
Visual Analytics Methods for Analyzing Molecular Dynamics Simulations of Mutant Proteins 
 
 
 

Dennis N. Bromley 
 

 
 

A dissertation 
 

submitted in partial fulfillment of the 
 

requirements for the degree of 
 
 
 
 
 

Doctor of Philosophy 
 
 
 
 
 

University of Washington 
 

2014 
 
 
 
 

Reading Committee: 
 

Valerie Daggett, Chair 
 

James Brinkley 
 

Peter Myler 
 
 
 
 
 

Program Authorized to Offer Degree: 
Biomedical Informatics and Medical Education 

  



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3680140

Published by ProQuest LLC (2015).  Copyright in the Dissertation held by the Author.

UMI Number:  3680140



 

 

© Copyright 2014 
Dennis N. Bromley 

 

  



University of Washington 
 
 
 
 

Abstract 
 
 
 
 

Visual Analytics Methods for Analyzing Molecular Dynamics Simulations of Mutant Proteins 
 
 
 

Dennis N. Bromley 
 
 
 

Chair of the Supervisory Committee: 
Professor Valerie Daggett 

Bioengineering 
 

The structural dynamics of proteins are integral to protein function; if these structural dynamics 

are altered by mutation, the function of the protein can be altered as well, potentially resulting in 

disease.  Experimental structure-determination with x-ray crystallography and Nuclear Magnetic 

Resonance (NMR) can be useful in determining mutant protein structures, but detailed, high-

resolution dynamics data can be difficult to ascertain.  Molecular Dynamics (MD) simulation is a 

high temporal- and spatial-resolution in silico method for dynamic protein structure 

determination.  Unfortunately, the data generated by MD simulations can be too large for 

standard analysis tools.  Here I describe a novel visual-analytics tool called DIVE that was 

specifically created to handle large, structured datasets like those generated by MD simulations.  

Using DIVE, I analyzed MD simulation-data of disease-associated mutations to the α-

Tocopherol Transfer Protein (α-TTP) and to the p53 tumor suppressor protein.  In addition to 



 

 

mutant structural-analysis and characterization, I also used DIVE to develop an algorithm for 

identifying regions of mutant proteins that are amenable to ‘rescue’, or ligand-mediated 

stabilization that can suppress the destabilizing effect of mutations.  The results of these 

investigations highlight the utility of big-data, visual-analytics approaches to exploring MD 

simulation data. 

 

 



1 

 

 

TABLE OF CONTENTS 

Chapter 1 ................................................................................................................................. 13 

Visual Analytics Methods for Analyzing Molecular-Dynamics Simulations of Mutant 

Proteins .................................................................................................................................... 13 

1.1 Introduction ............................................................................................................... 13 

1.2 Visual Analytics ........................................................................................................ 15 

1.3 Contact Analysis and the α-Tocopherol Transfer Protein ........................................... 17 

1.4 The Tumor-Suppressor Protein p53 ........................................................................... 18 

1.5 Conclusions and Future Work .................................................................................... 20 

Chapter 2 ................................................................................................................................. 25 

DIVE: A Graph-Based Visual Analytics Framework for Big Data ...................................... 25 

2.1 Abstract ..................................................................................................................... 26 

2.2 The DIVE Architecture .............................................................................................. 27 

2.3 Object Parsing ........................................................................................................... 33 

2.4 Scripting .................................................................................................................... 35 

2.5 Data Streaming .......................................................................................................... 36 

2.6 A Case Study ............................................................................................................. 38 

2.7 Discussion ................................................................................................................. 40 

Chapter 3 ................................................................................................................................. 51 

DIVE: A Data Intensive Visualization Engine ....................................................................... 51 



2 

 

 

3.1 Abstract ..................................................................................................................... 51 

3.2 Introduction ............................................................................................................... 51 

3.3 System and Implementation ....................................................................................... 52 

3.4 Results ....................................................................................................................... 53 

3.5 Conclusions ............................................................................................................... 56 

Chapter 4 ................................................................................................................................. 58 

Structural Consequences of Mutations to the α-Tocopherol Transfer Protein Associated 

with the Neurodegenerative Disease Ataxia with Vitamin E Deficiency ............................... 58 

4.1 Abstract ..................................................................................................................... 58 

4.2 Introduction ............................................................................................................... 59 

4.3 Methods ..................................................................................................................... 61 

4.4 Results and Discussion .............................................................................................. 67 

4.5 Conclusions ............................................................................................................... 76 

Chapter 5 ................................................................................................................................. 88 

Preliminary Results from a Proposed In Silico Algorithm for Identifying Stabilizing 

Pockets in the Y220C Mutant of the p53 Tumor Suppressor Protein ................................... 88 

5.1 Abstract ..................................................................................................................... 88 

5.2 Introduction ............................................................................................................... 89 

5.3 Methods ..................................................................................................................... 92 

5.4 Results and Discussion .............................................................................................. 98 

5.5 Conclusions ............................................................................................................. 109 



3 

 

 

Chapter 6 ............................................................................................................................... 128 

Insights into the Structural Dynamics of Cancer: Molecular Dynamics Simulations of Wild 

Type p53 and 20 Different Mutants Show Common Structural-Disruption Motifs Including 

Hypothesized Amyloidogenic Conformations ...................................................................... 128 

6.1 Abstract ................................................................................................................... 128 

6.2 Introduction ............................................................................................................. 129 

6.3 Methods ................................................................................................................... 131 

6.4 Results ..................................................................................................................... 134 

6.5 Discussion ............................................................................................................... 147 

6.6 Conclusions ............................................................................................................. 153 

Appendix A ............................................................................................................................ 177 

Supplementary Materials for DIVE: A Graph-Based Visual Analytics Framework for Big 

Data........................................................................................................................................ 177 

A.1 Ontologies ............................................................................................................... 177 

A.2 Molecular Dynamics ................................................................................................ 178 

Appendix B ............................................................................................................................ 182 

US Patent Application: Methods for Efficient Streaming of Structured Information ....... 182 

Appendix C ............................................................................................................................ 261 

Supplementary Materials for DIVE: A Data Intensive Visualization Engine .................... 261 

C.1 Protein Dashboard ................................................................................................... 261 

C.2 Gene Ontology ........................................................................................................ 262 



4 

 

 

C.3 Professional Baseball Statistics ................................................................................ 262 

Appendix D ............................................................................................................................ 273 

Supplementary p53 Mutant Analyses .................................................................................. 273 

D.1 DNA-Contact Mutants ............................................................................................. 273 

D.2 DNA-Region Mutants .............................................................................................. 276 

D.3 ZINC-Region Mutants ............................................................................................. 281 

D.4 β-Sandwich Mutants ................................................................................................ 284 

Appendix E ............................................................................................................................ 302 

Additional Bioinformatics Tools ........................................................................................... 302 

E.1 Interactive Contact Maps ......................................................................................... 302 

E.2 High-Resolution Property Plots ................................................................................ 303 

E.3 Multi-Protein Plots .................................................................................................. 304 

E.4 Interactive Ramachandran Diagrams ........................................................................ 305 

E.5 Per-Residue Secondary-Structure Propensity ........................................................... 306 

E.6 Secondary-Structure Contacts .................................................................................. 306 

E.7 Interactive Dihedral-Angle Analysis ........................................................................ 307 

E.8 NOE Analysis .......................................................................................................... 307 

  



5 

 

 

LIST OF FIGURES 

Figure 2.1 An overview of DIVE (Data Intensive Visualization Engine), with screenshots. 45 

Figure 2.2 The DIVE GUI with the Protein Dashboard pipeline loaded. ............................. 46 

Figure 2.3 The DIVE architecture. ......................................................................................... 47 

Figure 2.4 A mapping of a datanode-ontology from a third-party .NET assembly. ............. 48 

Figure 2.5 SQL streaming in DIVE. ....................................................................................... 49 

Figure 2.6 The Protein Dashboard case study. ...................................................................... 50 

Figure 3.1 Interactive visualizations in DIVE ........................................................................ 57 

Figure 4.1 Molecular structures of vitamin E and the different forms of α-TTP ................. 79 

Figure 4.2 Cα RMSD values over time for all three proteins ................................................ 80 

Figure 4.3 Cα RMSF for all three proteins ............................................................................ 81 

Figure 4.4 Histograms of α-tocopherol docking potential energies ....................................... 82 

Figure 4.5 Representative wild-type structures rendered as tubes ....................................... 83 

Figure 4.6 Representative E141K structures rendered as tubes ........................................... 84 

Figure 4.7 Contact disruption pathways in the E141K mutant ............................................. 85 

Figure 4.8 Representative R59W structures rendered as tubes ............................................ 86 

Figure 4.9 Contact disruption pathways in the R59W mutant .............................................. 87 

Figure 5.1 The DNA-binding core domain of the p53 tumor suppressor protein ............... 112 

Figure 5.2 Overview of pocket discovery pipeline ............................................................... 113 



6 

 

 

Figure 5.3 Per-residue average Cα RMSD and Cα RMSF of the p53 wild type and Y220C 

mutant.................................................................................................................................... 114 

Figure 5.4 in silico search tool recovery of experimental stabilizing pocket ....................... 115 

Figure 5.5 R175H destabilized region .................................................................................. 116 

Figure 5.6 Example Contact Walker diagram for the p53 Y220C mutant showing 

mutation-associated contact disruptions .............................................................................. 117 

Figure 5.7 Pocket search and refinement process ................................................................ 118 

Figure 5.8 Final pocket selected from the 98 candidate pockets ......................................... 119 

Figure 5.9 Histogram showing benzene probe points with negative energies ..................... 120 

Figure 5.10 Ligand refinement process ................................................................................ 121 

Figure 5.11 Potential energy distribution of 2.4M ligands docked by UCSF Dock Blaster 122 

Figure 5.12 Final ligand picks ............................................................................................... 123 

Figure 5.13 Overlap of known rescue ligand and putative rescue ligand addressing the 

same protein region from pockets with different surface geometries. ................................ 124 

Figure 5.14 Stereo image showing overlap of putative rescue pocket and the 2VUK crystal 

structure. ............................................................................................................................... 125 

Figure 5.15 Initial thermal shift assay results. ..................................................................... 126 

Figure 5.16 Initial NMR chemical-shift data........................................................................ 127 

Figure 6.1 p53 crystal structure ............................................................................................ 155 

Figure 6.2 Contact differences between wild type and the pseudo-wild type ..................... 156 

Figure 6.3 p53 crystal-structure solvent exposure ............................................................... 157 



7 

 

 

Figure 6.4 p53 structures highlighting disrupted loop-sheet-helix region contacts ............ 158 

Figure 6.5 p53 structures highlighting disrupted L2 and S5 region contacts ..................... 159 

Figure 6.6 Highlight of novel helix in L3 region .................................................................. 160 

Figure 6.7 L3 main chain atoms highlighting α-sheet-like orientation of residues ............. 161 

Figure 6.8 Wild-type simulation displaying α-sheet conformation ..................................... 162 

Figure 6.9 Proposed G245S α-sheet formation model ......................................................... 163 

Figure 6.10 Wild type S6/S7 α-sheet ..................................................................................... 164 

Figure 6.11 Novel N-terminal α-sheet ................................................................................... 165 

Figure 6.12 Novel N-terminal β-sheet ................................................................................... 166 

Figure 6.13 Novel N-terminal helix....................................................................................... 167 

Figure 6.14 p53 and transthyretin (TTR) ............................................................................. 168 

Appendix Figure A.1 Process of solvating and simulating a protein using MD. ................ 181 

Appendix Figure B.1 DIVE patent Figure 1 ........................................................................ 247 

Appendix Figure B.2 DIVE patent Figure 2 ........................................................................ 248 

Appendix Figure B.3 DIVE patent Figure 3 ........................................................................ 249 

Appendix Figure B.4 DIVE patent Figure 4 ........................................................................ 250 

Appendix Figure B.5 DIVE patent Figure 5 ........................................................................ 251 

Appendix Figure B.6 DIVE patent Figure 6 ........................................................................ 252 

Appendix Figure B.7 DIVE patent Figure 7 ........................................................................ 253 

Appendix Figure B.8 DIVE patent Figure 8 ........................................................................ 254 

Appendix Figure B.9 DIVE patent Figure 9 ........................................................................ 255 



8 

 

 

Appendix Figure B.10 DIVE patent Figure 10..................................................................... 256 

Appendix Figure B.11 DIVE patent Figure11...................................................................... 257 

Appendix Figure B.12 DIVE patent Figure 12..................................................................... 258 

Appendix Figure B.13 DIVE patent Figure 13..................................................................... 259 

Appendix Figure B.14 DIVE patent Figure 14..................................................................... 260 

Appendix Figure C.1 Schematic of the data flow within DIVE. .......................................... 264 

Appendix Figure C.2 Conceptual representation of DIVE modules and processes. .......... 265 

Appendix Figure C.3 Screenshot of the Protein Dashboard................................................ 266 

Appendix Figure C.4 Screenshot of DIVE displaying information from the Gene Ontology 

database. ................................................................................................................................ 267 

Appendix Figure C.5 Screenshot of DIVE showing investigation of the Gene Ontology 

species taxonomy ................................................................................................................... 268 

Appendix Figure C.6 Reusable DIVE components used to analyze professional baseball 

statistics ................................................................................................................................. 269 

Appendix Figure C.7 Reusable DIVE charting plugins used for data exploration. ........... 270 

Appendix Figure C.8 Conceptual representation of DIVE interactions among various 

plugins ................................................................................................................................... 271 

Appendix Figure C.9 DIVE using the Chimera molecular dynamics movie plugin ........... 272 

Appendix Figure D.1 Wild-type simulation Cα  RMSF compared to experimental NMR Cα 

RMSF..................................................................................................................................... 298 

Appendix Figure D.2 Wild-type average Cα RMSD values. ............................................... 299 



9 

 

 

Appendix Figure D.3 Simulation Cα RMSF values vs. available  B-factor data ................ 300 

Appendix Figure D.4 Aggregate contact occupancy-change for destabilizing mutants ..... 301 

Appendix Figure E.1 Interactive contact maps .................................................................... 310 

Appendix Figure E.2 High-resolution property plots .......................................................... 311 

Appendix Figure E.3 Multi-Protein Plot .............................................................................. 312 

Appendix Figure E.4 Screenshot of DIVE interactive Ramachandran diagram ................ 313 

Appendix Figure E.5 User code for DIVE interactive Ramachandran diagram ................ 314 

Appendix Figure E.6 Interactive dihedral angle analysis .................................................... 315 

  



10 

 

 

LIST OF TABLES 

Table 2.1 DIVE (Data Intensive Visualization Engine) Inheritance models ......................... 43 

Table 2.2 μScripting example ................................................................................................. 44 

Table 4.1 Occupancy Differences in Contacts Common to Both E141K and Wild Type ..... 77 

Table 4.2 E141K Occupancy Change Magnitudes > 20% ..................................................... 78 

Table 5.1 Ligand/protein heavy atom contacts. ................................................................... 111 

Table 6.1: α-sheet Summary ................................................................................................. 154 

Appendix Table B.1 DIVE patent Table 1 ........................................................................... 213 

Appendix Table D.1 Contacts lost in the pseudo-wild type relative to the wild type ......... 294 

Appendix Table D.2 Contacts gained in the pseudo-wild type relative to the wild type .... 295 

Appendix Table D.3 Contacts common to L1/H2 separation conformations ..................... 296 

Appendix Table D.4 Contacts common to L2/S5 separation conformations ...................... 297 

 

 

  



11 

 

 

ACKNOWLEDGEMENTS 

 I would first like to thank Dr. Valerie Daggett for her guidance, mentorship and 

instruction throughout this process as well as her service on my thesis committee.  I would also 

like to thank Dr. James Brinkley, Dr. Peter Myler and Dr. David Beck both for their service on 

my thesis committee and for their help, guidance and support.  I am also grateful for the support 

provided by the Division of Biomedical and Health Informatics, the Department of 

Bioengineering, the National Library of Medicine, and the National Institutes of Health.  As 

science has always been a collaborative effort, thanks also go to the members and alumni of the 

Daggett lab including Dr. Steve Rysavy, Dr. Noah Benson, Dr. Andrew Simms, Dr. Clare 

Towse, Dr. Gene Hopping, Dr. Michelle McCully, Dr. Tom Schmidlin, Dr. Amanda Jonsson, Dr. 

Dustin Schaeffer, Dr. Alex Scouras, Dr. Erik Merkley, Dr. Rudesh Toofanny, Dr. Sara 

Nowakowski, Jonathan Cheng, Matthew Childers, Peter Law and Robert Su.  I am also grateful 

for the support from my BHI cohort, Dr. Wynona Black, Dr. Daniel Capurro, Dr. Walter 

Curioso, Dr. Rupa Patel and Melissa Clarkson. 

 

 

 

   



12 

 

 

DEDICATION 

I would like to thank Allison FitzGerald for her constant love, support, humor, intelligence and 

patience through the myriad ups and downs of this process.  I am also grateful to Dr. Elizabeth 

Whalley, whose support, patience and friendship throughout this process were both generous and 

indispensable.  I would also like to thank my family, Dennis Bromley, Cathy Bromley, Darcy 

Bromley Harris and Chet Harris for their constant love and support.  Ultimately, however, my 

work is dedicated to my son, Dennis London Bromley, whose love, smile and laughter turn any 

day into the best day of my life. 

 



13 

 

 

Chapter 1 

VISUAL ANALYTICS METHODS FOR ANALYZING 

MOLECULAR-DYNAMICS SIMULATIONS OF MUTANT 

PROTEINS 

1.1 Introduction  

 Proteins are biological macromolecules that perform many of the basic functions of life 

including reproduction, immunological response, and tissue construction (Alberts et al. 2008).  

Because proteins are DNA-transcription products, they can be affected by genetic mutations.  

These effects can cause structural changes relative to the wild-type protein; because protein 

structure and function are tightly coupled, these structural changes can result in a change in 

protein function.  When the protein function is crucial to life, such as the tumor-suppressing 

functionality of the p53 transcription-factor protein, the results can be dramatic; it is estimated 

that approximately 50% of cancers are associated with mutations to the p53 protein (Olivier et al. 

2002; Joerger et al. 2006) and the p53 Y220C mutation alone is associated with roughly 75,000 new 

cancer diagnoses every year (Olivier et al. 2002; Boeckler et al. 2008). 

 The structure of both wild type and mutant proteins can often be determined 

experimentally by x-ray crystallography or Nuclear Magnetic Resonance (NMR) (Alberts et al. 

2008).  Once determined, these structural data are often uploaded to a central repository such as 

the Protein Data Bank (Bernstein et al. 1977).  Not all structures have had their structures 

experimentally-determined, however.  In these circumstances, in silico techniques such a 

molecular mechanics and quantum mechanics can be used to model and predict the structures of 
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proteins (Wilson and Gisvold 2004).  The Dynameomics project, discussed in the later chapters, uses 

molecular mechanics techniques to model the dynamic behaviors of proteins in solvent (Beck et al. 

2008; Van der Kamp et al. 2010).  These molecular dynamics (MD) simulations are typically 

bootstrapped with experimental protein structures; the in silico models are then subjected to 

physiologically-relevant conditions and the resulting data are analyzed to contribute to our 

understanding of protein structure and behavior.  When simulations are performed of both wild 

type and mutant proteins, the simulations can be compared to gain insights into mutation-

associated changes.  When the mutations are associated with disease, these insights can pave the 

way for therapeutic approaches such as structure-based drug design (Wilson and Gisvold 2004). 

 High-resolution time-series data are a strength of MD.  However, MD data can be very 

large, in keeping with an industry-wide growth in biomedical ‘big data’ (Martin-Sanchez and 

Verspoor 2014).  For example, in Chapter 6 I describe the results of MD simulations of 21 p53 

variants, each performed in triplicate for at least 100 ns.  For per-picosecond, per-residue data 

such as solvent-accessible surface-area (SASA), this results in more than 1.2 billion data points.  

The three-dimensional atomic coordinates of these simulations, ignoring the solvent atoms, 

constitute 56.7 billion data points.  Even in the presence of powerful data warehouses and 

computing resources, from a human-analysis perspective the absolute quantity of data can be 

daunting, particularly if the mutation-associated changes result in only subtle changes (Z. Wang 

and Moult 2001).  As a result, data-analysis tools used to analyze MD simulations must be both 

powerful enough to handle the data loads and sensitive enough to identify small, yet important, 

changes. 
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 I propose that high-performance interactive visual-analysis of MD data can facilitate 

mutant/wild-type comparative analysis and lead to more efficient protein structural-insights and 

more efficient drug-discovery research.  In the following chapters and appendices I discuss 1) 

my work in developing interactive data-analysis tools capable of handling hundreds of gigabytes 

of data, 2) the application of those tools to disease-associated protein systems, 3) discoveries and 

conclusions regarding those protein systems, 4) in silico drug-discovery efforts informed by my 

interactive tools and 5) preliminary experimental-testing of putative pharmaceutical-chaperone 

molecules selected by my drug-discovery tools. 

1.2  Visual Analytics 

 There are tools such as Pymol (DeLano 2002) and VMD (Humphrey et al. 1996) that are 

available for viewing protein structures.  However, as MD simulation becomes more popular, the 

size of the data sets continue to grow, often beyond the capabilities of existing tools.  The 

coordinates of a single 100 ns MD simulation, for example, can result in 15GB of data, more 

data than can fit into the memory of many computers.  When these data are augmented by 

additional analysis-data and then scaled across multiple simulations, we see that fully-leveraging 

the high-resolution data generated by MD simulations requires commensurate high-resolution 

analysis tools. 

 While non-interactive tools such as command-line programs and SQL databases are 

capable of managing many of these tasks, data exploration is often facilitated by interactive 

visual analysis.  Visual analytics (Thomas and Cook 2005; Keim et al. 2008) is a data-exploration 

paradigm that leverages human-guided data-analysis and powerful computer-processing.  To 
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apply this approach to MD simulations and disease-research, I co-developed a visual analytics 

program called DIVE, a Data Intensive Visualization Engine (Bromley et al. 2014; Rysavy et al. 2014).  

As discussed below, DIVE is capable of streaming data from the Dynameomics data warehouse 

(Simms et al. 2008) and is therefore largely freed from the memory-limitations of the local 

computer.  Moreover, DIVE facilitates integration of multiple analyses, supports both GUI and 

scripted interaction, and can be used as an application programming interface (API) for 

independent tool-development. 

In Chapter 2, I discuss the technical features of DIVE as well as their implementations.  

These include interactive-speed data-streaming, a flexible scripting-paradigm called μScripting 

(microscripting), an ontologically-expressive data-representation, an extensible data-pipeline 

capable of visualizing and analyzing large data-streams, and a binary-parsing mechanism capable 

of importing unrelated software libraries as DIVE plugins.  A case study involving the protein 

dashboard (also discussed in Chapter 3) illustrates how these pieces fit together.  Appendix A 

contains supplementary materials for Chapter 2.  The contents of Chapter 2 and the appendix 

were previously published in the journal IEEE Computer Graphics and Applications (Rysavy et al. 

2014).  In addition to the DIVE publication, a US patent application was filed in June of 2014 to 

protect several of the technologies invented during the development of DIVE.  The contents of 

this patent application are contained in Appendix B.  Furthermore, the DIVE software, 

documentation, examples, and developer guides are all freely distributed on the internet at 

www.dynameomics.org/dive. 
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In Chapter 3 I discuss various DIVE case studies.  Most of the examples involve the 

Dynameomics data set; case studies include the Protein Dashboard, analysis of the protein Cu-Zn 

superoxide dismutase 1 (SOD-1, mutants of which are associated with amyotrophic lateral 

sclerosis (ALS, Lou Gehrig’s Disease)) and analysis of the protein p53 (a tumor-suppressing 

transcription-factor whose mutations are associated with cancer).  Another example demonstrates 

the interactive exploration of taxonomy data from the Gene Ontology (Ashburner et al. 2000) and 

another example includes DIVE data-integration with the Chimera protein-visualization tool.  A 

final case-study demonstrating the interactive analysis of almost 200 years of professional 

baseball statistics illustrates the data-agnostic capabilities of the DIVE data pipeline.  Appendix 

C contains supplementary materials for Chapter 3.  The contents of Chapter 3 and the appendix 

were previously published in the journal Bioinformatics (Bromley et al. 2014).   

1.3 Contact Analysis and the α-Tocopherol Transfer Protein 

 In Chapter 4 I discuss the results of analyzing MD simulations of the wild type and two 

mutants of the α-Tocopherol Transfer Protein (α-TTP).  A notable feature of α-TTP is a hinged 

‘lid’ that covers an internal hydrophobic cavity.  This cavity is used to transport hydrophobic 

vitamin E through hydrophilic environments, helping maintain healthy vitamin E levels 

throughout the body.  Mutations to α-TTP are associated with the neurodegenerative disease 

ataxia with vitamin E deficiency (AVED) (Meier et al. 2003). 

 To quantify and visualize the mutation-associated structural changes to α-TTP, I created a 

DIVE-based tool called Contact Walker (Bromley et al. 2013).  Contact Walker calculates the 

mutation-associated changes to inter-residue contacts and generates visualizations that allow us 
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to compare and analyze gigabytes of data without losing structural detail.  Using Contact Walker, 

we analyzed α-TTP and offered a structural description of the mutation-associated changes to 

both the internal hydrophobic cavity and the covering lid.  We then hypothesized how these 

changes could impact the protein function. The contents of Chapter 4 were previously published 

in the journal Biochemistry (Bromley et al. 2013). 

1.4 The Tumor-Suppressor Protein p53 

 The p53 protein is a transcription-factor that stimulates cell-cycle arrest and apoptosis in 

the presence of oncogenic factors (Vogelstein et al. 2000).  Mutations to the DNA-binding domain of 

p53 can result in structural-destabilization and unfolding at physiological temperatures, resulting 

in a loss of tumor-suppressing function; it is estimated that half of human cancer cases are 

associated with mutations to the p53 protein (Joerger et al. 2006).  It has been shown that small 

molecules can ‘rescue’ p53 by binding into pockets on the protein, stabilizing the protein and 

allowing it to resume tumor suppression (Boeckler et al. 2008).  Small-molecule rescue has been 

shown to be effective in non-p53 protein systems as well (Leidenheimer and Ryder 2014).  Despite 

being such an important and well-studied cancer target, only a few experimental structures of 

p53 DNA binding-domain mutants have been submitted to the Protein Data Bank.  Without 

protein structural information, rational design of stabilizing rescue-ligands is hampered.  

Moreover, even with protein structural information, it is not clear where in the protein structure 

we would look to find an effective stabilization-pocket. 

 In Chapter 5, I discuss an in silico algorithm that I developed to address this problem.  

Prompted by the protein structure  protein function relationship, and using inter-residue 
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contacts as proxies for protein structure, I hypothesized that, in the presence of mutation-

associated contact changes, the ligand-mediated re-assertion of wild type-like contacts could re-

assert wild type-like function.  As a corollary to this, I also hypothesized that protein regions 

amenable to binding a stabilizing ligand could be identified as those regions with a large degree 

of mutant-associated contact destabilization.  There is support for this general approach 

(Leidenheimer and Ryder 2014) and initial analysis of published p53-stabilizing ligands (Wilcken et al. 

2012) showed good overlap with contact-disruption analysis.  As the Y220C mutation is well-

studied (Wilcken et al. 2012; Boeckler et al. 2008), I selected it as a positive control. By analyzing MD 

simulations of the p53 wild type and Y220C mutant, I selected an MD protein conformation 

containing a pocket that I hypothesized could bind a stabilizing ligand.  I then used in silico 

drug-docking techniques to identify potential stabilizing ligands.   In silico comparison of the 

final pocket and ligand structures showed good agreement with the published positive-control 

data.  The putative stabilizing ligands were then submitted for experimental testing (experimental 

testing courtesy of Dr. Matthias Bauer and Dr. Alan Fersht).  As discussed below, initial 

experimental results were weak but positive; preliminary data from 1H/15N HSQC NMR 

experiments and thermal shift assays indicated that one of the three in silico-identified ligands 

showed weak interaction with the intended pocket region and small but positive dose-dependent 

increases in melting temperature.  I conclude that the results are encouraging but not yet 

conclusive, and that the algorithm may improve with future refinement. 

 In Chapter 6, I discuss an enlarged p53 MD simulation effort undertaken to better 

characterize the effects of various p53 mutations.  We simulated 19 different tumorigenic p53 
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mutants, a p53 mutant with known stabilizing mutations, and the p53 wild type.  Analysis of 

these simulations suggested several things.  First, simulation data suggested that p53 may be 

amenable to α-sheet secondary-structure formation.  While still a hypothesis, it has been 

suggested that α-sheet may play a role in protein aggregation (Armen, Alonso, et al. 2004; Daggett 

2006).  Together with a recent re-characterization of cancer as an amyloid disease (Xu et al. 2011), 

these MD data offer an atomic-level hypothesis for the structure of the aggregating species.  

Second, the destabilizing effect of p53 mutants may arise from exacerbating native structural 

tendencies already inherent in the wild type.  This is similar to the findings from the α-TTP work 

discussed earlier (Bromley et al. 2013).  Third and lastly, I conclude that addressing structural motifs 

common to multiple p53 mutants may be an efficient drug-design approach.  

1.5 Conclusions and Future Work 

The data presented in the following chapters offer a perspective on drug discovery that is 

difficult to obtain through experimental means.  Using MD simulations and DIVE analysis tools, 

I was able to analyze protein structural data in great depth and great breadth simultaneously.  As 

a result, I was able to quantify, analyze, and compare to wild-type two different protein systems 

including more than six million high-resolution, physically-realistic structures of 20 different p53 

mutants.  Analysis of these data suggest that it may be more efficient for mutant-rescue drug-

design efforts to focus on a relatively small set of common, multi-mutant structural-disruption 

motifs rather than focusing on a multitude of individual mutants.  Moreover, given that more 

than 25 diseases are currently linked to protein misfolding (Gavrin et al. 2012), these findings are 

likely relevant to more diseases than just p53-associated cancers. 
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The work presented here can be extended and continued in multiple different ways.  

From a visual analytics perspective, DIVE would benefit from improved cloud-distribution 

functionality.  For example, a common goal of distributed computing is to perform calculations 

as close to the data as possible, avoiding the multiple costs associated with transporting big data 

sets over a network.  To do this, analysis modules and their associated computational resources 

must be present at or near the data storage location and also be capable of communicating the 

analysis results back over the network to the user.  This scenario becomes more complex when a 

single analysis involves data present in multiple locations.  SQL queries that centrally aggregate 

machine-specific sub-queries are an example of this analysis model.  

We have proofs-of-concept that DIVE analyses can be distributed over a network; I 

developed a DIVE plugin that converts data into BSON (binary JSON) objects and sends them 

over a network socket rather than a DIVE output pin.  These BSON data can then be intercepted 

and interpreted by receiving software.  Two DIVE pipelines were developed to investigate DIVE 

distributed analysis.  The first involved Dynameomics MD structural data streaming over a 

network from DIVE to  the popular protein analysis program Chimera (Pettersen et al. 2004); a 

custom python library loaded into Chimera received the DIVE data over a network socket, 

translated the BSON data into Chimera-appropriate data, and prepared them for visualization. 

The second DIVE pipeline involved an ‘upstream’ DIVE pipeline sending generic DIVE data 

over a network socket connection to a ‘downstream’ DIVE pipeline.  The data were sent, as 

before, from the BSON DIVE plugin in one DIVE pipeline and received on the other end by 

another instance of the BSON DIVE plugin in a separate DIVE pipeline.  The elegance of this 
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approach is that the BSON plugins were the only parts of the DIVE pipeline that were aware of 

network activity; the other DIVE plugins received only generic structured DIVE data arriving at 

their input pins and leaving via their output pins – they were neither aware nor impacted by the 

integration of network data-streaming. 

This latter point is what will allow future versions of DIVE to scale into the cloud.  

Multiple DIVE instances could be connected in a large virtual DIVE pipeline with network data-

sources and data-sinks replacing the local data-source and data-sink pins. The resulting DIVE 

pipeline could have an analysis node in each database of a SQL warehouse and an aggregation 

node on the user’s local computer, for example.  The result would be faster, more responsive 

analyses distributed across available computer resources without any material change in user 

experience or plugin/analysis-module usage. 

From a structural-biology standpoint, the work begun in Chapter 5 should be continued to 

more conclusively test the disrupted-region-as-rescue-region hypothesis. Although initial results 

are encouraging, true validity will only be demonstrated by results that meet or exceed the 

capabilities of current approaches.  To begin, testing larger numbers of in silico-identified 

ligands would be appropriate; other published studies (Wassman et al. 2013; Boeckler et al. 2008) that 

followed similar docking protocols tested between one and two orders of magnitude more 

compounds with favorable results.  Next, more extensive validation of the rescue-region 

hypothesis may be facilitated by using additional protein systems as positive controls; it may be 

that p53 is an uncharacteristically problematic system to analyze computationally and a 

consensus analysis spanning multiple systems would more effectively assess the general validity 
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of this approach.  There are many alternative positive-control protein systems available for this 

analysis;  transthyretin (TTR), Cu-Zn superoxide dismutase 1 (SOD-1), lysozyme, prion protein, 

and α-1-antitrypsin are all disease-associated misfolding protein systems appropriate to this task 

(Gavrin et al. 2012).  TTR, SOD-1, and prion protein have already been simulated as part of the 

Dynameomics project (Armen, Alonso, et al. 2004; Schmidlin et al. 2009; Chen et al. 2014).  Notably, TTR 

and SOD-1 both belong to the same β-sandwich protein fold family as p53. 

An increase in protein conformational data would also be relevant to the work presented 

in Chapter 5 and Chapter 6.  This could be achieved by longer and/or additional MD simulations.  

While additional conformational data are not always necessary – a 2 ns simulation played a 

pivotal role in developing the first FDA-approved HIV-1 integrase inhibitor (Schames et al. 2004) – 

the 104 reduction in conformational space performed by the pocket search tool reduced the 

pocket set under consideration to  only 98 pockets, a small number in absolute terms.  Increasing 

the overall pool of pockets would likely give us more pockets and conformations from which to 

choose, increasing our ability to select multi-mutant pockets, or pockets with more favorable 

structural characteristics such as native-like conformations or favorable conformational 

entropies. 

Once these steps have been taken, the application of the pocket-finding algorithm from 

Chapter 5 to the regional-disruption findings of Chapter 6 is the logical end-goal of this work, 

potentially identifying a stabilization-capable multi-mutant pocket for p53. Small-molecule 

protein rescue of either mutant or misfolded-wild type represents an enormous opportunity for 

p53-associated cancer research; initial in silico and experimental results published in the 
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academic literature (Leidenheimer and Ryder 2014; Wilcken et al. 2012; Boeckler et al. 2008; Conn et al. 2014; 

Gavrin et al. 2012) and in the commercial sector (Conn 2005; Boeckler et al. 2011) indicate that such an 

approach is feasible. 

  Experimental testing, however, can be both expensive and difficult.  And while, as 

discussed above, experiment remains the necessary gold standard for research, a great deal of 

progress can be made using in silico tools like those described here.  The increasing power, 

sophistication and accessibility of in silico techniques and tools effectively democratizes 

pharmaceutical research, opening up opportunities for orphan-disease researchers, researchers 

studying restricted pathogens, researchers studying unstable systems, students for whom 

experimental work is unfeasible or expensive, and even citizen scientists (Khatib et al. 2011).  Even 

in the presence of abundant resources, many biomedical disciplines are undergoing a paradigm 

shift from hypothesis-driven to data-driven investigation (Martin-Sanchez and Verspoor 2014).  Taken 

together, it is apparent that big-data analyses, approaches and tools such as those discussed in 

this dissertation are having a profound and material effect on biomedical research. 
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Chapter 2 

DIVE: A GRAPH-BASED VISUAL ANALYTICS FRAMEWORK 

FOR BIG DATA 

The contents of this chapter and Appendix A were previously published in the journal IEEE 

Computer Graphics & Applications (Rysavy et al. 2014).  Steven Rysavy and I were co-first authors 

of this paper.  As a result, this previously-published content appears in his PhD dissertation as 

well.  In addition to sharing the overall design of the DIVE framework, my primary contributions 

were in the core DIVE kernel, encompassing the ontological data-structure, μscripting, the DIVE 

pipeline and associated pipeline-plugin technologies, the DIVE GUI, the majority of the 

visualization plugins, interactive SQL, data-streaming protocols, and the development of internal 

analytical software-libraries such as mathematical libraries and signal processing libraries. 

 

The University of Washington applied for a patent for several of the technologies invented 

during the development of DIVE.  The contents of the DIVE patent-application are contained in 

Appendix B. 

 

Publisher required text: © 2014 IEEE.  Reprinted with permission, from Rysavy, S. J. et al. 

2014. “DIVE - A Graph-Based Visual Analytics Framework for Big Data.” IEEE Computer 

Graphics and Applications 34 (2): 26–37. 
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2.1 Abstract 

 As the need for data-centric scientific tools grows, scientists are increasingly adopting 

computational approaches. DIVE (Data Intensive Visualization Engine) was developed to help 

scientists deal with big data. DIVE is a data-agnostic, ontologically expressive visual analytics 

software framework that can stream and analyze large datasets at interactive speeds. 

 Bioinformatics research depends increasingly on high-performance computation and 

large-scale data storage. Also, datasets are often complex, heterogeneous, or incomplete. These 

two aspects make bioinformatics appropriate for visual analytics (VA). Many powerful scientific 

toolsets are available, including software libraries such as SciPy (Jones et al. 2001); specialized 

visualization tools such as Chimera (Pettersen et al. 2004); and scientific workflow tools such as 

Taverna (Wolstencroft et al. 2013), Galaxy (Goecks et al. 2010), and the Visualization Toolkit (VTK) 

(Schroeder et al. 1996). Some of them can handle large datasets. Others - typically, those originally 

designed for small, local datasets - haven’t been updated to handle recent advances in data 

generation and acquisition. 

 To help fill this technological gap, we developed DIVE (Data Intensive Visualization 

Engine), which makes big-data VA-approaches accessible to scientific researchers (see Figure 

2.1). DIVE employs an interactive data pipeline that’s extensible and adaptable. It encourages 

multiprocessor, parallelized operations and high-throughput, structured data-streaming. DIVE 

can act as an object-oriented database by joining multiple disparate data sources. And, although 

we present bioinformatics applications here, DIVE can handle data from many domains. 
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2.2 The DIVE Architecture 

 DIVE is an API whose primary component is the data pipeline, which can stream, 

transform, and visualize datasets at interactive speeds. The pipeline can be extended with plug-

ins; each plug-in can operate independently on the data stream. Data exploration is supported 

through command line interfaces, GUIs, and APIs. Figure 2.2 shows an example DIVE 

application. All these interfaces support scripting interaction. DIVE also supports typed events, 

letting users trigger targeted-analyses from a point-and-click interface. Programmatically, DIVE 

inherits much functionality from the .NET environment, as we discuss later. Finally, DIVE is 

domain-independent and data-agnostic. The pipeline accepts data from any domain, provided an 

appropriate input parser is implemented. Currently supported data formats include SQL, XML, 

comma- and tab-delimited files, and several other standard file formats (see Figure 2.3). 

 Data Representation 2.2.1

 Ontologies (see Appendix A) are gaining popularity as a powerful way to organize data. 

We developed DIVE’s core data representation with ontologies in mind. The fundamental data 

unit in DIVE is the datanode. Datanodes somewhat resemble traditional object instances from 

object-oriented (OO) languages such as C++, Java, or C#. They’re typed, contain strongly typed 

properties and methods, and can exist in an inheritance hierarchy. 

 However, datanodes extend that traditional model. They can exist in an ontological 

network or graph; that is, multiple relationships beyond simple type-inheritance can exist 

between datanodes. DIVE implements these relationships with data-edges, which link datanodes. 

Dataedges themselves are implemented by datanode objects and consequently might contain 
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properties, methods, and inheritance hierarchies. Because of this basic flexibility, DIVE can 

represent arbitrary, typed relationships between objects, objects and relationships, and 

relationships and relationships. 

 Datanodes are also dynamic; every method and property can be altered at runtime, adding 

much flexibility to the system. (The DIVE pipeline contains various data integrity mechanisms to 

prevent unwanted side effects, as we discuss later.) The inheritance model is also dynamic; as a 

result, objects can gain and lose type qualification and other inheritance aspects at runtime. This 

allows runtime classification schemes such as clustering to be integrated into the object model. 

Finally, datanodes provide virtual properties. These properties are accessed identically to fixed 

properties, but store and recover their values through arbitrary code instead of storing data on the 

datanode object. Virtual properties can extend the original software architecture’s functionality, 

allowing data manipulation, as we describe later. Dataedges implement multiple inheritance-

models. Besides the traditional is-a relationship in OO languages, ontological relationships such 

as contains, part-of, and bounded-by can be expressed. Each of these relationships can support 

varying levels of inheritance (see Table 2.1): 

 With OO inheritance, which is identical to OO languages such as C++ and Java, 

subclasses inherit the parent’s type, properties, and methods. 

 With type inheritance, subclasses inherit only the type. 

 With property inheritance, subclasses inherit only the properties and methods. 

 Like OO-language objects, property-inheritance subclasses can override superclass 

methods and properties with arbitrary transformations. Similarly, type-inheritance subclasses can 
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be cast to superclass types. Because DIVE supports not only multiple-inheritance but also 

multiple kinds of inheritance, we implement casting by traversing the dataedge ontology. Owing 

to the coupling of the underlying data structure and ontological representation, every datanode 

and dataedge is implicitly part of a system-wide graph. This means we can use graph-theoretical 

methods to analyze both the data structures and ontologies represented in DIVE. This approach 

has already proved useful in structural biology (Bromley et al. 2013). 

 Because all data are represented by datanodes and dataedges, DIVE analysis modules are 

presented with a syntactically-homogenous dataset. Owing to this data-type independence, any 

modules can be connected so long as the analyzed datanodes have the expected properties, 

methods, or types, as we describe later. A module needn’t concern itself with the data’s origin or 

access syntax. So, DIVE supports code and tool reuse. Data-type handling is a challenge in 

modular architectures. For example, Taverna uses typing in the style of MIME (Multipurpose 

Internet Mail Extensions). The VTK uses strongly typed classes. Python-based tools, such as 

Biopython (Cock et al. 2009) and SciPy, often use Python’s dynamic typing. 

