable from high level measures such as AUCs or accuracy.

Our framework enables this assessment and also brings the community challenge culture

to private datasets, in this case data that is subject to the HIPAA privacy rule. Further,

machine learning methods may be able to address some causes of treatment disparities but

may cause others for patients without rich longitudinal data, patients of certain races, gender

or age. Based on these results, we believe that multisite standardized architecture is required

to truly assess new methods and that independent oversight is required in their assessment.
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Chapter 5

ENABLING PATIENT-DRIVEN RESEARCH TO PROMOTE
PRECISION MEDICINE USING THE
REDCAPTOWORDPRESS PLUGIN

5.1 Introduction

5.1.1 History of Direct Patient Interaction Approaches in Medical Research Study

Patient involvement in tailored research may become more important as we move toward

personalized medicine. Patient-driven research is when the subjects or community in a

research study take an active role in the research project design or implementation [90].

Studies have shown that patient-driven research increases the levels of participation and the

amount of data gathered by the study, leading to higher success rates of the studies [91, 92].

This research method has recently gained traction in the medical research community as a

way to engage patients in the research process. The major focus has been on rare diseases,

where it can be difficult to recruit large cohorts for randomization, and n-of-one insights

may impact medical care [93, 94, 95, 96, 97]. Many studies work with rare disease advocacy

groups who have already built up a community and a pool of funds [98, 99, 100]. Patient-

driven studies and patient registries rely on varying levels of patient involvement and could

benefit from improved methods of communication between patients and researchers.
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5.1.2 Overview of developed data capture platforms

Gathering data from patients generally requires a data capture platform, since patients are

often immobile, or are spread across the country or the world. Web-based platforms have

been developed to gather and manage patient generated data. The RUDY (Rare UK Diseases

Study) study platform was developed as a way to handle patient enrollment, consent, and

data capture for patient-driven research of rare diseases.[101] The platform also enables two

way communication between the researcher and the patient. While RUDY does address the

dispersed patient data capture question, the adaptability of the platform to other research

questions is limited. At the time of this writing, no downloadable application was available,

and, as far as we can tell, the skills necessary to adapt the platform to address new variations

of patient-researcher interaction would be beyond those of the average biomedical researcher.

5.1.3 REDCap data capture platform

The Research Electronic Data Capture (REDCap) application is a popular data capture

platform that, at the time of this writing, has over 600,000 users and 480,000 projects across

over 2700 institutions around the world.[102] REDCap is an online research management tool

designed to facilitate data capture (e.g. surveys, experimental results, etc.), data analysis,

and secure data storage ensuring a HIPAA compliant environment. While not specifically

designed for patient interactions, REDCap offers the flexibility to tailor the data capture tools

while having an extensive API that allows external application development and integration.

REDCap is a useful tool for data management in terms of security and analysis; however,
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it does not lend itself to acting as a secure study patient portal. The user management

system is designed for administrators of the study and can only display researcher views, not

study participant views. REDCap’s API has allowed it’s use to be extended in projects such

as the R package redcapAPI [103] and the python wrapper PyCap [104]. These extensions

have been focused on researcher use and data analysis, and to date, no application that

makes use of the API has used it to develop a patient portal.

5.1.4 Patient-Driven Research Requires a Patient Portal

The focus of most patient-driven research in medicine has been on rare diseases. However,

many of these different projects have been more focused on enrolling patients for studies

and then linking them to researchers, not enabling patients to actively participate in their

own research study implementation. These projects are generally described as “registries”

for different rare diseases, and are seen as a source for cohort discovery for studies and

clinical trials [101, 105, 106]. Many of these registries follow the Rare Disease Registry

Framework (RDRF), which implements a modular approach to data collection [107]. These

solutions, however, are more researcher and research administrator focused. The patient-

driven research framework offers a way for patients to take control of the research for their

own conditions. While rare disease registries are useful for linking patients with researchers,

these are not sufficient for returning information to the patients. Many studies will need

informatics solutions that facilitate study progress updates, return of results, and patient

data editing and validation.
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5.1.5 The FindMyVariant Study Overview

