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Improvement of the healthcare system is a focal point for academic leaders. In recent years, 

precision medicine initiatives have gained traction as a solution to improve care by leveraging 

healthcare analytics and informatic tools to assist clinicians in prescribing individualized 

treatments based on the patient’s health characteristics. This involves data collection, data 

management and advanced statistical and machine learning methods, and new tools to deliver the 

promise of data on the outcomes of health and healthcare. To help clinicians, researchers must 

leverage electronic health record (EHR) data, however these data are complex as they are made 

up of multiple modalities with an ever increasing volume. While structured EHR data is a 

popular modality to use for analysis, clinical notes (i.e. unstructured EHR data), for example, 

provide more granular information about patients that is useful to clinicians. As a result, there is 
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interest in building cohorts of patients based on unstructured data by using natural language 

processing (NLP). For analysis, there are recent works that discuss the value of using deep 

learning to integrate multiple data modalities together to better predict clinical outcomes; 

however, rigorous testing is needed to fully understand this value. Once data has been collected 

and analyzed, the final task is understanding how to further patient involvement with this 

information. In this dissertation, I focus on creating a framework that can build cohorts based on 

unstructured data, analyze EHR data using the different modalities, and increase patient 

involvement. The aims are to: 1) compare NLP methods for the classification of lumbar spine 

imaging findings related to lower back pain, 2) predict decompression surgery by applying 

machine learning to patients’ structured and unstructured health data, and 3) demonstrate patient 

delivery and sharing of data in a smartphone app to facilitate family communication of genetic 

results. 

 

 

 

 

 

 

 

 

 

 

 



4 

Acknowledgements 

Throughout the writing of this dissertation I have received a great deal of support and assistance. 

 

I would first like to thank Vikas Rao Pejaver, whose quantitative expertise and mentorship were 

invaluable throughout my time in the program. He instilled in me the work ethic, confidence, and 

persistence to lead projects from start to finish. I feel privileged to have worked with him and 

look forward to his many future accomplishments. 

 

I give thanks to Sean D. Mooney, Gail P. Jarvik, CLEAR Center, and the UW ITHS TL1 

program for providing funding for me. I would like to give thanks to my supervisors. I’d like to 

thank Sean D. Mooney for providing a network of academics to help me achieve my goals. I give 

thanks to Jeffrey G. Jarvik; his domain expertise pushed me to deepen my knowledge of lower 

back pain research and his attention to detail influenced my research practices. Patrick Heagerty 

is the living definition of the ideal leader and quantitative scientist that I aspire to be. His positive 

attitude when providing feedback always brought me comfort and sharpened my statistics and 

machine learning skills. I would like to thank Trevor Cohen and his constant curiosity for 

uncovering the unknown. His feedback always challenged my knowledge and made me want to 

dig deeper to understand the unknown. Finally, I would like to thank Jairam Lingappa for 

providing the additional clinical perspective. 

 

Finally, I would like to thank my family: Shilpa, Chandramathi, and Phanindra Jujjavarapu for 

supporting me during my time in the program. 



5 

Table of Contents 

Acknowledgements 4 

Table of Contents 5 

Introduction 9 

Background 9 

Analysis of EHR Data 9 

Patient-Facing Tools 11 

Aims 13 

Overview 14 

Aim 1 14 

Introduction 14 

Methods 17 

Annotated Dataset 17 

Classification Pipeline Overview 18 

Preprocessing and Featurization 18 

Rules- and Machine Learning-Based Models 20 

Performance and Generalizability Assessment 21 

Results 22 

Data Summary 22 

Comparing the Group and Finding Level Predictive Performance of Individual Representations 22 

Comparing the Group and Finding Level Generalizability Performance of Individual 
Representation across Healthcare Systems 23 

Assessing Performance and Generalizability of Potentially Clinically Important Findings 24 

Discussion 25 

Aim 2 29 

Introduction 29 

Methods 32 

Data Source 32 

Patient Selection 32 

Outcome 33 

Features 34 

Preprocessing/Featurization 34 

Demographics 34 

Diagnosis, Procedures, and Prescriptions 34 

Featurization for Classical Machine Learning 35 

Featurization for Deep Learning 35 

Index Imaging Reports 35 



6 

Featurization for Classical Machine Learning 36 

Featurization for Deep Learning 36 

Machine Learning 36 

Baseline Model 36 

Multimodal Deep Learning Model 37 

Evaluation 39 

Classical 39 

Generalizability 39 

Results 40 

Data Characteristics 40 

Classical Performance Assessment 41 

Generalizability Performance Assessment 41 

Discussion 42 

Aim 3 45 

Introduction 45 

Implementation 48 

Application 48 

Overview 48 

App 48 

Server 49 

Participants 49 

User-Testing 50 

Results 51 

Patient Demographics 51 

User-Testing of App 51 

Issues with App 51 

Discussion 52 

User-Interface 52 

Creating an Account and Educational Material 52 

Upload a Genetic Test Result 53 

Sharing a File through Text and/or Email 53 

Recipient Viewing the File 53 

New Features to Add 54 

Comparison to Other Existing Software 54 

Conclusion 55 

Availability and Requirements 56 

Conclusion 56 

Summary of Contributions 57 

Aim 1 57 

Aim 2 59 



7 

Aim 3 60 

Limitations and Future Works 61 

Aim 1 61 

Aim 2 62 

Aim 3 63 

Conclusion Overview 63 

Figures/Tables 64 

Figures 64 

Tables 72 

Supplemental 90 

Tables 90 

References 95 



8 

 

 

 

 

 

 

 

 

 

 



9 

Introduction 

Background 

Precision Medicine (PM) has become a focal point to improve modern medicine[1–3]. 

This idea gained popularity in 2015 when President Barack Obama announced the United States 

would start a government-funded initiative to enroll and then collect data from 1 million US 

citizens[1]. This and other initiatives around the world have propelled scientists to think more 

deeply about how clinical data can be leveraged for improving healthcare. Under PM, this 

improved healthcare system will leverage electronic health records (EHR) and other health-

related data to tailor treatments and procedures to subpopulations of patients[1]. To achieve this 

goal, the biomedical informatics community has focused their attention on two tasks: 1) 

analyzing EHR data and 2) building patient-facing tools to better direct patients’ health 

odysseys[4–9].  

Analysis of EHR Data 

EHR data is a rich source of information that has given rise to a large volume of diverse 

types of data ready to be made useful for evidence-based healthcare[7]. In 2009, the Health 

Information Technology for Economic and Clinical Health (HITECH) Act was signed, which 

gave financial incentive for hospitals to adopt EHR systems to better monitor patients. In a 

national survey, only 13% of clinicians reported having a basic EHR system, while in 2012, 72% 

adopted some type of EHR system[10,11]. As a result, there has been a subsequent production of 

data that is composed of different types: tabular, free-text, imaging, and patient-generated; 

however, the human cognition to make sense of these data is limited. The purpose is to create a 
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continually learning healthcare system that can transform data into knowledge that supports 

clinical decision making[12–17]. Thus, computational-based methods are needed to recognize 

the patterns in this ever increasing volume of different data types[18]. 

Machine learning (ML) is a particular computational-based method that builds models to 

find hidden insights from data[19]. Supervised ML, a subdivision of ML, focuses on developing 

a model that can accurately predict labels (e.g. malignant vs. benign) based on features (e.g. 

patient demographics) from the data. Through this process the method learns a relationship 

between labels and features by training and testing on labelled data, and then predicts on real-

world unlabelled data. Post data cleaning, this process automates the discovery of underlying 

patterns in the data without the need of specific decision rules or to account for the complex 

interactions between features[20]. As a result, ML has become the preferred method to analyze 

healthcare data[21,22].  

The primary focus of ML has been to build cohorts for analysis using tabular (i.e. 

structured) EHR data, however free-text (i.e. unstructured) data offers an alternative that has yet 

to be fully utilized. Unstructured data can contain copious amounts of information that can be 

used to build patient cohorts; for example, radiology reports are used to record radiologists’ 

observations and impressions of a patient’s diagnostic imaging test[23]. This information is vital 

for assessing the next steps for a patient in their health odyssey, however it cannot be stored in a 

tabular format. Natural Language Processing (NLP) is the primary method to convert this 

unstructured data into a format that can be used by ML models for automatic 

identification[24,25]. To convert data to this format, NLP relies on a sequence of steps that 

include segmenting text into sentences, tokening the words, and then stemming the 

words[25,26]. ML models then use these NLP features for prediction. However, NLP is a broad 
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term that encompasses a number of different methods to convert unstructured data. Comparing 

these different methods that range in complexity from simplistic methods such as n-grams to 

sophisticated methods such as embeddings is needed to understand under which circumstances 

one method should be used over another for processing unstructured data[27].  

 With the addition of NLP, a shift in utilizing EHR data has occurred as there is a growing 

interest in understanding the value of leveraging both structured and unstructured data for 

prediction[28–31]. Multimodal deep learning (MDL) has emerged as a way to use deep learning 

architecture to combine both data types, but more importantly learn the complex relationships 

between these types of data to improve prediction. For example, Rajkomar et al. built a MDL 

model to use both data types to predict in-hospital mortality and achieved an area under the curve 

(AUC) of 0.93-0.94[30]. Zhang et al. developed two MDL models to incorporate structured, 

unstructured, and temporal data to predict three different clinical outcomes that outperformed 

models that used only one data type[31]. Miotto et al. developed a MDL architecture to create 

representations of patients using both data types; when models used these representations to 

predict a number of diseases, they achieved an AUC of >0.85[32]. With the rise in both the 

volume and complexity of EHR data, MDL is a possible solution to make sense of these data, but 

needs further evaluation to assess utility across healthcare systems and comparison to 

conventional ML methods.  

Patient-Facing Tools 

Once analyzing EHR data is complete, one of the next steps is to share this information 

with patients to possibly elicit positive changes in their treatment trajectory. An important 

clinical practice is genetic testing, which is an essential tool to assist patients and clinicians to 

better understand the risk of hereditary disease, however lack of patient engagement and 
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education limits its efficacy. Early genetic testing for germline risk variants can promote 

reproductive autonomy and lead to the recommendation of appropriate medical screening to 

mitigate risk of developing disease or provide early diagnosis at a more treatable stage. For 

example, if colorectal cancer (CRC)-associated pathogenic variants are found, colonoscopy with 

polypectomy can prevent CRC and prophylactic bilateral salpingo-oophorectomy surgery 

reduces ovarian cancer (OC) risk and are consensus recommendations[33,34]. Thus, early 

genetic testing is necessary to reduce risk of morbidity and mortality for patients. While genetic 

testing is important for patients, these test results may also be important for their biological 

relatives. A patient’s positive test result allows for inexpensive and often free direct testing of at-

risk family members for that same pathogenic variant. A positive or negative test in a family 

member is likely to affect their clinical care. However, sharing of genetic results between 

patients and their biological relatives is infrequent[35–42]. The two most frequently reported 

communication barriers for sharing are 1) patients have difficulty in clearly communicating the 

results and meaning, and/or 2) biological relatives have difficulty in interpreting the result[35–

37,41].  

Family communication tools may improve the dissemination of genetic results among 

family members. Mobile technology provides a means of communication to improve health 

behavior for patients[43]. However, mobile health apps’ patient privacy is questionable. A recent 

study found that 81% of diabetes apps do not have privacy policies and would share sensitive 

patient information to third parties without the patient’s permission[44]. Additionally, another 

study found that 20% (7/35) of health apps would transmit identifiable information over the 

Internet without encryption[45]. There is an opportunity to leverage mobile technology to 
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increase communication of genetic test results between patients and their family members, while 

protecting their privacy.  

Aims 

This work includes three studies to address the following aims: 

 

Aim 1: A Comparison of Natural Language Processing Methods for the Classification of 

Lumbar Spine Imaging Findings Related to Lower Back Pain 

I will assess the 1) performance within and 2) generalizability across the four healthcare systems 

of different NLP methods: rules, n-grams, controlled vocabulary, and document embeddings, 

coupled with elastic-net logistic regression (i.e. the ML model) to classify radiology reports for 

lower back pain-related findings. 