 For DIVE, the datanode and dataedge ontological network is a useful blend of these 

approaches. The dynamic typing of individual datanodes and dataedges lets us build arbitrary 

type-networks from raw data sources. (See the Gene Ontology (Ashburner et al. 2000) taxonomy 

example described in the DIVE application note (Bromley et al. 2014) (Chapter 3).) The underlying 

strong typing of the actual data (doubles, strings, objects, and so on) facilitates parallel 

processing, optimized script compilation, and fast, non-interpreted handling for operations such 
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as filtering and plotting. Furthermore, the fact that the datanodes and dataedges themselves are 

strongly-typed objects facilitates programmatic manipulation of the dataflow itself. 

 Although each typing approach has its strengths, DIVE’s approach lends itself to fast, 

agile data-exploration and fast, agile updating of DIVE tools. The datanode objects’ 

homogeneity also simplifies the basic pipeline and module development. The tool updating is a 

particularly useful feature in an academic laboratory where multiple research foci, a varied 

spectrum of technical expertise, and high turnover are all common. 

 Data Import 2.2.2

 Data must be imported into DIVE before they are accessible to the DIVE pipeline. In 

many cases, DIVE’s built-in functionality handles this import. In the case of tabular data or SQL 

data-tables, DIVE constructs one datanode per row, and each datanode has one property per 

column. DIVE also supports obtaining data from Web services such as the Protein Data Bank 

(Bernstein et al. 1977). Once DIVE obtains the data, simple mechanisms establish relationships 

between datanodes. Later, we describe a more sophisticated way to acquire structured data that 

uses native object parsing.  

 The Pipeline 2.2.3

 DIVE’s pipeline is comparable to Taverna, Pipeline Pilot 

(http://accelrys.com/products/pipeline-pilot), Cytoscape (Shannon et al. 2003), Galaxy, and, most 

similarly, the VTK. Although all these platforms are extendable, two factors led us to develop 

DIVE. This first was platform considerations, which we discuss later. The second was our focus 
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on agile data-exploration instead of remote, service-based workflows. Fortunately, all these 

platforms have made interoperability a priority. So, we can leverage Cytoscape’s graph 

capabilities or the VTK’s visualization capabilities while maintaining DIVE’s benefits by 

connecting their respective pipelines. 

 In the DIVE pipeline, plug-ins create, consume, or transform data. These plug-ins are 

simply compiled software libraries whose objects inherit from a published interface. The DIVE 

kernel automatically provides subsequent plug-in connectivity, pipeline instantiation, scripting, 

user interfaces, and many other aspects of plug-in functionality. Plug-ins move data through pins 

much like an integrated circuit: data originate at an upstream source pin and are consumed by 

one or more downstream sink pins. Plug-ins can also move data by broadcasting and receiving 

events. Users can save pipeline topologies and state to a file and share them. 

 When DIVE sends a datanode object through a branching, multilevel transform pipeline, 

it must maintain the datanode’s correct property-value at every pipeline stage. Otherwise, a 

simple plug-in that scaled incoming values would scale all data, everywhere in the pipeline. The 

naïve option is to copy all datanodes at every pipeline stage, but this is extremely CPU- and 

memory-intensive and dramatically worsens the user experience. 

 To address this problem, DIVE uses read- and write-contexts. Essentially, this creates a 

version history of each transformed value. We key the history on each pipeline stage such that 

each plug-in reads only the appropriate values and not, for instance, downstream values or values 

from another pipeline branch. This approach maintains data integrity in a branching transform 

pipeline. It’s also parallelizable. In addition, it keeps an accurate account of the property value at 
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every stage in the pipeline, with a minimum of memory use. Finally, it’s fast and efficient 

because the upstream graph traversal is linear and each value-lookup occurs in constant time. 

 Software Engineering Considerations 2.2.4

 We designed DIVE to provide a dynamic, scalable VA architecture. Although such an 

architecture doesn’t require a specific platform, we built DIVE on the Microsoft Windows 

platform and .NET framework because of several significant built-in capabilities. These 

capabilities include the dynamic-language runtime, expression trees, and Language-Integrated 

Query (LINQ). .NET also provides coding features such as reflection, serialization, threading, 

and parallelism. Extensive documentation and details of these capabilities are at 

www.microsoft.com/net. 

 Many of these capabilities directly affect DIVE’s functionality and user experience. 

Support for dynamic languages allows flexible scripting and customization that would be 

difficult in less expressive platforms. These components are crucial for both the data model we 

described earlier and the scripting capabilities we describe later. Furthermore, LINQ is useful in 

a scripted data-exploration environment. Expression trees and reflection provide the underlying 

object linkages for the DIVE object parser (which we also describe later), and DIVE streaming 

heavily uses the .NET framework’s threading libraries. Finally, because .NET supports 64-bit 

computations and simple parallelism, DIVE can transparently scale with processor capabilities. 

.NET also supports not only Microsoft-specific languages such as C#, Visual Basic, and F# but 

also more general languages such as Python and C++. This lets us author DIVE plug-ins in many 

languages. In addition, we can use these languages to develop command-line, GUI, and 
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programmatic tools that embed and drive the DIVE kernel (as our case study shows later). 

.NET’s wide user base also provides multiple external libraries with which to jump-start our 

development efforts, including molecular visualizers, clustering and analysis packages, charting 

tools, and mapping software. In particular, one such library is the VTK, wrapped by the ActiViz 

.NET API (see www.kitware.com/opensource/avdownload.php). 

 Finally, for our Dynameomics project (see the “Molecular Dynamics” sidebar), we store 

data in a Microsoft SQL Server data-warehouse. So, it made sense to adopt a software platform 

with deep support for these data services.  

2.3 Object Parsing 

 Module-management systems such as the Java-based OSGi (OSGi Service Platform, Release 3 

2003) support module life-cycle management and service discovery. However, module authors 

often must be aware of the module management system when creating a module. We aimed to 

make .NET assemblies written without a priori knowledge of DIVE accessible to the ontological 

data representation. We also didn’t require the life-cycle services of such module-management 

systems. So, we developed the DIVE object parser. 

 The parser automatically generates datanodes and dataedges from any .NET object or 

assembly (see Figure 2.4). Using reflection and expression trees, it consumes .NET object 

instances and translates them into propertied datanodes and dataedges. Usage patterns typically 

involve standard object creation by library-aware code, followed by automated object parsing 

and injection into the DIVE pipeline. 
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 Generic rules define the mapping between the .NET object hierarchy and DIVE data 

structures. Generally, complex objects such as classes are parsed into datanodes, whereas built-in 

.NET system objects, primitive fields, primitive properties, and methods with primitive return 

types are translated into properties on those datanodes. Interfaces, virtual classes, and abstract 

classes are all translated into datanodes. The .NET inheritance and member relationships are 

interpreted as OO and property inheritance dataedges, respectively; these dataedges then connect 

the datanode hierarchy. 

 Using this approach, the object parser recursively produces an ontological representation 

of the entire .NET instance hierarchy in DIVE. Additional rules handle other program constructs. 

For example, the parser translates static members into a single datanode. Multiple object 

instances with the same static member all map to a single, static datanode instance in the DIVE 

data structure. Public objects and members are always parsed, whereas private members, static 

objects, and interfaces are parsed at the user’s discretion. 

 Throughout this process, no data values are copied to datanodes or dataedges. Instead, 

dynamically created virtual properties link all datanode properties to their respective .NET 

members. So, any changes to the runtime .NET object instances are reflected in their DIVE 

representations. Similarly, any changes to datanode or dataedge properties propagate back to 

their .NET object instance counterparts. This lets DIVE interactively operate on any runtime 

.NET object structure. 

 With object parsing, users can import and use any .NET object without special handling. 

Furthermore, as we discussed before, the .NET application’s architect doesn’t need to be aware 
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of DIVE to exploit its VA capabilities. For example, assume we have a nonvisual code library 

that dynamically simulates moving bodies in space (this example is available with the DIVE 

program download at www.dynameomics.org/dive). A DIVE plug-in, acting as a thin wrapper, 

can automatically import the simulation library and add runtime visualizations and interactive 

analyses. As the simulation progresses, the datanodes will automatically reflect the changing 

property values of the underlying .NET instances. Through a DIVE interface, the user could 

change a body’s mass. This change would propagate back to the runtime instance and 

immediately appear in the visualization. This general approach is applicable to many specialized 

libraries, taking advantage of their efficient data models. We describe an example of this later. 

2.4 Scripting 

 To let users rapidly interact with the DIVE pipeline, plug-ins, data structures, and data, 

DIVE supports two basic types of scripting: plug-in scripting and µscripting (microscripting). In 

the DIVE core-framework, C# is the primary scripting language. Externally, DIVE can host 

components written in any .NET language and, conversely, can be hosted by any .NET 

environment. Here we focus on C# scripting. 

 Both scripting types are controlled in the same way. The user script is incorporated into a 

larger, complete piece of code, which is compiled during runtime using full optimization. 

Finally, through reflection, the compiled code is loaded back into memory as a part of the 

runtime environment. Although this approach requires time to compile each script, the small 

initial penalty is typically outweighed by the resulting optimized, compiled code. Both scripting 
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types, particularly μscripting, can work on a per-datanode basis; optimized compilation helps 

create a fast, efficient user-experience. 

 Plug-in scripting is simpler and more powerful than μscripting and is the most similar to 

existing analysis tools’ scripting capabilities. Through this interface, the user script can access 

the entire .NET runtime, the DIVE kernel, and the specific plug-in. 

 We developed μscripting to give complete programmatic control to power users and 

simple, intuitive control to casual users. Essentially, μscripting is an extension of plug-in 

scripting in which DIVE writes most of the code. The user needs to write only the right-hand 

side of a C# lambda function. Here’s a schematic of this function: 

 

func(datanode dn) => ???; 

 

The right-hand side is inserted into the function and compiled at runtime. The client can provide 

any expression that evaluates to an appropriate return value. Table 2.2 shows μscripting 

examples. 

2.5 Data Streaming 

DIVE supports the following two SQL data-streaming approaches. 

 Interactive SQL 2.5.1

 This approach (see Figure 2.5a) handles the immediate analysis of large, nonlocal 

datasets; it’s for impromptu, user-defined dynamic SQL queries. Interactive SQL employs user 
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input to build an SQL query at runtime. DIVE facilitates this; for example, DIVE events can be 

thrown in response to mouse clicks or slider bar movements. Upon receiving these events, a 

DIVE component can construct the appropriate SQL query (which can consist of both data 

queries and analysis-function execution), send it to the SQL database, and parse the resulting 

dataset. Depending on the query’s size and complexity, this approach can result in user-

controlled SQL analysis through the GUI at interactive rates. 

 Pass-Through SQL 2.5.2

 This approach (see Figure 2.5b) handles interactive analysis of datasets larger than the 

client’s local memory; it’s for streaming complex object-models across a preset dimension. 

Pass-through SQL accelerates the translation of SQL data into OO structures by shifting the 

location of values from the objects themselves to a backing store, an in-memory data structure. A 

backing store is essentially a collection of tables of instance data; each table contains many 

instance values for a single object type. Internally, object fields and properties have pointers to 

locations in backing-store tables instead of local, fixed values. A backing-store collection 

comprises all the tables for the object instances occurring at the same point, or frame, in the 

streaming dimension. 

 Once this approach creates a backing store, it generates copies of the backing-store 

structure with a unique identifier for each new frame. It then inserts instance values for new 

frames into the corresponding backing-store copy. This reduces the loading of instance data to a 

table-to-table copy, bypassing the parsing normally required to insert data into an OO structure. 
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This approach also removes the overhead of allocating and de-allocating expensive objects by 

reusing the same object-structures for each frame in the streaming dimension. 

 Pass-through SQL enables streaming through a buffered set of backing stores 

representing frames over the streaming dimension. A set is initially populated client-side for 

frames on either side of the frame of interest. Buffer regions are defined for each end of this set. 

Frames in the set are immediately accessible to the client. When the buffer regions’ thresholds 

are traversed during streaming, a background thread is spawned to load a new set of backing 

stores around the current frame. If the client requests a frame outside the loaded set, a new set is 

loaded around the requested frame. Loaded backing stores no longer in the streaming set are 

deleted from memory to conserve the client’s memory. 

2.6 A Case Study 

A major research focus in the University of Washington’s Daggett laboratory is the study of 

protein structure and dynamics through molecular dynamics (MD) simulations using the 

Dynameomics data warehouse (see Appendix A). The Dynameomics project contains much 

more simulation data than what typical, domain-specific tools can handle. Analysis of this 

dataset was the impetus for creating DIVE. 

 One of the first tools built on the DIVE platform was the Protein Dashboard, which 

provides interactive 2D and 3D visualizations of the Dynameomics dataset. These visualizations 

include interactive explorations of bulk data, molecular visualization tools, and integration with 

external tools such as Chimera. 
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 A tool implemented independently of DIVE and the Protein Dashboard is the 

Dynameomics API. Written in C#, it establishes an object hierarchy, provides high-throughput 

streaming of simulations from the Dynameomics data warehouse, contains domain-specific 

semantics and data structures, and provides multiple domain-specific analyses. However, it’s 

designed for computational efficiency and doesn’t specify any data visualizations or user 

interfaces. 

 We wanted to use the Dynameomics API’s sophisticated data handling and streaming 

while keeping the Protein Dashboard’s interactive visualization and analysis, without re-

implementing DIVE’s API. Through the object parser, DIVE can integrate and use the 

Dynameomics API structures without changing its own API. This process creates strongly-typed 

objects, including Structure, Residue, Atom, and Contact as datanodes, with each datanode 

containing properties defined by the Dynameomics API. Semantic and syntactic relationships 

specified in the API are similarly translated into dataedges. Once processed, these datanodes and 

dataedges are available to the DIVE pipeline, indistinguishable from any other datanodes or 

dataedges. Figure 2.6 diagrams this dataflow. 

 With the Dynameomics data and semantics available to the DIVE pipeline, we can apply 

a VA approach to the Dynameomics data. As before, we can use the Protein Dashboard to 

interact with and visualize the data. However, because the data flows through the Dynameomics 

API, wrapped by DIVE datanodes and dataedges, we can load multiple protein structures from 

different sources, including the Protein Data Bank, align the structures, and analyze them in 

different ways. 
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 Furthermore, because the Protein Dashboard has access to additional data from the 

Dynameomics API, its own utility increases. For instance, it’s useful to color protein structures 

on the basis of biophysical properties such as solvent-accessible surface area or deviation from a 

baseline structure. By streaming the data through the pipeline, we can watch these properties 

(many of which can be accessed through the data’s inheritance hierarchy) change over time. 

2.7 Discussion 

 By necessity, most data analysis tools such as DIVE have some functional overlap; basic 

visualization and data analysis routines are simply required for functionality. However, several 

DIVE features are both novel and useful, particularly in a big-data, interactive setting. Here we 

discuss these features, their benefits, and how we see them integrating with existing 

technologies. 

 Ontological Data Structure 2.7.1

 Besides simply representing the conceptual structure of the user’s dataset, DIVE’s graph-

based data representation can effectively organize data. For example, using DIVE’s object 

model, we merged two ontologies from disparate sources. These two ontologies, represented as 

DIVE datanodes and dataedges, were merged through property inheritance. This allowed the 

second ontology to inherit definitions from the first, resulting in a new ontology compatible with 

both data sources but amenable to new analysis approaches. 

 Besides these structural benefits, the datanodes are software objects that can update both 

their values and structures at runtime. Furthermore, the datanodes’ ontological context can also 



41 

 

 

update at runtime. So, DIVE can explore dynamic data sources and handle the impromptu user 

interactions commonly required for visual analysis. 

 Object Parsing 2.7.2

 As the case study showed, the ability to parse a .NET object or assembly distinct from the 

DIVE framework circumvents the need to add DIVE-specific code to existing programs. In 

addition, this lets us augment those programs with DIVE capabilities such as graphical 

interaction and manipulation. For the Dynameomics API, we integrated the underlying data 

structures and the streaming functionality into the Protein Dashboard without modifying the 

existing API code base. This let us use the same code base in the DIVE framework and in SQL 

Common Language Runtime implementations and other non-DIVE utilities. 

 Streaming Structured Data 2.7.3

 The most obvious benefit of DIVE is big-data accessibility through data streaming. 

Interactive SQL’s flexibility effectively provides a visualization frontend for the Dynameomics 

SQL warehouse. However, for datasets not immediately described by the underlying database 

schema or other data source, a more advanced method for streaming complex data structures is 

desirable. 

 We developed pass-through SQL to make hundreds of terabytes of structured data 

immediately accessible to users. These data are streamed into datanodes and can be accessed 

either directly or indirectly through the associated ontology (for example, through property 

inheritance). Furthermore, these data are preemptively loaded via background threads into 
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backing stores; these backing stores are populated using efficient bulk transfer techniques and 

predictively cache data for user consumption. Finally, when the object parser is used with pass-

through SQL, methods as well as data are parsed. So, the datanodes can access native .NET 

functionality in addition to the streaming data. 

 Preexisting programs also can benefit from DIVE’s streaming capabilities. For example, 

Chimera can open a network socket to DIVE’s streaming module. This lets Chimera stream MD 

data directly from the Dynameomics data warehouse. 

 Large-scale data analysis will remain a pillar of scientific investigation; the challenge 

facing investigators is how best to leverage modern computational power. DIVE and other VA 

tools are providing insights into this challenge. Although it’s unlikely that any general tool will 

ever supplant domain-specific tools, the concepts highlighted here - accessibility, extensibility, 

simplicity of representation, integration, and reusability - will remain important. 
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Table 2.1 DIVE (Data Intensive Visualization Engine) Inheritance models 

Inheritance model 
Inherits Example or 

description Type Properties Methods 

Object-oriented 
(OO) inheritance Yes Yes Yes Protein is a 

Molecule 

Type inheritance Yes No No 

Used with property 
inheritance to 
implement OO 
inheritance. 

Property inheritance No Yes Yes Molecule contains 
an Atom 
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Table 2.2 μScripting example 

Argument Return 
type 

Code Comments 

datanode dn double 3 This is the simplest case of 
scripted numeric input. 

dn.X This is a simple per-
datanode script. 

Math.Abs(dn.X) he script is given access 
to the full .NET library. 

int dn.X > 0 ? 1 : -1; Simple syntax can be 
powerful. 

void bool { 

  int hour = DateTime.Now.Hour; 

  return hour < 12; 

} 

Any .NET code is allowed, 
including complex, multi-
statement functions. 

datanode[] Dynamic 

set 

from dn in dns 

group dn by Math.Round(dn.X, 2) into g 

select new 

{ 

  bin = g.Key, population = g.Count() 

}; 

This creates a histogram 
based on the datanode 
objects’ “X” property. 

from dn in dns 

where dn.X > Math.PI 

&& dn.is_Superclass 

&& dn.Func() == true 

select dn; 

This filters a subset of 
datanodes on the basis of 
properties, methods, and 
inherited type. 

from dn1 in dnSet1 

join dn2 in dnSet2 on dn1.X equals 

dn2.X 

select new {X = dn1.X, Y = dn2.Y} 

DIVE can act as an object-
oriented database by 
joining multiple potentially 
disparate datasets. 
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Figure 2.1 An overview of DIVE (Data Intensive Visualization Engine), with screenshots. 
Users can access and structure data in various ways, including interactive and real-time data 
streaming. DIVE allows various types of interoperability, including interoperability with existing 
software libraries, interoperability with existing software tools, and interoperability among DIVE 
plug-ins. Interactive DIVE visualizations have included a 2D chart of baseball statistics, a 3D 
rendering of a protein molecule, and taxonomy from the Gene Ontology. Interaction scenarios 
include scripted data manipulation, GUI interaction via charts and graphs, and event-driven data 
loading. 
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Figure 2.2 The DIVE GUI with the Protein Dashboard pipeline loaded. 
At the top is a data loader with which users can load and interact with protein structures and 
molecular-dynamics trajectories (see the “Molecular Dynamics” sidebar) from different sources. 
On the lower left is an interactive 3D rendering of a protein molecule, rendered using a cartoon 
representation for the protein backbone and a ball-and-stick representation for a subset of atoms 
selected through the scripting window at the bottom. On the lower right is one of many linked 
interactive charts that stream synchronized data from the Dynameomics database. 
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Figure 2.3 The DIVE architecture. 
The DIVE kernel acts as both a software library and runtime environment. In both cases, DIVE 
can import and export data and functionality from a variety of sources. Pipeline plug-ins use 
DIVE primarily as a software library, exploiting DIVE’s data-handling capabilities. DIVE tools 
are applications that instantiate and launch a DIVE pipeline for a specific analysis task. DIVE 
supports multiple types of interfaces. 
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Figure 2.4 A mapping of a datanode-ontology from a third-party .NET assembly. 
On the left, a generic .NET class hierarchy contains interfaces; class inheritance; and member 
fields, properties, and methods. On the right, the automatically generated ontology replicates the 
strongly typed objects and relationships from the .NET assembly. Instance-specific data are 
maintained on the subclass datanode object (that is, data aren’t stored in superclass datanodes). 
The original .NET object’s fields, properties, and methods are accessible through the datanodes 
by virtual properties. 
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Figure 2.5 SQL streaming in DIVE. 
(a) Interactive SQL. On the left is an SQL template with tags for time_step and atom. This 
approach replaces the tags with input from GUI elements, and the final query calculates the 
distances between all user-selected atoms at the specified time. (b) Pass-through SQL. On the 
initial frame request, this approach constructs a datanode hierarchy around the .NET objects and 
then creates backing stores. On all subsequent frame requests, DIVE buffers SQL data directly 
into the backing stores using multiple threads. This approach then propagates large amounts of 
complex data through DIVE at interactive speeds by bypassing object-oriented parsing. 
 



50 

 

 

 
 

 

 

 

 
Figure 2.6 The Protein Dashboard case study. 
First, data are parsed in from the Dynameomics SQL warehouse or the Protein Data Bank 
(PDB), populating the Dynameomics API’s backing stores. DIVE then parses these data 
structures and creates corresponding datanodes and dataedges available to the DIVE pipeline. 
The molecular visualizer plug-in uses a μscript to select the atoms to display and their color. 
Finally, the user interacts with the data in the Protein Dashboard. In this example, residues in 
helical structures (the Selection μscript) are red if at least 50 percent of their maximum 
surface area is exposed to solvent (the Color μscript). With the Protein Dashboard, the user can 
access multiple interactive simulations simultaneously. 
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Chapter 3 

DIVE: A DATA INTENSIVE VISUALIZATION ENGINE 

The contents of this chapter and Appendix C were previously published in the journal 

Bioinformatics (Bromley et al. 2014).  Steven Rysavy and I were co-first authors of this paper.  As a 

result, this previously-published content appears in his PhD dissertation as well.  In addition to 

sharing the overall design of the DIVE framework, my primary contributions were in the core 

DIVE kernel, encompassing the ontological data structure, μscripting, the DIVE pipeline and 

associated pipeline-plugin technologies, the DIVE GUI, the majority of the visualization plugins, 

interactive SQL, data-streaming protocols, and the development of internal analytical software-

libraries such as mathematical libraries and signal processing libraries. 

3.1 Abstract 

 Modern scientific investigation is generating increasingly larger datasets, yet analyzing 

these data with current tools is challenging. DIVE is a software framework intended to facilitate 

big-data analysis and reduce the time to scientific insight. Here, we present features of the 

framework and demonstrate DIVE’s application to the Dynameomics project, looking 

specifically at two proteins. Binaries and documentation are available at 

http://www.dynameomics.org/DIVE/DIVESetup.exe. 

3.2 Introduction 

 The advent of massive networked computing resources has enabled virtually unlimited 

data collection, storage and analysis from low-cost genome sequencing, high-precision molecular 
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dynamics simulations and high-definition imaging data for radiology, to name just a few 

examples. This explosion of ‘big data’ is changing traditional scientific methods; instead of 

relying on experiments to output relatively small targeted datasets, data mining techniques are 

being used to analyze data stores with the intent of learning from the data patterns themselves. 

Unfortunately, data analysis and integration in large data storage environments is challenging 

even for experienced scientists. Furthermore, most existing domain-specific tools designed for 

complex heterogeneous datasets are not equipped to visually analyze big data. 

 DIVE is a software framework designed for exploring large, heterogeneous, high-

dimensional datasets using a visual analytics approach (Appendix Figure C.1). Visual analytics is 

a big data exploration methodology emphasizing the iterative process between human intuition, 

computational analyses and visualization. DIVE’s visual analytics approach integrates with 

traditional methods, creating an environment that supports data exploration and discovery. 

3.3 System and Implementation 

 DIVE provides a rich ontologically expressive data representation and a flexible modular 

streaming-data architecture or pipeline (Appendix Figure C.2). It is accessible through an 

application programming interface, command line interface or graphical user interface. 

Applications built on the DIVE framework inherit features such as a serialization infrastructure, 

ubiquitous scripting, integrated multithreading and parallelization, object-oriented data 

manipulation and multiple modules for data analysis and visualization. DIVE can also 

interoperate with existing analysis tools to supplement its capabilities, such as the Visualization 

Toolkit (Schroeder et al., 1996), Cytoscape (Shannon et al., 2003) and Bing maps 
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(http://bing.com) by either exporting data into known formats or by integrating with published 

software libraries. Furthermore, DIVE can import compiled software libraries and automatically 

build native ontological data representations, reducing the need to write DIVE-specific software. 

From a data perspective, DIVE supports the joining of multiple heterogeneous data sources, 

creating an object-oriented database capable of showing inter-domain relationships. And 

although DIVE currently focuses on bioinformatics, DIVE itself is data agnostic; data from any 

domain may enter the DIVE pipeline. 

 A core feature of DIVE’s framework is the flexible graph-based data representation. 

DIVE data are stored as nodes in a strongly typed ontological network defined by the data. These 

data can be a simple set of numbers or a complex object hierarchy with inheritance and well-

defined relationships. Data flow through the system explicitly as a set of data points passed down 

the DIVE pipeline or implicitly as information transferred and transformed through the data 

relationships (Appendix C). A thorough description of the novel technical contributions of DIVE 

is provided elsewhere (Rysavy et al. 2014). 

3.4 Results 

 The impetus for DIVE was data mining the Dynameomics dataset (Van der Kamp et al. 

2010). Dynameomics is a large data-intensive project that contains atomistic molecular dynamics 

(MD) simulations of the native state and unfolding pathways of representatives of essentially all 

protein folds (Van der Kamp et al. 2010). These protein simulations and associated biophysical 

analyses are stored in a mixed data warehouse (Simms and Daggett 2012) and file system 

environment distributed over multiple servers containing hundreds of terabytes of data and >104 
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times as many structures as the Protein Data Bank (Bernstein et al. 1977), representing the largest 

collection of protein structures and protein simulations in the world. 

 In the domain of structural biology, Dynameomics exemplifies the challenges of big data. 

Here, we present DIVE applications involving two proteins where specialized modules built on 

the DIVE framework are used to accelerate biophysical analysis. 

 The first protein is the transcription factor p53, mutations in which are implicated in 

cancer. The second protein is human Cu-Zn superoxide dismutase 1 (SOD1), mutations in which 

are associated with amyotrophic lateral sclerosis (Rakhit and Chakrabartty 2006). 

 The Y220C mutation of the p53 DNA binding domain is responsible for destabilizing the 

core (Joerger et al. 2006), leading to ~75,000 new cancer cases annually (Boeckler et al. 2008). We 

have used the DIVE framework to analyze the structural and functional effects of the Y220C 

mutation through a module called ContactWalker (Bromley et al. 2013), which identifies amino 

acids’ interatomic contacts disrupted significantly as a result of mutation. The contact pathways 

between disrupted residues are identified using DIVE’s underlying graph-based data 

representation. 

 Figure 3.1a shows the most disrupted contacts in the vicinity of the Y220C mutation. 

Specific residues, contacts and simulations were identified for more focused analysis. Interesting 

interatomic contact data are isolated and then specific MD time points and structures are selected 

for further investigation. For example, see the contact data mapped onto a structure containing a 

stabilizing ligand, which docks closely to many of the disrupted residues, suggesting a 
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correlation between the mutation-associated effects and the observed stabilizing effects of the 

ligand. 

 As another example of the use of DIVE, we have >300 simulations of 106 disease-

associated mutants of SOD1 (Schmidlin et al. 2009).  Through extensive studies of A4V mutant 

SOD1 simulations, Schmidlin et al previously noted the instability of two β-strands in the SOD1 

Greek key β-barrel structure. However, that analysis took several years to complete and such 

manual interrogation of simulations does not scale to allow us to search for general features 

linked to disease across hundreds of simulations. Using DIVE, we were able to further explore 

the formation and persistence of the contacts and packing interactions in this region across 

multiple simulations of mutant proteins. DIVE facilitates isolation of specific contacts, rapid 

plotting of selected data, easy visualization of the relevant structures and geographic locations of 

specific mutations, while providing intuitive navigation from one view to another (Figure 3.1 and 

Appendix Figure C.1). 

 The top panel of Figure 3.1b maps secondary structure for different variants as an 

example of DIVE’s charting tools. This chart is quickly generated, contains results for >300 

SOD1 mutant simulations, is customizable and links to the protein structure property data (in this 

case the change in the structure over time) with a single mouse click (Figure 3.1b). These data 

are in turn linked to protein structure modules, allowing interactive visualization of >60,000 

structures from each of the 300 simulations, all streamed from the Structured Query Language 

(SQL) data warehouse (Figure 3.1b). With DIVE, we simplified the transition between high-

level protein views and atomic level details, facilitating rapid analysis of large amounts of data. 
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DIVE can also show the context of the detailed results on other levels, such as worldwide disease 

incidence (Appendix Figure C.1). 

 DIVE’s utility is not limited to protein simulations. To demonstrate its versatility, 

usability and data-agnostic nature, we applied it to additional domains. Brief details of these 

applications are provided in Appendix C. One example shows an interaction with the Gene 

Ontology (Ashburner et al. 2000), and another example explores professional baseball statistics. 

3.5 Conclusions 

 Overall, DIVE provides an interactive data-exploration framework that expands on 

conventional analysis paradigms and self-contained tools. We provided analytic examples in the 

protein simulation domain, but the DIVE framework is not limited to this field. DIVE can adapt 

to existing data representations, consume non-DIVE software libraries and import data from an 

array of sources. As research becomes more data-driven and reliant on data mining and 

visualization, big data visual analytics solutions should provide a new perspective for scientific 

investigation. 
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Figure 3.1 Interactive visualizations in DIVE 
(a) The p53 analysis visualizations. Top, ContactWalker summary of contact differences 
between wild type and Y220C simulations. The highlighted residues have contacts with ≥50% 
occupancy change. Middle, distances between P151 and L257, outlined in black in the map 
above. Bottom, p53 with ligand (stick figure at bottom) (Protein Data Bank code 4AGQ) in 
proximity to disrupted colored residues. (b) SOD1 analysis visualizations. Top, aggregated 
secondary structural data from mutant simulations. Middle, plot of the Cα root-mean-squared 
(RMS) deviation of the wild-type and A4V mutant simulations. Bottom, MD structures. (c) 
Protein dashboard application showing a viewer and interactive contact map. 
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Chapter 4 

STRUCTURAL CONSEQUENCES OF MUTATIONS TO THE α-

TOCOPHEROL TRANSFER PROTEIN ASSOCIATED WITH 

THE NEURODEGENERATIVE DISEASE ATAXIA WITH 

VITAMIN E DEFICIENCY 

The contents of this chapter were previously published in the journal Biochemistry (Bromley et al. 

2013). 

 

Publisher required text: Reproduced with permission from Bromley, D. et al. 2013. “Structural 

Consequences of Mutations to the α-Tocopherol Transfer Protein Associated with the 

Neurodegenerative Disease Ataxia with Vitamin E Deficiency.” Biochemistry 52 (24): 4264–73. 

Copyright 2013, American Chemical Society., http://dx.doi.org/10.1021/bi4001084 

4.1 Abstract 

The α-tocopherol transfer protein (α-TTP) is a liver protein that transfers α-tocopherol (vitamin 

E) to very low-density lipoproteins (VLDLs). These VLDLs are then circulated throughout the 

body to maintain blood a-tocopherol levels. Mutations to the a-TTP gene are associated with 

ataxia with vitamin E deficiency, a disease characterized by peripheral nerve degeneration. In 

this study, molecular dynamics simulations of the E141K and R59W disease-associated mutants 

were performed. The mutants displayed disruptions in and around the ligand-binding pocket. 

Structural analysis and ligand docking to the mutant structures predicted a decreased affinity for 
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a-tocopherol. To determine the detailed mechanism of the mutation-related changes, we 

developed a new tool called Contact Walker that analyzes contact differences between mutant 

and wild-type proteins and highlights pathways of altered contacts within the mutant proteins. 

Taken together, our findings are in agreement with experiment and suggest structural 

explanations for the weakened ability of the mutants to bind and carry a-tocopherol. 

4.2 Introduction    

α-Tocopherol transfer protein (α-TTP) transfers α-tocopherol, a strong antioxidant and a form of 

vitamin E, to very-low-density lipoproteins (VLDLs). These lipoproteins, located in the liver, are 

then circulated throughout the body to maintain blood α-tocopherol levels. Vitamin E occurs in 

multiple forms, including α-, β-, γ-, and δ-tocopherol. Each form has a hydrophobic tail with 

three chiral centers, and α-TTP preferentially binds RRR-α-tocopherol (Figure 4.1a) (Meier et al. 

2003). 

Patients with mutations in the α-TTP gene have a weakened ability to transfer α-

tocopherol to VLDLs and, as a result, are unable to maintain blood α-tocopherol levels. This 

condition, known as ataxia with vitamin E deficiency (AVED), is associated with peripheral 

nerve degeneration. Although the link between α-tocopherol deficiency and AVED-associated 

nerve damage is not fully understood, it is likely that α-tocopherol protects tissues from oxidative 

stress. Increasing the level of dietary consumption of vitamin E can be an effective treatment for 

AVED (Di Donato et al. 2010). 

α-TTP belongs to the SEC14-like family of proteins and is composed of two domains: an 

N-terminal three-helix bundle and a C-terminal CRAL-TRIO domain (Figure 4.1b). The latter 
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domain is used for transporting hydrophobic molecules through hydrophilic environments; other 

SEC14-like proteins include human supernatant protein factor and cellular retinaldehyde-binding 

protein (CRALBP). The CRAL-TRIO domain has a ligand binding pocket, entry to which is 

controlled by a swinging “lid”. Investigations of SEC14 and CRALBP indicate that the lid is 

“hinged” by two regions of residues: residues 242-244 and 263-265 for CRALBP (Liu et al. 2005) 

and residues 212 and 213 and 239, 240, and 242 for Sec14 (Ryan et al. 2007). On the basis of 

sequence alignment of these proteins (Liu et al. 2005), these regions fall in the vicinity of residues 

194-201 and 220-224 for a-TTP. These regions are termed hinge 1 (H1) and hinge 2 (H2), 

respectively (Figure 4.1b). In α-TTP, the lid is formed by residues 198-221 (Meier et al. 2003), the 

central structure of which is helix α14. 

Meier et al. crystallized α-TTP in both the lid-open (PDB entry 1OIZ) (Figure 4.1b) and 

lid-closed (PDB entry 1OIP) (Figure 4.1c) forms (Meier et al. 2003). When α-TTP is not bound to 

a-tocopherol, the lid is open and the ligand-binding pocket is accessible. When α-TTP is bound 

to α-tocopherol, the lid is closed and the binding pocket is separated from the external 

environment. The open and closed forms are overlaid in Figure 4.1d. 

In this study, we investigated two mutants of α-TTP: one replaces a Glu with a Lys at 

position 141 (E141K), and the other replaces an Arg with a Trp at position 59 (R59W). Both 

mutants alter strongly conserved residues (Panagabko et al. 2003) and are associated with severe 

clinical effects (Meier et al. 2003; Cavalier et al. 1998; Morley et al. 2004). Although experimental 

binding, ligand transfer, and urea denaturation data have been reported for these mutants (Morley 

et al. 2004), experimentally determined structures of these mutants are not available. 
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Consequently, we have used all-atom molecular dynamics (MD) simulations to investigate the 

structural effects of these mutations. This protein has not been the subject of previous MD 

simulations to the best of our knowledge, but Ryan et al (Ryan et al. 2007) and Schaff et al (Schaaf et 

al. 2011) have performed MD simulations of related Sec14 and Sfh1 proteins. In addition to 

standard structural analyses of the α-TTP simulations, docking calculations were also performed 

to assess the impact of mutations on the protein’s ability to bind RRR-α-tocopherol. 

Finally, to characterize how effects are propagated between the mutation site and the 

binding site, we created a new tool called Contact Walker. Analysis of these pathways provides a 

molecular description of the mutation-associated structural changes resulting from the E141K 

and R59W mutations.  

4.3 Methods 

 Structural Models 4.3.1

The 1.88 Å resolution crystal structure of α-TTP was obtained from the PDB (Bernstein et 

al. 1977) (entry 1OIZ) (Meier et al. 2003) and was used for the starting structure for the wild-type and 

mutant simulations. The unbound, apo structure was used so we could investigate mutation-

induced changes in the intrinsic structural and dynamic behavior of the protein and to avoid 

ligand-induced structural bias. Starting structures for both mutants were constructed by making 

the appropriate amino-acid substitutions to the wild-type protein. The energies of the resulting 

structures were minimized for 100 steps in vacuo using the ENCAD simulation package (Levitt 

1990) and the Levitt et al. force field (Levitt et al. 1995). A different 1.95 Å resolution crystal 

structure of α-TTP (PDB entry 1OIP) (Meier et al. 2003) crystallized with bound α-tocopherol and 
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the lid “closed” was used as a ligand docking baseline. The model of RRR-α-tocopherol used for 

docking studies was extracted from the 1OIP crystal structure. 

 Molecular Dynamics Simulations and Analysis 4.3.2

MD simulations were performed using the in lucem molecular mechanics (ilmm) 

software package (Beck et al. 2000-2014) using a previously published protocol and potential energy 

function (Levitt et al. 1995; Beck and Daggett 2004; Levitt et al. 1997; Beck et al. 2005). Starting structures 

were prepared for MD using 1000 steps of steepest descent minimization and then solvated with 

flexible F3C water molecules in a periodic box with walls located at least 10 Å from all protein 

atoms. The solvent density was set to the experimentally determined value for water at 37 °C, 

0.993 g/mL (Kell 1967). The solvent energy was minimized for at least 500 steps before the 

solvent was heated again for 1 ps. The solvent energy was then minimized for an additional 500 

steps and followed by an energy minimization of the entire system for 500 steps. Atomic 

velocities were assigned from a Maxwellian distribution at low temperatures and then brought to 

the target temperature of 37 °C (310 K). Thereafter, we used the NVE microcanonical ensemble, 

in which the box volume, number of particles, and total energy are fixed. A force-shifted 

nonbonded cutoff range of 10 Å was used for nonbonded interactions (Beck et al. 2005), and the 

interaction list was updated every two steps. Simulation steps were 2 fs, and the structures were 

saved every 1 ps. The temperature was set to 37 °C, and the simulations were performed at 

neutral pH (Asp and Glu negatively charged, Arg and Lys positively charged, and His neutral). 

Three independent simulations of the wild type and each mutant were performed for at least 51 

ns. These simulations were performed as part of the SNP (single-nucleotide polymorphism) 
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thrust of our Dynameomics project (Beck et al. 2008; Van der Kamp et al. 2010), an ongoing project to 

determine the native-state dynamics and unfolding pathways of all known protein folds. a-TTP’s 

three-helix bundle N-terminal domain is represented in fold rank 89 and the C-terminal CRAL-

TRIO domain in fold rank 1251 in our 2009 Consensus Domain Dictionary (CDD) (Day et al. 

2003; Schaeffer et al. 2011). Protein images were created using Pymol (DeLano 2002) and UCSF 

Chimera (Pettersen et al. 2004). 

 Inter-Residue Contacts  4.3.3

Inter-residue contact occupancies were calculated at 1 ps granularity using heavy-atom 

contacts from time steps greater than 25 ns. Contact distance thresholds were 5.4 Å for carbon-

carbon contacts and 4.6 Å for all other heavy-atom contacts; residues were considered to be in 

contact if at least one interatomic contact was within the appropriate threshold. Contacts between 

neighboring residues were ignored. The “residue occupancy difference” was calculated as the 

difference in occupancy between each wild-type residue and the corresponding mutant residue. 

As a result, negative values indicated greater prevalence in the mutant (mutant stabilization) and 

positive values reflected greater prevalence in the wild type (mutant destabilization). 

 Contact Walker 4.3.4

Because of the dynamic nature of proteins, interatomic contact distances change over 

time and even stable contacts oscillate around some mean distance. As a result, searching for 

structurally-important contact changes between wild-type and mutant proteins can be 
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challenging. To address this challenge, we built Contact Walker, a tool that measures the 

difference in interatomic contact occupancies between wild type and mutant proteins. 

Contact Walker calculates contact occupancy differences between a set of one or more 

wild-type simulations and a set of one or more mutant simulations. It uses the minimal 

demonstrated occupancy change between the wild-type and mutant simulations to avoid 

overestimating the significance of the change in occupancy. For example, the R54:Q145 contact 

had occupancy values of 24, 53, and 61% for the three wild-type simulations and 100, 100, and 

98% for the three E141K simulations. The minimal demonstrated occupancy change between the 

wild type and the E141K mutant was -37% (61% - 98%). Using the minimal demonstrated 

occupancy change provided the most conservative measure of significant changes in the strength 

of protein contacts. 

 Contact Networks 4.3.5

A residue whose contacts have been altered, either by stabilization or by destabilization, 

is considered to be a disrupted residue. Preliminary observations found that disrupted residues 

tended to exist in connected networks rather than in isolation. Contact Walker can be used to 

visualize these networks, highlighting pathways of disrupted contacts (disruption pathways) and 

building on discretized, non-interactive network depictions such as those reported by Schmidlin 

et al (Schmidlin et al. 2009). 

To do this, Contact Walker builds a connected graph to represent all the contact changes 

between the wild-type and mutant proteins. Graph nodes represent residues, and graph edges 
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represent nonbonded contacts with edge weights proportional to the change in contact 

occupancy. Backbone peptide bonds are inserted with an occupancy change value of zero. 

Following construction of the contact graph, Contact Walker identifies the target 

residues. These are residues among which Contact Walker looks for networks of disrupted 

contacts. Residues can be manually specified if a region of interest is already known, or they can 

be automatically specified by selecting those residues with changes in contact occupancy that lie 

outside of some threshold. If the automatic method is used, additional manual targets may be 

specified as well. 