FindMyVariant is a study helping individuals, who in the course of their medical care have

had genetic variants of uncertain significance (VUS) identified, find more information about

the VUS that has been identified. As clinical genetic sequencing has become more common,

an increasing number of patients have had a VUS identified. When a new, family-specific

variant is identified it is often classified as a VUS because there is not sufficient information

to determine if it is associated with disease. Understanding the clinical importance of VUS is

important to patients and families as VUS may increase patient anxiety and lead to improper

medical treatment [108, 109, 110]. Family analysis, including cosegregation analysis is a

strategy to find information about specific VUS. If a VUS is reclassified, this can lead to

appropriate prevention and treatment [111].

Several clinical diagnostics laboratories perform family analysis for selected families [112],

but building pedigree information, contacting, consenting, genotyping multiple relatives, and

performing statistical analysis requires substantial research time and resources. FindMy-

Variant is a unique family analysis study, as it focuses on patients taking charge of pedigree

building activities. Each variant analysis is patient-initiated as patients contact the study di-

rectly after they have received a clinical report with a VUS. Patients who are motivated and

able to carry out the family member recruitment are enrolled, with the research team acting

as a consultant, performing genetic sequencing, and conducting statistical analysis. After

the patient contacts the study, the study provides education on relevant research rationale

and methodology (findmyvariant.org), access to genotyping, and statistical expertise.[112]
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The patient-driven framework distributes the time-consuming work of gathering information

relevant to building pedigrees to those with intimate knowledge of their family dynamics.

Study genetic counselors transcribe a pedigree as dictated by the patient. Patients invite

family members to participate, and the study sends out genotyping kits to relatives. Geno-

type results are used in family cosegregation and other analyses. All results are returned

directly to participants as directed by the individual participants’ or relatives’ consent for

their own data sharing. The ultimate reclassification results are related to the patient’s and

their family’s medical care as variant classification is likely to benefit patients and relatives.

This patient-driven process generates many more tested relatives than researcher-driven re-

search processes with the same goal (manuscript in preparation) and is well accepted by

patients (manuscript submitted) and their relatives (manuscript in preparation).

5.1.6 Objective

Originally, all the data collected by the FindMyVariant patients and the findings by the

researchers were shared over the phone and through email. We needed a new interface to

enable direct patient data input into the research REDCap project, as well as an interface

to report research progress and return of results. The objective of the study was to develop

a WordPress [113] plugin that would integrate the adaptability of the REDCap data capture

platform with the ease of use and intuitiveness of WordPress. The REDCapToWordPress

plugin needed to enable intuitive data entry into the REDCap project, keep control of the

user signups in the hands of the researcher, and ensure security and privacy of the patients.
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We demonstrate the feasibility of REDCapToWordPress in the FindMyVariant study and

show that the two, user-friendly and established platforms can be adapted for patient-driven

research.

5.2 Methods

5.2.1 WordPress Plugin for Enabling Patient Access to REDCap

Findmyvariant.org was a static informational website developed in WordPress using the

Themosis framework [114]. We developed a WordPress plugin that would display patient

data from the REDCap study project and allow the participant to edit and view existing data

and enter new information directly into the linked REDCap project, without having to log

into REDCap as a user. We developed the plugin using HTML, CSS, JavaScript, and PHP.

Our plugin manages user signup, user sessions, and will display both an administrator view

for controlled participant enrollment and a participant view for reading and editing select

study information. The source code for the plugin is available under an open source license

in our GitHub repository (https://github.com/UWMooneyLab/REDCapToWordpress).