 

Aim 2: Predicting Decompression Surgery by Applying Machine Learning to Patients’ 

Structured and Unstructured Health Data 

I aim to predict decompression surgery for patients with lumbar spinal stenosis and lumbar disc 

herniation by applying MDL to their structured and unstructured data and evaluate performance 

and generalizability across four healthcare systems. If successful, the ability to identify patients 

at high risk of surgery could lead clinicians to either try more focused or intensive non-surgical 

treatments or possibly recommend surgery earlier than they otherwise would. Additionally, if the 

model predicts patients are unlikely to receive surgery, this may help patients accept their 

conservative treatment plan. 
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Aim 3: Demonstrate Patient Delivery and Sharing of Data in a Smartphone App to 

Facilitate Family Communication of Genetic Results 

I aim to build a free secure smartphone app, to 1) lower the barrier to sharing genetic test results 

with family members by sharing test results with anyone contactable by text or email, 2) provide 

links to educational material, text to explain how to understand the results, and proper next steps 

for recipients, and 3) increase security of patient data by allowing for encrypted transmission and 

minimizing the amount of data needed to register for the app. 

Overview 

This work advances 1) the need for evaluating clinical ML methods across multiple healthcare 

systems to assess reliability and 2) the ability to securely share sensitive patient information. The 

former is applied to the lower back pain domain, while the latter is applied to the genetic testing 

domain. 

Aim 1 

Introduction 

Lower back pain (LBP) is a common condition, in which patients typically exhibit 

heterogeneous anatomic phenotypes and undergo a variety of treatments[46–48]. LBP patients 

frequently receive spinal imaging, and findings identified in the resulting radiology reports are 

expected to help with phenotyping and decision-making[48]. However, the association between 

many findings and LBP is uncertain, because findings can be present in both symptomatic and 

asymptomatic patients[49]. As a result, patients with common aging-related findings may be 
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recommended for LBP-related treatments that are not etiologically linked to their pain. To 

address this uncertainty, cohort studies and pragmatic trials have investigated patterns of care 

among patients with LBP and sought to explore subgroups of patients based on the presence of 

potentially clinically important findings[49–51]. To address the interpretation of radiology 

findings, the Lumbar Imaging with Reporting of Epidemiology (LIRE) study assessed the 

effectiveness of including benchmark prevalences in the asymptomatic population for findings 

found in radiology reports for patients who received a diagnostic imaging test of the lumbar 

spine to reduce subsequent spine-related interventions at four healthcare systems: Kaiser 

Permanente of Washington, Kaiser Permanente of Northern California, Henry Ford Health 

System, and Mayo Clinic Health System[52]. To further assist research investigating the 

relationship between findings and LBP, the accurate extraction of findings from large patient 

groups is needed. However, manual annotation is time-consuming. Natural Language Processing 

(NLP)-based classification pipelines offer an automated alternative to identify key findings in 

radiology reports[48]. 

An NLP-based classification pipeline is composed of two parts: 1) NLP methods that 

extract features from free-text data and convert them to a structured format (or representation) 

and 2) the machine learning (ML) model that uses these representations for classification. Text 

conversion or feature generation can be performed using methods that range from relatively 

simple domain-dependent and highly manual, to sophisticated data-driven scalable 

strategies[24,53–55]. Task-specific rule-based methods identify terms in the free-text that are 

typically defined by domain experts for a specific outcome of interest. Word or phrase counting 

methods (n-grams) convert free-text to grouped consecutive words[54]. Controlled vocabulary 

methods convert free-text into a standardized language, using resources such as the Unified 
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Medical Language System (UMLS)’s Metathesaurus, a large vocabulary database that contains 

information about biomedical and health related concepts, their various names, and the 

relationships among them[53,56,57]. Document embedding methods use neural networks to 

represent the semantics of documents as vectors of continuous numerical values[55]. Each of 

these methods produces different representations that can influence ML performance. Previous 

studies have investigated the classification performance of these types of NLP 

methods[27,58,59]. However, to the best of our knowledge only one study assessed 

generalizability as well[60]. With this study, they investigated the performance of their 

embeddings on a single external dataset, however without extensive validation on multiple 

external datasets, there is a risk of overestimating both NLP strategies and ML models’ 

performance[24,60,61]. 

We hypothesize that NLP methods will have more heterogeneous performance 

characteristics on external data compared with internal data. The LIRE data provide an 

opportunity to conduct a systematic evaluation of the utility of different representational methods 

for identification of image findings in radiology reports drawn from multiple healthcare systems. 

To assess the reproducibility and reliability of NLP methods, we need to test our methods on 

multiple external datasets. The purpose of our study is to assess the 1) performance within and 2) 

generalizability across the four LIRE healthcare systems of different NLP-based feature 

extraction methods: rules, n-grams, controlled vocabulary, and document embeddings, coupled 

with elastic-net logistic regression (i.e. the ML model) for classifying radiology reports for LBP-

related findings. 
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Methods 

Annotated Dataset 

This was a retrospective study that utilized the same annotated dataset from a previous 

study that showed that ML-based models were superior to rule-based classification[48]. Our 

work is an extension of this as we 1) expanded our NLP methods to include controlled 

vocabulary and document embeddings and 2) explicitly assessed generalizability across 

healthcare systems. All participating IRBs agreed that the LIRE study was minimal risk and 

granted waivers of both consent and Health Insurance Portability and Accountability Act 

authorization (IRB approval number is 476829). We used limited dataset consisting of a 

subsample of the LIRE cohort which consisted of approximately 250,000 patients from four 

healthcare systems who received a thoracic or lumbar spine plain X-ray, magnetic resonance 

imaging (MRI), or computed tomography (CT) between October 1, 2013 and September 30, 

2016[52]. The LIRE study was a multicenter intervention study that investigated whether 

inserting text about finding prevalence into lumbar spine imaging reports reduced subsequent 

spine-related treatments[52]. Once in the study, patients were followed for two years and their 

data was regularly collected. We randomly sampled 871 index radiology reports, the first 

radiology report for each patient, and stratified by system and image modality[48]. The sample 

size was determined based on prior NLP classification tasks[62]. Each report was annotated for 

the presence of 26 LBP-related findings (Table 1-1) by a team of clinical experts composed of 

two neuroradiologists, a physiatrist, and a physical therapist. A single report can be annotated for 

multiple findings. These findings were based on prior research consisting of a review[63], 

prospective cohort study[49], and randomized control trial[64] that characterized LBP based on 
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its causes and treatments. Out of these 26, eight were considered to be potentially clinically 

important: any stenosis, central stenosis, lateral stenosis, foraminal stenosis, disc extrusion, 

nerve root displacement compression, endplate edema, and listhesis grade 2[49,50,52]. Further 

details of this sampling and annotation process are presented in a previous study[48].  

Classification Pipeline Overview 

Our classification pipeline analyzed the 871 LIRE radiology reports with the goal of 

learning patterns that are predictive of each of the 26 findings (Figure 1-1). The pipeline can be 

separated into three steps: preprocessing, featurization, and ML. 

Preprocessing and Featurization 

For preprocessing, we developed regular expressions to help isolate the finding and 

impression sections of the 871 radiology reports. For featurization, rules, n-grams, controlled 

vocabulary mapping, and document embedding methods were used to extract features from the 

finding and impression sections. Rules require domain experts to identify terms that are related 

to an outcome of interest. This method is time-consuming, but since the rules were developed by 

clinician experts, they can be considered a proxy for clinicians’ judgement for annotations. In our 

implementation, we developed regular expressions based on the terms our team of clinical 

experts identified for each finding during the annotation process. For each report, we split the 

text into sentences. For each sentence, we identified the presence of a finding using the regular 

expression and checked for negation[65]. However, the presence of findings may be uncertain as 

radiology reports can have terms such as “suggesting” and “not definite”. We minimized this 

uncertainty by coding these and other similar terms as indicating the presence of a finding. We 

used Java (v4.6.0), using Apache Lucene (v6.1.0), Porter Stemmer, and NegEx[66,67].  
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N-grams is a simple, but powerful method in NLP that converts free-text across the 

radiology reports to n-grams (phrases of different lengths) and indicates their presence and 

absence in each report[68]. In our implementation, we used R (v3.6.1) package Quanteda 

(v2.0.1) to convert the text into un-, bi-, and trigrams. 

Controlled vocabulary is a filtered version of the n-grams approach that leverages only 

clinically-related features from a standardized medical terminology mapped from the text[53]. In 

our implementation, we first split the text into its constituent sentences using the maximum 

entropy model in the Apache OpenNLP toolkit to infer the end of a sentence[69]. We then 

applied MetaMap Lite and an assertion classifier developed by Bejan et al., to each patient’s 

radiology text report to obtain standard UMLS concepts and assertions of whether they were 

present, absent, conditional, possible or associated with someone else[70,71]. We used MetaMap 

Lite because previous literature demonstrated MetaMap Lite’s performance was comparable to 

or exceeded MetaMap and other similar methods[71]. In addition, we also implemented a 

version of the controlled vocabulary method (controlled vocabulary filter only) that outputs 

recognized concepts as raw text, instead of the mapped UMLS terms to assess how a “many-to-

one” mapping affects classification performance[72].  

Document embeddings is a sophisticated approach that uses a neural network to convert 

the semantics of text into a continuous numerical vector[55]. For the document embedding 

method, we used the Python (v3.7.3) package Gensim (v3.7.1) to implement the Distributed Bag 

of Words (DBOW)[55,73]. We set the vector length to 600, number of epochs to 500, and 

allowed the model to initially learn word embeddings using the skip-gram architecture prior to 

learning document embeddings. We pre-trained our DBOW architecture on the full text using 

two data sets: (1) 522,283 radiology reports from the third version of Medical Information Mart 
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for Intensive Care (MIMIC-III)[74], and (2) the finding and impression sections from 255,094 

unannotated reports from the LIRE study. We refer to these as document MIMIC and document 

LIRE, respectively. The former reflects a typical pre-training scenario and the latter assesses how 

pre-training on a corpus similar to our actual train/test corpus of 871 reports affects classification 

performance. We used these pre-trained models to derive numerical vector representations of 

each of the 871 radiology reports. At the end of the featurization step, the textual data from 

radiology reports are represented as rules, n-grams, controlled vocabulary, controlled 

vocabulary filter only, document MIMIC, and document LIRE. 

Rules- and Machine Learning-Based Models 

For the rules, we used a rule-based model to classify a report as “positive” for a finding if 

at least one mention in a report was non-negated and “negative” if there was no mention or all 

mentions of the finding were negated. We then used the trapezoidal rule approximation to 

calculate the area under the curve (AUC)[75]. For each non-rule representation (i.e. feature set) 

and the finding labels from the annotation process, we developed an elastic-net logistic 

regression model to predict the presence of each finding (i.e. 26 binary or “one-vs.-rest” 

classification models) using the R (v3.5.1) package caret (v6.0-80). Within the training set, ten-

fold cross validation was used to adjust the value of our regularization parameter (lambda) to 

perform feature selection on our predictors by shrinking our nonimportant predictors’ 

coefficients towards 0. For each resulting finding-specific model, we identified the optimal 

threshold based on the training set’s receiver operator characteristic (ROC) plot; the threshold is 

the point closest to the true positive rate of 1 and false positive rate of 0 (i.e. the point closest to 

the top left corner of the curve) using Euclidean distance[76].  



21 

Performance and Generalizability Assessment 

We used R (v3.5.1) to evaluate each representation. We used AUC of an ROC plot as the 

primary evaluation metric. This is because we envision our pipeline as an efficient “first-pass” 

screening tool intended to favor the identification of more true positives. For performance 

assessment, we randomly split our full dataset into 80% (697/871) for training and 20% 

(174/871) for evaluating our model for each finding. We assessed group-level performance by 

averaging the evaluation AUC across all finding-specific models and across all potentially 

clinically important finding-specific models, separately. We repeated this process 25 times with 

each independent repeat using a different random train/test split of the data, so that we could 

estimate 95% confidence intervals. For each finding/group, a t-test was used to assess significant 

performance comparing the 25 repeats of the best representation to the next best representation. 

