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The digital transformation of healthcare over the past two decades has led to the proliferation

of electronic health record (EHR) databases. These databases present an unprecedented

opportunity for biomedical knowledge discovery. Data may be used for several purposes,

including epidemiology, operational or clinical quality improvement studies, pragmatic trials

and clinical trial recruitment, comparative effectiveness research, predictive modeling, clinical

decision support, pharmacovigilance, and genome-wide association studies. In every case, one

of the first steps involved is identifying the appropriate cohort of patients matching a set of

inclusion and exclusion criteria, using only data available in the EHR. This process, known

as EHR-driven phenotyping, is a resource-intensive task that involves many stakeholders,

such as clinical experts, informaticists, and database analysts. It is therefore a critical rate-

limiting factor that prevents massive scaling of knowledge discovery, and ultimately inhibits

our ability to achieve the promise of national imperatives such as the Learning Healthcare



System and All of Us.

This research will attempt to improve the state of the art of EHR-driven phenotyping

in three specific ways. First, we will analyze the variability of a set of existing, clinically

validated, phenotype definitions in order to understand the requirements for a formal rep-

resentation that supports automation. Second, we will assess the suitability of popular

and emerging standards for formally representing cohort criteria, and evaluate whether this

representation facilitates cross-platform cohort identification. Finally, we will develop and

evaluate a fully standards-based system that can be used to create phenotype definitions

and execute them against existing EHR data platforms, and evaluate the performance of

this system in the context of the extant EHR-driven phenotyping ecosystem.
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chapter 1

INTRODUCTION

The idea of evidence-based medicine was popularized by Archie Cochrane in his 1972 book

Effectiveness and Efficiency 1, and has become the modern best practice for delivery of

healthcare. In the years since the book was published, thousands of randomized controlled

trials (RCTs) have been published that collectively comprise the evidence used for medical

decision-making. While evidence from RCTs is considered the gold standard, they are ex-

pensive and time-consuming to conduct, and in some cases fail to account for all relevant

clinical complexities2. In 2007, the National Academy of Medicine (then called the Institute

of Medicine) released a report summarizing a workshop held on evidence-based medicine3.

The report identified many challenges facing healthcare research and delivery at the time,

and proposed a new framework to deal with these challenges called the Learning Healthcare

System (LHS). The LHS aims to improve the velocity of evidence generation and its trans-

lation into clinical practice. Recommendations provided to accomplish this include bridging

the gap between clinical research and practice by using data collected during routine care for

research, developing clinical decision support systems, and creating tools for data mining.

In summary, the LHS aims to reduce the time involved, and increase the scale and efficacy

of biomedical knowledge generation and its translation into improved healthcare practice.

Fortunately, the digital transformation of medicine, in part catalyzed by the HITECH Act

and Meaningful Use incentives, has resulted in broad adoption of electronic health records

1



(EHRs). In many settings, adoption rates are approaching 100%4. The data assembled in

these systems present an enormous opportunity for clinical research and the improvement of

care. To this end, the National Institutes of Health (NIH) has established several initiatives

aimed at capitalizing on this abundance of digital healthcare data. These initiatives include

the National Center for Advancing Translational Sciences (NCATS)∗, the National Center for

Data to Health (CD2H)†, and the Big Data to Knowledge (BD2K) project5, among others.

In addition, former President Obama launched the Precision Medicine Initiative (now called

All of Us 6), which includes an objective to “build the evidence base needed to guide clinical

practice.”7 These projects and innumerable other grant awards and research initiatives all

contribute to the acceleration and scaling of biomedical knowledge generation.

Despite this explosion of research activity, it is estimated that it takes an average of

17 years (with significant variance) for healthcare research outputs to be translated into

improved practice9. There are undoubtedly many steps in the process that could be opti-

mized, but in this work we focus on methods for optimizing evidence generation, specifically

in the case of studies using real-world data collected in the EHR. A universal first step in

these types of studies (listed in table 1.1) is to identify a cohort of patients of interest. The

sets of criteria that define these patient cohorts are referred to as phenotype definitions or

(somewhat imprecisely) just phenotypes. The process of establishing these cohorts for a

given research study is thus referred to as EHR-driven phenotyping. Several factors compli-

cate this ostensibly simple task, including EHR data quality and completeness issues, inter

and intra-site variability in clinical processes, data model incompatibilities, terminology or

∗https://ncats.nih.gov/
†https://ctsa.ncats.nih.gov/cd2h/
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Study Type Use Cases

Cross-sectional Epidemiological research

Hospital administration/resource allocation

Adherence to diagnostic/treatment guidelines

Quality measurement

Association (case-control/cohort) Genome-wide association studies

Pharmacovigilance

Identifying clinical risk factors and protective factors

Clinical decision support

Clinical effectiveness research

Predictive modeling

Experimental Clinical trial recruitment

Pragmatic trials

Adaptive/randomized, embedded, multifactorial,

adaptive platform trials

Table 1.1: Applications of EHR-driven phenotyping across study types8

ontology differences between systems, and more10,11.

While EHR-driven phenotyping is used in all the study types listed in table 1.1, there

are some differences worth noting between these use cases. The first important difference

is in the frequency that the phenotyping task is performed. At the low end, the EHR-

driven phenotyping could be executed only once. For example, in genome-wide association

studies and observational clinical effectiveness research, cohorts are only established once,

and retrospective data is then used for analysis. For clinical trial recruitment, however,

phenotyping might be done more regularly in order to identify patients as they become

eligible. For clinical decision support, phenotyping might be done daily, or even in real time

in order to detect newly developing or emergent conditions. The other important difference

3



between the use cases is the data source used. Less time-sensitive applications may use

data extracted from live EHR systems and loaded into data warehouses, while real-time use

cases may need to use the most up to date data available only in the EHR. Despite these

differences, however, the actual criteria and phenotyping mechanism used for each use case

are conceptually similar.

The challenges faced during EHR-driven phenotyping are exacerbated when phenotype

definitions are shared between sites, which is a common occurrence, since research networks

such as the electronic Medical Records and Genomics (eMERGE) Network12–14, the Na-

tional Patient-Centered Clinical Research Network (PCORnet)15, and many others often

aim to combine results from multiple sites in order to increase statistical power and cohort

diversity. In these multi-site studies, phenotype definitions are usually developed at one site

and distributed to other sites in the form of narrative descriptions and lists of codes from

published terminologies. Sometimes flowcharts or pseudocode are also supplied, but directly

executable computable artifacts are rarely included16. Phenotype definitions distributed in

this way must therefore be manually translated into executable code at each site. This re-

quires human interpretation of the narrative text, and may also require manual translation

of code lists into local terminologies. These tasks are slow and error-prone, and are neither

efficient nor scalable, as they must be repeated at each new site wishing to participate in a

study.

To begin to address these inefficiencies, at least two approaches have been used, namely

common data models (CDMs) and dedicated logic execution environments. Research net-

works including the Accrual to Clinical Trials (ACT) Network17 and the Observational

Health Data Sciences and Informatics (OHDSI) program18 make use of the CDM approach.

4



This approach requires researchers to transform data into the specified CDM, and in some

cases translate coded data. As a result of using a CDM, database queries can be shared

across sites, but there is an implementation cost involved in translating the data into the

CDM format, and queries cannot be shared between different CDMs. The dedicated logic

execution environment approach requires phenotype definitions to be represented in a for-

mat that can be directly executed. This increases velocity and reduces potential for error,

since no manual translation is required, but current methods do not make use of healthcare

standards, and can sometimes be prohibitively challenging to implement19. Furthermore,

these methods require significant data preprocessing in some cases.

To mitigate these and other issues, the Phenotype Execution and Modeling Architec-

ture (PhEMA)20 project was initiated. The PhEMA project arose due to a need, identified

by the eMERGE Network, to develop EHR-driven phenotyping methods that are scalable

and portable between systems. Work done by PhEMA includes defining desiderata for

computable phenotype definitions16, early assessment of phenotype definition complexity21,

assessing potential standards-based representations22–27, and highlighting considerations for

phenotype definition portability19,28,29. The overarching goal of this work is to further de-

velop the work done by PhEMA, with a focus on standards and interoperability.

1.1 Dissertation Aims

This dissertation makes use of the Task-Technology Fit (TTF) model30, and each of the

three aims correspond to a component of this model, as shown in figure 1.1. We begin

by determining the characteristics of the EHR-driven phenotyping task. We then evaluate

5



Task-Technology

Fit

Technology

Characteristics

Task

Characteristics

Performance

Impacts

Utilization

Aim 1: Complexity

Aim 2: Standards

Aim 3: Workbench

Figure 1.1: Aims in relation to Task-Technology Fit (TTF) model30

the feasibility of using popular and emerging technologies for representing and executing

phenotype logical criteria, and finally we develop and evaluate the performance of a fully

standards-based phenotype representation and associated open-source tool.

Aim 1: Characterizing the Dimensions of Phenotype Definition Variability

In the first aim we investigate the nature of EHR-driven phenotype definitions by examining a

data set of phenotype definitions extracted from a repository of clinically validated definitions

that have been used in published biomedical research. We describe the components that

comprise a phenotype definition and analyze the dimensions along which the phenotypes in

the data set vary. We also identify some important requirements that must be satisfied by

any potential formal representation.

Aim 2: Toward Cross-Platform Electronic Health Record-Driven Phenotyping

Using Clinical Quality Language

In the second aim we assess whether the Fast Healthcare Interoperability Resources (FHIR)

and Clinical Quality Language (CQL) standards can be used to enable scalable and portable

6



phenotype definitions. We use CQL to represent phenotype logical criteria and execute

these criteria using a FHIR server and a custom developed open-source tool that enables

the execution of standards-based phenotype definitions against an Observational Medical

Outcomes Partnership (OMOP) database18. We use this tool as part of an experiment

spanning two academic medical centers and report the results.

Aim 3: PhEMA Workbench: A Platform-Independent FHIR-Native EHR-Driven

Phenotyping Toolbox

In the final aim we propose a fully FHIR-native phenotype representation and develop and

evaluate an interoperable EHR-driven phenotyping system. We integrate directly with the

phenotype repository examined in the first aim, and incorporate the tool developed in the

second aim. We demonstrate additional tools that facilitate phenotype authoring, including

both logic and terminology representation, and demonstrate how this suite of tools interoper-

ates with existing systems in the phenotyping and informatics ecosystem. We highlight how

this approach achieves acceptable results while drastically reducing implementation time and

potential for human error.

1.2 Dissertation Overview

Each of the three dissertation aims are investigated individually, and a standalone research

paper is presented here for each. The papers for aims 1 through 3 are given in chapters

2 through 4 respectively, and are followed by a concluding chapter (chapter 5) in which

we synthesize the contributions and discuss the limitations of this work, as well as identify

potential avenues for further investigation. We believe that the methods we have developed

7



and evaluated in this work provide an incremental but significant contribution towards the

goal of achieving truly scalable EHR-driven phenotyping.
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chapter 2

CHARACTERIZING THE DIMENSIONS OF PHENOTYPE

DEFINITION VARIABILITY

2.1 Introduction

Many different types of research studies are used to generate biomedical knowledge from

electronic health record (EHR) data8, all of which first require establishing a cohort of

patients meeting specific criteria. This cohort identification process is referred to as EHR-

driven phenotyping, and the sets of inclusion and exclusion criteria are known as phenotype

definitions, or just phenotypes (the term used in this manuscript for brevity). While of-

ten developed and executed at a single institution, research networks such as the National

Patient-Centered Clinical Research Network (PCORnet)31, the electronic Medical Records

and Genomics (eMERGE) Network12–14, and the Observational Health Data Sciences and

Informatics (OHDSI) program18 have run studies in a distributed manner to pool their re-

sults to improve statistical power and cohort diversity. To facilitate this type of federated

study, phenotypes must be shared with and implemented at all participating sites.

Historically, phenotypes have been shared between sites via repositories like the Pheno-

type KnowledgeBase (PheKB)32 in the form of narrative descriptions, sometimes accom-

panied by flowcharts or pseudocode. Lists of codes from common terminologies like the

International Classification of Diseases version 9 (ICD-9) are usually also included, but in

9



most cases, directly computable artifacts, such as SQL scripts or programming code, are

not. This method of phenotype distribution has proven to be a major limiting factor in the

scaling up of biomedical knowledge generation33–35, since implementing sites must manually

interpret narrative descriptions to produce queries that can extract patient cohorts from

local data sources. This process is time-consuming and error-prone, which is compounded

by the fact that narrative descriptions can be ambiguous or difficult to interpret. To address

these issues, the Phenotype Execution and Modeling Architecture (PhEMA)∗ project was

established to optimize the EHR-driven phenotyping task, and has recommended that phe-

notype definitions be represented in a computable format16. Such a format would eliminate

ambiguity and potentially facilitate automated cohort identification.

However, there is currently no widely accepted standard for representing computable

phenotype definitions, although several have been proposed and evaluated22–27,36,37. In this

study, we analyze a data set of phenotype definitions from PheKB and characterize their

variation along several dimensions. Our goal is to provide an informational resource for EHR-

driven phenotyping practitioners and researchers that will highlight important considerations

for implementation, as well as contribute to identifying the requirements for a potential

formal representation standard.

2.2 Background

To address the lack of scalability associated with implementing phenotype definitions shared

as narrative descriptions, it has long been a goal of the EHR-driven phenotyping community

to represent phenotypes in a computable format. Many different formats have been studied,
∗https://projectphema.org
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for example, the Health Quality Measure Format (HQMF) and Quality Data Model (QDM)

have been used in conjunction with the JBoss R© Drools engine22,23 and the KNIME workflow

execution engine24,25. In the United Kingdom, the Common Workflow Language (CWL) has

been used to model and execute phenotype definitions26. Additionally, PhEMA researchers

have demonstrated the feasibility of using Fast Healthcare Interoperability Resources (FHIR)

and the Clinical Quality Language (CQL) for EHR-driven phenotyping27,36–38. While all of

these studies are valuable and informative, they do not examine the nature of a broad range

of phenotype definitions in detail.

That said, previous work has been done on the nature of eligibility criteria for clinical

trials, which is one application of EHR-driven phenotyping39,40. These studies describe the

high-level categorizations of the elements that make up clinical trial inclusion and exclusion

criteria, such as the instances and combinations of Boolean and temporal operators, as well

as the data elements used. The authors note that criteria provided as narrative text can

sometimes be “incomprehensible”, which results in errors and inefficiencies at implementa-

tion time, and call for “clear standards.” A comprehensive review compares and contrasts

27 clinical trial criteria knowledge representation tools and models in considerable detail,

and describes the range of criteria that can be represented using each41. However, this study

focuses on tools, rather than real-world criteria, and none of the above studies focus on the

more general task of EHR-driven phenotyping, which may have different requirements42.

Criterion complexity has also been studied in the related area of clinical quality measure-

ment43,44, and it was noted that “some modifications” to the QDM are required to represent

robust phenotype definitions.

A 2011 study analyzed the heterogeneity and complexity of 14 phenotype definitions

11



produced by the eMERGE network21. A significant amount of homogeneity was found

among the set of phenotypes examined, which, according to the authors, suggests that a

computable representation is feasible. The study focused mainly on text analysis of narrative

descriptions and Boolean and temporal logic, but also described data types and terminologies

used. A more recent study analyzed the effort required to implement a set of 55 phenotype

definitions from the eMERGE network, and proposed a scoring system based on knowledge

conversion, logical clause interpretation, and programming (KIP)45. This study focused on

portability of phenotype definitions, and highlights many of the challenges currently faced

by implementation sites. The study notes that it can take hours to months to implement

phenotype definitions and that logic can become complicated when clauses are combined,

and provides a detailed enumeration of the tasks required during implementation.

Despite the body of research described above, the EHR-driven phenotyping community

has not yet settled on a single formal representation. This hinders not only the process of

authoring and execution, but also the broader evaluation of how phenotyping (as a process)

and the phenotypes themselves have changed over time. Only the 2011 study describes the

variability of EHR-driven phenotype definitions, and only in relatively coarse detail using

narrative descriptions. Many more phenotype definitions have been created in the decade

since that study was conducted, and we expect that the complexity of these definitions has

increased. Therefore, in this study we use a single formal representation to author multiple

phenotype definitions, and leverage the benefits of this single representation to analyze a

larger set of phenotype definitions in detail. This will allow us to provide insights into the

representativeness of a formal definition for phenotyping, as well as the variability of the

phenotypes themselves.
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2.3 Materials & Methods

2.3.1 Data Set

We chose to analyze phenotypes from the PheKB phenotype repository as it is the most

mature and widely used in the United States. PheKB was initiated in 2012 and has been

continuously contributed to by various research teams, most notably by researchers involved

in the eMERGE Network. The repository contains over one hundred phenotypes in various

stages of development.

2.3.2 Data Extraction

A web scraping tool was developed to download all public phenotypes and associated files,

including PDFs, Microsoft Word and Excel documents, images, ZIP files, and any other

artifacts associated with the phenotype definition. Each phenotype in PheKB has a dedicated

page that contains metadata curated by the phenotype authors, including the authors’ names

and research network affiliation, the demographics to which the phenotype applies, and more.

Each phenotype optionally also includes one or more implementation reports, which provide

a summary of the results for a specific implementation of the phenotype definition at a single

institution. All metadata was stored in a JSON document alongside the downloaded artifacts

to enable computational analysis. Source code for this step of the process is available on

GitHub ∗.

∗https://github.com/PheMA/phekb-export
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2.3.3 Data Preparation

2.3.3.1 Phenotype Selection

From the full collection of phenotypes in PheKB, we used available metadata to automatically

include those that were publicly available and marked with a status of “FINAL”. We reviewed

these phenotype definitions (descriptions, artifacts, and metadata) and only included those

that used some structured data element (i.e., were not entirely natural language processing

(NLP)-based), were an actual phenotype definition (e.g., did not simply serve as a repository

to submit data), and were used in a published research study. These criteria were chosen

to ensure that our analysis was conducted using only completed and clinically validated

phenotype definitions.