5.2.2 REDCap survey as a data collection tool

We use a developed, HIPAA compliant data storage system (REDCap), and designed the

patient portal to interact with REDCap’s Application Programming Interface (API) using

the built in functionality of the REDCap survey to facilitate data input by the study partic-

ipant. REDCap surveys are generated on top of existing REDCap project records and will
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take participant answers and directly input them into the REDCap project. Surveys can be

customized to hide certain variables from the end user (e.g. Genetic test results of relatives),

allowing the researcher to ensure private data protection. Normally, surveys are for one time

use and are not designed to facilitate repeat returns to the form to edit information. Options

are available to enable returns, but a unique link to the survey and a return code must be

stored to make this happen. Generally, the onus is on the end user to keep track of this

information; however, in building our patient portal, we designed the system to facilitate

easy returns to the survey forms, doing the heavy lifting of tracking and storing pertinent

return information by linking the information to the secure patient portal accounts in the

WordPress site.

5.2.3 Linking the user to the REDCap record

In order to the link the patient user to their REDCap record, we stored the user’s email in

a custom two-column database table that links the unique email to the patient’s REDCap

record ID number. By default, WordPress needs the user email to make accounts, so using

the user email allows seamless integration into WordPress. When the patient logs in, the

email associated to their account is used to collect their study information from REDCap.

5.2.4 Information Flow and Security

Using the REDCap API, we were able to retrieve the patient record study variables that

were entered by the researcher or the patient, and display them through the patient portal.
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In order to pull data from a REDCap project, a unique token is used to identify users who

are requesting access through the API. The disadvantage of this system is that anyone who

has this token can access all data from the project and is not limited to individual records;

thus, protecting this token is paramount to ensure security.

To address this problem, we handled all the API calls through a “middleman” server

that acted as a risk limiting mediator, running a python Flask API application. The RED-

CapToWordPress plugin queries the middleman with the current user’s information. The

middleman uses the user info to narrow down which records and variables are appropriate

for the user to view, removing all other extraneous data, then returns a JSON object of the

viewable data to the website. The token to access the REDCap project is only stored on the

middleman server and the middleman server is only accessible from the website. (Figure 5.1)

By limiting the flow of data to the bare minimum number of variables, we have designed the

system to minimize the risk of data compromise to individual records rather than the whole

project.

5.2.5 Application for University of Washington IRB approval

We applied for IRB approval to share FindMyVariant study data with the participants. This

data sharing would include both their own data as well as their family information. We were

allowed to share relative information with the main participant as long as the relative gave

written consent. The IRB study request was approved by the University of Washington IRB.
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Figure 5.1: Diagram of the security protocols using the middleman server. Using the middle-
man as a secure token storage mechanism enables mitigating the risk of a bad actor gaining
access to the REDCap project. The Flask API also allows all non-essential variables to be
removed from the JSON object that is returned from the REDCap project. ITHS is the
Institute of Translational Health Sciences at the University of Washington and manages IT
for research with medical data at the University of Washington.

5.3 Results

The WordPress plugin we developed is currently being used by the FindMyVariant cosegre-

gation analysis study to enroll and manage patients and their families.

5.3.1 Administrator Workflow

While the plugin has the ability to allow study participants to sign up for the research,

the FindMyVariant study has very specific criteria for who can sign up for the research.

Since administrator controlled signup is essential, our implementation controls access to the

signup page by limiting viewing permissions to users with admin access. The sign up page

allows registration of an individual using their email, first name and last name. (Figure
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Figure 5.2: Administrator view of the FindMyVariant study website. Registration of new
participants is made easier in this setup by automatically creating a record in REDCap and
entering the tracking information into the local database. The new users receive an email
with a link directing them to reset their password.

5.2) The RecordID field is optional depending on whether the administrator has created a

REDCap record for the family. Registering participants on this page will create a new record

in REDCap for this participant (or link to an existing record if RecordID is filled in). The

new participant will receive an email with a link to create their password and to access their

new account. The plugin stores the email and record id on the web server as a link to the

newly created REDCap participant record.

