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Gene fusions have long been known to drive cancer. Initial discovery of gene fusions was 

opportunistic, and functional assessment was done individually and experimentally. There is no 

comprehensive systems biology approach to understanding the impact of gene fusions on the 

signaling networks within tumor cells. An integrative computational approach was taken to 

achieve a better understanding of gene fusions and their complex influence on pathways and 

interaction networks in the context of lung cancer. Using well-studied fusions and publicly 

available gene expression data, the effect of fusion events on the expression pattern of gene 

networks revealed unique differences in tumors with gene fusions, tumors without gene fusions, 

and normal samples. This approach identifies gene expression signatures associated with specific 

fusions, and provides a model for integrating experimental and pathway data to better understand 

the biology of a fusion genes and their roles in oncogenesis. 
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INTRODUCTION 
 

The “hallmarks of cancer” were proposed over a decade ago and have provided an 

invaluable conceptual framework for the study of oncology1. These hallmarks represent crucial 

modifications in cell function that result in malignancy: sustaining proliferative signaling, 

deregulating cellular energetics, resisting cell death, and activating invasion and metastasis, among 

others1. Underlying many of these attributes is genomic instability, the increased rate of mutations 

during the cell cycle and the cause of chromosomal aberrations known as fusion genes2. Gene 

fusions occur when two genes merge to form a hybrid gene either by translocations, interstitial 

deletions, or chromosomal inversions [Fig. 1].  Fusions can lead to tumorigenesis by activating 

cancer-causing proto-oncogenes either through translocating them downstream of a strong 

promotor or altering its protein structure3. In recent years, gene fusions have been increasingly 

detected among common solid tumors, and have been found to play an important role in lung 

adenocarcinoma4. These discoveries underscore the clinical importance of fusion genes, and 

suggest their potential use in diagnosis, prognosis, and personalization of cancer treatment5.  

   

Figure 1. Gene Fusion 

Formation (A) Chromosomal 

translocation, which is the 

rearrangement of parts between 

non-homologous 

chromosomes. (B) Interstitial 

deletions, are deletions that do 

not involve the terminal end of 

the chromosome. (C) 

Chromosomal inversions, 

where the chromosome is 

reversed end to end47. 
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Gene Fusions 

Gene fusion research started with the discovery of the “Philadelphia Chromosome” in the 

early 1980s, which is a fusion of the BCR and ABL1 genes, that results from a translocation 

between chromosomes 9 and 224. This fusion presents in 90% of patients with chronic myeloid 

leukemia (CML)4.  Initially, identification of gene fusions was performed via fluorescence in situ 

hybridization (FISH) and real-time polymerase chain reaction (RT-PCR). More recently, next-

generation sequencing and DNA microarrays can detect fusions in a high-throughput manner. 

Most studies involving fusions focus on detection using RNA-seq or whole genome sequencing 

data (WGS)6,7,8. In contrast, few studies have gone beyond detection, and explored the cellular 

impacts of gene fusions. Latysheva et al., merged molecular characterization, identification, and 

clinical significance of gene fusions, and found that fusions inhabit central positions in the 

interaction networks of clinically relevant genes8,9.  Their approach shows that we can leverage 

existing knowledge resources to holistically understand the overarching biological principles that 

exist between fusions.  

Molecular pathways  

Pathways and interaction networks are an important framework for understanding the 

complexities of cancer8,9,10. A pathway is a series of interactions among different molecules within 

the cell that leads to a modification of the cell or the creation of a product10. The most common 

pathways studied are involved in the regulation of gene expression, metabolism, and signal 

transduction10. Often, abnormalities can wreak havoc on tightly regulated pathways such as 

apoptosis and replication, key players in cancer8,9. The regulation of these pathways is critical to 

keep healthy cells alive and eliminate aberrant cells11.  
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Gene Interaction Networks 

A gene interaction network is a representation of the dyadic interactions among a group of 

genes, where each dyad sums the physical and functional relationships between a pair of genes12. 

The impacts of gene fusions may not be limited to canonical pathways, and may have a more subtle 

influence on the larger gene interaction network13. The more we understand disease-state gene 

interactions, the more we can understand the role of novel gene fusions and predict their function. 

The impact of gene fusions on gene network interactions has been understudied8,9. Thus 

far, progress has been hindered by lack of clear functional annotations of gene partners involved 

in fusions. Typically, one of the fusion partners is an oncogene, often backed by a wealth of 

knowledge, while the other is an obscure gene only of note due to its participation in the fusion. 

However, Wu et al. leverages knowledge of gene interactions to determine gene fusions that are 

more likely to drive cancer14. They proposed a method which estimates whether a novel fusion 

will be an oncogenic driver based on the location of the partner gene in an interaction network; 

notably, hubs are more likely to drive tumorigenesis than genes at any other position in a network14.  

By leveraging the gene interaction networks and annotations of the surrounding neighbor genes, it 

can be possible to infer the functionality and effects of the unknown partner genes14.  
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GAPS IN GENE FUSION RESEARCH 
 

While the primary focus of research has been on detection of known fusions from 

sequencing data and identifying novel fusions, understanding the biology of these genomic 

abnormalities is critical. Current strategies do not leverage the vast amounts of information 

spawned by the genomic revolution. Currently there is no systems biology approach to identify 

the impact of gene fusions on cell physiology, regulatory pathways, or interaction networks.  

In addition, there is a lack of a comprehensive approach that leverages and combines the 

many existing informatic tools. There are extensive pathway databases including the Kyoto 

Encyclopedia of Genes and Genomes Pathway Database (KEGG Pathway)15,16, Reactome17, and 

Gene Ontology (GO)18, and interaction databases, most notably bioGRID13. Furthermore, there are 

interactive tools available like Cytoscape19, that allow you to integrate, analyze, and visualize gene 

network data. Finally, there are software packages and algorithms available to detect gene fusions 

from RNA-seq data, e.g. deFuse7, INTEGRATE6, and TopHat-Fusion20. While there are many 

tools that excel at individual tasks, to our knowledge, there is nothing that synthesizes them.  