2.3.3.2 Translation

In order to eliminate ambiguity and have a consistent, semantically correct, and computation-

ally comparable representation of each selected phenotype definition, we chose to represent

all phenotype definitions using FHIR and CQL. We selected FHIR because it is widely used

and has recently become the legally required standard for clinical data exchange in the United

States. Additionally, the Common Data Model Harmonization (CDMH) project46 provides

mappings from FHIR to many other common healthcare data models, maximizing the po-

tential impact of the set of translated phenotype definitions. The entities referenced in each

phenotype were modeled as FHIR resources such as Patient for individuals, Observation

for labs and vitals, Condition for diagnoses, and MedicationRequest for drug orders.

Standard terminologies such as the International Classification of Diseases versions 9

(ICD-9) and 10 (ICD-10), Current Procedural Terminology (CPT), Logical Observation
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Identifiers Names and Codes (LOINC R©), and RxNorm were used for coded data, and lists

of codes were represented using FHIR ValueSet resources. These terminologies were usu-

ally explicitly specified in the phenotype definitions, but where they were not, we used the

recommended default terminologies from the FHIR standard. We developed an open-source

tool to translate value sets in various formats into FHIR resources, and built an interface

to allow web-based interaction with the tool∗. The tool can translate CSV files, as well as

concept sets exported from the OHDSI platform, into ValueSet resources. It also supports

searching, inspecting, and importing value sets directly from the Value Set Authority Center

(VSAC)47, using the VSAC FHIR server.

Phenotype definition logic was represented using CQL, which has been shown to be a

feasible logical expression language for representing clinically validated phenotypes36,37,48–51.

CQL supports a wide range of Boolean, temporal, aggregate, and other operations. The lan-

guage is data model independent, but works out of the box with FHIR. For each phenotype

we created a single CQL library that contained the logic required to identify a matching pa-

tient. Logic shared between phenotypes was authored in shared libraries that were imported

using the CQL include operator.

We did not implement NLP logic, as there is no widely accepted standard representation

or implementation of this type of logic. To our knowledge, there is currently no way to

natively express NLP constructs using FHIR or CQL, although this is an active area of

research27,38. However, we did annotate which phenotypes make use of NLP. We additionally

chose not to include an analysis of phenotype description narrative text in our evaluation.

While previous authors have done this21, we found that the narratives uploaded to PheKB

∗https://github.com/PheMA/terminology-manager
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vary widely, with some authors providing only a few sentences and others uploading the

complete journal article. Importantly, we found that these descriptions did not correlate

with other phenotype attributes such as number of logical expressions or value sets, so we

felt that including analysis dimensions such as word count and sentence complexity would

not contribute meaningful information to our results.

We adopted a number of conventions for the standards-based representation. First, in

this work we only represent phenotype cases, and not controls, suspected cases or subtypes.

Case definitions usually contain the most and most varied criteria, so serve as a good basis for

comparison. We adopted the convention of creating a CQL statement in each library called

“Case”, which represents the entry point for evaluating the phenotype definition. Addition-

ally, unless explicitly stated otherwise, we modeled drugs using their RxNorm ingredient

name and lab values using the highest ranked appropriate LOINC R© code. Although there is

a possibility that these modeling choices may be semantically incorrect or suboptimal, this

does not affect the primary objective of this work, which is phenotype definition comparison.

Following these conventions, two authors (PB and LR) independently translated each of

the phenotypes using the available metadata and artifacts downloaded from PheKB. One

author was primarily responsible for the translation of each phenotype, but the authors were

not entirely blinded. Consultation amongst the larger study team was needed to confirm

interpretation of phenotype definitions that were ambiguous.
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2.3.3.3 Development Environment

We made use of several open-source tools during the phenotype translation process and

published our tool chain configuration to the project GitHub repository∗. We used Visual

Studio Code† as our primary development environment, and for CQL syntax highlighting we

used the language-cql plugin‡.

To translate CQL into the equivalent machine-readable representation, known as the

Expression Logical Model (ELM), we used the reference implementation of the CQL to

ELM translator§. For testing, we used the CQL Testing Framework (CTF) developed by

the Agency for Healthcare Research and Quality (AHRQ)¶, which provides a mechanism to

specify test data, which are materialized as FHIR resources, using a simple YAML file. The

CTF also provides a configurable test runner, which can run a specific CQL library against

the test data generated by the YAML specification, and assert that the results match what

is expected.

2.3.4 Validation

We used two methods to ensure that phenotype definitions represented in FHIR and CQL

were correctly translated from the artifacts available in PheKB. First, each phenotype was

translated by a single author, and then verified using a code review process. The initial

author created a pull request on GitHub (a way of isolating code for a specific purpose, in

this case representing a single phenotype definition), and a second author reviewed the code

to make sure it accurately represented the phenotype definition as described in PheKB.

∗https://github.com/PheMA/phekb-phenotypes
†https://code.visualstudio.com
‡https://github.com/Jonnokc/Clinical-Quality-Language
§https://github.com/cqframework/clinical_quality_language
¶https://github.com/AHRQ-CDS/CQL-Testing-Framework
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Figure 2.1: Development and validation pipeline.

Secondly, we used an approach from software engineering called test-driven development

(TDD) to ensure that our translations of phenotype logic and value sets were correct. We

made use of the CTF to implement this approach. In addition to allowing the CQL author

to express both test cases and FHIR data using YAML, the CTF integrates with the Mocha

JavaScript testing framework∗ in order to evaluate phenotype logic using the given data,

and to assert that results produced are correct. This evaluation is done using the ELM

representation of the phenotype, and the open-source JavaScript CQL engine †.

All tests were run automatically on each code commit to ensure no regressions were

introduced. The full development and validation pipeline is shown in figure 2.1.

∗https://mochajs.org
†https://github.com/cqframework/cql-execution
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2.3.5 Data Analysis

2.3.5.1 Metadata Analysis

Two authors (PB and LR) independently conducted a manual review of both the published

artifacts and metadata for each selected phenotype in order to identify relevant dimensions,

emergent patterns, and characteristics not explicitly captured by PheKB. We categorized

the artifacts provided with each phenotype definition (e.g., flowchart) and whether or not

the definition for controls, subtypes, or suspected cases is provided. We also provide a

brief description if the phenotype is underspecified (lacks enough detail to implement) or

requires local knowledge (e.g., how “follow up” is defined). We also provide our own “Type”

categorization created to capture the intent of the phenotype. We capture whether or not

the phenotype uses tabular data, and how this data is provided. In most cases tabular data

refers to lists of codes from standard terminologies, but also includes lists of keywords or

medication names. Following this manual review, the authors met to discuss their findings

and resolved any discordant determinations. We additionally conducted a computational

analysis of the metadata JSON files extracted using the web scraping tool described above.

This analysis was done using the Python programming language and Jupyter Lab notebooks.

2.3.5.2 Phenotype Definition Analysis

In order to evaluate the phenotype definition logic, we conducted an automated analysis of

the ELM representation of each CQL library. The ELM is an instance of what is known in

computer science, more specifically in programming language development, as an Abstract

Syntax Tree (AST)52. The intention of an AST is to act as a machine-readable representation

of a complete program, and is often used to evaluate or execute the program. However,
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Category Description Examples

Aggregate Operations that calculate single values from collections Sum(), Count() or Mean()

Arithmetic Mathematical operations +, − or ∗

Collection Operations on collections of data like sets and lists First(), exists() or union

Comparison Numeric or date comparisons > or =

Conditional Branching logic if or case

Data Data retrieval and filtering operations FHIR resource retrieval and filtering by value set

Expressions Total number of expressions as well as their depth Total expression count, where clause expression depth

Literals Explicit values, codes and quantities 23, 5 months or 0.5 mg/dL

Logical Boolean logical operators and or not

Temporal Operators relating to dates and times before, starts or overlaps

Terminology Number of value sets used and the number of individual codes Value sets per phenotype, codes per code system

Table 2.1: Phenotype definition analysis dimensions.

ASTs can also be used in program translation, as has been shown for CQL37, or for program

analysis, as we demonstrate here. We evaluate the ELM for each translated phenotype by

making use of the Visitor Pattern53, which is a mechanism for inspecting each node of tree-

like data structure, and executing custom code in the context of each node. We implemented

the Visitor Pattern in the Java programming language by using an interface provided by the

reference implementation of the CQL translator and published it to GitHub∗. The interface

used is the same as the one used by the CQL engine during program execution. Using this

implementation, we are able to calculate a number of measures about a given CQL library,

such as how many value sets are referenced, how many Boolean, temporal, and aggregate

operators are used, as well as how these operators are combined. It is also possible to count

the total number of expressions, how many data types are used, and how many unique data

queries are performed. After a manual review of the phenotype definitions, we identified 11

∗https://github.com/PheMA/elm-utils
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Figure 2.2: Phenotype definition selection process.

dimensions along which to evaluate each phenotype definition, shown in table 2.1.

2.4 Results

2.4.1 Phenotype Selection

At the time of our analysis there were a total of 71 publicly available phenotype definitions

in PheKB with a status of “FINAL”. We excluded 2 definitions that were not actually

phenotypes. One was used as a placeholder to publish new value sets, and one was the

description of a risk model. We eliminated three more that used only NLP criteria. Finally,

from the remaining phenotypes we included only those with associated publications. This

selection process, which resulted in 33 total phenotype definitions, is illustrated in figure 2.2.
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2.4.2 Phenotype Artifacts

During the translation process, we created 40 CQL libraries - one for each phenotype, and 7

helper libraries, totaling 3,327 lines of CQL code. A total of 231 value sets were assembled,

of which 216 were manually created and 15 were imported from VSAC. These value sets

consist of 17,948 individual codes, of which 13,340 are unique. Additionally, 347 test cases

were written that collectively contain 2,044 test assertions. To support these test cases,

347 patients, 96 encounters, 101 procedures, 335 medication orders, 385 conditions, and 360

observations were manually created as FHIR resources using the CTF.

2.4.3 Metadata

Table 2.2 provides all self-reported metadata from PheKB. Histograms of some of the more

complete metadata attributes are given in figure 2.3.
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Name Organizations Networks Authors Date Types Artifacts Results Data Gender Ethnicity Races

Asthma Response to Inhaled Steroids54 PGPop 1 2012-06-25 DR 2 0 0

Atrial Fibrillation55 VU 2 2012-03-20 DS 1 1 C; I9; NLP 0

Autism56 CCH eMERGE 1 2013-04-16 DS 4 2 I9; M; NLP F; M 0

Benign Prostatic Hyperplasia19 NU eMERGE 2 2018-07-20 DS 1 0 C; I9; L; M M 0

Bone Scan Utilization57 SU NIH Collaboratory 7 2019-04-25 OT 1 0 C; I10; I9; NLP M 0

Cardiac Conduction58–61 VU eMERGE 1 2012-02-06 OT 4 4 C; I9; L; M; NLP F; M 0

Cataracts62–64 MCRF eMERGE 3 2012-02-06 DS 3 3 C; I9; M; NLP 0

Clopidogrel Poor Metabolizers65 VU 3 2012-04-03 DR 2 1 C; I9; L; M; NLP F; M 0

Crohn’s Disease55 VU 2 2012-03-20 DS 1 1 I9; M; NLP 0

Developmental Language Disorder66 VU 0 2020-07-27 DS; OT 6 0 I10; I9 F; M H; NH 10

Digital Rectal Exam67,68 SU 6 2019-05-13 OT 1 0 C; I10; I9; NLP M 0

Drug Induced Liver Injury69,70 CU eMERGE 2 2012-12-07 DR 2 6 I9; L; M; NLP 0

Familial Hypercholesterolemia71 MC eMERGE 10 2016-11-10 DS 7 11 C; I9; L; M; NLP F; M H; NH 0

Height72 NU 2 2012-02-06 OT 3 3 I9; L; M 0

Herpes Zoster73 GH; UW 1 2012-06-24 DS 5 5 C; I9; M; V F; M H; NH 10

High-Density Lipoproteins74,75 MCRF eMERGE 2 2012-02-06 OT 1 1 I9; L; M; NLP 0

Hypothyroidism76,77 GH; MCRF;

MC; NU; VU

eMERGE 1 2012-02-06 DS 3 6 C; I9; L; M; NLP 0

Lipids78 NU eMERGE 2 2012-02-06 OT 3 3 I9; L; M 0

Multimodal Analgesia79 SU 2 2017-07-01 OT 1 0 C; I10; I9; M 0

Multiple Sclerosis55 VU 2 2012-03-20 DS 2 1 I9; M; NLP 0

Peripheral Arterial Disease80 MC eMERGE 1 2012-02-06 DS 4 3 C; I9; L; M; NLP 0

Red Blood Cell Indices81 MC eMERGE 1 2012-02-06 OT 3 4 C; I9; L; M; NLP 0

Resistant hypertension82 VU eMERGE 2 2012-03-12 DR 4 1 C; I9; L; M; NLP; V F; M 0

Rheumatoid Arthritis55 VU 2 2012-03-20 DS 1 1 I9; M; NLP 0

Sickle Cell Disease83 MCW PCORI 2 2017-01-03 DS 1 2 I9 F; M 0

Statins and MACE84,85 VU eMERGE; PGPop;

PGRN

1 2013-06-07 DR 5 8 C; I9; L; NLP F; M 0

Steroid Induced Osteonecrosis86 VUMC PGRN 1 2013-03-25 DR 1 0 C; I9; M; NLP F 0

Systemic Lupus87 VU PCORI 6 2016-07-07 DS 1 0 I9; L; M; NLP F; M H; NH 8

Type 2 Diabetes55 VU 2 2012-03-20 DS 2 1 I9; L; M; NLP 0

Type 2 Diabetes Mellitus88–90 NU eMERGE 2 2012-02-06 DS 10 4 I9; L; M 0

Urinary Incontinence91 SU 8 2020-01-15 DS 1 0 C; I10; I9; NLP M H; NH 10

Warfarin Dose/Response92 VU 2 2013-03-25 DR 1 1 L; M; NLP 0

White Blood Cell Indices93 GH eMERGE 2 2012-02-06 OT 2 3 C; I9; L; M 0

Table 2.2: Self-reported metadata from PheKB.

VU – Vanderbilt University Medical Center, MCRF – Marshfield Clinic Research Foundation, NU – Northwestern University, GH – Group Health,

UW – University of Washington, SU – Stanford University School of Medicine, MC – Mayo Clinic, CU – Columbia University, MCW – Medical

College of Wisconsin, CCH – Cincinnati Children’s Hospital Medical Center, OT – Other Trait, DS – Disease or Syndrome, DR – Drug Response -

adverse effect or efficacy, C – CPT Codes, I9 – ICD 9 Codes, I10 – ICD 10 Codes, M – Medications, L – Laboratories, V – Vital Signs, NLP – Natural

Language Processing, F – Female, M – Male, H – Hispanic, NH – Non-Hispanic, PGPop – Pharmacogenomic Discovery and Replication in Very

Large Patient Populations, eMERGE – The Electronic Medical Records and Genomics Network, PCORI – Patient-Centered Outcomes Research

Institute, PGRN – Pharmacogenomics Research Network
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Figure 2.3: Histograms of a selection of self-reported metadata.
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Of 51 unique authors, most (36) only contributed to a single phenotype definition, while

one author contributed to 10, which is twice as many as any other author. About half of

the definitions (15) were associated with the authors from the eMERGE Network and the

majority (20) were added in 2012. Most phenotypes (24) have 3 or fewer artifacts and about

half (18) provide one or zero implementation reports. The vast majority (26) report using

4 or fewer data modalities, with only one (Resistant Hypertension) using all six modalities.

ICD-9 codes were the most common data modality (31), followed by medications (25), and

NLP (23). The Asthma Response to Inhaled Steroids phenotype reported using zero data

modalities, but we found that it uses conditions, medications, and encounters. Data for race,

gender and ethnicity were reported in under half of the phenotypes, with only 4 phenotype

definitions mentioning race.

Table 2.3 provides additional metadata extracted by manually reviewing each phenotype

definition. Our manually determined types mostly align with the PheKB types, but we

introduce a new type with the label “Healthy / Valid Data”. This indicates that the pheno-

type intends to identify healthy patients with valid data. For example, the Height phenotype

identifies patients that have a valid height measurement and do not have any conditions that

may impact height. We also introduce the “Treatment / Therapy” type, which identifies

patients that have had a specific treatment, for example, Bone Scan Utilization. Finally, we

report the approach described for implementing NLP (if applicable).

About two thirds of the definitions provide a narrative description (20) and flowchart

(19), while only about one third (12) provide pseudocode. While tabular data is provided

by all but three phenotypes, only 4 provide this data in a computable format. Computable

artifacts in the form of KNIME workflows are provided for 5 phenotypes, and we found

25



that these workflows require users to prepare their data in a specified custom format before

execution.

Most phenotypes (20) provide control definitions, 8 provide subtype definitions, and 4

define suspected cases. About half (16) of the phenotypes provide a list of covariates to

be collected. Most (21) phenotypes are either underspecified or require some form of site-

specific knowledge to fully implement. All but 5 phenotypes rely on some form of NLP, with

17 providing a list of keywords, 8 providing regular expressions, and 6 providing a list of

medication names.
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Name Type Narrative Flowchart Pseudocode Tabular Executable Suspected Cases Controls Subtypes Local/Underspecifed Covariates NLP

Asthma Response to Inhaled Steroids Drug Response X NC “steroids are limited to WIZ orders” regex

Atrial Fibrillation Disease X NC X X X keywords; regex

Autism Disease X X NC X X Does not specify what to do with DSM-IV criteria X DSM-IV criteria

Benign Prostatic Hyperplasia Disease X X NC KNIME X X keywords

Bone Scan Utilization Treatment / Therapy X X NC X “surgical procedure [...] as identified by [...] clinical notes” keywords

Cardiac Conduction Trait X NC “most recent clinic visit” X keywords; negation; uncertainty

Cataracts Disease X X NC X X “subjects where questionnaires have been scanned” X MedLEE concepts; negation; regex

Clopidogrel Poor Metabolizers Drug Response X NC X X Underspecified definition of “follow up” keywords

Crohn’s Disease Disease X NC X X X keywords; regex

Developmental Language Disorder Disease X X CSV KNIME X “pediatric records” not clearly defined

Digital Rectal Exam Treatment / Therapy X X NC X “physician documented notes” ”documentation is obtained from clinical notes”

Drug Induced Liver Injury Drup Response X X NC X “Consider chronicity” not defined X medication names; ”diagnosis mentioned”

Familial Hypercholesterolemia Disease X X X XLSX X X detailed pseudocode

Height Healthy / Valid Data X NC KNIME X keywords

Herpes Zoster Disease X X XLSX X “Implementations [...] may vary by institution” X

High-Density Lipoproteins Trait X X NC “cancer diagnosis in registry” keywords

Hypothyroidism Disease X NC X “requirement for annual physical” X keywords

Lipids Healthy / Valid Data X X X NC KNIME “Genotyped pts” X

Multimodal Analgesia Treatment / Therapy X X NC X “surgery codes” unspecified medication names

Multiple Sclerosis Disease X NC X X keywords; regex

Peripheral Arterial Disease Disease X NC X “concurrent” not fully defined X keywords

Red Blood Cell Indices Healthy / Valid Data X X NC X medication names

Resistant hypertension Drug Response X NC X “via medication refill data” X medication names (”dose, strength. route, or frequency present”)

Rheumatoid Arthritis Disease X NC X X keywords; regex

Sickle Cell Disease Disease X NC “one hospitalization”

Statins and MACE Drug Response X X NC X X X medication names; keywords

Steroid Induced Osteonecrosis Drup Response X NC X keywords

Systemic Lupus Disease X keywords

Type 2 Diabetes Disease X NC X keywords; regex

Type 2 Diabetes Mellitus Disease X X X XLSX KNIME; SQL fragments X “self-reported data from a questionnaire” X medication names; regex

Urinary Incontinence Treatment / Therapy X No value sets provided executable Python code

Warfarin Dose/Response Drug Response X X “Mention of warfarin (Coumadin) at any time in history” keywords

White Blood Cell Indices Healthy / Valid Data X NC “inpatient hospitalization, ER OR Urgent Care visit” X

Table 2.3: Manually extracted metadata from PheKB.