We used Bonferroni correction to correct for multiple hypothesis testing; for the two groups, we 

considered p-value 0.025 (0.05/2 groups) to be significant, and for the 26 findings, we 

considered p-value 0.0019 (0.05/26 findings) to be significant. To assess generalizability across 

healthcare systems, we trained our model on reports from three systems and evaluated on the 

fourth, iteratively, for each finding. For each finding, we calculated the mean and standard 

deviation of the AUC across the four systems. We calculated group generalizability by averaging 

the AUC across all findings, and across all potentially clinically important findings for each 

system and then calculated the mean and standard deviation. We chose mean and standard 

deviation to quantify generalizability, because the former measures the quality, while the latter  

measures the consistency of performance across systems. For the generalizability assessment, we 

included all representations except for rules because they were developed using reports from all 
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four systems, eliminating the possibility of evaluation using data unavailable at the point of 

algorithm development.  

Results 

Data Summary 

In our dataset (n = 871), we sampled reports with similar proportions of image type (i.e. 

x-ray and MRI) and patients’ age and gender across our healthcare systems (Table 1-2). For 

performance assessment, we’ve shown that our training set is representative of our test set for 

23/26 findings by using a t-test to assess the significant difference in the prevalence between sets 

across the 25 repeats for each finding (Figure 1-2). For generalizability assessment, we found 

that each healthcare system was comparable since the finding label prevalence across healthcare 

systems is overall similar with any degeneration having the highest label prevalence (0.896) and 

listhesis grade 2 having the lowest label prevalence (0.028) (Figure 1-3). 

Comparing the Group and Finding Level Predictive Performance of Individual 

Representations 

To assess the best performing representation, we trained and tested 26 finding-specific 

models for each representation and calculated finding-level and group-level AUC. On average 

across all findings, we found that the models generally performed well, with average AUC 

values above 0.87. N-grams and controlled vocabulary had the best (AUC  = 0.960) and worst 

average (AUC = 0.879) performance, respectively (Table 1-3). At the finding level, n-grams had 

better performance than the corresponding second-best representation (which differed from 

finding to finding) for 22 findings, 11 of which were statistically significant. These results 
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suggest that on average, the relatively simple methodology of n-grams is sufficient to classify 

our 26 findings. 

In addition to assessing the performance of n-grams, we were also interested in 

characterizing the performance relative to rules, a representation requiring domain-expertise, and 

document LIRE, an advanced data-driven representation. This comparison is of interest as each 

of these three representations reflect different disciplines in featurizing textual data that range 

from domain-expertise to advanced domain-agnostic implementations. On average across all 

findings, rules (AUC = 0.897) performed worse than n-grams and document LIRE. At the 

finding level, rules was out performed by n-grams for eight out of twelve rare findings 

(prevalence < 20%). Additionally, while document LIRE had better overall performance than 

rules, it was not the best representation for any of the findings. This may be due to the fact that 

document LIRE may not have been the best representation but had stable performance across 

findings (min AUC = 0.799, max AUC = 0.979) compared to rules (min AUC = 0.649, max 

AUC = 0.999). These results also suggest when considering only rare findings, n-grams still 

perform better than other representations. 

Comparing the Group and Finding Level Generalizability Performance of 

Individual Representation across Healthcare Systems 

To assess the best generalizable representation, we trained 26 finding-specific models for 

each representation on data from three systems and tested on the fourth system, iteratively. For 

each finding/group, we calculated the mean and standard deviation of the test AUC across the 

four systems. At the group level, n-grams had the best average performance across all findings 

(mean AUC = 0.902) and at the finding level, it was the best performing representation for 10 
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findings (Table 1-4). The next best representation was document LIRE at the group level (mean 

AUC = 0.879) and it was the best method for 10 findings as well (Table 1-4). Interestingly, when 

considering standard deviation at the group level, we found that document LIRE and n-grams 

were the most (standard deviation = 0.010) and least consistent (standard deviation = 0.051) 

representations across all findings, respectively (Table 1-5). We found n-grams could not 

generalize well to system two, particularly resulting in a lower sensitivity and higher specificity 

compared to other representations (Figure 1-4); we verified this result through complementary 

analyses (Figure 1-5). At the finding level, document LIRE was the most consistent 

representation for 11 findings. These results suggest that while n-grams had relatively the best 

performance, it had the worst consistency across systems. Instead, document embeddings pre-

trained on study-specific data (document LIRE) had relatively the most consistent classification 

performance on average across our systems. 

Assessing Performance and Generalizability of Potentially Clinically Important 

Findings 

In our previous sections, we focused on all 26 findings, however we consider eight of 

these findings to be potentially clinically important. As a result, we believe it’s important to 

present results for this important subset of findings. For performance assessment, n-grams had 

the best performance (AUC = 0.954), and it was significantly better than that of document LIRE, 

the second-best representation (AUC = 0.910) (Table 1-3). At the finding level, n-grams also had 

the best performance for all eight potentially clinically important findings, six of which were 

statistically significant. For generalizability assessment, n-grams had better performance (mean 

AUC = 0.898) than document LIRE (mean AUC = 0.890)  (Table 1-4). At the finding level, n-
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grams and document LIRE had the best performance for seven of these findings. For consistency, 

document LIRE was the most consistent representation with standard deviation of 0.007 

compared to n-grams’ 0.076 (Table 1-5). At the finding level,  document LIRE and MIMIC had 

the most consistent performance for six and two potentially clinically important findings, 

respectively, with one tie endplate edema (Table 1-5). These results indicate for this subset of 

findings, we still observe the same trend where n-grams have the best performance, but 

document LIRE has the best consistency. 

Discussion 

Manual extraction of information from radiology reports can be burdensome, making 

automated NLP methods attractive for such tasks. However, correctly estimating these methods’ 

performance across multiple healthcare systems requires an understanding of their 

generalizability on external datasets. In this study, we compared and contrasted the performance 

of different NLP methods coupled with elastic-net logistic regression to classify 26 findings 

related to LBP through performance and generalizability assessment. Our study suggests that if 

classifier development and deployment occur at the same system, then n-grams may be 

preferable. However, for deployment at multiple systems outside of the system of development, 

one should consider n-grams with the caveat that it’s consistency can vary across systems, while 

document embeddings pre-trained on study-specific data (document LIRE) or a publicly 

available dataset (document MIMIC) had the most consistent performance. 

Overall, based on performance assessment, n-grams, a relatively simple, data-driven, 

domain-agnostic method, is superior to more sophisticated methods (document embeddings and 

controlled vocabulary) in extracting known findings from text. These results are in line with 
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prior studies[27,77]. Additionally, for rare findings (prevalence < 20%), n-grams had the highest 

AUCs, which is consistent with a prior study evaluating n-grams coupled with LASSO logistic 

regression to classify acute LBP (prevalence of 22%)[78]. However, n-grams did not generalize 

well across the four healthcare systems when compared to document embeddings. This 

performance-generalizability duality can be explained as follows: the n-grams method is 

dependent on the precise phrasing in the training text. When we considered performance 

assessment, we split the full dataset into 80% (697/871 reports) for the train set and 20% 

(174/871 reports) for the test set; both sets contained the four healthcare systems, and their text 

were representative of each other. However, when considering each system independently for the 

generalizability assessment, n-grams were more susceptible to overfitting, i.e., they may have 

contained predictors more relevant to the training systems than the test system. When comparing 

summary statistics of the raw text among systems, we found that system two was indeed 

different from the other systems (Figure 5) and changing classification thresholds for the models 

tested on this system did not affect performance. In comparison, document embeddings better 

captured differently worded but synonymous concepts by transforming the raw text into abstract 

numerical representations that reflect semantics, leading to less deviation in performance across 

systems but slightly worse performance overall. 

Document embeddings are of particular interest because they represent a sophisticated 

method of featurization that are pre-trained on large-scale corpora to learn more generalizable 

representations of text. Here, document embeddings were pre-trained on two different data 

sources, unannotated LIRE reports (smaller but more relevant to LBP) and MIMIC-III (larger but 

less specific). While document LIRE overall performed better than document MIMIC, the 

difference was modest, suggesting that a lack of task-specific corpus is not a barrier for using 
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document embeddings in clinical tasks. This observation is consistent with other 

studies[59,79,80]. 

Controlled vocabulary and controlled vocabulary filter only are two representations that 

can be considered filtered versions of the n-grams approach that leverages only clinically related 

terms. These representations differ from each other in that the former maps the clinically relevant 

raw terms to standardized terms to then use as features, while the latter does not map and instead 

uses the clinically relevant raw terms as features. As a result, controlled vocabulary performs a 

“many-to-one” mapping that can affect performance. When comparing these two representations, 

we found that controlled vocabulary marginally outperformed controlled vocabulary filter only 

in both performance and generalizability. Our study indicates that this “many-to-one” mapping is 

not detrimental to performance, but does not provide a substantial improvement relative to using 

only the clinically relevant raw terms as features. 

Beyond performance and generalizability, scalability and interpretability are important 

factors to consider when choosing a NLP-based feature extraction method. Rules are the most 

interpretable method, because they solely rely on domain experts to provide the synonyms to 

search for in text. However, this method cannot scale well as expanding the synonyms for a 1) 

more complete identification of findings and 2) larger number of findings will require more time 

and domain experts. In contrast, n-grams, controlled vocabulary, and document embeddings are 

domain-agnostic computational methods, and as a result they can scale well to a large number of 

radiology reports and findings. These methods differ in their interpretability. Controlled 

vocabulary and n-grams are the most interpretable methods as the former provides an ML model 

clinically relevant terms as features, while the latter provides the raw text as features. It is 

relatively easy for a researcher to examine a model’s features and coefficients based on either of 
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these two methods and understand what aspects of a radiology report are predictive of the 

outcome of interest. Document embeddings is the least interpretable method as it uses a neural 

network to represent a document’s semantics as a vector of continuous values. These values are 

no longer interpretable as they are a result of the interactions of different word embeddings from 

the radiology reports in the neural network. When considering subsequent implementation, it is 

important to consider factors such as scalability and interpretability in addition to performance 

and generalizability. 

There are several limitations to this study. First, our pipeline required binary annotations 

for findings, however the presence of findings may be uncertain as radiology reports can have 

terms such as “suggesting” and “not definite”. We minimized this uncertainty by coding these 

and other similar terms as indicating the presence of a finding. Second, while our sample size 

was in line with recommendations for classification tasks, larger training and testing sets could 

have led to less variable performances across our different NLP methods[62]. Third, we 

evaluated the algorithms but not the entire pipeline involving the querying and transfer of data; 

there may be discrepancies in our performance estimates when compared to those at actual 

deployment. Fourth, we could not assess our rules’ generalizability, since the search terms were 

developed from reports from all four systems. Finally, in the case of document embeddings, 

because of our limited computational resources, we had to sequentially adjust hyperparameter 

values in the pre-training step, rather than conducting a grid search. With a more extensive 

hyperparameter search, we may have been able to improve performance. 

Diagnostic imaging is often an early step for LBP patients that eventually leads to 

interventions, however the association between findings and LBP is uncertain[49]. Jarvik et al. 

investigated this association and identified eight (potentially clinically important) findings that 
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may be associated with a history of LBP and of these eight, nerve root contact, disc extrusion, 

and central stenosis may be associated with a new onset of pain[49,50,52]. We’ve shown that 

our pipeline can automate classifying reports for these potentially clinically important findings 

using n-grams, and can generalize across healthcare systems using document embeddings. Our 

automated pipeline can assist similar studies by developing large cohorts quickly and 

inexpensively to investigate the association between findings and a clinical outcome within and 

across healthcare systems using text-based data. 

