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University of  Washington 

Abstract 

On Biological Network Visualization: Understanding Challenges,  
Measuring the Status Quo, and Estimating Saliency of  Visual Attributes 

Nikhil Gopal 

Co-chairs of  Supervisory Committee: 
John H. Gennari & Neil F. Abernethy 

Department of  Biomedical Informatics and Medical Education 

Biomedical research increasingly relies on the analysis and visualization of  a wide range of  
collected data. However, for certain research questions, such as those investigating the 
interconnectedness of  biological elements, the sheer quantity and variety of  data results in 
rather uninterpretable—this is especially true for network visualization, as a large and dense 
biological network is often compared to spaghetti or a hairball. The contents of  this 
dissertation detail three major studies and a number of  associated analysis studies that 
extend those studies. First, the challenges faced by researchers who analyze and visualize 
biological networks are elucidated, followed by a systematic review that analyzes and 
characterizes network figures from peer-reviewed bioinformatics literature. The systematic 
review dataset is further supplemented with an analysis of  task completability, and the 
combination of  the two are analyzed via Random Forest to provide insight into the varying 
importance of  visual encodings in context of  graph-based tasks. Next, a small theoretical 
framework that is valuable for framing network visualization research questions is detailed, 
followed by a description of  visual encoding exploration software built on the framework. 
The final study included in this dissertation details the design and execution of  a task-based 
perception study, where several visual encodings are estimated as functions of  the measured 
task. Through these studies, I contribute to the understanding of  network-related 
visualization challenges encountered by researchers, a measure of  the status quo of  network 
visualization, a conceptualization of  a method to usefully frame research questions related to 
network visualization, visual encoding software that affords systematic and reproducible 
explorations of  the visual encoding set space, and finally a set of  functional estimates 
describing how numerous visual encodings are a related to one’s ability to visually scan a 
network. 
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logistical- or scarcity-related root like the prior warnings. Rather, the underlying basis of  this 
advice was that there might not be a means by which to demonstrate an improvement over 
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measuring “success” did I design the Information Triad; and only after learning to 
adequately frame my research questions, did the experimental designs and their potential 
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1. Introduction and Roadmap 
The contents of  this dissertation reflect approximately four years of  full-time study and 
dedication in an attempt to find a solution to what some researchers affectionately refer to 
as, “the hairball problem”. That is, when a network visualization is adequately dense and 
large, it becomes uninterpretable and unwieldy. However, due to technological and scientific 
trends, this problem is not expected to lessen anytime in the near future. 

More specifically, the contents of  this dissertation elaborate on three studies I carried out 
between 2012 and 2016. Among a number of  other contributions, three primary 
contributions from my completed research projects are the following: 

1. An understanding of  the range of  challenges associated with visualizing large 
biological networks 

2. A characterization (in terms of  visual properties) of  how network visualizations are 
presently depicted in biomedical literature 

3. Estimates of  how the various visual attributes contained in network visualizations 
support or hinder task completability (presented and described in mathematical 
equations) 

A complete list of  contributions may be found at the end of  this dissertation in the 
concluding chapter (Chapter 8).  

In this chapter, I will first broadly explain why biological network visualization is an 
important problem to solve, followed by why finding a satisfactory solution has proven to be 
difficult. Next, I provide a brief  roadmap to the contents of  this dissertation, and what to 
expect in each of  the following chapters. 

1.1. The Problem with Biological Networks and Visualizations 
Networks are useful data structures that store entities, relationships between those entities, 
and associated properties; they are promising data structures for representing relational 
complexity in a computable form. Interestingly, over past decades, several disconnected 
fields of  research have used networks to model research problems, and provided findings 
and contributions that are only recently being translated from one field to another. Network 
analysis uses entity and relationship information in numerous computations, and has proven 
useful for identifying terrorists, clarifying interdependence of  financial institutions, 
organizing the world wide web, and analyzing social networks [1]–[3]. Networks are also 
useful in biology for a variety of  applications, modeling everything from protein-protein 
interactions to biological pathways [4]–[6]. Network analysis of  biological networks can 
identify key genes and functionally related gene communities, infer relationships between 
entities, and show how large numbers of  entities are related [7]–[9]. However, given the size, 
complexity, and richness of  biological networks, when visualized as node-link diagrams they 
often appear convoluted. Although aesthetic, biological network visualizations are often 
static, cluttered, obscured, uninformative, and readers cannot decode everything an author 
encodes. These challenges need to be addressed since it is well known that visualization can 
lend clarity and resolution where statistics and computation alone cannot [10]. 

Biomedical science research increasingly relies on data analysis, and research questions are 
shifting towards lines of  research that search for interconnectedness, rather than 
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quantification or mere presence. Among a large number of  staple tools used by biomedical 
researchers, network analysis and visualization tools are now common in many arsenals. 

Recent novel approaches to network visualization are concerned with viewing data from 
different perspectives rather than understanding and contextualizing the data [11]–[14]. 
Data-driven methods can be used to support clarity and contextualization of  results, without 
obfuscating or misinterpreting information (further defined in approach) [15]–[18]. 
Although a relatively new research area, researchers have developed frameworks to 
understand visualization structures, tactics, and information layers used in data visualizations 
[19]–[22]. Although statistics is sometimes criticized for its potential to be misleading or 
misused, visualizations have the same potential. The biomedical community may study 
visualizations less frequently than it studies statistical methods, but visualizations are 
commonly used in scientific communications. Although Data Storytelling may be predicted 
to be the next major iteration in visualization research, a handful of  fundamental questions 
remain unanswered [23]. In this dissertation, I clarify these basic research questions and 
detail the findings of  the studies used to investigate those questions. 

1.2. Biological Network Visualization is Difficult 
There are many contributing factors to why finding a definitive solution to improving 
biological network visualizations is so elusively difficult. In a general sense, the way we (as 
humans) process data visualizations is highly complex, and interacts at number of  levels that 
are heterogeneously interconnected. The textbook, “Visualization Analysis & Design,” 
describes some of  these levels of  information processing associated with data visualizations 
[24]: 

Figure 1 - A recreation of  “the four nested levels of  vis [sic] design” from the book, 
“Visualization Analysis & Design” 
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As Figure 1 illustrates, there are multiple levels of  processing a data visualization, and 
inefficiencies or errors may be lurking at any one of  these levels; usually unbeknownst to 
neither the reader or author. Furthermore, these levels of  visualizations are known to 
interact with each other, complicating the process of  determining generalized solutions [24]. 
This dissertation touches on all four levels depicted in the figure. This is one reason why 
studying network visualization is so challenging—the complexity of  the interactions between 
the various levels of  information processing and design must be simultaneously tracked. 

1.3. The Roadmap and major findings 
The following subsection provides an overview of  the contents of  the chapters of  this 
dissertation. Chapter 1 (the chapter you are currently reading) has been omitted. 

Chapter 2 describes an interview study designed to understand the range of  challenges 
experienced by researchers analyzing and visualizing large biological networks. Three major 
challenge areas were found, and each of  them explained and supported with quotes from 
interview participants. 

Chapter 3 details a systematic review of  figures intended to obtain a quantified view of  the 
visual properties and encodings of  biological network visualizations, a qualitative analysis of  
selected figures, and to obtain an understanding of  the status quo of  biological network 
visualization. One of  the findings of  this study was that there are actually several sub-types 
of  biological network figures, and two of  the major sub-types were characterized and 
explained in this chapter. 
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Chapter 4 extends the study described in Chapter 3 through re-evaluating the same figures in 
context of  a graph task taxonomy. The re-analysis of  the data from Chapter 3 is followed 
with descriptive statistics. A major finding from this research was that the ability to complete 
a given task on a network visualization is correlated with the visual encoding choices, size, 
and density of  a network. 

Chapter 5 extends the material detailed in Chapters 3 and 4 with data analysis via Random 
Forest. Through Random Forest, importance scores are calculated, providing a guideline for 
which visual encodings (from Chapter 3) are most important in context of  certain tasks 
(from Chapter 4). A major finding from this analysis was that certain groups of  tasks may be 
associated with very different visual encodings, and that size and density are essential factors 
for task completability. 

Chapter 6 describes a small conceptual framework which is useful for framing and 
understanding visualization research problems. In addition, this chapter also elaborates on a 
software application, which is built on the premise of  the conceptual framework, and is 
designed to systematically and reproducibly describe and compute visual encodings in 
network visualizations. Aside from a description of  the conceptual framework, a major 
finding included in this chapter is benchmark results for the software application. 

Chapter 7 explains the design, administration, and results of  a task-centered perception 
study using Dynamo (described in Chapter 6). Random Forest is used to analyze the data 
collected from the experiment and the major findings include function estimates for how the 
completability of  a task (visually scanning a network) is bolstered or hindered through the 
various parameterizations of  visual encodings in networks. 

Chapter 8 concludes this dissertation with a brief  recap of  contributions accounted for in 
each chapter, a description of  my vision for the future of  this line of  research, and a brief  
personal reflection on my growth and development as a scientist. 

1.4. Scope and structure of  this dissertation 
As one may surmise, the set space of  research possibilities within the umbrella of  biological 
network visualization is near infinite. Although the type of  study I initially began was broad 
in scope, subsequent studies required exchanging breadth for greater depth of  focus. The 
first two studies investigating problems with biological pathways and network visualization 
led to the discovery of  visual encodings as a gap that could benefit from an algorithmic 
approach. Thus, the structure of  this dissertation obeys to a similar pattern. The structure of  
this dissertation may be conceptualized as having a funnel-like shape. Figure 2 illustrates this 
funnel-shape by depicting relative breadth versus depth. As Figure 2 shows, the semi-
structured interview study (Chapter 2) is broad in scope, and consequently has less 
specificity and depth. The study founded on the systematic review of  network figures is 
more focused relative to the semi-structured; it has less breadth, and more specificity and 
depth. The final study included in this dissertation is an investigation of  the saliency of  
visual attributes, which is much more focused and in-depth compared to the other two 
studies. 

Figure 2 - Schema of  the funnel-like shape of  this dissertation 
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2. Empirical Assessment of  Network Visualization Challenges 
in Biomedicine: An Interview Study 

2.1. Overview 
Over the last 20 years, the biological community has been collecting and sharing 
experimental data on the web. More recently, researchers are exploring the relationships or 
connections among these data. Network analysis and visualization is a natural fit for this type 
of  research. However, network visualization has a number of  well-known challenges 
associated with it. Networks increasing in size and density eventually produce diminishing 
returns on comprehension and perception—vertices become occluded, edges cross, and the 
end result is a incomprehensible network that typically provides little value aside from 
communicating that one is viewing a complex data structure. Researchers have also shown 
that for a number of  tasks (with the exception of  path following), diagrams of  networks 
(containing between 20 and 100 vertices) may be less efficient for task completion than 
matrix representations [25]. There is, however, a significant learning curve involved with 
reading matrix visualizations for the uninitiated, whereas reading graphs is more intuitive. 
This learning curve and the domain knowledge required to be able to comprehend matrix 
visualizations renders it prohibitive for communication to a wider audience. 

Due to these limitations, many researchers who use network visualization and are 
consequently frustrated. However, this sense of  frustration is mostly anecdotal, as there are 
limited studies about the users of  network visualization. To better meet these needs, we need 
better designs for biological network visualization tools. However, for new designs to be 
effective in this domain, we must better understand the needs of  these users and the 
challenges they may have experienced while visualizing with biological networks. In addition, 
we can and should leverage biology-specific aspects of  the domain when designing network 
visualization systems. In this chapter, we present the results of  an interview study we 
conducted aimed at understanding the challenges involved with network visualization in 
biology.  

Through the findings and design implications detailed in this chapter, we provide 
suggestions for areas of  clarification, and suggestions for additional information that is 
pertinent to improved biological network design. In particular, we highlight visual 
representation challenges related to unsupported biological constructs and perceptual 
challenges. 

2.2. Related Work 
There have been a number of  valuable contributions to biological network visualization over 
the recent years, many of  which have received attention in the bioinformatics community. In 
this section, we discuss current tools and techniques, as well as the remaining knowledge 
gaps. We first review the evolution of  network layout algorithms. Gibson et al conducted a 
survey on two-dimensional graph layout techniques and showed that even when inclusion 
criteria narrows layout algorithms to only the force-directed family, there are 19 published 
algorithmic approaches to laying out a graph, each with its own novel approach [26]. The 
Gibson survey demonstrates that there are a wide variety of  visually distinct representations 
for the same network, but that for some networks, none of  these choices are universally 
satisfactory. For instance, various force-directed layouts techniques may facilitate tasks such 
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as counting node degrees or identifying adjacent nodes, but knowledge about the 
relationships represented in the graph may be unclear.  

Other algorithms aim to organize vertices and minimize edge crossings to prevent overly 
cluttered layouts that can occur in visualizations of  dense networks. Two such vertex-
centered algorithms are Circos and Hive plots [11], [12]. Circos organizes data in a polar 
plane, akin to a polar bar chart, and adds edges in the middle of  the polar bar chart to show 
which elements are connected to which other elements. The Hive plot linearizes vertices for 
a perceptually uniform representation, and then adds edges to show relationships between 
those vertices [11]. Although these layouts enforce some organization on the positions and 
classes of  vertices, and alleviate some of  the strain encountered when visualizing a large 
quantity of  vertices, there are situations where edges may still cross and tangle. 

Another approach to solving the problem of  overly cluttered network visualizations is to 
organize the edges rather than the vertices. BioFabric is a layout algorithm that arranges a 
network in a manner reminiscent of  an adjacency matrix [27]. Biofabric is useful for 
clarifying which vertices in a network are connected to which other vertices, and in a sense, 
“untangles” a standard hairball. Another edge-focused algorithm is edge compression, which 
consolidates edges into bundles. Edge-focused algorithms provide utility when working with 
dense biological networks [14]. Although edge crossing can be avoided through reducing the 
number of  presented edges and organizing densely connected vertices into groups, vertices 
are sometimes lost or duplicated in order to visualize networks in this manner.  

Constraint-based layout approaches have also been proposed as a useful algorithmic 
approach, particularly for biological applications [28]. Through setting up constraints, 
vertices and edges may both be organized into meaningful patterns. Constraint-based 
algorithms have been used to enforce hierarchical relationships in a network layout [29]. 
Constraint-based approaches can be used to develop specialized layout conventions for 
specific types of  biological networks, or can be parameterized to serve a broader range of  
biological networks. Constraint-based approaches are versatile enough to not only enforce 
constraints of  visual properties (e.g. ensuring a vertex remains in a certain range), but also 
constraints based on the data (e.g. ensuring a vertex representing protein is not placed in the 
center of  the screen unless it is enriched past some calculated threshold). 

All of  these techniques afford a novel perspective on biological network data, and are 
arguably clearer than standard network representations for certain tasks. However, graph 
drawing algorithms are often evaluated based on metrics reflecting aesthetics, which is one 
reason why even though a network visualization may be laid out well, it still may not be 
insightful [30]. 

Among prepackaged network visualization tools, Cytoscape is the most widely used 
biological network visualization software [31]. Cytoscape software significantly eases the 
burden of  obtaining biological network data from various resources and visualizing it. 
Through the Cytoscape App store, many researchers have been able to develop and share 
their own plugins that integrate into Cytoscape software. However, since these plugins are 
typically developed independently of  each other, it is atypical to see a plugin building on, or 
depending on, another plugin. More recently, Cytoscape.js has become further developed 
and opportunities are growing for development of  Javascript-based web applications. 
Another toolset, BioconductoR (used in the R programming environment), provides a 
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programming interface to a number of  resources, techniques, and libraries commonly used 
in bioinformatics [32]. A number of  packages that support network visualization and 
pathway visualization are easily downloaded and used via BioconductoR. In addition, there 
are also general-purpose R packages that support visualization, such as ggplot2, and network 
analysis, such as igraph, both of  which are also widely used [33], [34]. There are a number of  
other widely used biological resources that are capable of  delivering biological information 
via web visualizations, such as Ingenuity Pathway Analysis, KEGG, EcoCyc, MetaCyc, and 
HumanCyc [35]–[39]. However, these tools are actually geared more towards analysis than 
visualization, and focus more on properties of  the data portrayed in familiar pathway layouts 
than on enabling arbitrary layout functions.  

Although novel network layouts have received attention in the bioinformatics community, 
reorganizing existing information in networks may not meet the needs of  biologists. 
Optimizing layout algorithms for clarity of  visual arrangement without the context of  data 
and tasks can be inadequate. The purpose of  this study is to identify challenges encountered 
by real users in the process of  understanding biological network visualizations. Although 
there have been studies assessing the utility of  a graph layout in context of  specific tasks, the 
graphs used in these studies tend to only contain a handful of  nodes. Furthermore, the 
usability studies that have been conducted (on force-directed layouts) seem to be primarily 
focused on evaluating aesthetic graph drawing principles [26]. A literature search (conducted 
in Autumn of  2014) for studies assessing user needs on biological network visualization did 
not yield any results. 

2.3. Method 
In this section, I cover details about the administered semi-structured interviews: interview 
participants, interview questions, and thematic coding (by three coders). This study was 
approved by the University of  Washington Institutional Review Board. 

Scientists who have worked with, and visualized, biological graphs, were eligible to 
participate in the study. In total, 21 researchers (17 male / 4 female) completed in-person 
interviews. Interview subjects were recruited via snowball sampling (requesting referrals to 
other eligible researchers). Participants were recruited from 9 local research or research-
oriented health care organizations. Interview participants held a number of  job titles, 
including “principal investigator”, “research scientist”, “graduate student”, “data scientist”, 
“software engineer”, “director”, and “assistant professor”. Interview participants held a 
variety of  academic credentials (14 PhD / 4 Masters / 2 Bachelors / 1 Medical) and ranged 
from less than 5 years of  experience in biomedical research, to as many as 25 years. 
Interview participants included a wide variety of  training backgrounds, self-identified as: 
“bioengineering”, “bioinformatics”, “visualization”, “biology”, “biostatistics”, “clinical”, 
“computer science”, “mathematics”, and “systems biologist”. The interviews were 
conducted either in-person or through video call. Although there were 10 interview 
questions in the template, many of  these questions were followed up with additional 
questions intended to elicit more detail. A subset of  the interview questions are: 

• How do you currently visualize networks? 
• What resources do you tend to use in your work? 
• Do you find any biological relationships difficult to model? 
• What do you find frustrating about pathway analysis? 
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• What do you wish you could do with pathway analysis that you currently cannot? Is 
there anything specific to visualization? 

• How often do you compare networks to each other? 

The interviews were audio recorded, unless the interview participant opted out, at which 
point notes were taken during the interview instead. The audio recordings were transcribed 
to text prior to any processing in the following steps. In cases where interview participants 
opted out of  audio recordings, notes were taken instead. The interview transcripts were 
initially coded through the process of  open-ended coding (using NVivo software), 
characterized by reading transcripts and tagging any notable or recurring themes. Two other 
researchers repeated this open-ended coding independently, and all thematic codes were 
analyzed to develop a consensus codebook. This consensus codebook was then used to 
thematically code the interview transcripts. 

2.4. Challenges of  Biological Network Visualizations 
In this section, I characterize the challenge areas described by interview participants. 
Identified challenges were organized into three groups: (1) Data and analysis, (2) visual 
representation and interpretation, and (3) limitations of  models. The first subsection 
enumerates challenges associated with standards and annotations, the high quantity and 
density of  network data, and validation issues. The second subsection addresses challenges 
associated with unsupported biology, perceptual issues, and interpretation challenges. The 
third and final subsection covers challenges associated with the difference between 
exploration, explanation, and philosophies of  science. Please refer to table 1 for an overview 
of  the organization of  content.  

Table 1 - An overview of  challenges from participants 

Section Subsection

Data  
and Analysis

Challenges associated with data in standardized formats

Challenges related to high quantity of  data, and high density of  data

Challenges validating, and ultimately trusting, information contained in 
pathway resources

Visual Representation  
and Interpretation

Challenges representing common biological constructs in networks

Challenges associated with perception, and reading a network visualization

Challenges associated with interpretation, and comprehending a network 
visualization

Limitations of  
Models

Challenges consolidating varying philosophies of  science

Acknowledging limitations of  understanding
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For the purpose of  this paper, the terms “network”, “graph”, “node-link diagram”, and 
“pathway” interchangeably. Although these terms refer to specific concepts in their 
respective domains, the interview participants had a variety of  domain backgrounds. Hence, 
not all participants would use the same terms to describe the same concepts. For instance, a 
biologist may use the terms “network” and “graph” interchangeably, or a computer scientist 
may use the terms “network” and “pathway” interchangeably. 

2.4.1. Data and Analysis 
As shown in Table 1, three challenges were grouped into this “data and analysis” category: 
(1) problems with standards and annotations, (2) high density and large amounts of  data, 
and (3) challenges with validation. 

2.4.1.1. Standards and Annotations 
Biological data are often communicated and shared under recognized standards. However, 
there are too many standards, and too many versions of  these standards. Depending on the 
research question, the standard used to communicate data can be a vital component of  the 
network visualization workflow. Standards vary in the information they contain, the 
representation of  that information, and the definition of  that information. One researcher 
explained that any downstream analysis and visualization of  biological data is difficult, 
primarily due to inconsistencies between standards: 

"The most difficult part about running statistical tests on networks is making sure definitions 
are consistent between models" –Participant 2 

In addition to challenges associated with comparisons across different standards, there are 
also inconsistencies even within a single standard, due to updates and version changes. As 
another researcher explained: 

"Standards are annoying because they change over time. You write a custom app that uses 
one version of  a standard and a new version of  the standard is released and you are angry 
because your code is broken." –Participant 5 
 
Thus, comparing data collected more recently with historical data may be inappropriate 
depending on the modifications to the standard. Inferring relevance through comparing 
datasets to one another is a critical and common task—without being able to compare ideas, 
models, and results to that of  other’s, it is difficult to evaluate scientific results. Additional 
representation challenges stem from annotation, which often contains key information about 
the relevance, significance, and context. 

2.4.1.2. High Quantity and Density of  Data 
Some interview participants find the nature of  the data they are working with to be a 
challenge, for a number of  reasons. Aside from the large size and high density of  biological 
networks, a major challenge is representing all of  the important features contained within 
the data. Although the data is rich with information contained across many rows and 
columns, due to visual encoding constraints, only a subset of  that information can ultimately 
be used (without resorting to alternative approaches, such as dimensionality reduction). An 
interview participant explained: 
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"There are multiple aspects to why it’s hard to look at networks. One is that they are big. 
However, that’s not really the problem, there are others: one of  them might be that you have 
only a few key nodes, but all of  them are connected, so if  you drew it with node and link it 
would be spaghetti. Another problem is some nodes belong to multiple groups or sets of  
things, and you can't draw a nice Venn diagram." –Participant 14 

As interview participants explained, the topological and multifaceted properties of  data 
affect the interpretability and readability of  the network visualization. A number of  
interview participants grapple with the challenge of  knowing whether or not visualizing 
biological data in a network will be informative in the first place—it’s difficult to tell whether 
or not biological data will reveal anything interesting or insightful in node-link form. 

2.4.1.3. Validation of  Data 
Interview participants are also concerned with the quality and trustworthiness of  the 
biological data they are visualizing. Although many biological resources exist, the type of  
data they contain, the source of  the data, and the context the data was captured in, may vary 
significantly from resource to resource. In a number of  cases, resources also link 
information existing in another resource, creating a conglomeration of  information that may 
not be ideal. A researcher working with human cell lines explained: 

"These pathway databases are useful, but they often combine data from several organisms 
and tissue types. If  I run an experiment using heart tissues from mice, then the pathway data 
available might just be misleading." –Participant 6 

To further explain the quote from above, the pathways that are active in a specific species 
and tissue may be very different from the more generic pathway information in the 
resources. Although the aggregation of  this biological information is useful in situations 
where experimental data on a specific organism, tissue type, or cell type is sparse, some 
interview participants exhibited uneasiness with using this information: 

“If  you are comparing pathways from data from other cell types, I perceive it as useless. I 
have no idea how annotated pathways hold up against cell types. If  you have a cohesive, 
hodgepodge of  pathways, and you take your cell type and overlay it, I don't know how 
powerful that is. The issue is that it’s not getting to the root of  the pathology. The reason 
animal models break down is that in a mouse, there is just enough evolutionary divergence 
such that the phenotype is due to differences in evolution. Muscle is similar between mice 
and humans, but how the nerves, vasculature, immune surveillance, hormonal implications 
all interact, cause more and more divergence from how humans do it. What if  your 
phenotype in mouse is a consequence of  having a different immune surveillance and you 
don't see it in human disease?” –Participant 6 

As another interview participant explained, many challenges arise downstream during 
analysis and visualization primarily due to limitations imposed by available data and 
experimental designs.  

"The number one challenge with biological networks: Getting good data! BioconductoR has 
helped a lot, but it is still somewhat of  a challenge. I was relying on KEGG for a while, but 
then they went private…so, finding good (pathway) models is a bit of  a challenge. Networks 
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are not clean, and experimental designs have issues we have to address, data have issues we 
have to address. When data are taken care of, everything becomes remarkably easier." –
Participant 2 

Although tools and resources exist to download data from various resources under various 
standards in programming environments, this accessibility and computation is considered a 
secondary challenge. 

2.4.1.4. Visual Representation and Interpretation 
As shown in Table 1, three challenges were grouped into this “visual representation and 
interpretation” category: (1) unsupported biological constructs, (2) perceptual issues of  
networks, and (3) challenges with interpretation of  network metrics. 

2.4.1.5. Unsupported Biology 
Although a number of  network visualization tools exist, interview participants still exhibited 
discontent with existing tools and techniques. There are a number of  fundamental biological 
concepts that are either unsupported in existing tools, or difficult to represent. For instance, 
a researcher commented on the difficulty of  accounting for consumable elements in a 
biological system: 

“It’s difficult to represent ADP and ATP, NAD and NADH pools in pathways. I don't know 
if  they are the same pool or different pools...I can't do this in Cytoscape! A metabolite may 
only appear once in graphs.” –Participant 5 

Since representation of  consumable elements is not universally supported in tools, interview 
participants must keep track of  these relationships and interactions mentally, as one 
interview participant explained: 

“In science, especially biology, there is this vast sea of  info biologists store in their minds 
and they put in context what they see in visualization frameworks and try to interpret the 
patterns they observe in context of  all the principles of  biology they are aware of. They look 
for interesting links and say, they think it's something new what I'm observing here, no one 
has seen this protein controlling these 2 genes of  completely different functions in this 
environmental context--this is really important! The software has no notion of  what the 
genes are, context, or surprise that they correlate--this is the biologists interpretation.” –
Participant 15 

Aside from representation of  consumables and currently accepted hypotheses in biology, 
certain types of  interactions are also difficult to represent in biological networks. For 
instance, one interview participant mentioned having to omit fundamental biological 
information due to a lack of  support for that type of  information: 

“We decided not to bother with small details (e.g. type of  reaction), but there were situations 
where we were creating a directed network and didn’t know if  a reaction was reversible. We 
had lots of  information we couldn’t put into a network…I like hypergraphs, but there isn’t 
support for that in network visualization tools. KEGG has some hypergraph type data, but 
it’s still difficult to show this visually. We handled this by translating a hypergraph to basic set 
operations, but it’s still not clear if  the logic is ‘OR’ or ‘AND’.” –Participant 18 
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Figure 3 – Depiction of  a hypergraph. 

!  

A hypergraph is a network where edges are not restricted to have only one source vertex and 
one sink vertex. For an illustration and explanation of  what a hypergraph is and how it poses 
a challenge, please see Figure 3. Figure 3-A Illustrates a standard directed network where the 
red vertex and blue vertex link to the purple vertex. Figure 3-B Illustrates the workaround to 
representing a hyperedge via an additional “logic” vertex. Not only does this approach 
increase the number of  vertices and edges in a network, but the logic is ambiguous. The red 
and blue vertices may both need to be present to link to the purple vertex (i.e. “AND” logic), 
or perhaps only one of  the red and blue vertices need to be present to link to the purple 
vertex (i.e. “OR” logic). Figure 3-C Illustrates a hyperedge, where the red vertex and blue 
vertex simultaneously link to the purple vertex. Hyperedge relationships are common 
representations for biochemical reactions and biological events and are necessary to 
represent molecular complexes or metabolism involving more than two participants. 
Although they are commonplace in biological schematics, existing tools do not universally 
support hypergraph relations. 

Some interview participants also reported a lack of  support for temporal data in tools and 
techniques used to visualize biological networks. Researchers explained that any analysis and 
visualization related to temporal information was conducted through makeshift tools or 
using currently existing tools in ways they were not designed for. One researcher 
summarized the challenge in using currently existing tools and explained the consequences: 
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“The problem is that none of  the tools really work or if  they do they don't provide--they are 
either toys or are not that useful because the visuals are not what they really want, or it's hard 
to map what they want to visualize (transcript change, metabolite change, protein abundance 
change), mapping it to a metabolic network is tough because of  scaling issues or metabolite 
pool data is relative and not absolute, etc. So they end up focusing on a very small portion--
because it's tractable, they can draw it by hand and color it by hand.” –Participant 5 

Another challenge mentioned by interview participants was in reference to difficulty 
representing space and volume in a network. When networks are laid out for aesthetic 
optimization (e.g. layouts in the vein of  force-directed layouts), there is no inherent meaning 
in the position of  the vertices. However, an interview participant commented on how this 
lack of  meaning in vertex position is challenging in context of  cellular localization: 

“Cellular localizations: whether a protein goes to the nucleus, membrane, peroxisome, etc. 
It’s hard to look at the dynamics of  that.” –Participant 15 

Where in the cell a certain reaction takes place is pertinent information. The same elements 
of  the same pathway may behave very differently depending on cellular localization.  