NC – Non-computable (e.g., Word or PDF), XLSX – Microsoft Excel file, CSV – Comma Separated Value file, KNIME – KoNstanz Information MinEr94 files, SQL – Structured Query Language



2.4.4 Terminologies

Figures 2.4 and 2.5 provide histograms related to codes, code systems and value sets. Table

2.4 provides terminology data in tabular form. The table and figures were generated using

automated analysis of the ELM representation of the phenotype definitions and the value

sets in FHIR format. Most phenotypes (28) use four or fewer code systems, and almost

all (30) use ICD-9 codes. RxNorm (21), LOINC R© (17), and CPT (16) are the next most

commonly used. Five code systems (AMT, dm+d, BDPM, CIEL, and MedDRA) are each

only used by a single phenotype. About half of all unique codes (7020) are ICD-9 codes,

and about a quarter (4112) are ICD-10 codes. CPT (1221) and RxNorm (699) are the next

most common. The total number of codes used varies from 5 (Warfarin Dose/Response) to

6865 (Developmental Language Disorder), with a median of 147 (mean: 509.2, std: 1206.3).

The total number of value sets used ranges from 1 (Lipids and Sickle Cell Disease) to 19

(Resistant Hypertension), with a median of 5 (mean: 6, std: 4.4).
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Name Codes Code Systems Value Sets

Asthma Response to Inhaled Steroids 147 2 8

Atrial Fibrillation 192 3 3

Autism 84 1 2

Benign Prostatic Hyperplasia 58 4 5

Bone Scan Utilization 682 5 4

Cardiac Conduction 308 4 11

Cataracts 61 3 3

Clopidogrel Poor Metabolizers 77 3 5

Crohn’s Disease 22 2 2

Developmental Language Disorder 6865 2 6

Digital Rectal Exam 176 7 3

Drug Induced Liver Injury 1590 3 9

Familial Hypercholesterolemia 120 4 17

Height 202 3 5

Herpes Zoster 466 3 5

High-Density Lipoproteins 1912 4 15

Hypothyroidism 385 9 8

Lipids 9 1 1

Multimodal Analgesia 564 2 4

Multiple Sclerosis 7 2 3

Peripheral Arterial Disease 1020 4 11

Red Blood Cell Indices 781 4 9

Resistant hypertension 292 3 19

Rheumatoid Arthritis 251 2 4

Sickle Cell Disease 9 1 1

Statins and MACE 93 5 7

Steroid Induced Osteonecrosis 13 2 2

Systemic Lupus 43 3 6

Type 2 Diabetes 85 4 5

Type 2 Diabetes Mellitus 74 3 7

Urinary Incontinence 173 5 2

Warfarin Dose/Response 5 3 3

White Blood Cell Indices 39 4 4

Table 2.4: Total numbers of codes, code systems, and value sets used by each phenotype.
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Figure 2.4: Histograms of code and code system usage.

ICD9CM – International Classification of Diseases, Ninth Revision, Clinical Modification, ICD10CM – International Clas-

sification of Diseases, Tenth Revision, Clinical Modification, LOINC – Logical Observation Identifiers Names and Codes,

CPT – Current Procedural Terminology, ICD9Proc – International Classification of Diseases, Ninth Revision, Procedures,

ICD10PCS – International Classification of Diseases, Tenth Revision, Procedure Coding System, HCPCS – Healthcare Com-

mon Procedure Coding System, SNOMED – Systematized Nomenclature of Medicine, MeSH – Medical Subject Headings,

AMT – Australian Medicines Terminology, dm+d – Dictionary of Medicines and Devices, BDPM – Public Database of

Medications, CIEL – Columbia International eHealth Laboratory, MedDRA – Medical Dictionary for Regulatory Activities
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2.4.5 Logical Expressions

Table 2.5 lists the total number of expressions used in each phenotype broken down by

expression category. Figure 2.6 presents this information visually, and figure 2.7 provides a

histogram of the individual expressions within each category. Figure 2.8 illustrates the data

types utilized by literal expressions.

The most widely used expression categories are literal (767), data (455), logical (341),

and collection (292), with the later three categories used by every phenotype. The least

commonly used expression categories are aggregate (30) and arithmetic (80). The total

number of expressions used ranges from 6 (Autism) to 248 (Familial Hypercholesterolemia),

with a median of 66 (mean: 76.5, std: 58.8).

Only two types of aggregate expressions were used, with count (28) being the most

common. The exists (201) expression is the most common collection expression used,

with equal (109) and if (141) the most common comparison and conditional expressions

respectively. The query (226) and retrieve (228) data expressions were the most common

non-literal expressions overall, while the aggregate data expression was used only once.

The and (170) expression was the most common logical operator, being used about twice as

many times as not (83) and or (88). The start (30) operator, which extracts the start date

or time from a temporal interval is the most common temporal expression, followed by in

(29), which checks whether a date or time is in a given interval.

Figure 2.8 shows that terminology literals are the most commonly used types, with the

code, code system, and concept types each occurring in 27 or more phenotypes. Next

common are primitive types like Integer (24) and Boolean (20), followed by a long tail of

quantities with various units. In total, 17 phenotypes make use of a Quantity data type.
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Name Aggregate Arithmetic Collection Comparison Conditional Data Literal Logical Temporal Total

Asthma Response to Inhaled Steroids 0 0 12 10 12 21 44 25 8 132

Atrial Fibrillation 0 0 3 0 0 3 0 3 0 9

Autism 0 0 2 0 0 2 0 2 0 6

Benign Prostatic Hyperplasia 1 0 5 4 1 7 6 7 1 32

Bone Scan Utilization 2 0 6 6 7 12 17 7 8 65

Cardiac Conduction 0 15 15 17 1 26 34 28 9 145

Cataracts 1 0 2 3 1 4 5 3 1 20

Clopidogrel Poor Metabolizers 0 9 8 3 6 16 25 9 5 81

Crohn’s Disease 1 0 1 1 0 2 1 1 0 7

Developmental Language Disorder 0 0 6 1 0 6 4 8 1 26

Digital Rectal Exam 0 1 4 4 5 8 16 4 3 45

Drug Induced Liver Injury 0 3 18 16 7 28 36 21 10 139

Familial Hypercholesterolemia 5 10 27 34 14 44 81 27 6 248

Height 0 0 6 13 10 13 23 9 8 82

Herpes Zoster 1 2 6 6 5 13 17 11 5 66

High-Density Lipoproteins 4 0 14 26 14 35 75 9 10 187

Hypothyroidism 0 3 13 2 8 15 12 12 5 70

Lipids 0 0 6 3 5 6 11 2 3 36

Multimodal Analgesia 0 0 10 12 5 12 49 6 0 94

Multiple Sclerosis 0 0 3 0 0 3 0 2 0 8

Peripheral Arterial Disease 2 0 10 7 9 15 20 9 1 73

Red Blood Cell Indices 0 12 13 6 9 21 30 14 11 116

Resistant hypertension 1 15 23 19 10 34 66 18 10 196

Rheumatoid Arthritis 0 0 6 0 0 6 3 7 0 22

Sickle Cell Disease 2 0 3 4 7 7 15 4 2 44

Statins and MACE 2 1 8 11 7 18 27 12 9 95

Steroid Induced Osteonecrosis 1 2 7 19 11 23 52 14 2 131

Systemic Lupus 1 1 5 4 2 7 11 6 0 37

Type 2 Diabetes 0 0 10 4 1 10 14 11 1 51

Type 2 Diabetes Mellitus 4 0 18 10 3 16 24 30 0 105

Urinary Incontinence 2 0 5 6 7 8 17 6 4 55

Warfarin Dose/Response 0 6 13 6 9 10 32 8 5 89

White Blood Cell Indices 0 0 4 0 0 4 0 6 0 14

Total 30 80 292 257 176 455 767 341 128

Table 2.5: Expression counts per category.
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Figure 2.8: Utilization of various data types.

2.4.6 Data Sources

Figure 2.9 illustrates how many data sources are used per phenotype definition and how

many phenotypes used each data source. Also provided are histograms of the numbers of

query operations (used to filter and shape collections of data) and retrieve operations (used

to fetch records for data sources). The majority of phenotypes (22) used 3 data sources or

fewer. Conditions were the most common data source, used by almost all (30) phenotypes,

followed by medications (22), procedures (17), and observations (17). Demographic and

encounter data were the least frequently used.
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Figure 2.9: Histograms of data sources and expressions.

The majority of phenotypes use fewer than ten query and retrieve expressions. The

outliers are Familial Hypercholerolemia (20 queries and 24 retrieves), Resistant Hypertension

(26 queries and 7 retrieves), and High-Density Lipoproteins (17 queries and 18 retrieves).
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Figure 2.10: Total and where clause expression depths.

2.4.7 Expression Depths

Expression depths indicate how many logical expressions are applicable concurrently, which is

roughly correlated with how many phenotype definition criteria are concurrently applicable.

Figure 2.10 provides a histogram of total expression depth as well as where clause expression

depth. where clause expression depth is an indicator of how complicated data filtering

expressions are. Finally, figure 2.11 illustrates expression depth per expression category,

which shows how many expressions of each different category are concurrently applicable.

The lowest total expression depth is 4 (Multiple Sclerosis, Crohn’s Disease, and Autism)

and the highest is 27 (Familial Hypercholesterolemia), with a median of 14 (mean: 13.5,

std: 5.7). Seven phenotypes have a where clause expression depth of zero (White Blood

Cell Indices, Rheumatoid Arthritis, Multiple Sclerosis, Crohn’s Disease, Atrial Fibrillation,

Autism, and Developmental Language Disorder), meaning that data is only filtered by value
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Figure 2.11: Depths per expression category.

set and no other criteria. Red Blood Cell Indices has a the highest where clause expression

depth (18), and the median where clause expression depth is 7 (mean: 6.6, std: 5.4).

Many phenotypes have expression depths of zero or one for aggregate, arithmetic, col-

lection, comparison, and conditional expressions. Logical expressions always have a depth

of at least one. There are some instances of expression depths in the two to four range

for conditional, collection, comparison, and logical expressions, but only logical and arith-

metic expressions have a depth of five or greater. Only logical expressions have a depth

greater than six, with a maximum of 10 in two cases (Red Blood Cell Indices and Familial

Hypercholesterolemia).
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2.5 Discussion

The artifacts that comprised the phenotype definitions can be divided into two high-level

categories: logic and tabular data. The tabular data consists of value sets of codes from

various code systems and lists of keywords or regular expressions used for NLP, although

we did not analyze the latter in depth. Phenotype logic can be further divided into two

categories: clinical logic and operational logic. Clinical logic is the core of the phenotype

definition, and describes the clinical definition of the phenotype. Clinical logic includes which

diagnoses are relevant, which procedures, medications, and lab orders are associated with the

phenotype, as well as patient demographic criteria that should be considered. Operational

logic is also important, and while it contributes to the clinical definition, it is typically a

bridge to how data is recorded in the EHR. Although some patterns have been observed95,

operational logic can be difficult to express accurately using universally applicable logical

expressions. For example, the Herpes Zoster phenotype requires that a matching patient have

at least 5 years of continuous enrollment. The reason for this requirement is to “increase

the probability that a subject’s status with respect to herpes zoster infection is known by

the health care system.” This does not necessarily increase the correctness of the phenotype

definition, but may nevertheless increase the positive predictive value. Another very common

operational criterion is the requirement that a patient have at least 2 diagnoses of a given

condition. This criterion is relatively simple to define using universally applicable CQL

logic, while the concept of enrollment is determined differently at different institutions. One

solution to this problem, which is available when using a modular formal representation, is to

have local implementations for common operational criteria that are used during phenotype

40



execution. This is the same approach used in computer software, where system libraries

provide routines with known names and well-defined parameters, but the implementation

varies according to the operating system.

PheKB was initially created by the eMERGE Network, which is primarily focused on con-

ducting research that combines genetic data with EHR data. For this reason, the majority of

phenotype definitions we reviewed are written in a way that supports this type of research.

Specifically, covariates of interest for the relevant research study are often referenced in the

phenotype, even if they do not form part of the phenotype definition itself. This is likely

because phenotyping and covariate extraction have historically been done simultaneously.

However, this can make it more difficult to interpret the phenotype definition, especially

when research study instructions are given directly inline with the phenotype logical crite-

ria. For example, in the White Blood Cell Indices phenotype, the definition requires that

the implementer flag patients with Alzheimer’s disease. This information is not used for

inclusion or exclusion purposes, but is preparatory work for the genome-wide association

study (GWAS) that the phenotype was developed for. Because of the history and purpose

of PheKB, the conflation of phenotype definition and research data dictionaries is to be

expected, and was probably beneficial to the initial users of PheKB. However, for pheno-

type definition clarity and re-usability purposes, it is likely better to completely separate

research-specific data preparation steps from the phenotype definition.

During this work we experienced first hand many of the challenges that face phenotype

implementers. We encountered numerous occurrences of ambiguity, underspecificy, and im-

precise language. For example, the Clopidogrel Poor Metabolizers phenotype uses the phrase

“within 30 days”, but does not specify whether the interval boundary should be inclusive
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or not, or whether the 30 days both before and after the event should be considered. In

each case the primary CQL developer had to confer with colleagues in order to determine

the exact semantics of the phenotype definition. Even then, we would occasionally rely on

subjective decisions regarding the intent. This resulted in a considerable slow down in im-

plementation, and the resulting implementation may still be erroneous. The only certain

way to determine semantic correctness would be to reach out to the original phenotype def-

inition authors, who may not have a definitive answer (given elapsed time from when some

phenotypes were authored). Additionally, some phenotype definitions relied heavily on do-

main or tribal knowledge not specified within the definition itself. This makes it difficult

for non-clinicians or healthcare outsiders to replicate research or use existing phenotype def-

initions for new research. For example, the High-Density Lipoproteins phenotype requires

that a cohort member have at least one “random glucose test”, but does not specify how

these tests are to be identified. We also encountered contradictory criteria definitions, for

example, the Bone Scan Utilization phenotype requires that a cohort member be both > 35

and ≥ 35 years old. A formal representation may not eliminate all these issues, but it would

require phenotype authors to be more precise at the definition phase, which would reduce

the cognitive load on implementers.

The self-reported demographic metadata is not very complete (see table 2.2), and where

this metadata is provided, the same information rarely forms part of the phenotype defini-

tion itself. The exceptions are age and gender, which do usually form part of the phenotype

when clinically relevant. The self-reported data modalities are very complete, with only one

phenotype not reporting anything. Further, the self-reported data modalities match what

we found in our computational analysis, namely that ICD-9 codes are the most common,
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followed by medications and lab values (which we modeled using LOINC R© codes). However,

the number of categories in the self-reported data are limited and don’t allow authors to spec-

ify if they use encounter data, observations (besides vitals and laboratories), or demographic

data. The self-reported number of data modalities used is 4 or fewer in most cases, while

we found it to be 3 or fewer in most cases. Since we excluded the very commonly used NLP

modality, this discrepancy makes sense. Due to the incompleteness and limited categories of

self-reported metadata, this information is likely not very useful to implementers, who must

still read phenotype definitions in full to determine implementation requirements. Using a

formal representation can mitigate this problem by enabling the automated extraction of

complete, detailed, and accurate metadata.

The prevalence of certain expressions such as data retrieval and manipulation expressions

as well as literal expressions may be expected. What may be surprising is the relatively low

usage of arithmetic and aggregate expressions, which indicates that in most cases data values

are used directly, rather than to construct derived values. Both the count and sum aggregate

expressions are used as cardinality constraints (e.g., at least 2 diagnoses required) and not

in an arithmetic context. The highly used existential operator (exists) is used for the same

purpose (e.g., does an observation exist that meets certain requirements). Additionally, even

though about two thirds of phenotypes use temporal expressions, the total number used is

relatively small. The fact that the and operator is used about twice as much as the or and

not operators indicates that the conjunction of criteria is much more common than their

disjunction or negation. This makes sense, since conceptually, phenotypes are defined by

clusters of concurrent criteria rather than by the disjunction of many different criteria.

Overall expression depths seem to be normally distributed around 15, while where clause
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expression depths appear to be bimodal, but generally trend down at high values. The

downward trend implies that complicated data filtering expressions are uncommon. Most

expression categories are not very deeply nested, and only logical expressions (and in one case

arithmetic expressions) have a depth of 5 or higher. This can be interpreted to mean that

conceptually simple criteria are combined in complex ways using and and or expressions.

This is confirmed by the flowcharts provided with some phenotype definitions, which may

have a complicated topology, but the criteria represented by each node are relatively simple.