5.3.2 Participant Workflow

After the new participant changes their password, they will be able to access their account

which will import their data from their record in REDCap. The WordPress plugin will display

the participants’ personal information, relative’s information (if they or the coordinator have
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Figure 5.3: Patient portal interface. This interface retrieves data from the REDCap record
linked to the user email and displays participant’s information, relative’s information, what
percentage of the spit kits that were sent out have been returned, what percentage of the
spit kits received have been tested, which relatives have been contacted about participating
in the study and the pedigree of the family with genetic results. Links to edit the relative
information take the user to a REDCap survey.

entered it), the status of the sample kits and the final pedigree once the study is complete

(Figure 5.3). The user has the option to add new relatives or edit existing ones. The link to

add new relatives will create a new form in the participant associated REDCap record and

take the user to a REDCap survey where they can enter the relative information (Figure

5.4). The links to edit existing relatives take the user to the previously mentioned survey

where they can edit the information.
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Figure 5.4: Snapshot of the survey through which patients can edit or enter their relative’s
contact information. This survey form enters the information directly into the patient’s asso-
ciated REDCap record and also allows them to return later and edit any of the information.

5.3.3 Return of Results

We use the patient portal as an interface to return study results to the patients. Once all

the information has been collected from the patients and the relatives, certain fields in the

REDCap project are returned as study results to the patients. Designated fields in REDCap

allow the researchers to deposit the results of the cosegregation analysis; the deposited results

are shown to the patient in the patient dashboard. The patients take the results returned

from the study and share them with their families.

5.3.4 Patient Use

Since the implementation of the patient portal, 32 new families have joined the FindMy-

Variant study, with 13 (41%) of them choosing to use the patient portal for data entry and
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receiving study results. As of this writing, none of the families who have used the patient

portal have had their VUS re-classified, since patient-driven VUS reclassification can take

anywhere between 6-12 months to complete; however, these patients have used the portal to

input family data with little to no complications or complaints. Once testing of the partic-

ipant samples begins, it is difficult to track how patients use the patient portal. From May

15-July 16, 2018, there were 92 views of the account page on FindMyVariant.org. Using sim-

ple tracking methods, we also know that 3 unique patients were actively involved in editing

their information between July 12th and July 16th.

5.4 Discussion

We developed a WordPress plugin that enables researchers to easily build and link a Word-

Press page that integrates REDCap research data into a patient portal. Other platform

options are limited in adaptability and scope. The REDCapToWordPress plugin allows an

established, well documented, and adaptable web development platform to be integrated

with a widely used research data capture platform. The skills needed to customize the pa-

tient portal are limited to a basic knowledge of HTML and CSS which is more manageable

than needing an understanding of systems and database engineering. Now more researchers

can harness the power of patient-driven research, and unlock the potential of their research

subjects.
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5.4.1 IRB Concerns and Return of Results

In the FindMyVariant study, the new classification of the VUS is returned to the patient,

who can choose to share the VUS with the family. While FindMyVariant does not give

medical advice on how to treat and deal with the new VUS classification, the new informa-

tion is normally taken by the patient to a genetic counselor or physician who works with

the patient to adjust their care as appropriate. Every variant that is reclassified has clinical

actionability. This is important since previous research has found that patients and com-

munities are positively impacted by the return of genomic test results if the findings are

clinically actionable [115, 116], and while heavily debated, it has been recommended that

results from genetic research studies be returned only when they are clinically actionable to

the patient [117, 118].