Once the target residues have been identified, the user specifies the search parameters. 

These include options such as maximal search depth (the maximal number of contacts to search 

before trying another path) and a minimal edge value to determine if an edge is eligible for 

search. A cutoff in terms of absolute occupancy may also be specified. Backbone peptide bonds 

are always available for traversal. 

Next, Contact Walker performs the actual search. A depth-first search (DFS) is 

performed between every pair of target nodes to find pathways of significant occupancy change. 

A DFS is a graph-traversal algorithm that searches a graph by moving from parent node to child 

node, often limited to a maximal number of steps, before backing out and trying a new path. In 

this scenario, this limits the search to a maximal number of inter-residue contacts between 

significant residues. 

In the final step, the output graph is laid out and rendered. The output graph is a subset of 

the original connectivity graph containing only those edges and nodes that meet the user’s 
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significance criteria. Graph images are rendered using the Graphviz graph layout tool (Gansner and 

North 2000) and the built-in scalable force-directed placement graph layout algorithm (Hu 2005). 

The graph layout is determined by the connectivity patterns of significantly changed edges, not 

necessarily the proteins’ three-dimensional structure. Approximate structural regions of the 

protein are highlighted on the graph. Edge colors indicate the degree of occupancy change along 

a green (mutant stabilized) to orange (mutant destabilized) spectrum, and edge size indicates the 

magnitude of the occupancy change. Node color designates secondary structure per the legend. 

ContactWalker also outputs a Pymol script to visualize the contact change data mapped onto the 

protein structure. 

 Ligand Docking 4.3.6

To predict the effect of distortions of the binding site on the binding affinity of α-

tocopherol, we performed docking calculations of RRR-α-tocopherol on MD structures taken 

between 25 and 51 ns. Docking energies and conformational pose calculations were made using 

AutoDock Vina (Trott and Olson 2010).  Of the 26000 structures between 26 and 51 ns, 260 (1%) 

were selected using simple random sampling without replacement. The sample mean, the 95% 

confidence interval (CI), and the sample standard deviation were calculated using a two-tailed t-

test, α = 0.05, and either 260 or 780 degrees of freedom for individual simulation data or 

aggregated data, respectively. Docking energies are reported as the sample mean ± the standard 

deviation. Additionally, a baseline docking energy was established by docking RRR-α-

tocopherol into the 1OIP crystal structure. 
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 Cα RMSD and Cα RMSF 4.3.7

Cα RMSD values were calculated using only α-carbons and excluded both termini 

(residues 9-23 and 266-274) and the α14 region (residues 201-213). Cα RMSF data were 

calculated using MD structures beginning at 25 ns, used only α-carbons, and also excluded both 

termini. The α14 region was included in the Cα RMSF calculations because visual inspection of 

the trajectories showed that the lid had closed by approximately 10 ns. 

α-Tocopherol headgroup-coordinating residues were defined as those residues with at 

least one atom within 5.4 Å of the headgroup of the vitamin E molecule. Water-coordinating 

residues were defined as residues with a nitrogen or oxygen atom within 4.6 Å of a water 

molecule. Calculations were performed using Pymol and the structure of PDB entry 1OIP of α-

TTP. 

4.4 Results and Discussion 

In general, all simulations maintained the overall binding pocket structure and did not 

undergo significant unfolding; this is consistent with the urea denaturation experiments reported 

by Morley et al (Morley et al. 2004) that showed a 0.4 M change in C50 for the R59W and E141K 

mutants relative to that of the wild type (WT). The Cα RMSD of all three sets of simulations 

indicated that the proteins were relatively stable between 2 and 3 Å Cα RMSD, with the 

exceptions that each mutant had one simulation with Cα RMSD values of 4.0 Å (simulation 1 in 

each case) (Figure 4.2). Cα RMSF analysis of all three proteins showed a similar trend (Figure 

4.3); each protein demonstrated Cα RMSF values around 1 Å in regions of secondary structure, 
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and in each case, the simulation with higher Cα RMSD values also showed higher Cα RMSF 

values, often in the vicinity of α13 and α14.  

α-Tocopherol docking studies resulted in a range of docking energies from -6.5 to -10.2 

kcal/mol (Figure 4.4). The 95% confidence intervals for the mean potential energies were 0.1 

and 0.0 kcal/mol for the per-simulation and aggregated docking data, respectively. For reference, 

the potential energy of docking α-tocopherol into the 1OIP closed structure was -10.8 kcal/mol, 

and the Cα RMSD between the 1OIZ and 1OIP crystal structures excluding α14 was 0.5 Å. 

Thus, this control suggests that the method can correctly identify and recover both the 

experimentally determined structure of the complex and its correct binding interactions. Per-

simulation α-tocopherol docking analyses demonstrated that both wild type and mutant proteins 

were capable of a range of docking energies (Figure 4.4a-c). In aggregate, the wild type and the 

E141K mutant had the same mean docking energy (-8.5 ± 0.7 and -8.5 ± 0.6 kcal/mol, 

respectively), and the R59W mutant performed less favorably (-8.1 ± 0.6 kcal/mol) (Figure 

4.4d). Converting these potential energies to dissociation constants (Kd) resulted in values of 

1000 nM for the wild type and E141K mutant and 1900 nM for the R59W mutant. This is 

approximately in keeping with the findings of Morley et al (Morley et al. 2004), who reported 2- 

and 4-fold increases in Kd for the E141K and R59W mutants, respectively.  

 Wild-Type Simulations 4.4.1

All three wild-type trajectories stabilized between 2.5 and 3 Å Cα RMSD (Figure 4.2a), 

and simulation 2 displayed more structural fluctuation than the other two (Figure 4.3b and Figure 

4.5). In all three wild-type simulations, α14 underwent a swinging motion from the lid-open 
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position to the lid-closed position; Ryan et al (Ryan et al. 2007) reported a similar conformational 

change in MD simulations of the related Sec14 protein. The β-sheet wall of the binding pocket 

remained stable in all simulations, while the α-helix wall exhibited more dynamic behavior 

(Figure 4.3b and Figure 4.5). Despite these similarities, the three wild-type simulations each 

behaved slightly differently; to better characterize the range of behaviors of the wild-type 

protein, we analyzed each simulation separately.  

As shown in Figure 4.5a, structures from simulation 1 did not deviate far from the 

minimized crystal structure with the exceptions of the α3-α4 loop, α5, α7, α13, N227, and the 

α17-α18 loop. Simulation 1 also provided the most favorable docking conformations of the three 

wild-type simulations with a mean potential energy of -9 ± 0.5 kcal/mol (Figure 4.4a). Because 

of its stability and favorable docking performance, wild-type simulation 1 was used as a 

structural baseline for subsequent contact comparisons. 

Simulation 2 was more dynamic than either simulation 1 or simulation 3, particularly 

near α14 (Figure 4.3b and Figure 4.5b), and the mean docking energy (-8.4 ± 0.6 kcal/mol) was 

between the energies of the other two simulations (Figure 4.4a). Contact occupancy comparisons 

of simulations 1 and 2 indicated that the structures in simulation 2 were missing several binding 

pocket contacts that were present in simulation 1, including E82:K178 (100% difference) and 

I83:K178 (66% difference) contacts (Figure 4.5b). These two contacts tethered α5 to α13 and 

helped maintain the structure of the α-helix wall of the binding pocket. Both E82 and I83 

established alternative stabilizing contacts, including 100% occupancy contacts with R134. K178 

did not establish significant alternative stabilizing contacts and remained destabilized relative to 
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simulation 1 (1.5 Å Cα RMSF in simulation 2 vs 0.75 Å Cα RMSF in simulation 1). Structures 

from simulation 2 showed, relative to simulation 1, a general lack of contacts between α12-α14 

lid and hinge regions. Of the 19 contacts in this region with occupancy differences of >50%, six 

were stabilized and 13 were destabilized. This difference in occupancy is reflected in the 

increased mobility and fluctuation of α14 in simulation 2 (Figure 4.3b and Figure 4.5b). The 

internal structure of α14 saw a similar destabilization; of the 13 contacts within α14 with 

occupancy differences of >50%, three contacts were stabilized and ten contacts were 

destabilized.  

Simulation 3 had relatively low Cα RMSF values, similar to those of simulation 1 (Figure 

4.3b and Figure 4.5c), but it also had the least favorable docking energy of the three wild-type 

simulations (-8.1 ± 0.5 kcal/mol) (Figure 4.4a). In total, 27 contacts had occupancy differences 

of >99% relative to simulation 1, the majority of which were in the vicinity of the hinge and lid 

region formed by α12-α14. Also, like simulation 2, the I83:K178 contact (66% occupancy) was 

not present in simulation 3. However, unlike simulation 2, the E82:K178 contact was intact, 

retaining some of the α13 tethering. Furthermore, also unlike simulation 2, K178 formed 

alternative stabilizing contacts with L183 (93%). Thus, K178 was not completely disconnected 

from E82 and I83, nor was it left in a destabilized state, resulting in slightly lower Cα RMSF 

values (1.1 Å vs 1.5 Å in simulation 2).   

 E141K Simulations 4.4.2

Overall, the E141K simulations were fairly stable and did not undergo any significant 

unfolding. As indicated by the Cα RMSD calculations (Figure 4.2b), simulations 2 and 3 
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stabilized between 2 and 2.5 Å, while simulation 1 deviated from the starting structure by as 

much as 4 Å. Consistent with the Cα RMSD data, the Cα RMSF data indicated that simulation 1 

of the E141K mutant was more dynamic than simulation 2 or 3 (Figure 4.3c and Figure 4.6).  

Comparing contact occupancies of all three E141K simulations against those of the wild-

type simulation 1 baseline, we found 15 contacts with a minimal demonstrated occupancy 

change of >95%. Of these, three were stabilizations of the hinge 2 region (K217:R221, 

K217:E220, and E216:E220), five were destabilizations that included the lid (F213:K217, 

F213:E216, L214:K217, P212:E216, and K211:T215), one tethered α13 to α14 (T184:T215), and 

one untethered α5 from α13 (W76:S186). All 10 of these contact changes were also observed in 

the wild-type simulations. However, their presence in the E141K mutant was both more common 

(all three E141K simulations) and, in the case of the hinge 2 region and α13-α14 tethering, larger 

in magnitude (Table 4.1).  

To isolate the specific effects of the E141K mutation from the inherent propensities of the 

protein, we compared all three E141K simulations against all three wild-type simulations. Only 

nine contacts were observed that had a minimal demonstrated occupancy difference of >20% 

(Table 4.2). Of these, four of the nine contacts were in or near hinge 2. Disruption pathways 

between the mutation site and the hinge 2 region (Figure 4.7) were found by increasing the 

sensitivity of Contact Walker (significance threshold of 9%, allowable threshold of 6%, search 

depth of 2, absolute occupancy cutoff of 0.01). The primary contact change at the mutation site 

was the R54:K141 contact (92% loss). As indicated in the figure, the disruption pathway 

included α5, α10, α13, and the hinge 2 region.  
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Zhang et al. reported that membrane binding is dependent on several hydrophobic 

residues, including F165 and F169 (Zhang et al. 2011). While these residues did not experience 

appreciable contact disruption, they did have average Cα RMSF and Cα RMSD values different 

from those of WT; the Cα RMSD values were 2.9 and 2.6 Å in WT and 1.9 and 1.9 Å in E141K 

for residues F165 and F169, respectively, and the Cα RMSF values for F169 were 1.4 Å in WT 

and 1.2 Å in E141K. 

Several headgroup-coordinating residues were disrupted: F133, L137, V182, L183, F187, 

and L198 (Figure 4.7). Although docking studies with MD structures did not indicate significant 

disruption to α-tocopherol binding for this mutant, these contact changes may be indicative of 

binding pocket disruptions that take place over time scales longer than those currently available 

with molecular dynamics. Also, the 1OIP crystal structure shows four crystallographic water 

molecules involved with the α-tocopherol headgroup binding. Three of the disrupted headgroup-

coordinating residues, F133, V182, and F187, also help to coordinate these waters. Data reported 

by Schaaf et al (Schaaf et al. 2011) suggest that water coordination within the analogous 

hydrophobic ligand binding pocket of the related Sec14 and Sfh1 proteins may be important to 

the functioning of those proteins.  

In addition to possible binding site disruption, these results indicate that a structural effect 

of the E141K mutation was to disrupt the hinge 2 region. This is reflective of the in silico 

findings of Ryan et al. that the G266D mutant of the related Sec14 protein disrupts hinge 

function (Ryan et al. 2007), although we did not observe significant disruption to the gating module 

reported in that same study. The ubiquity of these disruptions within the mutant simulations 
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suggests an explanation for part of the increase in Kd relative to that of the wild type reported by 

Morley et al. (Morley et al. 2004); the destabilization caused by the E141K mutation was enough to 

disrupt the hinge and lid region of the protein, but not enough to severely disrupt the actual α-

tocopherol binding pocket (although, as discussed above, some loss of binding ability may be 

attributable to pocket disruption). As a result, the E141K in silico docking energies were almost 

identical to those of the wild type, while the in vitro experiments, which were dependent on the 

wild-type-like gate and hinge behavior, demonstrated an increase in Kd.  

 R59W Simulations 4.4.3

The R59W mutant simulations, like the E141K simulations, did not undergo significant 

unfolding. Simulations 2 and 3 were relatively stable with Cα RMSD values stabilizing between 

2.5 and 3 Å (Figure 4.2c). Simulation 1, however, was considerably more dynamic with Cα 

RMSD values as high as 4.5 Å and Cα RMSF values often twice those of the other simulations 

(Figure 4.3d). 

Comparison of all three R59W simulations against the wild-type simulation 1 baseline 

revealed four disrupted contacts in the lid region: K211:T215 (83%), P212:E216 (86%), 

F213:E216 (100%), and F213:K217 (100%) Four contacts that tethered α13 in place were also 

destabilized: W76:F187 (58%), Y73:P188 (83%), W59:T184 (87%), and W76:S186 (91%). 

Comparison of contact occupancies between all three wild type simulations and all three 

R59W simulations resulted in low minimal demonstrated occupancy change values. Only 18 

contacts demonstrated minimal occupancy changes of >20%. Of these, only six contacts 

exhibited occupancy change values of >50%. Notably, the W59 mutation site did not see 
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significant occupancy change; in the aggregate, the largest minimal demonstrated occupancy 

change for a W59 contact was a 6% contact occupancy increase with R54.  

R59W simulations 1 and 3, considered on their own, exhibited less favorable α-

tocopherol docking energies than simulation 2 (Figure 4.4 and Figure 4.8). They were also 

structurally similar to wild-type simulation 2, displaying a characteristic separation of α13 from 

α5 and α10 (Figure 4.5b). Contact comparison of only these two simulations against wild-type 

simulation 1 revealed additional disruptions to T184:K217 (98% destabilization), L214:K217 

(100% destabilization), and K217:R221 (99% stabilization) contacts. The T184:K217 and 

L214:K217 contact disruptions were also present in the poorer-docking wild-type simulations 

and in the E141K simulations. Contact analysis also revealed stabilization in the hinge 2 region, 

similar to the E141K hinge 2 stabilizations.  

Given these data, we took R59W simulation 1 and 3 conformations to be representative 

of mutation-induced disruptions. To isolate the structural disruptions associated with weakened 

docking performance, R59W simulations 1 and 3 were compared against R59W simulation 2; 50 

contacts with >90% occupancy change were identified, of which 72% were destabilized (Figure 

4.9). Contacts responsible for holding α13 in place were destabilized, including E82:K178 

(100%), E141:F187 (99%), Y73:S186 (100%), N72:D185 (99%), W76:V182 (97%), N72:S186 

(96%), and F133:L183 (91%) contacts. Of the stabilized contacts, three contacts strengthened the 

connection between the C-terminus of α13 and the N-terminal three-helix bundle: W59:F187 

(93%), L65:S186 (93%), and A58:L189 (98%). Notably, one of these (W59:F187) included the 

mutated residue. Furthermore, the hinge 1 region contained three significant destabilizing 
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interactions [E199:N227 (91%), P200:H225 (95%), and I197:P200 (94%)]; the hinge 2 region 

contained one significant stabilizing interaction [E216:E220 (94%) as well as others in the near 

vicinity], and the α14 lid contained one significant destabilization [K211:E216 (97%)]. The 

gating module reported by Ryan et al (Ryan et al. 2007). was disrupted only in the H101:S136 

contact.   

The R59W mutation strengthened the tendency of the protein to adopt conformations that 

were unfavorable for ligand docking; relative to the wild-type simulation 1 baseline, the lid and 

hinge regions were disrupted and α13 became disrupted more often in the R59W simulations 

than in the wild-type simulations. Furthermore, the in silico docking was less favorable than that 

of the wild type, reflecting structural changes to the binding pocket in addition to disruptions to 

the lid and hinge regions. Like the E141K mutation, the R59W mutation disrupted several 

headgroup-coordinating residues, including F133, S136, V182, L183, F187, and L189 (Figure 

4.9). All of these residues except L183 also help to coordinate crystallographic waters in the 

ligand binding pocket of the 1OIP (closed) crystal structure.   

Finally, like the E141K mutant, the R59W mutant did not cause significant contact 

disruption to F165 and F169, the residues reported by Zhang et al. to be important to membrane 

binding (Zhang et al. 2011). These simulations did, however, show a lower average Cα RMSD 

relative to the starting structure than did the WT residues (2.9 and 2.6 Å in the WT vs 2.3 and 2.2 

Å in R59W for residues F165 and F169, respectively). Also, F165 had a larger average Cα 

RMSF in the R59W simulations (1.2 Å in WT vs 1.5 Å in R59W).   
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4.5 Conclusions 

In aggregate, the mutants had very few large occupancy changes relative to the wild type, 

indicating that their observed behaviors were already present in the wild type. The primary effect 

of both mutations was to exacerbate preexisting tendencies; in the case of the E141K mutant, we 

observed changes in the hinge 2 region. In the case of the R59W mutant, we observed a 

widening of the ligand binding pocket. In both cases, the mutant proteins remained folded and 

relatively stable, indicating that these mutants’ weakened α-tocopherol binding is due to a shift in 

the population with an increase in conformers with altered binding regions.  

Genetic diseases can have severe clinical effects while causing only subtle changes to 

protein structure. As demonstrated by the E141K and R59W α-TTP mutations, the cause of these 

disruptions can be masked by the dynamic propensities of the protein. In the case of the E141K 

mutant, finding that the hinge was disrupted with only minor disruptions to the actual ligand 

binding pocket highlights the complexity and subtlety of protein dynamics. Occupancy 

comparison was a useful tool for characterizing these dynamic systems because we were able to 

establish a wild-type baseline against which we could compare mutation-associated structural 

changes. We were also able to characterize large-scale structural changes without losing single 

contact data resolution. Visualization of these contact changes, together with docking studies and 

traditional analyses, facilitated the exploration of gigabytes of MD data and provided both 

quantitative and qualitative accounts of the changes that occurred as a result of mutations to α-

TTP. These findings offer a structural description of the E141K and R59W mutants and suggest 

a molecular basis for their attenuated ability to transport α-tocopherol. 
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Table 4.1 Occupancy Differences in Contacts Common to Both E141K and Wild Type 

Residue 1 Residue 2 
WT1 vs. 

WT2a 
WT1 vs. 

WT3a 
WT1 vs. 

E141K (all)a 
W76 S186 68% 97% 97% 
K211 T215 96% 97% 95% 
P212 E216 99% 99% 98% 
F213 E216 100% 100% 100% 
F213 K217 100% 100% 100% 
L214 K217 100% 98% 100% 
T184 T215 -43% -49% -96% 
K217 E220b -24% -4% -99% 
K217 R221b -86% -57% -99% 

E216 E220b -20% 

(0% in both 
WT1 and 

WT3) -100% 
aNegative numbers indicate stabilization in the compared structure (underlined). b Hinge 2 
region. 
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Table 4.2 E141K Occupancy Change Magnitudes > 20% 

Residue 1 Residue 2 
Occupancy 
Difference 

E216 E220 -80% 
K217 E220 -75% 
A10 D60 -53% 
T184 T215 -47% 
R54 Q145 -37% 
L183 I218 -37% 
A10 F61 -27% 
R77 L137 73% 
R54 K141 92% 
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Figure 4.1 Molecular structures of vitamin 
E and the different forms of α-TTP 
(a) RRR-α-tocopherol (vitamin E). (b)  In the 
unbound structure (PDB code: 1OIZ), a ‘lid’ 
formed by the α14 region is open, allowing 
entrance to a hydrophobic binding pocket. The 
CRAL-TRIO domain is indicated in brackets.  
The black and gray circles indicate the E141K 
and R59W mutation regions, respectively.  The 
two hinge regions are circled and labeled as H1 
and H2.  (c) In the bound conformation (PDB 
code: 1OIP), the lid is closed, enclosing the 
binding pocket.  (d) 1OIZ (blue) and 1OIP 
(green) overlaid and aligned by Cα RMSD.  
The Cα RMSD between the two structures 
excluding α14 was 0.5 Å. 
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Figure 4.2 Cα RMSD values over time for all three proteins 
Values were calculated using α-carbons excluding both termini and α14.  (a) Wild type.  (b) 
E141K.  (c) R59W. 
 



81 

 

 

 

 

 

 

 
Figure 4.3 Cα RMSF for all three proteins 
Cα RMSF calculated were calculated using α-carbons and excluding both termini. (a) Black and 
gray bands indicate α-helices and β-sheets respectively, blue squares indicate mutation sites, and 
red bands indicate hinge regions 1 and 2 (labeled H1 and H2). (b) Wild type. (c) E141K mutant. 
(d) R59W mutant. 
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Figure 4.4 Histograms of α-tocopherol docking potential energies 
AutoDock Vina was used to dock α-tocopherol into 260 randomly-selected structures from each 
simulation. Mean potential energies and standard deviations are shown in the legends.  (a, b, c) 
Per-simulation histograms of wild type, E141K mutant, and R59W mutant, respectively.  (d) 
Aggregated energies for each protein.   
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Figure 4.5 Representative wild-type structures rendered as tubes 
Tube radius and color reflect Cα RMSD (left column) and Cα RMSF (right column).  E82, I83 
and K178 are colored per the legend and rendered as spheres.  (a) Simulation 1. (b) Simulation 2. 
(c) Simulation 3.  Note the separation of K178 from E82 and I83 in simulation 2. 
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Figure 4.6 Representative E141K structures rendered as tubes 
Tube radius and color reflect Cα RMSD (left column) and Cα RMSF (right column).  The K141 
mutation site is rendered as magenta spheres.  (a) Simulation 1. (b) Simulation 2. (c) Simulation 
3. 



85 

 

 

 

 

 

 

 

 
Figure 4.7 Contact disruption pathways in the E141K mutant 
Contact occupancy differences were calculated between all wild-type simulations and all E141K 
simulations with a significance threshold of 0.09, an allowable traversal threshold of 0.06, and a 
search depth of 2.  (a) ContactWalker disruption pathways. Line thickness indicates magnitude 
of occupancy change, green lines indicate SNP stabilization, and orange hashed lines indicate 
SNP destabilization.  Nodes are colored per the legend.  The black line highlights a pathway 
between the mutation site and the hinge 2 region.  (b) 51 ns structure of E141K simulation 1.  
The black line indicates the same pathway that was labeled in (a).  Pathway residues are rendered 
as sticks and labeled for orientation.  The K141 mutation site is rendered as magenta spheres.  
The final residue of the pathway (E220) is rendered as orange spheres. 
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Figure 4.8 Representative R59W structures rendered as tubes 
Tube radius and color reflect Cα RMSD (left column) and Cα RMSF (right column).  The W59 
mutation site is rendered as magenta spheres.  (a) Simulation 1. (b) Simulation 2. (c) Simulation 
3. 
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Figure 4.9 Contact disruption pathways in the R59W mutant 
Contact occupancy difference was calculated between simulation 2 and simulations 1 and 3 with 
a significance threshold of 0.9, an allowable traversal threshold of 0.9, and a search depth of 1.  
(a) ContactWalker disruption pathways.  Line thickness indicates magnitude of occupancy 
change, green lines indicate SNP stabilization, and orange hashed lines indicate SNP 
destabilization.  Nodes are colored per the legend. The dotted circles highlight destabilized α13 
residues.  (b) 51 ns structure of R59W simulation 1.  Significant nodes are rendered as sticks and 
colored based on overall stability (green) or instability (orange).  Note the prevalence of 
destabilized residues between α5, α10, and α13 coincident with the expansion of the ligand 
binding pocket. 
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Chapter 5 

PRELIMINARY RESULTS FROM A PROPOSED IN SILICO 

ALGORITHM FOR IDENTIFYING STABILIZING POCKETS 

IN THE Y220C MUTANT OF THE p53 TUMOR SUPPRESSOR 

PROTEIN 

5.1 Abstract 

 The p53 tumor suppressor protein is a DNA-binding protein that performs an important 

role in stimulating apoptosis and cell cycle arrest in the presence of various oncogenic factors.  

The function of p53 can be compromised by mutation, leading to increased risk of cancer; 

approximately 50% of cancers are associated with mutations to p53, and the majority of those are 

in the core p53 DNA-binding domain.  The Y220C mutation of p53, for example, destabilizes 

the p53 core domain by 4 kcal/mol, leading to increased protein unfolding.  The associated 

reduction in tumor suppressor functionality is associated with approximately 75,000 new cancer 

cases every year.  It has been shown that destabilized p53 mutants can be ‘rescued’ and their 

function restored; binding a small molecule into a pocket on the surface of mutant p53 can 

stabilize the protein and allow it to resume its wild-type structure and function.  Here we 

describe an in silico algorithm for identifying potential rescue-pockets, including the algorithm’s 

integration with the Dynameomics molecular-dynamics data warehouse and the DIVE visual-

analytics engine.  We discuss the results of our method’s application to the p53 Y220C mutant, 

describe a putative rescue pocket, and detail a subsequent search for stabilizing ligands to dock 

into the putative rescue pocket.  We then compare our in silico rescue-pocket and rescue-ligand 
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results with published experimental data.  Finally, we discuss the results of preliminary 

experimental testing of the putative rescue ligands. 

5.2 Introduction 

 The p53 tumor suppressor protein (Figure 5.1) is a DNA-binding protein that initiates 

cell-cycle arrest and apoptosis in the presence of various oncogenic factors (Vogelstein et al. 2000).  

It is a well-studied cancer target as 50% of human cancers involve a mutation to this protein 

(Joerger et al. 2006) with the majority of those mutations located in the central DNA-binding 

domain.  These mutations can be broken out into two general categories: “contact” mutations 

affect the DNA contacts, and “structural” mutations affect the protein’s structural integrity (Cho et 

al. 1994).  The p53 protein is already only moderately stable at physiological temperatures (Bullock 

et al. 2000) and mutations that affect its structural integrity can destabilize it further, causing it to 

unfold and lose its tumor-suppressing functionality. 

 It has been shown that destabilized p53 mutants can be ‘rescued’ i.e. re-stabilized such 

that they can resume their anti-tumor functionality; this has become a point of interest in the 

search for new cancer therapies.  Experimental evidence indicates that mutants can be rescued 

both by specific rescue mutations (Brachmann et al. 1998) (mutations that stabilize, rather than 

destabilize, the protein) and by rescue ligands, small molecules that dock into pockets on the 

surface of the protein and stabilize the protein (Boeckler et al. 2008).  However, it is not clear where 

on the protein these rescue-regions and rescue-pockets exist.  Protein regions amenable to 

stabilization by a ligand have been uncovered by visual analysis, analyzing known stabilizing 
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ligands or stabilizing mutations, as discussed above, and, as shown by Wassman et al, by 

analyzing homologous proteins and associated stabilizing ligands (Wassman et al. 2013). 

 p53 stabilization is a validated approach to rescuing and reactivating p53 mutants, yet 

there is no general method for identifying rescue pockets that are capable of protein-stabilization, 

particularly if the pockets are not present in an experimental structure.  Here, we propose an in 

silico algorithm for identifying potential rescue pockets given molecular dynamics (MD) 

simulation data.  MD is an in silico technique that computationally simulates the forces involved 

in protein dynamics and produces time-series snapshots of protein structures, similar to frames in 

a movie.  The MD data used in this work were part of the Dynameomics project, an ongoing 

molecular dynamics project designed to elucidate the unfolding pathways and native dynamics of 

all known protein folds (Van der Kamp et al. 2010; Beck et al. 2008). 

 Our hypothesis was that potential protein rescue-regions were those regions of the protein 

whose native contacts had become destabilized due to mutation.  This hypothesis was supported 

and motivated by our original observations that the most disrupted region of the Y220C mutant 

simulations coincided with an experimental pocket capable of docking stabilizing ligands 

(discussed below).  Using contacts as proxies for structure, and leveraging the basic tenants of 

protein structure → protein function, we postulated that re-asserting native-like contacts, 

possibly via ligand-mediation, could re-assert native-like function.  We used MD simulation data 

and our in-house contact-analysis tool Contact Walker (Bromley et al. 2013) to compare the inter-

residue contact data of mutant and wild-type p53. We then computationally identified regions of 
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the mutant protein that were destabilized relative to wild type and were therefore, if the 

destabilized contacts could be re-stabilized, putative rescue-regions.   

 Once a destabilized region was identified, it was necessary to find a pocket or crevice that 

permitted access to that region.  Proteins are dynamic molecules and, as such, the surface 

topology of any given region changes continuously.  Quantifying and analyzing this dynamic 

topology is a strength of MD.  Because our primary data originated in MD simulations, we had 

access to hundreds of thousands of protein structures, each with multiple pockets.  To make 

pocket-data analysis tractable, we stored the data in a pocket database and made them accessible 

from a front-end software tool. 

 To test our ability to find rescue pockets, we analyzed MD simulations of the core DNA-

binding domain of the p53 wild-type and Y220C mutant proteins.  The Y220C mutation was 

selected for analysis because experimental work has identified pockets on its surface that dock 

stabilizing ligands (Joerger et al. 2006; Boeckler et al. 2008); as a result, it was able to act as a positive 

control to validate our method’s ability to predict and identify rescue pockets.  After identifying 

a putative rescue pocket, we identified three putative rescue ligands and compared both the 

pocket and the ligands to experimentally-validated rescue pockets and ligands. Finally, we 

performed experimental testing on the selected ligands to determine 1) if any of the ligands were 

able to successfully interact with the putative rescue pocket and 2) if any of the ligands were 

capable of exerting a stabilizing effect on the p53 Y220C mutant. Although there are many 

examples of using MD simulations to study p53 (Calhoun and Daggett 2011; Basse et al. 2010; Wassman 
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et al. 2013; Lukman et al. 2013; Barakat et al. 2011), we believe that using multi-simulation contact-

disruption analysis to identify rescue-regions and rescue-pockets is novel. 

5.3 Methods 

 Molecular Dynamics Simulations 5.3.1

 MD simulations were performed using in lucem molecular mechanics (ilmm) (Beck et al. 

2000-2014), our in-house modeling package, with the Levitt et al force field and established 

methods (Beck et al. 2000-2014; Levitt et al. 1995; Beck and Daggett 2004; Levitt et al. 1997).  Starting 

structures of the wild-type p53 DNA-binding region were obtained using the Protein Data Bank 

(PDB) (Berman et al. 2000) crystal-structure 2ocj (Y. Wang et al. 2007) (2.05Å resolution, chain A).  

Structures for the Y220C and R175H mutants were created by in silico point mutation.  As zinc 

has been shown to be significantly disassociated from p53 at physiological conditions as well as 

in the presence of destabilizing mutations (Butler and Loh 2003; Loh 2010), we focus primarily on the 

310K zinc-free (apo) simulations here.  However, we also simulated the holo wild type at 298K 

for experimental comparison.  Each simulation was performed in triplicate, in explicit solvent 

and at neutral pH (negative Asp and Glu, positive Arg and Lys, and neutral His).  The apo 310K 

simulations were performed for at least 51 ns and the holo 298K wild-type simulations were 

performed for at least 100 ns. 

 First, models were minimized for 1000 steps (1 step = 2 fs) using steepest-descent 

minimization.  Models were placed in a periodic box with walls at least 10Å from all protein 

atoms, and then solvated using the F3C water model.   Solvent density was 0.993 or 0.997 g/mL, 

the experimental values for water density at 310K or 298K, respectively (Kell 1967).  Water 
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minimization followed for another 1000 steps, and was then followed by water-only dynamics at 

the simulation temperature for another 500 steps.  This was followed by 500 steps of solvent 

minimization and then followed again by 500 steps of minimization of both the solvent and the 

protein. 

 Initial atomic velocities were assigned from a low-temperature Maxwellian distribution, 

after which the temperature was increased to 298K or 310K, appropriately.  The non-bonded 

cutoff was set to 10Å and the interaction list was updated every 2 steps.  The number of particles, 

energy, and volume was fixed using the NVE microcanonical ensemble.  Structures were saved 

every 500 steps (1 ps).  The p53 DNA-binding domain is an immunoglobulin-like β-sandwich 

fold, which is represented by Rank 1 of our Consensus Domain Dictionary (CDD) (Day et al. 2003; 

Schaeffer et al. 2011). 

 Simulation Analysis 5.3.2

 Contact analysis, Cα root-mean-squared-fluctuation (RMSF), average properties, and 

other aggregate analyses were performed over the last 35 ns of the 310K apo simulations to 

allow for equilibration.  The 298K holo wild-type simulations were slower to equilibrate and 

NOE and SASA data for comparison with experiment were calculated over the last 25 ns of the 

100 ns simulations. 

 Structure alignment for Cα root-mean-squared-deviation (RMSD) and Cα RMSF analysis 

used the β-strand residues.  Contact analysis was heavy atom-only and used a 5.4Å cutoff for 

carbon-carbon contacts and a 4.6Å cutoff for all other contacts.  Only one inter-atomic contact 

was required for residue:residue contact and contacts between adjacent residues were skipped.  
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Secondary-structure comparison in the pocket search tool used DSSP (Kabsch and Sander 1983) 

secondary-structure assignment. Images were created using Pymol (DeLano 2002) and Accelrys 

Discovery Studio 3.5 Visualizer (http://accelrys.com/products/discovery-

studio/visualization.html). 

 Pocket Database and Search Tool 5.3.3

 Initial pocket-finding was performed at 1 ps granularity on the 310K apo simulations of 

p53 wild type and the Y220C mutant; pocket finding was performed using the EPOS BALLPass 

software (http://gepard.bioinformatik.uni-saarland.de/software/epos-bp).  To make this data set 

more usable, the pocket data were loaded into a relational database.  This database first cleans 

the data and then organizes them in a pocket-centric manner. Each pocket is identified with a 

unique number, associated with pocket properties such as volume and polarity, and linked via 

simulation identifier, structure identifier, and simulation time step back to the original 

Dynameomics data warehouse (Beck et al. 2008; Van der Kamp et al. 2010; Simms et al. 2008). 

 A second set of data tables, linked by the unique pocket identifier, details which atoms 

are involved in each pocket.  These data include each atom’s name and type, containing residue 

number and type, and flags indicating if an atom is a heavy atom and/or if it is part of the residue 

main chain or side chain.  Finally, the atoms are assigned atom identifiers from the original 

Dynameomics MD trajectories, allowing each atom and residue to be analyzed in its original 

dynamic context, and in association with the standard Dynameomics analyses such as solvent 

accessible surface area (SASA), Cα RMSF, and dihedral angle analysis.  The database was built 

using Microsoft SQL Server (www.microsoft.com/sql). 
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 A search-tool based on the DIVE visual analytics system (Bromley et al. 2014; Rysavy et al. 

2014) was built to provide a front-end user-interface to the pocket database.  Given one or more 

simulation identifiers, one or more residue numbers, and optional minimum and maximum 

pocket volumes, the tool searches the pocket database and returns pockets from the given 

simulations whose pocket-lining atoms belong to the specified residues and whose volumes lie 

within the specified volume-range.  It then aligns and clusters these pockets based on heavy-

atom RMSD of the specified search residues and produces a hierarchical-clustering dendrogram 

plot, useful for identifying inter-pocket structural-similarities.  Experimental data can be 

integrated into this search by specifying one or more external Protein Data Bank (PDB) files.  

These structures are aligned and clustered along with the dynamic pockets, allowing researchers 

to identify the dynamic pockets whose structures most closely match known experimental 

pockets. 

 The search tool can also optionally output docking files suitable for analysis by Autodock 

Vina (Trott and Olson 2010).  These files include the protein structures converted to the required file 

format, optional flexible side chains, and a configuration file specifying the search box around 

the selected pocket.  The only remaining information necessary for performing Vina docking is a 

ligand structure file. Finally, the search tool outputs a comma-separated-value (CSV) file 

detailing the pockets in each cluster and where the pocket structures can be found in the 

database, in the Dynameomics data warehouse, and/or on disk.  The pocket search-results also 

include the pocket volumes, the time in the trajectory at which they occurred, their degree of 
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secondary-structure overlap with the simulation starting-structure, and the total SASA of the 

specified residues.  This pocket analysis pipeline is illustrated in Figure 5.2. 

 Contact Analysis 5.3.4

 Searching the pocket database requires a list of pocket-associated residues.  In the 

presence of experimental data, these residues can be specified by analyzing which residues make 

contact with a particular ligand, for example, or by identifying the residues that line a known 

pocket cavity.  In the absence of experimental data, however, pocket residues must be identified 

in some other manner. 

 The Contact Walker tool (Bromley et al. 2013) was originally designed to identify regions of 

a protein that had become destabilized by mutation.  Briefly, it uses molecular-dynamics 

trajectory data and compares the inter-residue heavy-atom contact-occupancy between wild type 

and mutant proteins.  Contact Walker then produces a connected-graph diagram that shows 

which contacts have become disrupted as a result of the mutation and whether the disruption 

stabilized them (increased occupancy) or destabilized them (decreased occupancy).  Contact 

Walker can aggregate data from multiple simulations to show the minimum demonstrated 

occupancy change between wild type and mutant simulations i.e. for each contact, it shows the 

most conservative estimate of occupancy change. 

 Ligand Docking 5.3.5

 Ligand docking was performed using Autodock Vina version 1.1.2 and UCSF Dock 

Blaster (Irwin et al. 2009).  UCSF Dock Blaster uses UCSF DOCK (Lorber and Shoichet 1998; Lorber 
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and Shoichet 2005) version 3.6 to perform high-throughput virtual screening of the entire ZINC 

(Irwin and Shoichet 2005) ‘leads-now’ database into a user-specified pocket.  At the time of this 

writing, the ZINC ‘leads-now’ database contains 2,395,805 lead-like molecules (‘lead-like’ 

indicates a molecular weight between 250 and 350 g/mol, xlogp ≤ 3.5, and 7 or fewer rotatable 

bonds).  The Dock Blaster service returns the top 500 docking hits.  Molecule file conversion 

was performed using Autodock Tools (Morris et al. 2009) and OpenBabel (O’Boyle et al. 2011).  

Ligand-protein polar contacts were identified using Pymol with a cutoff of 3.3Å (Dock Blaster 

default). 

 Small Molecule Probing 5.3.6

 Small-molecule energy probing was used to determine if the selected pocket would admit 

a benzene moiety into the pocket volume vacated when Y220 was mutated away.  Minimization 

and energy calculations for small-molecule probing was performed in vacuo using the ilmm 

molecular dynamics package (Beck et al. 2000-2014) and the Levitt et al force field (Levitt 1990; Levitt 

et al. 1997).  The specific probe algorithm has been described previously (Bernard 2006).  Briefly, 

benzene molecules were placed in a regular 1Å grid around the pocket residues; grid points that 

were more than 4.2Å away from a protein residue or closer than 2.4Å to a protein residue were 

discarded.  At each probe point, the benzene molecule was rotated evenly around a sphere to 

calculate energies in different positions.  For each rotation, steepest-descent minimization was 

performed for 10 steps.  The probe location was reported as the geometric center of the benzene 

atoms. 
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 NOE comparison 5.3.7

 Nuclear Overhauser Effect (NOE) analysis was performed using 298K NMR data (PDB 

code: 2fej (Cañadillas et al. 2006)).  An NOE was satisfied if the average inter-hydrogen d-6 distance 

was less than 5Å or the distance in the NOE constraint file, whichever was larger. 

5.4 Results and Discussion 

 Comparison of 298K holo simulations with experiment 5.4.1

 Because experimental structural data are not available for 310K apo p53, we validated 

our in silico protein system by simulating the p53 holo wild type at 298K and comparing those 

simulations to experimental 298K holo NMR data.  The specifics of this comparison are detailed 

in Chapter 6.  In summary, native structures were maintained throughout the three simulations 

and no unfolding was observed.  β-structure in the three-residue strands S1 and S5 was 

fragmented or lost in all three simulations, one simulation adopted α-sheet secondary structure 

(Daggett 2006) between strands S3 and S8, and S6 β-structure was lost in one simulation. In every 

case, however, the protein main-chain retained its basic structure and no significant restructuring 

occurred.  H1, H2, and the remaining β-strands were all maintained throughout the simulations.  

The largest consistent deviations from starting structure occurred in the S7/S8 loop.  Wild-type 

298K holo simulations satisfied 89% of published 298K holo NOEs and 45% of residue pairs 

containing an NOE violation also contained at least one NOE satisfaction.  Comparison of the 

solvent accessible surface area (SASA) of the experimental NMR structures and the wild-type 

simulations yielded a correlation coefficient of R = 0.79. 
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 Analysis of 310K apo simulations 5.4.2

 The average Cα Root-Mean-Squared Deviation (RMSD) from starting structure for the 

three 310K apo wild-type simulations were 3.7 ± 0.3Å, 3.9 ± 0.3Å, and 3.6 ± 0.4Å.  The per-

residue Cα RMSD and Cα RMSF values are shown in Figure 5.3.  The primary regions of 

deviation from the starting structure were the loop-sheet-helix region, L2 and L3, particularly 

around the zinc-binding residues, and the S7/S8 loop. Cα RMSF followed a similar pattern with 

the largest fluctuation values demonstrated in the loop-sheet-helix region, L2, L3, the S7/S8 loop 

and the S6/S7 loop.  Secondary-structure analysis indicated that while most structures in the 

larger S6/S7/S4/S9/S10/S2’/S2 β-sheet were maintained, the smaller S1/S3/S8/S5 β-sheet 

demonstrated loss of structure, as did the H1 helix.  In one simulation, S1 and S3 demonstrated 

adoption of the α-sheet secondary structure, which has been proposed to play a role in protein 

aggregation (Armen, Alonso, et al. 2004; Daggett 2006), and the L3 loop gained helical content around 

residue G245.  In another simulation, the region around H168 gained helical structure, although 

it should be noted that the crystal structure of this region contains enough helical content that 

some software packages characterize it as helical and others do not.  In a third simulation, 

distance measurements between the Cα atoms of the K120 and R280 DNA contacts indicated 

that L1 separated from H2 by 22Å, disrupting the loop-sheet-helix DNA-binding region. 