In general, the total number of expressions per phenotype is not very high, with a median

of just 66. The total number of expression types is also quite low, at just 44 (CQL has over

200 expression types). There are several possible reasons for the simplicity of the phenotypes

in the data set. First, in our experience, implementing even simple phenotype definitions is

quite challenging, so authors may choose to keep definitions simple to make implementation

practical. Second, the phenotypes generally restrict themselves to data available in the

EHR, which may be simplified, as some of this data is for billing purposes. Further, since

the PheKB phenotypes are designed to be shared, authors may limit themselves only to

data available to most implementers, such as the most basic data elements. Third, since

phenotypes are created as narrative text, the lack of a formal expression language may be a

factor that limits the level of detail provided. Finally, related to the previous point, it may

be the case that since we used CQL to represent the phenotype definitions, the resulting

number of expressions is low, as complex clinical and temporal operations are available as

single expressions in this language.

There is no clear correlation between the severity or complexity of presentation of a

disease and the number of expressions used. For example, something ostensibly simple like
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Height has ten times as many expressions as Multiple Sclerosis. There are also two Type 2

Diabetes phenotypes, one with 51 expressions and one with 105, so even the same disease

can be represented in vastly different ways. This implies that a large part of phenotype

definition complexity is determined by the level of detail that the author decided to use.

This is independent of any formal representation, and may depend on the intended use of

the phenotype definition.

While it was not the objective of this study to evaluate FHIR and CQL as a standards-

based representation, we provide a short discussion here of the insights gleaned by using this

approach. One benefit of using a phenotype representation based on an already widely used

standard is the existence of tools for working with the standard. Another important factor

to consider is verifiability through testing. FHIR provides the TestScript resource that can

be used to define and validate specific behavior, and CQL has the CQL Testing Framework

(shown in figure 2.1) that can be used to provide confidence in the semantic correctness of

phenotype definitions. Other advantages of using mature standards include the availability

of documentation and expertise.

There are additional benefits to using healthcare-specific standards, as they usually pro-

vide useful domain-specific conceptual models. For example, FHIR provides resources for

modeling clinical entities, attributes, and relations. An important conceptual model used by

CQL is the decision to have both human and machine-readable versions of logical expres-

sions, which at the same time minimizes the learning curve and reduces effort required to

implement a CQL engine, since a CQL to ELM parser is provided by the community.

We observed that many phenotypes share similar logical units. For example, finding the

most recent value for a lab test or other observation, or checking the age of the patient
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at the oldest or newest occurrence of a diagnosis code. Any formal representation should

therefore have the ability to represent shared logic. Due to the modularity of CQL, we

were able to extract shared logical units into separate libraries that can be accessed by

multiple phenotype definitions. This same mechanism can also be used to express localized

operational logic, provided interfaces are first agreed upon, or customized clinical logic based

on local guidelines and processes. Examples of local customization include using different

terminologies (e.g. SNOMED vs LOINC R©), using different value sets to encode a specific

condition, or using different thresholds or different sub-rules for defining phenotypes. While

standards can help reduce the need for local customization, it seems unlikely that it will be

possible to completely eliminate this need, so any formal standard must support this use

case.

The CQL and FHIR-based representation used in this work supports local customization

in a transparent and well defined manner. To support different terminologies or value sets,

the implementer simply needs to ensure that the referenced value set is updated to reflect the

local context. The advantage of this approach is that the CQL library itself does not need

to be updated at all, only the ValueSet resource. In addition, this ValueSet resource only

needs to be updated once and the update will be reflected in all the phenotype definitions

that reference this value set. Additionally, local customization of phenotype logic can be

achieved by extracting customizable logic into CQL libraries that can be replaced in local

implementations. Finally, since CQL is data model independent, sites that do not use the

same data model as a given CQL library have several options. These sites could implement

translation logic that transforms the machine-readable ELM into a new ELM referencing

the preferred data model, or they could implement a new CQL engine that performs this
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translation transparently. While these options incur an upfront implementation cost, it will

only be paid once.

2.5.1 Limitations

We note the following limitations in this work. First, our data set is relatively small, con-

sisting of only 33 phenotype definitions, and while we believe we have reached sufficient

saturation required for our analysis purposes, there may exist additional phenotype defini-

tions that would alter our conclusions. We recognize that the two primary authors may have

missed subtleties in some definitions during translation, although this was mitigated in part

by the independent review of each phenotype by the other author, and consulting additional

colleagues where ambiguities needed to be discussed.

While we took steps to ensure that our implementations were as simple as possible while

remaining semantically correct, alternative implementations may be possible since CQL is

a highly expressive language. This could impact our calculated measures, but since all

implementations were reviewed by both authors, there should be some degree of consistency,

which means that comparisons between implementations are still informative. An additional

limitation is that our CQL-based representations were not clinically validated. Therefore,

even though we selected only clinical valid phenotype definitions to translate, our resulting

representations have not themselves been clinically validated.

We also note that all the definitions we translated were designed to detect patients with

a single condition. Even though EHR data provides the opportunity to conduct research

on patients with complex comorbidities, the phenotype definitions in our data set were

not designed to identify cohorts of such complex patients. The phenotypes analyzed are
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reminiscent of those that might be used for recruiting patients for randomized controlled

trials, but we hope this work will provide some insights that lead to methods for developing

higher fidelity phenotype definitions, and that these definitions can be used for so-called deep

phenotyping.

The decision not to include NLP directives in our analysis was purposeful, but impacts

any conclusions we may draw about individual phenotypes. We know that most (28) phe-

notype definitions make use of some form of NLP, so we are omitting data from a significant

number of definitions. However, almost all definitions including NLP directives simply pro-

vide a keyword list or regular expressions, and not higher-level entities, negation, or temporal

constructs. In some cases, no details are given about how the NLP should be implemented.

For example, the Red Blood Cell Indices phenotype definition says only “NLP was imple-

mented to that regard” (referring to identifying patients taking specific medications). So,

we believe that including a more detailed analysis of NLP data elements would not be infor-

mative due to their underspecificity in the dataset.

Despite the above limitations, we have characterized a data set of clinically validated phe-

notype definitions along several dimensions, and have presented both the raw data and our

analysis. We have additionally identified the essential components of any phenotype defini-

tion, and highlighted some important requirements that any potential formal representation

should fulfil.
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2.6 Conclusion

Phenotype definitions consisting only of narrative descriptions and other unstructured ar-

tifacts present significant implementation challenges. These implementation challenges are

a rate limiting factor in the generation of biomedical knowledge. In this work we charac-

terize the nature of a set of clinically validated phenotype definitions, and propose some

requirements for a formal representation. Such a formal representation may reduce ambigu-

ity, imprecision, and contradictions, as well as decrease implementation time by facilitating

automation. These improvements may increase the velocity at which observational research

can be conducted.

The phenotypes analyzed show significant variation in small details, but are all composed

of the same high-level components, namely tabular data and logical expressions. The most

important type of tabular data analyzed here is value sets, which can readily be represented

in a standard format. Logic can be clinical or operational and both can be represented

in a standard format, however, operational logic may in some cases be highly localized.

Therefore, any standard representation must support the seamless combination of local and

universal logic.

There are numerous advantages to using popular healthcare-specific standards, such as

convenient conceptual models, mechanisms for verification, and the availability of tools,

documentation and expertise. Using a logical representation that is data model independent

may facilitate automated execution by allowing implementation sites to implement their own

data providers for existing phenotype definitions. Similarly, the use of common standard

terminologies may enable automatic mapping during local execution.
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A significant amount of data useful for EHR-driven phenotyping may be stored in clinical

notes. The body of research focused on extracting this data is growing, but to our knowledge,

no widely accepted standard representation for NLP metadata and processes has yet emerged.

The PhEMA research team is working on methods for integrating NLP into both FHIR27

and CQL38, and in future work we hope to integrate this research into our standards-based

phenotype representation.

Finally, we hope to continue to investigate whether FHIR and CQL are viable represen-

tations by using these representations in clinical research. We have conducted early work

that provides evidence that these standards may be suitable37, and we have further work in

this regard underway.
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chapter 3

TOWARD CROSS-PLATFORM ELECTRONIC HEALTH

RECORD-DRIVEN PHENOTYPING USING CLINICAL QUALITY

LANGUAGE

3.1 Introduction

Learning Healthcare Systems (LHS) are organizations in which the delivery of care generates

data and insights that can be analyzed and transformed into biomedical knowledge. This

knowledge can then be used to improve the quality and efficacy of healthcare3. A core

aspect of generating this knowledge is the identification of patient cohorts in the electronic

health record (EHR) matching certain clinical criteria, a process commonly referred to as

EHR-driven phenotyping. EHR-driven phenotyping has applications across the continuum

of LHS to conduct case-control and cohort studies, clinical trial recruitment, clinical decision

support (CDS), and quality measurement8.

We have established the Phenotype Execution and Modeling Architecture (PhEMA),

an open-source infrastructure to support clinicians, researchers, informaticists, and data

analysts in standards-based authoring, sharing, and execution of computable phenotype

definitions96. In this work we continue to improve the PhEMA tools by proposing to adopt

Clinical Quality Language (CQL)97, a Health Level Seven International (HL7) standard

for formally representing logical expressions, as the computable phenotype representation.

51



Our hypothesis is that if a standards-based phenotype representation is used, it will enable

execution across data platforms with a one-time cost. That one-time cost is the development

of a CQL engine for each target platform, and this cost is preferable to manual phenotype

translation, as it ultimately enables cross-platform phenotyping at scale. We investigate

whether this approach does enable cross-platform phenotyping and demonstrate a newly

built CQL evaluation engine that is able to execute CQL phenotype definitions against the

Observational Health Data Sciences and Informatics (OHDSI) platform18.

We used a clinically validated phenotype definition for patients with heart failure (HF),

a common, costly, and morbid condition affecting over 6 million US adults and a high

public health priority98. The system was validated at multiple institutions and across data

platforms, and is made available on GitHub to complement the current set of tools used

by the observational research community, with the hope that our methods will contribute

towards the future convergence of phenotyping systems.

3.2 Background

In general, EHR-driven phenotyping is a two-step process: 1) defining the phenotype and

2) executing the phenotype. First, a phenotype definition must be developed, which is a

resource-intensive process involving multi-disciplinary teams, and often requiring several it-

erations to produce a high quality, clinically valid result21,35. Phenotype definitions typically

consists of (i) clinical data elements of interest, such as demographics, medications, diag-

noses, encounters, laboratory results, and other clinical observations, (ii) lists of codes from

published terminologies, called value sets, and (iii) Boolean, aggregate, and temporal logical
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expressions that relate the data elements and value sets (phenotype logic). Additionally, the

phenotype definition must be validated against a gold standard, most often derived from a

resource-intensive manual chart review23,34.

Second, in order to assemble the cohort of interest, the phenotype definition must be

executed against a clinical database. Without a directly executable standard representation,

this involves human interpretation of a narrative description or flowchart illustrating the

phenotype definition and translation into machine-executable code, such as SQL or R. This

is a time-consuming and error-prone process, which sometimes involves translating value

sets into local terminologies45,99. Such phenotype definitions are not portable or scalable, as

these steps must be repeated at every implementation site, resulting in duplication of effort

and highly variable results.

In contrast, computable phenotype definitions are represented in an unambiguous for-

mal language and can be executed against a database with minimal human intervention,

reducing implementation effort and variability, increasing transparency, and enabling high-

throughput phenotyping16. Two approaches enable computable phenotype definitions: com-

mon data models (CDMs) and dedicated phenotype logic execution environments. CDMs

allow writing executable code that can be used against different clinical databases without

code modifications. Research networks such as the OHDSI network, the Health Care Systems

Research Network (HCSRN)100, Sentinel101, the electronic Medical Records and Genomics

(eMERGE) Network12–14, the National Patient-Centered Clinical Research Network (PCOR-

net))31, and the Accrual to Clinical Trials (ACT) Network102, have used this approach with

much success28,103. However, no single CDM is ubiquitous, and the code written for any

given CDM is not executable against a different CDM. For example, the PCORnet CDM

53



and the Observational Medical Outcomes Partnership (OMOP) CDM used by OHDSI both

represent similar categories of medical data, however a query written against one cannot be

directly executed against the other without modification because the schemas are different.

Logic representation standards like the healthcare-focused Health Quality Measure For-

mat (HQMF) and CDS Knowledge Artifact Specification (KAS), and general logic execution

environments such as JBoss R© Drools and the Konstanz Information Miner (KNIME) have

also been shown to work in select use cases24,104. Software code is not based on any formal

healthcare-related standard, and while HQMF and CDS Knowledge Artifact Specification

(KAS) show promise, they do not have human-readable representations. General logic execu-

tion environments may present a significant implementation burden, with some institutions

spending significant valuable resources and time, and still failing to get the systems run-

ning19.

Instead, clinicians, informaticists, and data analysts need an approach that allows them

to collaborate with institutions using a variety of CDMs, and minimizes the number of

times a phenotype has to be written. CQL is a formal logical expression language that

supersedes HQMF and CDS KAS, and is intended to be used for electronic clinical quality

measures (eCQMs) and CDS, as well as more general clinical knowledge representation use

cases. The Centers for Medicare & Medicaid Services (CMS) and HEDIS R© (The Healthcare

Effectiveness Data and Information Set) have published eCQMs using CQL. The emerging

Fast Healthcare Interoperability Resources (FHIR) standard has also adopted CQL as one

of its standard logical expression languages105. Additionally, there are several tools for

authoring knowledge content in CQL, such as the CMS Measure Authoring Tool (MAT)106

and the Agency for Healthcare Research and Quality’s (AHRQ) CDS Connect authoring
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tool107.

CQL is organized into libraries – comparable to programming packages – which have

the added benefit of being reusable across multiple eCQM and CDS. CQL has both a high

level, human-readable representation, and an equivalent machine-readable representation,

called the Expression Logical Model (ELM). The ELM is an Abstract Syntax Tree (AST)52

representation of the language and has both a JSON and XML format. The intention of

the language authors is that engine developers should focus on the evaluation of core logic

expressed in the ELM, and use existing tools for parsing, expression simplification, and

semantic analysis97. Furthermore, CQL is data model agnostic, meaning that different data

models, such as FHIR, OMOP or the Quality Data Model (QDM), may be utilized with the

same logical constructs.

3.3 Methods

3.3.1 Phenotype Selection & Translation

We adopted a pre-existing HF phenotype definition that has been executed and clinically

validated against multiple EHRs and sites108–110. The HF phenotype definition uses several

different data modalities, including demographic data, clinical diagnoses, clinical encounter

types, as well as procedure orders. It also uses Boolean logic, temporal logic in the form

of patient age and co-occurrence of diagnosis with encounters, and an aggregate function.

Additionally, it references a number of common clinical terminologies, including the Interna-

tional Classification of Diseases versions 9 (ICD-9) and 10 (ICD-10), the Current Procedural

Terminology (CPT), as well as the Systematized Nomenclature of Medicine (SNOMED).
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Yes

No

C1: 
Patient at least 

18 years old

Exclude Include

Yes

No

C2: 
Patient has 

echocardiogram

No

Yes

C3: 
1 Inpatient encounter 

with HF Dx

YesNo

C4: 
2 or more outpatient 

encounters with 
HF Dx

Figure 3.1: The HF phenotype definition. All criteria are labeled C1 through C4.

We began by representing the HF phenotype definition as a CQL library. We selected

the FHIR data model for data element references because mappings already exist from the

FHIR data model to many popular CDMs46, and many CQL engine implementations support

FHIR111.

The HF phenotype logic is shown in figure 3.1. Criteria C1 and C2 are mandatory, and

the patient must also match either C3 or C4 to be considered a case. CQL is sufficiently
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expressive to represent these criteria, and the source, available in the project’s GitHub

repository112 has six total statements. One for each criterion, one to represent the disjunction

of C3 and C4 (C*), and one to represent the final conjunction: C1 AND C2 AND C*.

Two value sets were needed, one for the HF diagnosis codes (Dx VS), which came from

three different terminologies (ICD-9, ICD-10, and SNOMED), and one for the echocardiogra-

phy procedure codes (Echo VS), from the CPT terminology. We used an existing Dx VS from

the Value Set Authority Center (VSAC)47, which is also used by CMS for their HF eCQMs.

We created and published a new Echo VS in VSAC. For inpatient and outpatient encounter

types, we used individual codes from the ActCode113 terminology, as recommended by the

FHIR standard114.

3.3.2 CQL Engine Development

We chose to develop a CQL engine, called CQL on OMOP (figure 3.2 box 1), for the OHDSI

data platform. In addition to its use of the OMOP CDM, OHDSI has existing phenotype

definition analysis and visualization tools built upon a Web application programming in-

terface (API), making it possible to validate our results using independent methods. The

OHDSI platform represents phenotype definitions in a transportable JSON format, and ex-

ecutes them using a library called Circe 115 that provides entities for representing phenotype

logic, for example, CriteriaGroup and DemographicCriteria. CQL on OMOP translates

a CQL-based phenotype definition into the Circe representation and then uses the OHDSI

Web API to generate the cohort (figure 3.2 box 2(b)).
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5. Translation Execution Pipeline 6. FHIR-native Execution Pipeline

Figure 3.2: Box (1) shows the developed CQL on OMOP engine, box (2) the OHDSI data platform, box (3) the OMOP on
FHIR data transformation tool, and box (4) the FHIR-native stack used for cross-platform validation. Box (1) shows our newly
developed software, while boxes (2) to (4) are existing systems we leveraged. Pipelines (5) and (6) show the two validation
methods. Both NM and WCM used the pipeline (5) architecture with their own data for phenotype execution.
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The engine was developed as an open-source Java application116 and uses libraries pro-

vided by the CQL authors to parse CQL and generate an ELM tree117. Entities from the

Circe library are used to represent cohort criteria in the format expected by the OHDSI Web

API. CQL on OMOP runs as a standalone application and can be configured to connect to

an instance of the OHDSI Web API. Both CQL and ELM are supported as inputs, as well as

value sets in several different formats, including the format produced by VSAC. Finally, the

tool is developed in a modular way that makes it easy to add new CQL language features

and support new data element correlations.