Finally, pathway analysis in the presence of gene fusions requires special considerations 

because the topology of the network changes as a result of the fusion event8,9. Functions can be 

gained or lost because of the physical joining of two genes and often concomitant loss of functional 

domains, which impacts both direct and indirect interactions of these proteins with their networks. 

Gene fusions can also impact direct interactions, whether it be by novel interactions or a change 

in the regulation of an interaction. 

Characterizing gene fusions and investigating their impacts on pathways and gene 

interactions can lead to a greater understanding of the malignancies driven by these fusions as well 
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as open new avenues for treatment. Without a workflow to integrate all this information, gene 

fusions and the effects of their influence will continue to be studied individually and the 

connections between different fusions and their corresponding diseases will elude us.   

RESEARH AIMS 
 

Genomic instability has been known to be a major driving force in tumorigenesis21. The 

transformation of healthy cells to cancerous ones can vary across different types of cancer, 

however, there is a convergence on modifications that occur on basic cellular functions 

(proliferation and apoptosis)1,21. Gene fusions resulting in alterations to proliferation and cell death 

pathways should be detectable not only at the sequence and gene expression level but also at the 

pathway and interaction network level. Therefore, we hypothesize that computational methods can 

characterize the impact that gene fusions have on pathways. 

To evaluate this hypothesis, we developed a comprehensive computational workflow to 

investigate gene fusions. Our approach evaluates an individual gene fusion by identifying the 

differentially expressed genes it causes, defining the regulatory pathways that are unique to these 

genes, categorizing their local interaction network, and showing the gene expression changes 

between those interactions [Fig. 2]. We believe our results may shed light on how gene fusions 

effect the regulatory pathways and gene interaction networks that lead to cancer. 
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To determine the validity of the approach proposed, we chose to focus on one particular 

fusion, EML4-ALK in lung adenocarcinoma (LUAD). It is both clinically impactful and 

biologically relevant and is among the most established fusions in lung cancer as it presents in 

approximately 4-6% of LUAD patients 22.  In addition,  The Cancer Genome Atlas (TCGA)23 has 

a well annotated and comprehensive LUAD RNA-seq dataset.  

To investigate this approach and hypothesis, we propose the following research questions: 

1. Are fusion samples distinct from normal tissue and fusion-free tumors? 

2. How do gene fusions change the expression of pathways? 

3. How do fusions change the interaction of pathways? 

 

Figure 2. Gene Fusion Analysis Workflow. We developed a comprehensive computational 

workflow to investigate gene fusions. Our approach involves three comprehensive steps: 

characterize, analyze and synthesize. In the characterize step, we use multiple informatics tools to 

identify differentially expressed genes from RNA-seq data, and cluster by different phenotypes. 

We then investigate these genes to determine the pathways and interactions they are involved 

with by using Gene Set Enrichment Analysis (GSEA)29. Finally, we synthesize the data by 

visualizing the interaction networks, evaluating for pathway changes due to the fusion event and 

assessing the clinical impacts. 
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The goal of this work is to address these questions using the EML4-ALK fusion in lung cancer as 

a proof-of-principle for the application of a computational approach for analyzing the impact of 

gene fusions on functional networks in cancer signaling. 

METHODS 
 

The Cancer Genome Atlas & Fusion Detection 

The Cancer Genome Atlas (TCGA) was used as a starting point to gather RNA-seq datasets 

for lung adenocarcinoma (LUAD)23. TCGA is a large open source database of de-identified 

clinical and biological data for over 11,000 patients23. The LUAD subset consisted of 594 patients, 

including 59 patients matched normal tissue samples.  

We also explored different fusion-calling algorithms to determine presence of fusions in 

this RNA-seq dataset. After reviewing several well-known algorithms, aided by the comprehensive 

evaluation of 12 different fusion detection software packages provided by Kumar et al, the Pipeline 

for RNA sequencing Data Analysis (PRADA) was selected for its high sensitivity, specificity, and 

computational efficiency24,25,26. The algorithm detects fusions by identifying discordant read pairs 

and evaluating fusion junction spanning reads [Fig. 3]25,26. We utilized this algorithm and the 

accompanying public dataset of known and novel fusions the authors identified in TCGA25,26.  
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Differential Gene Expression 

The gene expression profiles from the RNA-seq data were analyzed using DESeq227. The 

differential gene expression analysis was performed on the raw data, as per recommendations of 

the27 authors, and the cutoffs for the main parameters, fold change, and adjusted p-value, were 

modified based on the different analyses [see Appendix for R code]. Differentially expressed genes 

were grouped using complete linkage hierarchal clustering and visualized using pheatmap28 to 

potentially reveal expression patterns associated with fusions.  

Figure 3. Detection of Fusion Transcripts using PRADA Algorithm. (A) Examples of 

sequencing: Single-end and (B) Paired-end. (C) The PRADA algorithm identifies fusion 

transcripts by detecting discordant read pairs and appraising apparent fusion junction 

spanning reads25,26. 
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Pathway and Interaction Network Analysis 

To determine functional patterns of differentially expressed genes, we ran gene set 

enrichment analysis (GSEA)29, a computational method that compares curated gene lists from 

MSigDB (Molecular Signatures Database) to experimental datasets29. The primary result of GSEA 

is the enrichment score (ES), showing the amount by which a predefined gene set is represented 

at the top or bottom of a list of the genes ranked by differential expression29 [Fig. 4]. A positive 

score will mean that genes over-represented in that gene set are upregulated (top of the ranked list) 

in your dataset and a negative that genes over-represented in that gene set are downregulated 

(bottom of the ranked list)29. 

 

 

Figure 4. Example GSEA Result. GSEA example showing the enrichment score (ES), 

showing the amount by which a predefined gene set is represented at the top or bottom of a 

ranked list of genes. This is calculated by walking down the ranked list of genes, increasing 

and decreasing a running-sum statistic when a gene either is or is not in one of those curated 

lists29. 
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To determine the interaction networks we used a software package called biomaRt30, that 

accesses BioGRID13, a curated database of publications for protein and genetic interactions. Using 

this tool, we found the known interaction partners of our differentially expressed genes and 

visualized them using Cytoscape19. Cytoscape is an interactive visualization tool that allows the 

user to incorporate interaction network information and gene expression profiles19. Finally, 

effected pathways were identified using the list of differentially expressed genes and their 

interaction partners to query three pathway databases: Reactome17, KEGG Pathway15,16, and Gene 

Ontology (GO)18.  