 Validation of Search Tool Functionality 5.4.3

 The pocket search tool was designed to search a database and recover pockets with 

certain structural characteristics such as volume and residue composition (i.e. certain residues 

play a role in the structure of the pocket).  To validate the search-capabilities of the tool, we 
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searched the Y220C simulations for a pocket similar to the experimentally-validated ligand-

docking pocket found in the x-ray crystal structure of the p53 Y220C mutant (PDB: 4AGQ 

(Wilcken et al. 2012)).  If our MD simulations contained the pocket, the pocket search tool was 

expected to recover it given the experimental input.  In the stabilized crystal-structure, residues 

145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 220, 221, 222, 223, 228, 229, and 230 

were identified as having heavy atoms within 5.4Å of the stabilizing ligand.  We directed our 

search tool to find simulation pockets involving these residues.  The pocket search tool 

discovered 170 MD structures that contained a pocket matching these specifications.  

Approximately 150,000 structures and 2 million pockets were searched to arrive at this set.  The 

final pockets were all less than 3Å heavy-atom RMSD from the experimental crystal structure 

(RMSD was calculated using heavy atoms from the 18 specified residues).  Figure 5.4 shows a 

selection of the discovered pockets. 

 Our original hypothesis was that Contact Walker could identify potential rescue-regions 

by identifying native contacts that had become destabilized.  There has been a great deal of work 

done analyzing the Y220C pocket originally published by Joerger et al (Joerger et al. 2006); indeed, 

it was analysis of this pocket that initially motivated our hypothesis.  More recently, a rescue-

pocket for the p53 R175H mutant was identified by Wassman et al (Wassman et al. 2013), providing 

us an opportunity to further test our hypothesis.  Wassman et al used both experimental and in 

silico techniques to identify a region of the protein around residues L114 and C124 that had 

stabilizing potential.  They then went on to show that stictic acid was capable of docking into a 

pocket in that region, increasing the melting temperature of the R175H mutant by 4.6° C. 
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 To test our hypothesis that Contact Walker could identify rescue regions by their 

destabilized contacts, we analyzed three 310K apo simulations of the R175H mutant.  By 

comparing these mutations to wild type, Contact Walker highlighted those regions of the mutant 

protein that were consistently disrupted across the ensemble of simulations.  Contact Walker 

indicated that the most consistently disrupted contacts in the R175H simulations were 

L114:T125 and L114:Y126.  As shown in Figure 5.5, these contacts and residues are 

immediately adjacent to the rescue-pocket identified by Wassman et al.  

 Y220C Mutant Simulation Analysis 5.4.4

 The average Cα RMSD values for the three 310K apo Y220C mutant simulations were 

3.8 ± 0.3Å, 3.2 ± 0.2Å, and 3.5 ± 0.2Å.  The average per-residue Cα RMSD and Cα RMSF 

values are shown in Figure 5.3.  Like the wild type, the Y220C mutant demonstrated the largest 

deviations from starting structure in the loop-sheet helix region, L2, L3, and the S7/S8 loop.  

Also like the wild type, Cα RMSF values followed the same pattern as Cα RMSD with the 

largest fluctuations being demonstrated in the loop-sheet-helix region, L2, L3, the S7/S8 loop, 

and the S6/S7 loop.  Relative to wild type, one Y220C simulation also demonstrated a slight 

increase (1Å) in fluctuation in the S5/S6 loop.  Secondary-structure analysis showed a larger 

departure from native secondary structures than was demonstrated by wild type.  Like wild type, 

most of the larger S6/S7/S4/S9/S10/S2’/S2 β-sheet was well maintained.  However, one 

simulation showed novel helical-content in the L1 loop, disrupting the loop-sheet-helix region, 

another simulation showed loss of β-structure in S1 and S5 and an increase in helical structure 

around H168, and a third simulation showed adoption of the α-sheet secondary structure (Armen, 
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Alonso, et al. 2004; Daggett 2006) between S1, S3 and S8.  One simulation showed a 25Å separation 

between L1 and H2 (distance measured between the Cα atoms of DNA-contacts K120 and 

R280). 

 Contact Walker analysis of the p53 Y220C mutant is shown in Figure 5.6.  To illustrate 

reading a Contact Walker diagram, this figure indicates that L145, V147, P151, C220, P223, 

L257, and L265 (magenta circles) were all highly destabilized.  It shows that C220 lost contact 

with V147 (magenta line) and that P151 lost contact with L257 and L265 (magenta lines) but 

gained alternative contacts with T230 and E221 (green lines).  Note that E221 is colored gray 

despite gaining two alternative contacts.  This is because E221 has lost very little contact-

occupancy (this property-coloring scheme can be controlled via DIVE ‘micro-scripting’ (Rysavy 

et al. 2014)).  We are focusing here on contact loss because our work focused on stabilizing native 

contacts, not destabilizing non-native contacts.  Note also that this figure shows the minimum 

demonstrated occupancy difference among three wild-type simulations and three mutant 

simulations.  Thus, if a given contact has occupancy values of 10%, 20%, and 30% in the wild-

type simulations and occupancy values of 70%, 80%, and 90% in the mutant simulations, the 

reported contact difference will be 30% - 70% = -40%, or a net mutation-associated stabilization 

of 40% occupancy.  This difference value represents the most conservative estimation of 

disruption possible given the demonstrated occupancies. 

 Pocket Selection Algorithm and Application 5.4.5

 As discussed above, Contact Walker identified the most disrupted region of the protein as 

the region near the C220 mutation site (Figure 5.6).  After analyzing molecular-dynamics data 
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for this region, the residues L145, V147, P151, C220, L257, and L265 were selected to identify 

potential rescue pockets.  While this is the region that was discussed earlier as correlating with a 

known rescue pocket, this analysis was performed in the absence of experimental data, using 

only inter-residue contact-information from molecular dynamics simulations.  Pockets containing 

these six residues were present 1.5% of the simulation time. 

 Querying the pocket database for pockets in this region with volumes > 600 Å3 returned 

98 potential rescue pockets, a four order-of-magnitude data-reduction from the more than two 

million pockets stored in the pocket database.  These 98 candidate pockets were then manually 

inspected and filtered based on the following criteria: 

1. The pocket needed to provide a space in which an aromatic ring, positioned similarly to 

the tyrosine benzene-moiety lost by the mutation, could dock.  Essentially, we wanted to 

provide an opportunity to replace what was lost without introducing additional foreign 

material. 

2. The pocket should not be overly invasive.  The mutation site and the lost benzene moiety 

lie near the surface, so replacing what was lost should not require binding a ligand deep 

into the hydrophobic core.  It was the core that we were trying to stabilize and injecting a 

large foreign presence could easily introduce non-favorable contacts. 

3. The protein conformation containing the pocket needed to retain as much wild type-like 

structure as possible, particularly around the hydrophobic core.  We were trying to rescue 

a protein from unfolding, so we wanted the hydrophobic core of the stabilized 

conformation to be as wild type-like as possible. As discussed previously by Joerger et al 
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(Joerger and Fersht 2010), ligands that preferentially stabilize the native state over the 

denatured state should drive the unfolding equilibria toward the native state. 

 This entire process is shown in Figure 5.7 and the final selected putative rescue-pocket is 

shown in Figure 5.8.  This pocket met the basic criteria of being in the disrupted region, 

providing a solvent-accessible opportunity to introduce a tyrosine-like benzene moiety, and 

being located in a protein structure with a relatively intact beta-core.  Small-molecule energy 

probing indicated that the rescue pocket could accommodate a benzene moiety in the desired 

position (Figure 5.9). 

 Dihedral-angle analysis as well as visual inspection indicated that the pocket-lining 

residues did not undergo large conformational changes over the 1 ns window surrounding the 

rescue pocket.  The residues with the most side-chain movement were S149, C220 (the mutation 

site), and E221.  S149 and E221 both faced outwards into the solvent, but C220 was not solvent 

accessible aside from the putative rescue pocket.  Cα RMSF analysis of the rescue-pocket 

simulation indicated that the motion of the pocket-lining residues all fell within wild-type ranges 

with the exception of H115 which exhibited approximately 1.7Å larger Cα RMSF than wild 

type.   Analysis of these residues in the other two Y220C simulations indicated similar wild type-

like stability, although in one simulation residues V225 and C229 exhibited Cα RMSF values 

between 1 and 2Å greater than wild type. 
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 Ligand Selection 5.4.6

 To confirm that the selected pocket had rescue-potential, it was necessary to confirm that 

it could interact with a stabilizing ligand.  Therefore, once the putative rescue pocket was 

selected, we identified ligands that could potentially dock into it and stabilize the protein.  To 

begin this search, we docked the entire ZINC (Irwin and Shoichet 2005) ‘leads-now’ database 

containing 2.4M ligands into the rescue pocket using the UCSF Dock Blaster (Irwin et al. 2009) 

service.  After initial docking, the top 500 ligands were manually inspected for two different 

characteristics: 

1. Ligands needed to have a benzene moiety in roughly the position where the wild-type 

tyrosine would be.  This was in keeping with the goal of simply replacing what had been 

removed by mutation rather than attempting to bind more aggressively and risk 

introducing new structural artifacts.  Large ligands were not perceived as necessary to 

stabilize a protein; for example, the N239Y rescue mutation rescues the G245S mutation 

by introducing a tyrosine side-chain that stabilizes the local hydrophobic packing (Joerger 

et al. 2004).  Such a side chain is similar in scope to a small-molecule stabilizing ligand.  

2. Ligands needed to support a strong contact to L145.  Originally, this was not a required 

criterion.  However, several of the final 500 ligands contained such a contact and thus it 

became an option in the refinement process.  The L145 side-chain position within the 

rescue pocket was wild-type like and thus a contact in that position was expected to not 

only help secure the stabilizing ligand in place, but also help stabilize L145, part of the β-

core, in a wild type-like position. 
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 Of the 500 ligands returned by Dock Blaster, only three ligands met all of these criteria.  

For additional docking-validation, these three ligands were re-docked into the putative rescue 

pocket using Autodock Vina.  Our docking energy point-of-reference was -6.5 kcal/mol, 

calculated by using Autodock Vina to dock the known rescue ligand PhiKan5196 (Wilcken et al. 

2012) into its holo crystal position (PDB: 4AGQ). Vina energy estimates of the Dock Blaster 

poses were -5.2 kcal/mol for ZINC 67692870, -5.5 kcal/mol for ZINC 95476490 and -4.4 kcal 

for ZINC 19565304.  For this last ligand, Vina found a -6.0 kcal/mol pose that was very similar 

to the Dock Blaster pose with comparable positioning of the benzene moiety and contact with 

L145.  This process is illustrated in Figure 5.10. 

 A histogram of the overall binding-energy distribution is shown in Figure 5.11 with an 

inset showing only the favorable (negative) binding energies.  The two ligands with the least 

favorable energies reported by Dock Blaster were ZINC 3904140 (+2.2M kcal/mol) and ZINC 

6653655 (+45K kcal/mol).  The three selected rescue-ligands described above had negative 

potential energies three and four standard deviations less than the mean negative binding-energy 

(-22.5 ± 3.6 kcal/mol).  99% of compounds were able to favorably bind somewhere in the 

vicinity of the selected pocket.  However, re-docking of the two worst binders with Autodock 

Vina indicated that simple negative energies did not necessarily imply successful pocket-

docking; sometimes, ligands would dock only peripherally at the surface or in small adjacent 

clefts that inadvertently fell into the specified rectangular docking-volume.  Both of these 

scenarios placed the ligands far away from the intended docking site.  More specifically, docking 

conformations such as these placed the ligands far away from the destabilized residues that were 
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hypothesized to provide stabilizing contacts.  These observations underscored the notion that 

understanding which residues the ligands should contact and why the ligands should contact them 

was an important part of our pocket-selection algorithm and the subsequent ligand selection. 

 In silico Analysis and Comparison to Existing Experimental Data 5.4.7

 The three final ligand picks are illustrated in Figure 5.12.  As discussed above, both the 

pocket and the selected ligands were discovered using strictly in silico methods.  However, the 

final rescue pocket and the final ligand selections had considerable structural and pharmacophore 

similarities to experimentally-validated rescue pockets and ligands.  Given these similarities, it is 

worth comparing the selected pocket and ligands with their experimental counterparts. 

 To begin, the selected pocket was in the same region that is stabilized by the PhiKan5196 

ligand.  Indeed, it was the colocation of the PhiKan5196 docking site and Contact Walker’s 

analysis of disrupted contacts that motivated our disrupted-region-as-rescue-region hypothesis.  

Despite this location overlap, however, the actual surface-accessible pocket geometries were 

different.  Consider the two ligands illustrated in Figure 5.13.  Both ligands interacted with the 

same region of the protein (i.e. the disrupted region specified by Contact Walker), but they did so 

from pockets with different surface geometries; the PhiKan5196 pocket contained a long surface 

trench with a subsurface cavity (Figure 5.13a) and the putative rescue pocket selected by Contact 

Walker and the pocket database (Figure 5.13b) was primarily an extension of a similar 

subsurface cavity, but without the trench. 

 Despite these pocket differences, the ligands themselves had an overlap of 

pharmacophore groups, notably the Y220 ‘replacement’ aromatic group and a strong contact to 
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L145 (Figure 5.12 and Figure 5.13).  In addition to being present in validated rescue-ligands, 

both of these features as well as the polar contacts near D228 (Figure 5.12) have been shown in 

fragment-binding experiments (Basse et al. 2010) to promote docking.  PhiKan5196 extends further 

in the direction of the C220 mutation site than any of the putative rescue ligands, which may 

contribute some degree of stability.  However, PhiKan083 (Boeckler et al. 2008), a stabilizing 

molecule docked into this same mutant (PDB: 2VUK), is not extended in this manner, suggesting 

that such an extension is not necessary for protein rescue.  Similarly, PhiKan083 does not 

support a strong contact with L145, a feature that was present in other known rescue ligands and 

each of the suggested ligands.  Table 5.1 compares the ligand contacts of PhiKan083, 

PhiKan5196, and the three putative rescue ligands (heavy-atom only, 5.4Å cutoff).  Finally, the 

side-chain conformation of the six selected disrupted residues in the 2VUK crystal structure was 

similar to that of the selected rescue pocket (Figure 5.14), suggesting that the pocket selected by 

the pocket search tool presented a docking opportunity similar to that of a known rescue pocket.  

 Results of Experimental Testing 5.4.8

 The three putative stabilizing compounds, as well as the two worst dockers (used here as 

decoys) were experimentally tested for their abilities to stabilize the Y220C mutant 

(experimental testing and data courtesy of Dr. Matthias Bauer and Dr. Alan Fersht).  Initial 

thermal shift assay results showed that one of the putative stabilizing ligands (ZINC: 95476490) 

had a small and potentially dose-dependent stabilization of the Y220C mutant (Figure 5.15, 

highlighted box).  In silico analysis of ligand 95476490 showed two polar contacts with D228 as 

well as contacts with both Q110 and H115 (Figure 5.12 and Table 5.1).  The only other 
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compound to show a positive response was one of the decoy compounds, which showed less 

dose-dependent behavior than did the putative stabilizing ligand. 1H/15N HSQC NMR analysis of 

compound 95476490 showed slight chemical shifts, and initial peak assignments indicated that 

the chemical environments near several residues in the putative rescue pocket were altered in the 

presence of the ligand (Figure 5.16).   

5.5 Conclusions 

 Preliminary experimental results were not sufficient to show conclusively that our 

algorithm was effective.  Aspects of the results were encouraging, however, and, given that the 

preliminary data show the basic hallmarks of stabilizing ligands – correct interaction location, 

positive stabilization, and dose-dependent action - future refinement and application may achieve 

more substantial results.  Our algorithm aims to select small-molecules whose contacts will 

mimic, or at least serve as proxies for, lost native-contacts. In some cases, this may not work; for 

example, some mutations alter DNA-contacts, while in others smalllarge mutations can cause 

repacking around a buried residue.  However, absent these or similar conditions, our hypothesis 

is that re-establishing native-like contacts may help re-establish native-like functionality. 

 In silico analysis of the putative rescue pocket and ligand showed a considerable degree 

of overlap with published experimental evidence.  Although experiment is the final assessment, 

multiple aspects of structural and pharmacophore agreement with well-established in silico tools 

suggest that the algorithm can successfully produce results that fall within these tools’ predictive 

ranges.  This suggests that the next step is to either refine our pocket and ligand selections using 
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additional tools or criteria, or to sample the ligand space more extensively by testing more 

ligands. 

 The goal of developing this algorithm was to provide a general means of discovering 

drug leads for protein targets that are not amenable to structural characterization.  There is a need 

for such a method, underscored by recognizing that p53 plays a crucial role in cancer biology, 

yet only a few experimentally-discovered structures exist.  Fundamentally, our algorithm was 

intended to find stabilization pockets; confirmation of the stabilizing potential of a pocket can 

only truly be assessed, however, by confirming that it can interact successfully with a stabilizing 

ligand.  Thus, we conclude that this algorithm holds potential, but is in need of more extensive 

testing and future refinement. 
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Figure 5.8 Final pocket selected from the 98 candidate pockets 
Disrupted residues are shown in green, aligned wild-type Y220 is shown in magenta.  Pocket 
was solvent-accessible from the top, and the middle of the pocket lay roughly adjacent to the 
wild-type Y220 benzene moiety. 
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Figure 5.16 Initial NMR chemical-shift data. 
Peak assignments suggest that the ligand capable of small thermal stabilizations (Zinc ID: 
95476490) was also binding in or near the identified putative rescue pocket.  (L145 assignment 
(italic) is preliminary). 
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Chapter 6 

INSIGHTS INTO THE STRUCTURAL DYNAMICS OF 

CANCER: MOLECULAR DYNAMICS SIMULATIONS OF 

WILD TYPE p53 AND 20 DIFFERENT MUTANTS SHOW 

COMMON STRUCTURAL-DISRUPTION MOTIFS 

INCLUDING HYPOTHESIZED AMYLOIDOGENIC 

CONFORMATIONS 

6.1 Abstract 

 The p53 protein is a commonly-studied cancer target because of its role in tumor 

suppression.  Unfortunately, it is susceptible to mutation-associated loss of function; 

approximately 50% of cancers are associated with mutations to p53, the majority of which are 

located in the central DNA-binding domain.  Here we report molecular dynamics simulations of 

wild-type p53 and 20 different mutants, including a stabilized pseudo-wild type mutant.  Our 

findings indicate that p53 mutants tend to exacerbate latent structural-disruption tendencies, or 

vulnerabilities, already present in the wild type protein, suggesting that it may be possible to 

develop cancer therapies by targeting a relatively small set of structural-disruption motifs rather 

than a multitude of effects specific to each mutant.  In addition, α-sheet secondary structure 

formed in almost all of the proteins.  α-sheet has been previously hypothesized to play a role in 

amyloidogenesis, and its presence in the reported p53 simulations coincides with the recent re-

consideration of cancer as an amyloid disease. 
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6.2 Introduction 

 The p53 transcription factor (Vogelstein et al. 2000) is one of the most-studied cancer targets 

because of its prominent role in tumor suppression.  Roughly half of all cancers are associated 

with mutations to p53 (Joerger et al. 2006) with most of those located in the central DNA-binding 

domain.  Many of these mutations have been studied and characterized, and they commonly 

display reduced DNA-binding ability, reduced structural integrity, or both (Bullock et al. 2000). 

Extensive experimental characterizations have been performed on p53, leading to a deeper 

understanding of the mechanisms involved, in some cases proceeding to compounds that are 

capable of stabilizing the mutants and restoring function (Boeckler et al. 2008; Wilcken et al. 2012), 

even to the point of progressing to clinical trials of potential cancer therapeutics (Bykov et al. 2002; 

Lehmann et al. 2012).  Figure 6.1 shows the structure of p53, a schematic overview of its secondary 

structure, and the locations of the 19 destabilizing mutations whose simulations are presented 

here.  The p53 protein belongs to the immunoglobulin-like β-sandwich fold represented in Rank 

1 of our Consensus Domain Dictionary (Day et al. 2003; Schaeffer et al. 2011).  It consists of two 

helices H1 and H2, a smaller β-sheet comprised of strands S1, S3, S8, and S5 and a larger β-

sheet comprised of strands S6, S7, S4, S9, S10, S2’, and S2. 

 In the work presented here, we have performed molecular dynamics (MD) simulations 

(Beck and Daggett 2004; Levitt et al. 1995; Levitt et al. 1997) of the DNA-binding domain of wild-type 

(WT) p53, 19 different destabilizing p53 mutants, and a pseudo-wild-type (pWT) mutant that is 

stabilized by 2.65 kcal/mol via four mutations (Joerger et al. 2004).  MD is a powerful complement 

to experimental work because it provides protein structural-data with sub-picosecond, sub-

angstrom resolution. 
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 Our purpose in analyzing simulations of p53 was to understand the structural 

ramifications of known oncogenic mutations and, optimally, to identify conformational motifs 

that would be amenable targets for structure-based drug design.  To our knowledge, we present 

here the most extensive set of p53 simulations to date (Wassman et al. 2013; Calhoun and Daggett 2011; 

Basse et al. 2010; Lukman et al. 2013; Duan and Nilsson 2006; Barakat et al. 2011; Demir et al. 2011).  These 

simulations involve all six “hot spot” residues (Harris and Hollstein 1993; Cho et al. 1994) and represent 

eight of the ten most common mutations and 21% of the listings in the IARC TP53 Database 

(Petitjean et al. 2007) (version R16).  The most common cancer topologies associated with these 

mutations are the uterus, rectum, colon, liver, brain, stomach, hematopoietic and 

reticuloendothelial systems, pancreas, bone, ovary, lymph nodes, esophagus, breast, mouth, 

larynx, prostate, soft tissue, bladder, head and neck, lung and skin (Petitjean et al. 2007).  The 

mutations discussed here are distributed throughout the protein (Figure 6.1c) and in most cases 

have experimental data available (Bullock et al. 2000). These simulations were performed as part of 

our Dynameomics project (Van der Kamp et al. 2010; Beck et al. 2008) (www.dynameomics.org).  The 

Dynameomics project uses MD to characterize the folding and unfolding pathways as well as 

native-state dynamics of all known protein folds. 

 Here we report our findings, including descriptions of the structural-disruption motifs that 

were common to multiple mutants.  In addition to large-scale tertiary-structure disruptions, one 

of the most interesting structural-disruption motifs that we identified was the presence of the α-

sheet secondary-structure in almost all of the proteins.  It has been proposed that α-sheet plays a 

role in amyloidogenesis (Armen, Alonso, et al. 2004; Armen, DeMarco, et al. 2004; Daggett 2006) and our 
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findings, together with a recent re-characterization of cancer as an amyloid disease (Ano Bom et al. 

2012; Silva et al. 2013), suggest that α-sheet may be another target in the design of future cancer 

therapies. 

6.3 Methods 

 Molecular Dynamics Simulations 6.3.1

 A 2.05Å resolution Protein Data Bank (PDB) (Berman et al. 2000) x-ray crystal structure of 

the DNA-binding domain of human p53 (PDB code: 2ocj, chain A (Y. Wang et al. 2007; Berman et al. 

2000)) was used as the wild-type starting structure.  The same structure was used to create the 19 

destabilized mutant structures by in silico point mutation to the appropriate residue.  A stabilized 

wild type-like quad-mutant with mutations M133L, V203A, N239Y and N268D was also 

simulated using chain A of the 1.9Å PDB crystal structure 1uol (Joerger et al. 2004).  Because zinc 

is significantly disassociated from p53 at physiological temperatures (Butler and Loh 2003) and 

because mutations are associated with zinc loss (Loh 2010), wild type and mutant simulations were 

performed apo at 310K.  We also performed additional 298K holo simulations of wild-type p53 

for comparison to experimental NMR data. 

 Molecular dynamics simulations were performed using our in-house modeling package in 

lucem molecular mechanics (ilmm) with the Levitt et al force field and established methods (Beck 

et al. 2000-2014; Levitt et al. 1995; Beck and Daggett 2004; Levitt et al. 1997).  Protein structures were first 

minimized with steepest descent minimization for 1000 steps (1 step = 2 fs).  Structures were 

then solvated using the F3C water model (Levitt et al. 1995) in a periodic box with walls no closer 

than 10Å from any protein atom.  The solvent density was set to 0.993 or 0.997 g/mL, the 
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experimental densities for water at 310K and 298K, respectively (Kell 1967).  Water was 

minimized for 1000 steps followed by water-only dynamics at 298K or 310K for 500 steps.  The 

solvent was again minimized for 500 steps and then both the solvent and protein were minimized 

for 500 steps. 

 Production simulations were performed in triplicate for 100 ns at 298K (holo, WT) or 

310K (apo, WT and all mutants) for a total simulation time of 6.6 μs.  A Maxwellian distribution 

at low temperature was used to assign initial atomic velocities after which the temperature was 

increased to 298K or 310K.  A 10Å non-bonded cutoff was used and the interaction list was 

updated every 2 steps.  The NVE microcanonical ensemble was used with constant number of 

particles, energy, and volume.  Simulations were performed at neutral pH (neutral His, positive 

Arg and Lys, and negative Asp and Glu).  Structures were saved every 1 ps. 

 Simulation Analysis 6.3.2

 Solvent-accessible surface area (SASA), Cα Root-Mean-Squared Deviation (RMSD), Cα 

Root-Mean-Squared Fluctuation (RMSF), secondary structure (using the Define Secondary 

Structure of Proteins (DSSP) secondary-structure assignment algorithm (Kabsch and Sander 1983)), 

atomic-contact analyses, and Nuclear Overhauser Effect (NOE) analysis were performed using 

ilmm (Beck et al. 2000-2014) analysis modules.  SASA values for NMR structures were also 

calculated using ilmm.  Contact analysis was performed using heavy atoms with a 5.4Å cutoff 

for carbon-carbon contacts and 4.6Å cutoff for all other heavy-atom contacts.  Only one atomic 

contact was necessary for residues to be considered in contact; contact-occupancy was calculated 

as the percentage of time two residues were in contact.  Contacts between adjacent residues were 
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skipped.  The Contact Walker analysis tool was used for mutant/wild-type contact comparison 

(Bromley et al. 2013).  Cα RMSD and Cα RMSF were performed using the β-strand residues as 

reference (for analysis purposes, the β-strand residues were considered to constitute the core of 

the protein).  The equation RMSF = 3β/(8\π2) was used to compare Cα RMSF values against 

crystallographic B factors.  Aggregate analyses such as contact analyses, NOE analyses, Cα 

RMSF, per-residue averages, and percent time in secondary structure were performed over the 

last 25 ns (75-100 ns) of the simulations to ensure equilibration.  Mutant secondary-structure 

contacts were deemed to have changed relative to wild type if the mutant and wild-type total 

contact-occupancy avg ± stdev ranges did not overlap.  Calculations involving DNA-contacting 

residues used residues 120, 241, 248, 273, 276, 277, 280, and 283 (Cho et al. 1994).  The L1/H2 

distance was measured between the Cα atoms of K120 and R280.  The L2/L3 distance was 

measured between the Cα atoms of C176 and C242.  The L2/S5 distance was measured between 

the Cα atoms of D186 and G199. 

 Additional Analyses 6.3.3

 Molecular images were created in Pymol (DeLano 2002), UCSF Chimera (Pettersen et al. 

2004), and VMD (Humphrey et al. 1996).  Electrostatic surface visualizations were created using 

Adaptive Poisson-Boltzmann Solver (APBS) software (Baker et al. 2001) hosted at the National 

Biomedical Computation Resource (NBCR) (http://nbcr.ucsd.edu) and visualized using UCSF 

Chimera.  Additional interactive and aggregated data analyses were performed using the DIVE 

visual analytics platform (Bromley et al. 2014; Rysavy et al. 2014). 
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6.4 Results 

 Experimental Validation and Simulation Quality Control 6.4.1

Comparison of 298K holo simulations with experiment 

 As there are no 310K apo experimental structural data for p53, we validated our protein 

system by comparing 298K holo simulations with 298K holo NMR data (PDB: 2fej (Cañadillas et 

al. 2006)).  In all three 298K holo simulations, the smaller S1/S3/S8/S5 β-sheet demonstrated 

disruptions in S1 and S5, and one simulation adopted α-sheet secondary structure (Daggett 2006) 

between strands S3 and S8. In all cases, however, the protein retained its general β-sandwich 

structure and no significant β-core disruptions or unfolding occurred.  With the exception of the 

loss of S6 β-structure in one simulation, the larger S6/S7/S4/S9/S10/S2’/S2 β-sheet was 

consistently stable.  One simulation demonstrated a 21Å separation between L1 and H2.  H1 and 

H2 helical structure were maintained in all simulations. 

 The 298K holo wild-type simulations satisfied 89% of experimental NOEs with an 

average violation distance of 2.0 ± 1.9Å.  88% of the NOE violations involved side-chain atoms 

and most violations involved at least one loop residue.  33% of the violations were associated 

with nine residues, eight of which were in the S1 and L1 regions.  These residues had an average 

violation distance of 3.3 ± 2.1Å.  The remaining residues had an average violation distance of 1.4 

± 1.3Å.  Almost half (45%) of the residue pairs containing a violation also contained a satisfied 

NOE.  Average solvent-accessible surface area (SASA) of the 298K holo simulation structures 

and the 298K holo NMR structures was correlated with R = 0.79.  Cα root-mean-squared 
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fluctuation (RMSF) behavior was similar between the NMR structures and the 298K holo 

simulations (Appendix Figure D.1a). 

310K apo WT simulations 

 Per-residue Cα root-mean-squared-fluctuation (RMSF) analysis of the WT 310K apo 

simulations also showed general agreement with the WT 298K holo NMR data (Appendix 

Figure D.1b).  There were small increases in residue fluctuation in the loop region immediately 

preceding S1, the S3/S4 loop, the S9/S10 loop, and H2.  Not surprisingly, the largest increases in 

fluctuation occurred near the apo zinc-binding residues C176, H179, C238 and C242.  The wild-

type simulations had average Cα RMSD values of 4.7 ± 0.2Å, 4.7 ± 0.2Å, 4.5 ± 0.3Å; the values 

for the β-core were 2.8 ± 0.3, 1.9 ± 0.2Å, and 2.6 ± 0.2Å.  The majority of the deviation from the 

starting structure occurred in L1, L2, the S7/S8 loop, L3, and H2 (Appendix Figure D.2). 

 Secondary-structure analysis identified sporadic loss of S1 β content, gain of α-sheet 

secondary structure between S1 and S3 and between S6 and S7, loss of H1 helical content, and 

gain of helical content in the H168 region.  One WT simulation (#2) demonstrated a 20Å 

separation between L1 and H2, disrupting the loop-sheet-helix region while another WT 

simulation (#3) demonstrated a 15Å separation between L2 and L3. 

 The per-residue Cα RMSF and experimental crystallographic B factors were similar to 

the NMR Cα RMSF discussed above (Appendix Figure D.3).  Wild type was compared to the 

crystal structures 2ocj (Y. Wang et al. 2007) (original simulation structure) and 2xwr (Natan et al. 

2011) (wild-type structure with a five-residue extended N-terminus).  Experimental crystal 

structures were found for ten mutants (PDB codes: 1uol (Joerger et al. 2004), 4ibq (Eldar et al. 2013), 
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4ijt (Eldar et al. 2013), 4ijs (Eldar et al. 2013), 2j1y (Joerger et al. 2006), 2bin (Joerger et al. 2005), 3d05 

(Suad et al. 2009), 3d06 (Suad et al. 2009), 3d07 (Suad et al. 2009), 2j21 (Joerger et al. 2006), 2j1w (Joerger et 

al. 2006), 4kvp (Wallentine et al. 2013), and 2j1x (Joerger et al. 2006)).  In some cases, the only mutant 

structures available for comparison also contained the four additional stabilizing mutations 

discussed above (Joerger et al. 2005; Joerger et al. 2006). 

 The Cα RMSF data were generally in agreement between the simulations and the 

crystallographic B factors, although the crystallographic amplitudes were typically lower, 

particularly in the loop regions.  The largest differences occurred in both termini and the L1, L2, 

S7/S8 and, to a lesser degree, L3 loop regions.  Higher simulation Cα RMSF values can be 

rationalized due to the lack of zinc, temperature differences (310K vs 100K), and the different 

environments (solvated vs. crystal).  In Appendix Figure D.3, missing B factor data are circled in 

green and the individual PDB files are labeled with the number of missing residues.  Missing B 

factor data were concentrated in the L1 and L2 loop regions, although the terminal residues were 

occasionally missing data as well. 

 Mutant Analysis 6.4.2

Quad-Stabilized Pseudo-Wild Type Mutant 

 The quad-stabilized pseudo-wild type p53 protein (PDB: 1uol) contains four known 

stabilizing mutations: M133L, V203A, N239Y, and N268D.  The mutant has been shown to 

maintain wild type functionality while being stabilized by 2.65 kcal/mol (Nikolova et al. 1998).  The 

average Cα RMSD values of our simulations were 5.1 ± 0.2Å, 4.1 ± 0.2Å, and 3.8 ± 0.4Å and β-

core Cα RMSD values were 3.1 ± 0.2Å, 1.9 ± 0.2Å, and 1.7 ± 0.2Å.  In every simulation, the 
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S7/S8 loop was the region with the highest Cα RMSD values with average deviations from the 

starting structure of 10.2 ± 1.0Å, 9.3 ± 1.2Å, and 6.1 ± 0.7Å in the three simulations.  Most Cα 

RMSD values were near or below wild-type ranges, although one simulation had values for S1, 

L1, and S3 that exceeded wild-type values by 2-5Å and two simulations had values in L2 that 

exceeded wild-type values by 5Å.  Cα RMSF values were also near or below wild-type ranges 

except for the L1 region which exceeded wild-type values by 2Å and the H1 region which was 

lower than wild-type by approximately 1Å.  Secondary-structure analysis indicated a loss of H1 

helical-structure in one simulation, the loss of S1 β-structure in two simulations, and the gain of 

α sheet between S3 and S8 in one simulation and between S1 and S3 in another simulation.  L1 

and H2 did not separate in any of the three simulations and both L2/L3 separation and L2/S5 

separation distance values were less than wild type. 

 To analyze the effects of the four stabilizing mutations to the p53 protein, we compared 

the average contact-occupancy of WT contacts with the average contact-occupancy of pseudo-

wild type contacts.  From 1706 residue:residue contacts, we selected those contacts whose wild-

type and pseudo-wild-type  occupancy differed by at least 50%. This resulted in 81 contacts, 41 

of which were more stable in pseudo-wild type and 40 of which were more stable in wild type. 

The location of these contacts and the specific residues involved are detailed in Figure 6.2 and in 

Appendix Table D.1 and Appendix Table D.2.  Contact changes were primarily located in the 

loop-sheet-helix region, the DNA-binding region, and the S5/S6 region.  Additional contact 

changes included a few stabilizations across the S1/S3/S8/S5 β-sheet and a few destabilizations 

in the N-terminus of S10 and in the N-terminal loop.  
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19 Disease-Associated Mutants 

 Individual analyses of the 19 destabilizing mutants are included in Appendix D.  In 

general, mutation-location was not indicative of specific structural behaviors.  Over the time-

frames simulated, tertiary-disruptions from the starting structure were common, but significant 

structural loss of the β-core was not observed.  The Cα RMSD of the β-core was always lower 

than the full-protein, and the Cα RMSD of the larger S6/S7/S4/S9/S10/S2’/S2 β-sheet was 

almost always lower than that of the smaller S1/S3/S8/S5 β-sheet.  The largest Cα RMSD values 

were typically seen outside of the β-core, particularly in loops L2 and L3 (as expected without 

the stabilizing zinc-contact, and in agreement with experiment (Butler and Loh 2003)), the loop-

sheet-helix region, the loops in the S5/S6/S7 region, and the S7/S8 loop.  In general, the largest 

Cα RMSF values were in the same regions.  Most of the time, the Cα RMSD and Cα RMSF 

values fell within or very close to wild-type ranges. 

 These same regions also showed the greatest departure from crystal secondary structures.  

As discussed below, novel helical structures were observed in the N-terminal loop, L1, L2 and 

L3 while helical content was often lost in H1.  The β-content of the larger β-sheet was usually 

well-maintained, but the β-content was of the smaller sheet was often lost.  In several instances, 

the N-terminal loop was able to form a novel β-strand aligned antiparallel to S10.  The 

appearance of α-sheet structure, discussed in more detail below, was also a common occurrence.  

Common tertiary-structure changes involved L2 moving away from L3, which disrupted the 

zinc- and DNA-binding regions, and L1 moving away from H2, which disrupted the loop-sheet-

helix region. 
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 Aggregate Analysis 6.4.3

The region around H168 was able to support helical content 

 The region around H168 demonstrated both helical and loop structures; wild type and 12 

mutants (15 simulations in total) demonstrated helical content around H168 for at least 50% of 

the time.  This is consistent with published data; Protein Data Bank DSSP analysis of the H168 

region indicates a loop for the 2ocj WT crystal structure and a 3/10 helix for the 2fej WT NMR 

structure (www.pdb.org). 

The smaller β sheet was more prone to structural disruption than the larger β sheet 

 In general, the smaller S1/S3/S8/S5 β sheet lost more secondary structure than the larger 

S6/S7/S4/S9/S10/S2’/S2 β sheet.  This may have been because the shorter strands in the 

S1/S3/S8/S5 sheet provided fewer stabilizing contacts.  It may also have been due to 

environmental conditions; the average residue in the shorter sheet had 1.4 ± 0.2 times the solvent 

exposure of a residue in the larger sheet.  The solvent-accessible surface of the wild-type crystal 

structure is shown in Figure 6.3. This figure shows that the shorter β sheet is considerably more 

solvent exposed than the larger β sheet, with S1, S3, and S8 all contiguously exposed.  Much of 

the larger β sheet is shielded from solvent by the N-terminal loop, the N-terminal half of L2, the 

S6/S7 loop, and the S9/S10 loop.  The primary points of solvent exposure in the larger β sheet 

are S4, S6 and S10.  S4 is exposed at the N-terminal end near the S3/S4 loop.  S6 is exposed for 

much of its length, but it is exposed on its edge, and S6 itself is the edge of the larger β sheet, so 

in general the strand:strand hydrogen bonds in the larger β sheet are shielded from competitive 

hydrogen bonding from solvent.  S10 is exposed for most of its ten-residue length, from the 
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S9/S10 loop, past S1, and then into the loop-sheet-helix region.   Two of these regions, the S1 

and the loop-sheet-helix regions, demonstrated significant disruption from the original starting 

structure in most of the simulations.  Notably, the point where both S10 and S1 are exposed lies 

at the N268/L111contact point, the same point where the N268D mutation in the pseudo-wild 

type crystal structure establishes a novel hydrogen bond between S10 and S1 (Joerger et al. 2004). 

L1 separation from H2 was a common loop-sheet-helix structural-disruption motif 

 The loop-sheet-helix region of p53 is involved in DNA binding (Cho et al. 1994), and 

disruption of this region could compromise that ability.  K120 and R280 are DNA-contact 

residues in L1 and H2, respectively.  The experimentally-determined distance between the Cα 

atoms of these two residues ranges between 4.9-7.1Å (for crystal structures 2ocj and 1tsr (Cho et 

al. 1994)) and 5.6-9.1Å (for NMR structure 2fej).  Simulations of the wild type, pseudo-wild type, 

and several mutants established stable conformations that placed these atoms between 5Å and 

10Å of each other.  However, the wild-type protein and 13 of the 19 mutants all had at least one 

simulation where these atoms and, by proxy, L1 and H2, were separated by at least 20Å.  The 

stabilized pseudo-wild type did not show such a separation; pseudo-wild-type L1 and H2 

separation was stable at 5Å across all three simulations. 

 In total, there were 17 simulations that adopted a conformation that separated L1 and H2 

by at least 20Å.  There were 122 contacts involving at least one loop-sheet-helix residue that 

were common to all of these conformations; to identify which contacts might be contributing to 

the L1/H2 separation, we compared them against a wild-type simulation with a stable crystal-like 

L1/H2 distance and minimal Cα RMSD in the loop-sheet-helix region (2.4 ± 0.2Å).  Comparing 
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the wild-type contact occupancy with the average contact occupancy across the 17 simulations, 

we identified 47 contacts that had at least a 90% occupancy difference with the wild type.  These 

contacts, common to all L1/H2 separations, are shown in Figure 6.4 and Appendix Table D.3.  

Of these 47 contacts, 46 of them were weakened or lost relative to wild-type, suggesting that 

these contacts may play a role in maintaining the structure of the loop-sheet-helix region by 

holding L1 and H2 in a crystal-like conformation. 

 Another disruption common to the loop-sheet-helix region was the gain of helical content 

in L1, resulting in a distortion of the local structure. Nine simulations, representing nine different 

mutants, adopted L1 helical content between 10% and 100% of the time. 

L2 separation from S5 was a common zinc-region structural-disruption motif 

 The L2 loop region stretches between residues 164 and 194 and contains the H1 helix 

between residues 177 and 180.  Zinc-binding residues C176 and H179 are contained within H1.  

A common structural-disruption motif in this region was a separation of L2, particularly the 

region of L2 C-terminal to H1, from the S5/S6 loop.  To quantify the ubiquity of this separation, 

we measured the distance between the Cα atoms of D186 in L2 and G199 in the S5/S6 loop.  

Experimental distances for these atoms range between 9.8-10.6Å (for crystal structures 2ocj and 

1tsr) and 11.0-15.6Å (for NMR structures 2fej); investigation of the simulations showed that 13 

of the 19 mutants demonstrated a separation between these atoms of at least 20Å in at least one 

simulation.  Neither the wild type nor the stabilized pseudo-wild type demonstrated this degree 

of separation, although the wild-type distances went as high as 19Å. 
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 In total, there were 14 simulations in which L2 and S5 were separated by at least 20Å.  