Aim 2 

Introduction 

In the United States, low back pain (LBP) is the 5th most common reason for a hospital 

visit and annually the prevalence is 10-30%[63]. As a result, LBP incurs an annual cost of $100 

billion and is the leading contributor to disability and workdays lost[81–83]. Despite numerous 

available interventions for LBP, it remains difficult to diagnose and treat effectively, in part 

because LBP has many anatomic and clinical subtypes[84]. Lumbar disc herniation (LDH) and 

lumbar spinal stenosis (LSS) are two specific spine-related clinical syndromes that are highly 

associated with LBP[49,81,85]. Patients with LDH experience pain caused by extension of the 

intervertebral disk material beyond the disk space, which may compress adjacent spinal nerves 

[85,86]. Patients with LSS experience pain associated with narrowing of the spaces within the 

spine due to changes in the intervertebral disks and facet joints, which may also compress the 

spinal nerves[87,88]. These syndromes have overlap as 1) patients with one entity can develop 

the other and 2) both involve neuropathic lower extremity pain. 
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Patients with LDH/LSS are often started with non-surgical treatments and if those are not 

effective then go on to have decompression surgery to relieve the compressed spinal nerves[88–

90]. However, decompression has both potential benefits and risks. Recent studies indicate a 

possible improvement in early health outcomes[91–94]. Randomized controlled trials (RCTs) 

indicate that decompression surgery offers benefits over non-surgical treatment in the short term, 

but benefits decrease over time[91,92]. Another study found that LDH patients who underwent 

surgery had better short-term improvement in function and pain relief compared to non-surgical 

treatments[94]. A RCT found that LSS patients who received decompression surgery instead of 

non-surgical treatments had better initial improvement in back pain, but this benefit diminished 

over time[93]. On the other hand, decompression surgery has potential risks, with 18% of LSS 

patients experiencing adverse events [95], and up to 9% having clinical worsening within 1 

year[96]. Another study found that 3.1% of LDH patients experienced clinical worsening within 

1 year as well[97]. Continuation of non-surgical treatment is the default treatment option for 

patients with LDH/LSS, as many will improve over time without surgery[98]. Therefore, patients 

with LDH/LSS may be observed for long periods of time- even years- before surgery is 

considered. Overall, recommendation of decompression surgery is complicated as the outcome 

can be positive or negative depending on the patient. Early identification of patients at high risk 

of eventual surgical decompression (i.e. failure of non-surgical treatments) could allow for 

discussion between a patient and their clinician on the benefits and risks of pursuing surgery 

informed by the prediction of surgery for a given patient. 

A promising method to assist patients and healthcare providers to understand a patient’s 

predicted risk of eventual decompression surgery is machine learning (ML)[99–101]. ML is used 

to develop predictive models based on learning the relationships from data[102,103]. In recent 
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years, deep learning (DL) has emerged as a popular method to learn the complex representation 

of raw input data by learning a lower dimensional representation[104]. Several works have 

applied DL to predict clinical outcomes. Norgeot et al. developed a DL to predict rheumatoid 

arthritis using structured data[105]. Choi et al. used a recurrent neural network to predict heart 

failure[106]. Both of these and other similar approaches used structured electronic health record 

(EHR) data, however with the growing volume and complexity of EHR data, there is interest in 

utilizing the full data available (i.e. both structured and unstructured data). As a result, 

multimodal deep learning (MDL) has emerged as a possible way to better model a patient’s full 

characteristics to the outcome of interest[30–32]. However, a recent study indicated that 

depending on the underlying relationship of the features and outcome of interest, conventional 

ML methods may provide simpler, cheaper, and more useful data modeling that can achieve 

comparable, if not better performance than DL-based methods[107]. With the rise in both the 

volume and complexity of EHR data, MDL is a possible solution to make sense of this data for 

clinical use. However, rigorously testing this approach against a conventional ML method is 

needed to truly assess the value of this costly approach. 

In the current study, we aim to predict early (within 2 months) and late decompression 

surgery (within 12 months) for patients with LSS/LDH by applying MDL to their structured and 

unstructured data and comparing the performance of MDL to LASSO logistic regression. If 

successful, the ability to identify patients at high risk of surgery could lead clinicians to either try 

more focused or intensive non-surgical treatments or possibly recommend surgery earlier than 

they otherwise would. Additionally, if the model predicts patients are unlikely to receive surgery, 

this may impact their non-surgical treatment plan. 
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Methods 

Data Source 

This was a retrospective study that utilized the Lumbar Imaging with Reporting of 

Epidemiology (LIRE) study dataset which consisted of approximately 250,000 patients from four 

healthcare systems (Group Health, Kaiser Permanente Northern California, Henry Ford, and 

Mayo Clinic) who received a thoracic or lumbar spine plain X-ray, magnetic resonance imaging 

(MRI), or computed tomography (CT) between October 1, 2013 and September 30, 2016[52]. 

The LIRE study was a multicenter intervention study that investigated if inserting text about 

finding prevalence into lumbar spine imaging reports reduced subsequent spine-related 

interventions[52]. Once enrolled in the study, patients were followed for two years and their 

EHR data was regularly collected along with their information one year prior to enrollment. 

Patient Selection 

We selected patients who had at least two occurrences of International Classification of 

Diseases (ICD)-9 and ICD-10 codes related to LSS or LDH (Table 2-1). This criteria was agreed 

upon by our clinical experts (PS, JF, and JGJ), since it ensured more confidence in identifying 

patients with these syndromes[108,109]. We based our ICD codes on two previous 

studies[110,111]. Martin et al. selected ICD-9 codes that were commonly used to describe spine-

related problems. These codes were identified by searching the annual updates published by the 

World Health Organization and referencing the Conversion Tables of new ICD-9 codes 

published by the National Center for Health Statistics to help identify newly added or modified 

codes[110]. They then validated their process to group patients based on these codes by 
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comparing it to clinician judgement using sensitivity and specificity analysis. Deyo et al. further 

grouped their patients with back pain into back and leg pain or herniated disc and lumbar 

stenosis groups based on ICD-9 codes[111]. We updated the code lists of Martin et al. and Deyo 

et al. to also include ICD-10[112]. 

Outcome 

From the group of patients with LSS and LDH, we further split them into two prediction 

tasks: early and late surgery (Figure 2-1). Early and late surgery were separated as two different 

outcomes of interest based on the clinical rationale that early surgery for LSS/LDH is more 

likely driven by severe or progressive neurologic deficits, and is therefore fundamentally 

different from late surgery, which is more likely to be driven by chronic pain[86]. For early 

surgery, we limited the patients included to those that had at least two LSS/LDH diagnosis codes 

within the first year prior to LIRE enrollment and then searched two months ahead for the 

presence (positive) or absence (negative) of their first decompression surgery code. For late 

surgery, we limited patients to those that had at least two LSS/LDH diagnosis codes within the 

first year prior to LIRE enrollment and/or the first two months post enrollment and then searched 

one year ahead for the presence or absence of their first decompression surgery code. The 

decompression phenotype was developed by using existing Current Procedural Terminology 

(CPT) code algorithms and manually reviewed lists of each of these types of codes (CPT, ICD-9-

PCS) potentially associated with surgery by at least one non-clinician reviewer (Table 2-

1)[52,113,114]. Any uncertain codes were also reviewed by two clinician reviewers (PS and JF) 

and discussed until consensus was achieved by both reviewers. For early surgery, we had a total 

of 8,387 patients with 198 (2.4%) patients in the positive group. For late surgery, we had a total 

of 31,210 patients with 1,365 (4.4%) patients in the positive group. 
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Features 

We considered patient demographics, diagnoses, procedures, prescription information, 

and radiology reports as predictors for the model (Figure 2-1). For demographics, we considered 

patients’ race, age, healthcare system, and ethnicity. For the primary care provider for each 

patient, we considered their gender, type of clinician, and speciality. For diagnosis, we 

considered patients’ ICD-9 and ICD-10 codes and the day they received the diagnosis. For 

procedures, we considered patients’ CPT and Healthcare Common Procedure Coding System 

(HCPCS) Level II codes (i.e. procedure codes) and the day they received their procedure code. 

For prescriptions, we considered the drug name and prescription day. For radiology reports, we 

considered the finding and impression sections from the first imaging report (i.e. index image 

report) in the LIRE study along with the type of image (i.e. X-ray, CT, or MRI). 

Preprocessing/Featurization 

Demographics 

This information is composed of patient and provider demographics along with the type 

of index image. To convert the data into a format for ML, we created dummy variables for the 

categorical features and normalized the discrete numerical feature (i.e. age) at the patient level.   

Diagnosis, Procedures, and Prescriptions 

We limited temporal data (diagnosis, prescriptions, and procedures) to the last three 

months of information for both prediction tasks, so that across the patients we 1) ensure that the 

time period is consistent and 2) minimize the variability in the amount of available data. The 

purpose was to minimize any influence from the heterogeneity of these factors on the prediction 
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tasks. For diagnosis codes, we mapped ICD-10 to equivalent ICD-9 codes to minimize 

redundancy and then assigned all ICD-9 codes to depth level 3 on the ICD hierarchy using 

crosswalk files from cms.gov. We chose depth level 3 (i.e. the first three digits of ICD codes) to 

reduce the feature space, but also maintain a level of granularity[115]. ICD codes are organized 

into a hierarchy based on shared clinical characteristics. The further down in this hierarchy we 

go, the more specific the disease based on anatomic site, etiology, and manifestations. 

Featurization for Classical Machine Learning 

We created dummy variables for the features (i.e. diagnosis codes, procedure codes, and 

drug names) at the patient-level. Further, we excluded extremely rare (<=0.1%) or common 

(>=99%) features to reduce the feature space to only the most relevant. 

Featurization for Deep Learning 

We binned the data into one month intervals to reduce the sparsity of the eventual 

temporal feature matrix. We then created dummy variables for the features (i.e. diagnosis codes, 

procedure codes, and drug names) at the bin-level for each patient. To maintain the same number 

of bins (i.e. three), we padded for patients with less than three bins. Finally, we converted the 

dataframe into a 3D tensor where the depth corresponds to the number of the patients, the height 

to the number of bins, and the width to the number of unique features. 

Index Imaging Reports 

For these reports, we isolated and combined the finding and impression sections together. 

The purpose was to limit the text to only information that pertained to the actual diagnostic 

image. We then cleaned the text by converting it to lowercase, removing punctuation, removing 
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extra whitespace, removing stopwords, and then isolated the stem of each word using a 

PorterStemmer from the python package nltk[116]. 

Featurization for Classical Machine Learning 

We converted the cleaned text into uni-, bi-, and trigrams using the python package 

scikit-learn[117]. Further, we excluded extremely rare (<=0.1%) or common (>=99%) n-grams 

to reduce the feature space to only the most relevant features. 

Featurization for Deep Learning 

To convert the index reports into a format for the DL architecture, we used word2vec 

from the python package gensim[73]. We first collected reports (n = 123,461) post LIRE 

enrollment and preprocessed them the same way as the index reports. We pre-trained a word2vec 

model on these reports using specific parameter settings (skip-gram version and vector length set 

to 300) from a recent study that investigated the value of using word2vec on radiology 

reports[60]. We then extracted the vocabulary and the associated embeddings from this pre-

trained word2vec model. To maintain the same length for each document, we padded reports to 

the max length across index reports, 559 for early surgery and 573 for late surgery. We chose 

this approach to ensure the impression section was included as it summarizes the key findings 

from the image[118]. 

Machine Learning 

Baseline Model 

We used the LASSO logistic regression built using the python package scikit-learn[119].  
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Because the data naturally has multicollinearity among different features (i.e. diagnosis codes, 

procedure codes, and prescriptions), this can lead to over- and underestimating relationships 

between the features and outcome. As a result, we chose LASSO since it performs feature 

selection through penalization to minimize these redundant features. To identify the optimal 

regularization parameter (lambda), we performed 5-fold cross validation. We chose the lambda 

value that led to the highest average F1-score across the folds to shrink the coefficients of the 

features. We chose the F1-score since it’s a popular performance metric for imbalanced datasets, 

which takes into consideration how well the model can capture the positive group (i.e. minority 

group), but also the reliability of these positive predictions. Because LASSO’s lambda value and 

its subsequent performance can be affected by how the data is split, we repeated the process of 5-

fold cross validation 50 times, each process with a different split of the data into the folds, then 

chose the prevalent lambda value across repeats[120]. Additionally, to assess the value of each 

modality, we repeated this process for each data type by itself (i.e. codes, demographics, and 

textual) (Supplemental Materials). 