Exploratory Analysis - Clinical Prediction Models 

 

We analyzed clinical metadata derived from the LUAD patient dataset to determine the 

effect of fusion status on patient survival. Our initial set contained 594 patients, and after filtering 

for missing information there were 516 patients. We fit a logistic regression model to determine if 

fusion status would better predict survival of lung cancer patients.   

𝑙𝑜𝑔𝑖𝑡(𝑝) =  𝑏0 + 𝑏1𝑋1 … + 𝑏𝑛𝑋𝑛 

where p is the probability of a characteristic, the logit transformation is defined as the log odds: 

𝑜𝑑𝑑𝑠 =
𝑝

1 − 𝑝
=

𝑃(𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐)

𝑃(𝐴𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐)
 

and 

𝑙𝑜𝑔𝑖𝑡(𝑝) = ln (
𝑝

1 − 𝑝
) 
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Based on the number meaningful features available we initially included five clinical 

variables in our model: fused/non-fused, age, tissue site, sample type, days to event, and tumor 

stage. We used k-fold cross-validation to partition the dataset, and then implemented step-wise 

regression on the training set to build the model, an algorithmic process that determines the feature 

set based on the Akaike information criterion (AIC). AIC estimates the quality of each model 

relative to all other potential models for a given dataset.  We assessed the quality of our model 

against the iteratively partitioned test dataset. We also tested the model using an analysis of 

variance (ANOVA). Here the difference between the null and residual deviance reveals the degree 

to which a model explains the data in comparison to the null model. Finally, we compared whether 

the inclusion of fusion status in the model increased prediction. We tested the model with and 

without fusion status and calculated the prediction accuracy, ROC curves and AUC for both 

scenarios.   
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RESULTS  
 

The Cancer Genome Atlas & Fusion Detection 

The PRADA25 algorithm identified many fusions, both novel and known, within the LUAD 

RNA-seq dataset from TCGA. PRADA25 also reveals the presence of gene fusions in matched 

normal tissue samples, suggesting many fusions do not have an impact on tumorigenesis. In our 

analysis, we used all normal tissue samples, regardless of the presence of fusions.  To determine 

how fusion tumors are distinct from healthy tissue, we compared EML4-ALK fusions against 

normal samples. To further identify the differences between fusion and non-fusion tumors, we 

compared EML4-ALK positive tumors against those without the fusion. [Fig. 5].  

Status Tumor Normal Total 

Fusions 370 19 389 

  
EML4-ALK 
Fusions* 

5 0 5 

Non-Fused 146 40 186 

Total 521 59 580 

 

 

Figure 5. Characterization of Samples within the LUAD Dataset. This table shows how 

many unique patient samples there are within each sample type. The total number of unique 

patient samples is 580, the original dataset however was 594 samples due to the inclusion of 

some technical replicates. *EML4-ALK fusions are a specific subset of fusions within the 

LUAD data. 
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Differential Gene Expression 

EML4-ALK Fusion Tumors Compared to Normal Samples 

Our first analysis compared the RNA-seq data of 59 normal patient samples to 5 EML4-

ALK positive samples. Differential gene expression analysis using DESeq227 found 894 

differentially expressed genes with more than a 4-fold change and an adjusted p-value of less than 

0.001. Unsupervised hierarchal clustering of the 894 genes, using normalized log2 transformed 

counts showed distinct patterns between fusions and non-fusions [Fig. 6].   

Figure 6. Heatmap of Fusion Containing Tumors Compared to Normal Samples. 

Unsupervised clustering was done on 894 differentially expressed genes between 59 normal 

tissue samples and 5 EML4-ALK fusion samples. The unsupervised clustering shows that 

four fusion samples on the right have a distinct profile when compared to the normal samples. 
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In fact, hierarchal clustering of the patient samples grouped all but one of the fusions as 

distinctly separate from the normal samples. A closer inspection of the top differentially expressed 

genes reveals several cohesive biological functions [Fig. 7]. Heat shock proteins (e.g. Hsp90AB1) 

are shown to be up-regulated and hemoglobin beta (HBB) is down-regulated.  

 

 

 

Figure 7. Differential Expression of Heat Shock Proteins and Hemoglobin in EML4-

ALK Fusion Samples. Unsupervised clustering was done on 894 differentially expressed 

genes between 59 normal tissue samples and 5 EML4-ALK fusion samples. These are two 

highlighted biological functions that were found to be differentially expressed in four of 

fusion samples when compared to the normal samples. 
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EML4-ALK Fusion Tumors Compared to Non-Fused Tumors 

The second analysis compared EML4-ALK fusion positive tumors to fusion-negative 

tumors. There were 146 patients with no fusions in their tumors and 5 patients that had the EML4-

ALK fusion in their tumor sample. We classified differentially expressed genes as those that had 

more than a 2-fold change and an adjusted p-value of less than 0.05. The 114 identified genes were 

clustered in a similar manner using normalized and log2 transformed counts [Fig.8]. Perhaps more 

striking that our previous comparison, clustering could group all fusion tumors as a top-level group 

distinct from all other normal samples except for one normal sample. These results suggest a 

substantive biological distinction between even fusions positive tumors and fusion negative 

tumors.  

 

 

 

 

 

Figure 8. Heatmap of Fusion 

Containing Tumors Compared to 

Tumors without any Fusions. 

Unsupervised clustering was done 

on 114 differentially expressed 

genes. The unsupervised clustering 

shows that the five EML4-ALK 

fusion samples on the left have a 

distinct profile when compared to 

tumor samples without any fusions 

present. 
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Several genes highlight the differences between tumors with fusions and those without [Fig. 9]. 

CHI3L1, and to no surprise, ALK stand out in this expression profile, and show a clear increase in 

expression with the fused patient samples compared to the non-fused. ALK is the oncogene in the 

EML4-ALK fusion and is the most differentially expressed gene out of the entire 114 gene list and 

had an incredible 14.7-fold-change and an adjusted p-value of 1.23 × 10-7.  