There were 113 contacts involving at least one L2, S5, or S5/S6 residue that were common to all 

of these conformations.  To identify which contacts might be contributing to the L2/S5 

separation, we compared them against a wild-type simulation with a stable crystal-like L2/S5 

distance and minimal Cα RMSD in the L2 region (3.3 ± 0.3Å).  Comparing the wild-type contact 

occupancy with the average contact occupancy across the 14 simulations, we identified 49 

contacts that had at least a 90% occupancy difference with the wild type.  These contacts, 

common to all L2/S5 separations, are shown in Figure 6.5 and Appendix Table D.4.  48 of the 49 

contacts were weakened or lost relative to wild type; only one contact between L3 and S5 was 

found to be commonly stabilized among the mutants. 

L3 helical-propensity was associated with DNA-region disruption 

 L3 adopted helical conformations in multiple simulations, distorting the DNA-binding 

region.  Residue S241, which is responsible for contacting the DNA backbone (Cho et al. 1994), 

was contained within the novel helical structure; in the R273C mutant (Figure 6.6), the Cα atom 

of R241 was displaced from the starting structure by 7Å and the side chain of that residue was 

reoriented. 

 In most instances, a complete helix did not form, but an alternative α-sheet-like structure 

formed instead.  α-sheet is comprised of residues in alternating αR/αL positions on a 

Ramachandran plot with the backbone carbonyl oxygens aligned uniformly along the strands 

(see discussion below).  In these instances, the residues on either side of the L3 turn aligned in α-

sheet position and the residues in the turn were typically some mix of αR and αL, along with other 
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more distributed loop-like Ramachandran positions.  This MD conformation was similar to the 

2ocj crystal starting-structure and the 2fej NMR structure (Figure 6.7). 

 In total, secondary-structure analysis indicated that four simulations representing four 

different mutants adopted L3 helical structure at least 50% of the time; three of these were right-

handed helices, while one (R273H) entered a right-handed helical turn, reversed direction,  and 

completed a full left-handed turn.  Similar analyses indicated that 34 simulations representing 

wild type, pseudo-wild type, and 18 of the 19 mutants adopted α sheet-like structure in the L3 

turn at least 50% of the time.  The only mutant not represented was V143A which fell below the 

threshold at 21%. 

Most proteins adopted stable α-sheet content 

 The wild type, pseudo-wild type, and 18 of the 19 mutants adopted α-sheet in at least one 

simulation for at least 10% of the time (the remaining F134L mutant adopted a novel N-terminal 

α-strand for only 1% of the time, discussed below).  α sheets were typically three residues in 

length, two strands wide and centered around residues R110 or L111 in S1 and Q144 or L145 in 

S3 (Figure 6.8).  These two-strand, three-residue sheets typically showed two residues in αR/αL 

positioning and one residue in β position on a Ramachandran plot.  Although not as common, 

some α-sheets were able to elongate beyond the original β-strand residues; one G245S α-sheet 

extended from residue 109 to residue 113 in S1 and from residue 144 to residue 149 in S3 

(Figure 6.9).  α sheets were also able to extend to strands S8 and S5, although these were less 

frequent, and α-sheet residues were able to align while oriented in either direction (left or right 

with respect to the α-strand).  
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 In addition to the S1/S3/S8/S5 α sheet, α-strand conformation was observed at the N-

terminus, in L1, in L3 (discussed above), in the S7/S8 loop, and between strands S6 and S7.  

This latter case occurred less frequently; 8 mutants (including M237I, which did not exhibit 

S1/S3 α-sheet) demonstrated S6/S7 α-sheet, but all less than 35% of the time.  One wild-type 

simulation, however, exhibited S6/S7 α sheet for 91% of the time (Figure 6.10). 

 To establish that the α-sheets were legitimate constructs and not simply unstable residues 

moving between structured and unstructured conformations, we looked at the last 25 ns of the 

simulations and, for each α-sheet residue pair (e.g. L111:Q144), we correlated the per-

picosecond secondary-structure assignments to α-conformation.  If two α-strand residues were 

acting as a single α-sheet, they should be in α conformation, or not, at every picosecond; if they 

were simply unstructured, there should be no correlation.   We also calculated the percentage of 

time that the residues spent in α-conformation and (with the exception of the F134L mutant) only 

analyzed those α-sheets that were present for at least 10% of the time.  A summary of the major 

identified α-sheets is shown in Table 6.1, aggregated into inter-secondary-structure α-sheet 

contacts. 

 With the exception of L3, all α-sheets had average structural correlation values R ≥ 0.90.  

Most α-sheets were in the S1/S3/S8 region, accompanied by several less-frequent occurrences 

and several single-mutant α-sheets.  All of them, however, had strong structural correlations 

between the two α-strands. 

 The α-sheet occurring in the turn in the L3 loop had a lower average correlation 

coefficient (R = 0.74 ± 0.22) than the other regions, despite being present for more of the time 
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and for more of the mutants than any of the other regions.  The N-terminal α-sheet was only 

present for 1% of the time in a single mutant, but with a structural correlation coefficient of R = 

0.91.  This sheet was the only α-sheet involving a novel piece of secondary structure and the only 

sheet to convert a residue in the larger β-sheet.  It is also worth noting that the converted S10 

residue G266 neighbors the rescue-mutation residue N268 (Figure 6.11). 

 A cascade of rotations and rearrangements was common during α-sheet formation (Figure 

6.9).  This sequence often began with an initiating residue, such as L111, rotating into an α-sheet 

position and creating an unstable situation for a residue on an adjacent strand, such as Q144.  If 

the initiating residue was sufficiently stable in this position, the adjacent residue rotated into a 

complementary α-position.  In a three-stranded α-sheet such as that adopted by the Y220C 

mutant, this cascade of rotations continued into the third strand.  During this cascade, the strands 

often rearranged to optimize their relative positions; in the G245S mutant (Figure 6.9), this was 

achieved by S1 and S3 sliding past each other almost one full residue length. 

The N-terminal residues were capable of forming novel secondary structures 

 In most of the simulations, the residues N-terminal to S1 remained unstructured.  As 

discussed above, however, the N-terminal loop was capable of forming α-sheet with S10.  In 

addition to this novel α-content, 11 simulations representing 8 different mutants adopted novel β-

content in the N-terminal residues for at least 10% of the time and as much as 83% of the time.  

These non-native strands were typically centered on Y103, ran anti-parallel to S10, and were 

three to four residues in length. Analysis of ϕ/ψ angles indicated that T102 and Y103 were 

usually in the β-quadrant of the Ramachandran plot while Q104 was less structured as the 
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residues curved around to form S1.  An example of a novel N-terminal β strand is shown in 

Figure 6.12. 

 In addition to creating a novel β-strand, the N-terminal loop was also capable of adopting 

helical character.  Two simulations adopted novel helices from residues 104-108 for a significant 

percentage of time (M237I: 48% of the time, R273C: 86% of the time) (Figure 6.13).  Other 

mutants demonstrated N-terminal helical-content less frequently, typically < 5% of the time. 

Aggregate contact analysis of all destabilizing mutant simulations identified three primary 

regions of disruption 

 Appendix Figure D.4a shows a histogram of aggregated contact-difference data from all 

57 (3x19) simulations of destabilizing p53 mutants.  In general, most contacts retained wild type-

like contact occupancies.  The top two most destabilized contacts (L114:T125 and L114:Y126) 

overlapped with the pocket discovered by Wassman et al (Wassman et al. 2013) that  was shown to 

be capable of stabilizing the R175H tumorigenic mutant.  Appendix Figure D.4b shows the 31 

contacts whose occupancy-difference relative to wild type was > 0.3 or < -0.3 (the left and right 

extremes of Appendix Figure D.4a).  Analysis of these data identified three primary disruption-

regions, overlapping with the secondary- and tertiary-structure analyses discussed above: the 

loop-sheet-helix region, the N-terminal loop, and the L2/S8/S5/S6/S7 region.  Contacts in these 

regions whose simulations demonstrated at least 50% occupancy loss relative to wild type 

included 100:252 (12 of 19 mutants), 114:125 and 114:126 (16 of 19 mutants), 200:232 (14 of 19 

mutants), 171:249 (15 of 19 mutants), and 165:249 (16 of 19 mutants). 
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6.5 Discussion 

 α-Sheet May Play a Role in p53 Aggregation 6.5.1

 Cancer is in some respects an amyloid disease; p53 mutations have been shown to be 

statistically correlated with p53 accumulation in tumor cells and long-term patient survival is 

statistically lower with aggregating mutants (Xu et al. 2011).  Aggregation of p53 is accelerated by 

increased temperature (Bullock et al. 1997), increased pressure (Ishimaru et al. 2003), destabilizing 

mutations (Xu et al. 2011; Bullock et al. 1997), demetallation (Butler and Loh 2003), denaturants such as 

urea (Bullock et al. 1997), and inflammatory agents such a formaldehyde (Lasagna-Reeves et al. 2013); 

aggregation can also be induced in native wild-type protein by seeding it with mutant p53 or with 

wild-type p53 that has been converted to an amyloidogenic conformation (Ano Bom et al. 2012).  

Accordingly, the dominant-negative effect long known to be present with p53 mutants is 

hypothesized to be at least partly attributable to aggregation-prone mutant p53 converting native 

wild-type p53 to an aggregating species (Bullock and Fersht 2001; Xu et al. 2011). 

 p53 can also induce aggregation in other proteins, namely the p53 analogues p63 and p73 

(Xu et al. 2011), suggesting that there is a common aggregation mechanism at work that is not p53-

specific.  This is further supported by the report that the A11 antibody binds soluble p53 (Levy et 

al. 2011); the A11 antibody is known to bind multiple amyloidogenic targets, in particular the 

soluble oligomeric forms, and the inclusion of the p53 protein into that set supports the 

hypothesis that there is a common aggregation mechanism that generalizes beyond the p53 

family (Glabe and Kayed 2006). 
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 Based on MD simulations of aggregating proteins, we have hypothesized that the general 

oligomeric aggregation mechanism involves the α-sheet secondary structure (Armen, DeMarco, et al. 

2004; Armen, Alonso, et al. 2004; Daggett 2006), which was predicted by Pauling and Corey and termed 

‘polar-pleated sheet’ (Pauling and Corey 1951).  Although rare, small regions of α-strand have been 

demonstrated experimentally (Di Blasio et al. 1994; Daggett 2006).  α-sheet has been identified in MD 

simulations of the aggregating proteins transthyretin (TTR), β2-microglobulin, human prion 

protein, lysozyme, and polyglutamine (Armen, Alonso, et al. 2004; Daggett 2006; Armen, DeMarco, et al. 

2004).  α-sheet was identified again in the p53 simulations presented here; notably, both TTR and 

β2-microglobulin are β-sandwich proteins in the same fold family as p53.   In fact, alignment of 

the p53 crystal structure (PDB: 2ocj) with the TTR crystal structure (PDB: 1tta (Hamilton et al. 

1993)) (DeepAlign (S. Wang et al. 2013)) indicates that the two primary α sheet-prone strands in p53 

(strands S1and S3) align with the two primary α sheet-prone strands in TTR (strands G and A, 

respectively) (Figure 6.14).  α-sheets also demonstrated solvent-exposed charge separation, one 

of the structural characteristics hypothesized to facilitate aggregation (Daggett 2006) (Figure 6.9).  

Additionally, previously published in silico analyses predicted that many of the putative p53 α-

sheet residues presented here are also aggregation-prone (Rangel et al. 2014).  Consequently, we 

hypothesize that α-sheet may play a role in p53 dysfunction.   

 Recent work by Hopping et al (Hopping et al. 2014) offers supporting experimental evidence 

for the presence of α-sheet in  toxic oligomeric structures.  Hopping et al designed peptides with 

α-sheet structure complementary to the hypothesized oligomer α-sheet structure, reasoning that 

the complementary structures should bind and inhibit amyloidosis.  Biophysical measurements of 
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the designed peptides are consistent with the presence of α-sheet, and the peptides successfully 

inhibit aggregation of both transthyretin and β-amyloid peptide, preferentially binding the toxic 

species over the non-toxic species of those proteins.   

 Hopping et al also showed that α-sheet has a strong Fourier Transform Infrared  (FTIR) 

absorbance band around 1680 cm-1 and a weaker absorbance band around 1640 cm-1, making it 

separable from β-sheet, α-helix, and turns.  With this in mind, it is possible that previously 

published work has measured but not identified the presence of α-sheet in amyloid analysis.  For 

example, Xu et al published FTIR difference spectra for one non-aggregating p53 mutant and 

three aggregating mutants (Xu et al. 2011). Relative to wild type, the aggregating species has a 

large absorbance band at 1683 cm-1 and a smaller absorbance band at 1615 cm-1 whereas the 

non-aggregating species shows essentially no difference.  The authors attribute the 1683 cm-1 

absorbance band to an aggregation-correlated increase in β-structure; what we found interesting 

was that the strong high-frequency and weak low-frequency absorption pattern is consistent with 

the α-sheet FTIR spectra published by Hopping et al, supporting the hypothesis that α-sheet 

plays a role in p53 aggregation.  If α-sheet is present, aggregation inhibitors like those designed 

by Hopping et al may represent a new class of cancer therapeutics. 

 Cancer has only recently begun to be considered an amyloid disease and more work is 

needed before the role of α-sheet, if any, becomes clear.  However, between existing 

experimental data, in silico predictions, and engineered α-sheet binders, there is increasing 

evidence for a common aggregation-prone p53 species whose conformation differs from the 
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expected β-sheet structure.  Our simulations, in conjunction with the previous work described 

above, offer an atomic-level hypothesis for the structure of this species. 

 Common structural disruptions suggest the possibility of common structural rescue 6.5.2
mechanisms 

 As reported above, the largest structural disruptions observed in the simulations were 

common to many, and sometimes most, of the analyzed proteins, including both the wild type 

and the pseudo-wild type.  A similar finding was observed by Wassman et al (Wassman et al. 2013).  

These observations suggest that 1) p53 has native disruption propensities that were exercised 

and/or exacerbated by the destabilizing mutations and 2) future cancer therapies may be able to 

address multiple p53 mutations at once by addressing common structural disruptions, or, as 

suggested by the aggregation inhibitors discussed above, by addressing common structural-

disruption pathways. 

 Several pieces of experimental evidence support our finding that both the wild type and 

mutant proteins express the same structural disruptions.  The first was reported by Butler and 

Loh (Butler and Loh 2003) who found that zinc is 30% disassociated from wild type at 310K.  This 

suggests that the physiologically-relevant native state of p53 involves a significant amount of 

apo protein.  NMR experiments showed that this apo conformer was structurally different from 

the native holo conformer; not only was it structurally different, it, like many reported mutants, 

was destabilized by 3 kcal/mol and was capable of inducing aggregation in wild-type p53.  

Moreover, the zinc-region mutations capable of destabilizing the holo protein by 2-4 kcal/mol 

only destabilized the apo protein by fractional amounts.  If demetallation resulted in different 
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structural disruptions than the mutations, one would expect the mutation to have at least a 

partially additive destabilizing effect.  This effect was not seen in the zinc-region mutants, 

suggesting that the apo wild type and the apo zinc-region mutations have similar disruption 

patterns.  Additive disruption was, however, seen in the DNA-region mutant R282Q, suggesting 

that the zinc-region disruption found in apo wild type and the loop-sheet-helix region disruption 

found in apo R282Q mutant have at least partially-different disruption mechanisms.  

 A second piece of evidence comes from Ishimaru et al (Ishimaru et al. 2003) who used high-

pressure, low-temperature  denaturation to show that wild-type p53 could be converted to a 

stable, aggregation-prone conformer whose aggregation and denaturing characteristics were very 

similar to the R248Q mutant.  Chemical-shift analysis showed that this conformer had altered 

structure in many of the same regions as the simulations reported here, with the largest shift in 

the S1/L1 region followed by smaller shifts in the S5/S6/S7 region, the S9 region, and the H2 

region.  Further support was presented by Ano Bom et al whose data indicated that p53 wild type 

and the R248Q mutant demonstrate similar molten-globule states when exposed to low pH (Ano 

Bom et al. 2010) and by Gogna et al (Gogna et al. 2012) whose experiments showed that wild-type 

p53 in hypoxic solid-tumor environments had similar immunoprecipitation results to mutant p53. 

 Additional evidence for a common disrupted conformational-state was reported by 

Baroni et al (Baroni et al. 2004) who showed that suppressor-mutations at codons 235, 239, and 240 

were capable of suppressing the effects of 16 of the 30 most common p53 mutations, suggesting 

that there is a commonly-rescuable conformer endemic to many p53 mutants.  The final piece of 

evidence was reported by Ano Bom et al (Ano Bom et al. 2012) who showed that wild-type and 
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mutant aggregates were equally cytotoxic.  Taken together, these data suggest that there is a 

common toxic conformation and both the wild-type and the mutant proteins are capable of 

adopting it, even if the pathways to do so vary from protein to protein. 

 There is also evidence that supports the notion of a common rescue-mechanism.  It has 

been shown that specific mutations can suppress the disruptive effects of multiple p53 mutations 

(Brachmann et al. 1998) and, as discussed above, that some suppressor-mutation locations hold more 

multi-mutant stabilization-potential than others (Baroni et al. 2004).  Indeed, Baroni et al speculated 

that there was a common rescue-mechanism because the suppressor mutations at codons 235, 

239, and 240 that were capable of rescuing more than half of the tested mutants were dominated 

by only one or two amino acid changes.  In addition to mutations, small molecules, similar in 

scope to suppressor-mutant side chains, have been shown to be effective at stabilizing and 

rescuing p53 mutations (Boeckler et al. 2008; Wilcken et al. 2012; Wassman et al. 2013).  There are also 

examples of multi-mutant p53 rescue-compounds such as PRIMA-1 (Bykov et al. 2002) (which has 

proceeded on to clinical trials (Lehmann et al. 2012)) and p53R3 (Weinmann et al. 2008) and, as 

discussed above, aggregation inhibitors capable of addressing multiple proteins (Hopping et al. 

2014).  In addition to rescuing mutant p53, it has been shown that wild-type p53, having 

undergone mutant-like conformational changes in hypoxic solid tumor environments, can re-

assert native wild-type conformations by re-oxygenation or by chaperone-stabilization by native 

wild-type p53 (Gogna et al. 2012).  Taken together, these data support our findings that p53 mutants 

share common structural-disruption motifs both among themselves and with wild type and 

suggest that a common therapeutic approach to multiple p53 mutations is possible.  They also 
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suggest that targeting a relatively small set of structural-disruption motifs rather than a multitude 

of specific mutants may be an effective approach for cancer-drug research. 

6.6 Conclusions 

 Our goal in performing these simulations was to offer specific, atomic-resolution data 

complementary to experimental data.  To this end, we have performed molecular dynamics 

simulations of wild-type p53 and 20 mutants and provided dynamic, atomic-level details not 

accessible by experiment.  Based on similar disruption tendencies observed for the p53 wild type 

and mutants, we propose that p53 mutants can adopt one or more common tumorigenic 

conformations and that at least one of those conformations - α-sheet - plays a role in p53 

aggregation.  We also propose that drug-design efforts targeting these common tumorigenic 

conformations will advance the search for single-drug multi-mutant cancer therapies. 
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Table 6.1: α-sheet Summary 
 NT/S10 S1/S3 S3/S8 S8/S5 L1 

Loop 
S6/S7 S7/S8 

Loop 
L3 Loop 

R£ 0.91 0.95 ± 
0.11 

1.00 ± 
0.00 

1.00 0.97 1.00 ± 
0.00 

0.99 0.74 ± 
0.22 

% Time† 1 71 ± 28 73 ± 28 23 25 37 ± 29 23 84 ± 25 
Simulations 1 23 6 1 1 5 1 38 
Mutants‡ 1 16 5 1 1 4 1 15 
WT no yes no no no yes no yes 
Quad no yes yes yes no no no yes 
Notes§ F134L   G245S V157F  L145Q  
 

£The average and standard deviation values were calculated using the correlation coefficients 
from the α-sheets in each group.  Each individual correlation coefficient was calculated at 
picosecond resolution between 75 ns and 100 ns (n=25,000).  †α sheets were required to be 
present for at least 10% of the time.  Because of its relevance to the α-sheet analysis and because 
of its high degree of structural correlation, the F134L NT/S10 α sheet is included here despite 
only being present 1% of the time. ‡The pseudo-wild type is called out separately and is not 
included in this group. §Mutant is called out if the α-sheet appeared in only one simulation. 
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Appendix A  

SUPPLEMENTARY MATERIALS FOR DIVE: A GRAPH-

BASED VISUAL ANALYTICS FRAMEWORK FOR BIG DATA 

The contents of this appendix were supplementary to a previously-published paper in the journal 

IEEE Computer Graphics & Applications (Rysavy et al. 2014). 

A.1 Ontologies 

An ontology is a semantically and syntactically formal structure for organizing information 

(Horrocks 2008).  The need for formal semantics and syntax has grown in recent decades as the size 

and complexity of organized datasets have grown.  In particular, the need for such formalisms is 

driven by the desire to handle these large and complex datasets programmatically.  Ontologies 

enforce a strict formalism that guarantees structured information to be both meaningful and 

extensible; once established, such information can be clearly reasoned with, built upon and 

discussed.  An ontology can be represented as a graph comprised of nodes representing specific 

concepts and edges representing specific relationships.  

Efforts like the semantic web hold the promise of establishing a global formal ontology 

of everything.(Horrocks 2008).  While desirable, there is still a great deal of work to be done in 

smaller, more localized knowledge domains; in biology, for example, over 300 ontologies are 

currently indexed at the National Center for Biomedical Ontology’s BioPortal (Whetzel et al. 2011; 

Musen et al. 2012; Schuurman and Leszczynski 2008)  (http://bioportal.bioontology.org).  Projects like 



178 

 

 

BioPortal demonstrate that ontologies are becoming increasingly popular frameworks for 

structured information, and that modern data analysis tools must be capable of handling large  

A.2 Molecular Dynamics 

Molecular dynamics (MD) simulation is a computational method for studying the dynamic 

behaviors of molecules (Toofanny and Daggett 2012).  This method is commonly used to study 

protein structure and dynamics.   Proteins are complex molecules comprised of amino acids 

(residues), which are themselves comprised of atoms.  Contacts exist between atoms when they 

are within a defined distance from one another. 

Proteins are responsible for much of the functional and structural activity in living tissue; 

protein function within the human body ranges from muscular structure to metabolism to 

immune response to reproduction.  Proteins are fundamental to the human body and 

understanding how they work is critical to advancing the science of human health.  An 

interesting facet of protein biology is that structure equals function; what a protein does and how 

it does it is intrinsically tied to a protein’s three-dimensional structure (see Appendix Figure 

A.1). 

 During an MD simulation, we simulate interatomic forces to predict motion among the 

atoms that comprise a protein and its environment (see Appendix Figure A.1).  In most cases, the 

environment consists of water molecules, although this can be altered to investigate different 

phenomena.  The physical simulation is calculated using Newtonian physics; at specified time 

intervals, the simulation state is saved, resulting in a series of structural snapshots.  Together, this 
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series is referred to as a trajectory and is reflective of the protein’s natural behavior in an 

aqueous environment. 

MD is useful for three primary reasons.  First, like many in silico techniques, it allows 

virtual experimentation; protein structures and interactions can be simulated without the cost or 

risk incurred by laboratory experiments.  Second, modern computing techniques allow MD 

simulations to be run in parallel, enabling virtual high-throughput experimentation. Third, 

molecular dynamics simulation is the only protein analysis method that produces sequential 

time-series structures at both high spatial and high temporal resolution.  These high-resolution 

trajectories can show us how proteins move, a critical aspect of their functionality.  However, 

MD simulations can produce datasets considerably larger than what most structural biology tools 

are designed to handle.  As computers become more powerful, MD simulations are increasing in 

size and resolution, and the logistical challenges of storing, analyzing, and visualizing MD data 

are requiring researchers to consider new analysis techniques. 

 In the Daggett laboratory at the University of Washington, we study protein dynamics as 

part of the Dynameomics project (Van der Kamp et al. 2010).  The Dynameomics project 

characterizes the dynamic behaviors and folding pathways of topological classes of all known 

protein structures.  So far, this effort has generated hundreds of terabytes of data consisting of 

thousands of simulations and millions of structures, as well as their associated analyses.  These 

data are stored in a distributed SQL data warehouse; this warehouse currently holds 104 as many 

protein structures as the Protein Data Bank (Bernstein et al. 1977), the primary repository for 
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experimentally-characterized protein structures.  Dynameomics is currently the largest database 

of protein structures in the world. 
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Appendix Figure A.1 Process of solvating and simulating a protein using MD. 
(1) All-atom depiction of a protein with a transparent surface. (2) Same protein solvated and 
shown in a water box. (3) Three structures of interest selected from a trajectory containing over 
51,000 frames.  The red area shows the functional site of the protein and how it dynamically 
closes over time. 
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Appendix B  

US PATENT APPLICATION: METHODS FOR EFFICIENT 

STREAMING OF STRUCTURED INFORMATION 

 A patent application entitled “Methods for Efficient Streaming of Structured 

Information” was filed with the US Receiving Office on June 27, 2014.  The technologies 

discussed in this patent were invented over the course of developing DIVE.  The US patent 

application number was PCT/US14/44683.  The listed inventors were Dennis Bromley, Steven 

Rysavy, and Valerie Daggett.  As discussed above, Steven Rysavy and I were co-first authors of 

DIVE.  As a result, his PhD dissertation also contains material from this patent application.  In 

addition to sharing the overall design of the DIVE framework, my primary contributions were in 

the core DIVE kernel and encompassed such technologies as the ontological data structure, μ-

scripting, the DIVE pipeline and associated pipeline-plugin technologies, the DIVE GUI, the 

majority of the visualization plugins, interactive SQL, data-streaming protocols, and internal 

analytical software-libraries such as mathematical libraries and signal processing libraries.  The 

contents of the DIVE-technology patent application are enclosed here. 

 Images and written content contained in the patent application were originally published 

in the two DIVE publications (Bromley et al. 2014; Rysavy et al. 2014), the contents of which 

are contained in Chapter 2 and Chapter 3. 
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MBHB Case No. 14-883-PCT  

UW Case No. 46518.02WO2 

 

METHODS FOR EFFICIENT STREAMING OF STRUCTURED INFORMATION 

 

CROSS-REFERENCE TO RELATED APPLICATIONS 

[0001] The present application claims priority to U.S. Provisional Patent Application No. 

61/840,617, entitled “Methods for Efficient Streaming of Structured Information”, filed June 28, 

2013, which is entirely incorporated by reference herein for all purposes.  

STATEMENT OF GOVERNMENT RIGHTS 

[0002] This invention was made with government support under Grant Nos. 5T15LM007442 

and GM50789, awarded by the National Institutes of Health. The government has certain rights 

in the invention. 

BACKGROUND 

[0003] The advent of massive networked computing resources has enabled virtually 

unlimited data collection, storage and analysis for projects such as low-cost genome sequencing, 

high-precision molecular dynamics simulations and high-definition imaging data for radiology, 

to name just a few examples. The resulting large, complex datasets known as “big data” make 

data processing difficult or impossible using database management software from one computer. 

Big data are becoming increasingly present in many aspects of society and technology including 



184 

 

 

health care, science, industry and government. Many of these large, complex data sets are best 

understood when analyzed in a structured manner.  

[0004] One such structured manner is to use an ontology for a data set, which is a structured 

representation of the data in that data set. Although not new per se, the use of ontologies is 

growing in the presence of modern computer technologies. For example, the semantic web is a 

very compelling, yet nascent and underdeveloped, example use of ontologies for data sets. The 

paradigms of big data and ontologies are likely to become more important. These paradigms 

have worked well together, such as in the field of visual analytics, which uses interactive visual 

techniques to interact with big data.  

[0005] Ontologies also enable formal analysis, which helps with semantic correctness, 

interoperability, and can bring much needed insight. Ontologies can be applied to complex, 

multi-dimensional, and/or large data sets. But the development of data-specific, formal 

ontologies can be very difficult.  

SUMMARY 

[0006] In one aspect, a method is provided. A computing device receives data from one or 

more data sources. The computing device generates a data frame based on the received data. The 

data frame includes a plurality of data items. The computing device determines a data ontology, 

where the data ontology includes a plurality of datanodes. The computing device determines a 

plurality of data pins. A first data pin of the plurality of data pins includes a first reference and a 

second reference. The first reference for the first data pin refers to a first data item in the data 

frame and the second reference for the first data pin refers to a first datanode of the plurality of 
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datanodes. The first datanode is related to the first data item. The computing device obtains data 

for the first data item at the first datanode of the data ontology via the first data pin. The 

computing device provides a representation of the data ontology. 

[0007] In another aspect, a computing device is provided. The computing device includes a 

processor and a tangible computer readable medium. The tangible computer readable medium is 

configured to store at least executable instructions. The executable instructions, when executed 

by the processor, cause the computing device to perform functions including: receiving data from 

one or more data sources; generating a data frame based on the received data, the data frame 

including a plurality of data items; determining a data ontology, where the data ontology 

includes a plurality of datanodes; determining a plurality of data pins, where a first data pin of 

the plurality of data pins includes a first reference and a second reference, where the first 

reference for the first data pin refers to a first data item in the data frame, where the second 

reference for the first data pin refers to a first datanode of the plurality of datanodes, and where 

the first datanode is related to the first data item; obtaining data for the first data item at the first 

datanode of the data ontology via the first data pin; and providing a representation of the data 

ontology. 

[0008] In another aspect, a tangible computer readable medium is provided. The tangible 

computer readable medium is configured to store at least executable instructions. The executable 

instructions, when executed by a processor of a computing device, cause the computing device to 

perform functions including: receiving data from one or more data sources; generating a data 

frame based on the received data, the data frame including a plurality of data items; determining 
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a data ontology, where the data ontology includes a plurality of datanodes; determining a 

plurality of data pins, where a first data pin of the plurality of data pins includes a first reference 

and a second reference, where the first reference for the first data pin refers to a first data item in 

the data frame, where the second reference for the first data pin refers to a first datanode of the 

plurality of datanodes, and where the first datanode is related to the first data item; obtaining data 

for the first data item at the first datanode of the data ontology via the first data pin; and 

providing a representation of the data ontology. 

[0009] In another aspect, a device is provided. The device includes means for receiving data 

from one or more data sources; means for generating a data frame based on the received data, the 

data frame including a plurality of data items; means for determining a data ontology, where the 

data ontology includes a plurality of datanodes; means for determining a plurality of data pins, 

where a first data pin of the plurality of data pins includes a first reference and a second 

reference, where the first reference for the first data pin refers to a first data item in the data 

frame, where the second reference for the first data pin refers to a first datanode of the plurality 

of datanodes, and where the first datanode is related to the first data item; means for obtaining 

data for the first data item at the first datanode of the data ontology via the first data pin; and 

means for providing a representation of the data ontology. 

 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0010] Figure 1 shows a high-level representation of the DIVE system receiving data from 

data sources, in accordance with an embodiment.  
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[0011] Figure 2 shows an example architecture for the DIVE system, in accordance with an 

embodiment.  

[0012] Figure 3 shows a pipeline between data sources and the DIVE system, in accordance 

with an example embodiment. 

[0013] Figure 4 shows a DIVE object parser having converted a software object hierarchy to 

a DIVE data structure, in accordance with an embodiment.  

[0014] Figure 5 shows a scenario where the DIVE object parser has translated a code 

assembly into two ontologies, in accordance with an example embodiment. 

[0015] Figure 6 shows examples of interactive SQL streaming and pass-through SQL 

streaming, in accordance with an example embodiment. 

[0016] Figure 7 shows an example protein simulated using molecular dynamics, in 

accordance with an embodiment. 

[0017] Figure 8 shows a data flow using the DIVE system for the Dynameomics project, in 

accordance with an example embodiment. 

[0018] Figure 9 shows an example view of a Protein Dashboard, in accordance with an 

embodiment.  

[0019] Figures 10A and 10B show visualizations related to the respective p53 and SOD1 

proteins provided by the DIVE system, in accordance with an embodiment. 

[0020] Figure 11 shows example DIVE pipelines, in accordance with an embodiment. 

[0021] Figure 12 is a block diagram of an example computing network, in accordance with 

an embodiment. 
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[0022] Figure 13A is a block diagram of an example computing device, in accordance with an 

embodiment. 

[0023] Figure 13B depicts an example cloud-based server system, in accordance with an 

embodiment. 

[0024] Figure 14 is a flow chart of an example method, in accordance with an embodiment.  

 

DETAILED DESCRIPTION 

Efficient Streaming of Structured Information 

[0025] Many modern large-scale projects, such as scientific investigations for bioinformatics 

research, are generating big data. The explosion of big data is changing traditional scientific 

methods; instead of relying on experiments to output relatively small targeted datasets, data 

mining techniques are being used to analyze data stores with the intent of learning from the data 

patterns themselves. Data analysis and integration in large data storage environments can 

challenge even experienced scientists.  

[0026] Many of these large datasets are complex, heterogeneous, and/or incomplete. Most 

existing domain-specific tools designed for complex heterogeneous datasets are not equipped to 

visually analyze big data. For example, while powerful scientific toolsets are available, including 

software libraries such as SciPy, specialized visualization tools such as Chimera, and scientific 

workflow tools such as Taverna, Galaxy, and the Visualization Toolkit (VTK), some toolsets 

cannot handle large datasets. Other toolkits have not been updated to handle recent advances in 

data generation and acquisition. 



189 

 

 

[0027] DIVE (Data Intensive Visualization Engine) was designed and developed to help fill 

this technological gap. DIVE includes a software framework intended to facilitate analysis of big 

data and reduce the time to derive insights from the big data. DIVE employs an interactive, 

extensible, and adaptable data pipeline to apply visual analytics approaches to heterogeneous, 

high-dimensional datasets. Visual analytics is a big data exploration methodology emphasizing 

the iterative process between human intuition, computational analyses and visualization. DIVE’s 

visual analytics approach integrates with traditional methods, creating an environment that 

supports data exploration and discovery. 

[0028] DIVE provides a rich ontologically expressive data representation and a flexible 

modular streaming-data architecture or pipeline.  The DIVE pipeline is accessible to users and 

software applications through an application programming interface, command line interface or 

graphical user interface. Applications built on the DIVE framework inherit features such as a 

serialization infrastructure, ubiquitous scripting, integrated multithreading and parallelization, 

object-oriented data manipulation and multiple modules for data analysis and visualization. 

DIVE can also interoperate with existing analysis tools to supplement its capabilities by either 

exporting data into known formats or by integrating with published software libraries. 

Furthermore, DIVE can import compiled software libraries and automatically build native 

ontological data representations, reducing the need to write DIVE-specific software. From a data 

perspective, DIVE supports the joining of multiple heterogeneous data sources, creating an 

object-oriented database capable of showing inter-domain relationships.  
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[0029] A core feature of DIVE’s framework is the flexible graph-based data representation. 

DIVE data are stored as datanodes in a strongly typed ontological network defined by the data. 

These data can range from a set of unordered numbers to a complex object hierarchy with 

inheritance and well-defined relationships. Datanodes are software objects that can update both 

their values and structures at runtime. Furthermore, the datanodes’ ontological context can 

change during runtime. So, DIVE can explore dynamic data sources and handle the impromptu 

user interactions commonly required for visual analysis. 

[0030] Data flow through the system explicitly as a set of datanodes passed down the DIVE 

pipeline or implicitly as information transferred and transformed through the data relationships. 

Data from any domain may enter the DIVE pipeline, allowing DIVE to operate on a wide variety 

of datasets, such as, but not limited to, protein simulations, gene ontology, professional baseball 

statistics, and streaming sensor data.  

[0031] Besides simply representing the conceptual structure of the user’s dataset, DIVE’s 

graph-based data representation can effectively organize data. For example, using DIVE’s object 

model, ontologies from disparate sources can be merged. Each ontology can be represented as 

DIVE datanodes and dataedges. Then, the ontologies can be merged through property 

inheritance. This allows ontologies to inherit definitions from each other, resulting in a new, 

merged ontology compatible with multiple data sources and amenable to new analytical 

approaches. 

[0032] DIVE includes a DIVE object parser with the ability to parse a .NET object or 

assembly distinct from the DIVE framework. Use of the DIVE object parser can circumvent 
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addition of DIVE-specific code to existing programs. Further, the DIVE object parser can 

augment those programs with DIVE capabilities such as graphical interaction and manipulation. 

In one example (the Dynameomics API), the underlying data structures and the streaming 

functionality were integrated into a Protein Dashboard tool using the DIVE object parser without 

modifying the existing API code base, enabling reuse of the same code base in the DIVE 

framework and in Structured Query Language (SQL) Common Language Runtime 

implementations and other non-DIVE utilities. 

[0033] DIVE supports two general techniques for data streaming: interactive SQL and pass-

through SQL. Interactive SQL can effectively provide a flexible visualization frontend for an 

SQL database or data warehouse. However, for datasets not immediately described by the 

underlying database schema or other data source, the pass-through SQL approach can be used to 

stream complex data structures. Use of the pass-through SQL approach can enable use of very 

large scale datasets. For example, the pass-through SQL approach allowed DIVE to make 

hundreds of terabytes of structured data immediately accessible to users in a Dynameomics case 

study. These data can be streamed into datanodes and can be accessed either directly or indirectly 

through the associated ontology (for example, through property inheritance). Furthermore, these 

data are preemptively loaded via background threads into backing stores; these backing stores 

are populated using efficient bulk transfer techniques and predictively cache data for user 

consumption. 

[0034] Finally, when the object parser is used with pass-through SQL, methods as well as 

data are parsed. So, the datanodes can access native .NET functionality in addition to the 
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streaming data. Preexisting programs also can benefit from DIVE’s streaming capabilities. For 

example, Chimera can open a network socket to DIVE’s streaming module. This lets Chimera 

stream MD data directly from the Dynameomics data warehouse.  

[0035] Overall, DIVE provides an interactive data-exploration framework that expands on 

conventional analysis paradigms and self-contained tools. DIVE can adapt to existing data 

representations, consume non-DIVE software libraries and import data from an array of sources. 

As research becomes more data-driven, fast, flexible big data visual analytics solutions, such as 

the herein-described DIVE, can provide a new perspective for projects using large, complex data 

sets.  

 

DIVE Architecture  

[0036] Figure 1 shows a high-level representation of the DIVE system 100 receiving data 

from data sources 110, in accordance with an embodiment. DIVE system 100 can provide 

interaction, interoperability, and visualization of data received from data sources 110. DIVE 

system 100 includes an API whose primary component is the data pipeline, for streaming, 

transforming, and visualizing large, complex datasets at interactive speeds. The pipeline can be 

extended with plug-ins; each plug-in can operate independently on the data stream of the 

pipeline. 

[0037] Figure 1 shows example data sources 110 can be accessed using the SQL format.  

Data sources 110 can include both local data sources (e.g., a data source whose data is stored on 

a computer running software for DIVE system 100) and remote data sources, such as databases 
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and files with data.   In some embodiments, DIVE system 100 can support additional and/or 

different languages than SQL to access data in data sources 110; e.g., Contextual Query 

Language (CQL), Gellish English, MQL, NoSQL for key/value databases, MDX for online 

analytical processing (OLAP) data, Object Query Language (OQL), RDQL, SMARTS.  

[0038] Interaction can be provided by DIVE system 100 providing visual analytics and /or 

other tools for exploration of data from data sources 110. Interoperability can be provided by 

DIVE system 100 providing data obtained from data sources 110 in a variety of formats to DIVE 

plug-ins, associated applications, and DIVE tools.  

[0039] These plug-ins, applications, and tools can be organized via the data pipeline. As one 

example, a DIVE tool can start a DIVE pipeline to convert data in a data frame into an 

ontological representation using a first DIVE plug-in, an application can generate renderable data 

from the ontological representation, and then a second DIVE plug-in can enable interaction with 

the renderable data.  

[0040] The DIVE pipeline can be used to arrange components in a sequence of pipeline 

stages.  An example three-stage DIVE pipeline using the above-mentioned components can 

include: 

Stage 1 - the first DIVE plug-in receives data from data sources 110, generates corresponding 

ontological representations, and outputs the ontological representations onto the pipeline. 

Stage 2 - the application receives the ontological representations as inputs via the pipeline, 

generates renderable data, and outputs the renderable data onto the pipeline. 
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Stage 3 - the second DIVE plug-in can receive the renderable data via the pipeline and present 

the renderable data for interaction.  

Additional DIVE pipeline examples are possible as well -- some of these additional examples are 

discussed herein. 

[0041] DIVE is domain independent and data agnostic. The DIVE pipeline accepts data from 

any domain, provided an appropriate input parser is implemented. Some example data formats 

supported by DIVE include, but are not limited to, SQL, XML, comma- and tab-delimited files, 

and several other standard file formats. In some embodiments, DIVE can utilize functionality 

from an underlying software infrastructure, such as a UNIX™-based system or the .NET 

environment. 

[0042] Ontologies are gaining popularity as a powerful way to organize data. DIVE system 

100’s core data representation using datanodes and dataedges was developed with ontologies in 

mind. The fundamental data unit in DIVE is the datanode, where datanodes can be linked using 

dataedges. 

[0043] Datanodes somewhat resemble traditional object instances from object-oriented (OO) 

languages such as C++, Java, or C#. For example, datanodes are typed, contain strongly typed 

properties and methods, and can exist in an inheritance hierarchy. Datanodes extend the 

traditional model of object instances, as datanodes can exist outside of an OO environment; e.g., 

in an ontological network or graph, and can have multiple relationships beyond simple type 

inheritance. DIVE system 100 implements these relationships between datanodes using 

dataedges to link related datanodes. Dataedges can be implemented by datanode objects and 
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consequently might contain properties, methods, and inheritance hierarchies. Because of this 

basic flexibility, DIVE system 100 can represent arbitrary, typed relationships between objects, 

objects and relationships, and relationships and relationships. 

[0044] Datanodes are also dynamic; every method and property can be altered at runtime, 

adding flexibility to DIVE system 100. The DIVE pipeline contains various data integrity 

mechanisms to prevent unwanted side effects. The inheritance model is also dynamic; as a result, 

objects can gain and lose type qualification and other inheritance aspects at runtime. This allows 

runtime classification schemes such as clustering to be integrated into the object model. 

[0045] Datanodes of DIVE system 100 provide virtual properties. These properties are 

accessed identically to fixed properties but store and recover their values through arbitrary code 

instead of storing data on the datanode object. Virtual properties can extend the original software 

architecture’s functionality, e.g., to allow data manipulation.  

[0046] Dataedges can be used to implement multiple inheritance models. Besides the 

traditional is-a relationship in object-oriented (OO) languages, ontological relationships such as 

contains, part-of, and bounded-by can be expressed. Each of these relationships can support 

varying levels of inheritance: 

 With OO inheritance, which is identical to OO languages such as C++ and Java, 

subclasses inherit the parent’s type, properties, and methods; e.g., a triangle is a polygon. 