Multimodal Deep Learning Model 

The MDL architecture was built using the python package PyTorch and is composed of 

three entities: 1-layer Convolutional Neural Network (CNN), 1-layer Gated Recurrent Unit 

(GRU), and two 1-layer Fully-Connected (FC) (Figure 2-1) [121]. This architecture is based on 

work done by Zhang et al., in which they compared two different MDL architectures that 

differed in the use of either a CNN or Long Short-Term Memory (LSTM) for both sequences of 

clinical notes and structured data[31]. Since in our approach we do not have sequences of clinical 

notes, this comparison is out of scope. Additionally, we decided to use a GRU instead of an 

LSTM since the former is a simpler architecture, but can lead to similar performance[122,123]. 
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We passed the featurized index reports and the pre-trained word2vec embeddings and vocabulary 

into a CNN, the featurized temporal data into a GRU, and then concatenated the output from 

these individual networks with the featurized demographics and then passed it to the FC to make 

predictions. We included a FC layer to convert the temporal input into embeddings before 

passing into the GRU as previous studies of this approach showed improvement in prediction 

performance[124–126]. The MDL was trained using the Adam optimizer with a weight decay 

and ReLU as the activation function. We used Cross Entropy Loss as the loss function and 

weighted the positive group and negative group inversely proportional to their prevalence to 

address the imbalance in our dataset[127]. We minimized subsets of weights from co-adapting 

(i.e. overfitting to the noise in the training data) by adding a dropout to the hidden layer of the 

FC to allow all weights to participate in the prediction task[128]. To optimize the 

hyperparameters (i.e. number of filters, learning rate, dropout rate, GRU hidden size, and weight 

decay), we 1) split the training data into 80% for training and 20% for validation, 2) used 

previous works as a starting point for values[31,129], then 3) grid searched to identify the 

combination of values that was associated to the lowest validation loss (Table 2-3). We trained 

our model for 30 epochs using a learning rate scheduler to decrease the learning rate value when 

the validation loss increased to avoid overfitting. Unlike the LASSO optimization, we did not 

perform 5-fold cross validation as it would have been computationally expensive. Additionally, 

we repeated this entire process for each individual network (i.e. 1-layer FC, 1-layer GRU with 1-

layer FC, and 1-layer CNN with 1-layer FC) in the MDL architecture by itself and its associated 

data: demographics, temporal, and textual, respectively. 
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Evaluation 

Classical 

For each prediction task’s dataset, we split it into a training (80%) and test set (20%). 

Hyperparameter values were optimized using the training set for both model types. The LASSO 

models were retrained on the full training set using optimized lambda values, while the DL 

models were retrained using the same training and validation set using the optimized 

hyperparameter values. The reason for this is because the learning rate scheduler for the DL 

models needs to monitor the validation loss, so that it can properly update the training process. 

We then evaluated the models’ performance on the test set using the performance metrics: recall, 

specificity, balanced accuracy, precision, F1-score, area under the curve (AUC), and area under 

the precision-recall curve (AUPRC). While we calculated these different performance metrics, 

we prioritized AUC over AUPRC in the analysis and interpretation since 1) both are global 

metrics that assess overall performance across different thresholds and 2) AUC is a more popular 

metric in the ML field that is agnostic to positive label prevalence and as a result can be 

compared across studies. We estimated significant performance between models by performing a 

t-test on 1,000 bootstrapped test samples[30,105]. We used a Bonferroni correction to correct for 

multiple hypothesis testing when comparing MDL to the three individual networks (0.05/3 = 

0.0167). 

Generalizability 

For generalizability, we split the data based on the healthcare system. We trained the 

models on Kaiser Permanente Northern California and tested on the remaining systems. We 

chose Kaiser Permanente Northern California as the training set, since it made up roughly 80% 
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of our entire dataset. For the test set, we excluded the Mayo Clinic since it contained a 

substantially smaller number of patients compared to Henry Ford and Group Health (Table 2-2). 

For each test system, we then evaluated the models’ performance using the performance metrics: 

recall, specificity, balanced accuracy, precision, F1-score, AUC, and AUPRC. As before, while 

we calculated these different performance metrics, we prioritized AUC over AUPRC when 

interpreting results. We estimated significance performance between models by bootstrapping 

1,000 samples for each healthcare system in the test set. For each pair of samples (i.e. one 

sample from each healthcare system in the test set), we calculated the different performance 

metrics for each sample then averaged. We performed a t-test for each performance metric using 

each model’s resulting 1,000 average values. We used a Bonferroni correction to correct for 

multiple hypothesis testing when comparing MDL to the three individual networks (0.05/3 = 

0.0167). 

Results 

Data Characteristics 

For early surgery, we identified 8,387 patients with a prevalence of 2.4% for 

decompression surgery (Table 2-2). For late surgery, we identified 31,210 patients with a 

prevalence of 4.4% for decompression surgery. For early surgery, the average age was 57 years, 

while for late surgery it was 57.7 years. Both groups were balanced for gender with females 

representing 56.2% and 56.0%, respectively. The majority of patients from both prediction tasks 

were 1) white, 63.4% and 65.0%, respectively; and 2) from Kaiser Permanente Northern 

California, 84.3% and 86.1%, respectively. We found that the majority of early surgery patients 

had an MRI (69.3%), while late surgery patients had an X-Ray (61.5%).  
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Classical Performance Assessment 

To assess the best performing model for each prediction task, we trained and tested each 

model, then calculated performance metrics on the test set, and then used a t-test to assess 

significant performance. For early surgery, we found that MDL had a significantly higher AUC 

(0.725) and AUPRC (0.061) compared to the baseline model (0.597, 0.047) (Table 2-4). For late 

surgery, we found that the baseline model had a significantly higher AUC (0.840) and AUPRC 

(0.266) compared to MDL (0.833, 0.241) (Table 2-4). For early surgery, we found that textual 

data (i.e. index image reports) was the contributing factor for both the baseline and MDL’s 

performance, while for late surgery diagnosis and procedure codes and drug names in the form of 

aggregate binary 0/1 and temporal representation was the contributing factor for the baseline and 

MDL model’s performance, respectively (Table 2-5, Supplement Table 2-1, 2-2).   

Generalizability Performance Assessment 

 To assess the most generalizable model for each prediction task, we trained on Kaiser 

Permanente Northern California data and tested on the remaining healthcare systems. We 

excluded Mayo Clinic from the test set since it contained a substantially smaller set of patients 

compared to Group Health and Henry Ford (Table 2-2). MDL had a statistically higher AUC 

(0.763) compared to the baseline model (0.685), but the baseline model had a higher AUPRC 

(0.119) than MDL (0.116) for early surgery (Table 2-6). For late surgery, the MDL had a 

statistically higher AUC (0.760) compared to the baseline model (0.748), but the baseline model 

had a statistically higher AUPRC (0.177) than MDL (0.175) (Table 2-6). Similar to classical 

performance, we found that textual data contributed to MDL’s generalizability performance for 

early surgery, while for late surgery, temporal data contributed to MDL’s generalizability 
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performance based on AUPRC (Table 2-7). This observation was also present in the baseline 

predictors, in which the early surgery baseline model’s top predictors were composed of mainly 

textual features, while for late surgery procedure codes were the most important features for 

prediction (Supplement Table 2-3, 2-4).   

Discussion 

Early identification of LSS/LDH patients at high risk of eventual surgical decompression 

(i.e. failure of non-surgical treatments) could allow healthcare providers and patients to discuss 

the benefits and risks of pursuing surgery or seeking more non-surgical options using 

individualized information specific to each patient. In our study, we developed a MDL model 

that leveraged textual, temporal, and demographic information to predict decompression surgery 

for LSS/LDH patients and then evaluated classical and generalizability performance against a 

baseline model. For early surgery, MDL was preferred for both assessments. For late surgery, the 

baseline model was the preferred method for classical performance, while MDL was preferred 

for generalizability. However, while the difference in performance between MDL and LASSO 

for predicting late surgery was statistically significant, it was of small magnitude when compared 

to the difference between the two methods for predicting early surgery (Supplemental Table 2-7). 

Our study suggests depending on the prediction task, MDL and the baseline model, a 

conventional ML method can have similar performance. As a result, thorough assessment is 

needed to quantify the value of DL, a computationally expensive and time-consuming method.  

 For classical performance evaluation, the MDL models achieved a mean AUC of 0.725 

for early surgery and 0.833 for late surgery. These results are similar to prior studies that used 

DL to predict aspects of lumbar surgeries[130,131]. André et al. assessed the feasibility of 
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training a DL model on synthetic patients generated from EHR data to predict the positive and 

negative outcomes from decompression surgery resulting in an AUC of 0.78, while Azimi et al. 

investigated using DL to predict the outcome of surgery for 203 LDH patients resulting in an 

AUC of 0.82. The difference in our results can be attributed to 1) our larger dataset and 2) Andre 

et al. using synthetic patients, rather than real patients. As a result, these studies’ results are 

limited in their generalizability, but they are important to acknowledge, so that we can 

understand our models’ performances in the context of similar studies. Interestingly, a previous 

study by Keeney et al. used logistic regression to predict which Washington State workers with 

disability claims for back injuries would receive lumbar spine surgery (i.e. decompression, 

fusion, and/or both) or not, which resulted in an AUC of 0.93[132]. This AUC value 

outperformed our baseline and DL models for both early and late surgery. Keeney et al. found 

that the driving feature for this performance was if a patient’s injury was first seen by a surgeon 

or not, and speculated that this may indicate that “who you see is what you get”[132]. If our 

dataset had this type of information, then our models’ performance might have improved. 

 To the best of our knowledge, we are one of the few studies that evaluated the 

generalizability of our surgery prediction models across different healthcare systems. A recent 

study explains that external validation of predictive models in spine surgery are rare[133]. As 

stated earlier, MDL was the most generalizable model for both prediction tasks. Our rigorous 

evaluation shows DL-based models can learn a generalizable representation from the training 

data that can be applied to other healthcare systems’ datasets. As Azad et al. stated, if we want to 

bring ML models into the clinical space, more external validation is needed to prove that 

performance is not specific to the internal datasets used for training and testing[133]. 
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 We observed an interesting trend with the MDL models in which for early surgery, 

textual data was the contributing data type, while for late surgery temporal data was the 

contributing data type for both classical and generalizability performance. This same observation 

was seen in the baseline models’ top 10 predictors as well. The drivers for early surgery are 

likely impending neurologic deficits and anatomic findings related to those deficits; the former 

can’t be known from the EHR elements present, but the latter may be reflected in the spine 

imaging reports (Supplemental Table 1). The drivers for late surgery are likely ongoing pain and 

disability, which are proxied by procedure codes reflecting spine-related procedures to relieve 

pain and indicators of more visits for clinical care (Supplemental Table 2-2). 

There are several limitations to this study. First, expanding our hyperparameter value 

search space could have improved our DL-based models’ performances, however we used prior 

studies to focus our grid search on the most important hyperparameters and their ranges of 

values. Second, the dataset contained only spine-related diagnosis and procedure codes and pain-

relieving drugs, which may limit the generalizability of our results to only the lumbar spine 

domain. Third, we only used DL and logistic regression for our ML models and did not consider 

other methods. Including more conventional ML methods might have provided better 

performance than logistic regression and even DL. However, our objective was to specifically 

use DL to predict surgery and benchmark this costly method against the most popular and 

accessible method for researchers: logistic regression. Fourth, a bias in medicine is that sicker 

patients generally have more data points than healthier patients. We sought to address this by 

limiting the patients’ data to the last 3 months and then binned into one month intervals, so that 

across the patients we 1) ensure that the time period is consistent and 2) minimize the variability 

in the amount of available data. 
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In summary, we built a MDL architecture to predict early and late decompression surgery 

for LSS/LDH patients. For each prediction task, we compared this architecture’s performance 

within and across different healthcare systems against LASSO logistic regression, a conventional 

ML method. Through our rigorous testing, we’ve shown that depending on the prediction task, a 

conventional ML method can have similar performance to a DL model. This shows that thorough 

assessment is needed to validate the need for DL over using a conventional ML method. Finally, 

we believe our MDL architecture can be used as early screening tools to assist clinicians by 

allowing for early discussions with their patients about possible treatments depending on the 

prediction.  

Aim 3 

Introduction 

Genetic testing is an essential tool to assist patients and clinicians to better understand the 

risk of hereditary disease. The cost of genetic testing has decreased and the number of genes 

routinely evaluated has increased in recent years, due to massively parallel sequencing methods 

and new discoveries[134,135]. Patients now have increased access to genetic information that 

can be important for their and their family’s health. 