The process of value set resolution leverages CSV files downloaded from VSAC that were

packaged with the HF CQL. The process of resolution (figure 3.2 box 1(b)) matched value

set object identifiers (OIDs) within these files and the CQL code. CQL on OMOP used the

OHDSI Web API to identify the relevant concepts from each value set and build the OHDSI

concept set (figure 3.2 box 1(d)). The OHDSI platform primarily makes use of standard

terminologies, with one exception being internal codes defined by OHDSI for visit types.

This required us to implement a simple terminology translator between FHIR encounter

types and OHDSI visit types (figure 3.2 box 1(a)).

The core contribution of the CQL on OMOP engine is the ELM logic translator (figure

3.2 box 1(c)). The engine implements a rule-based, recursive descent language translation

algorithm52. In this algorithm, each node of the AST (ELM) is visited during a post-order

tree traversal and is translated based on a set of rules. To support the logic necessary

to execute the HF phenotype definition, we implemented rules for Boolean conjunctions

(AND) and disjunctions (OR), temporal logic to calculate patient age, numeric comparison,

the Count aggregate function, filtering data by value sets, and correlated queries, which
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express relationships between data elements. Data model translation is performed during

the creation of Circe criteria from ELM Query constructs.

3.3.3 Validation

The CQL on OMOP tool was validated in two ways - cross-institutional and cross-platform.

First, the cross-institutional validation checked the accuracy of the translated phenotype

logic when executed on two instances of the same CDM (OMOP). This was done at North-

western Medicine (NM) and Weill Cornell Medicine (WCM), and we verified the results

manually to evaluate if the phenotype logic was correctly applied (figure 3.2 pipeline 5).

Second, we conducted a cross-platform validation to evaluate that consistent results were

returned when the same phenotype logic was applied to the same synthetic dataset in two

different execution pipelines - an OMOP environment, and an independent, FHIR-native

CQL execution pipeline (figure 3.2 pipeline 6).

3.3.3.1 Cross-Institutional

The NM OMOP instance used for cross-institutional validation is a subset of the patient pop-

ulation at NM, specifically, those consented for the eMERGE network, and is generated from

the NM EpicCare R© EHR. The WCM OMOP instance includes the patient population at

WCM and its affiliate NewYork-Presbyterian (NYP) hospital with at least one recorded visit,

condition, and procedure. In the outpatient setting, WCM physicians use the EpicCare R©

EHR, and NYP uses the Allscripts Sunrise Clinical Manager for inpatient care.

Each institution selected a random set of 25 patients that were identified by CQL on

OMOP as meeting the criteria of the HF phenotype (cases). Additionally, each institution

selected 25 random patients who a) were not included as a HF case, b) had at least one
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echocardiogram procedure, and c) had at least one relevant diagnosis code (non-cases). In

review of the HF phenotype definition, we believed the highest chance of error in the transla-

tion of the logic was in the portion aligning diagnoses with encounters (C3 and C4 in figure

3.1). As this is a technical verification and not a clinical validation, we believed this would

be more likely to identify implementation errors than a random selection of patients not

meeting the case definition, as the majority of patients would simply be lacking diagnoses

(given the overall expected low prevalence of HF). Cases and non-cases were selected from

the respective OMOP databases using SQL scripts that were prepared collaboratively by the

reviewers ahead of time.

At NM, one reviewer (LVR) evaluated the set of 50 cases and non-cases in OMOP. A

random subset of 10 patient records (5 cases and 5 non-cases) was reviewed by a second

reviewer (JAP). At NM, each reviewer used the ReviewR tool, which provides a graphical

interface and filtering capabilities against an OMOP database118. At WCM, a similar process

was followed with a primary reviewer (ETS) reviewing all 50 patient records and a second

reviewer (PA) reviewing a random subset of 10 patient records. WCM reviewers accessed

the OMOP database via SQL queries to retrieve the data elements needed for the results

verification. Both institutions used the same SQL code to generate the random list of

patients for review and followed the same written protocol. This code and documentation

are available in the project’s GitHub repository. We calculated Cohen’s kappa119 to measure

inter-rater reliability, and determined overall system performance using precision and recall.
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3.3.3.2 Cross-Platform

To assess cross-platform performance, we compared CQL on OMOP to the reference im-

plementation of the CQL engine provided by the language authors120, running against a

HAPI FHIR server121. We used data for 1000 patients from the Centers for Medicare &

Medicaid Services’ (CMS) Data Entrepreneurs’ Synthetic Public Use File (SynPUF 1k)122.

Although synthetic, the dataset is intended to be representative of a typical claims dataset

collected by CMS. The dataset was transformed into the OMOP CDM schema using the

extract transform load (ETL) tool provided by the OHDSI community123, and transformed

into the FHIR format using the OMOP on FHIR tool124.

We ran the HF phenotype definition using CQL on OMOP against an OHDSI instance

containing the SynPUF 1k dataset and generated the resulting cohort of patients. We then

ran the same HF CQL using the CQL reference implementation against a FHIR server con-

taining the same SynPUF 1k data and compared the resulting patient cohorts. Performance

(agreement between the two systems) was measured using Cohen’s kappa.

3.4 Results

3.4.1 Cross-Institutional

The NM OMOP instance contained 8, 657 patients, of which 668 patients (7.7%) were iden-

tified by the HF phenotype definition, from which 25 were randomly selected for review. Of

the 7,989 patients not qualifying for the HF cohort, 139 patients had at least one HF diagno-

sis and at least one echocardiogram, from which 25 were randomly selected as the non-case

review cohort. Inter-rater agreement was κ = 1.0 between the two reviewers, and the CQL
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Figure 3.3: Results and validation flowchart for translation execution pipeline.

to OMOP translation execution pipeline achieved both precision and recall of 100%.

Of the approximately 1, 797, 242 patients in the WCM OMOP instance, 20, 486 (1.4%)

were in the HF cohort. There were 14,320 patients that matched our non-case criteria. The

25 cases and 25 non-cases randomly selected for review demonstrated precision and recall of

100%. Inter-rater agreement was again κ = 1.0.

3.4.2 Cross-Platform

After performing ETL on the SynPUF 1k dataset, the resulting OHDSI instance contained

147, 186 conditions, 55, 261 visits, and 137, 522 procedures for the 1, 000 synthetic patients.

We confirmed the same counts of each data element after application of the OMOP on FHIR

data transformation tool to verify no data were lost.

Running CQL on OMOP against an OMOP instance containing the SynPUF 1k dataset

resulted in a cohort with 94 members (9.4%). Executing the same CQL using the CQL
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reference implementation pointing to a HAPI FHIR server containing the same SynPUF 1k

dataset represented as FHIR resources also generated a cohort containing 94 patients. Since

patient IDs were kept consistent by the ETL and OMOP on FHIR processes, we were able

to confirm that these cohorts were in complete agreement with κ = 1.0.

3.5 Discussion

We were able to express a HF phenotype algorithm as a CQL library, and demonstrate

consistent execution across multiple institutions with different populations (NM and WCM),

as well as different data platforms (OMOP and FHIR) representing the same synthetic

patient population. Manual translation of the query logic was not required in this process,

thereby, limiting the potential for error. Thus, CQL reduces duplication of effort, increases

transparency and phenotype portability, and reduces variability. Furthermore, our selection

of a clinically-purposed language (CQL) will facilitate extension of this approach beyond

research phenotypes to clinical and analytical needs of a LHS.

CQL libraries modularize logic using named statements and functions, facilitating reuse,

which is highly beneficial for phenotyping as it enables defining cases and controls which often

have shared logic. Well-constructed libraries can then also extend past binary case/control

classification to include suspected cases, sub-phenotypes, related phenotypes, and even groups

of phenotypes. Libraries can also be parameterized, which can be used to support local

customization, within well defined bounds, to match site-specific clinical and operational

procedures.

Although our translation of the HF phenotype logic performed with high precision and
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recall, we note differences between the conceptual models used by CQL and the OHDSI

Circe library. In Circe, phenotypes have specific entry and exit events, and the concept of

observation period is used to determine cohort membership, which are not explicit concepts

in CQL. Circe and CQL also have different internal AST representations. CQL uses a

traditional AST with very simple nodes, and a topology correlated with the complexity of the

represented logic, while Circe uses nodes that encode additional information, and generally

has a simpler topology, only using the tree to encode conjunction and disjunction, occurrence

count restrictions, and temporal correlations. CQL’s more traditional AST structure lends

itself well to language applications like translation and interpretation, while the structure

of Circe may simplify SQL query construction and make it easier to build user interfaces to

author cohort definitions. Lastly, criteria in Circe can be manually grouped into inclusion

rules, which supports the generation of attrition statistics and visualizations. Since this

grouping requires human intervention, it is not possible to generate meaningful inclusion

rules in CQL on OMOP without introducing further conventions (e.g., annotations), which

we decided against to ensure cross-platform support for CQL-based phenotypes.

Using the FHIR data model for data element references resulted in several advantages.

Due to the popularity of FHIR, a data model translation already existed for the OMOP CDM,

which reduced the amount of implementation work necessary for CQL on OMOP. The HF

phenotype logic references unambiguous data elements such as conditions and procedures,

which are highly mature entities in the FHIR specification, and have very clear mappings to

the OMOP CDM. However, some phenotype definitions may reference more nuanced data

elements that may be more difficult to translate. While it may take more upfront work to

deal with these issues in the CQL engine, this work will only have to be done once per target
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platform, reducing overall work required for phenotyping, along with phenotype variability.

The reduced expressiveness of Circe, compared to CQL, limited our current CQL on

OMOP implementation. As many institutions within the OHDSI community develop cohort

definitions using SQL, R, or other languages as opposed to Circe, this may have been a

purposeful limitation by the OHDSI developers. CQL approaches the expressiveness of a

general-purpose programming language, and as such can express arbitrary arithmetic, and

has many aggregate functions not supported by Circe (e.g., Sum and PopulationStdDev).

To address these limitations Circe can either be extended to be more expressive, or CQL on

OMOP could bypass Circe and the OHDSI API entirely and access the database directly.

While the latter approach would enable the full expressivity of CQL, the former approach is

more desirable, since it maintains compatibility with all of the phenotyping and other tools

in the OHDSI community.

An important limitation of the CQL language itself is that it is optimized for rule-based

logic using structured data elements, and does not explicitly define any mechanism for natural

natural language processing (NLP) or integration with machine learning (ML) methods.

Both of these techniques are important to the task of phenotyping32,125, and being limited to

structured data and deterministic algorithms is a significant restriction. However, CQL does

provide a mechanism to integrate with external systems using an approach called foreign

function invocation (FFI). FFI enables a given engine implementation to make functions

available to the CQL library author that execute code in an arbitrary environment, such

as an NLP or ML pipeline, and make the execution results available in CQL. Furthermore,

CQL can leverage existing NLP systems that already utilize the FHIR standard to provide

standardized models and normalization rules for integrating unstructured data27. These
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features could be used to develop extremely high fidelity phenotypes that make use of the

latest NLP and ML algorithms.

We acknowledge additional limitations within our work. First, our evaluation was per-

formed using a single phenotype (heart failure), and does not include support for all operators

within CQL at this time. We selected the HF phenotype definition given its use of multi-

ple data elements (diagnoses, encounters, procedures, demographics), temporal logic, and

aggregate functions (Count), which represents commonly used building blocks across other

phenotype definitions. Second, we recognize that the validation of 50 cases and 50 non-cases

may be seen as minimal, and that our selection of non-cases is not representative of all pa-

tients not identified by the HF algorithm as cases. Given that our focus was on a technical

verification and not a clinical validation, we believe that our review allowed us to focus on

the most probable sources of error. Third, the upfront cost of developing a CQL engine

for a new target platform may be prohibitive, and potential implementers of the proposed

approach would need to balance this cost against potential benefits. If the implementer has

no desire to share or reuse existing phenotype definitions, or if cross-platform phenotyping

is not a requirement, then using existing query tools may be more appropriate.

Despite the above limitations, we have shown that CQL can be used to represent and

execute a clinically validated phenotype, using our CQL on OMOP engine. Due to its highly

expressive nature, CQL could be used to represent longitudinal phenotypes with highly

complex data relationships. Furthermore, in our experience, the CQL language specifica-

tion (with its canonical AST) makes implementing language engines against arbitrary data

platforms relatively easy. Therefore, CQL is a promising candidate as a formal phenotype

representation standard that supports cross-platform execution.
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3.6 Conclusions

The task of EHR-driven phenotyping is critical to biomedical knowledge generation, which

supports the learning health system. Current techniques suffer from portability and scala-

bility issues, requiring human intervention. This leads to errors, variability, lack of trans-

parency, and greatly reduces potential throughput. To address these issues, we investigated

CQL as a candidate language for representing clinical phenotype definitions, and demon-

strated execution against multiple data platforms without local customization. We believe

this approach could speed up phenotyping, regardless of the underlying data platform. Using

a computable standard representation would also reduce duplication of work and potential

for human error, and enable the large scale phenotyping needed for learning health systems.

In future iterations of the PhEMA project we plan to extend CQL language support in

CQL on OMOP, translate additional clinical phenotypes into CQL, use CQL-based pheno-

type definitions in clinical research studies, and extend existing phenotype authoring tools

to generate CQL. Furthermore, we plan to develop CQL execution engines against other

data platforms, such as the Informatics for Integrating Biology and the Bedside (i2b2) plat-

form126, and extend CQL to support NLP and ML. We will continue this work with existing

phenotyping communities to publish methods and tools with the ultimate goal of conver-

gence on a unified system to support high-quality and high-throughput phenotyping efforts.
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chapter 4

PHEMA WORKBENCH: A PLATFORM-INDEPENDENT

FHIR-NATIVE EHR-DRIVEN PHENOTYPING TOOLBOX

4.1 Introduction

Many studies designed to generate biomedical knowledge begin with cohort identification,

also called electronic health record (EHR)-driven phenotyping, which is a resource-intensive

process involving many stakeholders that must often be repeated every time the same cohort

is studied8,23. Given increased focus from the research community in the past decade, many

different approaches and tools have been developed that attempt to reduce duplication of

work, decrease the time investment required, and limit the potential for human error18,126–134.

These approaches and tools have grown in response to specific needs, which by and large has

resulted in a fragmented ecosystem of tools that are not interoperable. For more compre-

hensive suites of tools, they have been developed to work within a single data model, which

can hinder their adoption in other contexts. In this work, we present a standards-based rep-

resentation for cohort definitions (also called phenotype definitions) and an accompanying

tool that together facilitate interoperability in the existing heterogeneous EHR-driven phe-

notyping environment. We hypothesize that the proposed methods will reduce duplication

of work and thereby increase the velocity of biomedical knowledge generation.
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4.2 Background

4.2.1 Computable Phenotyping

EHR-driven phenotyping is conceptually a three-step process (although the steps may be

conducted iteratively). The first step is defining the phenotype definition, or just phenotype

(called authoring); the second step is executing the phenotype against some data repository

(called execution); the third step is to evaluate or validate the correctness of the resulting

cohort (called validation). Authoring is usually a collaboration between clinical experts

and informaticists to elucidate requirements specific enough to proceed to the execution

step. Informaticists perform the execution step, sometimes in collaboration with database

analysts, in order to extract the cohort from the data source by using, for example, SQL

or programming code custom-built for the specific data source. Validation is typically done

by clinical experts or trained chart abstractors and involves reviewing the entire medical

record. Although some recent advances have explored how to identify relevant phenotype

logic using automated methods135,136, the authoring step cannot be fully automated. This

is because it requires input from clinical domain experts in order to establish a clinically

correct definition. Likewise, the third step requires clinical expertise to confirm that the

resulting cohort members match the clinical criteria. However, the second step (execution)

is repeated every time the cohort of interest is used in biomedical knowledge generation, and

is the step that can be partially or fully automated.
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4.2.2 Current Strategies

The EHR-driven phenotyping research community in general, and the Phenotype Execu-

tion Modeling Architecture (PhEMA)∗ project in particular, has identified many require-

ments for the use of computable artifacts to automate the process of EHR-driven phe-

notyping16,34,96,137,138. These requirements include using structured and standardized data

representations, using human-readable and computable representations for cohort criteria,

providing interfaces for external software, and maintaining backwards compatibility16. If

the artifacts generated by the authoring step meet these requirements, this would allow the

execution step to be partially or fully automated. This will increase the velocity at which

clinical research can be conducted and reduce the risk of human error introduced in the

process of translating and running phenotypes.

At least two strategies have been employed to meet these requirements, namely, the use of

common data models (CDMs) and the use of generic formal logic representation and execu-

tion environments. The use of CDMs involves extracting data from existing data repositories,

transforming it to meet the requirements of the CDM, and then loading it into the CDM

database. In some cases, it may also involve mapping terminologies and coded data elements

into the standardized vocabularies required by the CDM. Once data is in the CDM, any

computable phenotyping artifacts created at one site, such as SQL or programming code,

can be automatically used at any other site using the same CDM28. This approach has

been successfully used by the Observational Health Data Sciences and Informatics (OHDSI)

program18, the electronic Medical Records and Genomics (eMERGE) Network12–14, the Na-

tional Patient-Centered Clinical Research Network (PCORnet)31, the Accrual to Clinical

∗https://projectphema.org
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Trials (ACT) Network102, and others28,37. One disadvantage of this approach is the initial

time investment involved in preparing the data, which may mean abandoning or recreating

any artifacts developed for the old data format. It might be possible to maintain both the old

and new data formats, but this comes with maintenance and operational costs. Additionally,

phenotype definitions created for one CDM cannot be used to generate cohorts in another

CDM. The use of generic logic execution environments such as KNIME and Drools have

been demonstrated to be successful but are not based on any healthcare standard and may

also require a preparatory data transformation step16,25,104. Formal representations such as

the HL7 Health Quality Measure Format (HQMF), the Clinical Decision Support Knowledge

Artifact Specification (CDS KAS), and Arden Syntax have also been used successfully for

representing clinical logic25,139,140, but only Arden Syntax has a natively human-readable rep-

resentation, and none have a convenient user interface, making them difficult to implement

without the development of custom tools.

4.2.3 Existing Tools

There are several existing tools for authoring and executing computable phenotype and

cohort definitions. Some tools are based on the CDM strategy, while others are data model

independent, but require data elements to be formally mapped or defined in terms of the

local data model before the tool can be used. One highly mature and widely used tool

in the clinical research informatics community is the Atlas tool provided by the OHDSI

program∗. This tool is built on the Observational Medical Outcomes Partnership (OMOP)

CDM18, and provides users with an interface allowing them to specify logical criteria in a

∗https://github.com/OHDSI/Atlas
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point and click manner. Clinical data elements can be selected and filtered, and criteria

can be correlated using Boolean and a limited set of temporal and aggregate operators.