 With type inheritance, subclasses inherit only the type; type inheritance is used to 

implement OO languages. 
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 With property inheritance, subclasses inherit only the properties and methods; e.g., a 

polygon contains line segments. 

[0047] Like OO language objects, property-inheritance subclasses can override superclass 

methods and properties with arbitrary transformations. Similarly, type-inheritance subclasses can 

be cast to superclass types. Because DIVE system 100 supports not only multiple inheritance but 

also multiple kinds of inheritance, casting can involve traversing the dataedge ontology. Owing 

to the coupling of the underlying data structure and ontological representation, every datanode 

and dataedge is implicitly part of a system-wide graph. Then, graph-theoretical methods can be 

applied to analyze both the data structures and ontologies represented in DIVE system 100. This 

graph-theoretical approach has already proved useful in some examples; e.g., application of 

DIVE system 100 to structural biology. 

[0048]  DIVE system 100 supports code and tool reuse. Because all data are represented by 

datanodes and dataedges, DIVE analysis modules are presented with a syntactically homogenous 

dataset. Owing to this data-type independence, modules can be connected so long as the analyzed 

datanodes have the expected properties, methods, or types.  

[0049] Data-type handling is a challenge in modular architectures. For examples, Taverna 

uses typing in the style of MIME (Multipurpose Internet Mail Extensions), the VTK uses 

strongly typed classes, and Python-based tools, such as Biopython and SciPy, often use Python’s 

dynamic typing.  

[0050] For DIVE system 100, the datanode and dataedge ontological network is a useful 

blend of these approaches. The dynamic typing of individual datanodes and dataedges lets us 
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build arbitrary type networks from raw data sources. The underlying strong typing of the actual 

data (doubles, strings, objects, and so on) facilitates parallel processing, optimized script 

compilation, and fast, non-interpreted handling for operations such as filtering and plotting. 

Datanodes and dataedges themselves can be strongly typed objects to facilitate programmatic 

manipulation of the dataflow itself. Although each typing approach has its strengths, typing by 

DIVE system 100 lends itself to fast, agile data exploration and fast, agile updating of DIVE 

tools. The datanode objects’ homogeneity also simplifies the basic pipeline and module 

development. The tool updating is a particularly useful feature in an academic laboratory where 

multiple research foci, a varied spectrum of technical expertise, and high turnover are all 

common. 

[0051] Data can be imported into DIVE system 100 to make the data accessible to the DIVE 

pipeline. In some cases, DIVE system 100 includes built-in functionality for importing data. For 

tabular data or SQL data tables, DIVE system 100 can construct one datanode per row, and each 

datanode has one property per column. DIVE also supports obtaining data from Web services 

such as the Protein Data Bank. Once DIVE obtains the data for data nodes, DIVE can establish 

relationships between datanodes using dataedges. 

[0052] The DIVE pipeline can utilize plug-ins to create, consume, or transform data. A plug-

in can include a compiled software library whose objects inherit from a published interface to the 

DIVE pipeline. Plug-ins can move data through “pins” much like an integrated circuit: data 

originate at an upstream source pin and are consumed by one or more downstream sink pins. 

Plug-ins can also move data by broadcasting and receiving events. Users can save pipeline 
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topologies and states as saved pipelines and also share saved pipelines. DIVE system 100 can 

provide subsequent plug-in connectivity, pipeline instantiation, scripting, user interfaces, and 

other aspects of plug-in functionality. 

[0053] When DIVE system 100 sends a datanode object through a branching, multilevel 

transform pipeline, correctness of the datanode’s property value(s) should be maintained at each 

pipeline stage. For example, a simple plug-in that scaled its incoming values could scale all 

incoming data values everywhere in the pipeline. One option to ensure datanode correctness is to 

copy all datanodes at every pipeline stage. This option can be computational-resource intensive 

and can delay a user from interacting with the datanodes.  

[0054] Another option to address the correctness problem is to create a version history of 

each transformed value of a datanode. For example, DIVE system 100 can use read and write 

contexts to maintain the version history; e.g., values of a datanode can be saved before and after 

writing by the pipeline. The version history can be keyed on each pipeline stage. Then, each 

plug-in can reads only the appropriate values for its pipeline stage and does read values from 

another pipeline stage or branch. The use of version histories can be fast and efficient because 

upstream graph traversal is linear and each value lookup in a read or write context is a constant 

time operation. Use of version histories maintains data integrity in a branching transform 

pipeline as well as being parallelizable. Further, the use of read and write contexts can accurately 

track a property value at every stage in the pipeline with a minimum of memory use.  

[0055] In some embodiments, DIVE system 100 can utilize the Microsoft Windows platform 

including the .NET framework, as this platform includes dynamic-language runtime, expression 
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trees, and Language-Integrated Query (LINQ) support. The .NET framework can provide coding 

features such as reflection, serialization, threading, and parallelism for DIVE. These capabilities 

can affect DIVE’s functionality and user experience. Support for dynamic languages allows 

flexible scripting and customization. LINQ can be useful in a scripted data-exploration 

environment. Expression trees and reflection can provide object linkages for the DIVE object 

parser. DIVE streaming can use the .NET framework’s threading libraries. DIVE system 100 can 

use 64-bit computations and parallelism supported by .NET to scale as processor capabilities 

scale. In other embodiments, DIVE can utilize one or more other platforms that provide similar 

functionality as described as being part of the Windows platform and .NET framework.  

[0056] The platform can support several software languages; e.g., C#, Visual Basic, F#, 

Python, and C++. Such platform support enables authoring DIVE plug-ins in the supported 

languages. In addition, the supported languages can be used for writing command-line, GUI, and 

programmatic tools for DIVE system 100. DIVE can use external libraries that are compatible 

with the platform, including molecular visualizers, clustering and analysis packages, charting 

tools, and mapping software; e.g., the VTK library wrapped by the ActiViz .NET API. In some 

embodiments, DIVE can draw on data base support provided by the platform; e.g., storing data 

in a Microsoft SQL Server data warehouse.  

[0057] Figure 2 shows an example architecture for DIVE system 100, in accordance with an 

embodiment. DIVE system 100 can include both software libraries and a runtime environment, 

as shown in the bottom of Figure 2. DIVE system 100 can import and export data and 



200 

 

 

functionality from a variety of sources, such as the DIVE object parser, SQL, Web Services, 

files, file formats, and libraries, as shown in the middle of Figure 2.  

[0058] Software clients of DIVE system 100 can include DIVE plug-ins and DIVE tools, as 

shown in Figure 2, DIVE plug-ins can use DIVE software libraries to exploit DIVE’s data 

handling capabilities. DIVE tools can include applications that manage a DIVE pipeline to solve 

one or more tasks; that is, the DIVE tool can instantiate, launch, and close a DIVE pipeline. In 

conjunction, DIVE tools can manage and build DIVE pipelines using DIVE plug-ins, 

applications, and perhaps even other DIVE tools associated with DIVE system 100. DIVE 

system 100 provides both user interfaces; e.g., command line interfaces (CLIs), graphical user 

interfaces (GUIs), and programmatic interfaces for software; e.g., one or more DIVE application 

programming interfaces (APIs). 

[0059] Figure 3 shows a pipeline 300 between data sources 110 and DIVE system 100, in 

accordance with an example embodiment. In pipeline 300, data from data sources 110 is first 

received at DIVE system 100 by pre-loader 310. Pre-loader 310 for DIVE system 100 can 

facilitate big data operations. Traversing big data in an efficient manner is important for current 

and future big data interaction paradigms such as visual analytics. However, many big data 

operations can be slow; e.g., querying data from a big data source, representing data from big 

data source(s) in a complex ontology, and building subsets of represented data for visualization. 

[0060] To speed big data operations, pre-loader 310 can predict user needs, perform on-

demand and/or pre-emptive loading of corresponding data frames 320; e.g., subsets of data from 

one or more of data sources 110, and subsequent caching of loaded data frames 320. Each data 
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frame of data frames 320 can include one or more data items, where each data item can include 

data in the subset(s) of data from one or more of data sources 110. For example, if an pre-loader 

310 is loading data from data sources 110 related to purchases at a department store into data 

frame DF1 of data frames 320, each data frame, including DF1, can have data items (values) for 

data having data types such as “Purchased Item”, “Quantity”, “Item Price”, “Taxes”, “Total 

Price”, “Discounts”, and “Payment Type”.  

[0061] Preemptive loading can reduce to on-demand loading of a specified frame, if 

necessary. Caching can be take place locally or remotely and can be single- or multi-tiered. For 

example, caching can include remote caching on a cloud database, which feeds local caching in 

local computer memory. In some embodiments, the local computer memory can include random 

access memory (RAM) chips, processor or other cache memory, flash memory, magnetic media, 

and/or other memory resident on a computing device executing software of DIVE system 100.  

[0062] Loaded and cached data from data sources 110 can be stored by pre-loader 310 as 

data frames 320. Data frames 320 can be stored where they can be quickly accessed by the local 

computer memory.  

[0063] Data frame selection logic 330 can include logic for switching relationships between 

data frames 320 and data pins 332. For example, data selection logic 330 can switch some or all 

of data pins 332 to reference data from a selected frame of frames 320. Data frame selection 

logic 330 can be provided by user input, programmatic logic, etc. In some embodiments, a pin-

switching process for switching data pins 332 between frames of data frames 320 is O(1).  
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[0064] Once switched to a frame, data pins 332 can pull data, such as data items, from one or 

more selected data frames. In some embodiments, all pins reference one data frame, while in 

other embodiments, pins can reference two or more data frames; e.g., a first bank, or subset, of 

data pins 332 can reference the selected data frame F1 and a second bank of data pins 332 can 

reference a previously selected frame. Then, when a new data frame F2 is selected, the first bank 

of data pins 332 can reference the new frame F2 and the second bank of data pins 332 can 

reference the previously selected frame F1, or perhaps some other previously selected frame.  

[0065] In some examples, one or more data pins of data pins 332 can be designated as a 

control pin. The control pin can indicate a control, or one or more data items of interest of the 

plurality of data items. For example, if data frames are each associated with a time, a control pin 

can indicate a time of interest a control, two control pins can respectively indicate a beginning 

time of interest and an ending time of interest for a time-range control, and multiple control pins 

can indicate multiple time/ranges of interest. As another example, if data frames are each 

associated with unique identifiers (IDs) such as serial numbers, VINs, credit card numbers, etc., 

a control pin can specify an ID of interest as a control. As another example, if data frames are 

each associated with a location, the location for the data frame can be used as a control. Many 

other examples of controls and control pins are possible as well.  

[0066] In some examples, the control pin can be writeable so a user could set the control pin 

data; e.g., specify the control associated with the control pin (e.g., specify a time or ID). Then, 

once a control has been specified, DIVE system 100 can search or otherwise scan the data from 

data sources 100 for data related to the control. In other examples, the control pin can be read-
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only; that is, indicate a value of the control in a data frame, without allowing the control to be 

changed. 

[0067] Data in data frames 320 can be organized according to data ontology 340, which can 

include arbitrary node types and arbitrary edges. Data ontology 340, in turn, can map node and 

edge properties; e.g., datanodes and dataedges, to data pins 332. When data pins 332 are 

switched between frames, data throughout ontology 340 that refers to data pins 332 can be 

simultaneously updated. For example, suppose data pin #1 referred to a data item having a data 

type of “name” in a data frame of data frames 320, and suppose that the data item accessible via 

data pin #1 is “Name11”. Then, if data pins 332 are all switched to refer to a new data frame with 

a name of“Name22”, the reference in data ontology 340 to data pin #1 would refer to the 

switched data item “Name22”. Many other examples are possible as well. 

[0068] If data ontology 340 changes, references from data pins 332 into data ontology 340 

can be changed as well. That is, each of data pins 332 can include at least two references: one or 

more references into data frames 320 for data item(s) and one or more references into data 

ontology 340 for node/edge data/logic. Then, changes in the structure, format, and/or layout of 

data frames 320 can be isolated by data pins 332 (and perhaps data frame selection logic 330) 

from data ontology 340 and vice versa.  

[0069] In some embodiments, all pins switch together. Then, when data pins 332 indicate a 

data frame of data frames 320 has been switched, all references to data within data ontology 340 

made using data pins 332 are updated simultaneously, or substantially simultaneously. If data 

ontology 340 changes, references from data pins 332 into data ontology 340 can be changed as 
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well, thereby changing references to data made available by data pins 332. For example, if 

ontology 340 referred to data pin #1 to access a data type of “name” but changed to refer to a 

“first name” and a “last name”, the reference to data pin #1 may change; e.g., to refer to data pin 

#1 and #2 or some other data pin(s) of data pins 332. 

[0070]  In other embodiments, upon arrival of a new frame, some data pins 332 may not 

switch; e.g., a bank of data pins 332 referring to a first-received frame may not switch after the 

first data frame is received. 

[0071] Ontological data from data ontology 340 can be arbitrarily transformed via transform 

350 before providing data interactions 360. Because of the pin-linked ontology, fed by a fast-

switched data set, in turn fed by preemptive data caching, pipeline 300 can use DIVE system 100 

to provide quick interaction, analysis, and visualization of complex and multi-dimensional data. 

 

DIVE Object Parsing 

[0072] Modern computational problems increasingly require formal ontological analysis. 

However, for some software hierarchies, formal ontologies do not exist. The generation of 

formal ontologies can be time consuming, difficult, and require expert attention. Ontologies are 

often implicitly defined in code by software engineers and so code, such as object hierarchies, 

can be parsed for conversion into a formal ontology. 

[0073] For example, an object-parser can traverse object-oriented data structures within a 

provided assembly using code reflection. Using generalized rules to leverage the existing 

ontological structure, a formal ontology can be generated from the existing relationships of the 
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data structures within the code. The ontology can be a static ontology defining an ontological 

structure or can be a dynamic ontology; that is, a dynamic ontology can include links between 

the ontological structure (of a static ontology) and object instances of the provided code 

assembly. The dynamic ontology can allow the underlying object instances to be modified 

through the context of the ontology without changes to the code assembly. In other examples, 

metadata tags can be added to the assembly to provide definitions for (generated) ontologies, and 

so provide a richer ontology definition. 

[0074] DIVE system 100 can include a DIVE object parser, which can automatically 

generate datanodes and dataedges of a DIVE data structure from a software object hierarchy, 

such as a .NET object or assembly. Using reflection and expression trees, the DIVE object parser 

can consume object instances of the software object hierarchy and translates the object instances 

into propertied datanodes and dataedges of a DIVE data structure. For example, standard objects 

can be created by library-aware code. Then, those standard objects can be parsed by the DIVE 

object parser into a DIVE data structure, which can be injected into a DIVE pipeline as a data 

ontology. 

[0075] The DIVE object parser can make software object hierarchies available for 

ontological data representation and subsequent use as DIVE plug-ins written without prior 

knowledge of DIVE. The DIVE object parser can include generic rules to translate between a 

software object hierarchy and a DIVE data structure. These generic rules can include: 

 Complex objects in the software object hierarchy, such as classes, can be translated into 

datanodes of a DIVE data structure.  
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 Interfaces, virtual class, and abstract class objects in the software object hierarchy can be 

translated into datanodes of the DIVE data structure.  

 Built-in system objects, primitive fields, primitive properties, and methods with primitive 

return types in the software object hierarchy can be translated into properties on 

datanodes of the DIVE data structure.  

 Inheritance and member relationships objects in the software object hierarchy can be 

interpreted as object and property inheritance dataedges in the DIVE data structure, 

respectively; these dataedges can then connect the datanode hierarchy. 

[0076] Additional rules beyond the generic rules can handle other program constructs: 

 The DIVE object parser can translate static members of the software object hierarchy into 

a single datanode in the DIVE data structure. 

 Multiple object instances with the same static member of the software object hierarchy 

can reference a single, static datanode instance in the DIVE data structure.  

 Public objects and members can always be parsed 

 Private members, static objects, and interfaces can be parsed based on parameters 

provided to the DIVE object parser and/or via other user-controllable data. 

 More, different, and/or other rules that these generic rules and additional rules for parsing 

software object hierarchies into DIVE data structures/ontologies are possible as well. 

[0077] Throughout a parse, no data values are copied to datanodes or dataedges. Instead, 

dynamically created virtual properties link all datanode properties to their respective software 

object hierarchy members. So, any changes to runtime object instances are reflected in their 
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corresponding representations in DIVE data structures. Similarly, any changes to datanode or 

dataedge properties in DIVE data structures propagate back to their software object instance 

counterparts.  

[0078] Using this approach, the generic rules, and additional rules, the DIVE object parser 

can recursively produce an ontological representation of the entire software object hierarchy. 

With object parsing, users can import and use software object hierarchies within DIVE without 

special handling, so that software applications can be parsed and readily exploit DIVE 

capabilities. For example, assume L1 is a nonvisual code library that dynamically simulates 

moving bodies in space. A DIVE plug-in, acting as a thin wrapper, can automatically import 

library L1 and add runtime visualizations and interactive analyses. As the simulation progresses, 

the datanodes will automatically reflect the changing property values of the underlying software 

object instances. Through a DIVE interface, the user of the DIVE pipeline that imported L1 

could change a body’s mass. This change would propagate back to the runtime instance of L1 

and appear in the visualization. Many other examples are possible as well. 

[0079] Figure 4 shows an example where DIVE object parser 400 has converted software 

object hierarchy 410 to DIVE data structure 420, in accordance with an embodiment. In the 

example shown in Figure 4, software object hierarchy 410 includes a .NET assembly with 

interfaces IClassA, IClassB and classes AbstractClass, OClass, SuperClass, SubClassA and 

SubClassB arranged using object inheritance, shown in Figure 4 using solid lines between 

classes, into an object hierarchy. Some classes in software object hierarchy 410 include methods; 

e.g., class OClass has method OClassM(), class SuperClass has method SuperM(), class 
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SubClassA has method SubAM(), and class SubClassB has methods SubBM1() and SubBM2(). 

Other classes have fields; e.g., class SuperClass has field StaticSuperF and class SubClassA has 

fields SubAF1 and SubAF2, while class SubClassB has property SubBProp. 

[0080]  Similarly, DIVE data structure 420 has datanodes for interfaces and classes IClassA, 

IClassB, Abstract Class, OClass, SuperClass, SubClassA and SubClassB, methods OClassM(), 

SuperM(),SubAM(),SubBM1() and SubBM2(), fields StaticSuperF, SubAF1, and SubAF2, and 

property SubBProp. Relationships between datanodes in DIVE data structure 420 are shown 

using both solid and dashed lines representing dataedges. 

[0081] DIVE object parser 400 can parse software object hierarchy 410 for translation into a 

data ontology and/or DIVE data structure. In other examples, other software hierarchies than 

.NET assemblies can be input to DIVE object parser 400 for parsing. In the example shown in 

Figure 4, DIVE object parser 400 can parse software object hierarchy 410 using the above-

mentioned generic and additional rules to translate hierarchy 410 into DIVE data structure 420. 

DIVE data structure 420 can replicate the strongly typed objects and relationships indicated by 

the structure of software object hierarchy 410.  

[0082] In the example shown in Figure 4, DIVE data structure 420 represents a data ontology 

corresponding to software object hierarchy 410, with data nodes (shown in Figure 4 as circles) 

corresponding to objects in software object hierarchy 410 and data edges (shown in Figure 4 as 

lines) corresponding to relationships between objects in software object hierarchy 410. Figure 4 

shows some data edges in DIVE data structure 420 as solid lines, corresponding to object 

inheritance relationships in software object hierarchy 410. Other data edges in DIVE data 
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structure 420 are shown in Figure 4 as dashed lines, corresponding to property inheritance 

relationships in software object hierarchy 410.  

[0083] Instance-specific data of software object hierarchy 410 are maintained on the subclass 

data nodes in DIVE data structure 420; that is, data for super classes is not stored with superclass 

data nodes. The original fields, properties, and methods of software object hierarchy 410 are 

accessible through the data nodes of DIVE data structure 420 by virtual properties. 

[0084] In DIVE data structure 420, each instance of a class can be represented. For example, 

Figure 4 shows DIVE data structure 420 with one instance of all classes except for class OClass. 

In this example, Class OClass has three instances, which are shown as three separate data nodes 

DIVE data structure 420. 

[0085] Figure 5 shows scenario 500, where DIVE object parser 400 has translated code 

assembly 510 to ontologies 520, 530, in accordance with an example embodiment. Scenario 500 

begins with code assembly 510 being provided to DIVE object parser 400. As indicated in Figure 

5, code assembly 510 can include private objects, protected objects, static objects, interfaces, and 

other software entities (“Etc.”). For example, code assembly 510 can be a software object 

hierarchy, such as software object hierarchy 410 discussed above in the context of Figure 4.  

[0086] In scenario 500, parameters to DIVE object parser 400 can specify which semantic 

components are to be parsed into one or more ontologies. For example, the parameters can 

reflect user intent regarding whether or not private members, static objects, interfaces, and other 

software entities of code assembly 510 are parsed. 
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[0087] DIVE object parser 400 can recursively traverse object hierarchies of code assembly 

510 using code reflection and expression trees. Using generalized, pre-defined rules, such as the 

generic and additional rules discussed above in the context of Figure 4, objects and other 

software entities can be parsed by DIVE object parser 400 into ontological components.  

[0088] In scenario 500, DIVE object parser 400 outputs the ontological components in two 

formats: static ontology 520 corresponding to semantic components and relationships of code 

assembly 510 and dynamic ontology 520. Both static ontology 520 and dynamic ontology 530 

can include an ontological definition that uses standardized ontology language. Dynamic 

ontology 530 can further include links into the object instance(s) of code assembly 510. For 

example, links between ontological components and object instances using delegate methods and 

lambda functions. Figure 5 shows the ontological components of ontologies 520 and 530 using 

circles, object instances of code assembly 510 linked to ontology 530 using rectangles, and links 

between ontological components and object instances in ontology 530 using solid grey lines 

between the two. 

 

DIVE Scripting Techniques 

[0089] DIVE supports the use of scripts to let users rapidly interact with the DIVE pipeline, 

plug-ins, data structures, and data. DIVE supports at least two basic types of scripting: plug-in 

scripting and μscripting (microscripting). DIVE can host components, including scripts, written 

in a number of computer languages. For example, in some embodiments, C# can be used as a 

scripting language.  
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[0090] Plug-in scripting is similar to existing analysis tools’ scripting capabilities. Through 

the plug-in script interface, the user script can access the runtime environment, the DIVE system, 

and the specific plug-in. μscripting can provide direct programmatic control to experienced users 

and simple, intuitive controls to relatively-new users of DIVE.  

[0091] μscripting is an extension of plug-in scripting in which DIVE writes most of the code. 

The user needs to write only the right-hand side of a lambda function. Here’s a schematic of a 

lambda function F1(): 

  F1(datanode dn) => RHS; 

[0092] The right-hand side RHS written by the user is inserted into the lambda function. The 

lambda function, including the user’s right-hand-side code, is compiled at runtime. The client 

can provide any expression that evaluates to an appropriate return value. In general, plug-in 

scripting can be more powerful than μscripting, while μscripting can be simpler at first. 

[0093] User scripts, such as plug-in scripts and μscripting-originated scripts, can be included 

into the DIVE system. For example, the user script can be incorporated into a larger, complete 

piece of code that can be compiled; e.g., during runtime using full optimization. Finally, through 

reflection, the compiled code is loaded back into memory as a part of the runtime environment. 

Although this approach requires time to compile each script, the small initial penalty is typically 

outweighed by the resulting optimized, compiled code. Both scripting types, particularly 

μscripting, can work on a per-datanode basis; optimized compilation helps create a fast, efficient 

user experience.  

[0094] Table 1 below provides some μscripting examples. 
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Argument Return 

Type 

μscript Comments 

datanode dn double 3 Basic constant 

numeric script 

dn.X Basic per-datanode 

script 

Math.Abs(dn.X) A μscript can call 

library functions 

int dn.X > 0 ? 1 : -1 μscript syntax can be 

powerful. 

void bool { 

   int hour =    

     DateTime.Now.Hour; 

   return hour < 12; 

} 

μscripts can include 

complex, multi-

statement functions. 

datanode[] Dynamic 

Set 

from dn in dns 

group dn by     

   Math.Round(dn.X, 2)  

   into g 

select new 

μscript for creating a 

histogram based on 

the datanode’s “X” 

property. 
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{ 

   bin = g.Key,  

   population = g.Count() 

}; 

from dn in dns 

where dn.X > Math.Pi 

   && dn.is_Superclass 

   && dn.Func() = true 

select dn; 

μscript for filtering 

datanodes on the 

basis of datanode 

properties, methods 

(e.g., Func()), and 

inherited type (e.g., 

is_Superclass). 

from dn1 in dnSet1 

join dn2 in dnSet2 on 

   dn1.X equals dn2.X 

select new (X = dn1.X, Y 

= dn2.Y); 

μscript for using 

DIVE as OO 

database for joining 

multiple potentially 

disparate datasets. 

 

Table 1 

Appendix Table B.1 DIVE patent Table 1 



214 

 

 

 

Data Streaming Using DIVE 

[0095] DIVE system 100 can support data streaming using an interactive SQL approach and 

a pass-through SQL approach. In some embodiments, database languages other than SQL can be 

utilized by either approach. Interactive SQL can be used for the immediate analysis of large, 

nonlocal datasets via impromptu, user-defined dynamic database queries using SQL by taking 

user input to build an SQL query.  

The SQL query can include one or more data queries, as well as one or more functions for 

analysis of data received via the data queries. DIVE system 100 can send the SQL query to the 

SQL database and parse the resulting dataset. Depending on the query’s size and complexity, this 

approach can result in user-controlled SQL analysis through the GUI at interactive rates. DIVE 

system 100 can facilitate interactive SQL by use of events generated at runtime; for example, 

DIVE events can be generated in response to mouse clicks or slider bar movements. Upon 

receiving these DIVE events, a DIVE component can construct the appropriate SQL query.  

[0096] Figure 6 shows examples of interactive SQL streaming and pass-through SQL 

streaming, in accordance with an example embodiment. With respect to interactive SQL, Figure 

6 shows an example SQL template 610 with tags for “time_step” and “atom”. During interactive 

SQL streaming, the tags in SQL template 610 can be replaced with input from GUI elements, 

such as slider bar 620, 622 and atoms 624, where atoms 624 can be selected using GUI elements 

not shown in Figure 6.  
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[0097] An SQL query can use SQL template 610 to obtain and analyze data. In the example 

shown in Figure 6, the SQL query can obtain “coordinates” data for item “c1” and join data for 

item “c2” to become part of the “coordinates” data. Then, the time_step tagged data can be set to 

a “step” value of c1 and the atom tagged data can be set to an “atom_id” value of c1. 

Subsequently, when the step value of c1 equals a step value for c2 and the atom_id value of c1 

equals an atom_id of c2, then the obtained data for c1 and c2 can be analyzed using a eucl_dist() 

function operating on “x”, ”y”, and “z” values from both c1 and c2 to determine a resulting 

“distance” value. 

[0098] The pass-through SQL approach can be used for interactive analysis of datasets larger 

than the client’s local memory; e.g., pass-through SQL can be used for streaming complex object 

models across a preset dimension. Pass-through SQL accelerates the translation of SQL data into 

OO structures by shifting the location of values from the objects themselves to data frames, such 

as the above-mentioned data frames 320 discussed at least in the context of Figure3. 

[0099] A backing store can include a collection of one or more tables of instance data, where 

each table can contain one or more instance values for a single object type. Internally, object 

fields and properties have pointers to locations in backing-store tables instead of local, fixed 

values. A backing-store collection then includes all the tables for the object instances occurring 

at the same point, or frame, in the streaming dimension. 

[0100] Once a backing store has been created by DIVE system 100, copies of the backing-

store structure can be generated with a unique identifier for each new frame. DIVE system 100 

then inserts instance values for new frames into the corresponding backing-store copy. This 
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reduces the loading of instance data to a table-to-table copy, bypassing the parsing normally 

required to insert data into an OO structure. The use of backing stores also removes the overhead 

of allocating and de-allocating expensive objects by reusing the same object structures for each 

frame in the streaming dimension. 

[0101] Pass-through SQL enables streaming through a buffered backing-store collection of 

backing stores representing frames over the streaming dimension. A backing-store collection is 

initially populated client-side for frames on either side of the frame of interest, where buffer 

regions are defined for each end of the backing-store collection. Frames whose data are stored in 

the backing-store collection are immediately accessible to the client. When the buffer regions’ 

thresholds are traversed during streaming, a background thread is spawned to load a new set of 

backing stores around the current frame; e.g., by the pre-loader. If the client requests a frame 

outside the loaded set, a new backing-store collection can be loaded around the requested frame. 

Loaded backing stores no longer in the streaming collection can be deleted from memory to 

conserve the client’s memory. 

[0102] Figure 6 shows an example use of pass-through SQL streaming. On initial data frame 

request 630a, DIVE system 100 can construct a datanode hierarchy; e.g., an ontology from object 

hierarchy 634 using DIVE object parser 400. Then, DIVE system 100 can generate backing 

stores 640 corresponding to the initial data frame that includes data retrieved from database(s) 

632. Backing stores 640 can be arranged as one or more backing store collections.  

[0103] On each subsequent data frame request 630b, DIVE system 100 can buffer data 

retrieved from database(s) 632 into backing stores 640 directly. In some embodiments, DIVE 
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system 100 can use multiple threads to buffer data into backing stores 640. DIVE system 100 can 

use pass-through SQL streaming to propagate large amounts of data through a DIVE pipeline 

using database(s) 632, object hierarchy 634, and backing stores 640 at interactive speeds; i.e., by 

bypassing object-oriented parsing. 

 

A DIVE Case Study: the Dynameomics Project 

[0104]  In a case study, DIVE is used by the Dynameomics project to provide molecular 

dynamics simulations for studying protein structure and dynamics. The Dynameomics project 

involves characterization of the dynamic behaviors and folding pathways of topological classes 

of all known protein structures.  

[0105] An interesting facet of protein biology is that structure equals function; that is, what a 

protein does and how it does it is intrinsically tied to its 3D structure. During a molecular 

dynamics simulation, scientists simulate interatomic forces to predict motion among atoms of a 

molecule, such as a protein, and its environment to better understand the 3D structure of the 

molecule. 

[0106] Figure 7 shows an example protein simulated using molecular dynamics, in 

accordance with an embodiment. Image 710 is an all-atom depiction of the example protein with 

a transparent surface. In most cases, the environment for a protein molecule is water molecules, 

although scientists can alter this to investigate different phenomena. For example, image 720 

shows the protein depicted in image 710 solvated and shown in a water box.  
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[0107] The physical simulation is calculated using Newtonian physics; at specified time 

intervals, the simulation state is saved. This produces a trajectory or a series of structural 

snapshots reflecting the protein’s natural behavior in an aqueous environment. Image 730 shows 

three structures selected from a trajectory containing more than 51,000 frames. 

[0108] Molecular dynamics is useful for three primary reasons. First, like many in silico 

techniques, it allows virtual experimentation; scientists can simulate protein structures and 

interactions without the cost or risk of laboratory experiments. Second, modern computing 

techniques allow molecular dynamics simulations to run in parallel, enabling virtual high-

throughput experimentation. Third, molecular dynamics simulation is the only protein analysis 

method that produces sequential time-series structures at both high spatial and high temporal 

resolution. These high-resolution trajectories can reveal how proteins move, a critical aspect of 

their functionality.  

[0109] However, molecular dynamics simulations can produce datasets considerably larger 

than what most structural-biology tools can handle. So far, the Dynameomics project has 

generated hundreds of terabytes of data consisting of thousands of simulations and millions of 

structures, as well as their associated analyses, stored in a distributed SQL data warehouse. The 

data warehouse can hold at least four orders of magnitude more protein structures than the 

Protein Data Bank, which is the World’s primary repository for experimentally characterized 

protein structures.  

[0110]  In particular, the Dynameomics project contains much more simulation data than 

many domain-specific tools are engineered to handle. One of the first Dynameomics tools built 
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on the DIVE platform was the Protein Dashboard. The Protein Dashboard which provides 

interactive 2D and 3D visualizations of the Dynameomics dataset. These visualizations include 

interactive explorations of bulk data, molecular visualization tools, and integration with external 

tools such as Chimera.  

[0111] Figure 8 shows an example data flow using DIVE system 100 for the Dynameomics 

project, in accordance with an example embodiment. Using DIVE object parser 400, DIVE 

system 100 can integrate and use structures developed using a Dynameomics API (discussed 

after Figure 9) without changing DIVE’s API. DIVE object parser 400 can then create strongly 

typed objects, including Structure, Residue, Atom, and Contact as datanodes, with each datanode 

containing properties defined by the Dynameomics API. Semantic and syntactic relationships 

specified in the Dynameomics API can be translated into dataedges by DIVE object parser 400. 

The Dynameomics-related datanodes and dataedges generated by DIVE object parser 400 are 

available to the DIVE pipeline, indistinguishable from any other datanodes or dataedges. 

[0112] The top of Figure 8 shows data sources for the data flow, including Dynameomics 

data stored a data warehouse in SQL format and the Protein Data Bank (PDB). Associated with 

the data sources are software object hierarchies for representing the data in software. In the 

example of the case study, the software object hierarchies are part of .NET assemblies. The 

software object hierarchies in the case study can be parsed using the DIVE object parser 400, as 

indicated by the middle portion of Figure 8. DIVE object parser 400 can generate datanodes and 

dataedges corresponding to the software object hierarchies.  
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[0113] The generated datanodes and dataedges, along with DIVE plug-ins, μscripts, plug-in 

scripts, DIVE tools, and/or other software entities, can be used together as a DIVE pipeline, as 

indicated a lower portion of Figure 8. The bottom portion of Figure 8 indicates that a user can 

interact with the DIVE pipeline via Protein Dashboard 800. Protein Dashboard 800 can allow 

access to multiple interactive simulations simultaneously. 

[0114] Figure 9 shows an example view of Protein Dashboard 800, in accordance with an 

embodiment. The view of Protein Dashboard 800 is an example view generated by a graphical 

user interface for DIVE system 100. An upper portion of Protein Dashboard 800 includes pre-

loader interface 910 to allow interaction with a DIVE pre-loader; e.g., pre-loader 310. Pre-loader 

interface 910 provides user controls for loading and interacting with protein structures and 

molecular-dynamics trajectories.  

[0115] At lower left of Figure 9, interactive rendering interface 920 shows an interactive 3D 

rendering of a protein molecule; using a cartoon representation of a backbone of the protein 

molecule, and a ball-and-stick representation of a subset of atoms in the protein molecule. The 

subset of atoms can be selected via interactive SQL interface 922, which includes a molecule 

selector to select a “1enh(678)” molecule, an indicator to show “Atom[s]” of the molecule, and 

script interface showing selection of data with the property “isHvy == YES”, and an apply 

button. Once the apply button is selected, a selection made using interactive SQL interface 922 

to Protein Dashboard 800 can be rendered and displayed using interactive rendering interface 

920.  



221 

 

 

[0116] Chart region 930 shows one of many possible linked interactive charts for a “SASA1 

Plot” related to “Residue SASA”. The interactive charts can be generated using data streamed 

from the data sources mentioned in the context of Figure 8; e.g., the Dynameomics data 

warehouse. In some embodiments and examples, Protein Dashboard 800 can provide more, 

fewer, and/or different windows, tabs, interfaces, buttons, and/or GUI elements than shown in 

Figures 8 and 9.  

[0117] A tool implemented independently of DIVE and the Protein Dashboard is the 

Dynameomics API. The API can be used to establish an object hierarchy, provide high-

throughput streaming of simulations from the Dynameomics data warehouse. The Dynameomics 

API includes domain-specific semantics and data structures and provides multiple domain-

specific analyses. In some embodiments, the Dynameomics API can be user interface agnostic; 

then, the Dynameomics API can provide data handling and streaming support independently of 

how the user views and otherwise interacts with the data; e.g., using the Protein Dashboard. In 

some embodiments, the API can be written in a particular computer language; e.g., C#. 

[0118] With the Dynameomics data and semantics available to the DIVE pipeline, a visual 

analytics approach can be applied to the Dynameomics data. Protein Dashboard 800 can be used 

to interact with and visualize the data. However, because the data flows through the 

Dynameomics API, wrapped by DIVE datanodes and dataedges, multiple protein structures from 

different sources can be loaded, including structures from the Protein Data Bank. Once loaded, 

the protein structures can be aligned and analyzed in different ways. 
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[0119] Furthermore, because Protein Dashboard 800 has access to additional data from the 

Dynameomics API via DIVE system 100, the utility of Protein Dashboard 800 increases. For 

instance, scientists can find utility in coloring protein structures on the basis of biophysical 

properties; e.g., solvent-accessible surface area, deviation from a baseline structure. By 

streaming the data through the pipeline, these biophysical properties can be observed as they 

change over time. In some instances, some or all of the biophysical properties can be accessed 

through the data’s inheritance hierarchy. 

[0120] Applications built on DIVE system 100 have been used to accelerate biophysical 

analysis of Dynameomics and other data related to two specific proteins. The first protein is the 

transcription factor p53, mutations in which are implicated in cancer. The second protein is 

human Cu-Zn superoxide dismutase 1 (SOD1), mutations in which are associated with 

amyotrophic lateral sclerosis. 

[0121] The Y220C mutation of the p53 DNA binding domain is responsible for destabilizing 

the core, leading to about 75,000 new cancer cases annually according to Boeckler et al. The 

DIVE framework can analyze the structural and functional effects of the Y220C mutation using a 

DIVE module called ContactWalker. The ContactWalker module can identify amino acids’ 

interatomic contacts disrupted significantly as a result of mutation. The contact pathways 

between disrupted residues can be identified identified using DIVE’s underlying graph-based 

data representation. 

[0122] Figures 10A and 10B show visualizations related to the respective p53 and SOD1 

proteins provided by DIVE system 100, in accordance with an embodiment. Figure 10A shows 
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the most disrupted contacts in the vicinity of the Y220C mutation. Specific residues, contacts and 

simulations were identified for more focused analysis. Interesting interatomic contact data were 

isolated. Then, specific molecular dynamics time points and structures were selected for further 

investigation. For example, Figure 10A shows contact data mapped onto a structure containing a 

stabilizing ligand, which docks closely to many of the disrupted residues, suggesting a 

correlation between the mutation-associated effects and the observed stabilizing effects of the 

ligand.  

[0123] In particular, Figure 10A shows visualizations related to the p53 protein. In the top 

panel of Figure 10A, a ContactWalker summary of contact differences between wild-type and 

Y220C simulations is shown. The highlighted residues have contacts with ≥ 50% occupancy 

change. In the middle panel of Figure 10A, distances between P151 and L257 are outlined in 

black. In the bottom panel of Figure 10A, a visualization of the p53 protein is shown with ligand 

(stick figure at bottom) (Protein Data Bank code 4AGQ) in proximity to disrupted residues 

shown in black. 

[0124] In another example, DIVE has been used in about 400 simulations of 106 disease-

associated mutants of SOD1. Through extensive studies of A4V mutant SOD1, Schmidlin et al. 

previously noted the instability of two β-strands in the SOD1 Greek key β -barrel structure. That 

analysis took several years to complete and such manual interrogation of simulations does not 

scale to allow us to search for general features linked to disease across hundreds of simulations.  

[0125] DIVE system 100 was used to further explore the formation and persistence of the 

contacts and packing interactions in this region across multiple simulations of mutant proteins. 
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DIVE system 100 facilitates isolation of specific contacts, rapid plotting of selected data, and 

easy visualization of the relevant structures and geographic locations of specific mutations, while 

providing intuitive navigation from one view to another. 

[0126] The top panel of Figure 10B maps secondary structure for different variants as an 

example of DIVE’s charting tools. This chart can be quickly generated and contains results for 

400 SOD1 mutant simulations. The chart is customizable and links to the protein structure 

property data (in this case the change in the structure over time) with a single mouse click. These 

data are in turn linked to protein structure modules, allowing interactive visualization of more 

than 60,000 structures from each of the 400 simulations, all streamed from the Dynameomics 

data warehouse. DIVE system 100 can simplify the transition between high-level protein views 

and atomic level details, facilitating rapid analysis of large amounts of data. DIVE system 100 

can also show the context of the detailed results on other levels, such as worldwide disease 

incidence. 

[0127] In particular, Figure 10B shows visualizations related to analysis of the SOD1 

protein. In the top portion of Figure 10B, aggregated secondary structural data from mutant 

simulations is shown. The middle portion of Figure 10B is a plot of the Cα root-mean-squared 

(RMS) distances of the wild-type and A4V mutant simulations. In the bottom portion of Figure 

10B, a visualization of molecular dynamics structures is shown.  

 

Additional Example DIVE Pipelines 
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[0128] Example DIVE application pipelines are shown in Figure 11, in accordance with an 

embodiment. Figure 11 shows, at upper left and center, an example Gene Ontology/Mammal 

Taxonomy DIVE pipeline. This example shows a taxonomy of mammals built up from data from 

a static (non-streaming) Gene Ontology database for handling the concept of animal inheritance. 

In an example interaction with the Gene Ontology/Mammal Taxonomy DIVE pipeline, a user 

could ask for all mammals descended from tree shrews or all feline mammals. The DIVE 

Pipeline can be then be used to provide streaming data, such as camera feeds from mammalian 

research sources, as well as access to the Gene Ontology database. Then, if the user requests to 

“show all the streaming video data watching animals of subgenus platyrrhini” (e.g., New World 

monkeys), the Gene Ontology/Mammal Taxonomy DIVE pipeline can use and provide both the 

streaming data and the ontology together Once both data sources are available, a DIVE plug-in 

acting as a software agent can be added to the pipeline; e.g., to inform the user when an animal is 

in a frame of the streaming video data. 

[0129] Figure 11 shows, at upper-right, an Animated Particle System DIVE pipeline. The 

DIVE pipeline renders the images based on an ontological representation of particles whose data 

is available in a data stream. Use of a particle ontology provides ready access for an application 

to query properties of various particles shown by the Animated Particle System DIVE pipeline. 