 

 

 

 

Figure 9. Differential Expression of CHI3L1 and ALK in EML4-ALK Fusion Samples. 

Unsupervised clustering was done on 114 differentially expressed genes between 146 non-

fused tumor samples and 5 EML4-ALK fusion samples. CHI3L1 and ALK that were found to 

be among the most differentially expressed genes in five fusion samples when compared to 

samples without any fusions. 
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Pathway and Interaction Network Analysis 

EML4-ALK Fusion Tumors Compared to Normal Samples 

To analyze the over-arching functional categories of the differential expressed genes, we 

GSEA used on the 894 significant genes and their normalized count data to determine which 

predefined gene set had the highest enrichment score (ES) and the most correlated genes. We found 

that the ribonucleoside diphosphate metabolic process and the highest ES for the fusion phenotype, 

indicating a strong representation of that gene set in the upregulated genes of the fusion phenotype 

[Fig. 10]. Other enriched pathways include the nucleoside diphosphate metabolic process, 

nucleotide phosphorylation, and ADP metabolic process, all of which are involved in DNA and 

RNA synthesis, regulation, and repair.31,32  

 

Figure 10. Gene Set Enrichment 

Analysis (GSEA) on 894 

Differentially Expressed Genes 

Between Normal and EML4-ALK 

Fusion Samples. GSEA results 

showing the enrichment score (ES), 

showing the amount by which this 

ribonucleoside diphosphate 

metabolic process gene set is 

represented in the 894-ranked list of 

genes. This positive ES means that 

there is an over-representation of 

upregulated genes in the fusion 

phenotype. 
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To explore enriched gene sets and pathways beyond GSEA, we utilized the KEGG 

Pathway15,16 and GO18 databases to see if the 114 differentially expressed genes were associated 

with any specific pathways. We found that 81 genes out of the list that were associated with 

mitogen-activated protein kinase (MAPK) family signaling cascades, and 87 genes that were 

associated with receptor tyrosine-protein kinase erbB4 (ERBB4) signaling pathways. Both 

pathways involve tyrosine kinases which are integral to regulation of cell growth, differentiation 

and survival. 

EML4-ALK Fusion Tumors Compared to Non-Fused Tumors 

We conducted a similar gene set enrichment on the differentially expressed genes between 

the ELL4-ALK fusion positive tumors and fusion free tumors. The analysis showed positive 

enrichment for band 22 on chromosome 16 [Fig. 11]. The specific genes at this locus - TERF2, 

CDH8, TK2, DDX19A, LRRC29 and HP – were all found to be positively correlated with the 

EML4-ALK fusion type.  

Figure 11. Gene Set 

Enrichment Analysis (GSEA) 

on 114 Differentially 

Expressed Genes Between 

EML4-ALK Fusion Samples 

and Non-Fused Tumor 

Samples. GSEA results 

showing the enrichment score 

(ES), showing the amount by 

which chromosome 16, band 22 

gene set is represented in the 

114-ranked list of genes. This 

positive ES means that there is 

an over-representation of 

upregulated genes in the fusion 

phenotype. 
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Due to the small number of differentially expressed genes in this analysis, querying 

KEGG15,16 and GO18 with our gene list did not reveal any major pathways, and returned a widely-

varied list processes. However, the smaller gene list allowed us to explore the gene interaction 

network by identifying interaction partners of all the genes. The previous gene list of 894 genes 

proved too large to cohesively analyze through this method.  

The 114 differentially expressed genes were evaluated by biomaRt30 to find interaction 

partners associated with them from the repository bioGRID13. There were 291 unique genes found 

to interaction with the list of genes comparing fusion tumor samples to non-fused tumor samples. 

Some genes were also duplicated due to interaction with itself and other genes already within the 

differentially expressed gene list.  

To visualize differentially expressed genes and their interaction network, the 114 genes 

and their interaction partners were plugged into Cytoscape19 [Fig. 12].  While there are some 

isolated interactions, most genes form a single network. Within the main network, there were two 

main clusters of genes, suggesting broader and more important role for these hubs [Fig.13]. 
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Figure 12. Interaction Network for Comparing EML4-ALK Fusion Samples to Non-

Fused Tumor Samples: All Interactions. Using the 114 differentially expressed gene list 

and known interaction partners we visualized the interaction network in Cytoscape19. While 

there are some isolated interactions, most genes forma a single network. 
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Figure 13. Interaction Network for Comparing EML4-ALK Fusion Samples to Non-

Fused Tumor Samples: Main Cluster. Using the 114 differentially expressed gene list and 

known interaction partners we visualized the interaction network in Cytoscape19. Most 

interactions are isolated in the overall network but this single network stood out with the most 

interactions. The color coding shows what pathways and processes the genes are associated 

with. The genes that are colored are connected to known functional networks, and ALK is 

featured prominently at the center of a cluster of genes that are involved in the immune 

response pathways and the MAPK pathways. 
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In this visualization, ALK and SQSTM1 are featured prominently at the center of these clusters, 

and are identified as being involved in immune response pathways, MAPK pathways, and NF-

κB pathways. We also observed a smaller network that included many inflammatory and 

immune response genes, like chemokine ligands (CCL), and VCAN. However, aside from the 

main network cluster, almost all other genes had single interactions.  

Exploratory Analysis - Clinical Prediction Models 

 

In this exploratory analysis, we examined if fusion genes have an additional impact on 

patient survival. We extracted the paired clinical data from the TCGA LUAD dataset, and found 

the mean survival time within this cohort to be 2.2 years, a mean follow-up time of 2.4 years, and 

there a max follow-up time of 19.9 years. 

The best logical model identified using k-fold cross validation consisted of the following 

features: fusion status, patient age, days to event, and tumor stage. Validating the model on our 

test dataset, we found that the cancer stage is not a statistically significant feature in the prediction 

of patient survival. Our findings suggest that the model would have performed almost as well 

without tumor stage included as a feature.  