Additionally, cohort definitions can be exported in JSON format and shared with other

OMOP users, who can import the definitions and identify a cohort meeting the same criteria.

However, this format is not a formally defined standard, and cannot, for example, contain

sub-phenotype definitions. Another popular CDM and suite of tools, Integrating Biology

and the Bedside (i2b2)126, provides a drag and drop interface for cohort identification, but

does not use a formal standard or have the ability to export or import these definitions

natively. A nascent phenotyping method, called Phenoflow, supports the development of

portable phenotypes using a formal representation141. While the overall workflow process

described in a Phenoflow phenotype definition is based on a standard (the Common Workflow

Language (CWL)142), the individual steps are implemented using custom programming code,

which is not standards-based.

4.2.4 Phenotype Repositories

The OHDSI community maintains a repository of cohort definitions called the Phenotype

Library∗, which can be imported into any OHDSI instance and executed without requiring

local customization. CALIBER is a phenotype definition library in the UK that contains

over 350 phenotype definitions, which are provided as structured value sets and narrative

descriptions of phenotype logic143. Also in the UK, the Phenoflow Phenotype Library† has

over 330 phenotype definitions consisting of directly computable artifacts, namely CWL and

custom programming code. The Phenotype KnowledgeBase (PheKB), associated with the

∗https://data.ohdsi.org/PhenotypeLibrary
†https://kclhi.org/phenoflow/phenotype/all/
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eMERGE network, is the most extensive and most mature phenotype definition library in

the United States, with 77 publicly available phenotype definitions32. Like CALIBER, the

phenotype definitions in PheKB do not provide computable artifacts, except for a handful

of exceptions, which provide computable artifacts that do not conform to any healthcare

standard, such as custom programming code, or KNIME94 workflows.

4.2.5 PhEMA Approach

In this work we present an approach that combines elements of the CDM approach with ele-

ments of the generic logic approach, taking advantage of the benefits of both and mitigating

some of the disadvantages. Our approach does not require additional data preparation, works

across data platforms, uses established healthcare standards, and uses both human-readable

and computable phenotype representations. We demonstrate and evaluate a tool, called the

PhEMA Workbench, that allows users to author phenotype logic, assemble value sets by

integrating with existing tools, and execute phenotypes against existing data stores without

requiring manual translation. An essential goal of this approach is to enable incremental

adoption and interoperability with existing systems.

4.3 Methods

4.3.1 Formative Research

Requirements for the Workbench were elucidated using two separate user research studies.

The first version of the PhEMA Phenotype Authoring Tool (PhAT) was developed using

participatory design with fifteen end users. The requirements included that both textual and

visual representations of the phenotype definition should be available, details of the execution
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process should be provided, a flexible logic expression language should be used, and a library

of standard phenotype definitions should be available. Additionally, common terminologies

and value sets should be available from within the tool144. For the tool presented here, we

conducted user research by showing wireframes to five expert users and conducting semi-

structured interviews. We again identified that a graphical view is desirable, and that value

sets and a library of phenotype definitions should be available from within the tool.

4.3.2 Standards-Based Representation

We propose a fully Fast Healthcare Interoperability Resources (FHIR)-native representation

for phenotype definitions. The representation uses FHIR ValueSet and container resources

(Bundle and Composition), and the Clinical Quality Language (CQL), which is one of the

formal logical expression languages referenced in the FHIR specification. Our representa-

tion could be adopted by any system, as it includes no proprietary technology. Inclusion

and exclusion logic is expressed using CQL, which produces an unambiguous and human-

readable representation. CQL source files are contained in Library resources as defined in

the FHIR Clinical Reasoning Module. Each phenotype has one main CQL library contain-

ing the “Case” definition, and any number of helper libraries. Lists of codes from standard

terminologies are represented using ValueSet resources as defined in the FHIR Terminology

Module. A Composition resource is used to collect all Library and ValueSet resources

into a single document that contains all the artifacts necessary to describe the phenotype

definition fully. The Composition can optionally reference additional metadata, such as an

Organization resource representing the phenotype author, a Basic resource containing all

metadata available in PheKB, or other relevant artifacts. By convention, the Composition
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section entry for the main phenotype Library is titled “Phenotype Entry Point” to indi-

cate to the executing system where to find the “Case” definition. As defined in the FHIR

Foundation Module, the Composition and all other resources are contained within a Bundle

resource used to persist or transmit the fully-specified computable phenotype definition. This

representation enables FHIR operations to be used for storage, retrieval, and execution. For

example, the $cql operation defined in the Clinical Practice Guidelines (CPG) implemen-

tation guide can be used to execute the phenotype, and the $document operation defined in

the FHIR Foundation Module can be used to assemble the complete phenotype definition

based on the Composition resource.

4.3.3 System Description

4.3.3.1 Architecture

The PhEMA Workbench is designed as a standalone tool that can be used for phenotype

authoring, execution, and publishing to a shared phenotype definition repository. The ar-

chitecture (figure 4.1) is designed to function without requiring any changes to existing

phenotyping tools or infrastructure, integrates with OHDSI out of the box, and supports

popular and emerging standards, namely FHIR and CQL. The components include a web

application that runs in the user’s browser, a backend API to support integrating with ex-

isting systems, as well as services for phenotype development and testing. The application is

written using TypeScript, a strongly typed language developed by Microsoft that compiles

to JavaScript, and the API is written in Java. All code is open source and available online

in the PhEMA GitHub organization∗. The tool used for testing during authoring is CQF

∗https://github.com/PheMA
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Figure 4.1: System architecture. Services in the box labeled Server run on the PhEMA

server, and are accessible via the public internet. The box labeled Client runs in the browser

on the user’s machine, and is accessed by navigating to a specific URL on the PhEMA server.

Optional publicly accessible third party services such as additional FHIR servers or OHDSI

Web API instances are shown in the box labeled Public Services. The Phenotype Repositories

box shows repository services (currently only PheKB). The Institutional Services box shows

services that run behind institutional firewalls.
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Figure 4.2: CQL Editor.

Ruler∗. It consists of a HAPI FHIR server121, and an implementation of the FHIR Clinical

Reasoning Module and CPG implementation guide, which both make use of the reference

implementation of the CQL engine120.

4.3.3.2 Features

The first essential Workbench component is the CQL editor (figure 4.2), which runs on the

client and allows users to write CQL expressions. The CQL editor provides syntax high-

lighting and supports executing CQL against any environment capable of CQL execution,

including the provided testing environment described below.

The application also provides a terminology manager component (figure 4.3), which allows

∗https://github.com/DBCG/cqf-ruler
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Figure 4.3: Terminology manager.

a user to assemble a collection of value sets into a FHIR Bundle of ValueSet resources. Value

sets can be uploaded by dragging and dropping them into the application, or by selecting a

set of files on the filesystem. The supported formats include ValueSet or Bundle resources,

concept sets exported from the OHDSI Atlas interface (either the full ZIP file or individual

CSV files), or a custom PhEMA CSV format. The user is also able to directly search the

National Library of Medicine’s Value Set Authority Center (VSAC) FHIR server47, expand

the results to inspect the codes in the value set, and add one or more of the search results

into the Bundle if appropriate.

It is helpful for an author to test their CQL against test data during phenotype develop-

ment to ensure that the expressed logic performs as expected. The Workbench environment
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supports this by providing a FHIR server that can be loaded with synthetic data to be used

for testing. During the development of the phenotype used in this study, we created 21

different test patients, each with associated data to test the various criteria in the phenotype

definition. This process, sometimes referred to as test-driven development (TDD), gives the

author confidence that the developed phenotype definition is semantically correct. The CQL

is executed on the FHIR server using an extended operation called $cql, provided by CQF

Ruler.

The Workbench integrates with the existing PheKB phenotype repository (top left panel

in figures 4.2–4.4). The integration supports listing all publicly available phenotypes, im-

porting phenotype definitions that are represented using the proposed FHIR-native standard,

and publishing new phenotype definitions. This integration is accomplished by using the API

provided by the PheKB application.

Additionally, the Workbench currently supports OHDSI and FHIR as execution targets.

At execution time, the Workbench API processes the complete FHIR-native phenotype,

translates it to the appropriate representation using CQL on OMOP37 in the case of the

OHDSI target, and executes the logic against the target data store (figure 4.4). These exe-

cution targets evaluate the complete phenotype definition against a data store, and establish

the corresponding cohort. The Workbench also supports simple CQL execution, in which an

individual CQL library is evaluated outside of the context of a phenotype. Additionally, it is

possible to generate an OMOP compliant SQL script representing the phenotype definition.

This supports the use case in which a research site uses the OMOP database, but does not

use the OHDSI Web API.
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Figure 4.4: Automated execution. Results shown in the right-most panel.

4.3.4 Experimental Setup

4.3.4.1 Phenotype Definition

To test the PhEMA Workbench, we selected a thrombotic event (TE) phenotype developed

by clinicians at Weill Cornell Medicine (WCM). The phenotype identifies patients that have

experienced one or more of ten different thrombotic events, such as myocardial infarction,

stroke, pulmonary embolism, and others. The definition for each event has three different

criteria sets that correspond to different confidence levels. The lowest confidence level (level

3) only requires that a patient has one of a given set of International Classification of Diseases

versions 9 (ICD-9) or 10 (ICD-10) codes. For example, for the placenta thrombosis event,

a patient meets the level 3 criteria if they have an ICD-9 code beginning with 663.6 or the
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ICD-10 code O43.813. To meet the level 2 criteria, patients need to have a specific drug

or lab order, depending on the specific thrombotic event, in addition to an ICD code. For

the highest confidence level (level 1), patients must meet the level 2 requirements, and also

have an order for a specified procedure, and in some cases an additional lab or drug order.

An additional requirement for each event type is that all criteria must be effective within a

one-week period. The phenotype definition was shared with the PhEMA collaborators in the

form of a textual narrative description. Table 4.1 lists all criteria for the individual events

exactly as supplied in the narrative description.
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Event Type Confidence Level 3 Confidence Level 2 Confidence Level 1

MYOCARDIAL INFARCTION ICD-9 code of 410.X or ICD-10 code of I21.X

anywhere in the patient’s EHR

CL 3 + troponin of 0.5 or higher CL 2 + echocardiogram, ECG, or coro-

nary angiogram

STROKE ICD-9 code of 434.11 or ICD-10 code like I63.[0-3]%

or ICD-10 code like I63.[5-9]% anywhere in the

patient’s EHR

CL 3 + order for aspirin or clopidogrel + carotid

duplex order + echocardiogram order

CL 2 + neurology consult order + CT

head or MRI brain order

DVT ICD-9 code of 453.4X or ICD-10 code of I82.4X OR

any instance of a DVT sentinel phrase in any note

CL 3 + D-Dimer fibrin lab result OR order for

anticoagulant

CL 2 + LE duplex report with positive

DVT sentinel phrase

PE ICD-9 code of 415.1X or ICD-10 code of I26.9X

anywhere in the patient’s EHR

CL 3 + new anticoagulant prescription + LE duplex

report WITHOUT positive DVT sentinel phrase

CL 2 + CT chest or VQ scan order

MESENTERIC-SPLANCHNIC

THROMBOSIS

ICD-9 code of 557.0X or 444.89 or ICD-10 code of

I81.9X/K55.0X/I82.0X/I74.8X anywhere in the

patient’s EHR

CL 3 + new anticoagulant prescription CL 2 + Sonogram order OR CT chest

order OR CT abdomen order OR MRI

order + D-Dimer fibrin lab result +

New anticoagulant order

SUPERFICIAL VEIN THROMBOSIS ICD-9 code of 453.6X or 451.89 or 453.82 or ICD-10

code of I82.81 or I80.0X or I82.61

CL 2 + new order for anticoagulant

OTHER ARTERIAL THROMBOSIS ICD-9 code of 444.1X or 444.22 or 453.3X or ICD-10

code of I74.X or I65.1X or I82.3X

CL 2 + new order for anticoagulant

PLACENTA THROMBOSIS ICD-9 code of 663.6X or ICD-10 code of O43.813 CL 2 + new order for anticoagulant

CENTRAL NERVOUS SYSTEM

(CNS) THROMBOSIS

ICD-9 code of 437.6X or ICD-10 code of I67.6X CL 2 + new order for anticoagulant

ENDOCARDIAL THROMBOSIS ICD-9 code of 996.71 or 444.9X or ICD-10 code of

I34.8X or I51.3X

CL 2 + new order for anticoagulant

Table 4.1: Thrombotic event phenotype criteria.

CL – Confidence Level



4.3.4.2 Authoring

We used the experimental architecture illustrated in figure 4.5. In the first step, authoring

and publishing was done by a single author (PSB). This was done by manual interpretation

of the TE phenotype narrative description, and writing the corresponding CQL statements

using the Workbench CQL editor. We omitted criteria that required natural language pro-

cessing (NLP), as this data is not available to OMOP cohort definitions. Test data was cre-

ated using the CQL Testing Framework tool created by the Agency for Healthcare Research

and Quality (AHRQ)∗, which allows users to generate FHIR resources using a light-weight

YAML file in which many fields are inferred using sensible conventions. Value sets were gen-

erated in FHIR format using a custom script that expands a CSV file with extensional and

basic intensional (e.g., regex) definitions into a set of complete FHIR ValueSet resources.

The value set for anticoagulant drugs was imported directly from the VSAC FHIR server.

All value sets were assembled into the final phenotype Bundle using the Workbench termi-

nology manager component. Once all CQL logic was written and tested, and appropriate

value sets were assembled, the phenotype was packaged using the proposed FHIR-native

representation and published to PheKB.

∗https://github.com/AHRQ-CDS/CQL-Testing-Framework
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Figure 4.5: Experimental architecture. The phenotype was authored by PSB at the Univer-

sity of Washington and published to the PheKB repository in the proposed FHIR-native for-

mat using the Workbench application. LVR used the Workbench at Northwestern Medicine

(NM) to execute the phenotype automatically using an institutional instance of the Work-

bench API, since the NM OHDSI Web API is not accessible from the PhEMA Server. At

Weill Cornell Medicine (WCM), PA used the Workbench application to generate an SQL

script and executed it against the WCM OMOP database manually.
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4.3.4.3 Execution

In the second step, users at two different institutions, LVR at Northwestern Medicine (NM),

and PA at WCM, imported the phenotype from PheKB into the PhEMA Workbench ap-

plication. At NM, the phenotype was executed directly against the NM instance of the

OHDSI Web API from the Workbench application, without any local customization. An

institutional instance of the Workbench API was used to bypass NM firewall restrictions. At

WCM, there is no instance of the OHDSI Web API running, so instead of directly executing

the phenotype, an SQL script was generated by PA using the SQL execution target available

in the Workbench application. This SQL script was then manually executed again the WCM

OMOP database.

4.3.4.4 Validation

The OMOP database at NM contains data from a subset of the patient population that

have consented to participate in the eMERGE Network. The data is sourced from the NM

EpicCare R© EHR system. The WCM OMOP database contains data for patients from both

WCM and NewYork-Presbyterian (NYP) hospital that have at least one visit, condition,

and procedure recorded. The EHRs used at WCM and NYP are EpicCare R© and Allscripts

respectively. We considered cases to be only those patients matching the confidence level

1 criteria. We used patients matching the confidence level 2 criteria (but not matching

confidence level 1) as non-cases instead of selecting non-cases completely at random. This is

because we believe that failures are most likely to occur at logical edge cases, so we wanted

to validate these situations in particular. This validation protocol was shared in advance,

along with an SQL script to randomly select cases and non-cases, and a data entry form for
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reviewers to capture which criteria were met by each cohort member (if any).

At NM, a manual review of 25 cases and 25 non-cases was performed by LVR, who

manually determined whether or not the patient had the appropriate data to meet the

confidence level 1 criteria for at least one of the thrombotic event types. A second author

(JAP) conducted a confirmatory review of 5 cases and 5 non-cases, and was blinded to the

results of the first reviewer. At WCM, two primary reviewers (ETS and SA) both reviewed

and manually verified the same set of 25 cases and 25 non-cases, with a secondary reviewer

(PA) resolving any discordant determinations. We report precision, recall, and inter-rater

agreement using Cohen’s kappa119 as performance measures for each site.

4.4 Results

4.4.1 Phenotype Definition

The resulting thrombotic event phenotype logic consisted of 11 CQL statements, one for each

thrombotic event type, and one for disjunction of the other 10. The phenotype definition had

24 value sets containing a total of 834 codes for the various coded data elements referenced

by the phenotype logic. Four different data sources were used, namely lab values, procedure

orders, diagnoses, and drug orders, represented by the Observation, Procedure, Condition,

and MedicationRequest FHIR resources respectively. During the authoring process, 21 test

cases were created to test the phenotype definition logic. The resulting phenotype definition,

including criteria logic and value sets, as well as the test cases and data, are available in the

project repository on GitHub∗.

∗https://github.com/PheMA/thrombotic-event-phenotype

87

https://github.com/PheMA/thrombotic-event-phenotype


WCM OMOP Instance 
(N = 3,543,097 patients)

Cases 
(N = 14,826)

Non-cases 
(N = 33,476)

TE Confidence Level 1

Reviewed (SA & ETS) 
(N = 25)

Random SelectionRandom Selection

Reviewed (SA & ETS) 
(N = 25)

TE Confidence Level 2

Resolved Discordancies (PA) 
(N = 6)

Precision 95%, Recall 84%

NM OMOP Instance 
(N = 8,709 patients)

Cases 
(N = 378)

Non-cases 
(N = 743)

TE Confidence Level 1

Reviewed (LVR) 
(N = 25)

Random SelectionRandom Selection

Reviewed (LVR) 
(N = 25)

TE Confidence Level 2

Reviewed (JAP) 
(N = 5)

Reviewed (JAP) 
(N = 5)

Random Selection

Precision 100%, Recall 100%

Random Selection

Chart 
Review

Chart Review Chart Review

Chart 
Review

Chart Review

Chart Review

Chart 
Review

Chart 
Review

Figure 4.6: Results of the manual review process.

4.4.2 Validation

A summary of the validation process is shown in figure 4.6.