Another portion of the pipeline performs the simulation of particle interaction and, 

independently, the simulation is visualized. In some embodiments, the Animated Particle System 

DIVE pipeline can show how DIVE pipelines extend an existing library by added visualization 

and interaction components to a simple particle system. 
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[0130] Figure 11 shows, at center, an example baseball statistics DIVE pipeline. The 

incoming data source is stored using flat files. The baseball statistics DIVE pipeline illustrates 

that, even in a single-data-frame scenario, the remainder of the pipeline can remain the same. In 

other implementations, the flat files could be replaced by a tabular system where statistics are 

streamed; e.g., streamed in real-time, on a per-year basis, on a per-player basis, or by some other 

basis. 

[0131] The lower portion of Figure 11 shows an example real-time signal processing DIVE 

pipeline, processing data from a microphone. In this pipeline, the ontological data-graph is 

hooked back to a byte buffer, through which is streaming raw audio data. This pipeline illustrates 

the generality of pipeline processing of an ontological graph connected to some kind of dynamic 

data source. In other embodiments, multiple sensors could be connected to a related DIVE 

pipeline, where data from the sensors is represented via some ontology; e.g., an ontology for 

medical sensors. Then, a user could request the pipeline to “alert when any sensor monitoring the 

cardio-pulmonary system downstream of the injection site registers a value outside of the 

specified safety thresholds.” In this pipeline, the cardio-pulmonary specification would be 

derived from the overall ontology of sensors. 

[0132] In another example, the user could request a continuous data stream based on 

location-related sensor data; e.g., request data  from “all deep-ocean current sensors within 100 

miles of the up-to-the-minute GPS position of any Navy ship over 1000 tons and under the 

eventual command of Admiral Jones.” In this case, the ontology graph would have to cover 

naval vessels, command hierarchies, and ocean sensor data. In this case, the subset of the 
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ontology can change in real time as the ships moves (and perhaps as command changes). Then, 

queries can be made against the larger ontological graph of naval vessels and undersea sensors 

using live data streams as part of the query to provide the requested continuous data stream. 

Many other example DIVE pipelines and uses of DIVE system 100 are possible as well. 

 

Example Computing Network  

[0133] Figure 12 is a block diagram of example computing network 1200 in accordance with 

an example embodiment. In Figure 12, servers 1208 and 1210 are configured to communicate, 

via a network 1206, with client devices 1204a, 1204b, and 1204c. As shown in Figure 12, client 

devices can include a personal computer 1204a, a laptop computer 1204b, and a smart-phone 

1204c. More generally, client devices 1204a-1204c (or any additional client devices) can be any 

sort of computing device, such as a workstation, network terminal, desktop computer, laptop 

computer, wireless communication device (e.g., a cell phone or smart phone), and so on.  

[0134] The network 1206 can correspond to a local area network, a wide area network, a 

corporate intranet, the public Internet, combinations thereof, or any other type of network(s) 

configured to provide communication between networked computing devices. In some 

embodiments, part or all of the communication between networked computing devices can be 

secured.  

[0135] Servers 1208 and 1210 can share content and/or provide content to client devices 

1204a-1204c. As shown in Figure 12, servers 1208 and 1210 are not physically at the same 

location. Alternatively, servers 1208 and 1210 can be co-located, and/or can be accessible via a 
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network separate from network 1206. Although Figure 12 shows three client devices and two 

servers, network 1206 can service more or fewer than three client devices and/or more or fewer 

than two servers. In some embodiments, servers 1208, 1210 can perform some or all of the 

herein-described methods; e.g., method 1400.  

 

Example Computing Device  

[0136] Figure 13A is a block diagram of an example computing device 1300 including user 

interface module 1301, network communication interface module 1302, one or more processors 

1303, and data storage 1304, in accordance with an embodiment.  

[0137] In particular, computing device 1300 shown in Figure 13A can be configured to 

perform one or more functions of DIVE system 100, data sources 110, pre-loader 310, data 

frames 320, data frame selection logic 330, data pins 332, data ontology 340, transform 350, data 

interactions 360, DIVE object parser 400, one or more DIVE pipelines, Protein Dashboard 800, 

client devices 1204a-1204c, network 1206, and/or servers 1208, 1210 and/or one or more 

functions of method 1400. Computing device 1300 may include a user interface module 1301, a 

network communication interface module 1302, one or more processors 1303, and data storage 

1304, all of which may be linked together via a system bus, network, or other connection 

mechanism 1305. 

[0138]  Computing device 1300 can be a desktop computer, laptop or notebook computer, 

personal data assistant (PDA), mobile phone, embedded processor, touch-enabled device, or any 

similar device that is equipped with at least one processing unit capable of executing machine-
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language instructions that implement at least part of the herein-described techniques and 

methods, including but not limited to method 1400 described with respect to Figure 14. 

[0139] User interface 1301 can receive input and/or provide output, perhaps to a user. User 

interface 1301 can be configured to send and/or receive data to and/or from user input from input 

device(s), such as a keyboard, a keypad, a touch screen, a computer mouse, a track ball, a 

joystick, and/or other similar devices configured to receive input from a user of the computing 

device 1300.  

[0140] User interface 1301 can be configured to provide output to output display devices, 

such as one or more cathode ray tubes (CRTs), liquid crystal displays (LCDs), light emitting 

diodes (LEDs), displays using digital light processing (DLP) technology, printers, light bulbs, 

and/or other similar devices capable of displaying graphical, textual, and/or numerical 

information to a user of computing device 1300. User interface module 1301 can also be 

configured to generate audible output(s), such as a speaker, speaker jack, audio output port, 

audio output device, earphones, and/or other similar devices configured to convey sound and/or 

audible information to a user of computing device 1300.  

[0141] Network communication interface module 1302 can be configured to send and 

receive data over wireless interface 1307 and/or wired interface 1308 via a network, such as 

network 1206. Wireless interface 1307 if present, can utilize an air interface, such as a 

Bluetooth®, Wi-Fi®, ZigBee®, and/or WiMAX™ interface to a data network, such as a wide 

area network (WAN), a local area network (LAN), one or more public data networks (e.g., the 

Internet), one or more private data networks, or any combination of public and private data 
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networks. Wired interface(s) 1308, if present, can comprise a wire, cable, fiber-optic link and/or 

similar physical connection(s) to a data network, such as a WAN, LAN, one or more public data 

networks, one or more private data networks, or any combination of such networks. 

[0142] In some embodiments, network communication interface module 1302 can be 

configured to provide reliable, secured, and/or authenticated communications. For each 

communication described herein, information for ensuring reliable communications (i.e., 

guaranteed message delivery) can be provided, perhaps as part of a message header and/or footer 

(e.g., packet/message sequencing information, encapsulation header(s) and/or footer(s), size/time 

information, and transmission verification information such as CRC and/or parity check values). 

Communications can be made secure (e.g., be encoded or encrypted) and/or decrypted/decoded 

using one or more cryptographic protocols and/or algorithms, such as, but not limited to, DES, 

AES, RSA, Diffie-Hellman, and/or DSA. Other cryptographic protocols and/or algorithms can 

be used as well as or in addition to those listed herein to secure (and then decrypt/decode) 

communications. 

[0143] Processor(s) 1303 can include one or more central processing units, computer 

processors, mobile processors, digital signal processors (DSPs), graphics processing units 

(GPUs), microprocessors, computer chips, and/or other processing units configured to execute 

machine-language instructions and process data. Processor(s) 1303 can be configured to execute 

computer-readable program instructions 1306 that are contained in data storage 1304 and/or 

other instructions as described herein. 
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[0144] Data storage 1304 can include one or more physical and/or non-transitory storage 

devices, such as read-only memory (ROM), random access memory (RAM), removable-disk-

drive memory, hard-disk memory, magnetic-tape memory, flash memory, and/or other storage 

devices. Data storage 1304 can include one or more physical and/or non-transitory storage 

devices with at least enough combined storage capacity to contain computer-readable program 

instructions 1306 and any associated/related data and data structures, including but not limited 

to, data frames, data pins, ontologies, DIVE data structures, software objects, software object 

hierarchies, code assemblies, data interactions, scripts (including μscripts).  

[0145] Computer-readable program instructions 1306 and any data structures contained in 

data storage 1306 include computer-readable program instructions executable by processor(s) 

1303 and any storage required, respectively, to perform at least part of herein-described methods, 

including, but not limited to method 1400 described with respect to Figure 14. 

[0146] Figure 13B depicts a network 1206 of computing clusters 1009a, 1009b, 1009c 

arranged as a cloud-based server system in accordance with an example embodiment. Data 

and/or software for DIVE system 100 can be stored on one or more cloud-based devices that 

store program logic and/or data of cloud-based applications and/or services. In some 

embodiments, DIVE system 100 can be a single computing device residing in a single computing 

center. In other embodiments, DIVE system 100 can include multiple computing devices in a 

single computing center, or even multiple computing devices located in multiple computing 

centers located in diverse geographic locations.  
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[0147] In some embodiments, data and/or software for DIVE system 100 can be encoded as 

computer readable information stored in tangible computer readable media (or computer 

readable storage media) and accessible by client devices 1204a, 1204b, and 1204c, and/or other 

computing devices. In some embodiments, data and/or software for DIVE system 100 can be 

stored on a single disk drive or other tangible storage media, or can be implemented on multiple 

disk drives or other tangible storage media located at one or more diverse geographic locations.  

[0148] Figure 13B depicts a cloud-based server system in accordance with an example 

embodiment. In Figure 13B, the functions of DIVE system 100 can be distributed among three 

computing clusters 1309a, 1309b, and 1308c. Computing cluster 1309a can include one or more 

computing devices 1300a, cluster storage arrays 1310a, and cluster routers 1311a connected by a 

local cluster network 1312a. Similarly, computing cluster 1309b can include one or more 

computing devices 1300b, cluster storage arrays 1310b, and cluster routers 1311b connected by a 

local cluster network 1312b. Likewise, computing cluster 1309c can include one or more 

computing devices 1300c, cluster storage arrays 1310c, and cluster routers 1311c connected by a 

local cluster network 1312c.  

[0149] In some embodiments, each of the computing clusters 1309a, 1309b, and 1309c can 

have an equal number of computing devices, an equal number of cluster storage arrays, and an 

equal number of cluster routers. In other embodiments, however, each computing cluster can 

have different numbers of computing devices, different numbers of cluster storage arrays, and 

different numbers of cluster routers. The number of computing devices, cluster storage arrays, 
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and cluster routers in each computing cluster can depend on the computing task or tasks assigned 

to each computing cluster. 

[0150] In computing cluster 1309a, for example, computing devices 1300a can be configured 

to perform various computing tasks of DIVE system 100. In one embodiment, the various 

functionalities of DIVE system 100 can be distributed among one or more of computing devices 

1300a, 1300b, and 1300c. Computing devices 1300b and 1300c in computing clusters 1309b and 

1309c can be configured similarly to computing devices 1300a in computing cluster 1309a. On 

the other hand, in some embodiments, computing devices 1300a, 1300b, and 1300c can be 

configured to perform different functions.  

[0151] In some embodiments, computing tasks and stored data associated with DIVE system 

100 can be distributed across computing devices 1300a, 1300b, and 1300c based at least in part 

on the processing requirements of DIVE system 100, the processing capabilities of computing 

devices 1300a, 1300b, and 1300c, the latency of the network links between the computing 

devices in each computing cluster and between the computing clusters themselves, and/or other 

factors that can contribute to the cost, speed, fault-tolerance, resiliency, efficiency, and/or other 

design goals of the overall system architecture.  

[0152] The cluster storage arrays 1310a, 1310b, and 1310c of the computing clusters 1309a, 

1309b, and 1309c can be data storage arrays that include disk array controllers configured to 

manage read and write access to groups of hard disk drives. The disk array controllers, alone or 

in conjunction with their respective computing devices, can also be configured to manage backup 

or redundant copies of the data stored in the cluster storage arrays to protect against disk drive or 
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other cluster storage array failures and/or network failures that prevent one or more computing 

devices from accessing one or more cluster storage arrays.  

[0153] Similar to the manner in which the functions of DIVE system 100 can be distributed 

across computing devices 1300a, 1300b, and 1300c of computing clusters 1309a, 1309b, and 

1309c, various active portions and/or backup portions of these components can be distributed 

across cluster storage arrays 1310a, 1310b, and 1310c. For example, some cluster storage arrays 

can be configured to store one portion of the data and/or software of DIVE system 100, while 

other cluster storage arrays can store a separate portion of the data and/or software of DIVE 

system 100. Additionally, some cluster storage arrays can be configured to store backup versions 

of data stored in other cluster storage arrays.  

[0154] The cluster routers 1311a, 1311b, and 1311c in computing clusters 1309a, 1309b, and 

1309c can include networking equipment configured to provide internal and external 

communications for the computing clusters. For example, the cluster routers 1311a in computing 

cluster 1309a can include one or more internet switching and routing devices configured to 

provide (i) local area network communications between the computing devices 1300a and the 

cluster storage arrays 1301a via the local cluster network 1312a, and (ii) wide area network 

communications between the computing cluster 1309a and the computing clusters 1309b and 

1309c via the wide area network connection 1313a to network 1206. Cluster routers 1311b and 

1311c can include network equipment similar to the cluster routers 1311a, and cluster routers 

1311b and 1311c can perform similar networking functions for computing clusters 1309b and 

1309b that cluster routers 1311a perform for computing cluster 1309a.  
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[0155] In some embodiments, the configuration of the cluster routers 1311a, 1311b, and 

1311c can be based at least in part on the data communication requirements of the computing 

devices and cluster storage arrays, the data communications capabilities of the network 

equipment in the cluster routers 1311a, 1311b, and 1311c, the latency and throughput of local 

networks 1312a, 1312b, 1312c, the latency, throughput, and cost of wide area network links 

1313a, 1313b, and 1313c, and/or other factors that can contribute to the cost, speed, fault-

tolerance, resiliency, efficiency and/or other design goals of the moderation system architecture.  

Example Methods of Operation 

[0156] Figure 14 is a flow chart of an example method 1400. Method 1400 can be carried out 

by a computing device, such as computing device 1300 discussed above in the context of Figure 

13A.  

[0157] Method 1400 can begin at block 1410, where a computing device can receive data 

from one or more data sources, as discussed above in the context of at least Figures 1-3, 5, 6, and 

8. 

[0158] At block 1420, the computing device can generate a data frame based on the received 

data. The data frame can include a plurality of data items, as discussed above in the context of at 

least Figures 3, 5, and 6. In some embodiments, generating the data frame can include storing a 

subset of the received data in the data frame using a pre-loader, such as discussed above in the 

context of at least Figure 3. 

[0159] At block 1430, the computing device can determine a data ontology. The data 

ontology can include a plurality of datanodes, as discussed above in the context of at least 
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Figures 3 and 5. In some embodiments, the data ontology can be related to a software object 

hierarchy, such as discussed above in the context of at least Figures 4-6 and 8. In other 

embodiments, the data ontology can be related to a chemical molecule, such as discussed above 

in the context of at least Figures 3 and 8. 

[0160] At block 1440, the computing device can determine a plurality of data pins, as 

discussed above in the context of at least Figure 3. A first data pin of the plurality of data pins 

can include a first reference and a second reference. The first reference for the first data pin can 

refer to a first data item in the data frame and the second reference for the first data pin can refers 

to a first datanode of the plurality of datanodes. The first datanode can be related to the first data 

item. 

[0161] At block 1450, the computing device can obtain data for the first data item at the first 

datanode of the data ontology via the first data pin, as discussed above in the context of at least 

Figure 3. In some embodiments, the second reference can refer to a datanode associated with a 

software object in the software object hierarchy. In other embodiments, determining the data 

ontology can include parsing the software object hierarchy, such as discussed above in the 

context of at least Figures 4 and 5. In still other embodiments, the plurality of pins can include a 

control pin, where the control pin indicates a control data item of the plurality of data items, such 

as discussed above in the context of at least Figure 3. 

[0162] At block 1460, the computing device can provide a representation of the data 

ontology, such as discussed above in the context of at least Figures 3 and 8-11. In some 
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embodiments, the representation includes a visual representation, such as discussed above in the 

context of at least Figures 3 and 8-11.  

[0163] In some embodiments, method 1400 can also include: receiving additional data from 

the one or more data sources; storing a subset of the additional data in a second data frame, 

where the second data frame includes the plurality of data items, and where the data in the 

second data frame differs from data in the first data frame, and changing the first reference of the 

first data pin to refer to the first data item in the second data frame, as discussed above in the 

context of at least Figure 3. 

[0164] In other embodiments, method 1400 can also include: specifying a designated control 

for the control data item of the control pin, and after specifying the designated control, 

generating a data frame associated with the designated control, such as discussed above in the 

context of at least Figure 3. In particular embodiments, the designated control can be at least one 

control selected from the group consisting of a control based on a time, a control based on an 

identifier, and a control based on a location. 

[0165] Unless the context clearly requires otherwise, throughout the description and the 

claims, the words ‘comprise’, ‘comprising’, and the like are to be construed in an inclusive sense 

as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not 

limited to”. Words using the singular or plural number also include the plural or singular 

number, respectively. Additionally, the words “herein,” “above” and "below" and words of 

similar import, when used in this application, shall refer to this application as a whole and not to 

any particular portions of this application. 
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[0166] The above description provides specific details for a thorough understanding of, and 

enabling description for, embodiments of the disclosure. However, one skilled in the art will 

understand that the disclosure may be practiced without these details. In other instances, well-

known structures and functions have not been shown or described in detail to avoid 

unnecessarily obscuring the description of the embodiments of the disclosure. The description of 

embodiments of the disclosure is not intended to be exhaustive or to limit the disclosure to the 

precise form disclosed. While specific embodiments of, and examples for, the disclosure are 

described herein for illustrative purposes, various equivalent modifications are possible within 

the scope of the disclosure, as those skilled in the relevant art will recognize.  

[0167] All of the references cited herein are incorporated by reference. Aspects of the 

disclosure can be modified, if necessary, to employ the systems, functions and concepts of the 

above references and application to provide yet further embodiments of the disclosure. These and 

other changes can be made to the disclosure in light of the detailed description. 

[0168] Specific elements of any of the foregoing embodiments can be combined or 

substituted for elements in other embodiments. Furthermore, while advantages associated with 

certain embodiments of the disclosure have been described in the context of these embodiments, 

other embodiments may also exhibit such advantages, and not all embodiments need necessarily 

exhibit such advantages to fall within the scope of the disclosure.  

[0169] The above detailed description describes various features and functions of the 

disclosed systems, devices, and methods with reference to the accompanying figures. In the 

figures, similar symbols typically identify similar components, unless context dictates otherwise. 
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The illustrative embodiments described in the detailed description, figures, and claims are not 

meant to be limiting. Other embodiments can be utilized, and other changes can be made, 

without departing from the spirit or scope of the subject matter presented herein. It will be 

readily understood that the aspects of the present disclosure, as generally described herein, and 

illustrated in the figures, can be arranged, substituted, combined, separated, and designed in a 

wide variety of different configurations, all of which are explicitly contemplated herein. 

[0170] With respect to any or all of the ladder diagrams, scenarios, and flow charts in the 

figures and as discussed herein, each block and/or communication may represent a processing of 

information and/or a transmission of information in accordance with example embodiments. 

Alternative embodiments are included within the scope of these example embodiments. In these 

alternative embodiments, for example, functions described as blocks, transmissions, 

communications, requests, responses, and/or messages may be executed out of order from that 

shown or discussed, including substantially concurrent or in reverse order, depending on the 

functionality involved. Further, more or fewer blocks and/or functions may be used with any of 

the ladder diagrams, scenarios, and flow charts discussed herein, and these ladder diagrams, 

scenarios, and flow charts may be combined with one another, in part or in whole.  

[0171] A block that represents a processing of information may correspond to circuitry that 

can be configured to perform the specific logical functions of a herein-described method or 

technique. Alternatively or additionally, a block that represents a processing of information may 

correspond to a module, a segment, or a portion of program code (including related data). The 

program code may include one or more instructions executable by a processor for implementing 
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specific logical functions or actions in the method or technique. The program code and/or related 

data may be stored on any type of computer readable medium such as a storage device including 

a disk or hard drive or other storage medium.  

[0172] The computer readable medium may also include non-transitory computer readable 

media such as computer-readable media that stores data for short periods of time like register 

memory, processor cache, and random access memory (RAM). The computer readable media 

may also include non-transitory computer readable media that stores program code and/or data 

for longer periods of time, such as secondary or persistent long term storage, like read only 

memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for 

example. The computer readable media may also be any other volatile or non-volatile storage 

systems. A computer readable medium may be considered a computer readable storage medium, 

for example, or a tangible storage device.  

[0173] Moreover, a block that represents one or more information transmissions may 

correspond to information transmissions between software and/or hardware modules in the same 

physical device. However, other information transmissions may be between software modules 

and/or hardware modules in different physical devices.  

[0174] Numerous modifications and variations of the present disclosure are possible in light 

of the above teachings. 

  



241 

 

 

CLAIMS 

1. A method, comprising: 

receiving data from one or more data sources at a computing device; 

generating a data frame based on the received data using the computing device, the data 

frame comprising a plurality of data items; 

determining a data ontology at the computing device, wherein the data ontology 

comprises a plurality of datanodes; 

determining a plurality of data pins using the computing device, wherein a first data pin 

of the plurality of data pins comprises a first reference and a second reference, wherein the first 

reference for the first data pin refers to a first data item in the data frame, wherein the second 

reference for the first data pin refers to a first datanode of the plurality of datanodes, and wherein 

the first datanode is related to the first data item; 

obtaining, at the computing device, data for the first data item at the first datanode of the 

data ontology via the first data pin; and  

providing a representation of the data ontology using the computing device. 

 

2. The method of claim 1, wherein the representation comprises a visual representation. 

 

3. The method of claim 1 or claim 2, wherein generating the data frame comprises storing 

a subset of the received data in the data frame using a pre-loader. 
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4. The method of any one of claims 1-3, further comprising: 

receiving additional data from the one or more data sources; 

storing a subset of the additional data in a second data frame, wherein the second data 

frame comprises the plurality of data items, and wherein the data in the second data frame differs 

from data in the first data frame; and 

changing the first reference of the first data pin to refer to the first data item in the second 

data frame. 

 

5. The method of any one of claims 1-4, wherein the data ontology is related to a 

software object hierarchy. 

 

6. The method of claim 5, wherein the second reference refers to a datanode associated 

with a software object in the software object hierarchy. 

 

7. The method of claim 5 or claim 6, wherein determining the data ontology comprises 

parsing the software object hierarchy. 

 

8. The method of any one of claims 1-7, wherein the plurality of pins comprise a control 

pin, and wherein the control pin indicates a control data item of the plurality of data items. 

 

9. The method of claim 8, further comprising: 
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specifying a designated control for the control data item of the control pin; and 

after specifying the designated control, generating a data frame associated with the 

designated control. 

 

10. The method of claim 9, wherein the designated control is at least one control selected 

from the group consisting of a control based on a time, a control based on an identifier, and a 

control based on a location. 

 

11. The method of any one of claims 1-10, wherein the data ontology relates to a 

chemical molecule. 

 

12. A computing device, comprising: 

a processor; and 

a tangible computer readable medium configured to store at least executable instructions, 

wherein the executable instructions, when executed by the processor, cause the computing device 

to perform functions comprising the method of any one of claims 1-11. 

 

13. The computing device of claim 12, wherein the tangible computer readable medium 

is a non-transitory tangible computer readable medium. 
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14. A tangible computer readable medium configured to store at least executable 

instructions, wherein the executable instructions, when executed by a processor of a computing 

device, cause the computing device to perform functions comprising the method of any one of 

claims 1-11. 

 

15. The tangible computer readable medium of claim 14, wherein the tangible computer 

readable medium is a non-transitory tangible computer readable medium. 

 

16. A device, comprising: 

means for receiving data from one or more data sources; 

means for generating a data frame based on the received data, the data frame comprising 

a plurality of data items; 

means for determining a data ontology, wherein the data ontology comprises a plurality 

of datanodes; 

means for determining a plurality of data pins, wherein a first data pin of the plurality of 

data pins comprises a first reference and a second reference, wherein the first reference for the 

first data pin refers to a first data item in the data frame, wherein the second reference for the 

first data pin refers to a first datanode of the plurality of datanodes, and wherein the first 

datanode is related to the first data item; 

means for obtaining data for the first data item at the first datanode of the data ontology 

via the first data pin; and  
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means for providing a representation of the data ontology. 
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ABSTRACT 

Methods and apparatus are provided for representing streamed and structured 

information. A computing device can receive data from data sources. The computing device can 

generate a data frame that includes data items based on the received data. The computing device 

can determine a data ontology, where the data ontology can include datanodes. The computing 

device can determine data pins which include a first data pin. The first data pin can include a first 

reference and a second reference. The first reference can refer to a first data item in the data 

frame and the second reference can refer to a first datanode of the plurality of datanodes. The 

first datanode can be related to the first data item. The computing device can obtain data for the 

first data item at the first datanode via the first data pin and then can provide a representation of 

the data ontology. 
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Appendix Figure B.1 DIVE patent Figure 1 
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Appendix Figure B.2 DIVE patent Figure 2 
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Appendix Figure B.3 DIVE patent Figure 3 
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Appendix Figure B.4 DIVE patent Figure 4 
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Appendix Figure B.5 DIVE patent Figure 5 
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Appendix Figure B.6 DIVE patent Figure 6 
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Appendix Figure B.7 DIVE patent Figure 7 
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Appendix Figure B.8 DIVE patent Figure 8 
 



255 

 

 

 
Appendix Figure B.9 DIVE patent Figure 9 
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Appendix Figure B.10 DIVE patent Figure 10 
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Appendix Figure B.11 DIVE patent Figure11 
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Appendix Figure B.12 DIVE patent Figure 12 
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Appendix Figure B.13 DIVE patent Figure 13 
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Appendix Figure B.14 DIVE patent Figure 14 
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Appendix C  

SUPPLEMENTARY MATERIALS FOR DIVE: A DATA 

INTENSIVE VISUALIZATION ENGINE 

The contents of Chapter 3 and this appendix were previously published in the journal 

Bioinformatics (Bromley et al. 2014).   

C.1 Protein Dashboard 

The protein dashboard (Appendix Figure C.3) is a data exploration application that uses the 

DIVE framework and Dynameomics Application Programming Interface (Rysavy et al. 2014) to 

visually and interactively present the Dynameomics data.  Through the DIVE object model, the 

protein dashboard organizes these data and renders them in multiple, linked modules at once; 

interaction with one module can update connected modules.  For example, an ontological 

relationship exists between interatomic contacts and protein residues: a contact connects two 

atoms and therefore, through the protein dashboard’s structural hierarchy, two residues.  In 

Appendix Figure C.3, the protein dashboard depicts a pair of aligned 3D protein structures and 

2D contact map.  Selecting a contact in the contact map will highlight the associated residues and 

metadata in the 3D structure.  Furthermore, these structured data and relationships persist while 

streaming from the data warehouse and they are also available to DIVE’s scripting engine.  In 

this way, the protein dashboard uses the DIVE framework to bring an additional level of 

navigable order to the Dynameomics data warehouse.  The protein dashboard and associated 

documentation are included in the DIVE software download. 



262 

 

 

C.2 Gene Ontology 

DIVE is a versatile framework that can be useful for a variety of scientific domains.  We created 

a DIVE pipeline to explore an area of bioinformatics not typically used for research in the 

Daggett lab, specifically the Gene Ontology (GO) database (Ashburner et al. 2000).  We wrote a 

simple script to generate an interactive taxonomy of species contained in the GO database 

(Appendix Figure C.4).  A more complex example that selects sections of the taxonomy in order 

to chart groups of interest is shown in Appendix Figure C.5.  This illustrates DIVE’s ability to 

operate in other areas of the bioinformatics domain as well as shows DIVE’s support for 

ontologies.  This pipeline took approximately one hour to build by a person unfamiliar with the 

GO database. 

C.3 Professional Baseball Statistics 

To illustrate the domain-independence of DIVE, we analyzed approximately 200 years of 

baseball statistics (http://seanlahman.com/). These data were contained in several comma-

separated value (CSV) files (Appendix Figure C.6). Because DIVE is data-independent, we were 

able to load, explore, chart, and interact with the baseball data using the same tools and 

techniques that were used to explore protein structure data. In addition to the general-purpose 

analysis and visualization plugins, we also used the general-purpose analysis functionality in the 

DIVE kernel to perform edge-detection filtering on each player’s year-to-year earned-run-

average (ERA). By sorting the players on their average year-to-year ERA differences (left-to-

right, Appendix Figure C.7), we were able to identify those pitchers with the most-consistent and 

least-consistent pitching histories. Furthermore, by using DIVE to integrate free-form data 
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sources such as web searching (Appendix Figure C.8), data anomalies were easily explained. For 

example, Whitey Ford, one of the most consistent baseball pitchers, missed the 1951 season due 

to military service. 
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Appendix Figure C.1 Schematic of the data flow within DIVE.  
Data enter DIVE from a variety of sources and are processed, analyzed and visualized by 
specific DIVE modules.  The user interacts with these modules, iteratively refining the 
investigation as scientific insights develop.  Analyses, visualizations, and data organization can 
all be controlled by the user, and changes are saved for future work.  Visualization and analysis 
options include charting and graphing, specialized representations, clustering and filtering, 
arbitrary script interactions, and domain-specific analyses such as interatomic contact occupancy.  
The DIVE framework can be extended with custom functionality. 
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Appendix Figure C.2 Conceptual representation of DIVE modules and processes. 
Each module has multiple pins that send output or receive input using data points, creating 
individual data pipelines. Data points can be transformed with µScripting as they flow through 
the pipelines.  Three separate processes are portrayed: SOD1 analysis (green), p53 analysis 
(purple), and the protein dashboard (orange).  In the SOD1 analysis, data points flow to the 
SNP comparer module for secondary structure assessment.  Simulations of interest are then 
routed to another module to display the trend of secondary structure over time.  Data points for 
these same simulations are then streamed directly from the data warehouse, aligned on Cα 
root-mean-squared deviation, and visually analyzed in a molecular viewer.  In the p53 
analysis, ContactWalker reads data from the file system and calculates occupancy differences 
between the wild type and mutant simulations.  These data are then used to create a contact 
graph.  This graph is searched and contact pathways between significantly disrupted residues 
are identified.  Additionally, the occupancy data are mapped onto a protein structure and 
visualized.  From here, further analysis can involve analyzing specific contact distances or 
viewing the full trajectory in the Protein Dashboard.  
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Appendix Figure C.3 Screenshot of the Protein Dashboard. 
(a) 3D molecular visualization module depicting two aligned structures of p53 with the 
mutated residue highlighted in black. (b) Interactive residue-residue contact maps of the two 
p53 structures.  The crossbar indicates a contact of the mutated residue. (c) µScript specifying 
the explicit display of the atoms contained in the mutated residue. (d) Streaming module used 
to access Dynameomics simulations. This figure depicts two separate simulations of p53 
simultaneously streaming from the data warehouse. (e) Interactive view of the simulation 
hierarchies and associated strongly typed fields and methods.  
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Appendix Figure C.4 Screenshot of DIVE displaying information from the Gene Ontology 
database. 
Two generic DIVE plugins were used to create this view. (a) Interactive view of the Gene 
Ontology species taxonomy. (b) Script (written in C#) to create taxonomy from the Gene 
Ontology species table. 
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Appendix Figure C.5 Screenshot of DIVE showing investigation of the Gene Ontology 
species taxonomy 
This demonstration is included in the downloadable DIVE software package. (a) Chart showing 
various types of carnivores. (b) Script to create histogram of carnivore sub-species from the 
species taxonomy. (c) Interactive view of raw data included in the taxonomy.  This specific table 
was created by selecting the ‘Caniformia’ group in (a).  
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Appendix Figure C.6 Reusable DIVE components used to analyze professional baseball 
statistics 
(a) Data loading requires one line per data file and one line to begin the load process. (b) Data 
loading is automatically parallelized across local processors. (c) Example plugin pipeline used 
for analyzing the professional baseball statistics.  
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Appendix Figure C.7 Reusable DIVE charting plugins used for data exploration. 
(a) Pie chart showing distribution of right-hand and left-hand pitchers. (b) Scatter plot of players’ 
height and weight.  Outlier identifies Edward Carl Gaedel, a major league player with dwarfism 
who played in 1951. (c) A more sophisticated DIVE chart illustrating relationships among career 
timespan, pitching handedness, and earned run average (ERA) consistency. 
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Appendix Figure C.8 Conceptual representation of DIVE interactions among various 
plugins 
This investigation used various data sources to identify a player’s absence due to military 
service. (a) DIVE chart illustrating relationships among career timespan, pitching handedness, 
and ERA consistency. (b) Close-up of chart shown in (a). DIVE supports interactive zooming of 
chart data. (c) Bar chart linked to chart in (b) through DIVE pipeline.  Double-clicking on player 
data in (b) displays yearly ERA and launches a web search with the player’s name. (d) 
Screenshot of web search automatically launched by DIVE.  
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Appendix Figure C.9 DIVE using the Chimera molecular dynamics movie plugin 
Chimera (Pettersen et al. 2004) is one of the major protein visualizers in use today.  DIVE is able 
to incorporate tools like Chimera into a pipeline for scientific investigation. 
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Appendix D  

SUPPLEMENTARY P53 MUTANT ANALYSES 

These analyses are a supplement to Chapter 6. 

 

Mutant Analyses 

D.1 DNA-Contact Mutants 

R248Q 

The R248Q mutation is a DNA-contact mutation located in the L3 loop.  Previous work (Bullock 

et al. 2000) has shown that this mutation destabilizes the p53 protein by 1.9 kcal/mol at 10° C and 

abolishes its DNA binding affinity at 20° C.  Average Cα RMSD values of the simulations were 

4.8 ± 0.2Å, 4.5 ± 0.1Å, and 4.7 ± 0.2Å.  The average Cα RMSD values for the DNA-binding 

residues for the three simulations were 7.2 ± 0.4Å, 5.8 ± 0.2Å, and 5.6 ± 0.4Å.  Cα RMSD 

analysis of the R248Q simulations showed that the main regions of structural deviation from 

starting structure were the loop-sheet-helix region, L2, the S7/S8 loop and, to a lesser degree, L3.  

Relative to the wild type, the R248Q mutant demonstrated larger-than-average Cα RMSD values 

in the loop-sheet-helix region (5Å), L2 (5Å), and the S6/S7 loop (4Å).  Smaller-than-wild-type 

Cα RMSD values were observed in the S7/S8 loop (4Å), L3 (2Å), and the S9/S10 loop (2Å). 

All three simulations showed a separation between L1 and H2 (~20Å) and wild type-like 

distance between L2 and L3.  In one simulation, L2 swung away from S5 by 25Å.  Secondary-

structure analysis showed that one simulation lost H1 helical structure, one simulation gained α-



274 

 

 

sheet structure between S1 and S3, and two simulations gained helical structure in L1.  Cα 

RMSF values were mostly wild type-like with the exception of an increase (~2Å) in the loop-

sheet-helix region, an increase (~2Å) in one simulation in the S7/S8 loop, and a small (< 1Å) 

decrease in fluctuation in the zinc-binding region of L2. 

There were increases in contacts between L2 and L3 (notably, near the L2 zinc-binding 

residues), between S5 and S6, and within L2 near the H1 helix.  There were decreases in contacts 

between H2 and L1, H2 and S2, and H2 and S2’, consistent with the separation seen between H2 

and the rest of the loop-sheet-helix region.  Relative to wild type, across the three simulations, 

Q248 demonstrated increased contact gains with Q165 (L2), A276 (the S10/H2 loop), and T284 

(H2), and both losses and gains with S240 (L3). 

 

R273C 

The R273C mutation is a DNA-contact mutation located in the S10 β strand.  Average Cα 

RMSD values of the simulations were 4.6 ± 0.2Å, 3.6 ± 0.3Å, and 3.9 ± 0.1Å.  The average 

DNA-contact average Cα RMSD values were 6.1 ± 0.3Å, 4.0 ± 0.1Å, 3.2 ± 0.4Å.   Cα RMSD 

analysis of the three R273C simulations showed the β core typically wild type-like with the 

exception of S1 becoming slightly displaced in two simulations (~1.5Å Cα RMSD).  All three 

simulations showed deviations from starting structure in the S7/S8 loop.  One simulation showed 

large structural deviations in the L2 loop (~6Å average) and one simulation showed disruptions 

(~5Å average) in the loop-sheet-helix region. 
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Secondary-structure analysis showed a loss of H1 helical structure in one simulation, disrupted 

S1 β structure in all three simulations, and a gain of α-sheet structure between S3 and S8 in one 

simulation.  One simulation showed a gain of helical content in L1 concurrent with a separat ion 

between L1 and H2, and one simulation showed a gain of helical content in L3.  Cα RMSF 

values were basically wild type-like with small (< 2Å) increases in L1 and both increases and 

decreases (<2Å) relative to wild type in L2. 

L1 separated from H2 in one simulation but the L2:L3 distances were within wild-type ranges.  

Relative to wild type, C273 lost contact occupancy with D281 and E285 (H2) in all three 

simulations.  The contact occupancy between Y220 (the S7/S8 loop) and I232 (S8) was 

increased in every simulation, as was the overall contact between S5 and S7. 

 

R273H 

The R273H mutation is a DNA-contact mutation in the S10 β strand.  Previous work (Bullock et al. 

2000) has shown that this mutation destabilizes the p53 protein by 0.5 kcal/mol at 10° C and 

abolishes DNA binding affinity at 20° C relative to wild type.  Average Cα RMSD values of the 

simulations were 3.2 ± 0.1Å, 3.7 ± 0.1Å, and 3.6 ± 0.2Å.  The average DNA-contact average Cα 

RMSD values were 2.3 ± 0.2Å, 4.3 ± 0.1Å, and 4.1 ± 0.3Å.  Cα RMSD analysis of the three 

R273H simulations indicated that the primary regions of structural deviation were L2, L3, and 

the S7/S8 loop. L2 and the S6/S7 loop demonstrated values as much a 5Å greater than wild type 

and the S7/S8 loop had values as much as 5Å less than wild-type values.  The β-core was 
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relatively stable in all three simulations with average Cα RMSD values ranging between 1.6Å 

and 2.2Å. 

Secondary-structure analysis showed that most structures were maintained for the majority of the 

simulation time; exceptions to this involved one simulation that showed an intermittent loss of 

H2 helical structure, one simulation that showed a gain of L3 helical structure, two simulations 

that showed an intermittent loss of S1 β content, and one simulation that showed an intermittent 

gain of α-sheet content between strands S1 and S3.  Cα RMSF values were very consistent 

among the simulations and all values were within wild-type ranges. 

Like the R273C mutant, the H273 mutation site consistently lost contact with D281 and E285 

(H2), although, unlike R273C, R273H did not demonstrate a significant separation between L1 

and H2, despite small but widespread Cα RMSD values in that region.  L2 and L3 did not 

separate appreciably either, although two simulations showed L2 separating from S5 (16Å, 22Å).  

Contact between H1 and the C-terminal half of L2 increased, as did contacts between S5 and S6. 

D.2 DNA-Region Mutants 

F134L 

The F134L mutation is located in S2’ β sheet of the loop-sheet-helix region.  Previous work 

(Bullock et al. 2000) has shown that this mutation destabilizes the wild type by 4.8 kcal/mol at 10° 

C and reduces the DNA binding affinity at 20° C by 66%.  Average Cα RMSD values of the 

simulations were 4.8 ± 0.2Å, 4.7 ± 0.1Å, and 4.3 ± 0.1Å.  The average Cα RMSD values for the 

DNA-contact residues were 6.3 ± 0.2Å, 4.9 ± 0.2Å, and 6.9 ± 0.3Å.  Cα RMSD analysis of the 

simulations indicated that the β core and the overall protein were relatively stable.  Most of the 
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structural deviation from the starting structure occurred in the loop regions; all three simulations 

exhibited deviation from wild-type structure in L2 (including H1), L3, the S7/S8 loop, and the 

loop-sheet-helix region.  Some simulations showed larger-than-wild-type values (~5Å) in L1, the 

S6/S7 loop, and the S9/S10 loop.  One simulation showed a large (24Å) separation between L1 

and H2 and one simulation showed a large separation (15Å) between L2 and L3. 

Secondary-structure analysis indicated that H1 helical structure was lost in two simulations and 

that one simulation showed a gain of β structure in the N-terminal loop region (residues 102-104) 

resulting in a small novel β strand that aligned with S10.  Cα RMSF values were mostly within 

wild-type ranges with some small (~1Å) increased fluctuations near L1, the S3/S4 loop and the 

S9/S10 loop.  A slightly larger (~2.5Å) increase in Cα RMSF was demonstrated by two 

simulations in the S7/S8 loop, and all three simulations showed a small (<1Å) decrease in 

fluctuation in the H1 region of L2.  Contact losses were seen between S1 and S2’, L1 and the 

S10/H2 loop, and L2 and S9, and contact gains were seen between L2 and the S6/S7 loop.  L134 

lost contact with E285 in all three simulations. 

 

G245S 

The G245S mutation is located in the L3 loop and is one of six “hot spot” mutations (Bullock et al. 

2000).  Previous work has shown that the mutation destabilizes the protein by 1.2 kcal/mol at 10° 

C and  reduces its DNA-binding ability at 20° C by 37% (Bullock et al. 2000).  Average Cα RMSD 

values of the simulations were 5.3 ± 0.2Å, 4.2 ± 0.2Å, and 4.6 ± 0.4Å.  The average DNA-

contact residue Cα RMSD values were 6.7 ± 0.2Å, 4.1 ± 0.4Å, and 3.3 ± 0.1Å.  Cα RMSD 



278 

 

 

analysis of the G245S simulations showed consistent structural deviation in the loop-sheet-helix, 

S3/S4 loop, L2, S7/S8 loop, and L3 regions.  Relative to wild type, there were increased Cα 

RMSD values in both the loop-sheet-helix region (< 5Å) and L2 (5-10Å), this last value a 

consequence of the C-terminus of L2 swinging away from  S5 by 27Å and back toward the N-

terminus of L2.  L1 and H2 separated by approximately 10Å in two simulations and L2 and L3 

separated between 10Å and 20Å in two simulations.  The β core remained relatively stable in all 

simulations although one simulation exhibited some increased movement  in the N-terminal 

residues of S8. 

All three G245S simulations exhibited α sheet including one three-strand sheet among the S3, 

S8, and S5 regions, and one two-strand five-residue-long sheet between S1 and S3.  Cα RMSF 

values were mostly wild type-like with small (<1Å ) increases in the loop-sheet-helix region and 

larger (~2Å) increases in the S7/S8 loop and at the C-terminal end of L2.  Almost all of the 

contact between L2 and S5 was abolished and the contact between the N-terminal half of L2 and 

the C-terminal half of L2 was also decreased  Contact occupancy was lost between F134 (S2’) 

and E285 (H2) and gained between A159 ( S4) and H214 (S7). 