 The deviance table generated through ANOVA was used to assess the fit of the model 

compared to the null model, i.e. the hypothesis that none of the features are useful predictors of 

survival [Fig. 14]. A lower value for the residual deviance indicates a stronger prediction model. 

All the model variables were shown to significantly reduce the residual deviance. A less significant 

p-value here indicates a variable is not as essential for explaining variance in the data.  
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Feature 
Degrees of 

freedom 
Deviance Residual Degrees of Freedom 

Residual 

Deviance 
Pr(>Chi) 

Null   392 458.22  

Age 1 3.97 391 454.25 0.04632 

Days to Event 1 47.418 390 406.83 5.73E-12 

Tumor Stage 7 46.227 383 360.61 7.90E-08 

Fusion Status 1 4.161 382 356.45 0.04136 

 Including fusion status improved the prediction of survival for LUAD patients from an 

accuracy of 69% to 75%.   In addition, the ROC curve shows the model has high sensitivity and 

specificity [Fig. 15] with an area under the curve (AUC) of 0.857. Based on this preliminary model, 

we found that including fusion status slightly increases the accuracy and the predictability of 

survival in patients with lung adenocarcinoma.    

Figure 14. ANOVA: Analysis of Deviance Table. This table assesses the model strength by 

comparing the null deviance and the residual deviance for the inclusion of each feature to the 

null model. A lower the value for the residual deviance indicates a stronger prediction model.  

 

Figure 15. Receiver Operating 

Characteristic (ROC) curve. The 

prediction model was fit on the 

test data set and an ROC curve 

was used to evaluate its sensitivity 

and specificity. The true positive 

rate (sensitivity) is plotted against 

the false positive rate (100-

specificity). 
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DISCUSSION 
 

Many studies have shown that EML4-ALK drives tumorigenesis, making it a prime 

candidate for a proof-of-principle study in this thesis. We strived to explore the impact of this 

fusion beyond its mere presence in LUAD, and determine the impact it has on global gene 

expression patterns, pathways, and gene interaction networks, to demonstrate an informatics 

approach to understanding fusion driven biological changes. We analyzed the global expression 

profiles of the 594 LUAD tumor samples and 59 normal tissue samples found in TCGA database. 

To understand the differences between healthy tissue and fusion positive tumor biology, we 

compared the RNA-seq data of EML4-ALK tumors against normal tissue, and to more critically 

understand the difference between fusion-positive tumors and non-fusion tumors, we compared 

ELM4-ALK positive tumors against those with no detectable fusions.  

How do Gene Fusions Change the Expression of Pathways? 

The results of the unsupervised clustering and GSEA for both comparisons, show clear 

differences in the expression profiles and the pathways of differentially expressed genes. In 

comparing normal to EML4-ALK samples there was a striking difference between the 5 fused 

tumor samples and the 59 normal samples [Fig. 6], and clustering revealed up-regulation of heat 

shock proteins and down-regulation of hemoglobin beta [Fig. 7].  

The upregulation of heat shock proteins has been shown to be indicative of poor prognosis 

in some cancers, in particular - gastric, prostate, and breast cancer33. Heat shock proteins are also 

known to elicit a response by the immune system and have been implicated in tumor proliferation, 

differentiation, and invasion1,33,34. Specifically, Hsp90 and its partners are chaperone proteins that 

function to maintain other vital tumor-promoting client proteins 33,34.  
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Decreased HBB has been identified in anaplastic thyroid cancer (ATC)35,36, and 

malignancies in general have been associated with global dips in hemoglobin level35. HBB is 

located on chromosome 11 band 15, a known tumor suppressing locus that is susceptible to 

genomic instability and  loss of heterozygosity (LOH),  where a wild-type allele is lost and the cell 

is left with a disease-causing allele36.  

The GSEA results comparing fusions against normal tissue samples showed that a high 

number of differentially expressed genes are involved in the ribonucleoside diphosphate metabolic 

process [Fig. 10]. Ribonucleoside diphosphate reductase is a key enzyme in formation of 

deoxyribonucleotides and its upregulation would seem to indicate higher rates of replication, a 

known feature of cancerous cells31,32. Most of the identified pathways appear to be involved in 

DNA/RNA synthesis, regulation, and repair. 

Comparing the fusion-free tumor samples to EML4-ALK fusions also showed a distinct 

profile for the 5 fused tumor samples [Fig. 8]. The gene CHI3L1 showed significant expression 

changes, and has been characterized as a glycoprotein associated with inflammation processes in 

response to infections37. It has been associated with poor prognosis in breast cancer, and found to 

be up-regulated in physically large tumors, although its function is not completely clear38. ALK, 

the namesake member of the oncogenic EML4-ALK fusion is also clearly up-regulated in fusion-

positive patient samples compared to non-fused samples. Out of all 114 differentially expressed 

genes, it is both the most significant and most highly up-regulated gene. The significantly large 

increase in expression of ALK is a result of translocation to the EML4 promoter, and drives the 

oncogenic properties of the EML4-ALK fusion gene22. It is thought that EML4 is incidentally 

involved in the oncogenic properties of the fusion appropriation of its promotor, and is otherwise 

characterized as an echinoderm microtubule-associated protein involved in microtubule 
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formation22. ALK is an anaplastic lymphoma kinase, which is a receptor tyrosine kinase, these 

kinases are cell surface receptors that bind and respond to growth factors play a huge role in 

regulation of cell growth, differentiation and cell survival39. The EML4-ALK fusion causes 

dimerization of the tyrosine kinase without a ligand binding to it leading to the unregulated over-

expression of the protein22. This in turn activates many pathways, including MAPK, JAK/STAT 

pathway, the PI3K/Akt  pathway, which are involved in cell proliferation, differentiation, and cell 

survival, leading to its oncogenic power22. 

GSEA on the 114-gene list enriched for chromosome 16 band 22 [Fig. 10]. This otherwise 

unremarkable locus has been found to be associated with other cancer types40. Chromosome 16 is 

unusual compared to other chromosomes in that it is enriched in repetitive sequences41. It is 

believed that these repeat sequences undergo more frequent mutation events, occasionally 

resulting in chromosomal rearrangements. However, this chromosome does not coincide with 

either partner of the EML4-ALK fusion41. Nevertheless, the specific genes at this locus - TERF2, 

CDH8, TK2, DDX19A, LRRC29 and HP – are all upregulated in ELM4-ALK fusions. TERF2 

codes for a telomere repair protein, which may hint at its role in mitigating genomic degradation 

during the rapid division of cancer cells42.   