2.4.1.6. Perceptual Challenges 
It is well known that comprehension and readability of  network visualizations diminish past 
a certain size and density. Although this limitation is acknowledged, network visualizations 
of  biological data remain prevalent in a number of  situations. An interview participant 
explains: 

"Respect the limits of  my visual acuity and visual capacity to digest things with my eyes, 
please show me stuff  I can parse. I can't parse a network. Too much data occlusion, too 
much stuff  going on. If  you rotate a network you can't even tell if  it's the same thing! It's 
like the emperor's new clothes. We agree to not care because there doesn't seem to be a good 
alternative." –Participant 12 

Much of  the frustration with network visualizations stems from the visual strain of  
examining the information contained in networks. Among other tasks, participants explained 
that networks are visually examined to identify recurring patterns or signature, or to identify 
the location and interactions of  a specific vertex in a network. 

"It comes down to graph isomorphism, what structures am I looking for visually, what 
structures can I detect, and how can I detect them computationally, so I don't have to draw 
them and go hunting..." –Participant 12 

Not only did research participants acknowledge their own perceptual limitations in this 
context, but they also brought up the point that due to a lack of  biological visualization tools 
that compensate for perceptual limitations, the utility of  new technology used to capture and 
study biology is indirectly limited: 

“Now we can do whole genome RNA-Seq, but we still don't have the data visualization 
tools. The technology is better, the data better reflects what is happening in the cell at the 
time, but looking at it and comprehending what we are looking at hasn't changed much in 15 
years. People still generate a huge dataset, a huge heat map, and then end up cherry picking, 
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and say we are going to look at a very small subset of  the genes. You've almost thrown all of  
that technology away again.” –Participant 6 

Since human perceptual bandwidth is limited, researchers may be forced to focus down into 
a specific subsystem. As an interview participant stated: 

"The problem with networks is that they tell 100 stories at once" –Participant 12 

Thus, network visualizations are not only data-dense, but also information-dense. As a 
consequence, interpretation of  the information contained in topological structures may not 
be straightforward. It is clear, however, that visualization plays an important role in 
interpreting a network, for a depiction can encode many informational components in a 
comprehensible manner.  

2.4.1.7. Interpretation Challenges 
Interpretation of  the information contained in topological structures within networks is not 
straightforward. Since representation of  data and visual encoding of  properties can vary 
significantly between network visualizations, it is also difficult to compare interpretation of  
data between networks. In order to discuss structures within network visualization in a 
systematic and reproducible manner, a number of  network metrics are calculated. However, 
a major challenge is that the metrics used to characterize networks, such as centrality, 
community detection, or network model, depend heavily on the construction of  the 
network: 

“I'm not quite convinced knowing scale-free or small-world is useful or interesting. To me 
it's more of  an overview thing. If  I have a scale-free network, and its scale free because I 
happen to filter out points, is that really interesting? There are so many ways to filter and 
manipulate networks” –Participant 14 

The use and interpretation of  these metrics is also somewhat inconsistent. Depending on 
domain knowledge, research question, and experimental design, the same metric may ascribe 
different meaning or significance. The consensus among interview participants is that 
biological networks are data structures, and should serve merely as starting points for 
exploration: 

"Networks are intermediate results. You aren't finished yet. You need to show the insight! It 
doesn't matter what data structure you use…" –Participant 12 

Since communication is an important part of  science, and since the message of  a network 
visualization can be obscured, many interview participants have expressed great interest in 
improving this aspect. 

2.4.2. Limitations of  Models 
As shown in Table 1, two challenges were grouped into this “limitations of  models” 
category: (1) challenges associated with exploration and explanation, and (2) differing 
philosophies of  science. 
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2.4.2.1. Varying Philosophies of  Science 
One of  the uses of  network visualization is hypothesis-free research. However, an interview 
participant commented on how exploration is not entirely possible in the way it is generally 
imagined: 

"Before trying to visualize anything, you want to know what would be interesting to see--
which is counterintuitive to exploration!" –Participant 14 

Although it is possible to use networks for hypothesis generation, there are numerous 
upstream decisions, ranging from data source to construction of  the network to visual 
encoding, which can greatly affect exploration. Although it is possible to overcome this 
challenge through iteration of  upstream components of  the visualization workflow, there 
remains the notion of  identifying a pattern that is scientifically interesting, which often 
means comparing the data contained in networks to currently existing hypotheses or 
scientific beliefs. In addition, interview participants commented on a philosophical struggle 
between those who work “bottom-up” versus those who work “top-down”. An interview 
participant described, “bottom-up” as building something and hoping for a use, and “top-
down” as finding a driving biological problem and then searching for solutions. Another 
interview participant elaborated on perspectives derived from statistical approaches may 
sometimes be different than a perspective obtained from a purely biological approach. As 
the participant described, statistical approaches suppose that data should “speak for 
themselves”, and that one should be learning from the data rather than explaining it. 
However, the challenge is that, if  working with pathways, there can be thousands of  
different priors, and many different types of  priors, perhaps in weighted distribution form.  

2.4.2.2. Limitations of  Understanding 
Among interview participants, there was wide acknowledgement of  the limits of  the 
modelling capabilities of  tools, and the knowledge one may be able to obtain from 
experimental designs. For instance, one interview participant elaborated on the limitations of  
two-dimensional network models: 

"Everything interacts with everything else in biology! The node is always near-by no matter 
where you are in a representation. It's like what you have in a cell, it doesn't make sense to 
position specific elements to represent a cell because the same element is everywhere in the 
cell in real life." –Participant 3 

At times, biological network visualizations seem to represent information that is too 
abstracted and far-removed to be meaningful, at least without risk of  over-interpreting. 
Although much of  abstractness comes from the design of  the network, some limitations of  
network models are a result of  the limitations of  experimental designs. An interview 
participant commented on the perplexing results of  a study:  

"A person I worked with at ISB studied Cystic Fibrosis in a mouse model—one of  the best 
known single-gene diseases. He established that if  mice had the standard mutation, 70% of  
them die as you expect, but 30% are fine. And all have same genome and mutation, and that 
can’t be explained by the mutation. There are confounding factors we don’t understand—so 
things aren’t that simple." –Participant 16 
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Although there is significant understanding of  specific biological subsystems, there is little 
understanding of  how these biological subsystems are connected to each other. There are a 
number of  well-studied canonical pathways: 

"The clinicians like to look at pathways--they have concept of  cascades and gene 
relationships, flow of  metabolic intermediaries, etc. But they view it like one pathway at a 
time, but all of  these pathways are connected to each other and happening at the same time, 
in the same place. This idea that there is one canonical pathway is not right and we can 
forget that. We want to simplify them because reality is complicated, but if  we simplify them 
too much we have to remember the limitations of  our conclusions due to those 
simplifications." –Participant 12 

Historically, much biology was organized in hierarchical knowledge structures, such as clades. 
Since this serves as the starting point for understanding biology, it is natural to want to view 
biological network data in the same view. 

“I think hierarchy is largely a human construct to simplify a complex set of  knowledge. It 
makes things easy to talk about and communicate, but in reality things aren't ever that clean. 
But the fact that it has been used for thousands of  years, says something. Now we know that 
the tree of  life is more like a web of  life. Trees can represent time, spectrums that have been 
quantified and categorized, but it's never really that simple.” –Participant 10 

Some interview participants argue that reasoning by induction and simplifying complex 
systems through abstraction is the key: 

"A lot of  how we understand things goes from lower level to higher level, processing by 
induction. I don't see a lot of  this. It's nice to see data at a higher level and then drill down--
maybe I'll find something in there that I can use at a higher level. There is this notion of  
moving around in a network" –Participant 17 

Even when one is exploring a particular biological subsystem, there is a desire to be able to 
connect a specific observation with a larger context. However, when working within a 
biological subsystem, this is not always possible. Facilitating this process of  inductive 
thinking may help compensate for a lack of  tools that connect these subsystems. 

2.4.3. Future Trends 
In this section, I discuss the significance of  future trends in science, specifically in context of  
standards, resources, and networks visualization tools and techniques. 

As detailed in the findings, standards and resources are an important, yet underappreciated 
factor in network visualization. At the moment, there are 4 recognized, biologically specific 
standards: SBML, CellML, BioPax, and PSI-MI [40]. SBML and CellML are both standard 
for representing biosimulation models (where rate constants are known), BioPax is a 
standard for pathways, and PSI-MI is a standard for protein-protein interaction data. Each 
of  these standards defines biological elements differently. As a consequence, merging 
biological information stored under different standard formats often results in biological 
networks that are difficult to interpret—computationally and visually. The availability of  data 
across various biological resources is also an important factor, especially in context of  
validating the data contained in biological networks. As of  November 2016, there are 547 
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pathway resources [40]. For certain lines of  biomedical research, a major challenge of  using 
biological networks to visualize canonical pathway data is that the pathway information 
contained in biological resources are an aggregate, which can be a form of  contamination 
depending on the research question.  

In general, the scientist using the network visualization determines whether or not the 
visualization is useful. A disadvantage of  standardized depiction of  biological networks is 
that the very same representation may contain too little or too much information depending 
on the reader. For instance, to a domain expert in Alzheimer disease (AD) there may be little 
interest in using a community representation of  AD as it may be based off  of  a competing 
hypothesis, or contain annotation that are irrelevant or redundant. Simultaneously, that very 
same representation of  AD may be enormously useful for a cancer researcher exploring the 
intersection between cancer and AD. For this reason, open, community-driven models of  
biological network representation, such as Wikipathways, has seen slow adoption from the 
cohort of  interview participants [41].  

Looking forward, biological resources should also contain cell-, tissue-, and condition-
specific information [42]. As the amount of  biological data the community collects, stores, 
and shares continues to increase, the requirements and specifications for these items will 
continue to be defined with increased specificity. However, since standards in biology are 
ordinarily developed with downstream objectives in mind, there seems to be a “chicken and 
egg” problem. For the time being, it is reasonable to assume the limitations imposed by the 
structure of  the information contained in standards and resources. 

One might anticipate more Cytoscape plugins will be developed over time. There are already 
Cytoscape plugins that address some of  the challenges detailed in this paper. For example, 
Cerebral is a plugin facilitating layout informed by cellular localization [43]. However, with an 
application like Cytoscape, users must rely of  developers to support modifications to 
formats and standards. Since other researchers have also argued that temporal information is 
difficult to portray in biological networks, I am optimistic increased support for temporal 
data will emerge in the future [6]. Dynamic network visualization is a growing research area, 
although there are no Cytoscape or Bioconductor extensions yet. Furthermore, I also 
anticipate that biological network visualization web applications will become more prevalent 
due to the number of  Javascript-based network visualization libraries, including Cytoscape.js. 
A number of  web services such as Pathway Commons and GeneMANIA already visualize 
biological networks in the browser [44], [45]. 

2.5. Design Implication and Recommendations 
This section covers the design implications of  the interview findings. In particular, this 
section contains recommendations regarding clarification of  a number of  network-related 
information, and recommendations for additional constraints in constraint-based layouts. 

2.5.1. Clarifying Data, Network Components, and Interpretation of  Topological 
Structures 

Providing clarity and detail about what information is actually being represented in network 
visualization would improve network visualization significantly. However, for the time being, 
network visualization can be improved through clarifying the use and provenance of  
secondary data, clarifying the exact meaning and relevance of  visual components (e.g. 
vertices and edges), and clarifying the relevance of  the identified topological features. 
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Ensuring that biological data collected from experiments is openly available is critical for 
validating findings, and enabling others to build off  of  prior research results. One the many 
benefits of  easy accessibility to biological data is widespread secondary use of  this data (i.e. 
using data that was collected for another purpose). Secondary data offers enormous benefits 
for exploratory research, data aggregations, and statistical model development (e.g. machine 
learning and cross-validation). However, as some interview participants described, the 
resulting information may contain errors, inappropriate groupings, or vague definitions that 
limit their usefulness. Moreover, secondary data may be used or analysed in a manner that is 
inappropriate given the sample collection and purpose of  the dataset. 

To improve clarity and appropriate interpretation of  networks, one must be more clear about 
exactly what a vertex or edge represents. Standards and resources play a pivotal role in 
enabling rigorous definition of  this nature. Since standards committees depend on feedback 
from the community, those involved with the design of  biological network visualization must 
communicate with standards committees about the downstream challenges for visualization
—especially for challenges related to ambiguous definitions of  controlled terms. There is 
also an onus on the part of  the researcher constructing the network visualization to properly 
clarify and define the details and relevance of  network visualization. In terms of  design and 
construction, this may mean creating separate network visualization for each class of  vertex, 
or edge, while preserving context by using an identical layout for each visual. However, if  
one were to make generic recommendations excluding any context of  task, there are would 
be too many classes of  vertices and edges to show. In this situation, a more abstracted, 
higher-level visualization may be more appropriate. 

Since topological structures in network depictions are not easily recognizable in large, dense 
networks, visualizations should highlight topological structures and interpret their 
significance in context of  the data. In section 3.2.2, delineating perceptual challenges, 
interview participants specified difficulty recognizing whether one structure is identical to 
another structure, given that structures may be somehow altered in representation (e.g. 
transformed, translated, or rotated). Also, a number of  foundational biological concepts are 
either difficult to, or impossible to, represent with current tools and techniques. As a result, 
analysis, computation, representation, and communication of  biological networks are 
hindered. For example, hyperedge representations (see Figure 3) are commonplace in 
biochemical schematics, but are not possible to represent or compute over without resorting 
to workarounds. Although workarounds are clever, researchers may risk inappropriately 
using a tool or technique, or inappropriately interpreting the results. In summary, by 
clarifying the provenance, limitations, representation, and interpretation of  network 
visualization, readers are less likely to be confused and can make less assumptive inferences. 

2.5.2. Layout Constraints via Biological Knowledge, Data, Tasks, and Experimental 
Design 

Enforcing constraints informed by the attributes of  vertices and edges in biological 
networks can reveal structure within the data, as many interview participants expect. 
Although constraint-based layout will not solve downstream perceptual challenges (such as 
vertex occlusions or edge crossings), there will be an expected structure. Network 
visualization with a sense of  order can enable useful operations, as readers can compare the 
structure and pattern of  the data with the structure and pattern they expect to see. For 
instance, hierarchical layouts can be implemented via constraints, and depending on the 
vertex/edge attributes used to inform the constraints, readers would typically expect a tree 
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structure. Schreiber et al present a general constraint-based approach that applies to a variety 
of  biological networks [28]. An advantage of  a constraint-based approach is that the 
algorithm can systematically emphasize relationships of  interest, or be customized in a 
variety of  ways that are reproducible and extensible. Depending on the intended use of  the 
visualization, constraint-based approaches can also be used to setup layout rules based on 
currently accepted biological knowledge. This can be especially useful in layouts depicting 
pathways or networks containing specific types of  biological data (e.g. protein-protein 
interaction, gene regulatory, etc.). 

However, I argue that although enforcing constraints based on data, prior biological 
knowledge, and tasks is useful, designing layouts in context of  experimental design would 
provide additional precision. Biological data is visualized with the inherent purpose of  
understanding how the collected data compares to currently accepted hypotheses and 
models. Many biological experimental designs are a systematic approach to answering a 
specific research question—providing a guideline for what is relevant to visualize. This 
approach is particularly suitable for scientific designs characterized as the “top-down”. At 
first, it may seem as though “bottom-up” scientific designs require a different visualization 
methodology, searching for larger patterns in an agglomerative fashion. However, regardless 
of  whether the “bottom-up” approach is being used for confirmatory or exploratory 
purposes, readers need to be able to compare the information contained in the visualization 
with their current understanding. Although a truly “bottom-up” approach that is “data-
driven” would be ideal for certain research questions, there are also a number of  limitations 
and biases that are not clear in the resulting visualization. 

Another approach, similar in spirit but leading to more generalizable techniques, is to 
optimize network visualization for a single task, or set of  tasks. Lee et al published a 
taxonomy of  tasks completed in graph visualizations—this list can be used as a rubric to 
develop task-specific network visualizations that are designed to support the task the author 
of  the visualization expects the reader of  the visualization to complete [46]. Although tasks 
provide a specific context through which one can evaluate the efficiency of  network 
visualization, using tasks alone as a basis for design and evaluation may result in tools that 
are inappropriate for the type of  data being visualized. Thus, in summary, I would like to 
emphasize that it is necessary to understand the ramifications of  the entire range of  
components used to develop a network visualization—from the experimental design and 
hypothesis, properties of  the data, the anticipated tasks readers are expected to complete, 
and the assumed prior biological knowledge. 

2.6. Conclusion 
This chapter presents the results of  an interview study with 21 researchers who have 
visualized biological networks. I detailed challenges in reference to data and analysis, visual 
representation and interpretation, and limitations of  models. As biomedical visualization 
community moves forward, there is opportunity to improve networks visualizations through 
closely mirroring experimental designs, clarifying use of  secondary data, clarifying meaning 
of  visualization components, and highlighting meaning of  network figures. 
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3. Systematic Review of  Biological Network Figures  
Part I: Visual Encodings 

3.1. Introduction 
The goal of  the interview study contained in the previous chapter was to understand the 
range of  challenges that researchers encounter when working with biological network 
visualizations. Although the previous chapter specified a number of  formidable challenges, 
the remainder of  this dissertation will focus on visual representation and interpretation of  
biological networks. In this chapter I begin to feature quantitative research, documenting 
examples of  how biological network visualizations are currently depicted, and later 
connecting those findings with what was discovered during the course of  the interview 
study.   

As the name implies, this chapter is part one of  two. Chapter 3 details the protocol used to 
perform this systematic review of  figures, and rudimentary results describing, among other 
things, frequency of  visual encodings in bioinformatics literature. Chapter 4 builds on the 
results of  Chapter 3 through re-analysis of  the same dataset in context of  graph task 
taxonomy published by Lee et al [46]. These two chapters, although presented separately, 
were part of  the same research project. They have been separated in order to keep the 
contents of  this dissertation organized. At the end of  part two, I will connect the results of  
both chapters and illustrate how the ability to complete certain graph tasks are related to 
visual encodings. 

3.1.1. A Small Roadmap 
The background section sets the stage for the rest of  this chapter through introducing 
related research and defining visual encodings. The method section explains the protocol(s) 
used in this study. The analysis section contains the results from the study, as well as an 
explanation of  the significance of  those results. More specifically, there are three 
subsections: (I) descriptive statistics, (II) statistical analysis of  frequency distributions, and 
(III) a qualitative assessment of  selected figures. The discussion section is used to add 
additional commentary and detail that are worth mentioning, but not necessarily pertinent to 
understanding the analysis results. 

I will clarify the following terms, as they will be used frequently: data attributes, visual 
attributes, and visual encodings. Data attributes refer to data associated with a node or edge 
entity in a graph. Visual attributes refer to the visual properties that may be parameterized to 
alter its physical appearance. Visual encoding refers to the process of  transducing data 
attributes to visual attributes. 

3.2. Background 
Even while controlling for the data contained in a biological network, and controlling for the 
layout used to organize the network, attributes attached to nodes and edges may be conveyed 
in myriad ways. For instance, the range of  values of  a node attribute may be depicted 
through different levels of  a linked visual attribute. Some commonly supported visual 
attributes are color, size, shape, position, pattern, length, and volume. The various ways in 
which the attributes attached to nodes and edges may be represented are referred to as visual 
encodings. One of  the seminal works on interpretation of  visual encodings was published by 
Cleveland et al, which showed that some visual encodings are visually translated more 
accurately than others [47]. A relevant implication of  this work is that even while controlling 
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for the data contained in a network, and the layout of  the network, the visual encodings 
alone may have a significant impact on the interpretation of  the network. Research on pre-
attentive processing supports this premise, as there is reliable evidence that certain visual 
properties may be more or less salient depending on the distractors surrounding it [48]. 
Furthermore, research on Gestalt effects also support the general premise that the 
expressibility and effectiveness of  network visualization may be affected by the 
combinations of  visual encodings present in a network.  

3.2.1. Defining Visual Encoding 
In terms of  a function, visual encodings use data attributes as the domain, and visual 
attribute(s) as the range. For example, if  one has the following dimension of  data (the 
domain of  the function) [1, 1, 2, 3, 6, 10, 100], and would like to visually encode those values 
as some visual attribute (e.g. the area of  a node), the following example function may 
describe this encoding: 

Equation 1 – Example function illustrating range values as a function of  domain values.  

The input to the function above would be the values listed in the dimension of  data [1, 1, 2, 
3, 6, 10, 100], and the output would be a corresponding radius size that would transduce the 
domain values to corresponding radius values that would represent the area of  a circular 
node, which would be [0.56, 0.56, 0.80, 0.98, 1.38, 1.78, 5.64]. Visual encoding may be used 
to transform data values into a variety of  visual attributes. To clarify, the encoding is the 
function itself, mapping the data attributes (domain) to the visual attributes (range). 
Furthermore, the function mapping data attributes to visual attributes could be an identity 
function, or the input to another function of  the input. To provide a brief, non-exhaustive 
list of  node attribute examples, data may be attached to node size, node color, or node 
shape. A list of  the visual attributes and encodings used in this study are detailed in Figure 5.  

Given that the same data values may be transduced, or visually encoded, into a variety of  
visual representations, it is natural to hypothesize that not all visual representations are 
equally effective or appropriate. This research question is thoroughly examined in Chapter 7. 
However, in the following study detailed in this chapter, the objective is to obtain an 
understanding about how visual encodings are currently used in bioinformatics network 
figures.  

3.2.2. Types of  Visual Encoding 
Visual attributes may be encoded in an assortment of  ways. Similar to the concept of  data 
types in statistics (e.g. numerical, interval, ratio, nominal, etc.), visual encodings may also be 
embodied in varying visual encoding data types. The function relating area (domain) and 
radius (range) in Equation 1 is a quantitative encoding. However, if  the output of  the 
function had been hue (color), for example, the encoding would be categorical (i.e. nominal). 
The distinction between types of  visual encodings is essential, as I will demonstrate later in 
this chapter. Furthermore, the mappings binding node or edge attributes to visual attributes 
are presumed to maintain the property of  bijection (i.e. a one-to-one mapping of  elements 
between data attributes and visual attributes). This is covered further in Section 6.1. 
However, in practice, visual encodings are not necessarily assigned in a systematic manner.  
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3.3. Method 
The method consists of  five steps, with the former steps resembling that of  a systematic 
review. Figure 4 provides an overview of  the figure selection and data collection process. 
The protocol is described below: 

The following inclusion criteria were used to assess the validity of  selected publications: 

• The selected publication must be associated with either (or both) of  the following 
MeSH terms: “Metabolic Networks and Pathways”, “Gene Regulatory Networks” 

• The selected publication must have been published on or after June 18, 2010. 

There was a single exclusion criterion: the selected publication must contain a node-link 
diagram. If  a node-link diagram was not present in the publication, the paper was removed 
from the pool of  selectable papers. 
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Using the protocol described above, a PubMed Central query was conducted using manually 
selected Medical Subject Heading (MeSH) terms. MeSH is a controlled vocabulary used for 
indexing PubMed articles by the National Library of  Medicine. These results were 
additionally filtered to only include peer-reviewed journal articles published on or after June 
18, 2010 – yielding 12,602 scientific papers. From these 12,602 papers, 246 papers were 
randomly selected without replacement for analysis (although only a portion of  these met 
both the inclusion and exclusion criteria). Due to the labor-intensive process of  reading and 
recording data from selected papers, this selection process was carried out for a period of  6 
months. The first node-link diagram figure in the randomly selected paper was characterized 
– if  the paper does not contain a node-link diagram, sampling is performed again (until a 
paper with a node-link figure is found). 

Figure 4 – Overview of  selection of  figures and data collection. 

!  

Step 1: Figure Selection 
Using the NCBI MeSH terms, scientific papers classified under either of  the two terms 
“Metabolic Networks and Pathways” or “Gene Regulatory Networks”, and also published 
within the past three years, were identified. From this pool of  eligible papers, papers were 
randomly selected without replacement. When a paper was selected, the first instance of  a 
node-link diagram (if  any) was used for measurement.  

Step 2: Labeling Figures 
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Figures were associated with a label describing “type”. The term used in the figure caption to 
describe the figure was the same term I used to label the “type.” If  more than one term was 
used, I chose the term that appeared most often in the paper. There were no situations 
where a term was not associated with a figure. However, after data collection, it came 
apparent that several terms might have been used in various publications to explain the same 
concept. 

Of  the 246 papers that were selected, only 96 (39%) of  them contained a node-link figure. 
Of  the 96 node-link diagrams, the figure captions associated with the figures described 34 of  
them as “networks”, 27 of  them as “pathways”, 20 of  them as “schematics”, 14 of  them as 
“models”, and only 1 of  them as a “map”. Although some of  the results from the previous 
chapter suggest that researchers who work with biological networks sometimes use the listed 
terms interchangeably, these listed terms were used as class labels to categorize figures for 
reasons of  practicality and reproducibility. In the case where a figure caption did not 
explicitly state the class of  the figure, the entire paper was reviewed to find the term used to 
describe the content of  the figure.  

The class labels for schematics, models, and map are collectively referred to as conceptual 
diagrams. Although the frequency count of  conceptual diagrams is quite high, only analysis 
of  networks and pathways will be detailed. The reason for this is that conceptual diagrams 
afford the license to present information in a wide variety of  ways (according to desired 
emphasis, or taste). Conceptual diagrams may be designed to present an overview of  the 
paper, or provide information about some workflow, and thus is not the focus of  this 
chapter. 

Step 3: Characterizing Figures 
The visual encodings and properties listed in Figure 5 were used to characterize selected 
figures. To be systematic, nodes and edges were independently evaluated for each encoding 
in Figure 5. As a result, the raw data contains a number of  encodings that have “zero” values 
(e.g. counting the number of  instances of  “line endings” appearing on nodes). These 
nonsensical values were later omitted during analysis. Visual encodings were labeled by type: 
quantitative, ordinal, categorical, or relational [49].  
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Figure 5 - A table representing various visual encodings and their associated data type 
properties (compiled by Noah Ilinsky) [50]. 

!  

3.4. Analysis 
This section presents the results of  the analyses that were performed on this data. First, I 
will present some of  the count data (section I), followed by a brief  statistical analysis 
comparing the distributions of  those data (section II). After an explanation of  the statistical 
results, I continue on to view exemplary figures found across various bioinformatics 
publications (section III).  

3.4.1. I. Descriptive Statistics and Counts 
The measured visual encoding attributes for networks and pathways are presented in Table 2. 
The same information in Table 2 is presented in a slightly different perspective in Figure 6, 
which facilitates a visual comparison between encoding frequency counts between networks 
and pathways. Examination of  Figure 6 illustrates clear differences in frequency between 
networks and pathways, itemized by nodes and edges. For instance, node color is notably 
higher in networks, and edge text is notably higher in pathways. Another observation is that 
edge position is encoded ordinally in pathways more frequently than in networks. 
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Table 2 - provides an overview of  node versus edge encodings, separated by pathway versus 
network. Encodings that had a frequency of  zero across nodes/edges and pathway/network 
have been removed from the table. 

Encoding Nodes (Pathway/Network) Edges (Pathway/Network)

Position 5/2 8/2

Text 25/30 18/0

Size, Area 3/8 1/0

Weight, Boldness 2/3 0/0

Saturation, Brightness 1/5 1/0

Color 11/27 11/14

Shape, Icon 15/12 2/0

Enclosure, Connection 14/9 13/4

Line Pattern 0/0 9/4

Line Endings 0/0 4/2

Line Weight 0/0 5/3
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Figure 6 - A side-by-side comparison of  the frequency of  visual encodings between 
networks and pathways, and the data type by which the encoding appears (quantitative, 
ordinal, relational, or categorical). In each bar plot, the former half  of  the plot represents 
node encodings, and the latter half  represents edge encodings (as denoted by the vertical 
dashed line). 

!  

3.4.2. II. Comparing distributions of  node and edge encoding counts between 
networks and pathways 

To determine whether Networks and Pathways are detectably different types in figures from 
bioinformatics literature, I perform a fisher exact test to compare the distributions of  the 
counts of  the network and pathway types. Fisher’s Exact test is ideal for this research 
question as it is designed to use binary count data, and can accommodate a relatively small 
sample size (whereas the common alternative, Chi-Square test is better suited for datasets 
with a larger sample size). As a note, there are additional statistical results for a test of  
unequal variance and ANOVA available in Appendix B and C, respectively. 

Table 3 and Table 4 present frequency data used to perform a Fisher’s Exact test. Table 3 
compares counts from the node attributes between the network and pathway classes, and 
Table 4 compares counts from the edge attributes between the network and pathway classes. 
Using an alpha level of  0.05, the null hypothesis was accepted (although marginally) for a 
difference between node attributes, but rejected for a difference between edge attributes. 
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Table 3 - A Fisher’s Exact test was run on the following table of  counts for nodes: 

H0: The visual encoding frequencies between nodes in networks and pathways = 0. 
Ha: The visual encoding frequencies between nodes in networks and pathways  0. 

The null hypothesis was that there is no difference between the network and pathway types 
in context of  the collected node encoding count data. The alternative hypothesis is that there 
is a difference between the network and pathway types (two sided). The test was run with the 
standard alpha-level of  0.05. After running the Fisher’s Exact test, the resulting p-value was 
determined to be 0.07. When strictly interpreted, this means the null hypothesis that the 
networks and pathways are not encoded differently was accepted. However, considering that 
the sample size is small, and that the p-value is close to 0.05, the results are insufficient to 
truly rule out that there is not difference. Although it may seem odd to include the results of  
a negative statistical test, the reason for doing so will become more clear at the end of  this 
section.  

Table 4 - A Fisher’s Exact test was run on the following table of  counts for edges: 

H0: The visual encoding frequencies between edges in networks and pathways = 0. 
Ha: The visual encoding frequencies between edges in networks and pathways  0. 