Early genetic testing for germline risk variants can promote reproductive autonomy and 

lead to the recommendation of appropriate medical screening to mitigate risk of developing 

disease or provide early diagnosis at a more treatable stage. For example, the most common 

hereditary disease that elicits a genetic clinic visit and testing in adults is cancer, specifically 

colorectal cancer (CRC), breast cancer (BC), and ovarian cancer (OC). Approximately 5% of 

CRC and BC, and 10-20% of OC, is due to high penetrance Mendelian conditions[136–138]. 
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CRC accounts for 9.5% of all new cases of cancer[139]. BC is the second leading cause of 

cancer death in women; 3% of women in the U.S. will die of BC[140]. OC affects 1-2% of 

women, most of whom will die from it. To mitigate the cancer-related death rate, early detection 

of Mendelian (germline) cancer predisposition is of grave importance. If CRC-associated 

pathogenic variants are found, colonoscopy with polypectomy can prevent CRC and prophylactic 

bilateral salpingo-oophorectomy surgery reduces OC risk and are consensus 

recommendations[33,34]. Similarly, for BC/OC associated genes, prophylactic mastectomy 

reduces risk of BC[141]. Thus, early genetic testing is necessary to reduce risk of morbidity and 

mortality for patients. 

While genetic testing is important for patients, these test results may also be important for 

their biological relatives. A patient’s positive test result allows for inexpensive and often free 

direct testing of at-risk family members for that same pathogenic variant. A positive or negative 

test in a family member is likely to affect their clinical care. For positive test results, relatives’ 

treatment plans may change to reduce disease risk, while for negative test results, relatives may 

not be at increased risk and additional testing may not be necessary[35]. However, sharing of 

genetic results between patients and their biological relatives is infrequent[35–42]. The two most 

frequently reported communication barriers for sharing are 1) patients have difficulty in clearly 

communicating the results and meaning, and/or 2) biological relatives have difficulty in 

interpreting the result[35–37,41]. Nieuwenhoff et al. found that patients had limited knowledge 

of their test results and this influenced whether or not they would share[36]. For example, terms 

in the test result like “hereditary” implied danger and motivated patients to share, while terms 

like ‘sensitivity’, ‘tendency’, and ‘it runs in the family’ made patients perceive the results as 

normal and did not share[36]. Additionally, if patients shared then there was a risk of arousing 
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fear in their relatives, as they couldn’t clearly explain the benefit and threat reduction from 

getting their own genetic test results[36]. Another recent study reported when patients shared 

their test results with their biological relatives, over 20% didn’t fully understand the results and 

were unsure if they were at risk for cancer[35]. This 20% was mainly for non-informative test 

results, indeterminate results or variants of uncertain significance[35]. As a result, patients’ 

explanations had a combination of filtering information and lack of understanding[35]. 

         Family communication tools may improve the dissemination of genetic results among 

family members. With increasing access to mobile phones and devices, mobile technology, such 

as apps, have become popular methods to share information[43,142,143]. Studies investigated 

the value of this technology specifically in families and found that it was a valuable tool for 

parents and their children to communicate sensitive topics that they didn’t feel comfortable 

discussing in-person[144]. Additionally, this technology facilitates family members being in 

contact when they are not geographically close[145]. Similarly, in the healthcare space, mobile 

technology provides a means of communication to improve health behavior for patients[43]. 

However, mobile health apps’ patient privacy and interpretation of results are questionable. A 

recent study found that 81% of diabetes apps do not have privacy policies and would share 

sensitive patient information to third parties without the patient’s permission[44]. Additionally, 

another study found that 20% (7/35) of health apps would transmit identifiable information over 

the Internet without encryption[45]. Finally, there are apps that can analyze genetic test results 

and provide risk scores, however it’s important to encourage patients to seek their healthcare 

provider’s advice on these results[42]. We believe there is an opportunity to leverage mobile 

technology to increase communication genetic test results between patients and their family 
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members, while protecting their privacy and encouraging the value of healthcare providers’ 

expertise. 

         We built ShareDNA, a free secure smartphone app, to 1) lower the barrier to sharing 

genetic test results with family members by sharing test results with anyone contactable by text 

or email, 2) provide links to educational material and text to explain how to understand the 

results and proper next steps for recipients, and 3) increase security of patient data by allowing 

for encrypted transmission and minimizing the amount of data needed to register for the app. 

Here we describe the development of the ShareDNA app, and the results of user testing to inform 

usability and acceptance. 

Implementation 

Application 

Overview 

ShareDNA is a smartphone application that allows users to share DNA results with 

family members in a secure way (Figure 3-1). The application is divided into two parts: the app 

and server (Figure 3-2). 

App 

The app faces the user and allows them to upload their documents either by selecting a 

file from their smartphone or using their smartphone’s camera to take a picture of their result. 

The code itself is encrypted on the user’s smartphone. The app is built using HyperText Markup 

Language (HTML), JavaScript (JS), Cascading Style Sheets (CSS). Users are required to enter 

their password every time a file is uploaded or downloaded. This ensures only the user and their 
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recipients can access the files. Once uploaded, user’s files are encrypted using ‘AES-256-CBC’ 

encryption that cannot be decrypted unless a user enters their password again. All 

communication from the app to the server is encrypted using Secure Socket Layer (SSL) with a 

256-bit Certificate. The app interface was designed using Cordova and is available in the Apple 

App and Google Play store. With this approach, we came across an obstacle in which Apple app 

guidelines frequently changed which required refactoring the app, especially before the first 

production build. 

Server 

User’s encrypted information (i.e. email, password, and test result file) is stored on a 

Security-Enhanced Linux server with an encrypted file system hosted by University of 

Washington. The application programming interface (API) is a web application written in 

Hypertext Preprocessing (PHP) 7+ running on the Apache web server with a MariaDB database 

for data storage. 

Participants 

Participant recruitment was conducted in two phases. We first sent invitations to 49 

participants who were enrolled in the Electronic Medical Records and Genomics (eMERGE) 

network clinical study at Kaiser Permanente Washington who had received positive (pathogenic 

or likely pathogenic) genetic test results. The eMERGE network is a consortium that develops 

methods to use electronic health record information for genomic research[146]. In the second 

phase, we sent a batch of 100 invitations in the mail to eMERGE study participants who had 

received negative test results. In total, we recruited 14 participants, however one dropped out 

early in the study for unknown reasons. As a result, we only considered the 13 active participants 
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for this study. For each of the 13 participants, we performed an app testing session. Institute 

Review Board approval was provided by the Kaiser Permanente Health Research Institute 

Human Subjects Board. Each participant received a $50 incentive. 

User-Testing 

To evaluate the usability and acceptance of ShareDNA, we used the Technology 

Acceptance Model (TAM) as a framework[147]. We assessed the perceived ease of use 

(usability) of the tool through observing the participants walk through the procedures and 

functions for sending relatives their genetic test results and recorded whether the participant 

successfully accomplished a list of tasks. Testing of the app was done using an iPad. The app 

was already installed on the device, as well as a picture of a blank genetic test result and contact 

information for two fabricated relatives. Each participant was also provided a unique email and 

password to create an account for the app, along with the contact information for two 

hypothetical at-risk relatives and a hard copy of blank genetic test results. After being consented, 

we provided a generic scenario with the task to deliver the test results to the two relatives using 

the ShareDNA app. We had users fill out a usability testing document that indicated how to 

perform tasks in the app and allowed for user feedback on what could be improved. In addition, 

we used the 16-item version 3 of the Post Study System Usability Questionnaire (PSSUQ), 

which is a validated instrument designed for usability evaluations, to assess attitudes towards the 

app after use[148]. The scale is out of five, with one indicating “strongly disagree” and five 

indicating “strongly agree”. Finally, we asked participants to vocalize their thoughts and 

impressions while interacting with the app and then recorded their responses. Testing was done 

in-person. 
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Results 

Patient Demographics 

Our thirteen participants consisted of nine males and four females with an average age of 

67.5, minimum age of 60, maximum age of 74, and a standard deviation of 4.8. Our participants 

were primarily white (10 out of 13). 

User-Testing of App 

We found on average, the PSSUQ questions with scores above four indicated that users 

felt comfortable with using this app and could easily learn each app function, however, the 

lowest scoring question indicated that when users came across a problem, our error messages 

were not informative enough to help (Table 2-1). These results indicate that reformatting our 

error messages is needed to better assist users that may have some difficulties with our app. 

Additionally, participants vocalized their thoughts about sharing via email. Participants 

expressed a natural inclination to email, as one participant explained: “because it's just what 

they've done all their lives.” 

Issues with App 

Users had a number of concerns along with recommendations based on the vocalized 

impressions of the app (Table 3-2). We found three main themes: 1) certain aspects of our user 

interface were not intuitive, such as how to select multiple contacts to send a result to, 2) there 

was a lack of understanding of our security measures, which is why users were confused as to 

why they needed to enter their password multiple times, and 3) users were confused with modern 
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icons for buttons, such as Share and Downloading. The second theme is of particular importance, 

because there seems to be a lack of understanding of the implications of an information leak. 

Discussion 

User-Interface 

Creating an Account and Educational Material 

Once the app is opened, ShareDNA describes the purpose of the app with a mission 

statement along with visual slides (Figure 3-1). The user needs to create an account by providing 

an email address and password to log in to the app. Both the password and email are one-way 

encrypted, so that they are not stored on the server. Additionally, if the user requires further 

assistance on how to use the app, they can tap the Need Help? Icon on the bottom left of the 

screen to contact the ShareDNA team. Finally, ShareDNA provides links to websites that provide 

educational material. Two of the provided links direct users to our local medical genetics clinic 

at the University of Washington and to genetic counseling resources across the United States (the 

National Society of Genetic Counselors 'find a provider' page), particularly for individuals with 

questions and/or who have a positive result and need follow up care. Additionally, we provide 

links to two websites with reliable, general genetic condition (Medline) and hereditary cancer 

specific (National Cancer Institute) information written for the general population for users who 

may want to research a given condition on their own. The users tap the Learn More icon on the 

bottom right of the screen to access these links. 
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Upload a Genetic Test Result 

When a user uploads a file either from their smartphone local storage or taking a picture 

with their smartphone camera, the server uses a randomly generated key to encrypt the file and 

save to the filesystem; the server then erases the key making the file only accessible for sharing 

and downloading if the user enters their password again. 

Sharing a File through Text and/or Email 

The user can view a list of their uploaded files and select to share a file. The user must 

enter their password again which allows the server to create message keys that can be later used 

by the server to decrypt the files sent to the recipient. Once the device receives the temporary 

message key for the file, they can select to send a message to a single contact or multiple 

contacts through the smartphone’s native email or text messaging application. Once selected, 

they can send a message containing a link to the ShareDNA web application allowing the 

recipients to register and access the file. These message keys are only available for 24 hours and 

can only be used once per recipient; this is to avoid leaving them hanging in emails and texts for 

the wrong people to read and prevent brute force attacks on our server. 

Recipient Viewing the File 

After sharing a file, the recipient will receive a link either through email or text. The link 

takes the recipient to the ShareDNA website, where the recipient will need to create an account 

and log in to access the file. Once logged in, the recipient can tap the “Testing” button next to the 

file to learn about the next steps after viewing the file. These steps include 1) how to interpret the 

results and 2) taking the file to their clinician to discuss if genetic counseling is necessary or not. 

In order to download a file to their device, recipients must enter their password again. The 
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password is sent to the server to decrypt the file and creates a new temporary file encrypted with 

a new key that is sent to the device and not stored on the server.  The user then uses this key 

along with their logged in API key to decrypt and download the file to their device. Once the file 

is on their device, it is stored to a location of their choice in an unencrypted state. 

New Features to Add 

In a future implementation, we will need to address our app testers’ concerns by 1) 

allowing future users to guide us in implementing the logical steps needed to execute our 

functions, 2) include documentation in the app that explains why security is needed for clinical 

data, and 3) using text rather than icons to describe our buttons. 