Our results indicate the expression of different pathways changes in samples with the 

EML4-ALK fusion genotype in comparison to both normal and fusion-free tumor tissue. These 

differences lead to ELM4-ALK fusions clustering distinctly from other samples. Looking deeper 

into the differentially expressed genes, there are different pathways and processes that are enriched 

based on these different phenotypes. The fusion phenotype is enriched in pathways that regulate 

the synthesis of DNA and its repair, and in locations that are highly repetitive and unstable. It also 
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relates to increasing genomic instability, as instability can both cause and result in shortening 

telomeres, which can be in part counteracted by the function of TERF242.  

How do Gene Fusions Change the Interaction of Pathways? 

While the introduction of gene fusions causes dysregulation of pathway components, it is 

unclear whether impacted pathways alter their functions and interact with new components. 

Comparing the EML4-ALK fusion tumors to normal samples, a significant number of 

differentially expressed genes were associated with MAPK family signaling cascades and ERBB4 

signaling pathways. The MAPK pathway includes many signaling molecules like ERK, Ras, and 

Raf, which are normally activated by growth factors binding to the receptor tyrosine kinases43. 

Under normal conditions, MAPK plays a vital role in regulation of cellular growth and 

proliferation43. However, an increase in expression of MAPK genes would imply the dysregulation 

of the pathway, and activation of signaling has caused an increased or uncontrolled cell 

proliferation43. ERBB4, also known as HER4, is a member of the EGFR subfamily of receptor 

tyrosine kinases and once activated induces a variety of cellular functions including cell 

differentiation44. Studies have shown that mutations to this pathway cause uncontrolled signaling, 

have been found in other cancer types, including non-small cell lung cancer44. 

Cell line studies in non-small cell lung cancer with EML4-ALK fusions have shown that 

the fusion drives the phosphorylation of Akt and ERK signaling molecules45. Akt is involved in 

the survival-associated PI3K-Akt pathway and ERK is in the MAPK pathways, which both have 

longstanding associations with many cancer types because of their involvement in many cellular 

functions that control growth, proliferation and differentiation22,43.  While there is not a definitive 

answer, EML4-ALK might be upstream of STAT3 phosphorylation22. This would mean the 
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activation of the JAK-STAT pathway, that is involved in transcription and expression of genes 

involved in apoptosis, immune response and proliferation22.  

Interaction network analysis and Cytoscape19 visualizations of the comparison of EML4-

ALK fusion and fusion-free tumors showed a formation of a large interconnected network with a 

limited number of isolated clusters [Fig. 12 & 13].  It also showed ALK was centrally located in 

the main hub of the large network, surrounded by genes involved in immune response, MAPK and 

NF-κB. Although, it is doubtful that the immune response is effected in some way due to the gene 

fusion, novel antigens due to genetic rearrangements may cause inflammation or recruit the 

immune system4,5. In fact, expression of NF-κB, a transcription factor, is typically found in  

inflammatory and immune responses 46. In addition, Meylan et. al demonstrated the role of the 

transcription factor in tumor development by showing that loss of oncogenes p53 and upregulation 

of KRASG12D resulted in NF-κB pathway activation46.  

Within this study, we found many of the same signaling pathways: MAPK, JAK-STAT 

pathway, the PI3K-Akt, arising in different parts of our analyses.  The interactions of these critical 

signaling pathways suggest an underlying coregulation, and ultimately dysregulation due to the 

EML4-ALK fusion. 

FUTURE WORK 
 

While we gained crucial insight into fusion biology, there were several key limitations in 

our analyses. First, our focus was on EML4-ALK, though other known and novel fusions have 

been described in the literature. During our literature review of well characterized fusions, we 

curated a list of 167 gene fusions, their functions, and pathway information. Of them, we believe 

the BCR-ABL1 and CD74-ROS1 fusions are promising for a follow-up study because they are 
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well annotated genes individually and fused. Each of the genes in the fused pair are involved in 

different pathways and have very different functions.  

Second, the TCGA dataset only had a small number (N=5) of patients with EML4-ALK, 

though this fusion was the most abundant. It suggests that fusions both vary in partners, and are 

non-homogenous across patients and cancers. To overcome this, we could incorporate multiple 

fusions as well as other cancers, drawing from the larger TCGA database. In addition, we could 

leverage the Genotype-Tissue Expression (GTEx) project to gather additional tissue specific gene 

expression data.  

Third, we did not explore overlaying expression data on known pathways, which would 

shed light on how precisely pathways are changed by fusions. Such an analysis might reveal how 

changes in metabolic flux translate into biological significance, and provide more insight into how 

excess products from one pathway go on to affect other pathways.   

This research contributes to the fields of cancer biology and bioinformatics by taking 

preliminary steps in analyzing gene fusions and their impacts on pathways. We found many 

common themes in differentially expressed genes, and their effect on critical cellular functions. 

Our approach could be generalizable and scalable for analyzing many other gene fusions quickly 

and efficiently.  Translating this analytical workflow into an automated cloud driven pipeline 

would make it accessible to the broader research and clinical community. And while our approach 

only utilizes RNA-seq and clinical data, other data sources such as proteomics and metabolomic 

data could be incorporated to further strengthen the system biology approach we take. 
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CONCLUSIONS 
 

 Advancements in next-generation sequencing technology have made gene fusions easier 

to detect. Beyond identification, only a handful of studies have been performed to understand the 

function of specific fusions. A comprehensive approach, leveraging existing tools and biological 

resource databases, is necessary to further understand the complexities of fusion driven changes. 