Node Encoding Network Pathway

Position 2 5

Text 30 25

Size, Area 8 3

Weight, Boldness 3 2

Saturation, Brightness 5 1

Color 27 11

Shape, Icon 12 15

Enclosure, Connection 9 14

Edge Encoding Network Pathway

Position 2 8

Text 0 18

Color 14 11

Enclosure, Connection 4 13

Line Pattern 4 9

Line Endings 2 4

Line Weight 3 5
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The null hypothesis was that there is no difference between the network and pathway types 
in context of  the collected edge encoding count data. The alternative hypothesis is that there 
is a difference between the network and pathway types (two sided). The test was run with the 
standard alpha-level of  0.05. After running the Fisher’s Exact test, the resulting p-value was 
determined to be 0.003. When strictly interpreted, this means the null hypothesis that the 
distribution of  visual encodings between networks and pathways are different, was rejected. 
Again however, we must recall that the sample size is small when interpreting this result. 

When interpreting these two statistical tests in context of  each other, the results suggest that 
there may not necessarily be visual encoding differences among nodes between networks and 
pathways, but that there are certainly visual encoding differences among edges between 
networks and pathways. This finding allows the generalization that pathways are more “edge-
focused” than networks, but it does not necessarily follow that networks are more “node-
focused”. This is a subtle, but important, distinction. 

3.4.3. III. Visual Assessment of  Exemplar Figures 
To make the implications from the results of  the statistical tests (explained in section II) 
more concrete, this section provides a handful of  model figures that visually depict the 
differences between networks and pathways. Let us closely examine some of  the figures that 
were visually analyzed during the course of  this study. 

3.4.3.1. The pathways emphasize edges, whereas networks emphasize nodes: 
Pathway figures are much more likely to encode information using edge attributes, whereas 
network figures tend to be less “edge-focused”. Edge positions are encoded more often in 
pathways than in networks, suggesting that there may be some sense of  order or temporal 
property to the pathway. On the other hand, networks are more frequently encoded with 
node information, suggesting de-emphasis of  the information contained in edge elements in 
networks. Node color, although used in pathway depictions, are used more frequently in 
networks than in pathways. Unlike pathways, networks sometimes visually encode node size 
and node saturation quantitatively. A surprising observation is that visual encodings are most 
often encoded in a categorical (i.e. nominal) manner, rather than quantitative, ordinal, or 
relational (please refer to Figure 6). This observation is surprising since it implies that 
networks and pathways may be designed to highlight a number of  groups or categories. It 
also implies that information may be lost in situations where quantitative, ordinal, or 
relational data are reduced to categorical encodings. 

As Figure 6 shows, node-link diagrams in the network group emphasize the nodes in a 
network, and the visualizations in the pathway group emphasize the edges in a network. This 
claim is not only supported by the observation that frequency of  edge text is minimal for 
networks and markedly higher for pathways in Figure 6, but also with Figure 7 through 
Figure 13. When a pathway is being depicted, the entities involved are important, but the 
focus of  the figure is on the nature of  the relationship between entities rather than the 
entities themselves (please see Figure 10 - Figure 13). On the other hand, when a network is 
being depicted, the focus of  the figure is around the entities and the relationship between 
entities provide supporting context, rather than serve as the primary point of  emphasis 
(please see Figure 7 - Figure 9). The distinctions included in the figure captions below have 
design implications for graph algorithms and visualizations, as elaborated on in the 
discussion section of  this chapter.  
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3.4.4. Exemplar Network Figures 
The general properties of  Figure 7 - Figure 9 are that nodes are always labeled, color 
encoding seems to be used to denote groups (when used), and edge encodings are not only 
minimally used, but are used in support of  the information conveyed through node 
encodings.  

Figure 7 shows connections between nodes, and only provides (gene name) labels for the 
node elements. Figure 7 does not focus on the connections themselves, rather that there are 
several clusters of  genes that are more connected than the rest. Figure 8 also focuses on 
connections between nodes and only provides labels for node elements. Although this figure 
also highlights interconnectivity and clustering between nodes, color and edge thickness are 
used to emphasize certain groups, and the connections therein. The edges that are stressed 
in this figure seem to be intended to support node groupings, rather than act in their own 
service. Figure 9 contains many more nodes and edges than Figure 7 and Figure 8. The 
visual properties of  the edges that connect the many nodes in this figure are uniform in 
color and thickness. Although nodes are uniform with respect to size, each node is labeled 
and assigned a color that assigns it into one of  several mutually exclusive groups. 

3.4.5. Exemplar Pathway Figures 
The general properties of  Figure 10 - Figure 13 are that nodes are sometimes colored and 
labeled, and are typically encoded in the service of  highlighting edge properties. Edge 
encodings are rich and complex, although they leave something to be desired—this will be 
further covered in the discussion section.  

Similarly to Figure 7 and Figure 8, there are a number of  labeled nodes in Figure 10. 
However, Figure 10 also contains a variety of  edge patterns, embeds direction and order, and 
even depicts some physical properties of  a cell, such as the cell membrane. Relative to Figure 
7 and Figure 8, this figure conveys more information about the connections between nodes. 
Figure 11 clearly emphasizes the properties of  the edges connecting various nodes in the 
image. The red color is used to highlight relevant edges, and thickness is used to convey 
magnitude of  the highlighted property. Figure 12 contains a minimal representation of  
nodes, edges, and cellular location. The gray background in which the entire graph sits is an 
abstract representation of  the internals of  a cell, and the smaller box within the cellular 
abstraction is another group representing a mitochondrial sub-reaction. Nodes, edges, and 
cellular location are also depicted in Figure 13. However, this figure contains more explicit 
annotations about reactions, cellular components, and it uses color to highlight notable 
sections of  the overall reaction. 

A noteworthy observation to point out is stark difference in emphasis between Figure 9 and 
Figure 11. Edges in a network figure (Figure 9) are colored gray to better emphasize the 
nodes, and in contrast, nodes in a pathway figures (Figure 11) are colored gray to better 
emphasize the edges. 
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Figure 7 - A figure example of  the “network” type from Clark et al [51]. Notice the labeled 
nodes and plain edges. 

!  
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Figure 8 - Another figure of  the type “network”, published in Lei et al [52]. Observe the 
colors (indicating groups) and labels on nodes, and minimal use of  edge encodings. Edge 
width is used merely to reinforce node groups signified via color. 

!  
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Figure 9 - Another example of  a “network” figure, from Finka et al [53]. This figure contains 
the largest network among those presented in this set. Color is used to signify groups, and 
nodes are labeled. However, edges are simply used as a subdued backdrop for 
interconnectivity. 

!  

!  52



Figure 10 - This figure is an example of  a “pathway” figure from Bakir-Gungor et al [54]. 
The depiction represents components of  a cell and use directed edges with multiple 
patterns. Although nodes are color encoded and labeled, they are depicted in support of  the 
information presented in the edges (e.g. landmarks in a pathway). This is not to say that the 
nodes are unimportant, but rather that the information the figure seems to convey is 
primarily contained within the edges, and operate in conjunction with the information 
provided by the nodes. 

!  
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Figure 11 - Another example of  a “pathway” figure, from Yamada et al [55]. Network figures 
typically use minimally encoded edges, usually in a gray hue to de-emphasize them in a 
figure. In this figure, nodes are now de-emphasized in a gray hue, and edges are encoded 
with color and thickness. 

!  
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Figure 12 - Another example of  a “pathway” figure from Kailavasan et al, although less 
intricately detailed relative to the rest of  the pathway figures included in this chapter [56]. 
The nodes in this graphic depict the steps in the glycolysis pathway. 

!  

Figure 13 - This is another example of  a “pathway” figure from Debnath et al, and in 
contrast to Figure 12, more complexly detailed [57]. Note the well-defined portrayal of  a cell 
membrane and the intricate edge relationships supporting the contextualization of  chemical 
reaction information, tending from the left side of  the image to the right side, while also 
stressing the cyclical nature of  the process. 

!  
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Depending on the level of  depth one may be interested in, edge representation techniques 
can also exemplify ambiguity—for example, when a reaction step is mediated by yet another, 
independent reaction step. An instance of  this is found clearly in Figure 12. In Figure 12, the 
step that connects “pyruvate” to “lactate” is mediated by another step that oxidizes 
“NADH” to “NAD+”. Presumably the “pyruvate” to “lactate” step takes place 
simultaneously as “pyruvate” is also yielding “Acetyl-CoA”, but that is unclear without 
further reading about Glycolysis. The same representation may be used to depict reactions 
where one step either precedes or follows another (rather than transpire concurrently). Some 
participants in the interview study detailed in Chapter 2 also expressed frustration about the 
inherent ambiguity of  concurrently depicted edges. A handful of  edges are also depicted as 
“hyper-edges”, meaning an edge that originates as a singular edge eventually forks into two 
or more edges downstream—thus, a single source node may connect to several target nodes 
via a hyperedge (a clear example of  a hyperedge may be found in Figure 18, presented in a 
later section of  this chapter). Although some may use hyperedges as a drawing convenience 
(or optimization), findings from the interview study detailed in Chapter 2 revealed that in 
hyperedges also characterize simultaneous decomposition of  a molecule, or denote a 
chemical by-product. 

Overencoding and Overloading Visual Attributes: 
In some visualization scenarios, there are not enough visual attributes to encode all of  the 
desired (and sometimes required) information. Although there is too much information in a 
network, there are two forms by which a network may contain too much information to 
display. For clarity, let us define two terms: overencoding and encoding overloading (also depicted in 
Figure 14).  

!  56



Figure 14 – A visual depiction of  overencoding and encoding overloading. 

!  

I define encoding overloading as when the same visual attribute is used to encode information 
for multiple dimensions of  data in the network. For instance, one might imagine using color 
nominally to define various edge groups, while simultaneously using a divergent color scale 
to convey correlation strength of  edges in the same network—in other words, the same 
visualization has color used in two different ways. In this sense, the term “overloading” is 
used in the same manner that the term would be used in computer science, to denote a 
scenario where multiple copies of  a computational method are referenced under the same 
name and co-exist in the same scope. In contrast, I define overencoding as when two distinct 
encodings are combined, in the equivalent of  a cross product operation, to increase the set 
space of  depictions for classes contained in a network. For example, if  one wants to depict 
20 genes in a network, then the cross product of  10 color hues and 2 shapes would yield 20 
visually discrete elements. Since no verified examples were found in the corpus of  sampled 
figures, encoding overloading is defined merely to clarify and distinguish it as distinct from 
encoding overloading. 

When overencoding is present, there is risk of  reader misinterpretation whereby the reader 
may be unable to visually discern discrete entities, confounding the meaning of  each 
employed visual attribute, or possibly even the combination of  visual attributes if  the 
resulting icon is reminiscent of  another that is commonly used (e.g. when overencoding 
color and shape, one may misinterpret a red octagon to signify stopping). Research in 
visualization and psychology has shown that overencoding burdens the readers’ cognitive 
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and perceptual capabilities [49]. This practice of  overencoding forces the reader to perform 
“conjunction search” when cognitively decoding the visualization.  “Conjunction search” 
refers to the process of  visually searching for visual entities that satisfy criteria across 
multiple visual channels—for instance, searching for red circles in a depiction of  circles, 
squares, and triangles, each of  which can be red, green, or blue [58]. This process is 
recognized in visualization literature and has been shown to be ineffective at scale because 
users cannot store the interpretation of  the visual set space in their iconic (i.e. working) 
memory. In fact, Figure 15 below directly violates many of  the best practices for graph 
readability [30]. In Figure 15, thirteen colors (hues) are used to illustrate various nodes and 
edges. Nodes are further categorized by shape, denoting whether the node is an “interactor” 
or “bait”. Furthermore, edges are independently encoded with three patterns that could emit 
from any of  the nodes.  

However, the misinterpretation risks associated with encoding overloading are distinct from 
the type of  misinterpretation that may occur due to overencoding, which may be ascribed to 
confusion due to comingling or overlapping ranges values used for visual attributes.   

In contrast to encoding overloading, certain biological graph images found in literature 
overencoding visual attributes by assigning multiple sets, ranges, or discretized values to a 
single visual attribute—this can be seen in Figure 15.  

Figure 15 - Example of  overencoding using categorical visual encodings from Wang et al 
[59]. 

!  
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3.5. Networks and Pathways in Biological Network Visualization Tools or 
Resources 

In order to further support the claims in this chapter, snapshots of  results from two popular 
biological network visualization tools or resources are provided in this section. Figure 16 and 
Figure 17 are examples of  tools that depict networks, and Figure 18 and Figure 19 are 
examples of  tools that depict pathways. To provide some context, there are a total of  547 
recognized pathway resources, and 202 recognized pathway visualization tools (as of  
September 13, 2016) [40]. 

In reference to Figure 16 (GeneMANIA), the results show BRCA2 at the center of  the 
layout, along with other genes that are presumed to be relevant. It is unclear whether the 
sizes of  the nodes reflect properties. Typically, in depictions such as this, one might expect 
the node size to be proportional to degree centrality (the number of  edges the node 
connects to). Additionally, the edges in this figure are encoded with categorical information 
about the “type” of  edge (via hue). The network in Figure 17 (STRING) is accompanied by 
a report (not shown) that explains the function of  BRCA2, and also provides a line of  
reasoning for why the other (ostensibly relevant) nodes are presented along with BRCA2. 
Both the nodes and edges use color (hue) to visually encode categorical information. In 
Figure 18 (Reactome), selecting an edge or node element provides the user with additional 
information, presented in the inspector box below the pathway diagram. For instance, 
Reactome states the following for the highlighted hyperedge in the figure: “PPP5C-mediated 
dephosphorylation of  TP53BP1 serine residues S25 and S1778 contributes to dissociation 
of  TP53BP1 from DNA doubles strand break (DSB) sites and termination of  DSB repair 
(Kang et al. 2009)”. When node elements are selected, the inspector box provides cross-links 
(i.e. linking to a URI or external identifier in separate databases) to biological resources 
where entries for entities are stored, such as UniProt, or Protein Data Bank. Similar to the 
other tools in this section, the information conveyed through the Reactome tool seems to be 
primarily categorical information, although it is possible to obtain more detailed quantitative 
information through the inspector window. Figure 19 (KEGG) provides some notion of  
orientation as certain steps of  the reaction lead into other pathways (e.g. “Mismatch 
Repair”). Edges also possess labels, “+p” or “+u”, and come in varying patterns to denote 
differing classes of  edges. Once again, the information attached to the edge elements is 
categorical information, and are expressed through a categorical visual encoding (pattern). 
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Figure 16 - A snapshot of  the query result for the human breast cancer associated gene 
BRCA2 from GeneMANIA [45]. 

!  

Figure 17 - A snapshot of  the same query for the BRCA2 gene in the STRING tool [60]. 

!  
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Figure 18 - A snapshot of  a component of  a pathway that contains BRCA1 from Reactome 
[61]. 

!  
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Figure 19 - This figure is an illustration of  the “Fanconi Anemia Pathway” from KEGG, 
which also contains BRCA1 [36]. 

!  

Even amongst tools, the “network” and “pathway” characteristics previously described seem 
to be present. It may be the case, however, that figures in bioinformatics literature are 
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generated using a common set of  tools, and are as a result, limited by the tools available to 
create depictions of  pathways and networks. 

3.6. Discussion 
This section of  the paper expands on the findings presented in the previous sections. 
Figures from various literature sources are presented to help illustrate some claims on 
commonalities and distinctions. 

The finding that majority of  visual encodings are of  the categorical data type is interesting 
because it highlights the potential need for a visualization that can depict a large number of  
categorical entities and relationships—preferably under an organization that lends itself  to 
predictability and interpretability. Both overencoding and overloading have the similar root 
cause of  attempting to depict more information than a visualization is either capable of  
containing, or reader is capable of  deciphering. To resolve this challenge, there are two 
practical strategies. I do not claim the following list is comprehensive, merely suggested 
approaches. (1) Present only as much information in a graph visualization as it can contain, 
or a reader can accurately comprehend. This may mean ruthless omitting unnecessary 
information completely, or may manifest in the use of  a technique such as small multiples [62]. 
An example of  a tool that takes this approach is the Cerebral plugin for Cytoscape [43]. (2) 
Present a higher-level, further abstracted view of  the information to fit all of  the desired 
information into visual encodings that respect perceptual limitations.  

The fact that the results from the analysis of  biological visualization tools corroborated the 
findings of  the visual assessment of  exemplar figures and descriptive analysis of  encoding features is 
certainly an exciting finding. However, there may be a sizable amount of  confounding. This 
doubt stems from the fact that there are only a handful of  tools that were used to generate 
the figures obtained from the literature search. If  the assessed figures were generated using 
the same tools, there will obviously be agreement among the results. Moreover, the visual 
encodings that were empirically captured are merely a quantitative representation of  the 
same information (i.e. figures generated from the same tools). I interpret this triangulation 
of  results to mean that, in the scope of  this study, these findings are quite strong. However, 
in the grand scheme, the applicability of  these results outside of  biological networks and 
pathways may be limited.  

Given the rise of  quantitative data output from next-generation sequencing instruments, one 
might expect that most entity and relation attributes in a graph are determined quantitatively 
rather than categorically [63]. However, from the findings of  this systematic review of  
biological graph figures, the quantification of  biological information seems to be a mere 
stepping-stone through which the author determines elements or relationships to be 
nominally interesting (or not). Even though this may seem counterintuitive, imagine a 
scenario where researchers are attempting to visualize a mass amount of  data once applying 
one or more statistical tests or bioinformatics methods—a number of  these approaches label 
data points as “significant” or “insignificant”; “enriched” or “not enriched”. This is not to 
imply that statistical tests and bioinformatics methods are coarse tools, but to emphasize that 
current condition may be such that those methods are used as noise filters, so that we may 
focus on a manageable and relevant fraction of  data—which are eventually visualized, post-
analysis, to reflect that information. Although, conceivably, a categorical assignment is less 
burdensome to interpret than extracting quantitative values as an end-user, the sheer quantity 
of  categorical possibilities is perceptually overwhelming.  
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Determining which combinations of  visual encodings is most “effective” for biological 
node-link diagrams is a rational proposal for future work. However, further details about 
how effectiveness may be evaluated, and in what context, remains insufficiently defined. 
These parameters that are currently missing (i.e. tasks, encoding types, etc.) are further 
specified in the next chapter. For the sake of  this discussion, let us define effectiveness as 
referring to comprehension of  the information encoded in a network visualization (although 
it may also be defined to encompass saliency of  visual attributes, attention span, aesthetics, 
etc.). Explained in a slightly different manner, let us define effectiveness as the ability for 
readers to decode the information encoded in a network visualization. Visualization literature 
has shown that determining which visual channels are more or less salient depends heavily 
on parameterization of  that feature and context of  other features (and this idea was strong 
driving force in determining the experimental design for the study covered in Chapter 7). 
Still, there are a few accepted generalizations that may be used to guide the development of  
future tools. For instance, explicit counting is necessary once the number of  objects in a 
group exceeds four, or that there are about 10 colors that can be used (in a nominally 
encoded manner) before perceptual acuity is hindered. In addition, there is literature that 
shows that categorical attributes are best visually encoded (in terms of  user perception 
accuracy) using spatial dimensions, color, motion, and then shape [64]. As shown in Figure 6, 
color is used in networks and pathways as node and edge encodings. Figure 16 shows a 
snapshot of  the widely used tool GeneMANIA [45]. 

The following claims are made in reference to Table 2. Shape is used in networks and 
pathways as a node encoding, but much less frequently as an edge encoding (although a few 
instances were counted for pathways). Spatial position was seldom visually encoded. When 
spatial position was encoded (as node or edge positions), the encoding was ordinal, rather 
than categorical. Even still, order is difficult to convey with nodes and links since it is 
difficult to discern events that happen simultaneously from those that happen independently 
(but by the same path). Although there are instances where node-link depictions are 
manually drawn, there are many instances where node-link depictions are computationally 
generated. In these situations, spatial position is determined by choice of  graph layout 
algorithm (unless there are any spatial constraints applying post-layout), so the spatial 
dimension is depleted before an author can deliberately encode the spatial dimension. 
Although it is possible to convey motion statically, this visual dimension was not investigated 
in this study.  

This challenge of  visually encoding large amounts of  information may sound familiar to the 
seasoned cartographer. The field of  cartography is rich with research about perception, 
accuracy, and saliency of  visual encodings in the context of  maps. This notion of  comparing 
network and pathway visualization to cartographic maps is not as outlandish as it may 
initially seem—some biological resources are quite direct about being founded on this idea, 
such as BioCarta [65]. In Chapter 5, I cover how I apply and translate certain ideas and 
approaches from cartography to network visualization.  

3.7. Conclusion 
This chapter detailed a systematic review of  figures, and three different analyses that were 
conducted on the data. Two different types of  figures were discussed, “networks” and 
“pathways”. The next chapter will expand on the results presented here by adding task 
information to the dataset, and additional analyses focused on tasks, rather than solely on 
visual encodings.  
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4. Systematic Review of  Biological Network Figures  
Part II: Graph Tasks 

4.1. Introduction 
This chapter extends the results of  the previous chapter by connecting those results with 
tasks. Tasks are one of  the three necessary components (tasks, encodings, and data) of  the 
Information Triad. The Information Triad will be more fully described in Chapter 6. 
However, suffice it to say that without the context of  a task, it is not possible to objectively 
evaluate the performance of  one biological network visualization against another. 

4.2. Background 
In the past, rather than evaluating network visualizations in context of  tasks, researchers 
would assess a number of  visually aesthetic traits. A number of  (planar) graph drawing 
algorithms have been designed to use these visual aesthetics as layout rules. Sometimes these 
rules are enforced as hard constraints (i.e. constraints that cannot be violated), and other 
times they are implemented as optimizations (i.e. maximizing or minimizing a designated 
score that represents how well a graph has been drawn) [30], [66]. Here below is a small 
sample of  these graph drawing rules:  

• Minimizing edge crossings,  
• Minimizing node overlaps,  
• Minimizing edge bends,  
• Minimizing the sum of  the lengths of  the edges, 
• Maximizing angles between edges connecting to a node, 
• Maximizing symmetry 

As mentioned above, these are general rules that apply to planar graphs. Other types of  
planar graphs, such as orthogonal graphs, tree graphs, polyline graphs, etc. have their own 
set of  practical rules. There are a few strategies for applying these graph drawing rules. One 
strategy, as used by Ioannis et al, is to specify layout constraints depending on the topological 
and graph model attributes [66]. Another strategy is to approach the problem from a 
readability perspective, as used by Dunne et al, to specify layout depending on empirical 
findings from user studies [30]. Both of  these approaches are founded on the idea that graph 
layout is the most impactful variable in determining the readability of  a graph. Although the 
aesthetic traits defined by Ioannis et al are generally accepted as “best practice”, there are a 
number of  situations where it may be beneficial to revisit the importance of  these “rules of  
thumb” in context of  a desired task. For instance, BioFabric is a biological network 
visualization tool specifically designed to accommodate users interested in the task of  path 
following. Path following entails starting at a source node and following along an edge until 
it reaches a target node [27]. Thus, some of  the rules of  aesthetics (e.g. minimize edge 
crossings, or sum of  the lengths of  edges) are deliberately disobeyed in order to better serve 
the desired task (i.e. path following). Another example is the Hive Plot, which essentially 
creates a Heawood graph, a type of  mathematical graph known to minimize edge crossings 
when drawn (please see Figure 20 below) [11]. 
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Figure 20 - A side-by-side comparison of  a Heawood graph with a crossing number of  3 
(left), and the similarly inspired Hive Plot (right). 

!  

Task-based approaches to evaluating network visualizations, perhaps due to their inherent 
specificity, provide just enough clarity determine how well a visualization meets its intended 
purpose. Although researchers in visualization may have begun by evaluating figures and 
graphs using aesthetic measures, recently, it has become more common to use task-based 
metrics. Shneiderman et al published a “task by data” taxonomy that has been well-used 
since publication [67]. Morset et al published taxonomic guide for evaluating visualizations, 
which Lee et al added onto and further specified to publish a graph-specific task taxonomy 
[46], [68]. By associating tasks with visual encodings (determined in Chapter 3), visualization 
practices may be empirically measurable, explicitly stated, and better comprehended. Thus, 
there is a strong motive for understanding which tasks are possible to complete on each of  
the network visualizations evaluated in the previous chapter. 

4.3. Method 
In the protocol that follows, I use the 96 figures collected from the primary literature 
described in Chapter 3. This database of  examined network figures from bioinformatics 
literature is available at the following URL: https://github.com/ngopal/systematic-review-
network-figures 

Obtaining Task Completion Data: Using the dataset collected in Chapter 3, every network and 
pathway was re-examined and assessed for task completability on 10 of  the 13 graph tasks 
detailed in Lee et al [46]. Task completability refers to whether or not a task was classified as 
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“possible” or “not possible” after following the criteria described in Table 5. The protocols 
that were used to assess completability are specific examples of  the general description of  
the tasks presented in Lee et al [46]. The protocols are available in Section 10.5.  

Description of  Task Completability: The presumption underlying task completability is that, if  
given adequate time and resources, a task may be performed to completion. Inversely, if  a 
task is marked as not completable, then the task cannot be conducted to completion, even 
with adequate time and resources. This measure of  completability is used, rather than 
accuracy, since fully completing a given task may require a substantial amount of  time and 
effort for certain graphs. Further details about the criteria that must be met are available in 
Section 10.5. 

The omitted tasks (“revisit” and “overview”) were difficult or nonsensical to assess. Even 
though this leaves 11 tasks to be assessed, there are only 10 tasks listed in Table 5 because 
the “adjacency” task is considered a repetition of  “accessibility” task; thus they are 
combined in the table and assessed only once. A table of  assessed tasks and associated 
clarification questions is available in Table 5. If  it was possible to complete the task, the task 
was marked with a “1”, otherwise it was marked as “0”. The criteria and questions that were 
employed to determine whether a task was completeable (adapted from Lee et al [46]) are 
provided in Table 5. Section 10.5 contains specific protocols describing the exact steps and 
operations used to determine whether the criteria listed in Table 5 were met.  
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Table 5 - This table contains an abbreviated list of  tasks, descriptions of  each task, and the 
criteria used to assess whether or not it was possible to complete that task. 

In order to systematically judge whether or not a given figure should receive a “1” or a “0” 
for each task, I applied the questions shown in the “Criteria” column of  Table 5 to each of  
the 61 “network” or “pathway” figures in my collection.  

Task Description Criteria (in question form)

Find Common Connection The ability to determine if  a set of  
nodes is directly connects two 
given nodes.

Can I visually find a node 
connected to X?

Find Articulation Points The ability to identify nodes that, 
when removed, results in an 
unconnected graph

Can I visually find a node that 
when removed will disconnect the 
graph?

Find Bridges The ability to identify edges that, 
when removed, results in an 
unconnected graph

Can I visually find an edge that 
when removed will disconnect the 
graph?

Find Shortest Path The ability to find the shortest 
path between two nodes

Can I visually find the shortest 
path between two randomly 
selected nodes?

Find Clusters The ability to distinguish groups 
of  nodes within a graph

Can I visually find at least two 
(sufficiently distant) groups of  
nodes?

Find Connected Components The ability to find connected 
components (two or more nodes 
connected by edges, with paths 
between the nodes)

Can I visually find disconnected 
groups of  nodes (two or more 
nodes connected by edges)? 

Isolated singleton nodes are 
considered to be their own 
connected components.

Find Node Attributes The ability to identify nodes 
defined by specific visual attributes

Can I visually find nodes based on 
any of  the encoded attributes (e.g. 
color, shape, size, etc.)?

Find Edge Attributes The ability to identify edges 
defined by specific visual attributes

Can I visually find edges based on 
any of  the encoded attributes (e.g. 
color, shape, size, etc.)?

Follow a Path The ability to follow a given path 
through a graph

Can I follow a path described in 
the caption (if  there is one)? 

Can I visually follow a path 
between two randomly selected 
nodes?

Finding Adjacency and 
Accessibility

The ability to recognize that 
another node is connected to, or 
accessible from, a given node

Can I visually determine whether 
two randomly selected nodes are 
connected?
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In addition to tasks detailed in Table 5, this study also captured data on two characteristic 
attributes that were not captured in the previous study: number of  nodes and number of  
edges. This information is important to record, as Ghoniem et al (among others), has shown 
that the ability to complete tasks is a function of  the size and density of  a network [69]. 

4.4. Analysis 
This section provides three sets of  analysis results: (a) descriptive statistics about task 
completion, (b) the findings of  an exploratory analysis investigating the relationship between 
task completion and the number of  nodes and edges contained in the network, and (c) a 
statistical test of  independence investigating the relationship between the previously defined 
types of  biological network (network and pathway) and tasks. 

4.4.1. Descriptive Statistics 
Table 6 provides an overview of  the descriptive statistics resulting from the collected task 
data. Since the data is binary, the “Mean” column provides a measure of  frequency, 
demonstrating how often it was possible to complete a given task.  

Table 6 - A table of  descriptive statistics for task completion (across both networks and 
pathways). The tasks are presented in order according to (ascending) mean value of  the ratio 
of  “possible” (1) to “not possible” (0) task completion statuses across the 96 figures. 

These descriptive statistics only convey a portion of  the information obtained from this 
task-focused analysis. The next section explains how these values are affected by the number 
of  nodes and number of  edges in a network. 

Task Mean

Finding Clusters 0.3529

Finding Connected 
Components 0.3529

Finding Edge Attributes 0.4412

Finding Common 
Connection 0.5588

Finding Shortest Path 0.6176

Finding Bridges 0.6471

Following a Path 0.6471

Adjacency and 
Accessibility 0.6765

Finding Articulation 
Points 0.7941

Finding Node Attributes 0.9706
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4.4.2. Tasks Interact with Visual Encodings 
Figure 21 illustrates how the number of  nodes and number of  edges interacts with the 
ability (or inability) to complete each of  the 10 tasks listed in Table 5. Each data point on the 
plot represents a network (pathways are not included in these plots). The light blue color 
denotes that a task was completable for a given network, whereas the dark blue color 
denotes that the task was not completable for a given network. The tasks of  finding 
accessibility, finding common connections, finding shortest paths, finding bridges, finding 
articulation points, and following a given path seem to be difficult tasks to complete in large 
networks. For clarity, I will use the term “small-scale tasks” to refer to the tasks that are most 
often completable when conducted on a network with 100 nodes or edges, or less. 
Furthermore, I will use the term “large-scale tasks” to refer to the tasks that are most often 
completable when conducted on a network with more than 100 nodes or edges. Finding 
edge attributes and finding connected components seem to be completable in some interval 
between “small” and “large” networks. Finding node attributes is completable in even large 
networks. Notably, finding clusters is only completable in networks over a certain size, and is 
not completable in small networks. 