Comparison to Other Existing Software 

ShareDNA is similar to the app FamGenix[42]. Both apps 1) allow patients to share their 

genetic information with anyone of their choosing through text or email and 2) store their 

information on a secure Health Insurance Portability and Accountability Act (HIPAA) compliant 

server with encryption at rest and in transit. The difference is that ShareDNA is a free service 

focused on sharing genetic test results, while FamGenix is a paid sharing service with data 

analytics. FamGenix employs genetic risk algorithms to autogenerate pedigrees and calculate the 

hereditary cancer risk for a patient; both can be shared with patients’ family members. While 

useful, we believe sharing algorithm-derived risk scores could lead to 1) misinterpretation as 

these risk scores should only be considered as aids for diagnosis and/or 2) incorrect results. We 

believe our approach of encouraging patients’ family members to share their information with 

their healthcare provider is a safer option as it 1) minimizes the possibility of misunderstanding 

and 2) emphasizes healthcare providers’ valuable expertise and experience. 
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Conclusion 

ShareDNA is a free secure smartphone app that allows patients to share their genetic test 

results with others, with emphasis on their family members who may benefit from this 

information. The main benefit of the app is to provide a secure environment for sharing the 

genetic test report by requiring minimal user information and encrypting the storage and 

transportation of data. Our app addresses patients’ difficulty in communicating and their 

relatives’ difficulty in interpretation by providing links to educational websites to learn more 

about genetic testing and text to explain how to interpret these results and next steps for their 

relatives to get their own testing if needed. Our user-testing indicated that participants felt 

comfortable with our app, however improvements were suggested to better support potential 

users, specifically understanding the importance of our security measures (i.e. entering password 

twice). Our next immediate step will be to implement our participants’ recommendations (Table 

3-2). A future step would be to perform another usability test to further explore the TAM 

framework, specifically usefulness and intention to use, by expanding our questions for 

participants to include ones that directly ask about the usefulness of the app and its educational 

material and the intention to use the app. A limitation of our study is the sample size. We were 

able to recruit only 13 participants. A larger sample size may have provided more feedback on 

how to improve our app. Another limitation is our results are limited to an age group favoring 

elderly individuals (atleast 60 years old). Another limitation is that our participants came from 

the eMERGE consortium only. These individuals are familiar with genetic testing, so they may 

not represent the general population. As a result, our findings are limited in their generalizability. 

To address these three limitations, a future step would be to perform another usability test, as 

stated before, but with a larger cohort of participants that come from both the eMERGE 
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consortium and general population with a wider age range. A final limitation is that participants 

had some familiarity with using a smartphone. While a limitation, this is a necessary prerequisite 

to use our app. We believe ShareDNA will become a useful tool to promote timely 

communication of genetic risk information to ensure family members are able to make informed 

decisions about whether or not to access genetic testing. Important features enabled by 

ShareDNA, including file sharing, data encryption, and links to resources, could reduce the 

barriers to successful cascade screening programs. 

Availability and Requirements 

Project name: ShareDNA 

Project home page: http://sharedna.org/  

Project source code page: https://github.com/uwrit/AppShareDNA  

Operating system(s): iOS and Android 

Programming language: JS, HTML, CSS, PHP  

Other requirements: None 

License: MIT 

Any restrictions to use by non-academics: License required 

Conclusion 

To conclude this dissertation, I summarize the contributions in fulfillment of the 

dissertation aims by reviewing the advances in knowledge and acknowledging the limitations 

and opportunities for future work. 



57 

Summary of Contributions 

The increase in the volume and complexity of EHR data has given rise to the need for 

advanced methods to distill these data into information and knowledge that can be acted upon. 

One of the most common methods is to apply ML methods for clinical prediction tasks, however 

the generalizability of these predictions are questionable as there is a lack of rigorous testing 

across independent datasets. Additionally, the ability to send this and other types of sensitive 

clinical information to patients is limited. 

In this work, I address the issue of generalizability in the realm of structured and 

unstructured EHR data. The first aim assesses the generalizability of information extraction from 

textual data to build cohorts independent of the healthcare system, while the second aim assesses 

the generalizability of a ML model that can harness both structured and unstructured data for a 

prediction task. Finally, I address the issue of sending sensitive clinical information to patients 

by building a smartphone app that focuses on the security of patients and their information. 

Aim 1 

 In Aim 1, we collected 871 reports from the LIRE study. These reports were labelled for 

26 different imaging findings related to LBP. We built a NLP-based ML pipeline to classify 

these reports for these different findings using four different NLP techniques: rules, n-grams, 

controlled vocabulary, and document embeddings to represent the text. We performed two types 

of assessments: classical and generalizability assessment. For classical assessment, we split our 

dataset into 80% for training and 20% for testing for evaluating each finding-specific ML model 

(i.e. elastic-net logistic regression). Within the training set, ten-fold cross validation was used to 

adjust the value of our regularization parameter (lambda) to perform feature selection. We 
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repeated this process 25 times with each independent repeat using a different random train/test 

split of the data, so that we could estimate 95% confidence intervals. For each finding, a t-test 

was used to assess significant performance comparing the 25 repeats of the best representation to 

the next best representation. We used Bonferroni correction to correct for multiple hypothesis 

testing. For generalizability assessment, we trained our model on reports from three systems and 

evaluated on the fourth, iteratively, for each finding. For each finding, we calculated the mean 

and standard deviation of the AUC across the four systems. 

 For classical assessment, we found that n-grams was the best performing method based 

on AUC. Interestingly, for generalizability assessment, n-grams had the worst performance and 

document embeddings had the best performance based on standard deviation. These results 

indicate that if classifier development and deployment occur at the same system, then n-grams 

may be preferable. However, for deployment at multiple systems outside of the system of 

development, one should consider n-grams with the caveat that it’s consistency can vary across 

systems, while document embeddings pre-trained on study-specific data or a publicly available 

dataset had the most consistent performance. 

In support of Aim 1, my contributions in this study are to assess the generalizability of NLP-

based feature extraction methods for use in the clinical space. My contributions are: 

1. Classical assessment alone is not enough to fully characterize these methods for 

prediction tasks. Generalizability across healthcare systems helps to rigorously assess the 

consistency of performance. 

2. Reinforcement of the growing evidence that relatively simplistic methods such as n-

grams can outperform sophisticated methods like document embeddings. 

 



59 

Aim 2 

 In Aim 2, we built a MDL architecture to predict early and late decompression surgery 

for LSS/LDH patients. For each prediction task, we compared this architecture’s performance 

within and across different healthcare systems against LASSO logistic regression, a conventional 

ML method. We performed two types of assessments: classical and generalizability. For classical 

assessment, we split each prediction task’s dataset into 80% for training and 20% for testing. For 

generalizability, we split the data based on the healthcare system. We trained the models on 

Kaiser Permanente Northern California and tested on the remaining systems. We chose Kaiser 

Permanente Northern California as the training set, since it made up roughly 80% of our entire 

dataset. For each evaluation, we calculated the test set’s area under the curve (AUC) and area 

under the precision-recall curve (AUPRC). For generalizability, we then calculated these metrics 

for each healthcare system’s dataset in the test set and then averaged. To assess significant 

performance between our models, we repeated this evaluation for bootstrapped 1,000 samples 

from the test set and then performed a t-test. 

 For early surgery, MDL was preferred for both assessments. For late surgery, the baseline 

model was the preferred method for classical performance, while MDL was preferred for 

generalizability. However, while the difference in performance between MDL and LASSO for 

predicting late surgery was statistically significant, it was of small magnitude when compared to 

the difference between the two methods for predicting early surgery.  

In support of Aim 2, my contributions are: 

1. Finding that depending on the prediction task, a computationally expensive deep 

learning-based model is not always the best method as conventional ML methods can 

perform as well. 
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2. Emphasizing the need for generalizability assessments of ML models as we’ve shown 

that deep learning-based methods based on statistical significance are the preferred 

method to be applied to other healthcare systems’ datasets. 

Aim 3 

In Aim 3, we built a smartphone app, ShareDNA, to securely share patients’ genetic test 

results with their family members. The app allows users to upload their genetic test results as a 

file or picture to our secured UW server. The user then indicates which of their contacts they’d 

like to share the test result with, which then prompts the app to provide a link to those recipients 

either through text or email to download the test result. Additionally, we provide instructions on 

what to do next when the test result is received and educational material on how to learn more 

about genetic testing. To assess usability, we recruited 13 participants to test the app. Participants 

were asked to send a blank test result to two fake recipients and during the process fill out a 

usability report. Once the test was complete, participants were then asked to fill out a PSSUQ. 

The PSSUQ scale is out of five, with one indicating “strongly disagree” and five indicating 

“strongly agree”. Finally, we asked participants to vocalize their thoughts and impressions while 

interacting with the app and then recorded their responses.  

Based on PSSUQ scores, we found that overall participants felt comfortable with using 

this app and could easily learn each app function, but when faced with a problem our error 

messages were not useful. Additionally, we learned that participants favored sending their 

information over email instead of text, as one participant explained: “because it's just what 

they've done all their lives.” Finally, our participants vocalized their issues with the app. One 

particular issue stood out, in which participants did not understand the security measures in the 

app, specifically the need to enter a password multiple times. 
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In support of Aim 3, my contributions are: 

1. Successfully building a vehicle to allow patients to securely share their sensitive clinical 

information with anyone of their choosing. 

2. Discovering that when it comes to sharing information, patients may prefer a specific 

mode of transport that should be taken into consideration for future vehicles. 

Limitations and Future Works 

Aim 1 

 In our study, we had several limitations. First, our pipeline required binary annotations 

for findings, however the presence of findings may be uncertain as radiology reports can have 

terms such as “suggesting” and “not definite”. We minimized this uncertainty by coding these 

and other similar terms as indicating the presence of a finding. Second, a larger training and 

testing set could have led to less variable performance across our NLP methods. Third, we 

evaluated the algorithms but not the entire pipeline involving the querying and transfer of data; 

there may be discrepancies in our performance estimates when compared to those at actual 

deployment. Fourth, we could not assess our rules’ generalizability, since the search terms were 

developed from reports from all four systems. Finally, in the case of document embeddings, 

because of our limited computational resources, we had to sequentially adjust hyperparameter 

values in the pre-training step, rather than conducting a grid search. With a more extensive 

hyperparameter search, we may have been able to improve performance. 

 Future efforts could include a larger dataset that encompasses more reports from each 

healthcare system, so that we can account for more distinct ways clinicians document spinal 

images to further generalize our results. In addition, our team of clinical experts could be 
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expanded so we can label more different findings beyond our initial 26. Finally, we could 

include more modern NLP-based methods such as Bidirectional Encoder Representations from 

Transformers (BERT) in our analysis. 

Aim 2 

There are several limitations to this study. First, expanding our hyperparameter value 

search space could have improved our DL-based models’ performances, however we used prior 

studies to focus our grid search on the most important hyperparameters and their ranges of 

values. Second, the dataset contained only spine-related diagnosis and procedure codes and pain-

relieving drugs, which may limit the generalizability of our results to only the lumbar spine 

domain. Third, we only used DL and logistic regression for our ML models and did not consider 

other methods. Including more conventional ML methods might have provided better 

performance than logistic regression and even DL. However, our objective was to specifically 

use DL to predict surgery and benchmark this costly method against the most popular and 

accessible method for researchers: logistic regression. Fourth, a bias in medicine is that sicker 

patients generally have more data points than healthier patients. We sought to address this by 

limiting the patients’ data to the last 3 months and then binned into one month intervals, so that 

across the patients we 1) ensure that the time period is consistent and 2) minimize the variability 

in the amount of available data. 

In a future effort, we will repeat the process of predicting late surgery, only this time 

we’d limit identification of LSS/LDH patients to the 1 year prior to LIRE enrollment and this 

time period would be the data our models would use for prediction. With this approach, we can 

more easily compare performance between the two prediction tasks. 
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Aim 3 

 A limitation of our study is the sample size. We were able to recruit only 13 participants. 

A larger sample size may have provided more feedback on how to improve our app. Another 

limitation is our results are limited to an age group favoring elderly individuals (atleast 60 years 

old). Another limitation is that our participants came from the eMERGE consortium only. These 

individuals are familiar with genetic testing, so they may not represent the general population. As 

a result, our findings are limited in their generalizability.  

 In a future effort, we would perform another usability test, but with a larger cohort of 

participants that come from both the eMERGE consortium and general population with a wider 

age range, to further explore the TAM framework, specifically usefulness and intention to use, 

by expanding our questions for participants to include ones that directly ask about the usefulness 

of the app and its educational material and the intention to use the app.  