In this research, we study the impact of gene fusions on biological pathways in the context of 

cancer, by tying together current tools to gain new insights. We used the EML4-ALK as the model 

fusion in studying the lung adenocarcinoma dataset in TCGA.  We demonstrate differences of gene 

expression and pathway regulation between healthy tissue, fusion-free tumors, and fusion-positive 

tumors. We find that ELM4-ALK fusions have discrete expression profiles, specific pathways that 

are activated or dysregulated due to the fusion and there are clear interaction networks that form 

around common biological responses. Clearly fusions have an impact not only on the pathways 

they are involved in but also the pathways that genes they interact with are involved in. Our 

approach demonstrates the potential of using large multi-omics datasets to fundamentally 

reanalyze the biological pathway changes propagated by gene fusions. 
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APPENDIX 
 

TCGA File Scrub Code 

##Code to Read the Clinical data from the JSON file 
library(jsonlite) 
library(dplyr) 
library(Hmisc) 
library(data.table) 
install.packages('Hmisc') 
# reading in the json for biospecimen 
tmp_biospecimen <- fromJSON('C:/Users/thood/Downloads/biospecimen.cart.2016-09-07T21-46-35.302439.json') 
# rbindlist of biospecimen samples for inspecting sample_type 
tmp_biospecimen_2 <- tmp_biospecimen$samples %>% rbindlist() %>% data.table() 
tmp_biospecimen_2 %>% select(-portions) %>% describe() 
tmp_biospecimen_2 %>% select(c(sample_id)) %>% unique() %>% arrange(sample_id) %>% table() 
tmp_clin <- fromJSON('C:/Users/thood/Downloads/clinical.cart.2016-09-07T21-34-57.820511.json') 
tmp_clin$case_id %>% length 
tmp_clin2 <- tmp_clin$diagnoses %>% rbindlist() %>% data.table() 
tmp_clin %>% describe() 
e %>% describe() 
# index the folder of folders 
test <- list.files('C:/Users/thood/Documents/R/TCGA/TCGA-LAML') 
# to filter by specimen case_id 
tmp_biospecimen %>% select(c(case_id)) %>% arrange(case_id) %>% filter(case_id %in% 'f3c7fc84-3df8-4ff7-a378-
26ec5d9e08a5') 
 # matches with annotation entity_id for each zipped folder within each downloaded tcga folder 
# to filter by specimen sample 
tmp_biospecimen_2 %>% select(c(sample_id)) %>% arrange(sample_id) %>% filter(sample_id %in% '0a7bfd86-
45c8-4959-9374-3f5166410c27') 

TCGA File Processing 

#code to get all the TCGA RNA-seq files 
library(jsonlite) 
library(R.utils) 
library(dplyr) 
library(Hmisc) 
library(data.table) 
path<- "C:/Users/thood/Documents/R/TCGA/Unzipped" 
#remove any global variables 
rm(list=ls()) 
files <- list.files(path=path, full.names=TRUE) 
dataframe<-read.table(files[1]) 
genenames<- data.frame(dataframe[,1]) 
dataset<-lapply(files, read.table,colClasses = c("NULL", NA)) 
dataset<-cbind(genenames, dataset) 
write.csv(dataset, "C:/Users/thood/Documents/R/TCGA/All594.csv") 
workingfile<-read.csv("C:/Users/thood/Documents/R/TCGA/All594_60483.csv") 
names_files<- read.csv("C:/Users/thood/Documents/R/TCGA/FileNames.csv", header=FALSE) 
workingfile 
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DESeq2 Differential Gene Expression, Clustering, and Heatmaps 

#libraries 
library(DESeq2) 
library(tibble) 
##set working directory 
setwd("C:/Users/thood/Documents/R/TCGA/DESeq Results EML4 vs NOn-Fused") 
#remove any global variables 
rm(list=ls()) 
#read in dataset 
colData <- read.csv('clinical_recurrent.csv', row.names = 1) 
dataset <- read.csv("All594_60483_Fused_recurrent_vs_normal.csv", row.names=1) 
cleaned<-as.matrix(cleaned) 
genes <- read.csv("gene.list.csv") 
dataset_pcgenes <- dataset[dataset$dataframe...1. %in% genes$genes,] 
dataset_pcgenes_trans <- t(dataset_pcgenes) 
colnames(dataset_pcgenes_trans) = dataset_pcgenes_trans[1, ] 
dataset_pcgenes_trans = dataset_pcgenes_trans[-1, ] 
dataset_pcgenes_trans <- as.data.frame(dataset_pcgenes_trans) 
dataset_pcgenes_trans <- rownames_to_column(dataset_pcgenes_trans, var="ID") 
cleaned <- dataset_pcgenes_trans[dataset_pcgenes_trans$ID %in% rownames(colData),] 
rownames(cleaned) = cleaned[,1] 
cleaned = cleaned[,-1] 
cleaned <- t(cleaned) 
cleaned <- as.data.frame(cleaned) 
 