Figure 21 - These plots depict the relationship between number of  nodes, number of  edges, 
and the ability to complete each of  the 10 tasks listed in Table 5, for networks. In context of  
each task (i.e. panel), the dark blue dots signify “not completable,” while light blue dots 
signify “completable.” 
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4.4.3. Task distribution between networks and pathways are not significantly 
different 

Chapter 3 differentiates between networks and pathways as different types of  biological 
networks representations (based on frequency of  use of  visual encodings). Given the 
distinction, a question that naturally arises in context of  this study is whether networks and 
pathways have significantly different distributions for the ability to complete each task.  

Table 7 - This table provides frequency counts for task completions, itemized by graph type 
(network or pathway), and task. 

A two-tailed t-test (paired and assuming homoscedasticity) was used to determine whether 
the distribution of  task completion is different between networks and pathways. The ability 
to complete each task was an independent observation. Using the data contained in Table 7, 
a t-test yielded the following results: 

H0: The difference between the means of  task completion frequency between networks and 
pathways = 0 
Ha: The difference between the means of  task completion frequency between networks and 
pathways  0 

Task to Complete
Frequency for 
Network

Frequency for 
Pathway

Adjacency and Accessibility 23 25

Finding Common Connection 19 25

Finding Shortest Path 21 26

Finding Clusters 12 0

Finding Connected Components 12 1

Finding Bridges 22 25

Finding Articulation Points 27 25

Finding Node Attributes 33 25

Finding Edge Attributes 15 24

Following a Path 22 27

Revisiting a Node or Edge 34 27

Determining the Underlying Graph Model 0 0

Finding Patterns 1 1

Finding Outliers 4 0

Scanning the Network 34 27

Performing Set Operations 0 0
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Table 8 - Descriptive statistics results for the data in Table 7. 

  
Table 9 - Paired (two-tailed) two-sample t-test results from the data in Table 7. 

    
Due to a p-value of  0.42 (well above the standard alpha level of  0.05), the null hypothesis is 
not rejected. Thus, the distributions of  task completion between network and pathway 
figures are not significantly different. There is no evidence to support the claim that the 
ability to complete the tasks provided in Table 5 depends on whether the figure was a 
network figure or pathway figure. Furthermore, this implies that findings from a task-based 
experiment using one type of  figure may also be applicable to the other. The Pearson 
correlation value between the two groups is 0.86, which indicates a very strong relationship 
between the two groups. Had there been enough data, it may have been beneficial to 
conduct an analysis of  variance analysis (ANOVA) between tasks and visual encodings (to 
identify interactions between variables).  

4.5. Discussion 
A general observation from Table 6 is that the tasks that had the lowest ratio of  completable 
to non-completable values were those that required large networks (e.g. finding clusters, 
finding connected components, etc.). Observing this trend is interesting because it provides 
guidance on which tasks are generally difficult to complete, and which ones are not. For 
instance, when a network figure is depicting clusters in a large network, due to the algorithm, 
and possibly thanks to enclosures, highlights, and callouts, finding clusters may not be a 
difficult task. However, when a network is smaller in size, or a layout algorithm does not 
yield a configuration that does not facilitate perceiving groupings, finding clusters may 
become a much more difficult task to accomplish.  

The second least frequently completed tasks were those that were operations on edges 
(finding edge attributes, following a path, etc.). As a network scales in size (and 
proportionally in density), it can quickly transform from readable to unreadable. Moreover, 
edges are plenty, and difficult to visual encode, so a reader may not easily be able to perceive 
what is important versus unimportant at a glance. Edge-related tasks may be supported 
through appropriate communication and emphasis techniques, but one can expect the ability 
to comprehend the contained information to degrade as networks scale. This frustrating 

VAR Sample size Mean
Standard 
Deviation Variance

Network 16 17.4375 11.81507 139.59583

Pathway 16 16.125 12.66425 160.38333

Degrees of  Freedom 15

Hypothesized Mean Difference 0

Pooled Variance 149.98958

Test Statistics 0.83049

Pearson R 0.86887
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reality is commonly cited as a driving factor for the development of  novel network 
visualization techniques.  

The tasks that were completed most frequently were those that were operations on node 
attributes. This suggests that nodes are the most frequently parameterized visual attributes. It 
also suggests that tasks related to node attributes may generally be completed more easily 
than tasks related to edge attributes. However, it is not clear exactly why this may be the case. 
Perhaps, visual attributes related to nodes are simply the most obvious to parameterize, or 
perhaps nodes are easier to parameterize than edges, or perhaps nodes are easier to encode 
and decode than edges. 

Another observation from Figure 21 is the log-linear relationship between the number of  
nodes and number of  edges in a network. The log-log relationship suggests that the number 
of  nodes and edges in biological networks may scale according to a power-law. This is a 
practically useful observation, and one that has been corroborated by prior research [70], 
[71]. There seems to be a relationship between the log10-corrected number of  nodes and 
edges in a network, and the ability to complete each of  the tasks in the graph task taxonomy. 
In particular, certain tasks such as clustering seem more likely to be completed on networks 
with a higher number of  nodes and edges, and other tasks such as path following seem more 
likely to be completed on networks with a lower number of  nodes and edges. Yet, other 
tasks, such as finding edge attributes, seem to be completed most often in networks of  some 
size between “small” and “large”. 

4.6. Conclusion 
This chapter is the task-centered extension of  the study performed in Chapter 3. From the 
collection and analysis of  task-based data, we have seen that there is a clear relationship 
between the size (number of  nodes and edges) of  biological networks and the ability to 
complete tasks on that network. Although ANOVA between visual encodings and tasks is 
not possible with this dataset, it is possible to obtain an understanding of  the relationship 
between visual encodings and tasks through the Random Forest technique—this will be 
further detailed in the next chapter.  
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5. Determining Relations Between Visual Encodings and 
Tasks Via Random Forest 

5.1. Introduction 
This chapter further extends the results of  the previous chapter, which covered collection 
and analysis of  task-related data from a systematic review of  figures from peer-reviewed 
bioinformatics publications. The contents of  this chapter could have been included as part 
of  the analysis section for the previous chapter. However, the length and detail of  the 
contents of  this chapter would have rendered the previous chapter disproportionately large
—thus I present the information here, in its own chapter. 

In this chapter, I use the random forest algorithm to analyze the data that were collected 
during the data collection step detailed in the previous. The analysis section in the previous 
chapter compared frequency distributions of  visual encodings between networks and 
pathways. The dataset contains the following information on figures: visual encodings that 
were used, tasks that could be completed, the number of  nodes and edges in the figure, and 
associated meta-data (e.g. Pubmed ID, etc.)—the visual encoding characteristics and task 
completion characteristics were recorded as binary data (i.e. a particular encoding was used 
or not used, and a particular task was completable or not completable). The random forest 
algorithm was used to determine the relationship between task completion ability and visual 
encodings. The dataset contains binary and categorical variables, but there are very few 
analytical techniques that can appropriately model such a dataset. The typical choice when 
working with a binary dependent variable is logistic regression. However, because of  the 
categorical independent variables, and also because of  the relatively small number of  
samples versus predictors, logistic regression is not an ideal choice. For the research question 
and dataset at hand, Random Forest is a reasonable, convenient, and appropriate choice 
(with several supporting reasons listed in the background section).  

5.2. Background 
Background on visual encodings and tasks have been covered amply in the previous 
chapters. Thus, in this particular background section, I will provide background for the 
Random Forest algorithm. In short, the Random Forest algorithm creates a large number of  
decision trees (typically on the scale of  thousands), and ultimately provides an “average” of  
the results from those decision trees. Random Forest is one of  the more recently developed 
machine learning algorithms, published in 2001 [72]. One of  the appealing characteristics of  
this algorithm is that it is quite versatile; it can be used for regression, classification, 
clustering, and even survival analysis.  

One of  the advantages of  Random forest over linear regression (and its applicable variants) 
is that Random forest does not assume a linear relationship between predictor and output 
variables. In fact, Random forest does not assume that predictor variables are independent 
of  each other either. However, allowing for non-linear modeling may become a detriment if  
one wants to reason about how theoretical values (or new values) may affect results. Another 
advantage of  random forest is that it does not require cross-validation as many other 
machine learning techniques would. By nature of  the algorithm, 60% of  the data is used to 
create a decision tree and the remaining 30% of  the data is used to assess the accuracy of  
the tree. When using Random forest, referring to “out of  bag error” (OOB) is considered 
equivalent to “area under the curve” (AUC) from a receiver-operator curve (ROC) plot. 

!  75



However, there are a number of  necessary considerations about the data input into Random 
forest. Despite the benefits listed above, there are a number of  caveats to account for when 
using random forest. The first caveat is that random forest is very sensitive to class balance 
in a dataset. That is, if  there is a rare class (i.e. the occurrences of  that class are 15% or less 
of  the dataset) one is expecting to model using random forest, then one of  a number of  
techniques must be used to balance the classes when bootstrap sampling. One approach is to 
use downsampling, which utilizes all of  the rare instances, and randomly samples an 
appropriate number of  the majority class instances to create a balanced dataset. Another 
approach is supersampling, also known SMOTE, which disproportionately samples (with 
replacement) the rare class data to achieve a balanced dataset [73]. Another limitation is that 
random forest is incapable of  tolerating missing data. The common methods of  handling 
missing data are to throw them out completely, or to use an imputation method that 
estimates a reasonable value for the missing data. Random forest, like regression, is also 
sensitive to multicollinearity (when two or more variables are highly correlated and linearly 
predictive of  one another).  

Among others, we will be calculating two useful values from Random forest output. The first 
is an “importance” measure (by way of  Gini score), which quantifies how sensitive the value 
of  a variable is to determining classification. However, Random forest tends to systematically 
assign excessive importance to categorical variables with a large number of  levels. Thus, like 
many other machine learning algorithms, random forest requires careful consideration of  
included variables and parameter tuning to obtain peak performance. The other item we will 
be calculating is referred to as a “prototype”, which lists the predictor variable values that 
occur most frequently for a given class. 

5.3. Method 
This method is an extension of  the results of  the previous chapter (visual encodings part II).  

The data that is input into the Random forest algorithm was generated using the following 
protocol. The tasks that were assessed in this study were obtained from a scientific 
publication containing a taxonomy of  graph tasks [46].  

In addition to tasks previously detailed in Table 5 of  Chapter 4, this study also captured data 
on two characteristic attributes that were not captured in the previous study: number of  
nodes and number of  edges. This information is important to record, as Ghoniem et al 
(among others), has shown that the ability to complete tasks is a function of  the size and 
density of  a network [69]. 

Random Forest calculates “out-of-bag error” (OOB), which is considered to be virtually 
equivalent to area under the curve (AUC) of  a receiver operator curve (ROC). Thus OOB 
may be used to evaluate classification performance by the model (using following estimation 
of  1 - OOB).  

5.4. Analysis 
The analysis in this chapter consists of  two major sections: descriptive statistics (with 
supporting figures), and results from random forest regression. The section with descriptive 
statistics provides are overview of  how tasks may be associated various visual encodings.  
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5.4.1. Random Forest Results 
Random Forest provides output that is very information rich. Thus, I will explain the 
structure and relevancy of  these reported results. The first sub-section provides an overview 
of  model performance and parameterization, which provides information on how reliable or 
trustworthy the generated Random Forest models are. Next, in the second sub-section, I 
provide an explanation of  the metric “Variable Importance”, which indicates which visual 
encodings are most “important” in determining the ability or inability to complete a given 
task. Finally, in the third and last sub-section, I provide an overview of  the “prototypes” 
generated from applicable Random Forest models—which reflect the most likely predictor 
variable parameterization that would produce a desired outcome variable. 

An independent random forest model was constructed for each response variable (i.e. each 
task). This means that a total of  10 random forest models were created, each using the 16 
predictor variables (i.e. visual encodings). Although it is customary to provide descriptive 
statistics prior to presenting the results of  a more complex analysis that section will be 
omitted here as descriptive statistics about visual encodings and tasks are available in the 
analysis sections of  chapters 3 and 4, respectively. 

5.4.2. Evaluating model performance and parameterization 
The obtained Random Forest models had satisfactory performance, as shown in Table 10. 
The random forest models were tuned to use an “mtry” value (i.e. the number of  variables 
in each decision tree) of  16. This value varied for every model, but 16 was the most 
common “mtry” value. The parameter “m” (in reference to “mtry”) denotes the number of  
predictor variables to include in each decision tree—in this case, it means most decision trees 
used all 16 predictor variables. The minimum error rate across all models was 14.71%, and 
the maximum error rate across all models was 29.41%. Given the number of  samples 
provided from which to generate and test decision trees, the classifiers performed 
surprisingly well. The task of  “finding node attributes” yielded a 0% error rate due to a 
NAN class error. Simply put, this means that there were so few “0” values in the data used 
to create the decision trees for that particular random forest classifier that error rate could 
not be accurately evaluated.  
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Table 10 - This table provides an overview of  the performance of  all of  the random forest 
prediction models that were generated during this analysis. 

5.4.3. Importance of  Variables 
In this model, the visual encodings were the predictor variables, and the ability or inability to 
complete a task was the response variable. As Table 11 below shows some example 
importance output from a selected random forest model. Importance is calculated through a 
perturbation process, where the value of  a decision node in a decision tree is set to be a 
higher or lower value, and then the outcome of  the classifier is assessed to see if  the 
classifier call is different from its unperturbed state. If  altering that particular variable 
changes the classifier call, then it receives a higher importance value. If  altering that 
particular variable does not change the classifier call, then that variable receives a lower 
importance value. It would follow that variables with higher importance scores affect the 
outcome of  the classifier more heavily than those variables with lower importance scores. 
Explained another way, variable importance scores may be viewed as an analog to variable 
sensitivity. 

Importance values of  the variables in the model were calculated using the Gini impurity 
index, and the resulting importance values are presented and explained in Figure 22. Gini 
impurity maximizes the average purity of  children nodes in a decision tree, and thus selects 
splits that that decrease the Gini index the most [74]. In context of  Random Forest, the Gini 
impurity index is a measure of  how often a randomly chosen response class from a decision 
tree would be incorrectly classified if  it were randomly classified according to the 
distribution of  classifications in the subset. Alternatively, other measures of  impurity may be 
used, such as entropy or classification error, although in most cases those metrics would 
yield very similar results. However, for this study, Gini impurity index is the choice that best 
meets the needs of  the collected data, and is most straightforward to interpret. 

RF Model for Task OOB Error Rate

Adjacency and Accessibility 17.65%

Finding Common Connections 26.47%

Finding Shortest Path 20.59%

Finding Clusters 29.41%

Finding Connected Components 29.41%

Finding Bridges 26.47%

Finding Articulation Points 23.53%

Finding Node Attributes 0% (NAN)

Finding Edge Attributes 14.71%

Following A Path 14.71%
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Table 11 - Output for variable importance from the random forest model predicting the 
ability to complete the task, “Finding Clusters”. Similar tables may be produced for the other 
9 random forest models. 

Since the each of  the 10 random forest models contains 14 variables, the data can most 
concisely be represented as a heat map, as in Figure 22. Figure 22 is rich with useful and 
interesting information, which I will now cover. The first observation is the clear impact of  
the log number of  nodes and log number of  edges across the majority of  models. The 
second observation is that the log number of  edges seems to have a more substantial impact 
on the ability to complete tasks (in general) than the log number of  nodes. The third 
observation is that “edge hue” is clearly an important variable for the task of  “finding edge 
attributes”. The fourth observation is that the task “finding node attributes” does not seem 
to be affected by any of  the included predictor variables.  

Furthermore, there seem to be certain tasks that may be affected by combinations of  visual 
encodings, such as “finding clusters”, “finding shortest path”, “finding common 
connections”, “finding connected components”, and “finding edge attributes”. In contrast, 
there also seem to be tasks that are only affected by the number of  nodes and edges in a 
networks, which are “following a path”, “adjacency and accessibility”, “finding bridges”, and 

Visual 
Encodings 0 1

Mean Decrease in 
Accuracy

Mean Decrease 
in Gini Index

Node Position -0.000952 0.00109 -0.000231 0.126

Edge Position 2.00E-04 0.00269 0.000629 0.140

Node Text 0.00489 0.0129 0.00779 0.464

Node Size -0.000702 -0.002 -0.00178 0.278

Node Weight 0.00301 0.00677 0.00427 0.346

Node Saturation -0.001 -0.00805 -0.00366 0.353

Node Hue -0.000721 -0.00983 -0.00283 0.227

Edge Hue 0.0126 0.0215 0.0139 0.779

Node Shape 0.00787 0.037 0.0166 0.840

Node Enclosure 0.00396 0.00975 0.00627 0.510

Edge Enclosure -0.00372 -0.00286 -0.00335 0.123

Edge Pattern -0.00221 -0.00923 -0.00428 0.183

Edge Endings 0.000133 0.00257 0.000716 0.098

Edge Weight 0.0036 0.0044 0.00355 0.328

Log Number of  
Nodes 0.0285 0.037 0.0301 2.55

Log Number of  
Edges 0.0389 0.0711 0.0478 2.82
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“finding articulation points.” This suggests that the latter group of  tasks may not be as 
affected by visual encodings as the former group.  

Figure 22 - A heat map of  variable importance values organized by task. The tasks are 
hierarchically clustered to show similarity of  variable importance values across random forest 
models.  

!  

5.4.4. Prototypes resulting from the random forest model 
From this Random Forest model, one may also obtain prototypical examples. For instance, 
if  one may pose the question, “what variable parameterization would yield the value of  X?” 
Obtaining the prototype from a Random Forest model would help answer that question. In 
terms of  the model, this is effectively obtaining the parameterization that would make the 
chosen response variable most likely. Since the response for ten tasks are predicted, the 
prototypes are presented below in Table 12. For instance, if  one were to render a network 
visualization where the objective task was “finding node attributes”, then one might consider 
using the visual encodings of  node hue, edge hue, and ensure that the number of  nodes is 
less than ~5,900, and that the number of  edges is less than ~4000. If  one were to render a 
network visualization where the objective task was “finding node attributes”, one might 
consider using node hue and edge hue. Although edge hue may not be directly encoded with 
information for this task in particular, the prototype of  the model conveys that the ability to 
successfully complete the task of  “finding node attributes” is associated with the use of  the 
visual attribute of  edge hue (color).  
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Estimating values for predictor variables cannot be accomplished in certain cases. For this 
dataset, only 3 of  the 10 Random Forest models were able to output a prototype. The rest 
of  the models did not have enough information in the data to be able to determine a 
prototype. This is not unexpected, as many of  the tasks and visual encodings have near 
identical values and importance (notice the overall similarity denoted by the “white” color in 
Figure 22).  

Table 12 - Prototypes generated from random forest models. The three tasks provided in 
this table are the only tasks for which prototypes could be estimated. 

5.5. Discussion 
Prior task-based research has shown that even networks with nodes exceeding 30 nodes may 
pose significant hurdles for the completion of  certain tasks [69]. The findings of  this chapter 
show a somewhat conflicting result, that many of  the selected tasks may be accomplished in 
networks with higher orders magnitude.  

However, the networks used in previous studies could have had different underlying graph 
models than the graph models generally thought to underlie biological networks. Biological 
networks follow a number of  graph models, most often a scale-free hierarchical graph [70], 
[75], [76]. In fact, this observation was echoed with my own findings in the previous chapter. 

Finding Common 
Connections

Finding Node 
Attributes

Finding Edge 
Attributes

Node Position 0 0 0

Edge Position 0 0 0

Node Text 1 0 1

Node Size 0 0 0

Node Weight 0 0 0

Node Saturation 0 0 0

Node Hue 1 1 1

Edge Hue 0 1 0

Node Shape 0 0 0

Node Enclosure 0 0 0

Edge Enclosure 0 0 0

Edge Pattern 0 0 0

Edge Endings 0 0 0

Edge Weight 0 0 0

Log Number of  Nodes 2.11 3.77 1.78

Log Number of  Edges 2.30 3.60 2.17
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However, this often depends on the information used to construct the graph, and ultimately, 
the information included in the graph. The line of  reasoning is that by understanding the 
distributions and behaviors of  various graph models, researchers can predict the 
distributions and behaviors of  graph models found in real-world datasets (and detect 
outliers). However, to date, there are no publications detailing the relationship between 
biological graphs and the ability complete graph tasks—the study described in this chapter is 
the first.  

It may be the case that certain tasks in the task taxonomy are more and more difficult to 
complete as networks scale in size and density. An instance of  this may be found through 
briefly examining a visual limitation of  hierarchically clustered heat maps, as illustrated in 
Figure 23. A hierarchically clustered heat map is an interesting visualization technique, as it 
provides information at multiple levels of  abstraction. The actual data values themselves are 
reflected in the matrix (typically through color saturation, sometimes even with numerical 
values), while the higher-level, more abstract relationships (such as similarity) are reflected in 
the hierarchically clustered dendrogram(s). Although having the ability to see both levels of  
information is quite useful, these heat maps provide diminishing returns (in context of  
readability) as the matrix increases in size. Since the cells become smaller, the colors are 
more difficult to distinguish, and eventually both the dendrogram(s) and matrix cannot fit on 
the same plane as they would both be too large. Furthermore, the color of  the cells becomes 
increasingly difficult to read and interpret, as depicted in Figure 23. In other words, the tasks 
that were possible to complete when a hierarchically clustered heat map was a smaller size 
are no longer completable as the heat map exceeds a certain size threshold. The study 
detailed in this chapter shows that, in this same manner, network visualizations may also 
have a size range for which certain tasks are more easily completed than others. 
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Figure 23 – An example illustrating that reading various shades of  color becomes more 
difficult in heat maps as the number of  cells in the heat map increases. 

!  

Although this chapter focuses very heavily on visual encodings and tasks, I believe it is 
essential to acknowledge that graph layouts play a significant role in the completability of  
each of  the 10 tasks that were assessed. In general however, it seemed that small networks 
and pathways may have been laid out by hand, and that large networks and pathways were 
laid out computationally. However, the layout technique employed on a given network or 
pathway figure was rarely reported or otherwise impossible to determine with even a 
minimal level of  confidence. Add to this uncertainty the ability to fine-tune layout 
parameters, and the ability to lay out these figures by hand, and consequently measuring and 
interpreting layout information becomes remarkably difficult. I mention these items to 
emphasize that the role of  graph layouts is not underestimated, and to also remind the 
reader that graph layout can be an informative variable to include in any prediction models 
similar to the ones presented in this chapter (if  possible).  

5.6. Conclusion 
This chapter completes the analysis of  the data originally collected for the systematic review 
of  figures (Chapter 3), and supplemented by the data collected for task analysis (Chapter 4). 
The combined dataset resulting from both studies was successfully analyzed in this chapter. 
The next chapter will detail the development of  a network visualization system built on the 
findings of  the research contained in Chapters 2-5. 
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6. Design and Architecture of  Dynamo 

Dynamo is a system that affords the ability to depict the set space of  possible visual 
encodings used to represent information in a network, while controlling for layout and 
topology. A system such as Dynamo is useful for investigating the effect of  various 
combinations of  encodings on user perception and interpretation. In order to implement a 
system that operates on task and encoding information, I must first define what I call the 
“Information Triad”. The following concepts are in alignment with the definitions presented 
in the previous chapters, but are, however, further abstracted to add robustness. 

6.1. The Information Triad 
While designing and developing network visualization utilities, it sometimes becomes 
apparent that there are many unforeseen assumptions that must be made in order to actually 
depict any network. The “information triad” (IT) is composed of  three elements: (1) 
dimension, (2) task, and (3) encoding, all of  which are interconnected. First, a definition for 
each of  these three individual elements: 

• Dimension – refers to a class of  data attached to a node or edge entity. For instance, 
nodes may have certain data attached to them, 

• Task – refers to an objective that the user would like to accomplish 
• Encoding – refers to visual attributes of  nodes and edges that may be used to 

represent information 

Specific instances of  dimensions, tasks and encodings must be defined in conjunction to 
ensure clarity when conveying information through network visualization. When one fails to 
define even one of  these three items, there is enough ambiguity to make it difficult to assess 
whether or not the visualization is working as intended. For instance, if  one imagines that 
edges in a biological network have a “correlation” value attached to them, and if  one decides 
to visually encode that data using an “edge width” attribute, it remains unclear whether 
attaching “correlation” to “edge width” is a reasonable choice. However, if  a task, such as 
“clustering”, were defined in conjunction with dimension and encoding, then one has the 
minimal required information to assess effectiveness of  network visualization design choices. 
Although I present this triad as the minimal information required to evaluate the design of  
network visualization, there are certainly other factors, such as size, density, topology, model, 
content (i.e. the underlying data in the network), and experimental design that will contribute 
to defining the overall success or failure. The focus of  Dynamo is enable exploration of  the 
information triad while controlling for these other factors, which, for practical reasons, are 
out of  scope for this tool.  

Another way to describe IT is that it is a tool to help frame research questions about data 
visualizations. Evaluation of  data visualizations is a notoriously tricky endeavor, and IT can 
help provide framework for reasoning about the design and interpretation of  an evaluation. 
Specifically, one may simply hold any two of  the three elements in IT constant, and compare 
the differences among variations of  the element that was not held constant. For instance, if  
one were interested in understanding how a certain visualization performs in context of  two 
different tasks, this could be tested by holding “dimension” and “encoding” constant, while 
varying the measurement used for “task.” Another example could be if  one were interested 
in understanding how a certain visualization performs in context of  two different encodings, 
this could be tested by holding “task” and “dimension” constant, while varying the 
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measurement used for “encoding.” Finally, if  one were interested in understanding how a 
certain visualization performs in context of  two different data dimension, this could be 
tested by holding “task” and “encoding” constant, while varying the measurement used for 
“dimension.” Although the research questions that would be answered through this process 
would all be different research questions, the IT framework supports all of  them. 

6.2. Assumptions of  the Information Triad 
In the simple, three-member conceptual framework presented here, visual encoding is a 
mapping between data attributes (data attached to nodes or edges) and visual attributes (size, 
color, shape, etc.) via a function. This was briefly covered in Chapter 3. However, there are 
certain underlying assumptions that are clarified in this section. 

• The mapping between data attributes and visual attributes are bijective. That is, the 
mapping between data attributes and visual attributes are one-to-one. 

• The mapping between data attributes and visual attributes is monotonic functions 
(i.e. the order of  the data attribute values is preserved by the visual attribute being 
used) 

• Identity functions are possible 

Although the Dynamo application described later in this chapter is built on the Information 
Triad, Dynamo also supports surjective mapping (i.e. many-to-one relationship between 
domain and range) and injective mapping (i.e. every element in the domain must be mapped 
to a unique range element). These terms and their significance are clarified in Figure 26 and 
Section 6.9.4.  

6.3. Formulating the problem: matching visual encodings to dimension-tasks 
In case the problem may not already be clear, I will formally state the problem in this 
section. One way to think about the core function of  Dynamo is that it solves a bipartite 
matching problem—matching visual encodings to dimension-tasks. There are a few formal 
definitions of  the various flavors of  bipartite matching problems: 

• Maximal Bipartite Matching – A matching where all available edges have been 
assigned to the nodes. 

• Maximum Bipartite Matching – A matching where the largest possible number of  
edges has been used. 

• Perfect Bipartite Matching – A matching where edges connect every node in the 
graph 

Graph flow algorithms (of  which bipartite matching is a specialized case) are well studied 
and can be applied to a very wide range of  problems. Although the model being used is a 
graph, the implementation of  a graph flow problem can take many forms. Given the 
requirements of  this tool, and my preference for clarity over efficiency in this matter, I have 
opted to use linear programming. One of  the major advantages of  linear programming is 
that constraints are easy to interpret and define (relative to deciphering constraints 
implemented in a specific computer language, such as Java or C). More details about linear 
programming are provided in the following sub-section.  

6.4. A brief  background on operations research 
The optimization method employed in Dynamo is from the field of  operations research 
(OR). Operations research was originally given its title during World War II, when military 
forces developed and employed techniques that optimized the use of  resources under 
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varying constraints. Some of  the fundamental methods and concepts that underpin the field 
of  biomedical informatics were originally translated from the field of  operations research. 
For instance, receiver operating characteristic (ROC) plots were developed during World War 
II to analyze radar signals—however, ROC plots are now conventional in machine learning 
and biomedical informatics as way to evaluation two-class classification model performance 
(e.g. logistic regression). Graph flow algorithms were used to determine maximum flow (also 
known as minimum cut) for a variety of  war-related purposes. One of  the most famous 
applications of  maximum flow minimum cut was finding the “bottleneck” regions of  the 
Soviet railroad network [77]. The network contained data on capacities, distances, and 
estimated value of  payloads carried by trains on the network, and the optimal attack points 
of  the railroad network were determined using a constraint-based method. 

The same constraint-based technique used in Dynamo has been used to solve optimization 
problems concerning transportation, racial balance in schools, various forms of  network 
analysis, and even game theory [78]. Constraint satisfaction techniques are well studied, and 
are still used in many application areas today. One notable example would be American 
Airlines, which uses a constraint-based approach to schedule flights, hotels, staff, and 
refueling. 