4.4.2.1 Northwestern Medicine

There were 8,709 total patients in the NM OMOP database, and 378 (4.34%) were identified

by the FHIR-native phenotype to meet the TE confidence level 1 criteria, and 743 (8.54%)

were identified to match the confidence level 2 criteria. Of the 25 cases and non-cases

randomly selected for review, all were determined by the first reviewer to have been correctly

identified. The secondary reviewer confirmed this through a review of 5 random cases and

non-cases. The two reviewers were thus fully concordant, and manual review confirmed that

all patients were correctly identified by the TE phenotype definition. Precision and recall
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are therefore both 100%, and κ = 1.0

4.4.2.2 Weill Cornell Medicine

The WCM OMOP database contained a total of 3,543,097 patients, of which 14,826 (0.42%)

were identified as cases and 33,476 (0.94%) as non-cases using the SQL script generated by

the PhEMA Workbench. The two primary reviewers who reviewed all 25 cases and non-

cases were discordant in 6 instances (15%), resulting in κ = 0.74. These discrepancies were

resolved by the secondary reviewer, and of the 25 cases, 22 (88%) were manually confirmed

to match the TE confidence level 1 criteria, and of the 25 non-cases, 24 (96%) were confirmed

as not matching the confidence level 1 criteria. This results in a precision of 95% and a recall

of 84%.

4.5 Discussion

We have demonstrated that a FHIR-native representation and platform-independent tool can

be used for computable EHR-driven phenotyping, and achieve results comparable to other

methods. We determined that the reason for the misclassified cohort members at WCM was

due to how the OHDSI Web API performs concept searches, which occur during the CQL

to OMOP translation step. Concepts are searched based on prefix matches, which in a few

cases can return unrelated concepts with shared prefixes. This issue will be resolved in the

next version of the CQL on OMOP tool, but even with this problem, a precision of 95%

is still achieved. In addition, the PhEMA Workbench can integrate into existing clinical

informatics research infrastructure without requiring any changes to currently used tools,

and can in fact complement them. Furthermore, since the process is partially (in the case

89



of WCM) or completely (in the case of NM) automated, the time investment required is

drastically reduced, and potential for human error is essentially eliminated.

Every step of the phenotype authoring process was done using only FHIR and CQL, which

are open standards developed by Health Level Seven International (HL7). These standards

are widely adopted, with the US recently adopting legislation that mandates the use of

FHIR for healthcare data exchange, and CMS using CQL to represent the clinical quality

measures required for reimbursement. Many EHR vendors and other systems support these

standards, with adoption likely to increase. As such, our use of a FHIR-native representation

is expected to remain compatible with existing and new systems over time. Furthermore,

while CQL is data model independent, our choice to use FHIR for representing clinical data

elements has additional advantages. First, much work has been done to map the FHIR data

model to other widely used data models, such OMOP, i2b2, and others46, which means that

our phenotypes can be easily translated to those data models using standardized mappings.

CQL as a logical expression language is highly expressive, and we have demonstrated in

this work and elsewhere37 that it is capable of representing clinically validated phenotype

definitions. Since CQL is a formal language, it also eliminates ambiguity that may result in

variability of implementations. The language is designed specifically for the clinical domain,

and thus has functionality tailored for representing clinical logic, such as the full set of

temporal operators defined by Allen’s interval algebra145, aggregate operators common for

quality measures and decision support, and uncertainty semantics to deal with missing data.

Additionally, CQL provides integration points that can be used to integrate with external

systems such as NLP pipelines, machine learning models, or other third party services.

Use of standards enables both technical and conceptual decoupling of concerns in the

90



phenotyping ecosystem, which is a widely used strategy in the technology industry to increase

scalability, reliability, and extensibility96,146. For example, CQL is data model independent,

meaning that the language engine is focused on logic execution, and delegates to a data

provider module to collect the relevant data. This means that additional modules and

execution targets can be developed for different data sources without requiring logic to be

rewritten. Additional specialized tools can be developed for individual tasks, such as value

set creation or visualization. Different CQL libraries can be assembled in a modular way to

define a phenotype, which is an approach that allows for code reuse, and for easy localization,

by having site-specific logic contained in a library that can be used as a “drop in” replacement

for more general libraries.

Using a phenotype representation based on published standards enables the decoupling of

phenotype authoring and execution, as we have shown in this work. The phenotype author

only requires knowledge of well documented standards to create a phenotype definition. No

knowledge of the data model where the phenotype definition will be executed is required.

No access to the actual data by the author is required either, which means that knowledge

artifacts developed by third parties can be executed against data while maintaining patient

privacy, analogous to the model to data approach used for evaluating machine learning

models on healthcare data147.

Using a formal, unambiguous phenotype definition representation means that existing

tools can be reused, and any new conformant tools can be used. As demonstrated here,

tools like HAPI FHIR and CQF Ruler can be used out of the box for development and

testing. Since many tools exist to generate FHIR-compliant data (e.g., scenario builder∗

∗http://clinfhir.com/builder.html
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and the CQL Testing Framework), they can be leveraged to populate a testing environment

that can be used to validate phenotype logic. This testing data can be used with publicly

available standards-based testing tools.

The use of a FHIR Composition is useful because it allows the individual building blocks

of a phenotype (i.e., Library and ValueSet resources) to be stored and retrieved individually,

but also allows the full phenotype definition to be reassembled using the $document extended

operation. This operation inspects the Composition resource and returns a FHIR Bundle

containing the Composition itself, along with all of the required resources to fully specify

the phenotype. This is convenient for retrieving and packaging the phenotype definition as

a single file to share with other researchers or clinical teams.

While graphical tools for phenotype authoring do exist, for example the OHDSI Atlas

cohort creator, the i2b2 query interface, and others138, they all have limitations the PhEMA

Workbench attempts to address. First, the phenotype definitions produced by these tools

do not conform to any healthcare standard. This means there is no formal process for

making schema changes, which could result in unintentional breaking changes to existing

phenotype definitions. Also, while these definitions can be shared between implementations

of the same system, they cannot be shared between systems (i.e., they are not cross-platform).

Furthermore, the expressivity of the phenotype definitions supported by these tools is limited.

For example, these tools may not support the full set of Allen’s interval operators, or the

wide range of collection and aggregation operations supported by CQL. Even directly using

SQL to generate cohorts may not be as convenient as using CQL, since SQL lacks clinical

operators such as those used to determine patient age (e.g., current age or age at date of

clinical observation), as well as terminology operators to check whether coded values are
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part of specific code systems or value sets. Additionally, SQL is very tightly coupled to the

data model against which it is executed, which means code is not reusable across databases

with different schemas, and the phenotype author must know the target database schema in

advance.

Local customization is an important part of EHR-driven phenotyping, as variations in

local guidelines and clinical practice can easily result in differences in downstream observa-

tional datasets28. The PhEMA Workbench supports local customization by allowing users

to directly view and edit logic before execution, as well as swap out value sets for ones that

are more appropriate for the local context, all while remaining fully standards compliant.

Various methods exist to author CQL source code, but only one integrates with a testing

environment (the Atom CQL plugin∗) and to our knowledge, no other tool integrates with

a phenotype repository or has the ability to assemble value sets from various sources.

4.5.1 Limitations

We note the following limitations to this work. First, we only tested a single phenotype

definition, and there may be phenotypes for which our approach would not work. For

example, if a phenotype exclusively used NLP or machine learning. Additionally, while

we demonstrated cross-platform authoring and execution, we only tested a single execution

target (OMOP). We previously demonstrated that cross-platform execution is possible37,

but did not evaluate that scenario in this work.

While we did use FHIR as our standard data model, we did not restrict data modeling

decisions further by conforming to a FHIR profile. As a result, the FHIR resources and

∗https://atom.io/packages/language-cql
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fields we chose to use may not exactly match data in other FHIR data repositories, and

we cannot communicate our data model computationally to other systems using a FHIR

implementation guide.

We make use of the $cql extended operation to execute our phenotype definitions during

development and testing. This operation could also be used to execute phenotype definitions

in production, but the $cql operation is not part of the base FHIR specification. The

operation is specified in the FHIR Clinical Practice Guidelines implementation guide, which

may not be supported by all FHIR servers.

Finally, as we have previously discussed37, the OMOP execution tool we are using only

supports a subset of CQL operators. This tool can be extended to a degree to support

additional logical operators, but is fundamentally limited by the expressiveness of the cohort

definition representation in OMOP. The CQL language also only supports structured data

elements out of the box, but the PhEMA collaborators have developed an NLP integration,

CQL4NLP38, which is yet to be integrated into the Workbench architecture. There is also

an upfront cost involved in implementing a CQL engine for a new data platform, which may

be prohibitive if engineering resources are not available.

Despite these limitations, we have shown that using a fully FHIR-native phenotype rep-

resentation is feasible, and enables the decoupling of authoring and execution, leading to

several advantages. If such an approach is broadly adopted, it may increase the velocity of

biomedical generation by increasing semantically interoperability of phenotype definitions,

and facilitating high-throughput automated cohort identification. This will both reduce the

time required to collect data for observational studies and the potential for human error.

94



4.6 Conclusion

We have shown that cross-platform EHR-driven phenotyping, in which a clinician-developed

phenotype definition, using a FHIR-native representation, and executed against an OMOP

data repository, can achieve results comparable to other methods. Additionally, we have

shown that a modular architecture consisting of existing open-source tools, including the

newly developed PhEMA Workbench, can provide an effective phenotyping environment

that supports users from multiple institutions.

The PhEMA Workbench is a contribution to the phenotyping community that comple-

ments existing tools, and requires no changes to existing systems. This gives end users addi-

tional options without added restrictions. Furthermore, the formal representation proposed

here makes use of the popular, and federally mandated, FHIR standard, which facilitates

interoperability, reduces the possibility of ambiguity introduced by human interpretation,

and reduces the time required to identify cohorts for biomedical research. All of this should

lead to decreased cost and increased velocity of biomedical knowledge generation.

In the future we intend to use the PhEMA Workbench in clinical studies, and are plan-

ning to extend the capabilities of the system to include NLP (using CQL4NLP) and more

sophisticated machine learning models, which is a central theme of the next phase of the

PhEMA grant. We are also planning to continue improving the Workbench, and have a

user-centered design study currently underway.
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chapter 5

CONCLUSION

In this chapter we will summarize the contributions of this dissertation, present the main

conclusions, and discuss the limitations and potential areas of future work.

5.1 Contributions

We began this work in chapter 2 by investigating the nature of phenotype definitions. We

extracted a data set of clinically validated phenotype definitions from a mature phenotype

repository, and translated them into a formal representation. The correctness of these trans-

lations was validated both manually, through a process of code review, and automatically,

through the development of a large test suite. We then analyzed the phenotype metadata

and definitions both manually and programmatically, and provided the raw data, visualiza-

tions, and a synthesized analysis. We characterized terminology usage, logical constructs,

and data access patterns. This work produced a data set of computable phenotype defini-

tions that can be used by implementers or by researchers investigating automated execution

or formal representations. A manuscript based on chapter 2 is currently at the co-author

review stage.

In the second aim (chapter 3) we studied whether a formal representation of phenotype

logical criteria based on the nascent CQL standard could facilitate cross-platform phenotyp-

ing. While the work done in the first aim demonstrated that CQL is expressive enough to
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represent a wide range of phenotype definitions, the work presented in chapter 3 investigated

the feasibility of automated execution in multiple environments. We translated a clinically

validated phenotype definition into CQL and built a novel tool that enables the execution of

CQL-based phenotypes against an OMOP database. We executed the phenotype definition

at two large academic medical centers, Northwestern Medicine and Weill Cornell Medicine,

and across two data platforms (FHIR and OMOP). Manual reviews were conducted to ensure

that logic was correctly applied in all cases. The output of this study was an open-source

tool, as well as a publication in the special issue on Human Phenomics of the Learning Health

Systems journal37.

In chapter 4 we continued our investigation of standards-based phenotyping by developing

and evaluating a tool that supports all phenotyping subtasks. Additionally, we propose

a fully FHIR-native phenotype representation and investigate whether this representation

enables phenotyping in the existing fragmented phenotyping ecosystem. The developed

tool supports authoring, publishing, as well as execution. Features include CQL editing,

automated execution in testing and production environments, the assembly of value sets in

a variety of formats, interaction with the PheKB API, and packaging phenotype definitions

using the proposed FHIR-native representation. We demonstrated how the tool can be used

to support the complete phenotyping process by having one author create and publish a

FHIR-native phenotype definition at one site, after which two implementers at different

sites imported the definition and executed it in their environments using different methods.

Validation was done at both sites by manually reviewing a subset of the cohort members to

ensure they met the phenotype criteria. The result of this work is a proposed phenotype

representation using FHIR and CQL, and an open-source, standards-based phenotyping tool.
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The manuscript based on this work is currently being prepared for submission to JAMIA

Open.

In our original research proposal, we highlighted the challenges faced by researchers using

EHR data for secondary purposes. We presented our aims that address these challenges un-

der the framework of the Task-Technology Fit model. Our first aim contributes to the Task

Characteristics aspect of the model by characterizing the nature of phenotype definitions.

Our second and third aims contribute to the Technology Characteristics aspect by investi-

gating the feasibility of using CQL and FHIR to formally represent phenotype definitions.

The latter two aims also contribute to the Performance Impacts aspect of the model by

proposing a FHIR-native phenotype representation, developing standards-based tools, and

evaluating their performance on the task of EHR-driven phenotyping.

5.2 Conclusions

The phenotype definitions examined in chapter 2 all have the same basic components, namely

logical expressions and tabular data. The tabular data consists of lists of codes and constructs

to be used for natural language processing (NLP). Phenotype criteria logic can be divided into

clinical and operational logic, the latter of which may be impossible to express in a universally

correct manner in some cases. This implies that any formal standard used for representing

phenotype definitions must have some mechanism to support local customization. Both CQL

and FHIR meet this requirement.

We found that the self-reported metadata on PheKB is not very complete, and is in some

cases inaccurate. Both of these issues would be addressed by using a formal representation,
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from which metadata could be computationally extracted. Additionally, most phenotypes

use both structured and unstructured data, so there must either be a preprocessing step in

which unstructured data is extracted and converted into a structured format, or phenotype

representations must integrate with NLP tools. While almost all phenotypes also use tabular

data, this data is usually provided in a non-computable format on PheKB. Furthermore, only

a handful of code systems are used extensively and about half of all codes used are ICD-

9 codes. Most phenotypes use fewer than 10 value sets to filter data from three or fewer

sources, primarily conditions, medications and procedures. Any formal representation must

be able to represent both list of codes, and the data from the sources used.

Half of all the analyzed phenotype definitions use fewer than 147 codes and 66 expres-

sions. Only 44 unique types of expressions are used, which is only a small fraction of those

supported by CQL (over 200). Total expression depth is less than 20 in most cases, and the

depth of data filtering clauses is usually under 12. These measures imply that the phenotype

definitions studied are reasonably conceptually simple. There are a few reasons this could

be the case. First, even relatively simple phenotype definitions can be difficult to interpret

and manually implement, so authors may choose to keep definitions simple to make im-

plementation easier. Another reason could be that EHR-driven phenotyping is a relatively

new pursuit in medicine, as clinical trials are still the gold standard. The complexity of

phenotype definitions may increase over time as more work is done in this area. Finally,

the lack of a formal representation may be a limiting factor, as authors may not have the

tools or mechanism to express phenotype criteria in sufficient detail. This may be mitigated

as standards like CQL or the next generation of domain-specific knowledge representation

standards become more widespread.
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Translation of the heart failure (HF) phenotype used in chapter 3 provides further vali-

dation that CQL is expressive enough to represent clinically validated phenotype definitions.

Although the HF phenotype used numerous expression categories, including aggregate, tem-

poral, and logical, its representation in CQL was straightforward. Additionally, using FHIR

as the data model turned out to be a good choice, since a mapping to the OMOP data

model was readily available, which simplified implementation of the CQL on OMOP tool.

This highlights the fact that using already popular standards results in a network effect that

can accelerate knowledge generation.

The conceptual models of the OHDSI Circe (cohort definition) library and CQL differ

significantly, and a lossless, bidirectional mapping between the two is not possible to generate

programmatically for at least two reasons. First, OHDSI cohort definitions divide criteria

into human-defined inclusion rules that cannot be automatically inferred. While this limita-

tion does not make translation impossible, it does mean that useful cohort attrition statistics

cannot be determined. Second, and more importantly, Circe cohort definitions are simply

not as expressive as CQL, so while any criteria specified in Circe can be translated into CQL,

the reverse is not true.

The aim 2 work validates our hypothesis that a standards-based representation of phe-

notype logic can facilitate both automation and portability. Automated execution against

a FHIR data store is immediately available when using FHIR and CQL, due to the tools

that already exist for these popular standards. Automated execution against the OMOP

data model required the development of a novel tool. However, development of this tool

was greatly simplified due to the use of existing healthcare standards, which provide the

necessary conceptual models, libraries, examples, and expertise.
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In distributed study designs, the EHR-driven phenotyping process involves authoring,

publishing, and execution. Existing systems only support a subset of these tasks. This

fragmentation is further exacerbated by the lack of standards, which means that certain

tools cannot be used together without significant effort. In our final study reported in

chapter 4, we demonstrate how a fully FHIR-native phenotype definition, along with a suite

of standards-compliant tools, can facilitate all the steps involved in the phenotyping process.

These tools interoperate with the existing ecosystem of phenotyping tools, achieve excellent

results based on manual validation, and can be adopted incrementally without requiring any

changes to existing systems.

As we learned in chapter 2, phenotype definitions consist of both tabular data and logic,

and for this reason neither CQL nor FHIR alone are enough to fully represent any phenotype

definition. We propose a formal representation comprised of a combination of these two

standards, which can successfully do so. This representation includes all phenotype criteria

logic and value sets, and is packaged using the FHIR-native Composition and Bundle formats

that enable easy assembly and sharing using standard FHIR semantics. The format also

enables automated execution and computational analyses like those conducted in chapter 2.

By authoring a thrombotic event phenotype, publishing it to PheKB, and using our tools

to execute the phenotype at multiple sites, we validated that our representation does indeed

facilitate the full phenotyping process in a heterogenous environment. Implementation time

was only limited by database execution time, and the overall time required was orders of

magnitude less than the recently reported upper limited of multiple months45. Potential

for human error was also significantly decreased. This indicates that a standards-based

representation with accompanying interoperable tools can increase the velocity of cohort
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identification and observational research.