 

H168R 

The H168R mutation is located in the L2 loop region.  Previous work (Joerger et al. 2005) indicates 

that this mutation destabilizes the protein by 3 kcal/mol at 10° C.  Average Cα RMSD values of 

the simulations were 4.7 ± 0.2Å, 4.5 ± 0.1Å, and 4.3 ± 0.2Å and average DNA-contact residue 

Cα RMSD values were 4.6 ± 0.3Å, 6.2 ± 0.1Å, and 3.2 ± 0.1Å.  Cα RMSD analysis of the 
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H168R simulations exhibited a consistent disruption in the L2, L3, and S7/S8 loops and the loop-

sheet-helix region.  Relative to wild type, increased Cα RMSD values (~5Å) were observed in 

S1, S3, S8, L2, and the S6/S7 loop, and a slight decrease (4Å) was observed in the S7/S8 loop; 

the rest were within wild-type ranges.  One simulation showed a large (20Å) separation between 

L1 and H2 and one simulation showed a mild (10Å) separation between L1 and H2; all 

simulations retained wild-type-like separation between L2 and L3.  Two simulations showed 

~20Å separations between L2 and S5. 

Secondary-structure analysis indicated a loss of β structure in S1, S5 and S6.  Two simulations 

showed a gain of helical structure at the mutation site and two simulations exhibited α-sheet 

formation between S1 and S3.  Cα RMSF values were mostly within wild-type ranges with the 

exception of slightly increased fluctuation in the L1 region (<2Å) and the S7/S8 loop region 

(<1Å), and slightly decreased fluctuation in the H1 region of L2 (<1Å).  Contact was increased 

between the S3/S4 loop and the S7/S8 loop, between loops L2 and L3, and between strands S5 

and S7. 

 

R249S 

The R249S mutation is one of four structural “hot spot” mutations and is located in L3.  Previous 

work (Bullock et al. 2000) indicates that this mutation destabilizes the p53 protein by 1.9 kcal/mol at 

10° C and completely abolishes its DNA-binding ability at 20° C.  Average Cα RMSD values of 

the simulations were 4.9 ± 0.1Å, 3.9 ± 0.1Å, and 4.4 ± 0.1Å.  The average Cα RMSD values for 

DNA-contact residues were 3.3 ± 0.1Å, 3.7 ± 0.1Å, and 5.3  ±  0.2Å.  Cα RMSD analysis of the 
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R249S simulations showed consistent structural deviations from wild type in L2, L3, the S7/S8 

loop, and the loop-sheet-helix region.  Deviations in the S3/S4 loop were observed in one 

simulation.  The β core remained stable and similar to starting structure with the exception of 

some disruption to S1 concurrent with the disruption to L1 in the loop-sheet-helix region.  L1 

moved apart from H2 in all three simulations (~20Å, ~7Å, ~7Å). 

In general, secondary structures were maintained throughout the simulation.  Exceptions to this 

were a loss of H1 helical content in one simulation, a gain of helical content in L1, a gain of 

helical content in L2, and a gain of α-sheet content between S1 and S3 in all three simulations.  

Increases in Cα RMSF relative to wild-type (~2Å) were observed in the loop-sheet-helix region, 

L2, and the S7/S8 loop. Small (<1Å) decreases in Cα RMSF were seen at E180 (H1) and N210 

(S6/S7 loop). 

The N-terminal loop decreased contact with both S1 and the S2/S2’ loop and increased contact 

with S3.  Contacts between L1 and the S10/H2 loop were not present.  The S6/S7 loop increased 

contacts with both S4 and L2 while L2 in turn decreased contact with S9.  S5 gained contact with 

L3 and the S5/S6 loop lost contact with S8.  S249 lost contact with E171, Y163 lost contact with 

V172, the L114:T125 and L114:Y126 contacts were lost, and the H115:V122 contact occupancy 

was increased. 

 

R282W 

The R282W mutation is one of four structural “hot spot” mutations and is located in the H2 helix 

near L1.  Previous work (Bullock et al. 2000) indicates that this mutation destabilizes the p53 
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protein by 3.3 kcal/mol at 10° C and reduces its DNA-binding affinity by 18% at 20° C.  Cα 

RMSD values of the simulations were 4.9 ± 0.2Å, 5.0 ± 0.2Å, and 4.1 ± 0.2Å.  The DNA-contact 

residue Cα RMSD values were 5.1 ± 0.5Å, 5.8 ± 0.3Å, and 4.4 ± 0.3Å and the loop-sheet-helix 

average Cα RMSD values  were 6.0 ± 0.5Å, 6.6 ± 0.2Å, and 4.6 ± 0.6Å.  Cα RMSD analysis of 

the R282W mutations showed consistent structural deviations from wild-type in the loop-sheet-

helix region, L2, the S7/S8 loop and, to a lesser degree, L3.  Some mild structural deviation was 

also seen in the S9/S10 loop.  The β core remained relatively stable throughout the simulation 

and the secondary structures were generally maintained throughout the simulations.  However, in 

one simulation, L1 gained helical content and H2 lost structure at the C-terminus, changing the 

structure of the loop-sheet-helix region.  The same simulation also gained α-sheet structure in 

strands S1 and S3. 

L1 separated from H2 to varying degrees across the three simulation s (~20Å, ~15Å, and ~7Å) 

and in two simulations L2 separated from S5 by ~20Å.  Cα RMSF values were generally within 

wild-type limits with increases (<2Å) in the loop-sheet-helix region and the S7/S8 loop, and 

decreases (<1Å) in L2.  Contacts were lost between L1 and the S2/S2’ loop, between L1 and the 

S10/H2 loop, and between the S3/S4 loop and the S9/S10 loop.  L114 lost contact with both 

T125 and Y126 in all three simulations. 

D.3 ZINC-Region Mutants 

C242S 

The C242S mutation is a zinc-contact mutation that lies in L3.  Previous work has shown that 

this mutation destabilizes the p53 protein by 3.1 kcal/mol at 10° C and abolishes its DNA-
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affinity at 20° C (Bullock et al. 2000).  Average Cα RMSD values of the simulation were 4.0 ± 

0.2Å, 3.8 ± 0.2Å, and 3.5 ± 0.2Å.  Average Cα RMSD values of the zinc-coordinating residues 

were 5.0 ± 0.5Å, 3.8 ± 0.1Å, and 3.6 ± 0.4Å.  The three C242S simulations were quite similar, 

each demonstrating a relatively stable β core with consistent Cα RMSD values in L1, L2 

(including H1), L3, and the S7/S8 loop.  Deviations beyond wild-type ranges were few, limited 

to gains (<5Å) in the N-terminal loop and small portions of L2.  The L1/H2 and L2/L3 distances 

did not exceed wild-type ranges. 

In general, secondary structures were well-maintained throughout the simulations with the 

exception of S1 which lost much of its β structure.  One simulation exhibited α-sheet content 

between S1 and S3 and in one simulation H1 elongated in the C-terminal direction by six 

residues.  Contact gains were seen between the S3/S4 loop and the S7/S8 loop, between S4 and 

the S6/S7 loop, and between S5 and S7.  Contact gains between S242 and C176 occurred in all 

three simulations. 

 

M237I 

The M237I mutation is a zinc-region mutation located at the N-terminus of L3 abutting the C-

terminus of S8.  Previous work has shown that this mutation destabilizes the p53 protein by 3.2 

kcal/mol at 10° C and reduces its DNA-affinity by 85% at 20° C (Bullock et al. 2000).  Average Cα 

RMSD values for the last 25ns of the simulations were 4.7 ± 0.1Å, 3.5 ± 0.1Å, and 4.2 ± 0.1Å; 

the average Cα RMSD values for the zinc-coordinating residues over the same time span were 

3.1 ± 0.3Å, 3.1 ± 0.2Å, and 4.4 ± 0.3Å.  Cα RMSD analysis showed the β core to be consistently 
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stable.  The S7/S8 loop region was consistently the region most different from the starting 

structure; the other regions contributing to the structural deviation were L2, L3, and the loop-

sheet-helix region.  Most Cα RMSD values were within wild-type ranges with only a few 

increases (<5Å) in the N-terminal loop, L1, and the N-terminal end of L2. 

Cα RMSF values were similarly wild-type-like with small increases (2Å) in the N-terminal loop 

and in L1.  L1 separated from H2 between 10Å and 20Åin all three simulations and L2 separated 

from S5 between 15Å and 20Å in all three simulations.  L2/L3 separation was within wild-type 

limits.  DSSP analysis showed most secondary structures to be maintained throughout the 

simulations although two simulations lost H1 helical structure.  Contacts were gained between 

the S3/S4 loop and the S7/S8 loop, between the S6/S7 loop and L2, between S5 and S6, and 

between S5 and S7. 

 

R175H 

R175H is a zinc-region structural “hot spot” mutation located in the L2 loop.  Previous work 

(Bullock et al. 2000) indicates that this mutation destabilizes the p53 protein by 3.5 kcal/mol at 10° 

C and completely abolishes DNA-binding affinity at 20° C.  Average Cα RMSD values of the 

simulations were 3.9 ± 0.1Å, 4.5 ± 0.2Å, and 3.8 ± 0.1Å and average Cα RMSD values for the 

zinc-coordinating residues were 4.1 ± 0.3Å, 4.7 ± 0.2Å, and 3.4 ± 0.1Å.  Cα RMSD analysis of 

the three R175H simulations showed considerable deviation from the starting structure in the 

loop-sheet-helix region, the S3/S4 loop, L2, L3, and the S7/S8 loop.  The β core remained 

relatively stable and wild type-like throughout the simulation, maintaining Cα RMSD values 
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typically < 2Å.  Cα RMSD values were greater than wild type by approximately 5Å in the loop-

sheet-helix region and less than wild type by approximately 3Å in the S7/S8 loop.  L2 

demonstrated Cα RMSD values both greater and less than wild-type ranges across the three 

simulations 

With the exception of one simulation that lost helical structure in H1, secondary structure was 

well-maintained throughout the simulations, including the S1 region which was degraded in most 

other simulations.  One simulation showed a gain of β-sheet structure between the N-terminal 

loop (residues 101-103) and strand S10; this same simulation showed a gain of α-sheet structure 

between strands S1 and S3.  Cα RMSF values were mostly wild-type-like with small (1Å) 

increases in L1 and the S7/S8 loop and decreases near the C-terminus of H1.  Relative to wild 

type, contacts increased between L2 and S7 and between H1 and L3.  L1 and H2 separated in 

two simulations by 15Å-20Å and L2 separated from S5 by 15Å-20Å, slightly more than 

demonstrated by wild-type.  

D.4 β-Sandwich Mutants 

I195T 

The I195T mutation is a β-sandwich mutation located at the N-terminal end of S5.  Previous 

work (Bullock et al. 2000) indicates that this mutation destabilizes the p53 protein by 4.1 kcal/mol at 

10° C relative to wild type and reduces its DNA-binding affinity by 64% at 20° C.  Average Cα 

RMSD values of the simulations were 3.9 ± 0.2Å, 4.9 ± 0.2Å, and 4.6 ± 0.3Å; average values for 

the β core over the same time period were 2.2 ± 0.0Å, 2.3 ± 0.1Å, and 2.0 ± 0.2Å.  Cα RMSD 

analysis of the I195T simulations showed consistent disruptions in L2 and the S7/S8 loop with 
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the S7/S8 loop showing values as much as 6Å larger than wild type. Two simulations showed 

deviations from starting structure in the loop-sheet-helix region as much as 5Å greater than wild 

type, and two simulations showed L3 disruptions ~2Å less than those in wild type. 

Secondary-structure analysis showed that the S1 β structure became fragmented in all three 

simulations while the remaining secondary structures were mostly well-maintained.  One 

simulation showed a gain of α-sheet structure between S1 and S3 and one simulation showed a 

gain of β-sheet structure between S10 and the N-terminal loop immediately adjacent to S1.  Cα 

RMSF analysis showed a ~2Å increase above wild-type limits in the loop-sheet-helix region, 

particularly in L1, and a 1Å decrease in L2. 

R196 showed increased contact with both Y205 (S6) and V216 (S7).  Increased contact 

occupancy was also observed between L1 and S2’, between the C-terminus of L2 and S6, and 

between S5 and both S6 and S7.  All three simulations demonstrated separation between L1 and 

H2 with distances ranging between 10Å and 20Å and all three simulations demonstrated a 10Å-

15Å separation between L2 and L3.  In one simulation, L2 separated from S5 by 20Å. 

 

I232T 

The I232T mutation is located in the S8 strand.  Previous work (Bullock et al. 2000) showed that 

this mutation destabilizes the p53 protein by 3.2 kcal/mol at 10° C relative to wild type and 

decreases DNA binding affinity by 39% at 20° C.  Average Cα RMSD values of the simulations 

were 3.6 ± 0.2Å, 5.2 ± 0.2Å, and 4.0 ± 0.3Å; average β -core values over the same time period 

were 1.6 ± 0.1Å, 3.6 ± 0.1Å, and 1.9 ± 0.1Å.  Cα RMSD analysis showed that L1, L2, L3, and 
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the S7/S8 loop were regions that deviated most from starting structure.  The S6/S7 and S3/S4 

loops also showed mild displacement from starting structure across all three simulations.  Two 

simulations exhibited stable and wild type-like β-core displacements (<2Å) while one simulation 

showed a slightly larger β-core displacement (~4Å), with the majority of the displacement 

occurring in the smaller S1/S3/S8/S5 β sheet.  Cα RMSD values 5Å larger than wild type were 

seen in L1 and the N-terminal half of L2; sub-wild-type values (<2Å) were observed in the 

region around S5, S6, and S7. 

The largest departure from wild-type-like Cα RMSF values was in L1 where one simulation 

exceeded wild-type ranges by 4Å.  Two simulations exhibited L1/H2 separation by 14Å, and L2 

separation from L3 and S5 were both wild-type like.   Secondary structure analysis indicated that 

most secondary structures remained intact.  One simulation showed a loss of β structure across 

the entire S1/S3/S8/S5 β sheet as well as a gain of helical structure in L1.  One simulation also 

adopted a four-residue α sheet between the N-terminal region of S1 and the C-terminal region of 

S3.  Gains in contact occupancy were observed between F212 (S6/S7 loop) and M169 (L2) and 

between R175 (L2) and M237 (L3).  There was also a loss of contact occupancy between the 

S5/S6 loop and the S8 strand. 

 

L145Q 

The L145Q mutation is located in the S3 β strand.  Previous work has shown that it destabilizes 

the p53 protein by 3 kcal/mol at 10° C relative to wild type and decreases DNA binding affinity 

by 53% at 20° C (Bullock et al. 2000).  Average Cα RMSD values of the simulations were 4.5 ± 
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0.1Å, 5.4 ± 0.3Å, and 5.5 ± 0.2Å; the β core values over the same time period were 1.8 ± 0.1Å, 

2.3 ± 0.0Å, and 2.8 ± 0.1Å.  Cα RMSD analysis of the three L145Q simulations showed that all 

simulations had structural disruptions in L2, L3 and the S7/S8 loop, and two simulations had 

consistent structural deviations in the loop-sheet-helix region.  Cα RMSD values in the loop-

sheet-helix region and L2 region were between 5Å-10Å greater than wild type.  Conversely, Cα 

RMSD values in the S7/S8 loop region were 5Å-7Å less than wild type. Most Cα RMSF values 

were within wild-type ranges although H1 values were approximately 1Å less than wild type and 

one simulation exceeded wild-type values in the loop-sheet-helix region by approximately 2Å. 

Secondary structure analysis indicated that while the larger β sheet remained mostly intact, the 

smaller S1/S3/S8/S5 β sheet was disrupted across all simulations.  One simulation gained α-sheet 

conformation between S1 and S3 but was otherwise intact.  One simulation lost S1 and 

considerable S3 structure but gained β structure in the adjacent N-terminal loop (residues 101 – 

104); these residues formed a small β sheet with S10.  The remaining simulation lost structure 

across all four strands of the S1/S3/S8/S5 sheet and gained helical structure in residues 113-116, 

immediately C-terminal to S1.  Two simulations exhibited 20Å-25Å separations between L1 and 

H2 in the loop-sheet-helix region.  One simulation exhibited a 20Å separation between L2 and 

L3.  There was a general gain of contact between the S3/S4 region and the S7/S8 region, 

between S5 and S6, and between L3 and both S9 and H2. 

 

P151S 
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The P151S mutation is located in the middle of the S3/S4 loop.  Previous work indicates that this 

mutation decreases DNA binding affinity by 57% at 20° C and destabilizes the p53 protein by 

4.5 kcal/mol at 10° (Bullock et al. 2000).  Average Cα RMSD values of the simulations were 4.5 ± 

0.2Å, 4.1 ± 0.2Å, and 4.1 ± 0.1Å; average β-core values over the same time frame were 2.9 ± 

0.1Å, 1.7 ± 0.1Å, and 1.9 ± 0.1Å.  Cα RMSD analysis showed that most loop regions were 

disrupted to some degree with the largest disruptions occurring in the S3/S4 loop, L2, L3, and 

the S7/S8 loop.  One simulation had large structural deviations in the loop-sheet-helix region.  

Most Cα RMSD values were within 1Å of wild-type ranges.  Cα RMSF values were similarly 

wild type-like with the exception of one simulation with L1 values 3Å larger than wild type. 

Secondary structure analysis indicated that while most secondary structures were maintained, S1 

lost structure in two simulations, S5 lost structure in one simulation, and α-sheet structure 

between S1 and S3 was adopted in two simulations.  In one simulation, L1 separated from H2 by 

as much as 20Å and in two simulations, the C-terminus of L2 separated from S5 by 15Å-25Å.  

Across all three simulations, contact occupancy increased between S5 and S7 and between L3 

and S9. 

 

V143A 

The V143A mutation lies in the S3 β strand.  Previous work(Bullock et al. 2000) has shown that it 

destabilizes the p53 protein by 3.5 kcal/mol at 10° C and reduces its DNA binding affinity by 

32% at 20° C relative to wild type.  Average Cα RMSD values of the simulation were 4.0 ± 

0.1Å, 4.9 ± 0.2Å, and 4.6 ± 0.1Å; β-core values over the same time period were 1.4 ± 0.1Å, 2.0 
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± 0.1Å, and 2.0 ± 0.1Å.  Cα RMSD analysis showed that the primary structural disruptions 

occurred in the C-terminal region of L2, the S7/S8 loop, and L3.  Smaller disruptions were seen 

in S1, L1, S3 and H2.  Cα RMSD values exceeded wild-type values by 7Å in the C-terminus of 

H1and one simulation had values more than 5Å less than wild type in the S7/S8 loop.  The 

largest departures from wild-type Cα RMSF values were 1Å-2Å increases in the C-terminal half 

of L2 and in the S7/S8 loop. 

Most secondary structures were well maintained throughout the simulations with the exception 

of one simulation that lost structure in both S1 and H1 and two simulations that gained α-sheet 

structure, one between S1 and S3, and one between S3 and S8.  One simulation showed a 20Å 

separation between L1 and H2.  All three simulations demonstrated L2/S5 separation ranging 

from 15Å to 25Å.  R175 lost contacts with Q192 and H193 in L2 and gained contacts with M237 

and N239 in L3.  Contacts between L1 and the S10/H2 loop were completely lost. 

 

V157F 

The V157F mutation lies in the S4 β strand.  Previous work has determined that this mutation 

destabilizes the p53 protein by 3.9 kcal/mol at 10° C and reduces its DNA binding affinity by 

28% at 20° C relative to wild type (Bullock et al. 2000).  Average Cα RMSD values from the last 25 

ns of the simulations were 5.1 ± 0.1Å, 4.7 ± 0.1Å, and 4.5 ± 0.1Å; average values for the β-core 

during the same time period were 2.9 ± 0.1Å, 2.1 ± 0.1Å, and 2.3 ± 0.1Å.  Cα RMSD analysis 

showed the largest displacements in the S7/S8 loop followed by more wild type-like values in L2 
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and the loop-sheet-helix region.  Most of these were within wild-type limits.  Cα RMSF values 

were also generally within wild-type limits. 

The V157F simulations lost H1 helical structure in two simulations and S1 β structure in two 

simulations.  One simulation showed a gain of α-sheet content between S1 and S3 and one 

simulation showed a 20Å separation between L1 and H2.  One simulation showed an L2/S5 

separation of 20Å and two simulations showed a ~20Å separation of the S3/S4 and S7/S8 loops, 

measured between the Cα atoms of D148 and D228.  Contact gains were seen between H115 and 

C124, R175 and M237, and R196 and Y205.   Contact losses were seen between L114 and both 

T125 and Y126. 

 

Y220C 

The Y220C mutation lies at the N-terminal end of the S7/S8 loop.  Previous work has shown that 

this mutation destabilizes the p53 protein by 4 kcal/mol at 10° C and reduces its DNA binding 

affinity by 55% at 20° C relative to wild type (Bullock et al. 2000).  Average Cα RMSD values from 

the last 25 ns of the simulations were 4.0 ± 0.2Å, 4.2 ± 0.2Å, and 4.5 ± 0.3Å; the β-core values 

from that same time period were 1.5 ± 0.1Å, 2.5 ± 0.1Å, and 2.8 ± 0.2Å.  The three Y220C 

simulations were varied in their deviations from the starting structure.  One simulation was 

primarily disrupted in the L1 region with some wild type-like disruptions in the S7/S8 loop.  The 

other two simulations had more widespread disruptions across the loop-sheet-helix region, the 

S3/S5 loop, L2, L3, and the S7/S8 loop.  Cα RMSD values exceeded wild-type values by as 
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much as 5Å in the loop-sheet-helix region, the S3/S4 loop, and L2.  Cα RMSF values were 

within 1Å of wild type with slightly increased (<2Å) values in the S7/S8 loop and H2. 

Secondary structures were well-maintained throughout the simulations with the exception of one 

simulation that lost β structure in S1 and gained β structure in the adjacent N-terminal loop, one 

simulation that gained helical structure in L1, and one simulation that gained α-sheet content 

between S1 and S3.  One simulation exhibited a 25Å separation between L1and H2 and one 

simulation demonstrated a 25Å separation of L2 and S5.  Contact gains were seen between S4 

and the S6/S7 loop, between L2 and the S6/S7 loop, and between H1 and the C-terminal half of 

L2. 

 

Y220H 

The Y220H mutation lies at the N-terminal end of the S7/S8 loop.  Average Cα RMSD values of 

the simulations were 4.6 ± 0.2Å, 3.7 ± 0.3Å, and 4.0 ± 0.1Å.  Cα RMSD analysis showed that 

most of the deviation from the starting structure occurred in the loop-sheet-helix region, the 

S7/S8 loop, L2 and L3, although the degree of deviation varied among the three simulations.  Cα 

RMSD values in the loop-sheet-helix and L2 regions were as much as 5Å larger than wild type; 

one simulation demonstrated sub-wild-type values in the S7/S8 loop.  Cα RMSF values were 

~1Å larger than wild type in the loop-sheet-helix, L2, and S7/S8 loop regions. 

One simulation maintained all secondary structures, one simulation lost most of S1 β structure 

and gained some α-sheet structure between S1 and S3, and one simulation lost structure in both 
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S1and S5.  Two simulations demonstrated separations of L1 and H2 between 7Å-15Å.  An 

increase in contact occupancy was observed between S5 and S6. 
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Tables and Figures 
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Residue Residue 
171 (L2) 249 (L3) 
114 (L1) 126 (S2) 
163 (S4) 172 (L2) 
108 (NT/S1) 147 (S3/S4) 
104 (NT/S1) 109 (NT/S1) 
104 (NT/S1) 107 (NT/S1) 
254 (S9) 268 (S10) 
117 (L1) 122 (L1) 
165 (L2) 168 (L2) 
104 (NT/S1) 108 (NT/S1) 
253 (S9) 268 (S10) 
104 (NT/S1) 268 (S10) 
110 (S1) 145 (S3) 
163 (S4) 171 (L2) 
207 (S6) 213 (S6/S7) 
118 (L1) 282 (H2) 
158 (S4) 206 (S6) 
173 (L2) 251 (S9) 
250 (L3) 273 (S10) 
115 (L1) 144 (S3) 
115 (L1) 128 (S2/S2’) 
160 (S4) 193 (L2) 
106 (NT/S1) 149 (S3/S4) 
114 (L1) 142 (S3) 
100 (NT/S1) 252 (S9) 
133 (S2p) 143 (S3) 
104 (NT/S1) 266 (S10) 
269 (S10) 271 (S10) 
100 (NT/S1) 269 (S10) 
111 (S1) 133 (S2p) 
108 (NT/S1) 148 (S3/S4) 
165 (L2) 169 (L2) 
200 (S5/S6) 231 (S8) 
165 (L2) 249 (L3) 
111 (S1) 126 (S2) 
161 (S4) 254 (S9) 
107 (NT/S1) 148 (S3/S4) 
205 (S6) 217 (S7) 
118 (L1) 279 (H2) 
159 (S4) 193 (L2) 

 

Appendix Table D.1 Contacts lost in the 
pseudo-wild type relative to the wild type 
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Residue Residue 
163 (S4) 166 (L2) 
285 (H2) 289 (H2/CT) 
132 (S2p) 272 (S10) 
197 (S5) 218 (S7) 
221 (S7/S8) 229 (S7/S8) 
236 (S8) 270 (S10) 
140 (S2/S3) 198 (S5/S6) 
198 (S5/S6) 233 (S8) 
123 (L1) 141 (S3) 
114 (L1) 123 (L1) 
286 (H2) 289 (H2/CT) 
174 (L2) 249 (L3) 
165 (L2) 250 (L3) 
168 (L2) 249 (L3) 
240 (L3) 250 (L3) 
194 (L2) 239 (L3) 
238 (L3) 272 (S10) 
236 (S8) 274 (S10) 
122 (L1) 279 (H2) 
193 (L2) 205 (S6) 
240 (L3) 249 (L3) 
120 (L1) 278 (H2) 
133 (S2p) 236 (S8) 
172 (L2) 209 (S6/S7) 
238 (L3) 251 (S9) 
175 (L2) 180 (H1) 
120 (L1) 280 (H2) 
200 (S5/S6) 218 (S7) 
120 (L1) 277 (S10/H2) 
154 (S3/S4) 219 (S7) 
255 (S9) 269 (S10) 
163 (S4) 168 (L2) 
193 (L2) 206 (S6) 
239 (L3) 274 (S10) 
195 (S5) 205 (S6) 
197 (S5) 205 (S6) 
193 (L2) 207 (S6) 
243 (L3) 248 (L3) 
196 (S5) 205 (S6) 
238 (L3) 274 (S10) 
243 (L3) 247 (L3) 

 

Appendix Table D.2 Contacts gained in the 
pseudo-wild type relative to the wild type 
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Residue† Residue 
114 (L1) 126 (S2) 
125 (S2) 282 (H2) 
127 (S2) 282 (H2) 
130 (S2/S2') 285 (H2) 
273 (S10) 285 (H2) 
248 (L3) 285 (H2) 
130 (S2/S2') 286 (H2) 
122 (L1) 278 (H2) 
123 (L1) 141 (S3) 
114 (L1) 125 (S2) 
117 (L1) 122 (L1) 
126 (S2) 131 (S2/S2') 
125 (S2) 278 (H2) 
118 (L1) 283 (H2) 
116 (L1) 125 (S2) 
117 (L1) 125 (S2) 
115 (L1) 125 (S2) 
121 (L1) 278 (H2) 
115 (L1) 282 (H2) 
127 (S2) 286 (H2) 
117 (L1) 282 (H2) 
134 (S2p) 285 (H2) 
111 (S1) 126 (S2) 
133 (S2p) 143 (S3) 
135 (S2p) 278 (H2) 
119 (L1) 279 (H2) 
118 (L1) 279 (H2) 
114 (L1) 143 (S3) 
114 (L1) 144 (S3) 
120 (L1) 279 (H2) 
116 (L1) 122 (L1) 
114 (L1) 124 (S2) 
123 (L1) 142 (S3) 
115 (L1) 126 (S2) 
123 (L1) 278 (H2) 
117 (L1) 279 (H2) 
121 (L1) 136 (S2'/S3) 
118 (L1) 282 (H2) 
111 (S1) 114 (L1) 
119 (L1) 280 (H2) 
126 (S2) 282 (H2) 
115 (L1) 128 (S2/S2') 
111 (S1) 133 (S2p) 
128 (S2/S2') 282 (H2) 
121 (L1) 277 (S10/H2) 
117 (L1) 120 (L1) 
113 (L1) 143 (S3) 

 

Appendix Table D.3 Contacts common to 
L1/H2 separation conformations 
†Italic indicates stabilized relative to wild type, 
non-italic indicates destabilized relative to wild 
type.  There was only one contact that was 
commonly stabilized relative to wild type. 
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Residue† Residue 
163 (S4) 172 (L2) 
165 (L2) 169 (L2) 
165 (L2) 170 (L2) 
173 (L2) 193 (L2) 
175 (L2) 180 (H1) 
175 (L2) 192 (L2) 
176 (L2) 179 (H1) 
176 (L2) 180 (H1) 
177 (H1) 180 (H1) 
165 (L2) 171 (L2) 
190 (L2) 193 (L2) 
161 (S4) 173 (L2) 
175 (L2) 184 (L2) 
171 (L2) 249 (L3) 
177 (H1) 181 (L2) 
175 (L2) 191 (L2) 
174 (L2) 192 (L2) 
184 (L2) 196 (S5) 
162 (S4) 172 (L2) 
173 (L2) 192 (L2) 
191 (L2) 205 (S6) 
175 (L2) 194 (L2) 
175 (L2) 193 (L2) 
165 (L2) 168 (L2) 
179 (H1) 184 (L2) 
190 (L2) 196 (S5) 
175 (L2) 185 (L2) 
175 (L2) 190 (L2) 
173 (L2) 194 (L2) 
175 (L2) 189 (L2) 
97 (NT/S1) 169 (L2) 
162 (S4) 171 (L2) 
163 (S4) 174 (L2) 
172 (L2) 214 (S7) 
163 (S4) 194 (L2) 
190 (L2) 205 (S6) 
180 (H1) 184 (L2) 
175 (L2) 196 (S5) 
180 (H1) 185 (L2) 
160 (S4) 172 (L2) 
174 (L2) 194 (L2) 
173 (L2) 251 (S9) 
162 (S4) 169 (L2) 
172 (L2) 212 (S6/S7) 
192 (L2) 214 (S7) 
194 (L2) 246 (L3) 
179 (H1) 239 (L3) 
161 (S4) 172 (L2) 
196 (S5) 237 (L3) 

 

Appendix Table D.4 Contacts common 
to L2/S5 separation conformations 
†Italic indicates stabilized relative to wild 
type, non-italic indicates destabilized 
relative to wild type.  There was only one 
contact that was commonly stabilized 
relative to wild type. 
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Appendix Figure D.2 Wild-type average Cα RMSD values. 
The loop-sheet-helix (LSH) region is labeled. 
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Appendix E  

ADDITIONAL BIOINFORMATICS TOOLS 

Several software tools were developed over the course of my thesis work.  Some, like 

DIVE (Chapters 2 and 3), were large-scale, general-purpose software endeavors.  Others were 

smaller-scale tools that directly solved an immediate problem.  In this appendix, I describe 

several of these smaller-scale tools, many of which are tools built using the DIVE application 

programming interface (API) while others are actually DIVE pipelines that required no 

additional programming. 

E.1 Interactive Contact Maps 

 Inter-residue contact analysis, as discussed in Chapters 4, 5, and 6, is an effective method 

for quantifying and analyzing protein structure.  In many instances, only contact information 

from a single point in time is needed; in these cases, non-interactive analysis of contact data may 

be sufficient.  However, in some cases, such as protein unfolding, it is desirable to watch the 

inter-residue contacts change over time.  For these scenarios, I developed an interactive contact 

map tool capable of displaying per-residue contacts at arbitrary time resolutions.  The data points 

– one per contact – can be colored by an arbitrary property and can be queried for specific 

details.  A screen shot of the interactive contact map tool is shown in Appendix Figure E.1. 

 Initial contact data is loaded from a comma-separated-value (CSV) file on disk.  Data is 

loaded from disk rather than the Dynameomics data warehouse because 1) contact calculations 

cannot be done at interactive speeds and are thus calculated offline and 2) much of the work in 
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our lab is done using flat files and avoiding a dependency on the Dynameomics data warehouse 

increased access to the tool. 

 The contact data, including arbitrary property data, is then loaded and pre-processed for 

visualization.  One or more sets of contact can be loaded at once and these data can be displayed 

separately or together. The data are displayed in the same format as a standard contact map with 

the data point (x,y) coordinate set to the (residue number, residue number) of the contacting 

residues.  The data points are then colored by the property included in the input file.  Property 

coloring is calculated by scaling the property values to the minimum and maximum property 

values read in from file.  These 0-100% values are then mapped from blue  red.  Because 

viewing the complete color spectrum can result in a noisy visual field, the range of the color 

spectrum can be interactively expanded or contracted to better highlight contacts of interest. 

E.2 High-Resolution Property Plots 

Time-series properties such as Cα RMSD or SASA are useful, but they are often viewed as 

whole-protein aggregates which can hide many of the important details.  To address this, I used 

DIVE to build per-residue, per-picosecond plots of different properties such as Cα RMSD and 

SASA.  An example of a Cα RMSD plot is shown in Appendix Figure E.2. These plots break 

down the property by residue over time with the individual data points colored by scaled 

property values (0-100% maps to blue  red).  Property plots of aggregated subsets of residues 

are shown at the bottom.  The horizontal axis is time, the left-side axis is residue number, and the 

right-side axis is property-dependent, in this case angstroms.  The middle of the plot shows 
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various aggregated statistics for the residue subsets.  Secondary-structure indicators can be 

placed behind the property data to aid in analysis. 

E.3 Multi-Protein Plots 

 It is often useful to plot data from multiple proteins together.  While this can be done 

using many different tools, I chose to use DIVE because of the built-in data-handling 

capabilities.  An example of a multi-protein plot is shown in Appendix Figure E.3.  This example 

shows per-residue average Cα RMSD data for all three runs of all 21 p53 proteins (Chapters 5 

and 6) plotted next to each other.  Also, this figure shows the demonstrated differences between 

the individual mutants and the wild type.  To illustrate, the full wild type data is shown in the 

upper left.  For each mutant, if the average Cα RMSD value for a residue is greater than the 

highest demonstrated wild-type value from any wild-type simulation, the difference (a positive 

value) between the mutant value and the highest wild-type value is plotted for that mutant 

residue.  Similarly, if the average Cα RMSD value for a residue is lower than the lowest 

demonstrated wild-type value from any wild-type simulation, the difference (a negative value) 

between the mutant value and the lowest wild-type value is plotted for that mutant residue.  

Mutant values that fall within the demonstrated wild-type ranges are displayed as zero.  The 

resulting plots then clearly illustrate where and by how much each simulation of each mutant 

protein has differed from the wild type.  Once the software framework for generating plots was 

established, it became very easy to data-mine the simulations by generating multiple different 

kinds of plots.  While some of these were useful and others were not, the speed with which novel 

charts and plots could be tried and tested resulted in many useful insights into the data.  
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E.4 Interactive Ramachandran Diagrams 

 Ramachandran diagrams are a way of viewing protein structure by essentially making a 

scatterplot of two angles - Phi (ϕ) and Psi (ψ) - that describe much of the protein’s backbone 

structure.  As the protein backbone changes conformation, these angles change as well.  A 

Ramachandran diagram can be divided into specific regions that correlate to specific protein 

structures such as α helices and β sheets. 

 In our simulations, we calculate the ϕ and ψ angles and use them to analyze protein 

structure.  To make this analysis more efficient, I used DIVE to build an interactive 

Ramachandran diagram.  This diagram can plot per-picosecond ϕ/ψ angles at interactive speeds 

and color the data by an arbitrary property such as SASA (each data point represents an amino 

acid).  Because it is interactive, it can also give feedback about individual data points and, if 

desired, send specific data points down the DIVE pipeline for further analysis. 

 Appendix Figure E.4 shows a screenshot of this DIVE tool.  It is composed of three 

specific parts – a generic DIVE plotting plugin, a generic DIVE SQL plugin, and a DIVE 

interactive SQL plugin.  The user first creates an interactive slider named ‘ps’ (picosecond).  

Movement of this slider sends a DIVE event.  This event is caught by the SQL plugin which 

inserts the slider value into the SQL query (Appendix Figure E.5a, see ‘Interactive SQL’ in 

Chapter 3).  This SQL query, which joins several SQL tables to integrate ϕ/ψ data with both 

SASA and structural data, is then executed and the resulting data points are sent down the DIVE 

pipeline to the plotting plugin.  The plotting plugin pulls the data off of the sink pin “input”, uses 

the DIVE.Bio helper library to calculate colors based on SASA, sets custom tooltip text to aid 

the user, and plots the data.  This entire sequence executes at interactive speeds.  Moreover, the 



306 

 

 

sequence is completely generic – the SQL code and plotting code can be replaced with any query 

for any SQL database. 

E.5 Per-Residue Secondary-Structure Propensity 

As discussed in the multi-protein plots above, it can be useful to see the entire set of simulated 

proteins at once.  During the p53 analysis described in Chapter 6, I wanted to quantify the 

propensity of each residue in each simulation to adopt specific secondary structures such as α-

sheet.  I further wanted to understand if there were patterns to these propensities among the 

simulations.  To do this, for each secondary-structure type, I calculated the percent time that each 

residue of each simulation spent in that DSSP-assigned secondary structure.  I then output a 

comma-separated-value (CSV) file containing a grid of simulation X residue with each grid cell 

containing the calculated percentage.  Visualization of these data provided multiple insights 

including identification of regular and correlated α-sheet propensities across almost all p53 

proteins. 

E.6 Secondary-Structure Contacts 

While inter-residue contact analysis is useful, it is often more intuitive to think about protein 

structure in terms of secondary structures and secondary-structure contacts.  To address this, I 

built a DIVE tool that analyzes per-residue contact information and outputs inter-secondary-

structure contact-occupancy information in a comma-separated-value (CSV) file.  The contact-

occupancy information is the sum of all contact-occupancies between any two secondary 

structures.  This information can then be loaded back into DIVE or into many other data tools 
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and plotting programs.  To facilitate adoption in the lab, I designed an Excel spreadsheet that 

loads the data, calculates inter-secondary-structure contact-occupancy average ± stdev ranges, 

and indicates if mutant ranges overlap with wild-type ranges. 

E.7 Interactive Dihedral-Angle Analysis 

Similar to the interactive Ramachandran diagrams, interactive analysis of protein dihedral angles 

(the angles that describe the geometry of the protein residues, of which ϕ and ψ are two) was also 

useful.  Again, this was a DIVE tool that required no additional programming.  Like the 

Ramachandran diagram, this tool used interactive SQL and DIVE plotting.  First, an interactive 

drop-down list allowed me to select a residue to analyze.  This triggered a DIVE event which 

inserted the residue number into a SQL query.  The SQL query was then executed and dihedral-

angle data were retrieved from the Dynameomics data warehouse.  These data were then binned 

into an aggregate histogram and presented to the user (Appendix Figure E.6). 

E.8 NOE Analysis 

Nuclear Overhauser Effect (NOE) analysis is used to validate that an ensemble of simulation 

structures has similar structural characteristics to experimental NMR structures.  It does this by 

measuring the average distance between specific protons in a protein simulation and verifying 

that that average distance is less or equal to the average distance measured by NMR.  If the 

average distance meets this criterion, the NOE is ‘satisfied’.  Otherwise, the NOE is ‘violated’. 

 The NOE analysis described in Chapter 3 is performed by the ilmm molecular dynamic 

software library (Beck et al. 2000-2014).  Here I discuss several SQL tools that were designed to 
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analyze these data.  The first tool simply loads the analysis data into a SQL database.  The SQL 

data tables include basic information such as the average distance between protons and the 

distance cutoff required to satisfy the NOE.  Additional structural data such as the residue 

number, residue type, secondary-structure type of the residue containing each proton, and 

Dynameomics simulation identifier are also included.  A unique NOE identification number is 

also assigned to each NOE.   

 From this, a DIVE software tool queries the NOE tables and generates a summary 

analysis file including overall NOE satisfaction (the percentage of NOEs that were satisfied) as 

well as NOE satisfaction groups broken down by loop:non-loop and main-chain:side-chain 

classifications and binned by distance in physical space as well as distance in sequence space.  

This analysis can also include an NOE satisfaction baseline for comparison; for the p53 analysis, 

I used the simulation starting crystal structure as my NOE baseline. 

 From here, there are three SQL queries that are used to gain further insight into the NOE 

violations.  The first is used to gain some estimation of the severity of an NOE.  To some degree 

this is achieved by the summary analysis described above; for example, analysis of the NOE 

298K holo NOE violations described in Chapters 5 and 6 showed that only 12% of the violations 

occurred between main-chain atoms, indicating that while the side-chains may have moved, the 

overall structure of the protein backbone was still very native-like.  Here, the SQL query 

estimates violation severity by calculating the number of NOE violations whose containing 

residue:residue pair also contains an NOE satisfaction.  Thus, as discussed in Chapter 6, if 45% 

of the residue pairs containing an NOE violation also contained an NOE satisfaction, we can 
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ascertain that almost half of the NOE violations were not associated with significant structural 

changes such as unfolding. 

 The next SQL query indicates which residue pairs are associated with the largest 

violations.  For each residue:residue pair in the set of NOE violations, the query calculates 1) the 

average violation distance for all violations between those residues and 2) the average violation 

distance of all remaining violations, absent the residue pair in question.  The results are then 

ordered by the latter.  This let me understand very quickly which parts of the protein were 

causing the largest violations.  It also isolated those residues associated with the largest 

violations. 

 Once the residues associated with the largest violations have been identified, a similar 

SQL query calculates 1) the average violation distance of NOE violations associated with those 

residues and 2) the average violation distance of NOE violations not associated with those 

residues.  Again, this helped me isolate the regions of the protein that were most in violation.  
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Appendix Figure E.2 High-resolution property plots 
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Appendix Figure E.6 Interactive dihedral angle analysis 



316 

 

 

 

VITA 

 Dennis Nathan Bromley received his Bachelor of Arts degree in Computer Science from 

Harvard University in 1996.  He received his PhD in Biomedical and Health Informatics from 

the University of Washington in 2014. 