As Dynamo is built using linear programming (LP) as its underlying method of  
optimization, it is subject to the same advantages and limitations. These are covered below in 
the next sub-section. There are a handful of  LP algorithms, but the two I will briefly 
acknowledge here are the Simplex algorithm and Karmarkar’s algorithm [79], [80]. The 
Simplex method is solvable by hand (which I will not provide an example of), and 
theoretically may take a very long time to find a valid solution. Luckily, in practice, Simplex 
typically converges on a solution within 2-3 iterations for most LP formulations. 
Karmarkar’s algorithm is a computational improvement over Simplex as it runs in 
polynomial time, rather than exponential time. The improvement is possible due to omitting 
certain computational steps through making approximations of  the optimal solution, and in 
practice the approximation is sufficiently close to the optimal solution. Since the input to the 
linear program in Dynamo is not expected to be large, and since execution speed is not a top 
priority, this software uses Simplex. However, using an optimized linear solver could easily 
boost performance, if  desired or necessary. 

6.5. An Overview of  Dynamo 
Dynamo is an experimental tool designed to facilitate the exploration of  visual encoding 
properties of  network visualizations. The architecture of  the tool is illustrated in Figure 25 
below. To summarize, Dynamo presents a web visualization to a user, who may enter visual 
encoding prioritizations (e.g. rankings) into an input table (along with a few other constraint 
parameters), and provides the user with an optimal encoding assignment. This entire process 
is done through the web browser, but the application relies on a lightweight web server 
(written in Javascript) and a constraint-based assignment tool (written in R). 

The following sections will cover in detail, the input table, design assumptions, architecture, 
and example configurations.  

6.6. The Input Table 
Table 13 below provides an example of  what the input table to Dynamo may look like. The 
rows are visual encoding values, while the columns are a combination of  dimension and task. 
The cells of  the input table are intended to store statistical ranks.  
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Table 13 - An example of  the structure of  the input table used by Dynamo. The contents of  
this table have intentionally been left empty. 

Although this combination of  dimension and task may seem (intuitively) difficult to grasp at 
first, designing the input table in this manner allows us to represent the Information Triad in 
only two dimensions. In reality, it would also have been possible to combine encoding with 
task, or even encoding with dimension. However, dimension and task were combined 
because the resulting data are more intuitive than the other combinations, and more 
straightforward to collect baseline data on. When combining dimensions and tasks, it is 
natural to think that there are certain tasks one might want to complete using certain 
dimensions of  data. For instance, if  nodes in a network have a weight dimension, one may 
be interested in using that value to find clusters, or perhaps alternatively, find outliers. In this 
instance, node weight is quantitative and thus may be used with the tasks of  finding clusters 
or outliers. However, if  the dimension of  data in question was categorical, such as “node id” 
or “node name”, then there are clearly certain tasks that are inappropriate or nonsensical to 
perform (e.g. mean, median, and associated summary statistics). Although it is possible to 
combine encodings and tasks, or even dimensions and encodings, the result would imply 
they are more interrelated than we currently know them to be. Yet another way to 
conceptualize this is that for each task, there is one input table with dimensions as columns 
and visual encodings as rows (please see the schema in Figure 24).  

Dimension1*Task1 Dimension2*Task1 Dimension1*Task2 Dimension2*Task2

Encoding1

Encoding2

Encoding3
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Figure 24 - A schema that represents another way to conceptualize the Information Triad. 

!  

From the contents of  the Figure 24, one might initially think that task qualifies visual 
encodings in the same manner that it qualifies dimensions. However, all of  the visual 
encodings are static in the visualization, and are independent of  task.  

6.7. Design decisions and constraints of  the Information Triad 
Although the Information Triad is designed to shed light on assumptions would otherwise 
be implicit, there are a handful of  axioms that must be defined in order to permit this 
property. These axioms are listed below: 

1. Only one encoding may be assigned to one dimension*task. 
2. The same dimension of  data may be assigned to another encoding if  appropriate for 

the task objective. 
3. Dynamo searches for the optimal solution to a formulation, rather than simply a 

feasible solution. 

In addition to the assumptions set forth by the design of  Dynamo, there are a number of  
assumptions inherent in the method of  linear programming itself. These assumptions are 
covered here at a cursory level, and were originally explained in the book, “Operations 
Research” [78]: 

1. Proportionality – the assumption that quantities are directly proportional 
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2. Additivity – the assumption that there are no non-linear interactions among variables 
in the model. That is, there are no situations where variables may interact to produce 
a value that is not linearly predictable. 

3. Divisibility – the assumption that variable units can be subdivided into fractional 
levels (i.e. the solution to a LP is not guaranteed to be an integer).  

4. Deterministic – the assumption that all of  the parameters input into the model are 
known constants. Practically, this assumption is violated in a number of  application 
areas, especially when LP is being used for prediction. In order to mitigate the risk of  
violating this assumption, sensitivity analysis is often used to understand the range of  
possible predictions. 

Some of  the assumptions above are limitations of  the approach, whereas others are merely 
simplifying assumptions. In a number of  cases, limitations imposed by certain assumptions 
may be overcome through proper reformulation of  the problem (although this is out of  
scope and will not be covered in this dissertation). These assumptions just listed above are 
part of  the design of  Dynamo, and are implemented in the architecture. 

6.8. Architecture 
Dynamo is a web application written in Javascript and R. The code is available at http://
www.github.com/ngopal/dynamo. Although the application has been implemented in 
Javascript and R, it is possible to implement the same application using another language or 
platform. Figure 25 below presents an overview of  how the application architecture is 
designed: 
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Figure 25 - A schema of  the various sub-systems that compose Dynamo. 

!  

The program obtains input from an input table in the browser, and the contents of  the input 
table are sent to the Node.js server through a POST command. The communication that 
occurs between the Node.js server and the R program are essentially translation steps that 
format the input and output in appropriate forms. Once the input table is processed through 
the R code and results are returned, the encoding assignments are formatted into JSON and 
returned to the web browser for display processing in Javascript. In this case, the names of  
the visual encodings are mapped to style attributes defined in Cytoscape.js. Since the 
application calls R code on the backend, powerful graph analysis and bioinformatics libraries 
are readily available for use.  

Within the R code, the “Rsymphony” library is used to interface R with command-line linear 
solver tools [81]. This library may be substituted for another as long as the output is 
guaranteed to be the same (so as to not violate the assumptions of  the rest of  the code 
downstream of  that operation). 

The network visualizations that are served in this version of  Dynamo are implemented using 
a combination of  D3.js and Cytoscape.js [82], [83]. However, the visualization libraries have 
been modularized from the visual encoding assignments, so in addition to being easily 
adaptable to major software design changes, new visualizations libraries may also be used in 
the future. 
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6.9. Example Configurations 
In the Chapters 3 and 4 (systematic review of  figures), a number of  ranks were determined 
for visual encodings (on a per task basis). Those results are not reproduced here in this 
chapter, but can be referenced in Chapter 4, if  desired. The reason those rankings are 
mentioned is because Dynamo is designed to take an input table populated with such 
rankings. In this subsection, I will proceed to explain and illustrate the method behind 
Dynamo. 

6.9.1. Parameters 
The application accepts three parameters: (1) an arbitrary number of  encodings, (2) an 
arbitrary number of  dimension-tasks, and (3) desired assignment prioritizations in the form 
of  ranks. These ranks are the reverse of  traditional statistical rank—thus, in the input table, 
the higher the number the higher its rank. In practice, the number of  visual attributes any 
particular network visualization software supports limits the number of  encodings. For 
instance, if  a particular software package only allows node color and size to be specified, 
then that would clearly limit the number of  encodings to a two possibilities.  

6.9.2. Input Table Constraints 
The application allows for constraints to be customized, although at the moment this must 
be accomplished by editing the code base. The “Future Work” section later in this chapter 
describes how constraints may be stored in their own format, and eventually into to 
shareable files.  

Table 14 - A list of  the constraints applied to the rankings contained in the input table. 
Please reference Table 13 and Table 15 for an example structure. 

Table 15 - Example 3x3 Input Table 

Constraint Number / Name Description

1. Parity (“Balance Constraint”) This constraint ensures that assignments are 
“balanced” and that all of  the assignments as equally 
weighted as possible.

2. Task Sum (“Assignment Rows”) This constraint ensures that the sum of  the rows is 
less than or equal to 1. 

3. Weight Sum (“Weightage Rows”) This constraint weights the assignments and are a 
direct reflection of  the weights input into the 
Dynamo system.

Dim-Task 1 Dim-Task 2 Dim-Task 3

Visual Encoding 1 3 3 2

Visual Encoding 2 1 1 3

Visual Encoding 3 2 2 3
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Table 16 - Example Linear Programming Matrix 

6.9.3. An Example Computation 
Table 15 represents an example input table. An input table such as the one found in Table 15 
would be parameterized and submitted by a user through the web browser. Once the R 
program receives the input table (as depicted in Figure 25), it converts the information 
contained in Table 15 into what is seen in Table 16. The linear program actually runs on the 
information contained in Table 16. The columns in Table 16 represent visual encodings 
(VE) and the rows represent dimension-tasks and weights (DT and W). The 0 values are de-
emphasized in gray. The only underlying constraint operations are that the selected items in 
each row must sum to 1—since there are three possible 1’s in each of  the DT rows, this 
ensures that only one of  the 1’s are selected. As Table 16 shows, the weights (W) are 
assigned directly by the user, as the contents of  the input table are what populate the W 
rows. The objective function is to minimize the sum of  the weights (sum of  DT and W 
values).  

Table 15 shows 9 variables (each cell of  the table is a variable, that value of  which is either 0 
or 1 after the linear program has completed running). The first constraint listed in Table 14 
defined a balance constraint (the P columns in Table 16), which ensures that encoding 
assignments are distributed as evenly as possible. Without this constraint, the linear program 
may select an assignment configuration that is both valid and optimal, but heavily 
unbalanced (e.g. certain encodings or tasks may receive all of  the encoding assignments 
while others receive none). This balance constraint is enforced through the addition of  two 
more variables to the linear program, which are set to be the minimum and maximum ranks 
per dimension-task. The formulation is setup such that the difference between the maximum 
and minimum value is minimized.  

VE1 VE1 VE1 VE2 VE2 VE2 VE3 VE3 VE3 P1 P2 Constraint

DT1 1 0 0 1 0 0 1 0 0 0 0

DT2 0 1 0 0 1 0 0 1 0 0 0

DT3 0 0 1 0 0 1 0 0 1 0 0

W1 3 0 0 1 0 0 2 0 0 -1 0

W2 0 3 0 0 1 0 0 2 0 -1 0

W3 0 0 2 0 0 3 0 0 3 -1 0

W4 3 0 0 1 0 0 2 0 0 0 -1

W5 0 3 0 0 1 0 0 2 0 0 -1

W6 0 0 2 0 0 3 0 0 3 0 -1
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Table 17 - A solution to the LP devised in Table 16 

Table 18 - Example Input Table with Assignments highlighted 

The objective function resulting from solving the linear program is 7. This number is 
calculated by finding the sum product of  the input table values and assignment values from 
Table 17, followed by subtracting 3 (-1 * 3) and adding 2 (1 * 2). 

Equation 2 – Objective Function 

The resulting visual encoding assignments are shown in Table 17 and Table 18, with the 
assignments highlighted in bold text and presented in the original input table format in Table 
18. The example computation just shown is a scenario where there is exactly the same 
number of  visual encodings as there are dimension-tasks. Dynamo actually supports a few 
more scenarios, which are detailed in the next sub-section. 

6.9.4. Input Table Scenarios 
Dynamo has been designed to handle a variety of  input tables of  various dimension 
conformations. The conformation expected by the R code is one where there are more 
dimension-tasks (columns) than visual encodings (rows). However, the software is also 
designed to handle scenarios where there are less dimension-tasks (columns) than visual 
encodings (rows). The former scenario describes the typical scenario of  a visualization 
author having to determine an optimal encoding assignment decision among a number of  
visual encoding options. The latter scenario describes the non-prototypical scenario of  a 
visualization author having to determine an optimal assignment of  data to visual encodings 
when there are more dimension-tasks than visual encodings—this results in the 
phenomenon of  encoding overloading, which was described in Chapter 3. Encoding overloading is 
when a certain visual encoding is used more than once in the same visualization to represent 
distinct dimensions of  data.  

If  the user does not want to perform the same task on different dimensions of  data (e.g. 
“dimension 1 task 1”, “dimension 2 task 1”, “dimension 3 task 1”), then the corresponding 

Variable V1 V2 V3 V4 V5 V6 V7 V8 V9 P1 P2

Input Table 
Values

3 1 2 3 1 2 2 3 3 -1 1

Assignment 0 0 1 1 0 0 0 1 0 3 2

Dim-Task 1 Dim-Task 2 Dim-Task 3

Visual Encoding 1 3 3 2

Visual Encoding 2 1 1 3

Visual Encoding 3 2 2 3
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cells need simply be set to zero (or an appropriately low rank value, depending on the rank 
parameterization entered by the user). 

There are three scenarios where the computational processing of  input tables is affected. 
The first case is when there are an equal number of  dimension-tasks and visual encodings. 
The second case is when there are more dimension-tasks than visual encodings. The third 
case is when there are more visual encodings than dimension-tasks. I will elaborate on these 
three of  these scenarios below. The terms bijective, surjective, and injective are clarified in 
Figure 26 below. 

Figure 26 – A visual depiction of  dimension-tasks and encodings in context of  bijective, 
surjective, and injective relationships. Bijective relationships are also injective and surjective. 

!  

In the scenario where there are an equal number of  dimension-tasks and visual encodings, 
the underlying linear program is processing a square matrix. Ultimately, a square matrix 
would result in a bijective one-to-one mapping between dimension-tasks and visual 
encodings. The previous sub-section (example computation) illustrates the steps involved in 
processing a square matrix. 

In the scenario where there are more dimension-tasks than visual encodings, the underlying 
linear program is processing a matrix that is larger in width than it is by height. Due to the 
unequal number of  rows and columns in the matrix, the mapping would be injective or 
surjective depending on which (number of  rows or columns) is fewer. If  there are more 
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dimension-tasks than there are visual attributes available to map, then the mapping would be 
surjective (multiple dimension-tasks may be encoded to a single visual attribute). On the 
other hand, if  there are fewer dimension-tasks than there are visual attributes, then the 
mapping would be injective (every dimension-task would be uniquely mapped to an available 
visual attribute). The smaller of  the two dimensions becomes the limiting factor, so in 
practice, the input table is simply transposed for computation. The constraints are defined 
broadly enough that they do not need to be modified. Multiple research papers have shown 
that visualizations intended to satisfy the requirements of  multiple tasks risk becoming 
cluttered, unmanageable, and less interpretable visualizations [43], [62], [84], [85]. However, 
this sort of  parameterization is still valuable to support due to requirements imposed by 
certain mediums, such as print publications. 

In the scenario where there are more visual encodings than dimension-tasks, computation 
proceeds on the supplied matrix without any modification. Although Dynamo supports the 
two scenarios list above, this particular scenario is what Dynamo was intended for. Given the 
contents of  the input table, the linear program will select as many visual encodings as there 
are dimension-tasks. 

6.9.5. Visual Encodings in Dynamo 
The following section presents a table containing the visual encodings currently available in 
Dynamo. Since Dynamo is currently built using Cytoscape.js and D3.js, the collection of  
visual attributes available for use are subject to the bounds stemming from a combination of  
the abilities of  these software libraries and suitable standardized web technologies (e.g. 
Scalable Vector Graphics, Canvas, etc.). D3.js and Cytoscape.js provide convenient data 
binding, analysis, and visualization capabilities, enabling highly expressive and customizable 
web visualizations. In reference to the list presented below, visual encoding “types” are 
followed by text in parentheses, which is an abbreviation for the same term. These are 
essential descriptors, and their meaning is explained below: 

• Sequential (Seq) – Sequential refers to a sequential color scale (e.g. 10 color steps 
starting from white ranging up to red) 

• Diverging (Div) – Diverging refers to a diverging color scale (e.g. 10 color steps 
starting from blue, turning to white, followed by another transition from white to 
red). 

• Categorical (Cat) – Categorical refers to nominal data. This could be in the form of  a 
categorical color scale (e.g. a color scale where hue is used to represent various 
categories) or in reference to a number of  discrete shapes (e.g. circle, triangle, square, 
star, rhomboid, etc.) 

• Quantitative (Quant) – Quantitative refers to numerical data that may be mapped 
directly to a visual attribute. For instance, the numbers 15-30 may be mapped directly 
to node radius. Admittedly, the term “quantitative” has purposely been loosely 
defined to accommodate non-linear functions. 

• Binned (Bin) – Binned refers to the result of  transforming quantitative data into 
discrete categories. For instance, the numbers 15-30 may be transformed into 3 bins: 
15-20, 21-25, and 26-30. 

In general, visual attributes that may be encoded with quantitative input data may visually 
encode quantitative output, or binned output. On the other hand, visual attributes that may 
be encoded only with nominal input data may only visually encode categorical output. The 
validity of  visual encodings was covered in greater depth in Chapters 3-5. The following 
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visual encodings are currently available for use in Dynamo (supplemented with the encoding 
“type” explained above): 

1. Node Color (Seq) 
2. Node Color (Div) 
3. Node Color (Cat) 
4. Node Shape (Cat) 
5. Node Border (Quant) 
6. Node Border (Bin) 
7. Node Size (Quant) 
8. Node Size (Bin) 
9. Edge Width (Quant) 
10. Edge Width (Bin) 
11. Edge Color (Seq) 
12. Edge Color (Div) 
13. Edge Color (Cat) 
14. Edge Pattern (Cat) 

In the source code, compatibility is defined through a hash data structure. That is, visual 
encodings (e.g. “Node Border (quant)”) are connected to a specific function (e.g. a function 
that directly maps attached node attribute data to node border thickness). In addition to the 
function, a style attribute (e.g. “border-width”) is required, as the defined attribute is passed 
as an argument to the previously mentioned function. The hash structure also contains data 
on whether it specifies a node or edge encoding, the range of  valid output values, and an 
array that contains a list of  other visual encodings the visual encoding at hand is 
incompatible with. D3.js is used to define and implement the functions that map input data 
to output data, and Cytoscape.js is used to attach the output data to visual attributes in the 
network. The functions only accept numerical input, but the output type may be sequential, 
diverging, categorical, binned, or quantitative. 

As a small clarifying note, one may wonder about the topology of  the graph itself. Until this 
point there has been no mention of  the structure of  the graph. How does one detail the 
connectivity between nodes, or the attributes attached to nodes and edges? Currently, 
Dynamo requires that nodes and edges be specified using the format in the Cytoscape.js 
documentation. The format essentially describes an edge-list, but is implemented as a 
Javascript object, so it also has a few additional properties that need to be included in order 
for Cytscape.js to accept it as valid input. 

6.10. Benchmarks 
Although the name Dynamo refers to the entire application from web page to R code, the 
assignment optimization step (in the R code) is the component that is most likely to produce 
a substantial bottleneck if  the input table is too large. In order to assess the practicality of  
Dynamo, this assignment code was tested with random input tables of  varying sizes and 
dimensions.  

These input tables were generated by a process where every column in a NxN table was 
populated with random integer values ranging from 1 to N. Duplicate rankings were 
permitted, so any number between 1 and N may appear more than once in a column—this 
could represent visual encodings that are “tied” in prioritization or rank. The input tables 
were also designed to be square. Overall, the results of  this benchmark evaluation more than 
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accounts for computational feasibility, as there theoretically should not be a scenario where 
one would define 40 visual encodings and 40 dimension-tasks. Nevertheless, the benchmark 
for this input table (and several other more sensible input tables) is provided in Table 19. To 
generate the data in Table 19 and Figure 27, six input tables of  the same NxN size were 
processed one after the other on my 13-inch 2012 Macbook Pro (2.5 GHz Intel Core i5, 
8GB 1600 MHz DDR3 RAM, SSD, OSX 10.11.3). 

As Figure 27 illustrates, the time to compute scales up quite quickly past a 30x30 input table. 
Prior to that size, worst-case computational processing takes less than 10 seconds. The input 
tables given to Dynamo in the study detailed in Chapter 7 used input tables that were 
roughly 16 (visual encodings) x 4 (dimension-tasks), which are estimated to take less than 3 
seconds each to complete according to Figure 27. Figure 28 and Figure 29 provide 
screenshots of  the interface of  Dynamo, and a close-up of  a network visually encoded 
through Dynamo (respectively). The network used in Figure 28 was obtained by performing 
a random walk starting from a randomly selected node from the larger GeneMANIA 
protein-protein interaction network [45]. 

Table 19 - Benchmarks for Dynamo as determined on a 13-inch 2012 Macbook Pro (2.5 
GHz Intel Core i5, 8GB 1600 MHz DDR3 RAM, SSD, OSX 10.11.3). The columns define 
the size of  the input tables, the rows represent replicates, and the cell values show elapsed 
time in seconds. 

5x5 10x10 15x15 20x20 25x25 30x30 35x35 40x40

1 0.331 0.743 1.975 4.034 4.739 7.312 6.948 19.645

2 0.326 0.819 1.984 4.674 4.659 7.591 6.753 18.472

3 0.232 0.703 1.934 4.552 9.095 8.933 8.514 21.612

4 0.369 0.843 2.24 5.422 5.55 5.083 9.548 12.54

5 0.207 0.972 1.947 5.3 5.007 7.581 11.257 12.853

6 0.325 0.947 1.942 6.035 6.819 6.786 28.629 33.958

Min 0.207 0.703 1.934 4.034 4.659 5.083 6.753 12.54

Mean 0.298 0.837 2.003 5.002 5.978 7.214 11.941 19.846

Max 0.369 0.972 2.24 6.035 9.095 8.933 28.629 33.958
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Figure 27 – Performance of  Dynamo for square matrices containing random ranks (as 
matrices scale in size). 

!  
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Figure 28 - A screenshot of  the input table, resulting visual encoding assignments, and 
depiction of  the visual encodings on a biological sub-graph. 

!  
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Figure 29 - A closer view of  the biological sub-graph from Figure 28. 

!  

6.11. Discussion 
One of  the useful benefits of  Dynamo is that is affords the ability to rapidly iterate over a 
large number of  visual encoding configurations in a systematic and reproducible manner. 
Another benefit of  using Dynamo is that it supports an explanation of  the design decisions 
that contributed to creating a network visualization. Although Dynamo currently does not 
include any presets, generating a number of  preset rankings based on tasks would be a useful 
extension of  the tool. As you will see, the study conducted in Chapter 7 is a step towards 
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this vision. Lee et al provides a solid foundation for research on tasks performed on graphs, 
although it would also be beneficial to conduct a thorough, more detailed assessment of  
tasks related to biological network visualizations [46]. “Tasks” has been defined broadly 
enough that virtually anything could be defined as a “task” and it would still be valid in 
context of  the Information Triad. However, the end-user would see limited returns if  this 
were the case. Specifying “task” with a greater level of  precision will produce superior visual 
encoding assignments. Through the Information Triad, data, visual encodings, and tasks 
need to be carefully defined in order to obtain useful results. Furthermore, as long as at least 
two of  the three components are defined, the third component may be determined through 
an experiment (more on this in Chapter 7). Moreover, the Information Triad may 
conceivably be extended to work on interactive network visualizations, although in that 
scenario, visual encodings would also be conditional on task (rather than only dimension). 
Using Dynamo to obtain preset rank prioritization can be valuable; saving time, supporting 
reproducibility, and outlining an open reasoning process for design decisions about 
representation.  

Although 14 visual encodings are currently supported by Dynamo (presented in a list in the 
Visual Encodings in Dynamo sub-section), this may be extended in the source code. As 
mentioned earlier, the software libraries that are used to implement Dynamo limit the variety 
of  possible visual encodings. In the grand scheme, visual perception limits the use of  
available visual encodings may impose more limitations than the variety of  visual encodings 
available for use. If  Dynamo were re-implemented in another language with an associated 
software package that offered more granular parameterization of  visual attributes, more 
visual encodings could theoretically be supported. 

6.12. Future Work 
Cytoscape (written in Java) is a fantastic candidate platform for an extension of  Dynamo. 
Cytoscape has a community of  users that create and share open-source plugins—
reimplementation of  Dynamo as a Cytoscape plugin would be useful future work, primarily 
because it would make the application available to a large community of  researchers that use 
biological networks. Although Cytoscape.js was the fastest way to implement a working 
version of  Dynamo, and is a good choice for the objective, future visualization libraries 
should be considered as features are added to Dynamo. 

The topology of  the graph is contained in a separate file from the visual encoding 
assignments. Although Dynamo currently accepts graphs in the format required by 
Cytoscape.js, the application may be extended to accept any standardized (or custom) graph 
format—interconversion between graph formats would be possible thanks to the built-in 
functions of  the iGraph library in R [33]. By using the conversion functions in iGraph, any 
graph format supported by iGraph can be converted into the format accepted by 
Cytoscape.js. 

Dynamo can be extended to visualize the results of  various network visualizations generated 
from a number of  bioinformatics methods. Since many biological network algorithms are 
implemented and readily useable in R through BioConductoR, the assignment algorithm can 
connect to methods in BioConductoR (working in conjunction or unison) [32]. This would 
be a useful extension, as using Dynamo in combination with the Information Triad would 
allow researchers to identify the “best” visual representation (in context of  tasks, data 
dimensions, and visual encodings) for the results they obtain from popular BioConductoR 
packages.  
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Furthermore, D3.js has recently been updated to support plugins, which allows developers 
to modularize visualizations and the functions that support them. Dynamo could potentially 
be implemented as a D3.js plugin as Dynamo continues to mature. 

As seen in the benchmarks subsection of  this chapter, the performance of  visual encoding 
assignments decays quite rapidly since linear programming can be completed in polynomial 
time in the best case. However, as one might expect, larger input tables require an increased 
amount of  compute time and resources. Although it is possible to obtain a valid solution for 
many networks (even large ones), the application is not optimized or tuned for performance 
in any way. 

No auxiliary constraints are defined or implemented in the R program at the moment. 
However, there are a number of  constraints that could be added to the program in order to 
facilitate specialized visual encoding assignments. For instance, Jacques Bertin defines a 
visual hierarchy in Semiology of  Graphics, and this hierarchy could be translated into a set 
of  constraints that set bounds on visual encoding assignments [85]. Although these may be 
valuable constraints to enforce in context of  visual encoding assignment, the principles 
being enforced must be validated before being included as a default option. Visual encoding 
constraints and rules from the field of  cartography may have received more careful study, 
and could prove to be, at the very least, a promising source of  inspiration for future 
constraints [86]. Future versions of  Dynamo will support an external constraints file that will 
contain all of  the constraints that are to be applied during visual encoding assignment. An 
externally defined constraints file would further promote the sharing of  constraint files, 
support the reproducibility of  assignment results, and would organize the constraints in such 
a way that they would be organized (and perhaps even indexed for record-keeping purposes). 
Furthermore, externally defining constraints also provide the foundation for LPs that 
include constraints that are higher complexity (e.g. combinations and interactions). 

6.13. Conclusion 
This chapter detailed Dynamo, a system founded on the ideas of  the Information Triad. 
Using Dynamo, one can explore the set space of  visual encodings for any particular graph in 
any (of  the supported) graph layouts. As the following chapter will show, Dynamo can also 
be used to administer studies that are aimed at solving for a missing component of  the 
Information Triad. 
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7. Evaluating Prominence of  Visual Encodings using Dynamo 

7.1. Introduction 
The previous chapter explained Dynamo, a system to optimally assign visual encodings 
based on an input table containing prioritizations of  visual encodings for tasks. In context 
of  the click-based perception study detailed in this chapter, Dynamo acts as the underlying 
engine for a network visualization tool designed to serve visual encodings in a reproducible, 
systematic manner. This chapter presents the results from a click-based perception study 
designed to measure the effect of  visual encoding parameterizations on saliency of  nodes 
and edges. In particular, one of  the analysis goals of  this study is to develop a model that 
can predict which node or edge a user will select for the scan task (as defined by Lee et al) 
[46]. 

7.2. Background: about the design of  this study 
There is support for the hypothesis that visual encodings affect interpretation of  content in 
visualization literature [47]. Accordingly, there is also reason to believe that graph layouts 
may be improved by better understanding visual encodings. 

One constraint influencing the design of  this experiment is the need to obtain a large sample 
size. Although random forest is an analysis method robust for situations where N (sample 
size) < P (number of  predictors), it is still better to obtain a large N for improved 
performance and the ability to use another analysis method. Since I do not have the 
resources to compensate participants for their time, I must keep the experiment as short as 
possible to maximize potential participation. I will not expand on the details of  the Random 
Forest algorithm in this chapter. For additional information about the Random Forest, please 
reference the background section of  the previous chapter, or the publication by Breiman et 
al [72]. 

7.2.1. Description of  the study 
Study participants were presented with one of  34 randomly selected networks (the process 
by which a network was randomly selected is covered in Section 7.3.1). 34 networks were 
presented to participants because 34 different pairs of  visual attributes were chosen for 
encoding. Participants were prompted with a network and asked to select, “the most 
noticeable node,” or “the most noticeable edge,” in the network. Figure 30 and Figure 31 
show an example of  how the topology of  a network is separated from the visual encodings
—in these figures, for each of  the rows, the text on the far left signifies the visual attributes 
being used for encoding, the networks in the middle depict the topological structure of  the 
network, and the networks on the far right show the network presented in the middle with 
data encoded by the designated pair of  visual attributes. Every visual encoding combination 
is compared across every network used in the study. Furthermore, Figure 32 shows four 
networks that may have been served to participants during the course of  the study. 

Random forest regression was used to model selectivity based on a number of  variables 
representing visual encodings, and other properties of  networks (e.g. topology). Put another 
way, the goal is to estimate how likely a participant is to select a node or edge based on its 
visual attributes. 
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Figure 30 – An example figure showing different networks where the same data attribute is 
visual encoded through a pair of  visual attributes. 

!  

!  105



Figure 31 - An example figure showing the same network (i.e. the same data attributes) 
visually encoded through a different pairs of  visual attributes. 

!  
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Figure 32 – A figure illustrating four different networks and encoding pairs that were served 
to participants during the course of  the study. 

!  