During the IRB application process for the FindMyVariant patient portal, a concern was

raised over this issue of return of results to patients. What if a relative did not want the

knowledge that they had the VUS returned to other family members? FindMyVariant solved

this issue by allowing relatives to choose to give their written consent for one of three options:

they can have their results returned to the family member who invited them to participate

regardless of the results, they can choose to view the results first before they are returned,

or they can choose to not have the results returned at all. The individuals maintain control

of their genetic information. The information available to the family coordinator is entirely

managed by the research team who has complete control over which data is entered into

the patient visible fields in REDCap. For some data elements, new REDCap record fields
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were created for confidential information to make the REDCap database compatible with

differing relative preferences for data sharing. From the patient perspective looking at the

patient portal, they are not able to tell whether someone has opted out of the study, or how

many sample collection kits have been sent out or returned. We reported the percentages

of the study progress for the purposes of protecting relatives choices if they choose to opt

out of the study. It may be possible for a patient to deduce this information based on prior

knowledge or communication with relatives, but it is not shared by the study.

5.4.2 The Importance of the Middleman

The middleman is an important feature in the plugin implementation. REDCap gives API

security tokens to users of REDCap that give access to the entire REDCap project. Anyone

with the REDCap API token can request access to the data within the entire REDCap

project, making protection of the token paramount. The middleman creates a safe place to

store the token, limiting its interaction with the WordPress site. The middleman also acts as

a filter of unnecessary or restricted data. By creating a Flask API on the middleman server

with data specific endpoints, we can control the flow of information much like established

methods for software application interfacing with databases. By having set endpoints that

call specific data fields from REDCap, bad actors won’t be able to directly query the REDCap

project but would have to go through the middleman API, limiting their access to the data.

Since API requests with the token can be used to pull extra data, the middleman will filter

out any data not explicitly requested by the functions in the plugin. If the REDCap API
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calls were done directly from the WordPress site, a bad actor could potentially pull the entire

participant record as opposed to only the components that are meant to be available to the

participant. Since only limited data is returned to the WordPress site, the breach would be

limited to the explicitly defined variables in the middleman API.

5.4.3 The Potential of Patient-Driven Research

Patient interactive research does not have to be limited to family studies. There is growing

use of many types of social networks in research. Patients may be used to recruit friends

and acquaintances and to contribute data that is more detailed and accurate than researcher

driven data collection efforts. With the increasing adoption of EHR interoperability stan-

dards like Fast Healthcare Interoperability Resources (FHIR), enabling patients to enter

their data directly into EHRs could be the next step in patient-driven research. With EHRs

being seen more widely as sources of research data and with the push to use the EHR as an

application platform, empowering patients to validate and enter their own data could open

new opportunities for medical research. Recently, studies have looked at the effect of patients

being given access to their clinical notes, where they are able to read the doctors notes and

enter their own notes [17, 18, 19]. So far, these studies have shown that patients responded

positively to having increased access to their data. All of these innovations can lead to more

opportunities to engage patients in driving medically actionable discoveries about themselves

and other similar patients.
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5.4.4 Using REDCapToWordPress for Patient-Driven Research

The REDCapToWordPress plugin will allow researchers of all stripes to use the potential of

the patient-driven research framework. With limited programming knowledge, a researcher

can quickly develop a patient portal, linking their customized REDCap project with a Word-

Press site. With the lowered threshold of installing a patient portal and the promise of larger,

more accurate datasets from patient-driven research, we see the patient-driven framework as

a way to drive precision medicine in a cheaper, more efficient manner.

5.5 Conclusion

We develop a WordPress plugin that links a patient portal embedded in WordPress to a

research study’s REDCap project, allowing patients to directly enter their research relevant

data into the REDCap project. The plugin is currently being used in the FindMyVariant

study, with 14 of the 32 families opting to use the portal as their main data entry mechanism.

Patient-driven research is an effective way to increase research subject engagement, improve

research data validity, and increase cohort sizes, all of which drive the success rate of the

study. REDCapToWordPress creates a patient portal that is easy to customize and adapt

to research projects, lowering the threshold for using the patient-driven research framework.
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Chapter 6

CONCLUSION

In conclusion, I summarize the contributions from each aim by reviewing the research

contributions (Section 6.1) and acknowledging the limitations and opportunities for future

work (Section 6.2).