write.csv(cleaned, "final_data_recurrent_fusions_vs_non.csv") 
dataset<- read.csv("final_data_recurrent_fusions_vs_non.csv", row.names = 1) 
cleaned <- as.matrix(dataset) 
#check that they match 
all(rownames(colData) %in% colnames(cleaned)) 
#put both files in the same order 
cleaned <- cleaned[, rownames(colData)] 
all(rownames(colData) == colnames(cleaned)) 
#create your DESeqData set = dds 
dds <- DESeqDataSetFromMatrix(countData = cleaned, colData=colData, design = ~condition) 
dds 
#prefiltering 
dds <- dds[rowSums(counts(dds)) > 1, ] 
#creating levels for reference comparison 
dds$condition <- relevel(dds$condition, ref = "Non.Fused") 
dds$condition <- droplevels(dds$condition) 
#differential expression analysis 
#library(BiocParallel) 
dds <- DESeq(dds) 
res <- results(dds) 
summary(res) 
#look at adjusted p values 
sum(res$padj < .1, na.rm=TRUE) 
indices <- which(res$padj <.1, na.omit(res$padj)) 
genenamesPadJ10 <- rownames(res)[indices] 
genenamesPadJ10 
#create a csv file 
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write.csv(genenamesPadJ10, "genenamesPadj10_recurrent_fusions_vs_non.csv") 
write.csv(res, "res_all_recurrent_fusions_vs_non.csv") 
#look at .05 
res05 <-results(dds, alpha = .05) 
summary(res05) 
sum(res05$padj < 0.05, na.rm=TRUE) 
indices05 <- which(res05$padj <.05) 
genenamesPadJ05 <- rownames(res05)[indices05] 
genenamesPadJ05 
#write a csv file 
write.csv(genenamesPadJ05, "genenamesPadj05_recurrent_fusions_vs_non.csv") 
write.csv(res05, "res05_recurrent_fusions_vs_non.csv") 
#look at .01 
res01 <-results(dds, alpha = .01) 
summary(res01) 
sum(res01$padj < 0.01, na.rm=TRUE) 
indices01 <- which(res01$padj <.01) 
genenamesPadJ01 <- rownames(res01)[indices01] 
genenamesPadJ01 
write.csv(genenamesPadJ01, "genenamesPadj01_recurrent_fusions_vs_non.csv") 
write.csv(res01, "res01_recurrent_fusions_vs_non.csv") 
#look at .001 
res001 <-results(dds, alpha = .001) 
summary(res001) 
sum(res001$padj < 0.001, na.rm=TRUE) 
indices001 <- which(res001$padj <.001) 
genenamesPadJ001 <- rownames(res001)[indices001] 
genenamesPadJ001  
#create csv file 
write.csv(genenamesPadJ001, "genenamesPadj001_recurrent_fusions_vs_non.csv") 
write.csv(res001, "res001_recurrent_fusions_vs_non.csv") 
#plot 
plotMA(res, main="DESeq2", ylim=c(-8,8)) 
plotMA(res05, main="DESeq2", ylim=c(-8,8)) 
plotMA(res001, main="DESeq2", ylim=c(-8,8)) 
#pull out top adj p value genes by sorting and grabbing top 25 
allres001 <- res001[indices001,] 
sortbypvalue <- allres001[order(allres001$padj),] 
rownames(sortbypvalue[1:25,]) 
#extracting normCounts 
normCount <- counts(dds, normalized=TRUE) 
#only get normalized counts for the genes we are interested in  
normCount_all_non_genes_001 <- normCount[rownames(normCount) %in% genenamesPadJ001,] 
#write normalized counts 
write.csv(normCount, "recurrent_fusions_vs_non_normCount_padj001.csv") 
write.csv(normCount_all_non_genes_001, "recurrent_fusions_vs_non_normCount_2219_padj001.csv") 
 
#getting transformed values from dds 
rld<- rlog(dds, blind=FALSE) 
vsd <- varianceStabilizingTransformation(dds, blind=FALSE) 
vsd.fast <- vst(dds, blind=FALSE) 
 
#effects of transformation on variance 
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library(vsn) 
notAllZero <- (rowSums(counts(dds))>0) 
meanSdPlot(log2(counts(dds,normalized=TRUE)[notAllZero,] + 1)) 
meanSdPlot(assay(rld[notAllZero,])) 
meanSdPlot(assay(vsd[notAllZero,])) 
#Heatmap of count matrix 
library(pheatmap) 
library(grid) 
select2 <- order(rowMeans(normCount_all_non_genes_001), decreasing = TRUE) 
#subset the original datset for the rowmeans to get the right indices lined up 
gn <- rownames(normCount_all_non_genes_001)[select2] 
# defaults to log2(x+1) 
nt <- normTransform(dds)  
log2.norm.counts <- assay(nt)[indices001,] 
datf <- as.data.frame(colData(dds)[,"condition", drop=FALSE]) 
map<-pheatmap(log2.norm.counts, cluster_rows=TRUE, cluster_cols = TRUE, show_rownames=FALSE, 
annotation_col = datf, fontsize_col =5, main = "Log2 norm Counts") 
log2.norm.counts[map$tree_col$order,] 

 

ENSEMBL ID Converter 

#get ensembl gene ids and info 
library(biomaRt) 
#setwd 
setwd("C:/Users/thood/Documents/R/TCGA/DESeq Results Recurrent vs Normal") 
#read in ensembl ids 
ens <- read.csv("genenamesPadj001_recurrent_fusions_nodecimal.csv", header=TRUE) 
value <- ens$gene 
ensembl = useEnsembl(biomart="ensembl", dataset="hsapiens_gene_ensembl", version=79) 
ids<-getBM(filters="ensembl_gene_id", attributes = c("ensembl_gene_id","entrezgene", "description", 
"hgnc_symbol"),values=value, mart=ensembl) 
write.csv(ids, "genenamesPadj001_recurrent_fusions_vs_normal_gene_names.csv") 

 

Creating GSEA Ranked Genes List 

#creating a rank file for GSEA 
setwd("C:/Users/thood/Documents/R/TCGA") 
x<-read.csv("res001_recurrent_fusions_w_gene_names_9691.csv") 
x$fcSign=sign(x$log2FoldChange) 
x$logP=-log10(x$padj) 
x$metric=x$logP/x$fcSign 
 
y<-x[,c("hgnc_symbol", "metric")] 
y <- y[order(-y$metric),] 
write.table(y,file="expression.rnk",quote=F,sep="\t",row.names=F) 
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Gene Interaction List from bioGRID 

library(simpIntLists) 
library(data.table) 
setwd("C:/Users/thood/Documents/R/TCGA") 
data("HumanBioGRIDInteractionOfficial") 
#set up the call to find the interactions 
interactions <- findInteractionList("human", "Official") 
#list of genes 
genes <- read.csv("genenamesPadj001_recurrent_fusions_vs_normal_gene_names_for_interactions.csv", 
header=FALSE) 
#get the list of interactors 
test <- lapply(interactions , "[[" , "name" ) 
#make a data frame 
df <- as.data.frame(unlist(test)) 
#find the indices 
indices <- which(df$`unlist(test)`%in% genes$V1) 
inter <-data.frame() 
 
my_inter <- data.frame() 
for (i in 1:length(indices)) { 
    x <- interactions[[indices[i]]]$name 
    y <- interactions[[indices[i]]]$interactors 
    inter <- cbind("name"=x,"interactors"=y)     
    my_inter <- rbind(my_inter, inter) 
} 
write.csv(my_inter, "recurrent_vs_normal_interactions_9820.csv") 

 

 

 