From a machine learning perspective, the performance of  an algorithm can be generalized 
through what is known as the bias-variance trade-off. Bias is a description of  how 
systematically erroneous the prediction of  an algorithm is (independent of  input, and 
typically a result of  assumptions contained in parametric techniques)—those algorithms that 
are systematically “off-target” are said to have a high bias. Variance is a description of  how 
much the prediction of  an algorithm fluctuates depending on the values of  the predictor 
variables—those algorithms that fluctuate more than others are said to have high variance. 
The bias-variance trade states that methods with high bias also have low variance, that 
methods with low bias also have high variance, and that this trade-off  is ever-present and 
largely unavoidable. The general approach to handling this trade-off  is to minimize extremes, 
although this heavily depends on the problem that is being modeled, as minimizing the 
trade-off  may not be necessary if  the problem is framed in a convenient manner. Regression 
has a high bias, but a low variance (which has a different meaning within the context of  a 
regression model). Decision trees have a low bias, but a high variance. Random Forest is 
bootstrapped, and consequently generalized over hundreds or thousands of  decision trees, 
so the high variance in the bias-variance trade-off  is curbed. Regression is not an ideal choice 
to use for analysis of  this data for a number of  reasons (and high bias being one of  them). 
Although the collected data may also be analyzed through logistic regression, the resulting 
model would be quite complex. First, it is already clear that the variables that would be in the 
logistic regression model are not independent. Second, the model would need to include 
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mixed effects factors, as participants add random effects, and the presented networks add 
fixed effects. Third, the underlying distribution of  the data was unclear (until the end of  this 
study), so there was uncertainty around the parameterization of  the model—should one 
select OLS, weighted OLS, or maximum likelihood as the objective function? Should one 
select a linear or non-linear model? Proper parameterization would obviously reduce the bias 
in the bias-variance trade-off, but the risk of  presuming incorrect or false parameterizations 
is too high (as the research question posed in this dissertation is largely understudied). Thus, 
my preference is for a non-parametric technique.  

The experiment below is founded on the hypothesis of  the “Information Triad” (IT) 
defined in the previous chapter. To frame this experiment in context of  the IT hypothesis: 

• Task: Scanning  
• Data: GeneMANIA subgraphs generated via random walks 
• Visual Encoding: Determined via Dynamo 

Only one task was evaluated in this experiment, which was scanning, referring to the ability to 
visually scan a network [46]. The data that was visually encoded was derived using random 
walks on a GeneMANIA network (further explained in the Methods section) and cross-
referencing Pubmed. The visual encodings used to represent the data were delivered using 
the Dynamo tool (also further explained in the Methods section). 

Furthermore, the study was designed such that the same data would be double encoded to 
create competition between the saliency of  the visual attributes used to encode the data. 
Administering this experiment through a computer is preferable as it is how biological 
researchers seem to create and explore network visualizations (as inferred from the findings 
in Chapter 2) – be it through an application deployed via a web browser, or a domain-
specific tool such as Cytoscape [31]. 

7.3. Method 
This study uses a fractional factorial design and presents a number of  networks with 
carefully chosen visual encoding combinations. Those participating in this study are 
presented with a number of  networks, varying in size, shape, color, etc.—they must visually 
scan the network and click on the element that is most noticeable. In context of  the graph 
tasks covered in Chapter 4, the task evaluated in this study is “overview,” which involves 
scanning an entire graph. This study was approved by the University of  Washington 
Institutional Review Board. 

7.3.1. Generation of  networks 
The characteristics and underlying graph model of  a presented network greatly affect visual 
analysis and interpretation. Through some preliminary work exploring the set space of  
potential parameter values, I estimated that a network with 4 nodes and 3-5 edges would be 
ideal for this experiment. One may consider 4 nodes to be too few—however, for a study 
that is to be conducted completely online, likely even on mobile devices, and attempting to 
measure saliency of  visual encodings (rather than topological properties), this is an ideal size. 
Although there are estimated specifications for the number of  nodes and edges in a network 
presented to a participant, the method used to obtain representative connectivity is described 
next. In order to obtain an accurate representation of  the interconnectedness of  biological 
networks, I downloaded the network used in GeneMANIA, and used random walks to 
obtain subgraphs (from randomly selecting starting nodes in the GeneMANIA network) that 
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meet the aforementioned specifications. This protocol yielded a number of  representative 
small biological networks. 

7.3.2. Recruiting and Sampling of  Participants 
The inclusion criteria defined for participants in this study are: (1) participants must be able 
to complete the experiment from a compatible, web-connected device. The exclusion criteria 
defined for participants in this study are: (1) participants must be at or over the legal age of  
majority where they are participating, and (2) participants must be fluent in English. Calls for 
participant were posted on Reddit and a number of  University of  Washington community 
mailing lists. Due to the stipulations of  the IRB, I am unable to estimate the number of  
participants that joined the study from each source. 

7.3.3. Measured Variables 
The presented networks also have a number of  attached style attributes. The states of  these 
style attributes are computationally determined using the Dynamo system (detailed in the 
previous chapter). These style attributes, along with information about clicks, element 
positions, etc., are captured in JSON format. The full list of  captured attributes is provided 
below in Table 20 through Table 22. Although Table 20 and Table 22 both contain captured 
variables, a number of  other variables may be derived from these data points. Additional 
variables obtained in this manner are exemplified in Section 10.7. 

Table 20 - A list of  collected data variables that describe node encodings. The * denotes 
HSV values that were converted from hexadecimal color values. 

Variable Meaning Input Data 
Type

Input 
Parameterization

Output Data 
Type

Node Border Width 
(nodeborderwidth)

Refers to the size 
of  the border 
around a node 
(if  any)

Numeric 1.5px to 4.5px Quantitative or 
Binned

Node Size (nodeheight) Refers to the size 
of  a node

Numeric 15px to 30px Quantitative or 
Binned

Node Shape (nodeshape) Refers to the 
shape of  a node

Categorical Randomly select 1 of  12 Categorical

Node Hue*  
(nodeHue)

Refers to the 
(color) hue of  a 
node

Numeric 0-1 units Categorical

Node Value*  
(nodeValue)

Refers to the 
(color) value of  a 
node

Numeric 0%-100% Categorical

Node Saturation*  
(nodeSaturation)

Refers to the 
(color) saturation 
of  a node

Numeric 0%-100% Categorical

!  109



Table 21 - A list of  collected data variables that describe edge encodings. The * denotes HSV 
values that were converted from hexadecimal color values. 

Table 22 - A list of  collected data variables that describe the randomly sampled networks. 

Although hue is generally captured and processed as a categorical variable, by converting 
hexadecimal colors to the HSV color scale, hue is scaled between 0 and 1. In the HSV color 
space, hue is actually circular (See Figure 33). Random Forest is capable of  gracefully 
handling hue in this manner, although it would be troublesome for a regression model, 
where one may have to estimate and label hues by their closest ROYGBIV color (and treat 
those labels nominally, rather than numerically). Saturation and value are also on 0 to 1 
scales, running from 0% saturation to 100% saturation, and 0% value (black) to 100% value 
(white), respectively.  

Variable Meaning Input Data Type Input 
Parameterization

Output Data Type

Edge Width 
(edgewidth)

Refers to the size 
(thickness) of  an 
edge around a node.

Numeric 2px to 8px Quantitative or 
Binned

Edge Pattern  
(linepattern)

Refers to the 
pattern used to 
represent an edge

Categorical Randomly select 1 
of  3

Categorical

Edge Hue 
(edgeHue)

Refers to the (color) 
hue of  an edge

Numeric 0-1 units Categorical

Edge Value 
(edgeValue)

Refers to the (color) 
value of  an edge

Numeric 0%-100% Categorical

Edge Saturation  
(edgeSaturation)

Refers to the (color) 
saturation of  an 
edge

Numeric 0%-100% Categorical

Variable Meaning Input Data Type Output Data Type

Number of  Edges 
(numEdges)

Refers to the total 
number of  edges in the 
visualization

Numeric Quantitative

Network 
(network)

Refers to 1 of  34 
randomly sampled, 4-
node biological networks.

Categorical Categorical

Node Degree 
(numConnected)

Refers to the number of  
edges that connect to a 
node

Numeric Quantitative

!  110



Figure 33 - A depiction of  the HSV color space [87]. 

!  

The dependent variable that is being measured is referred to as “selectivity.” Selectivity is the 
variable name describing how salient a particular visual encoding of  a node or edge may be, 
and ranges from 0, not salient, to 1, extremely salient.  

7.3.4. Sampling Networks for Analysis 
Random Forest is very sensitive to class balance for the response variable (in this study, it 
would be “selected” and “unselected”). If  the minority class is less than 15% of  the data, 
then the results will surely be skewed. As the number of  nodes and number of  edges are 
scaled up, the minority class becomes less prevalent. Since the number of  nodes is held 
constant in this study, this is not a problem. However, in order to obtain results that are well 
balanced, the following sampling method was used: 

For each user 
For each network 

1. Identify selected node or edge 
2. Randomly select one (of  several possible) unselected nodes 
or edges 

This process of  sampling ensures that the dataset provided as input into Random Forest will 
have satisfactory class balance (50% majority class and 50% minority class).  

!  111

https://upload.wikimedia.org/wikipedia/commons/0/0d/HSV_color_solid_cylinder_alpha_lowgamma.png


7.4. Results 
This results section is very long, so I will briefly provide an overview of  the contents of  this 
section. This section begins by providing demographic information about those who 
participated in the study. Following the demographic information is a sub-section about 
evaluating the selectivity of  visual encodings in network visualizations.  

7.4.1. Demographic Information 
The participants in this experiment may generally be described as non-colorblind 25-34 year 
olds who are in- or have completed graduate school, and does not have prior experience 
with network. All of  this information is summarized in Figure 34 through Figure 37. 

Figure 34 - An overview of  the age range of  participants. 

!  
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Figure 35 - An overview of  the range of  educational background of  participants. 

!  
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Figure 36 - An overview of  prior experience participants’ had with networks. 

!  
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Figure 37 - An overview of  the proportion of  participants that were colorblind. 

!  

7.4.2. Evaluating Saliency of  Visual Encodings in Networks 
The resulting data were analyzed using Random Forest Regression. Random Forest 
Regression produces a handful of  metrics that allow one to understand the performance of  
the algorithm. In addition to this, I provide partial dependency plots, which shows the partial 
contribution of  each variable input into the Random Forest algorithm, the distribution of  
data (selected and unselected), and estimates a mathematical function that fits that data. Data 
from participants who were colorblind were removed from the data used for this analysis. 

7.4.3. Performance of  Random Forest Model for Nodes 
A Random Forest regression model was created using the following variables: Node Shape, 
Network, Node Size, Node Degree, Node Border Width, Node Hue, Node Saturation, 
Node Value, X Coordinate Position, Y Coordinate Position, and Eigenvector Centrality. The 
model explained roughly 26.82% of  the variance in the data. 500 regression trees were 
created and 2 variables (mtry = 2) were tried at each split in each decision tree. 
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Table 23 - Random Forest model performance for both node and edge models. The values 
shown in the table are values at the Youden Index [88]. 

A ROC plot is available in Figure 38 and the AUC for the model was 0.80. No 
multicolinearity (i.e. linear relationship between predictor variables) was detected. 

Model Error Sensitivity Specificity PPV NPV AUC

Nodes 0.27 0.74 0.71 0.72 0.73 0.80

Edges 0.21 0.80 0.75 0.76 0.79 0.86
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Figure 38 - ROC plot for Random Forest regression run on nodes. 

!  
The cut-off  for sensitivity and specificity was determined assuming that they are equally 
important.  

7.4.4. Variable Importance for Nodes 
Variable importance values were used to determine the effect of  node variables on 
selectivity. Figure 39 provides a visual overview of  the importance values in the Random 
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Forest model (as determined through mean squared error), and Table 24 provides a more 
detailed view. 

Table 24 - List of  Node Importance values. The “%IncMSE” column is the mean decrease 
in accuracy and the “IncNodePurity” column is the mean decrease in MSE. *Node hue is 
listed as a numerical variable, although hue is typically categorical (further explained in the 
text). 

%IncMSE IncNodePurity Variable

Network 0.0090 208.79 Categorical

Y Coordinate Position 0.0155 118.57 Numerical

Node Border Width 0.0499 113.05 Numerical

X Coordinate Position 0.0055 92.20 Numerical

Node Size 0.0350 74.11 Numerical

Eigenvector Centrality 0.0142 67.72 Numerical

Node Shape 0.0006 60.39 Categorical

Node Color Saturation 0.0145 58.77 Numerical

Node Color Value 0.0133 55.52 Numerical

Node Color Hue 0.0072 45.18 Numerical*
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Figure 39 - A plot of  variable importance from the Random Forest model explaining node 
selectivity. 

!  

As Table 24 and Figure 39 show, the network variable seems to be the most important 
(although it is not a visual encoding measure). The second most importance node variable is 
Y Coordinate Position, while X Coordinate Position is ranked fourth, suggesting that node 
selectivity may be more sensitive to the height at which a node is positioned, relative to its 
lateral position. Eigenvector Centrality ranked behind Node Size, suggesting that node 
selectivity may be more sensitive to the size of  a node than its “importance” –in context of  
eigenvector centrality, high “importance” denotes nodes that are connected to other essential 
nodes. 

It is important to note that Random Forest models are systematically biased in favor of  
categorical variables (tending to give them higher importance scores) [89]. However, I do not 
think this fact casts doubt on the rank order of  importance values. 

As far as visual encodings, these results suggest that Node Border Width is most important. 
Nodes with a thick node border would be emphasized or highlighted in relation to others 
that have smaller Node Border Widths. However, node border colors were held static in this 
experiment, and always presented as the color black. This is an important note, as a small 
node with a large Node Border Width may have a substantial portion that is colored black, 
and may also make the node seem larger. 

Node Size is the second most important visual encoding, suggesting that this would be the 
natural second option for visually encoding information in a small network. This is followed 
by the categorical variable of  Node Shape, suggesting that certain conformations may be 
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interpreted to have unintended meaning (e.g. an octagon may be misinterpreted to be a 
“stop” symbol), or that some shapes may capture a participant’s attention better than other 
shapes. Node Color Saturation is the next visual encoding option. In context of  color, 
saturation has a higher importance than color value (i.e. the amount of  black or white in a 
color), and color value has a higher importance than color hue (what is commonly referred 
to as “color”). All of  these variables are further explored in the sub-section containing 
partial dependency plots. 

Additionally, the network variable was further decomposed in an effort to better understand 
if  any related attributes contribute to better explaining a higher percentage of  the variability 
in the model. In short, the network variable may be decomposed to a variable(s) 
representing: topology, layout, special properties, and user-specific attributes. Section 10.7 
contains detailed results on these models. 

7.4.5. Prototype for Nodes 
Although the prototype for a “selective” node could not be estimated, the prototype for a 
“non-selective” node can be described (in context of  the parameterizations of  this study) as 
circular, with a radius of  17px, node saturation value of  0.02 (very bland), and node value of  
0.6, node hue most closely described as the color “gray” (which is the same for “non-
selective”). The fact that “non-selective” and “selective” nodes have the same prototypical 
color is sensible because the data did not indicate any relationship between selectivity and 
color hue (see “nodeHue” in Figure 40). 

7.4.6. Partial Dependency Plots for Nodes 
Random Forest is sometimes criticized as being a “black box” algorithm, and that the line of  
reasoning that leads to data being labeled one class or another are obscured. However, this is 
not exactly true, and it is possible to obtain an understanding of  the underlying model 
through using it. This is where partial dependency plots are useful. With partial dependency 
plots, one may view how the data behave in the model from the perspective of  each variable. 
It is essential to note that each of  perspectives is not orthogonal, independent, adjusted, or 
otherwise isolated from the rest of  the data. Partial dependency plots show how data 
behaves from the perspective of  a variable in context of  all of  the other variables. Another 
crucial point to is that the lines in the partial dependency plots are “curve fitted” to the data 
points, and are not generalized models. The r-squared values contained in these partial 
dependency plots are slightly different from the r-squared value one may obtain from a linear 
regression model. In this case, the r-squared value is actually a “pseudo r-squared” value, and 
it reflects the strength of  the relationship between the predictor variable and the outcome 
variable.  
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Figure 40 - Partial dependency plot for nodes. 

!  

The functions in the partial dependency plot illustrate the complexity of  underlying 
relationships between each attribute and selectivity. The input values (x-axis) for each of  the 
partial dependency plots were ensured to be linear and spaced at even intervals. 
Parameterizing the input functions in this manner clarifies the underlying relationship and 
provides guidance on which type of  predictive model one should use for future studies.  

The “jump” between 0 and 1.5 in the Node Border Width (“nodeborderwidth” in Figure 40) 
plot is due to the parameterization of  possible Node Border Width values. “0” means no 
border”, and “1.5” is the smallest border that is possible. This was necessary by design. 
Otherwise, if  Node Border Width were used categorically (e.g. to denote groups), then one 
of  the groups would not have a border. Node Border Width seems to scale exponentially 
with respect to selectivity, although a linear model with a relatively steep slope may provide 
an adequate approximation.  

Node Size (“nodeheight” in Figure 40) seems to follow a sigmoidal curve (such as in logistic 
regression). This suggests that encodings on Node Size may provide diminishing returns for 
values outside of  a certain node size interval. Intriguingly, due to the shape of  the curve, the 
distribution of  selectivity arranged according to size seems to resemble a normal 
distribution. 
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Node Saturation seems to scale linearly. Selectivity approximately increases 0.1 units for 
every 0.5 units of  increase in color saturation. If  50% Node Saturation corresponds to 0 
units of  selectivity, then 0% saturation corresponds to -0.1 units of  selectivity and 100% 
corresponds to 0.1 units of  selectivity.  

Node Value also seems to be approximately linear, although the slope is negative. That is, if  
50% Node Value corresponds to 0 units of  selectivity, then 0% value corresponds to 0.1 
units of  selectivity, and 100% value corresponds to a -0.1 units of  selectivity. A “0” value 
corresponds to the color “black” and a “1” value corresponds to the color “white”. This 
suggests that “lighter” nodes are less selective than “darker” nodes.  

The combination of  X Position and Y Position of  the nodes seem to suggest that the most 
selective nodes are physically located in the middle of  the screen. Although lateral position 
seems to decrease selectivity evenly regardless of  whether the node is left or right, the partial 
plot for vertical position seems to suggest that nodes that are higher up on the screen are 
less selective. 

Node Hue, Node Shape, and Network were not included in Figure 40 as they are categorical 
predictors and posit no meaningful interpretation from these plots.  

7.4.7. Assessing Variable Interactions for Node Variables 
Variable interactions can be assessed using the three-dimensional plots in Figure 41. The y-
axes in all of  the plots in Figure 41 represent selectivity. Most of  the plots in Figure 41 show 
a gradual upward climb as values of  node encoding parameters increase (linearly). The only 
exceptions are the plots containing Node Border Width—and the reason for this was 
explained in the previous sub-section. Overall, this implies that interactions among node 
variables may demonstrably affect selectivity. 
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Figure 41 - Variable interactions for Nodes. 

!  

As the results presented thus far only pertain to nodes, the following results now pertain to 
edges. 

7.4.8. Performance of  Random Forest Model for Edges 
A Random Forest regression model was created using the following variables: Edge Width, 
Network, Edge Saturation, Edge Value, Edge Hue, Edge Length, and Edge Pattern. The 
model explained roughly 38.67% of  the variance in the data. 500 regression trees were 
created and 2 variables (mtry = 2) were tried at each split in each decision tree. Further 
details about the performance of  the Random Forest model for edges are provided in Table 
23. 
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A ROC plot is available in Figure 42 and the AUC for the model was 0.86. No 
multicolinearity was detected in the predictor variables. 

Figure 42 - ROC plot for Random Forest regression run on edges. 

!  
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7.4.9. Variable Importance from Random Forest Model for Edges 
Variable importance values were used to determine the effect of  edge variables on selectivity. 
Figure 43 provides a visual overview of  the importance values in the Random Forest model 
(as determined through residual sum of  squares), and Table 25 provides a more detailed 
view. Residual sum of  squares is also referred to as “increase in node purity.” 

Table 25 - List of  edge Importance values. The “%IncMSE” column is the mean decrease in 
accuracy and the “IncNodePurity” column is the mean decrease in MSE. *Edge hue is listed 
as a numerical variable, although hue is typically categorical (further explained in the text). 

%IncMSE IncNodePurity Variable

Edge Width 0.1014 109.66 Numerical

Network 0.0121 94.59 Categorical

Edge Color 
Saturation 0.0504 61.08 Numerical

Edge Color Value 0.0368 44.73 Numerical

Edge Length -0.0008 41.85 Numerical

Edge Color Hue 0.0197 32.60 Numerical

Edge Pattern 0.0265 20.43 Categorical
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Figure 43 - Variable Importance for edges 

!  

7.4.10. Prototypes from Random Forest Model for Edges 
Although there the prototype for a “selective” edge could not be estimated, the prototype 
for a “non-selective” edge can be described (in context of  the parameterizations of  this 
study) as solid, with a thickness of  2.3px, edge saturation value of  0.17 (very bland), and 
edge value of  0.92, edge hue most closely described as the color “pink.”  

7.4.11. Partial Dependency Plots from Random Forest Model for Edges 
The partial dependency plots for edges are contained in Figure 44. Again, it is crucial to 
emphasize that each of  perspectives is not orthogonal, independent, adjusted, or otherwise 
isolated from the rest of  the data. Partial dependency plots show how data behaves from the 
perspective of  a variable in context of  all of  the other variables. Another imperative 
clarification is that the lines in the partial dependency plots are “curve fitted” to the data 
points, and are not generalized models. The r-squared values contained in these partial 
dependency plots are slightly different from the r-squared value one may obtain from a linear 
regression model. In this case, the r-squared value is actually a “pseudo r-squared” value, and 
it reflects the strength of  the relationship between the predictor variable and the outcome 
variable.  
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Figure 44 - Partial dependency plots for edges. 

!  

As Figure 44 shows, many of  the curves for edge variables are not linear. Edge Width 
(“linewidth” in Figure 44) follows what seems to be a logarithmic curve. This suggests 
diminishing returns on selectivity for edges that are particularly thick.  

Edge Saturation (“edgeSaturation” in Figure 44) seems to follow a sigmoidal pattern. 
Increasing Edge Saturation seems to increase selectivity until selectivity maximizes at 0.2 
units. Similarly, decreasing Edge Saturation seems to decrease selectivity until selectivity 
minimizes at -0.2 units. 

Edge Value (“edgeValue” in Figure 44) seems to have a fascinating relationship with 
selectivity. As Edge Value increases past approximately 0.75, edge selectivity seems to rapidly 
decay, until it actually starts to negatively impact edge selectivity. Similarly to Node Value, “0” 
corresponds to the color “black” and “1” corresponds to the color “white.” This means that 
edges with more than 75% color value are subject to a prompt drop in selectivity. 

Edge Length (“edgeLength” in Figure 44) seems to have a relationship with edge selectivity 
where short edges are less selective, while mid- to long- length edges have a marginally 
positive effect on edge selectivity. 

Edge Hue, Edge Pattern, and Network were omitted from Figure 44 as they are categorical 
predictors and posit no meaningful interpretation from these plots.  
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7.4.12. Assessing Variable Interactions for Edge Variables 
Variable interactions can be assessed using the three-dimensional plots in Figure 45. The y-
axes in all of  the plots in Figure 44 represent selectivity. In contrast to the node variable 
interactions depicted in Figure 41, most of  the plots in Figure 45 show a flat line, a flat line 
preceded by a rapid increase, or a flat line followed by a rapid decrease. Overall, Figure 45 
implies that interactions between edge variables may not affect selectivity as much as the 
interactions found among node variables in Figure 41.    

Figure 45 - Variable Interactions for Edges 

!  

7.4.13. Qualitative Results: Fill-in Responses 
In the following section, I provide selected fill-in responses from participants explaining why 
they clicked on a certain node or edge. The purpose of  the fill in response is to capture 
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information that may otherwise be missed if  one were to solely evaluate the quantitative 
data. 

7.4.13.1. Why Participants Selected Nodes 
The fill-in responses for node encodings contained a large gamut of  responses. The 
following two responses were selected to illustrate the range of  descriptiveness of  received 
input (Quote 1 and Quote 2). 

Quote 1: "The shape. Probably the external corner which is > 90 degrees." 
Quote 2: "Prominent" 

The following quotes (Quotes 3-5) suggest that when not visual attributes were truly 
prominent, some selection decisions were made based on convenience: 

Quote 3: "closer to the curser" [sic] 
Quote 4: "I'm on my phone, and it was closest to my right thumb." [sic] 
Quote 5: "It's at eye level" 

The majority of  fill-in responses indicated the nodes that garnered the most attention were 
large in size, brightly colored, and had a thick border. Quotes 6 and 7 below is examples: 

Quote 6: "It's a combination of  the node that's closest to the center of  the image, 
the biggest-sized node, and has a thick outline." 
Quote 7: "thick rim. dark color pops out." [sic] 

An interesting observation that came to light was how important certain color hues were. 
Specifically, the color red seemed to attract more attention than other colors. Given the 
population of  participants, perhaps there is some prior association with the colors and their 
perceived meaning. 

Quote 8: "The red attracted my attention" 
Quote 9: "red, top, also I'm sitting a bit left of  the screen" 
Quote 10: "biggest and the green colour is inviting" [sic] 

However, there were also a few cases where participants selected an item because it was 
under-saturated: 

Quote 11: "least saturated color" 
Quote 12: "it is purple, not orange as the others" 

This suggests that selectivity may be affected not specifically by color saturation, but by 
contrast. A handful of  quotes support this idea, and Quotes 13 and 14 are examples of  
those: 

Quote 13: "The color stood out - it contrasted with the rest of  the nodes." 
Quote 14: "the contrast is greater, there is a lighter fill color against the black line" 

As mentioned in the earlier subsections, the topology of  the network may have an affect on 
guiding participants’ selections. The quotes below are examples of  participants’ explaining 
that they made certain selections as a result of  topology, rather than visual encodings: 
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Quote 8: "connected to other nodes, in a central locaiton, prominent thick edge" [sic] 
Quote 9: "it has 3 edges" 
Quote 10: "Central location and 2 edges leading to it created the most focalization." 

In summary, the fill-in answers for nodes suggest that participants generally selected nodes 
that were larger in size, darker in color, and had thicker borders. These results also suggest 
that color may be symbolic, or otherwise hold some meaning (e.g. danger, safety, etc.). 
Furthermore, the selectivity of  a node is also affected by the visual encodings of  
surrounding nodes and edges, and also the topology of  the network itself. Lastly, when no 
one node is salient over another, the deciding factor seems to be some form of  convenience 
(e.g. the node that is most centered on the screen, closest node to the cursor, etc.).  

7.4.13.2. Why Participants Selected Edges 
I will now describe the fill-in answers for edges. The variety of  patterns that were tested 
seemed to contain some underlying meaning to participants. The responses that were 
received ranged from comments explaining that a certain pattern represented uncertainty, to 
comments expressing frustration: 

Quote 11: "dotted lines suggest uncertainty" 
Quote 12: "It's in the middle and stands out from the distracting dashes" 

Participants to invariably interpret thicker edges as an indication of  a stronger relationship: 

Quote 13: "It's the thickest line. It obviously implies a stronger relationship." 
Quote 14: "It is an outlier....?  It is also the thickest." [sic] 

Another observation from the comments were that participants tended to select edges that 
seemed to be outliers, which is similar to the observation detailed earlier about nodes: 

Quote 15: "it stands out. the color is different from the other nodes and edges" 
Quote 16: "the color is different/brighter from the rest" 

Furthermore, color and location were also contributing factors to edge selection. The color 
red also seemed to garner heightened attention for edges. However, an interesting comment 
from a participant was that a certain color was “diluted”: 

Quote 17: "It's solid. The green one might have been more noticeable if  there 
weren't two of  them diluting the prominence."  
Quote 18: "The red and central location attracted my attention." 

In summary, the fill-in answers for edges suggest that participants generally selected edges 
that were larger in size, were solid, and seemed to be outliers. These results also suggest that 
color may be symbolic, or otherwise hold some meaning (e.g. danger, safety, etc.), and that 
visual encodings like color may be “diluted” with increased presence. Additionally, the 
location of  an edge also seems to contribute to selectivity.  

7.5. Discussion 
This study has revealed previously unknown relationships that may govern selectivity of  
nodes and edges in network visualizations intended for visual scanning. Table 26 below 
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organizes the visual encodings used in the Random Forest models according to the families 
of  mathematical curves that estimate their relationship with selectivity. Table 26 shows 5 
distinct types of  curves: linear, sigmoidal, logarithmic, decay (reverse sigmoidal), and 
exponential.  

Characterizing these curves is useful for obtaining an intuition for the behavior of  these 
encodings, and understanding which visual encodings can be scaled upwards. For instance, if  
one were to choose between encoding Node Border Width and Node Size, the former may 
be generally be a better choice as Node Size begins to yield diminishing returns after a 
certain point. If  one were to conduct future research on any of  the visual encodings that 
were investigated as a part of  this study, knowing which curve to use will be immensely 
useful for model selection and analysis. I do not claim that the visual encodings included in 
the table maintain these properties when used in other contexts. 

Table 26 - A table organizing visual encodings by the mathematical function that 
characterizes their relationship with selectivity. 

Although Random Forest has less variance (in context of  the bias-variance tradeoff) than 
decision trees due to bootstrapping, it may be that the logistic function is accurate enough to 
create a useful prediction model. Although there are numerous reasons why logistic 
regression is unsuitable for this particular dataset, a future study employing Dynamo may be 
designed such that logistic regression may be used. Although a random forest model is able 
to capture interaction effects without having to explicitly define them in the model, a logistic 
regression model may still be able to provide similar performance (0.73 AUC for logistic 
regression versus 0.81 AUC for random forest, using the same variables). Further detail, as 
well as the performance of  a number of  logistic regression models is covered in Section 
10.8. In short, it seems no one variable may be used to reasonably predict node or edge 
selectivity. 