6.1 Summary of Contributions

The nearly ubiquitous adoption of EHRs by healthcare systems is driving excitement and

research around data driven healthcare, including research from populuation health to ma-

chine learning. Concerns of security, data integrity, and access to EHRs limit the realization

of this vision.

In this work, I address these issues of security for access and research with health data

as well as concerns of data accuracy as it pertains to population health. The four aims of

this thesis contribute to building data driven healthcare system that is secure, trusted, and

accessible.

6.1.1 Aim 1 summary

In Aim 1, I collected EHR data from the University of Washington enterprise data warehouse.

Using a binomial test, I detected anomalous events where the number and type of diagnosis
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codes significantly deviated from the expected baseline. Enrichment of ICD codes were

evaluated, from both a seasonal and daily perspective, to detect possible events in the data

that reflected real events from the local population. Each day that had anomalous codes

were considered ”events” with scores associated with each event to designate the significance

or magnitude of the event. For each seasonal enrichment detected and for the top 15 days

with the most enriched codes, I externally validated these trends in the literature and news

sites.

The binomial test detected patterns of seasonal enrichment consistent with our expecta-

tions about seasonal behavior such as accidents from snow sports such as skiing and snow-

boarding during the winter, and accidents related to outdoor activities in warm weather such

as bites and stings from bugs, firework accidents, bicycle accidents, and water transport ac-

cidents during the summer. Annual events such as July 4th and Jan 1st were highlighted

by a significant increase in the number of burns and firework related accidents. One time

rare events like the Hannukah eve windstorm and the Nisqually earthquake were marked

by a unique pattern of carbon monoxide related poisoning and ICD-9 codes for earthquake

related injuries.

In support of Aim 1, my contributions in this study are to evaluate EHRs for their

potential to serve as generalizable population health platforms, looking specifically at how

”events” in the local population are reflected in the EHR. My contributions are:

1. The comparison of statistically significant code enrichments from the University of

Washington EHR data to the literature and news sources finding that these enrichments
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reflect local population events.

2. Reinforcement of the growing body of literature that suggests EHRs can be used as a

viable generalizable population health analysis platform, even when the data analyzed

was not originally designed for such analysis.

6.1.2 Aim 2 summary

In Aim 2, we carry out a pilot study of a ”Model to data” framework implementation enabling

the intake and ingestion of containerized clinical prediction models by a large healthcare

institution (the University of Washington health system, UW Medicine) to their on-premises

secure computing infrastructure. A researcher (referred to as the model developer), who did

not have direct access to the UW Medicine EHR database, piloted the system by designing

and building a 180-day mortality prediction model using the available clinical records.

The model developer built three mortality prediction models using three different sets of

features: demographics, demographics and binary indicators for 5 common chronic diseases,

and demographics and the top 1000 most common conditions in the clinical record. The

model developer was able to build models using both engineered and data driven features

and achieved an Area Under the Recall Curve of 0.921 with the top 1000 most common

conditions. During the course of this pilot we discovered the essential elements necessary

for a researcher to fully harness the ”Model to data” framework, namely a synthetic dataset

that closely resembles the real data in form and size, an environment with the synthetic data

allowing models to run on the synthetic dataset for debugging and runtime assessment, and
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a data dictionary with the more commonly used concept codes from the EHR data to enable

smarter feature engineering.

My contributions in support of Aim 2:

1. Successfully enabled a model developer, with no access to the EHR data, to build

accurate mortality prediction models using both engineered and data driven features

from the hidden EHR data.

2. Characterizing the essential elements needed for researchers to successfully utililize the

”Model to data” framework for developing predictive models.

3. Showcasing the ”Model to data” approach as an alternative to other data sharing

mechanisms for prediction model development.