5.3 Limitations

We acknowledge that there are several limitations that may have an impact on our results and

conclusions. In our investigation of phenotype variability, we only used phenotype definitions

from a single source, and there is no guarantee that the full range of phenotype definition

criteria are represented in PheKB. Further, we only analyzed 33 phenotype definitions, which

is not a very large sample. There may be logical or metadata constructs not represented in

this set. The use of CQL as a logical expression language my not have been the optimal

choice. Although we did not encounter any significant challenges using this representation,

there may be better alternatives. Similarly, their may be better standards than FHIR for

use as a data model and value set representation.

Due to the expressivity of CQL, there are many possible implementations for any given

phenotype definition, and while we made every effort to use the simplest implementation we

could find, more optimal implementations may exist. Our validation process and automated

tests may not cover 100% of edge and corner cases, which means our implementations could

contain bugs. Additionally, we did not clinically validate our CQL-based phenotypes, which

would further increase confidence in their correctness.

In our aim 2 study we only executed our CQL-based phenotype definition at two sites

and against two different data platforms. Execution at additional sites or against additional

data platforms may have surfaced errors that our experimental architecture did not.

At least two limitations apply to both our aim 2 and aim 3 studies. First, we only used
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a single phenotype definition. While the phenotypes used did include a range of expression

categories, they did not include every possible expression. It is possible that different or

more complicated phenotype definitions would result in reduced performance. Second, in

each study we only manually verified at total of 100 cases and non-cases. Even though we

used review selection criteria designed to catch edge cases, we still only manually verified

a small percentage of the total number of cohort members identified by the EHR-driven

phenotyping process.

Finally, an important limitation that applies to all three research studies presented in

this dissertation is our use of structured data and rule-based logic only. Unstructured data

is an important source of clinical information, and NLP techniques are widely used in EHR-

driven phenotyping. We also did not use any machine learning algorithms, which are an

increasingly popular phenotyping method.

5.4 Future Work

There several potential avenues of investigation that could build on the work presented here.

In order to gain a deeper understanding of the nature of phenotype definitions, additional

phenotypes from PheKB could be analyzed. Phenotype definitions from additional sources

could also be analyzed, such as those in other phenotype repositories, both in the United

States and abroad, as well as phenotype definitions described in the literature.

In chapter 2 we highlight the fact that some operational logical criteria cannot be specified

using universally applicable logical expressions. We propose the idea of using a “system

library” approach in which these difficult to generalize criteria have well defined interfaces
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that can be locally implemented by participating sites. Further work can be done in this

area by enumerating these specific criteria and clearly defining their interfaces.

While we did use clinically validated phenotypes in our work, we did not use our standards-

based phenotype representation or tools in clinical research. While our work provides a proof

of concept that shows clinical research is feasible, a clear next step is to use our proposed

fully FHIR-native phenotype representation and accompanying tools in such studies, and

validate the resulting cohorts using clinical chart review.

The Workbench application presented in chapter 4 serves as a minimal viable product that

can be used for FHIR-native phenotyping, but there is significant room for improvement. The

functionality and user experience can be improved, and the PhEMA project has an ongoing

user-centered research study with this objective. Support for additional data platforms and

CQL language constructs could be implemented in the CQL on OMOP translator. Potential

targets are the i2b2 and PCORnet data platforms.

While we do propose and describe a formal representation using open standards, we do

not formally describe this representation in a computable manner using the mechanisms

provided by the FHIR standard. A FHIR profile (the means for further constraining the

FHIR standard) using StructureDefinition and GraphDefinition resources could be cre-

ated. These computable artifacts could then be used to programmatically validate phenotype

definitions and test whether software systems are compliant.

5.4.1 Unstructured Data

Finally, it is important that future work addresses the lack of support for unstructured data

and machine learning algorithms. Initial work has been done by the PhEMA project team to
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Figure 5.1: Incorporating unstructured data using a preprocessing step.

integrate NLP tools with both FHIR27 and CQL38, but these methods are not yet supported

by the Workbench application or incorporated into our FHIR-native representation. We

are not aware of any work that proposes a formal phenotype representation that includes

integration with machine learning.

Figure 5.1 illustrates how NLP and machine learning algorithms can be incorporated

into the methods described in this work by using a data preprocessing step. Unstructured

data such as clinical notes can be used as input for NLP pipelines, which ultimately produce

structured output that can be used as input by our tools and methods. Similarly, other

unstructured data such as image or sensor data could be processed by machine learning

algorithms to produce structured output.

An important consideration if this technique is to be successful is the output data format

produced by the preprocessing step. Either this format must exactly match that of the

existing structured data, or the existing format must be extended to support the newly

produced data. The latter approach was used in the initial work by the PhEMA team cited

above, and was implemented using the standardized FHIR extension mechanism.
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5.5 Final Remarks

The overarching goal of the work presented in this dissertation was to advance the methods

used for EHR-driven phenotyping, with the hope that this would accelerate the velocity at

which EHR data can be used to generate biomedical knowledge. We have made contributions

towards this goal in each of the three research studies conducted. First, we provided insight

into the nature of a clinically validated set of phenotype definitions. We then demonstrated

how the CQL standard can be used to facilitate cross-platform EHR-driven phenotyping by

developing a novel execution engine. We extended this work in the third study by proposing

a fully standards-based phenotype representation using FHIR and CQL, and evaluating

an interoperable, incrementally adoptable phenotyping tool that uses this representation.

These three studies make incremental but significant contributions towards methods that

may evolve to ultimately support high-throughput biomedical knowledge generation.
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appendix a

CQL ON OMOP DESIGN CONSIDERATIONS

The CQL on OMOP translator takes CQL or ELM (parsed CQL) as input, and generates an

OHDSI cohort definition as output. The functionality also exists to submit the cohort defi-

nition to the OHDSI Web API to create the cohort definition, initiate the cohort generation

job, and poll for the cohort results.

As this is a PhEMA project, the ultimate goal of this work is to evaluate whether the

CQL language can be used for cross-platform EHR-driven phenotyping.

A.1 Circe Overview

The library used internally by the OHDSI Web API to represent and execute cohort defi-

nitions is called Circe. The normal way that users create cohort definitions is by using the

OHDSI web interface, called Atlas. The user creates a list of inclusion rules by clicking but-

tons and selecting from dropdown menus. To each inclusion rule they add criteria groups,

and to each group they add specific domain criteria by using standard user interface controls.

Once saved, the Atlas application generates a JSON representation of the cohort defini-

tion, which is then submitted to the Web API, which saves it to the OHDSI database. The

user must then take a separate action to initiate the cohort generation job. As part of this

asynchronous job, the Circe library deserializes the JSON version of the cohort definition

into Java objects that it uses internally. Circe then uses a set of builder classes, along with
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SQL templates to construct the database queries needed to generate the cohort from the

cohort definition.

There are several benefits to this approach. First, the graphical user interface allows

users without any knowledge of SQL, and only minimal knowledge of the OMOP Common

Data Model (CDM), to construct cohorts of clinical or research interest. Separation of

logic into distinct inclusion rules allows for more efficient database queries, since successive

inclusion rules are only applied to the results of the previous rule. Separate inclusion rules

further allow for the generation of attrition statistics and visualizations. Finally, using SQL

templates enables the creation of manually optimized queries that may be better than those

generated by an object-relational mapper.

The Circe UML diagram (fig A.1) shows how cohort expressions are assembled, as well

as what type of criteria exist.

The Clinical Quality Language (CQL) is a domain-specific language focused on the clin-

ical quality and decision support domains. It is parsed into a canonical abstract syntax

tree they call the Expression Logical Model (ELM). Libraries exist to parse CQL into the

equivalent ELM representation, so internally all our computation is done on ELM.

CQL is a highly expressive language approaching the complexity of a general-purpose

programming language. As such, it is able to represent significantly more constructs than

Circe, as can be seen in the ELM UML diagram (figure A.2). One simple example is that

CQL is able to evaluate the expression 1 + 1 and return the result of 2. Furthermore, there

are usually many different ways that the same logic can be represented in CQL. CQL is also

data model independent, which means that libraries must specify the data for which they

are written, and the evaluation engine must know about this data model in order to evaluate
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Figure A.1: Circe UML diagram. View online at https://github.com/PheMA/

cql-on-omop/blob/master/docs/img/circe-uml.png

the library.

A CQL library can contain many statements, each of which is evaluated separately (al-

though statements can reference each other). This means that evaluating a CQL library

returns multiple results - one for each statement in the library. Further, each result can be

one of many different data types.
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Figure A.2: ELM UML diagram. View online at https://github.com/PheMA/cql-on-omop/blob/master/docs/img/elm-uml.png.

https://github.com/PheMA/cql-on-omop/blob/master/docs/img/elm-uml.png


A.2 Implementation Considerations

A.2.1 Language Support

For the above reasons, we can only support translating a limited subset of the CQL language.

We therefore define a set of supported language constructs, along with some conventions that

must be followed so that we can successfully translate the CQL library to a Circe cohort

definition. We aim to support the following language constructs:

• The CalculateAge() function, used to determine the age of the patient [docs]

• Simple retrieve operation with terminology filtering, to access the underlying data

[docs]

• The following numeric comparisons: =, <, ≤, >, ≥ [docs]

• Some query operations with where clause filtering [docs]†

• Some correlated query operations with a single relationship [docs]†

• Timing relationships in query constructs (including correlated queries) [docs]†

• The and and or logical operators [docs]

† The query operations that we are able to support is limited by the criteria and criteria

attributes that Circe is able to represent.

More operations will be added to the above list over time, for example, additional demo-

graphic characteristics.
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A.2.2 Data Model

A simple approach would be to use the OMOP CDM as the data model in our CQL libraries,

but this would limit the environments in which the library can be executed. We have therefore

taken the decision to use the QUICK data model∗, which is a set of FHIR profiles and data

type mappings that are focused on quality measurement and decision support use cases.

It is likely that many CQL libraries will be written using the QUICK data model, and

supporting this data model means that we are able to re-use logic written for many clinical

quality measurement and decision support use cases.

In order to map the QUICK model references to the OMOP CDM, we use the mappings

published by the Common Data Model Harmonization project46.

A.2.3 Conventions

A.2.3.1 Patient Context Only

CQL libraries may contain zero or more context statements. This statement tells the

interpreter to potentially apply some data filtering. For example, if the Patient context is

specified, then only data for a specific patient is included in the evaluation. If the Unfiltered

context is used, then data for all patients is considered. Data models may optionally specify

additional evaluation contexts [docs].

We support only the Patient context, which means that each statement should be written

with knowledge that it will be applied to a single patient only. This also means that we cannot

support the population-based aggregate operators [docs].

∗We were thinking of using QUICK when this was written, but subsequently switched to base FHIR.
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A.2.3.2 Phenotype Entry Point Statement

Since a CQL library may contain multiple statements, but we only create one Circe cohort

definition, we must somehow determine which statement represents the phenotype definition.

Currently, the translator is written in such a way that it takes the name of the phenotype

definition statement as a parameter. An alternative approach could be to use a statement

naming convention, or some other way to annotate the correct statement definition.

A.2.3.3 Boolean Return Types

The ultimate decision that must be made for each patient is whether or not they should be

included in the cohort specified by the Circe cohort definition, or equivalent CQL library. In

Circe, this decision is made by taking the logical conjunction of each inclusion rule applied

to each patient.

The approach we have taken is to require that all CQL statements return a Boolean

value. At first this may seem limiting, but it actually exactly matches how Circe represents

cohort definitions. Each Circe criteria determines exactly the Boolean result corresponding

to whether or not a given patient meets the criteria.

A.3 Implementation Details

Some technical implementation details are described below.

A.3.1 Inclusion Rules

When users create cohort definitions using Atlas, it is convenient to group conceptually simi-

lar criteria together in a single inclusion rule. One example is that two demographic criteria,
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such as one for age and for gender may both be added to one inclusion rule. Without intro-

ducing additional conventions, it is unfortunately not possible to detect these conceptually

similar criteria in the translator code. As a result, all criteria are added to a single inclusion

rule.

There are two unfortunately consequences. First, it not possible to determine the attrition

contribution from groups of criteria. Second, this limitation may result in poorer performing

database queries, since criteria are not applied only to the results of preceding inclusion

rules.

It may be worth introducing additional conventions to overcome these limitations.

A.3.2 Criteria Groups, Correlated Criteria, and Criteria

In Circe, criteria groups are used to group collections of criteria together. Criteria groups

must also specify how the contained criteria should apply. For example, the user can specify

whether all criteria must apply, whether any one can apply, or a whether minimum or

maximum number of criteria must apply.

Criteria themselves can be correlated or uncorrelated. For example, looking for a condi-

tion that matches a specific value set is an uncorrelated criteria. Looking for a measurement

with a specific value that occurs within some time frame of a specific procedure is an example

of a correlated criteria.

Unfortunately, in version 1.7.0 of the Circe library, criteria groups can only contain in-

stances of the CorelatedCriteria class (or DemographicCriteria or other CriteriaGroupss).

This means that specific domain criteria (e.g. ProcedureOccurrence) must always be

wrapped in a CorelatedCriteria, even when uncorrelated. Further, the Criteria par-
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ent class of all domain criteria has a field called CorelatedCriteria, which is actually of

type CriteriaGroups, which can be very confusing. However, this field does determine

which criteria groups are correlated to the specific domain criteria instance.

Consider the very simple case of a cohort definition where we are only looking for patients

that have had a procedure matching a specific value set. To accomplish this, we would create

a CohortDefinition instance, to which we would add a CohortExpression containing a

single InclusionRule. The InclusionRule class contains a single expression member that

is of type CriteriaGroups.

To construct the logic, we begin by creating an instance of the ProcedureOccurrence

criteria referencing the appropriate value set (more on value sets below). We leave the

CorelatedCriteria field (note: this is the name of the field, not its type, which is actually

CriteriaGroups) null, since this is an uncorrelated criteria.

We must then create a CorelatedCriteria, and set the criteria field to the ProcedureOccurrence

instance just created. Finally, we can add this CorelatedCriteria to a CriteriaGroups, which

we can then add to the InclusionRule. We end up with something that looks like the fol-

lowing:

• CohortDefinition

• CohortExpression

• List<InclusionRule>

- 0: CriteriaGroup

• List<CorelatedCriteria>

- 0: CorelatedCriteria

• ProcedureOccurrence

• CriteriaGroup = null (name: CorelatedCriteria, type: CriteriaGroup)

One reason why all Criteria must be wrapped in a CorelatedCriteria is because

cohorts in OHDSI are modeled using the idea of cohort entry event, and all criteria are
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Class Description

CohortDefinition This is actually a class in the Web API, not Circe, but it is the outer most wrapper of the payload

that is sent to the Web API.

CohortExpression This class is the container for the expression logic, including the InclusionRule instances, and the

cohort entry event (an instance of PrimaryCriteria).

InclusionRule An inclusion rule just wraps a single CriteriaGroup, giving it a name.

CriteriaGroup A criteria group contains any number of CorelatedCriteria, DemographicCriteria and/or other

CriteriaGroup instances. It also specifies how these criteria are applied (e.g., ALL, ANY, AT LEAST 3,

etc).

CorelatedCriteria This class wraps all domain criteria, and associates start and end windows with them (relative to

the parent criteria or entry event). This class also has an Occurence field specifying how many, say,

procedures should be found.

Criteria This abstract class is the parent of all the domain criteria (e.g., ConditionOccurrence, Observation,

etc). Criteria also contains a field (unfortunately) called CorelatedCriteria of type CriteriaGroup

which facilitates temporal correlation between criteria.

DemographicCriteria This is a special type of criteria allowing the user to filter cohort members based on demographic

characteristics.

Table A.1: Short summary of Circe classes.

actually correlated in some way to this entry event, either directly or indirectly. The

CorelatedCriteria class therefore has startWindow and endWindow fields, which are rela-

tive (directly or indirectly) to the entry event.

Finally, CorelatedCriteria also has an occurence field of type Occurence, which is

used to describe how domain criteria should apply. Continuing the above example, if the

procedure should occur at least three times, then we specify this using an Occurence instance.

Note that in all cases except for Boolean logic (see below), we translate CQL constructs

to their equivalent CorelatedCriteria representations.

Table A.1 provides a short summary of some of the important Circe classes.
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A.3.3 Nested Boolean Logic

Boolean logic can only be represented in Circe using CriteriaGroup instances of type

ALL and ANY, representing Boolean and and or statements respectively. We support ar-

bitrarily nested Boolean and and or statements, and implement such nesting using nested

CriteriaGroup instances.

A.4 Value Sets

Circe uses the ConceptSet class to represent value sets. All referenced value sets are included

inline in the CohortExpression instance. I believe this is so that descendents, mapped, and

excluded concepts specified in existing OHDSI concept sets can all be resolved ahead of

evaluating the cohort expression.

That said, our implementation does not make use of existing concept sets. Instead,

we define a service interface used to retrieve the relevant concepts sets. We have service

implementations that read PhEMA value sets from CSV files, and resolve concepts using

the OHDSI Web API. This supports using publicly accessible value sets based on standard

terminologies, and decouples the implementation from the OHDSI platform.

We also have a service implementation that reads pre-resolved concept sets from file in

JSON format. This is more efficient, especially for large concept sets, since concepts must

otherwise be resolved one at a time by performing a search using the Web API, which is an

expensive operation.
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A.5 Alternative Approaches

The approach described above is not the only possibility. Another approach would be to

extend the reference implementation of the CQL engine (or create a new implementation) to

directly support the OMOP CDM as a data model. The advantage of this approach is that

the CQL library author would have full access to the expressiveness of the CQL language,

and could write queries of any type, for any purpose, not just phenotyping.

The downside of this approach is that CQL libraries written against this data model

would then be tied to the OHDSI platform, and would not be cross-platform, as in the current

implementation. Further, the full set of OHDSI tools for cohort analysis would no longer be

available to the user. Importantly, in the current approach, a user can inspect the generated

cohort definition using the existing Atlas interface to manually confirm whether or not the

logic is correct, which would not be possible in a pure CQL data provider implementation.
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