As mentioned earlier the “network” variable suggested that topology is quite an important 
factor in determining what is visually noticeable in network visualizations. However, the 
partial dependency plot showed that the r-squared value was 0.08 for nodes, and 0.07 for 
edges, suggesting no relationship between the network variable and selectivity. R-squared is a 

Estimated Curve Visual Encoding Importance R-squared

Linear Node Saturation 3 0.84

Linear Node Degree 8 0.90

Sigmoidal Edge Saturation 3 0.94

Sigmoidal Node Size 5 0.96

Logarithmic Edge Width 1 0.95

Decay (reverse sigmoid) Edge Value 4 0.93

Decay (reverse sigmoidal) Node Value 6 0.86

Exponential Node Border Width 2 0.92
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measure of  the amount of  variance that is explained by that visual encoding, and importance 
is a measure of  how sensitive selectivity is to value perturbations of  a particular variable. A 
future study might classify network topology into a number of  sub-classes, and further 
investigate the relationship between these topology-based sub-classes and selectivity.  

Cleveland et al published a seminal paper about graphical perception in 1984 [47]. Before 
this study, there was no strong evidence that the rankings provided by Cleveland et al 
translated to network visualizations. However, the findings of  this study seem to be in 
alignment with the findings from the Cleveland et al paper, which may also strengthens the 
link between visual encodings in networks and newer research founded on the findings of  
the Cleveland et al paper (cited by 1173 as of  September 20, 2016 according to Google 
Scholar). Another notable observation came from the fill-in section. The fill-in comment 
about color dilution was interesting as it echoed some of  the experiences published in, 
“Semiology of  Graphics, ” which raised the concern that the effectiveness and 
interpretability of  color as a visual encoding dwindles as more data points are encoded with 
it [85]. 

Future work may include a reproduction of  this study, with the addition of  varying the 
number of  nodes in networks presented to participants. The results from this study provide 
enough information about the variables used to provide confidence in the expected values 
and distributions underpinning the data. This proposed future study would need to obtain a 
significantly higher number of  participants, but would be appropriate for analysis using a 
logistic regression model, which would yield a simply interpretable regression equation. 
Using Dynamo to more accurately identify the mathematical functions that underlie this 
phenomenon could also be a fruitful path for future work. Another idea for a future project, 
based on a publication about hand-drawn layouts by Kieffer et al, would be to use Dynamo 
to allow participants to visually encode and position nodes and edges in a network [90]. This 
would provide a novel perspective, and could reveal the range of  ways in which the same 
task may be accomplished while varying layout and visual encoding. 

Since the random forest models have been saved, the models may be used to help optimize 
visual encodings for those creating small biological networks. However, this particular study 
used representative networks with only four nodes. Thus, these results are not expected to 
generalize to large biological networks. Various configurations of  visual encodings 
assignments may be input in the model, and “selectivity” scores may be output for every 
node and edge in the network. This would be immensely useful in guiding network 
visualization authors on whether the visual encodings they have chosen to use actually 
support or hinder their intended message. 

7.6. Conclusion 
This chapter detailed the design and execution of  a study intended to estimate the 
importance of  various visual encodings in network visualizations. The contributions of  this 
chapter provide quantitatively derived insights into how node and edge variables affect 
selectivity, and qualitative findings on how participants’ selected one set of  encodings over 
another. 
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8. Conclusion 

This is the concluding chapter of  this dissertation. In this chapter, I cover contributions, 
summarize the long-term findings from my work, elaborate on potential future work, and 
finish with a reflection on the field of  biomedical informatics, and on the whole process of  
earning a doctorate. Multiple sections may meld personal experiences and thoughts in this 
chapter (where appropriate). 

8.1. Contributions 
I will list, in order of  the chapters, the contributions of  the findings contained in each 
chapter. Chapter One is omitted, as it is the introductory chapter. 

• Chapter 2: There are no other publications investigating the challenges of  visualizing 
biological networks. The findings present an overview of  a set of  broadly defined 
challenges impacting biological network visualization.  

• Chapter 3: The findings in chapter three feature an overview of  how biological 
network visualizations are presently depicted. The results from this research 
essentially supply us with a collection of  null hypotheses. 

• Chapter 4:  The findings in this chapter supplement the discoveries of  the previous 
chapter through the addition of  the dimension of  tasks.  

• Chapter 5: The results of  this chapter are two-fold. First, I establish that the Random 
Forest algorithm is an ideal analytical tool to comprehend the dataset obtained from 
chapters three and four—this is no small feat, since nearly all of  the collected data 
are nominal, which renders common quantitative analysis methods difficult to 
impossible to use. Second, the output of  Random Forest showed that the quantity of  
nodes and edges in a biological network were implicated with the ability to complete 
tasks and visual encodings. 

• Chapter 6: This chapter detailed the design, development, and testing of  Dynamo, a 
tool intended to support the study of  visual encodings in network visualizations. 
Aside from the contribution of  the tool itself, this chapter also contains an 
explanation of  the premise of  “the information triad,” stressing the intricate 
relationship between tasks, visual encodings, and data. With this theoretical 
framework, evaluations of  visualizations can be properly framed, clarifying 
assessment of  network visualizations and paving the way for rigorous, thorough, and 
useful evaluations that may be compared from the lens of  tasks, visual encodings, or 
data. 

• Chapter 7: This chapter describes the design and execution of  an experiment devised 
to uncover the mathematical relationships between a certain task (“visual scanning”) 
and visual encodings. The findings of  this study provide evidence for the distribution 
of  data and mathematical curves underlying varying visual encodings—this 
information is practically useful for future studies, and also for understanding how 
visual encodings interact with one another. 
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8.2. Research Vision 
From a macroscopic perceptive, my research vision can be summarized as bringing human-
computer interaction methodologies to bioinformatics. I have executed on this research 
vision through the subject of  biological network visualization. A number of  biological 
networks are created in a rather ad-hoc manner, and I believe the studies I have conducted 
demonstrate that it is possible and worthwhile to look systematically at the design decisions 
behind networks. Although I do not claim to have fully achieved this vision, I think much 
progress has been made. 

Furthermore, many important areas of  research are referred to, by some, as “soft science.” 
In fact, Ernest Rutherford (allegedly) went so far as to state, “all science is either physics or 
stamp collecting.” I believe that an overarching result of  this dissertation demonstrates how 
computational methods and adequate study design can transform a so-called “soft science” 
into a “hard science” (although admittedly, there are still enhancements that can be made). 
Although the term “soft science” may not have been intended to offend, it is sometimes 
verbally stated in a dismissive tone, as if  “soft science” research is universally inferior—I 
hope to change, or be involved in changing, the spirit underpinning this sentiment over the 
next few decades. Much of  these “soft sciences” are either closely intertwined with, or live 
under the umbrella of  what is academically recognized as the humanities. Many researchers 
working in the humanities have already begun to use quantitative and computational 
methods to pose and answer research questions. One of  the major limiting factors of  
research questions posed in the humanities (and informatics) is that there is not always an 
adequate way to measure a necessary attribute. My perspective is that advancements in 
technology (and increased accessibility of  that technology) afford researchers the ability 
reframe age-old research questions, or even pose new ones that are only now feasible due to 
new technology. 

The study detailed in Chapter 7 was only possible as an artifact of  the time and place we live 
in (on a historical scale). In that particular study, I was able to recruit over 100 participants 
for free over the Internet. The fact that I was able to reach 100 participants in less than a 
week, over the Internet, and that all of  them had a compatible device that supported data 
collection over roughly 30 network visualizations in under 5 minutes, is a benefit of  our 
time. That very same study design would not have been possible even just a few years ago. 
The software packages, web standards, and cloud services the experiment was built and 
deployed on did not exist in until at least 2009, and some of  which did not exist until as 
recently as 2011. 

The claim and vision that the “soft science” will eventually transform into “hard science,” 
through the combination of  new technology and computational techniques, may imply I am 
advocating for an increase in experimental complexity. However, in context of  solutions, my 
bias is towards the humble solution, to new and age-old challenges alike. Highly complex 
experiments that offers multiple interpretations of  the same findings is a defining limiting 
factor of  “soft science”—this is not necessarily the “fault” of  the one who designed the 
study, as some research questions may not have a rigorous statistical method that is 
conveniently applicable, resources to frame the research question in a highly specific way, or 
prior research to guide experimental design. 

I had considered adding another section about my vision for my research career, but my 
impression is that the world is so fast-paced and rapidly changing that any long-term career 
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plan (even with a scope as short as 5 years) would be promptly outdated. Thus, when it 
comes to my research career, I will go wherever the wind may carry me. This is not to say I 
will resign to the impositions of  the world, but it is to say that I will remain open to new 
possibilities, and will revisit my position on this often.  

8.3. Potential Future Work 
There are several lines of  research I hope to pursue in the future. Although I realize I may 
only be able to choose one or two, I will list three of  my future research ideas in this 
subsection. 

1. Conduct a study to understand the tasks that are performed on graphs. The 
knowledge we currently have on the tasks that are performed on graph is useful 
enough to be actionable. However, biology-specific tasks could warrant additional 
research. As implied by the Information Triad, the higher the specificity of  the task, 
the more likely a model designed to explain how visual encodings are a function of  
that task will produce satisfactory predictions. 

2. Conduct a large number of  studies similar to the study detailed in Chapter 7, in order 
to obtain a set of  default visual encoding ranks that researchers may use to select 
visual encodings in biological networks. This would entail replicating the design 
detailed in Chapter 7, while modifying the task participants’ are asked to perform. 
There would be one experiment for every task that is to be characterized.  

3. Design a large-scale experiment that accounts for structure in addition to visual 
encodings, to obtain a “more complete” perspective on how visual encodings and 
graph topology work as function of  task completability. 

4. Extend the Information Triad to include interactive data visualizations. Data 
visualizations delivered on any computational device seem to have an interactive 
component more and more often. 

Over the next few years, I plan to write grant proposal to fund one or more of  the research 
synopses listed above in Section 8.3. I do not anticipate that the budgets need to be very 
large, since most of  the groundwork has already been laid out. 
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10. Appendix 
This section contains supplementary figures, tables, and test results. The items contained in 
this section were not deemed pertinent to the content of  the chapters, but are provided here 
for completeness. 

10.1. Appendix A – Additional Bar Chart (Chapter 3) 
The bar chart in Figure 46 illustrating frequency counts of  visual encodings, divided by data 
type, presented side-by-side with pathway counts extending to the left, and network counts 
extending to the right. This mirrored presentation along with the breakdown of  data type 
allows one to compare the relative proportions of  visual encodings and data types without 
any normalizing operations (and remaining consistent in scale with Figure 6). 

Figure 46 – The data in Figure 6 presented as mirrored bar charts. 

!  

10.2. Appendix B – Test for unequal variances (Chapter 3) 
This section presents the results of  a statistical test for unequal variances. Variances can 
sometimes be heterogeneous, meaning that the variance value varies across the entire range 
of  the data. Recognizing unequal variance is important since many statistical tests assume 
equal variance. Although finding that one’s data has unequal variance may not alter one’s 
choice of  statistical test, it is necessary information when interpreting statistical results. 
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Statistical tests for unequal variance were run on the data found in Table 3 and Table 4. In 
each table, the data in the network column was compared to the data in the pathway column. 
The null hypothesis for both statistical tests was that the true ratio of  variances is equal to 1. 
Both statistical tests for unequal variance returned negative, leading us to accept the null 
hypothesis that the true ration of  variances is equal to 1. However, since the degrees of  
freedom are 7 and 6, respectively, this interpretation is accompanied with some level of  
doubt. The data are provided below: 

Statistical results for Table 3: 
F = 1.6612, num df  = 7, denom df  = 7, p-value = 0.5192 
alternative hypothesis: true ratio of  variances is not equal to 1 
95 percent confidence interval: 
 0.332570 8.297329 
sample estimates: 
ratio of  variances  
          1.661157 

Statistical results for Table 4: 
F = 0.89549, num df  = 6, denom df  = 6, p-value = 0.8968 
alternative hypothesis: true ratio of  variances is not equal to 1 
95 percent confidence interval: 
 0.153871 5.211544 
sample estimates: 
ratio of  variances  
         0.8954918 

10.3. Appendix C – Two-way ANOVA between encodings, networks versus 
pathways (Chapter 3) 

Two-way 
ANOVA

Summary

Response Value

Factor #1
Encodi
ng

Rando
m

Factor #2 Type
Rando
m

Descriptive 
Statistics

Factor Group
Sample 
size Mean Variance

Standard 
Deviation
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Encoding Color 4 15.75 58.25 7.63217

Encoding Enclosure, Connection 4 10
20.6666

7 4.54606

Encoding Line Endings 4 1.5 3.66667 1.91485

Encoding Line Pattern 4 3.25 18.25 4.272

Encoding Line Weight 4 2 6 2.44949

Encoding Position 4 4.25 8.25 2.87228

Encoding Saturation, Brightness 4 1.75 4.91667 2.21736

Encoding Shape, Icon 4 7.25 54.25 7.36546

Encoding Size,Area 4 3
12.6666

7 3.55903

Encoding Text 4 18.25 172.25 13.1244

Encoding Weight, Boldness 4 1.25 2.25 1.5

Type Network 22
5.6818

2
70.9891

8 8.42551

Type Pathway 22
6.7272

7
48.3982

7 6.95689

Encoding x Type Color x Network 2 20.5 84.5 9.19239

Encoding x Type Color x Pathway 2 11 0 0

Encoding x Type
Enclosure, Connection x 
Network 2 6.5 12.5 3.53553

Encoding x Type
Enclosure, Connection x 
Pathway 2 13.5 0.5 0.70711

Encoding x Type Line Endings x Network 2 1 2 1.41421

Encoding x Type Line Endings x Pathway 2 2 8 2.82843

Encoding x Type Line Pattern x Network 2 2 8 2.82843

Encoding x Type Line Pattern x Pathway 2 4.5 40.5 6.36396

Encoding x Type Line Weight x Network 2 1.5 4.5 2.12132

Encoding x Type Line Weight x Pathway 2 2.5 12.5 3.53553

Encoding x Type Position x Network 2 2 0 0

Encoding x Type Position x Pathway 2 6.5 4.5 2.12132

Encoding x Type
Saturation, Brightness x 
Network 2 2.5 12.5 3.53553
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Appendix D – R Code for fisher’s exact test comparing frequency distributions 
between networks and pathways (Chapter 3) (https://gist.github.com/ngopal/
1c6aa0bc2de4860280cb921635a9d241) 

aim2d <- matrix(rbind( 
  c(2, 5), 
  c(30, 25), 
  c(8, 3), 
  c(3, 2), 
  c(5, 1), 
  c(27, 11), 
  c(12, 15), 
  c(9, 14) 
), 8, 2) 
colnames(aim2d) <- c("Network",  "Pathway") 

Encoding x Type
Saturation, Brightness x 
Pathway 2 1 0 0

Encoding x Type Shape, Icon x Network 2 6 72 8.48528

Encoding x Type Shape, Icon x Pathway 2 8.5 84.5 9.19239

Encoding x Type Size,Area x Network 2 4 32 5.65685

Encoding x Type Size,Area x Pathway 2 2 2 1.41421

Encoding x Type Text x Network 2 15 450 21.2132

Encoding x Type Text x Pathway 2 21.5 24.5 4.94975

Encoding x Type Weight, Boldness x Network 2 1.5 4.5 2.12132

Encoding x Type Weight, Boldness x Pathway 2 1 2 1.41421

ANOVA

Source of  Variation SS
d.f
. MS F p-level F crit

Omega 
Sqr.

Factor #1 (Encoding) 1,434.91 10
143.4909

1
6.8093

2
0.0027

7
2.9782

4 0.40781

Factor #2 (Type) 12.02273 1 12.02273
0.5705

3
0.4674

6 4.9646 0

Factor #1 + #2 (Encoding x 
Type)

210.7272
7 10 21.07273

0.5381
3 0 2.2967 0

Within Groups 861.5 22 39.15909

Total 2,519.16 43 58.5851

Omega squared for combined effect 0.32651
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rownames(aim2d) <- c("Position", 
                     "Text", 
                     "Size,Area", 
                     "Weight, Boldness", 
                     "Saturation, Brightness", 
                     "Color", 
                     "Shape, Icon", 
                     "Enclosure, Connection") 

fisher.test(aim2d) 
#prop.test(aim2d, conf.level = 0.95, correct = TRUE) 

aim2de <- matrix(t(rbind( 
c(2,0,0,0,14,0,4,4,2,3), 
c(8,18,1,1,11,2,13,9,4,5))), 10, 2) 
colnames(aim2de) <- c("Network",  "Pathway") 
rownames(aim2de) <- c("Position", 
                      "Text", 
                      "Size,Area", 
                      "Saturation, Brightness", 
                      "Color", 
                      "Shape, Icon", 
                      "Enclosure, Connection", 
                      "Line Pattern", 
                      "Line Endings", 
                      "Line Weight") 
aim2de <- aim2de[c(1,2,5,7,8,9,10),] #removing inappropriate values (zero values and 
encodings that don't make sense) 

fisher.test(aim2de) 
chisq.test(aim2de) 

var.test(aim2d[,1],aim2d[,2]) 
var.test(aim2de[,1],aim2de[,2]) 

10.4. Appendix D: Task completability plot for pathways (Chapter 4) 
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Figure 47 – These plots depict the relationship between number of  nodes, number of  edges, 
and the ability to complete each of  the 10 tasks listed in Table 5, for pathways. In context of  
each task (i.e. panel), the dark blue dots signify “not completable,” while light blue dots 
signify “completable.” 

!  

10.5. Appendix E: Protocols for conducting tasks from Chapter 4 

Here below are operational protocols for assessing task completability. These tasks were 
originally defined in Lee et al [46]. It may be presumed for all task protocols that ambiguous 
results, or indeterminate results (perhaps due to definitions in the protocol, size and density 
of  graph, etc.), are generally to be assessed as not completable. As mentioned in Chapter 4, 
the protocols in this document specify operational steps for specific and specialized versions 
of  the tasks detailed in Lee et al [46]. 

Depending on the properties of  a graph (e.g. layout, size, density, etc.), completability may be 
assessed quickly for many of  these tasks. However, there may also be graphs for which 
following the given set of  protocols may be time consuming or fatiguing—to account for 
this, the protocols have been defined to include practical constraints, such as a time limit. 

This document contains three sections: definitions of  terms used in protocols, an 
explanation on completability, and the protocols themselves.  

Definitions of  terms used in protocols 
• Node: An entity in a graph. Nodes can be thought of  as “nouns.” 
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• Edge: A relationship in a graph, connecting two nodes. Edges can be thought of  as 
“verbs.” 

• Graph: a set of  nodes connected by edges, representing entities and the 
interrelations among them. 

• Degree: A measure of  the number of  edges connecting to a node. A node with three 
edges connecting to it has a degree of  3. Degrees can also be used to convey how 
many “steps removed” two nodes may be from each other—for instance, if  two 
nodes are connected only by a third, those two nodes would be 2 degrees away from 
each other. 

• Adjacent Node: A node that directly connects to the node at hand. Adjacent nodes 
have a degree of  1 in relation to the node at hand. 

• Connected Component: A subgraph in which any two nodes are connected to each 
other through paths. This nodes in the subgraph would be not be connected to any 
additional nodes in the larger graph. 

• Dyad: a pair of  nodes and the edge(s) connecting them. 
• Encoded: 

A Description of  Task Completability 
The presumption underlying task completability is that, if  given adequate time and resources, 
a task may be conducted to completion. Inversely, if  a task is marked as not completable, 
then the task cannot be conducted to completion, even with adequate time and resources. In 
a sense, completability is a "lower bound" on the whether or not a task is doable. 

This measure of  completability is used rather than accuracy since fully completing a given 
task may require a substantial amount of  time and effort for certain graphs. 

For a task to be completeable, the following criteria must be met: 
1. The protocol for the associated task must be followed from beginning to end. 
2. If  it takes more than N seconds (defined in a protocol) to complete any protocol, it 

must be marked as not completable. This N second threshold was a practical 
constraint that was exercised while completing tasks. Such constraints were 
necessary, as following a defined protocol from beginning to end may take a 
substantial amount of  time for certain graphs. 

Due to variability within the graph itself, the same task may not be completable in the same 
graph in a different region. 

Process for randomly selecting a point in a figure: 
The R code below can be used to randomly select one or more points in a given image, 
which may be a necessary step for certain steps depending on the protocol being 
administered. Both the “generateRandomCoordinates” function and 
“selectRandomNPointsInImage” function must be loaded into the R environment. The 
“png” and “jpeg” packages may need to be installed using the install.packages() command, if  
not already installed by default. 

generateRandomCoordinates <- function() { 
  return( c(sample(1:100 / 100, 1), sample(1:100 / 100, 1)) ) 
} 
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selectRandomNPointsInImage <- function(imgURL, numberOfPoints = 2) { 
  # Function handles pngs and jpegs 
  library(png) 
  library(jpeg) 
  if  (numberOfPoints < 1) { 
    stop("Please enter a valid argument for number of  points. It must be numeric and > 0") 
  } 
  ima = tryCatch({ 
    readPNG(imgURL) 
  }, error = function(e) { 
    # Going to try JPEG now 
    readJPEG(imgURL) 
  }, finally = { 
    print("Please use a JPG or PNG") 
  }) 
  plot(0:1, 0:1, type='n', main="Two Random Points", xlab="x", ylab="y") 
  lim <- par() 
  rasterImage(ima, lim$usr[1], lim$usr[3], lim$usr[2], lim$usr[4]) 
  li = list() 
  for (l in 1:numberOfPoints) { 
    li[[l]] = t(as.matrix(generateRandomCoordinates())) 
    points(li[[l]]) 
  } 
  print(li) 
} 

# Example command in R environment 
selectRandomNPointsInImage("/Users/nikhilgopal/Downloads/gkq482f1.jpg", 2) 

Protocols: 

Find Common Connection 
Description of  task: The ability to determine if  a set of  nodes that directly connects two given nodes 
Additional Constraints: Mark as not completable if  it takes more than 60 seconds to complete 
this protocol. 
Protocol: 

1. Randomly select a node in the graph 
2. Randomly select another node in the graph 
3. Identify all of  the adjacent nodes for the first randomly selected node 

a. If  unable to identify all adjacent nodes for the first randomly selected node, 
mark as not completable. 

4. Identify all of  the adjacent nodes for the second randomly selected node 
a. If  unable to identify all adjacent nodes for the second randomly selected 

node, mark as not completable. 
5. Determine if  any of  the nodes from the first set are also in the second set.  

a. If  able to determine whether the randomly selected nodes have common 
connections, mark as completable. Otherwise, mark as not completable. 
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Find Articulation Points 
Description of  task: The ability to identify nodes that, when removed, results in an unconnected graph. 
Additional Constraints: Mark as not completable if  it takes more than 60 seconds to complete 
this protocol. 
Protocol: 

1. Review all of  the nodes in the graph to identify at least one node that connects 
bodies of  other nodes (such that it would disconnect the graph into multiple 
components or sub-graphs if  removed).  

a. If  after reviewing all of  the nodes in the graph, no articulation points were 
found, mark the task as completable (as there may not have been any valid 
articulation points in the graph) 

b. If  an articulation point was found, mark the task as completable. 
c. Otherwise, mark the task as not completable. 

Find Bridges 
Description of  task: The ability to identify edges that, when removed, results in an unconnected graph 
Additional Constraints: Mark as not completable if  it takes more than 60 seconds to complete 
this protocol. 
Protocol: 

1. Review all of  the edges in the graph to identify at least one edge that connects 
bodies of  other nodes (such that it would disconnect the graph into multiple 
components or sub-graphs if  removed). 

a. If  after reviewing all of  the edges in the graph, no bridges were found, mark 
the task as completable (as there may not have been any valid bridges in the 
graph) 

b. If  a bridge was found, mark the task as completable. 
c. Otherwise, mark the task as not completable. 

Find Shortest Path 
Description of  task: The ability to find the shortest path between two nodes 
Additional Constraints: Mark as not completable if  it takes more than 120 seconds to complete 
this protocol. 
Protocol: 

1. Identify the node in the graph that is furthest to the top and to the left. This will be 
the source node. 

2. Randomly select a target node in the graph 
a. Please note that both the source and target node should be from the same 

connected component (i.e. sub-graph) 
3. Starting from the source node, follow the edges through successive adjacent nodes 

until converging on the target node. Respect direction of  edges, if  applicable. This is 
essentially a visual graph search, and is akin to using your finger to travel from one 
end of  a maze to another. Repeat this process until a path is found. 

a. If  more than one path has been found, then mark the task as completeable 
b. If  one path has been found, repeat this step 
c. If  not paths have been found, but every possible path has been assessed, 

mark as completable 
d. Otherwise, mark as not completable 

Find Clusters 
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This task is not necessary to complete, since it is difficult to agree on the definition 
of  a cluster. However, for thoroughness, I will list how I determined if  a cluster 
exists. 
Description of  task: The ability to distinguish groups of  nodes within a graph 
Additional Constraints: Mark as not completable if  it takes more than 30 seconds to complete 
this protocol. 
Protocol: 

1. Review the nodes in the graph 
2. Identify groups of  nodes that are closer in proximity to each other than to other 

nodes in the graph 
a. If  at least two different groups of  nodes may be identified, mark as 

completable.  
b. If  there is another indicator to denote a grouping (e.g. color, enclosure, etc.), 

then mark this task as completable. 
i. If  unable to identify at least two different groups of  nodes, mark as 

not completable. 

Find Connected Components 
Description of  task: The ability to find connected components (two or more nodes connected by edges, such as 
a sub-graph) 
Additional Constraints: Mark as not completable if  it takes more than 60 seconds to complete 
this protocol. 
Protocol: 

1. Review all of  the nodes in the graph 
2. Identify disconnected groups of  sub-graphs. Sub-graphs are considered distinct if  

they are unconnected. If  sub-graph A is contains no node that is connected to a 
node in sub-graph B, then sub-graph A and B are considered to be two distinct 
connected components. In this particular case, a single isolated node is not 
considered its own connected component—the minimal representation of  a 
connected component is a dyad. 

Find Node Attributes 
Description of  task: The ability to identify nodes defined by specific visual attributes 
Additional Constraints: Mark as not completable if  it takes more than 60 seconds to complete 
this protocol. 
Protocol: 

1. Review all of  the nodes in the graph 
2. If  nodes are visually uniform, or otherwise not encoded, mark this task as not 

completable. Otherwise: 
a. For each visual attribute encoding data in the graph (e.g. color, size, shape, 

etc.).  
i. Review all of  the nodes in the graph encoded with the visual attribute 

at hand. This step may alternatively be described as a visual filtering 
step. 

b. If, for each attribute, one is able to review all of  the nodes with those 
attributes, mark the task as completable. Otherwise, mark as not completable. 

Find Edge Attributes 
Description of  task: The ability to identify edges defined by specific visual attributes 
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Additional Constraints: Mark as not completable if  it takes more than 60 seconds to complete 
this protocol. 
Protocol: 

1. Review all of  the edges in the graph 
2. If  edges are visually uniform, or otherwise not encoded, mark this task as not 

completable 
a. For each visual attribute encoding data in the graph (e.g. color, thickness, 

shape, etc.). Please note that length is not considered a visual attribute (due to 
variability resulting from layouts). 

i. Identify edges using on the visual attribute at hand. 
b. If  it is possible to identify edges using at least one of  the visual attributes 

encoded in the graph, mark as completable. Otherwise, mark as not 
completable. 

Follow a Path 
Description of  task: The ability to follow a predetermined path through a graph 
Additional Constraints: Mark as not completable if  it takes more than 30 seconds to complete 
this protocol. 
Protocol: 

1. Randomly select a node in the graph 
2. Starting from that node, conduct a random walk by hand. However, this random 

walk is modified such that one cannot visit the previous node, not the current node 
on the next step (although it is legal to revisit previously visited nodes as long as it is 
not the last node that was visited—this is to allow for cyclical paths). Stop after 4 
random walk steps. Respect direction of  edges, if  applicable. 

a. If  able to complete the modified random walk as defined, mark as 
completeable. Otherwise, mark as not completable. 

Finding Adjacency and Accessibility 
Description of  task: The ability to recognize that another node is connected to or accessible from a given node. 
Additional Constraints: Mark as not completable if  it takes more than 60 seconds to complete 
this protocol. 
Protocol: 

1. Randomly select a node in the graph 
2. Review all of  the nodes in the graph and determine if  it is possible to identify all of  

the adjacent nodes for the randomly selected node. Respect direction of  edges, if  
applicable. 

a. If  possible to identify all adjacent nodes, mark as completable. Otherwise, 
mark as not completable. 

A Note On Labeling Figures 
The process of  selecting figures to characterize was detailed in Chapter 4. In short, the label 
for a figure was the term used to describe the figure in the caption. However, included below 
is a protocol for labeling figures as well. 
Protocol: 

1. If  there is one term the author(s) use to refer to the figure, that term becomes the 
label 

2. If  there are multiple terms the author(s) use to refer to the figure, the latter term 
should be used for the label. 
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Note: Some terms used to describe node-link figures may be used more seldom than others. 
In Chapter 4, networks and pathways were not only two of  the most frequently used labels, 
but were also used to describe node-link diagrams that were systematically or 
computationally encoded (as opposed to mental maps, diagrams, etc.) 

10.6. Appendix F: Example configuration of  Dynamo for the task-focused 
perception study detailed in Chapter 7 

Figure 48 - A screenshot of  a network visualization generated using Dynamo. The input 
table configuring the visual encodings is presented in Table 27. 

!  
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Table 27 - The visual encoding configuration table provided as input to Dynamo in order to 
generate the network presented in Figure 48. 