6.1.3 Aim 3 summary

In Aim 3, we expanded the work of Aim 2 to scale the ”Model to Data” framework, enabling

more than one researcher to build mortality prediction models using the University of Wash-

ington clinical records without having access to the data. We hosted a community challenge,

asking partipants to predict the 180-day mortality status of patients in the UW EHR from

the time of their last visit. We improved upon the synthetic data from Aim 1, making that

available for both download and for model debugging in a cloud environment, and created a

data dictionary, making it available to partipants to aid in their model development. Partic-

ipants were able to train and test their models in the University of Washington system, using
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EHR as their data. We evaluated submitted models on a held out, prospectively collected

EHR dataset to assign final accuracy metrics to particapants.

We had 345 registered participants, coalescing into 25 independent teams, spread over

3 continents and 10 countries. The top performing team achieved a final area under the

receiver operator curve of 0.947 (95% CI 0.942, 0.951) and an area under the precision-

recall curve of 0.487 (95% CI 0.458, 0.499) on the prospectively collected patient records.

Top features used in the highest performing models included age of the patient at their

last visit and measurements of systolic blood pressure, diastolic blood pressure, and heart

rate. Models were evaluated for their accuracy across sensitive demographic strata as well

as different clinical contexts, with the results indicating that different models vary in their

accuracy across these groups when compared to other models, indicating that it may not

solely be a data bias issue.

My contributions in support of Aim 3:

1. Further showcasing the ”Model to data” framework as a viable and scalable solution to

expanding access to patient records for predictive model development, without risking

patient privacy violations.

2. Evaluating 15 different mortality prediction models developed by teams from around

the world on the same data set to objectively assess and compare model accuracy to

establish the ”state of the art” in mortality prediction models.

3. Highlighting the need for further research into machine learning bias in medicine, es-
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pecially in relation to sensitive demographic strata.

6.1.4 Aim 4 summary

In Aim 4, I developed a patient portal for the FindMyVariant research project to link research

subjects with their study results and enabling the patient driven research paradigm used by

FindMyVariant. This tool was a Wordpress plugin that securely connects a patient portal

webpage in Wordpress to a REDCap project hosting the research data.

Through the web portal, study admins could easily onboard new research participants and

those participants could see their family tree information, track the progress of their study,

and receive the results of their family genetics study. During the course of the project, 32 new

families joined, and of those, 14 used the patient portal to coordinate their family studies.

My contributions in support of Aim 4:

1. Developing an open source Wordpress plugin that securely links patients with the

research results of their family genetics study through a patient portal.

2. Bringing an informatics solution to the patient-driven research domain, enabling pa-

tients to better coordinate the research studies that impact their health.

6.2 Limitations and Future Work

6.2.1 Aim 1 limitations and future work

As with any study of EHRs, we cannot rule out biases due to site-specific coding practices or

changes in practitioner knowledge of the health record system that may effect the prevalence
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or presence of codes that would otherwise show an event. Future work should focus on further

validation studies to evaluate the representation of the UWMC data in the Seattle Region.

Another future solution would be to run our method at more sites across Washington, feeding

the live statistics into an aggregation mechanism for a more robust population view.

Our methods also run the risk of identifying false positive events in the EHR data that

are simply spurious coding events that are not reflective of real events in the population.

Although we use bonferroni correction to minimize this risk, this method may be an overly

conservative approach, and future studies need to research methods for controlling the false

positive rate without losing true positives.

Finally, our method only uses diagnoses codes to find events in the clinical records. This

limits our ability to find all possible events that are being captured. Future efforts could use

Natural Language Processing on clinical note texts to better inform detected trends and find

“enriched” keywords on the detected days to add context to the detected events in a data

driven automated manner.

6.2.2 Aim 2 and 3 limitations and future work

Model interpretation, such as gathering feature importance scores, is difficult under a ”Model

to data” paradigm. Currently model developers need to output their features as an output

file from their docker containers. However, if their model is not a simple set of coeffients

or parameters, this may not be possible under the MTD framework. Future work should

focus on developing reliable feature collection methods that don’t rely on the model devel-



97

opers to output their features, but can extract feature importance by either simulations or

perturbations of the underlying data.

During the community challenge, we set a submission limit of 10 hours for both the train-

ing and testing stages of model runtime. While this was implemented to limit the burden

to the University of Washington secure servers, this also limited the types of models partici-

pants were able to build and excluded deep learning or more sophisticated, time consuming

models. However, limiting the time also forced participants to carefully consider the effi-

ciency of their algorithms so extraneous calculations or operations were not run. For future

efforts, finding either cloud based solutions or increasing the amount of on-site computational

resources could improve the types of models participants would be able to build.

The remote nature of the MTD framework limits the opportunities for manual hyper-

parameter tuning which usually requires direct interaction with data. However, automated

methods to tune the hyperparameters work with the proposed pipeline. The emergence

of AutoML, as well as other algorithms including grid and random search, reinforcement

learning, evolutionary algorithms, and Bayesian optimization, allows hyperparameter op-

timization to be automated and efficient. Future work could research methods for giving

participants more insight into their models final parameters, while still protecting patient

privacy.

While we found that in many cases, models differed in their accuracy across sensitive

demographic strata, the methods used to evaluate these differences may be susceptible to

the differences in demographic strata prevalences within the dataset. Future efforts should
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focus on developing more robust statistical methods to confirm these findings of potential

bias across different models.

6.2.3 Aim 4 limitations and future work

While the patient portal developed for this aim was useful to FindMyVariant, in order to

adapt the patient portal to another research project, the variables that interact with the

REDCap API would need to be redefined and recoded, making the current version of this

plugin limited in its use case scenarios. The same holds for the customizability of the patient

portal display. Some coding skills are necessary to customize the layout of the patient portal,

limiting this plugin’s generalizability to other REDCap based projects. Future work on this

project should focus on making the code between the patient portal and the REDCap API

more adaptable to other REDCap projects, removing the need to manually code to allow

the plugin to interact with new REDCap projects. Future efforts should focus on building a

backend user interface that would allow the manager of the site to customize the layout of

the patient portal via a graphical user interface.

6.2.4 Conclusion Overview

This work serves to advance the knowledge about methods and tools for interacting with

health data from the prespective of both the researcher and patient in a secure and ethical

manner as well as advancing the body of literature enhancing trust in the EHR as a general-

izable population health platform. In Aim 1, I evaluated an EHR for its potential to serve as
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a generalizable population health platform. In Aim 2, I piloted a Model-to-data framework

as a mechanism to deliver predictive methods to sensitive health data. In Aim 3, I scaled

the Model-to-data framework and hosted a mortality prediction community challenge. In

Aim 4, I built a patient portal allowing patients to edit and view their health information

and enabling patient driven research. These four aims serve to bring the vision of the data

driven health system closer to fruition, and the contributions of this work will aid in the

development of a system that is private, accessable, and accurate in its delivery of care.
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Figure A.1: Bootstrapped distributions (n=10,000) of the top 10 model AUROCs across
the ethnicity demographic. Model predictions were randomly sampled with replacement and
scored against the benchmark gold standard.
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Figure A.2: Bootstrapped distributions (n=10,000) of the top 10 model AUROCs across
the gender demographic. Model predictions were randomly sampled with replacement and
scored against the benchmark gold standard.
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Figure A.3: Bootstrapped distributions (n=10,000) of model performance across age groups.
The small number of patients age 0-17 results in high variance in model performance. For
the most part, model performance is inversely correlated with age where models tend to me
more accurate on 18-34 year olds and less accurate on 65-99 year olds.
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Figure A.4: Bootstrapped distributions (n=10,000) of model performance across the number
of records available in each patient’s clinical history. Most models perform the best on 1-10
records, with a decrease in accuracy on patient records with no history or 11-100 records,
with a large decrease in performance on records of 100 or more.