In Table 27, the “N-K” notation in the columns describing the dimensions represent 
dimension N, and replicate K (e.g. “Dimension 1-2”). The assignment table represents the 
optimal assignment, given the visual encoding ranks for “Task 1”. The table cells highlighted 
in yellow are assigned visual encodings, and the cells highlighted in gray represent invalid 
encoding assignments (e.g. assigning data attached to nodes to an edge encoding, such as 
Edge Color). Since visual attributes may be encoded in multiple ways, each manner of  
encoding is treated as its own encoding. That is, if  node size may be encoded quantitatively 
(e.g. mapping a numerical node attribute directly to node size) and also categorically (e.g. 
binning numerical node attributes and mapping the bins to discrete sizes), then those are 
considered two separate encodings. Figure A depicts a network with the visual encoding 
assignments resulting from input Table 27. Nodes are double encoded with color 
(categorically) and node border (binned), and edges are double encoded with two types of  
edge width. Please note that Figure A is from a node-encoding example, and that the edge 
encodings are only present to provide “noise.” When edge-encodings examples are being 
served, constraints are in place to prevent the same visual attribute from being encoded in 
multiple ways. 

Dimension 1-1 
Task 1

Dimension 1-2 
Task 1 

Dimension 2-1 
Task 1

Dimension 2-2 
Task 1

Node Color (Seq) 0 0 0 0

Node Color (Div) 0 0 0 0

Node Color (Cat) 0 0 10 0

Node Shape (Cat) 0 0 0 0

Node Border 
(Quant)

0 0 0 0

Node Border 
(Bin)

0 0 0 10

Node Size 
(Quant)

0 0 0 0

Node Size (Bin) 0 0 0 0

Edge Width 
(Quant)

1 12 0 0

Edge Width (Bin) 14 10 0 0

Edge Color (Seq) 6 2 0 0

Edge Color (Div) 4 9 0 0

Edge Color (Cat) 1 9 0 0

Edge Pattern 
(Cat)

2 2 0 0
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10.7. Appendix G: Decomposing the network variable 

Decomposing the network variable: an additional analysis 
This section provides additional results from further analysis of  the network variable. The 
intention of  this particular analysis was to identify variables (either collected in the data and 
unused, or derived from collected data) that would increase the percent of  variance 
explained in the data used for modeling. The second goal was to identify variables that have 
a high variable importance, and the third goal was to assess the predictive capability of  the 
variables through AUC. 

Further investigation into decomposing the network variable in the model proposed in this 
chapter revealed a handful of  insights. The primary goal of  this investigation was to derive 
or find variables that would increase the percent of  variance explained by the data. The 
secondary goal is to identify variables that have a high variable importance. The third goal, is 
to assess predictive capability through AUC. 

Additional Model Parameters 
Although the goal of  this study was primarily to model the relationship between the visual 
attributes used in the study to predict which node or edge one might select, the model 
suggested that certain topological attributes of  a network play a more important role than 
anticipated. Model X is still the primary model, due to its predictive performance (AUC of  
0.86). However, a number of  alternative models containing terms, which represent aspects 
of  the network variable in greater detail, are included below. 

Based on prior knowledge and study design, the network variable has been decomposed into 
the following four parts (as shown in the list below): topology, layout, special properties, and 
user error.  

• Network 
o Topology 

▪ Centrality of  Nodes (Node Degree, Node Betweenness Centrality, 
Closeness Centrality, Eigenvector Centrality) 

o Layout 
▪ XY Coordinates of  Nodes (X Position and Y Position) 

o Special Property 
▪ Group (communityGroup) 

o Error 
▪ User ID as variable (unable to be included in model) 

Furthermore, beneath each of  the four parts, the list conveys variables that were either 
collected or derived. Performance of  three of  the four parts could be evaluated in new 
random forest models—the user variable was unable to be evaluated. The performances of  
the models before and after the inclusion of  these variables below are presented in Table 29, 
Table 30, and Table 31. 

Variables: 
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Although a large number of  variables were collected during the study, the model with the 
highest predictive capability did not use all of  them. Other variables could be derived 
through computation on collected data. 

Table 28 – Variables used to represent various parts of  the decomposed network variables. 

Derivation of  DistanceFromCenterOfScreen 
The DistanceFromCenterOfScreen value was derived using the height and width of  a 
participant’s screen, as well as the X and Y coordinate positions of  the nodes. The X and Y 
coordinates were simply normalized to fit into a 0 to 1 scale, and then Euclidean distance 
was calculated from each node position (XY coordinate pair) to the center of  the screen (0.5, 
0.5). 

Derivation of  CommunityGroup 
The communityGroup variable was derived using the spinglass.community function in the 
igraph library (in the R environment). The spinglass algorithm is used to identify 
communities in a network (i.e. groups of  nodes with many edges interconnecting them, 
while that same group has fewer edges connecting nodes part of  that particular community 
to nodes outside of  that community) [33], [92]. 

Derivation of  ClusteringCoefficient 
The clusteringCoefficient variable was derived using the transitivity function in the igraph 
library (in the R environment) [33]. Clustering coefficient is the probability that the adjacent 
nodes of  a node are themselves connected. 

Metrics: 
% Variance Explained: % Variance Explained is a cross-validated measure of  out of  bag error. 
Concisely, it is a measure of  the variability in the data that is accounted for by the model. As 
more variables are added to the model, and consequently as model complexity increases, the 
% variance explained is also expected to increase. However, % Variance Explained is distinct 
from AUC. 

Variable Source

Node Degree Collected

Node Betweenness Derived

XPosition Collected

YPosition Collected

DistanceFromCenterOfScreen Derived

ClusterCoefficient Derived 

CommunityGroup Derived

UserID Collected

!  156



AUC: AUC is a measure of  predictive power (typically obtained in context of  an ROC 
curve). In short, it is a measure of  how often the predicted outcome calculated from 
randomly drawn data is correct. 

Under certain circumstances, such as when a model is overfit, the % Variance Explained may 
increase while AUC decreases. In terms of  the single variable additions to a null model, this 
would be interpreted to mean that although the additional variable explains more of  the 
variance in the data, it simultaneously reduces the predictive capability of  the model. 

Assessment of  additional variables 
Each of  the three parts (resulting from decomposition of  the network variable, and listed in 
the bullet list above) is presented in its own section. The first section covers the addition of  
centrality measures, followed by a section covering the addition of  layout variables, followed 
by a section covering the addition of  special properties. 

Centralities 
Table 29 includes performance results from the addition of  a single centrality variable. The 
first two rows of  the table depict models using only encodings, and encodings with the 
network variable. The remaining four rows detail performance and variable importance 
values when each of  four different centrality measures was added to the model containing 
encodings and network variable. 

Of  the three centrality measures investigated, eigenvector centrality had the highest variance 
explained, while the variance explained increased by similar proportions. The similarity in the 
variance explained was expected, as a prior study has shown that centrality measures are 
correlated by approximately 80%.  However, the AUC only increased by 0.02 when including 
any of  the four types of  centrality. 

The variable importance measure for each of  the included centrality variables ranked at the 
very bottom of  the list of  variable importance measure, except for eigenvector centrality, 
which ranked third—this suggests that eigenvector centrality may have some predictive 
ability in estimating which node a user may select [93], [94]. However, Valente et al found 
that degree centrality and eigenvector centrality have a correlation of  0.92, which implies 
that an algorithmic difference between eigenvector centrality and degree centrality may 
account for why eigenvector centrality has a much higher variable importance measure than 
degree centrality when included in the random forest model [93]. 

!  157



Table 29 – Performance of  various centrality measures as predictor variables when added to 
a random forest model containing only visual encodings and a network variable. 
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% V a r i a n c e 
Explained

AUC Variables Importance

21.91% 0.77 Encodings 1. Node Border Width 
2. Node Size 
3. Node Color Saturation 
4. Node Color Value 
5. Node Shape 
6. Node Color Hue

18.25% 0.75 Encodings + Network 1. Network 
2. Node Border Width 
3. Node Size 
4. Node Color Saturation 
5. Node Color Value 
6. Node Shape 
7. Node Color Hue

22.25% 0.77 E n c o d i n g s + N e t w o r k + 
DegreeCentrality

1. Network 
2. Node Border Width 
3. Node Size 
4. Node Color Saturation 
5. Node Color Value 
6. Node Shape 
7. Node Color Hue 
8. Degree Centrality

22.43% 0.77 E n c o d i n g s + N e t w o r k + 
BetweennessCentrality

1. Network 
2. Node Border Width 
3. Node Size 
4. Node Color Saturation 
5. Node Color Value 
6. Node Shape 
7. Node Color Hue 
8. Node Betweenness Centrality

22.53% 0.77 E n c o d i n g s + N e t w o r k + 
ClosenessCentrality

1. Network 
2. Node Border Width 
3. Node Size 
4. Node Color Saturation 
5. Node Color Value 
6. Node Shape 
7. Node Color Hue 
8. Closeness Centrality

22.21% 0.77 E n c o d i n g s + N e t w o r k + 
EigenvectorCentrality

1. Network 
2. Node Border Width 
3. Eigenvector Centrality   
4. Node Size 
5. Node Color Saturation 
6. Node Color Value 
7. Node Shape 
8. Node Color Hue
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Layout 
Table 30 includes performance results from the addition of  a variables representing layout. 
The first two rows of  the table depict models using only encodings, and encodings with the 
network variable. The remaining two rows detail performance and variable importance ranks 
when X and Y coordinate positions were added to the model, and when a variable 
representing distance from the center of  the screen was included. 

Both including X-Y positions and distance from the center of  the screen increased the 
amount of  variance explained and AUC relative to the model that contained only encodings 
and the network variable. The variable representing Y-Position and distance from the center 
of  the screen both had variable importance ranks of  2, implying that the vertical position of  
a node and a node’s position relative to the center of  the screen may contribute to a node’s 
selectivity. The inclusion of  either the XY coordinate positions or distance from the center 
of  the screen increases the AUC, suggesting that the addition of  either of  those variables to 
the model can improve predictive capabilities. 
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Table 30 - Performance of  variables representing physical location of  nodes as predictor 
variables, when added to a random forest model containing only visual encodings and a 
network variable. 

Special Properties 
Table 31 includes performance results from the addition of  a variables representing special 
properties. The first two rows of  the table depict models using only encodings, and 
encodings with the network variable. The remaining two rows detail performance and 
variable importance ranks when variables representing clustering coefficient and clustering 
community were included to the model originally containing only encodings and the network 
variable. 

Neither variable, when added to the model containing only encodings and the network 
variable, increased the percentage of  variance explained in the data, nor the AUC. 

% Variance 
Explained

AUC Variables Importance

21.91% 0.77 Encodings 1. Node Border Width 
2. Node Size 
3. Node Color Saturation 
4. Node Color Value 
5. Node Shape 
6. Node Color Hue

18.25% 0.75 Encodings + Network 1. Network 
2. Node Border Width 
3. Node Size 
4. Node Color Saturation 
5. Node Color Value 
6. Node Shape 
7. Node Color Hue

26.58% 0.80 Encodings + Network + 
 XPosition + YPosition

1. Network 
2. Y Position 
3. Node Border Width 
4. X Position 
5. Node Size 
6. Node Shape 
7. Node Color Saturation 
8. Node Color Value 
9. Node Hue

24.21% 0.78 E n c o d i n g s + N e t w o r k + 
DistanceFromCenterOfScreen

1. Network 
2. Distance from Center of  

Screen 
3. Node Border Width 
4. Node Size 
5. Node Color Saturation 
6. Node Color Value 
7. Node Shape 
8. Node Hue
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Furthermore, the variable importance ranks for both variables were at the bottom of  the 
ranked list. Based on these three observations, it seems that neither clustering coefficient nor 
communities found in the network provide any additional explanatory power, or predictive 
power. However, it is vital to re-emphasize that the networks used in this particular study 
were four node networks, and that these variables may be more useful in a model 
representing networks with a larger number of  nodes, or higher density. 

Table 31 - Performance of  variables representing clustering coefficient and community 
structure as predictor variables, when added to a random forest model containing only visual 
encodings and a network variable. 

From the results detailed above, a revised model including eigenvector centrality and XY 
position was created and evaluated, which resulted in a model that explained 26.82% of  
variance in the dataset, an AUC of  0.80, and the following variable importance ranks: 

% Variance 
Explained

AUC Variables Importance

21.91% 0.77 Encodings 1. Node Border Width 
2. Node Size 
3. Node Color Saturation 
4. Node Color Value 
5. Node Shape 
6. Node Color Hue

18.25% 0.75 Encodings + Network 1. Network 
2. Node Border Width 
3. Node Size 
4. Node Color Saturation 
5. Node Color Value 
6. Node Shape 
7. Node Color Hue

18.24% 0.75 E n c o d i n g s + N e t w o r k + 
communityGroup

1. Network 
2. Node Border Width 
3. Node Size 
4. Node Color Saturation 
5. Node Color Value 
6. Node Shape 
7. Node Hue 
8. Community Group

18.40% 0.75 E n c o d i n g s + N e t w o r k + 
clusteringCoefficient

1. Network 
2. Node Border Width 
3. Node Size 
4. Node Color Saturation 
5. Node Color Value 
6. Node Shape 
7. Node Hue 
8. Clustering Coefficient
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• Network 
• Y Position 
• Node Border Width 
• X Position 
• Node Size 
• Eigenvector Centrality 
• Node Shape 
• Node Color Saturation 
• Node Color Value 
• Node Color Hue 

This model described above is the same model that was described in Chapter 7.4. 

10.8. Appendix H: Single Variable Logistic Regression Models (Chapter 7) 

Performance of  Single Variable Logistic Regression Models for Nodes 
In order to contextualize the performance of  the random forest model, this section provides 
an overview of  the performance of  several logistic regression models containing only a 
single variable. Although I have already established, in the sections of  Chapter 7, that there 
are numerous reasons for choosing a random forest model over a regression model to 
represent the expected relationships among variables from this study, I provide a table 
containing results from regression models to serve as a baseline to aid in interpretation of  
random forest model performance. The performance of  each regression model is detailed in 
Table 32 and Table 33 below. The full logistic regression model summaries are available 
below the tables. 

As shown in Table 32 and Table 33, the predictive capability of  any model with a single 
predictor variable (whether logistic regression or random forest regression) exhibited modest 
improvement in predictive capability. 
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Table 32 – AUC values from node models between logistic regression models using only one 
predictor variable, and random forest regression models using only one predictor variable. 

Table 33 - AUC values from edge models between logistic regression models using only one 
predictor variable, and random forest regression models using only one predictor variable. 

Logistic Regression Summaries: 
The following models were trained on ~66% of  the dataset collected for the study detailed 
in Chapter 7. The models were evaluated using the remaining ~33% of  the data. 

Node Degree  

Variable Logistic Regression AUC Random Forest AUC

Node Degree 0.57 0.48

Node Border 0.57 0.62

Node Size 0.63 0.53

Node Color Value 0.56 0.58

Node Color Saturation 0.56 0.60

Node Color Hue 0.51 0.60

Node Shape 0.52 0.42

Network 0.53 0.03

X Position 0.49 0.52

Y Position 0.57 0.52

Distance from center of  screen 0.62 0.52

All Variables 0.73 0.81

Variable Logistic Regression AUC Random Forest AUC

Edge Width 0.76 0.74

Edge Color Value 0.62 0.75

Edge Color Saturation 0.67 0.76

Edge Color Hue 0.52 0.75

Edge Pattern 0.58 0.43

Edge Length 0.51 0.48

Network 0.54 0.00

All Variables 0.73 0.85
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Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                           -0.6941                              0.3873   

Degrees of  Freedom: 2581 Total (i.e. Null);  2580 Residual 
Null Deviance:     3579  
Residual Deviance: 3538  AIC: 3542 
AUC: 0.5634069 

Node Border Width 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                           -0.3306                              0.2128   

Degrees of  Freedom: 2581 Total (i.e. Null);  2580 Residual 
Null Deviance:     3579  
Residual Deviance: 3493  AIC: 3497 
AUC: 0.5650433 

Node Size 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                          -2.61121                             0.09957   

Degrees of  Freedom: 2581 Total (i.e. Null);  2580 Residual 
Null Deviance:     3579  
Residual Deviance: 3369  AIC: 3373 
AUC: 0.6303886 

Node Color Value 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                             0.898                              -1.135   
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Degrees of  Freedom: 2581 Total (i.e. Null);  2580 Residual 
Null Deviance:     3578  
Residual Deviance: 3559  AIC: 3563 
AUC: 0.549312 

Node Color Saturation 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                           -0.2614                              0.8346   

Degrees of  Freedom: 2581 Total (i.e. Null);  2580 Residual 
Null Deviance:     3579  
Residual Deviance: 3527  AIC: 3531 
AUC: 0.561424 

Node Color Hue 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                          -0.09067                             0.19113   

Degrees of  Freedom: 2581 Total (i.e. Null);  2580 Residual 
Null Deviance:     3579  
Residual Deviance: 3576  AIC: 3580 
AUC: 0.5107136 

Node Shape 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                                     (Intercept)   
                                         -0.5108   
       eval(parse(text = singleVariable))ellipse   
                                          0.4914   
      eval(parse(text = singleVariable))heptagon   
                                          0.6779   
       eval(parse(text = singleVariable))hexagon   
                                          0.2595   
       eval(parse(text = singleVariable))octagon   
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                                          0.6931   
      eval(parse(text = singleVariable))pentagon   
                                          0.8473   
     eval(parse(text = singleVariable))rectangle   
                                          0.6751   
      eval(parse(text = singleVariable))rhomboid   
                                          0.1335   
eval(parse(text = singleVariable))roundrectangle   
                                          0.7457   
          eval(parse(text = singleVariable))star   
                                          0.6931   
      eval(parse(text = singleVariable))triangle   
                                          0.3736   
           eval(parse(text = singleVariable))vee   
                                          0.3882   

Degrees of  Freedom: 2581 Total (i.e. Null);  2570 Residual 
Null Deviance:     3579  
Residual Deviance: 3566  AIC: 3590 
AUC: 0.5305005 

Network 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                           (Intercept)  eval(parse(text = singleVariable))rn10   
                            -1.268e-01                               2.850e-01   
eval(parse(text = singleVariable))rn11  eval(parse(text = singleVariable))rn12   
                             1.268e-01                               2.047e-01   
eval(parse(text = singleVariable))rn13  eval(parse(text = singleVariable))rn14   
                             2.535e-01                              -6.899e-02   
eval(parse(text = singleVariable))rn15  eval(parse(text = singleVariable))rn16   
                             4.290e-01                               4.451e-15   
eval(parse(text = singleVariable))rn17  eval(parse(text = singleVariable))rn18   
                             2.574e-01                               1.268e-01   
eval(parse(text = singleVariable))rn19   eval(parse(text = singleVariable))rn2   
                             8.969e-03                              -5.557e-02   
eval(parse(text = singleVariable))rn20  eval(parse(text = singleVariable))rn21   
                            -6.780e-03                               2.047e-01   
eval(parse(text = singleVariable))rn22  eval(parse(text = singleVariable))rn23   
                             5.077e-02                               5.575e-01   
eval(parse(text = singleVariable))rn24  eval(parse(text = singleVariable))rn25   
                             3.616e-01                               3.810e-01   
eval(parse(text = singleVariable))rn26  eval(parse(text = singleVariable))rn27   
                            -6.780e-03                              -1.755e-01   
eval(parse(text = singleVariable))rn28  eval(parse(text = singleVariable))rn29   
                             2.850e-01                               3.974e-02   
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 eval(parse(text = singleVariable))rn3  eval(parse(text = singleVariable))rn30   
                             3.499e-01                               1.575e-01   
eval(parse(text = singleVariable))rn31  eval(parse(text = singleVariable))rn32   
                            -6.780e-03                               4.879e-02   
eval(parse(text = singleVariable))rn33  eval(parse(text = singleVariable))rn34   
                             1.913e-01                               1.268e-01   
 eval(parse(text = singleVariable))rn4   eval(parse(text = singleVariable))rn5   
                             1.268e-01                               1.021e-01   
 eval(parse(text = singleVariable))rn6   eval(parse(text = singleVariable))rn7   
                             7.411e-02                               1.268e-01   
 eval(parse(text = singleVariable))rn8   eval(parse(text = singleVariable))rn9   
                             9.935e-02                               1.585e-01   

Degrees of  Freedom: 2581 Total (i.e. Null);  2548 Residual 
Null Deviance:     3579  
Residual Deviance: 3564  AIC: 3632 
AUC: 0.5432656 

X Coordinate Position 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                           0.05186                            -0.09256   

Degrees of  Freedom: 2581 Total (i.e. Null);  2580 Residual 
Null Deviance:     3579  
Residual Deviance: 3579  AIC: 3583 
AUC: 0.5041391 

Y Coordinate Position 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                            0.4456                             -0.9364   

Degrees of  Freedom: 2581 Total (i.e. Null);  2580 Residual 
Null Deviance:     3579  
Residual Deviance: 3534  AIC: 3538 
AUC: 0.5740085 

Distance From Center of  Screen 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
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        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                            0.9696                             -3.0426   

Degrees of  Freedom: 2581 Total (i.e. Null);  2580 Residual 
Null Deviance:     3579  
Residual Deviance: 3469  AIC: 3473 
AUC: 0.6184965 

All Node Variables From Above In a Single Model 
Call:  glm(formula = selected ~ ., family = binomial(link = "logit"),  
    data = expd.nodes.1[trainingRows, -6]) 

Coefficients: 
            (Intercept)         nodeshapeellipse        nodeshapeheptagon   
             -3.4863605                0.5899565                0.3619640   
       nodeshapehexagon         nodeshapeoctagon        nodeshapepentagon   
              0.3062264                1.0323397                0.6199546   
     nodeshaperectangle        nodeshaperhomboid  nodeshaperoundrectangle   
              0.3305865               -0.3531556                0.4383240   
          nodeshapestar        nodeshapetriangle             nodeshapevee   
              0.4796394                0.3097762                0.2481787   
            networkrn10              networkrn11              networkrn12   
              0.2147515               -0.1492117                0.1030205   
            networkrn13              networkrn14              networkrn15   
             -0.5446460               -0.5080914               -0.0494916   
            networkrn16              networkrn17              networkrn18   
             -0.6305713               -0.4940403               -1.4312409   
            networkrn19               networkrn2              networkrn20   
             -0.0515676                0.1206163                0.7059662   
            networkrn21              networkrn22              networkrn23   
             -0.3525774                0.1973717               -0.0316591   
            networkrn24              networkrn25              networkrn26   
             -0.0915357               -0.4451621               -0.8826462   
            networkrn27              networkrn28              networkrn29   
              0.4431387               -0.2762414               -0.5730637   
             networkrn3              networkrn30              networkrn31   
             -0.5294955               -0.4396934               -0.5949360   
            networkrn32              networkrn33              networkrn34   
             -0.0004802               -0.3930145               -0.1322973   
             networkrn4               networkrn5               networkrn6   
             -0.0113852               -0.1575507                0.2078169   
             networkrn7               networkrn8               networkrn9   
             -0.1363497               -0.5116286               -0.1576340   
             nodeheight             numConnected          nodeborderwidth   
              0.1164512                0.8881960                0.1369196   
                nodeHue           nodeSaturation                nodeValue   
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             -0.1964144                1.0667418               -2.6051343   

Degrees of  Freedom: 2581 Total (i.e. Null);  2531 Residual 
Null Deviance:     3579  
Residual Deviance: 3067  AIC: 3169 
AUC: 0.7437774 

Edge Width 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                           -1.9367                              0.5083   

Degrees of  Freedom: 1235 Total (i.e. Null);  1234 Residual 
Null Deviance:     1713  
Residual Deviance: 1486  AIC: 1490 
AUC: 0.76766 

Edge Color Value 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                             2.378                              -2.933   

Degrees of  Freedom: 1235 Total (i.e. Null);  1234 Residual 
Null Deviance:     1713  
Residual Deviance: 1657  AIC: 1661 
AUC: 0.6268447 

Edge Color Saturation 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                           -0.7934                              2.1894   

Degrees of  Freedom: 1235 Total (i.e. Null);  1234 Residual 
Null Deviance:     1713  
Residual Deviance: 1586  AIC: 1590 
AUC: 0.6689592 
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Edge Color Hue 

Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                           -0.2411                              0.6840   

Degrees of  Freedom: 1235 Total (i.e. Null);  1234 Residual 
Null Deviance:     1713  
Residual Deviance: 1700  AIC: 1704 
AUC: 0.5468543 

Edge Pattern 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                             (Intercept)  eval(parse(text = singleVariable))dotted   
                                 -0.6274                                   -0.0759   
 eval(parse(text = singleVariable))solid   
                                  0.8782   

Degrees of  Freedom: 1235 Total (i.e. Null);  1233 Residual 
Null Deviance:     1713  
Residual Deviance: 1667  AIC: 1673 
AUC: 0.5834322 

Network 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                           (Intercept)  eval(parse(text = singleVariable))rn10   
                             1.252e-01                              -6.062e-02   
eval(parse(text = singleVariable))rn11  eval(parse(text = singleVariable))rn12   
                            -4.735e-01                              -1.696e-01   
eval(parse(text = singleVariable))rn13  eval(parse(text = singleVariable))rn14   
                            -2.877e-01                              -6.360e-01   
eval(parse(text = singleVariable))rn15  eval(parse(text = singleVariable))rn16   
                             2.899e-02                               4.189e-02   
eval(parse(text = singleVariable))rn17  eval(parse(text = singleVariable))rn18   
                            -2.922e-01                              -3.934e-01   
eval(parse(text = singleVariable))rn19   eval(parse(text = singleVariable))rn2   
                            -8.071e-02                               9.798e-02   
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eval(parse(text = singleVariable))rn20  eval(parse(text = singleVariable))rn21   
                             1.148e-15                               2.670e-03   
eval(parse(text = singleVariable))rn22  eval(parse(text = singleVariable))rn23   
                             8.615e-02                              -3.387e-01   
eval(parse(text = singleVariable))rn24  eval(parse(text = singleVariable))rn25   
                            -6.360e-01                               2.113e-01   
eval(parse(text = singleVariable))rn26  eval(parse(text = singleVariable))rn27   
                             2.626e-01                              -6.800e-02   
eval(parse(text = singleVariable))rn28  eval(parse(text = singleVariable))rn29   
                             4.919e-02                              -2.122e-01   
 eval(parse(text = singleVariable))rn3  eval(parse(text = singleVariable))rn30   
                            -1.252e-01                              -1.183e-02   
eval(parse(text = singleVariable))rn31  eval(parse(text = singleVariable))rn32   
                            -1.252e-01                               1.468e-01   
eval(parse(text = singleVariable))rn33  eval(parse(text = singleVariable))rn34   
                            -8.071e-02                               1.112e-01   
 eval(parse(text = singleVariable))rn4   eval(parse(text = singleVariable))rn5   
                            -1.717e-01                               1.625e-01   
 eval(parse(text = singleVariable))rn6   eval(parse(text = singleVariable))rn7   
                             9.798e-02                               7.551e-02   
 eval(parse(text = singleVariable))rn8   eval(parse(text = singleVariable))rn9   
                            -7.387e-02                              -4.766e-01   

Degrees of  Freedom: 1235 Total (i.e. Null);  1202 Residual 
Null Deviance:     1713  
Residual Deviance: 1699  AIC: 1767 
AUC: 0.5591578 

Edge Length 
Call:  glm(formula = selected ~ eval(parse(text = singleVariable)),  
    family = binomial(link = "logit"), data = dataset[trainingRows,  
        ]) 

Coefficients: 
                       (Intercept)  eval(parse(text = singleVariable))   
                           -0.4845                              1.0561   

Degrees of  Freedom: 1235 Total (i.e. Null);  1234 Residual 
Null Deviance:     1713  
Residual Deviance: 1708  AIC: 1712 
AUC: 0.5456128 

All Edge Variables From Above In a Single Model 
Call:  glm(formula = selected ~ ., family = binomial(link = "logit"),  
    data = expd.nodes.1[trainingRows, -6]) 

Coefficients: 
            (Intercept)         nodeshapeellipse        nodeshapeheptagon   
              -3.146654                 0.322553                -0.180711   
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       nodeshapehexagon         nodeshapeoctagon        nodeshapepentagon   
              -0.130616                 0.568832                 0.476437   
     nodeshaperectangle        nodeshaperhomboid  nodeshaperoundrectangle   
               0.191983                -0.457952                 0.121812   
          nodeshapestar        nodeshapetriangle             nodeshapevee   
              -0.141067                 0.973111                 0.481718   
            networkrn10              networkrn11              networkrn12   
               0.341244                -0.067945                 0.413010   
            networkrn13              networkrn14              networkrn15   
              -0.598890                -0.608173                -0.499902   
            networkrn16              networkrn17              networkrn18   
              -0.626762                -0.390869                -0.942892   
            networkrn19               networkrn2              networkrn20   
               0.129413                -0.189877                -0.007863   
            networkrn21              networkrn22              networkrn23   
              -0.743026                 0.107063                 0.233762   
            networkrn24              networkrn25              networkrn26   
               0.064747                 0.042155                -0.737940   
            networkrn27              networkrn28              networkrn29   
               0.244629                -0.674022                -0.487793   
             networkrn3              networkrn30              networkrn31   
              -0.606290                -0.787151                -0.750390   
            networkrn32              networkrn33              networkrn34   
              -0.103603                -0.100025                -0.163747   
             networkrn4               networkrn5               networkrn6   
              -0.472530                -0.324130                -0.323797   
             networkrn7               networkrn8               networkrn9   
              -0.233620                -0.448732                -0.051007   
             nodeheight             numConnected          nodeborderwidth   
               0.103860                 0.765371                 0.147538   
                nodeHue           nodeSaturation                nodeValue   
              -0.292854                 1.076880                -1.979983   

Degrees of  Freedom: 1235 Total (i.e. Null);  1185 Residual 
Null Deviance:     1713  
Residual Deviance: 1507  AIC: 1609 
AUC: 0.7253879 

10.9. Appendix I: Links to code and datasets 

• Code for systematic review (Chapter 3): 
o https://github.com/ngopal/systematic-review-network-figures 

• Code for perception study conducted in (Chapter 7):  
o https://github.com/ngopal/VisualEncodingEngine
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