Conclusion Overview 

 This work serves to advance evaluation of prediction pipelines to transform the data in 

the EHR into knowledge that can then be given to patients and their family members to inform 

their clinical decisions. In Aim 1, I evaluated the performance and generalizability of different 

NLP-based feature extraction methods coupled with an ML model to build patient cohorts by 

classifying reports for different imaging findings. In Aim 2, I built on Aim 1 by then leveraging 

both free-text and tabular data to predict a clinical outcome and then rigorously assessing the 

performance within and across different healthcare systems. Finally, in Aim 3, I developed a 

smartphone app to securely share patients’ clinical information with their family members. These 

three aims serve to bring to vision an evidence-based healthcare system that transforms data into 
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knowledge that can help clinicians and patients’ decision making. The contributions of this work 

will aid in convincing researchers that further evaluation of ML methods needs to be considered 

before deploying in the clinic and how to share clinical information with patients to keep them 

and their family involved in the decision making.  

Figures/Tables 

Figures 

 

Figure 1-1. Overview of the Pipeline. (A) This visualization shows the different steps of our pipeline 
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where we collect 871 radiology reports from our four systems, perform preprocessing to clean the text 

data, perform feature extraction using our four different methods. We load the n-grams, controlled 

vocabulary, and document embeddings feature matrices into a logistic regression model to predict the 

presence of these findings. For rules, we instead use a rule-based model that classifies a report as 

“positive” if atleast one mention was non-negated and “negative” if there was no mention or all mentions 

of the finding were negated. We perform two types of assessments: generalizability and performance 

based on AUC. (B) A visual representation using the four different NLP methods to featurize the text for 

two example findings: fracture and any degeneration. The resulting finding-specific feature matrices are 

then used for the machine learning model, which uses the first column as the labels and remaining 

columns as features to predict the presence of these findings. UMLS = Unified Medical Language 

System, AUC = Area Under the Curve. 
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Figure 1-2. Comparison of the Finding Label Prevalence Between the Training and Test Set. We 

compared the finding label prevalence between the train and test sets across the 25 repeats. To assess a 

significant difference, we performed a t-test between the two sets for each finding. An asterisk indicates a 

significant difference, while “ns” indicates no significant difference.  
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Figure 1-3. Comparison of the Finding Label Prevalence Across the Healthcare Systems. We 

compared the finding label prevalence across the four healthcare systems. 1 = Kaiser Permanente of 

Washington, 2 = Kaiser Permanente of Northern California, 3 = Henry Ford Health System, 4 = Mayo 

Clinic Health System, All = all four systems. 
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Figure 1-4. Assessing Generalizability of Individual Representations. We compared the 

generalizability of each of our representations and assessed performance using sensitivity, specificity, and 

AUC. For each representation, we plotted a boxplot to represent the distribution of the 26 findings for 

each test performance metric across healthcare systems. N = N-grams, DM = Document MIMIC, DL = 

Document LIRE, CVF = Controlled Vocabulary Filter Only, and CV = Controlled Vocabulary. 1 = Kaiser 

Permanente of Washington, 2 = Kaiser Permanente of Northern California, 3 = Henry Ford Health 

System, and 4 = Mayo Clinic Health System. 
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Figure 1-5. Assessment of Textual Differences Between Systems. Bar graph shows the average log 

odds ratio for controlled vocabulary, controlled vocabulary filter only, and ngrams for each system. For 

each representation, we calculated the frequency of a feature in three systems and frequency for the fourth 

system from the feature matrix. We calculated the log odds ratio by dividing the frequency of the fourth 

system by the three systems and took the log; we then averaged across all features shared between the 

three systems and fourth system. We repeated this process for each system. 
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Figure 2-1. Overview of the Prediction Pipeline. For early surgery, we identified LSS/LDH patients if 

they have at least 2 diagnosis codes one year prior to LIRE enrollment and then identified out of these 

patients as having surgery if they had at least 1 decompression code within 2 months ahead. For late 

surgery, we identified LSS/LDH patients if they have at least 2 diagnosis codes one year prior to LIRE 

enrollment and/or 2 months after enrollment and then identified out of these patients as having surgery if 

they had at least 1 decompression code within 12 months ahead. For each prediction task, we collected 

patients’ demographics, diagnosis codes, procedure codes, drug names, and index image reports. For the 

multimodal deep learning architecture, the index image reports are passed into a CNN, the diagnosis and 

procedure codes and drug names are passed into a GRU, and the demographics are featurized. The output 

from each network are concatenated together along with the featurized demographics and then passed into 

a fully-connected layer and then to an output layer to make predictions. CNN = Convolutional Neural 

Network, GRU = Gated Recurrent Unit, LSS = Lumbar Spinal Stenosis, LDH = Lumbar Disc Herniation, 

LIRE = Lumbar Imaging With Reporting Of Epidemiology 
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Figure 3-1. Overview of the purpose of ShareDNA. ShareDNA provides a service to allow users to 

create an account that only requires their email and password and then they can upload their genetic test 

results and share with anyone from their contact list. 

 

 

Figure 3-2. Overview of ShareDNA’s communication between the client and server-side. The client 

side of ShareDNA faces the users and when users upload their genetic test results, the information is 

securely sent to a server maintained by University of Washington for storing. 
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Tables 

Type of Finding Imaging Finding 

Deformities Listhesis-Grade 1 
 Listhesis-Grade 2 or higher 

 Scoliosis 
Fracture Fracture 
 Spondylosis 
Anterior Column Degeneration Annular Fissure 
 Disc Bulge 
 Disc Degeneration 
 Disc Desiccation 
 Disc Extrusion 

 Disc Height Loss 
 Disc Herniation 
 Disc Protrusion 
 Endplate Edema or Type 1 

Modic 

 Osteophyte-anterior column 
Posterior Column 
Degeneration 

Any Stenosis 

 Facet Degeneration 
Associated with Leg Pain Central Stenosis 

 Foraminal Stenosis 

 Nerve Root Contact 
 Nerve Root 

Displaced/Compressed 

 Lateral Recess Stenosis 

Nonspecific Findings and 
Other 

Any Degeneration 

 Hemangioma 
 Spondylolysis 
 Any Osteophyte 

Table 1-1. The 26 imaging findings of our study. Any stenosis refers to any of central, foraminal, lateral 

recess, or not otherwise specified. Any degeneration refers to any of disc degeneration, facet 

degeneration, or degeneration not otherwise specified. Bold indicates the potentially clinically important 

findings. 

 

System Image Type N in Dataset 

Average Text 

Length Average Age Female % 
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Kaiser 
Permanente of 
Washington 

X-Ray 102 132 +/- 34 
70.35 +/- 

13.84 0.60 

MR 115 267 +/- 106 
58.90 +/- 

14.35 0.49 

Total 217 203 +/- 105 
64.28 +/- 

15.20 0.54 

Kaiser 
Permanente of 
Northern 
California 

X-Ray 104 143 +/- 38 
67.51 +/- 

16.82 0.61 

MR 114 270 +/- 95 57.1 +/- 14.96 0.53 

Total 218 210 +/- 97 
62.06 +/- 

16.68 0.56 

Henry Ford 
Health System 

X-Ray 103 121 +/- 57 
67.15 +/- 

16.04 0.72 

MR 115 268 +/- 152 
58.95 +/- 

15.77 0.5 

Total 218 199 +/- 137 
62.96 +/- 

16.44 0.61 

Mayo Clinic 
Health System 

X-Ray 103 141 +/- 39 
69.35 +/- 

16.15 0.61 

MR 115 222 +/- 104 
55.13 +/- 

15.44 0.58 

Total 218 184 +/- 90 
61.85 +/- 

17.28 0.60 

All 

X-Ray 413 134 +/- 44 
68.58 +/- 

15.76 0.63 

MR 458 257 +/- 118 
57.52 +/- 

15.17 0.52 

Total 871 199 +/- 109 
62.79 +/- 

16.42 0.58 

Table 1-2. We calculated the average text length for the finding and impression sections in each report, 

the average age of patients, and the proportion of female patients for each healthcare system and each 

type of report. For average text length, we calculated the average text length for both the finding and 

impression sections, since these sections were required for our pipeline. For both average text length and 

age, we included standard deviation.  



74 

 

Finding 

Proport

ion 

P-

Value 

N-

Gram

s 

Docume

nt LIRE Rules 

Docume

nt 

MIMIC 

Controlle

d 

Vocabula

ry 

Controlle

d 

Vocabula

ry Filter 

Only 

All Findings - 
1.06E-

24 

0.960 

(0.949

, 

0.972) 

0.910 
(0.892, 
0.929) 

0.897 
(0.882
, 
0.911) 

0.894 
(0.872, 
0.916) 

0.882 
(0.862, 
0.901) 

0.879 
(0.857, 
0.902) 

Potentially 
Clinically 
Important Findings - 

2.06E-

13 

0.954 

(0.925

, 

0.983) 

0.910 
(0.878, 
0.942) 

0.821 
(0.789
, 
0.852) 

0.888 
(0.856, 
0.920) 

0.857 
(0.821, 
0.894) 

0.854 
(0.813, 
0.895) 

any degeneration 0.896 

0.0328
9 

0.947 

(0.906

, 

0.989) 

0.896 
(0.820, 
0.972) 

0.850 
(0.770
, 
0.931) 

0.874 
(0.789, 
0.958) 

0.936 
(0.911, 
0.961) 

0.913 
(0.882, 
0.943) 

facet degeneration 0.762 

0.1348
4 

0.970 

(0.940

, 

0.999) 

0.963 
(0.935, 
0.991) 

0.873 
(0.832
, 
0.914) 

0.949 
(0.919, 
0.979) 

0.923 
(0.888, 
0.959) 

0.922 
(0.883, 
0.961) 

disc height loss 0.507 

5.46E-

10 

0.931 

(0.891

, 

0.970) 

0.833 
(0.791, 
0.875) 

0.877 
(0.829
, 
0.925) 

0.830 
(0.774, 
0.886) 

0.874 
(0.812, 
0.935) 

0.878 
(0.826, 
0.930) 

any stenosis 0.480 

0.0960
4 

0.972 

(0.950

, 

0.994) 

0.957 
(0.930, 
0.983) 

0.893 
(0.856
, 
0.930) 

0.967 
(0.945, 
0.988) 

0.955 
(0.926, 
0.984) 

0.961 
(0.935, 
0.987) 

disc bulge 0.435 

0.0027
6 

0.986 

(0.972

, 

1.000) 

0.978 
(0.956, 
1.000) 

0.976 
(0.953
, 
1.000) 

0.967 
(0.939, 
0.994) 

0.955 
(0.923, 
0.987) 

0.952 
(0.920, 
0.984) 

foraminal stenosis 0.400 

0.0015

3 

0.950 

(0.922

, 

0.978) 

0.935 
(0.899, 
0.971) 

0.914 
(0.876
, 
0.952) 

0.936 
(0.906, 
0.965) 

0.932 
(0.898, 
0.966) 

0.930 
(0.896, 
0.964) 

central stenosis 0.351 

6.37E-

10 

0.950 

(0.919

, 

0.981) 

0.903 
(0.876, 
0.930) 

0.773 
(0.731
, 
0.815) 

0.915 
(0.884, 
0.947) 

0.907 
(0.861, 
0.953) 

0.901 
(0.852, 
0.950) 

any osteophyte 0.332 

3.44E-

07 

0.955 

(0.916

, 

0.994) 

0.888 
(0.845, 
0.932) 

0.925 
(0.894
, 
0.955) 

0.886 
(0.835, 
0.937) 

0.875 
(0.818, 
0.933) 

0.880 
(0.819, 
0.94) 

listhesis grade 1 0.324 

0.0388
8 

0.967 

(0.941

, 

0.994) 

0.927 
(0.880, 
0.974) 

0.958 
(0.928
, 
0.989) 

0.910 
(0.858, 
0.961) 

0.945 
(0.903, 
0.987) 

0.947 
(0.904, 
0.989) 
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disc degeneration 0.322 

0.0020
3 

0.935 

(0.898

, 

0.973) 

0.830 
(0.792, 
0.869) 

0.904 
(0.865
, 
0.944) 

0.784 
(0.726, 
0.842) 

0.909 
(0.842, 
0.976) 

0.909 
(0.863, 
0.954) 

scoliosis 0.274 

0.0372
6 

0.969 

(0.943

, 

0.994) 

0.924 
(0.888, 
0.961) 

0.959 
(0.924
, 
0.994) 

0.929 
(0.887, 
0.971) 

0.900 
(0.850, 
0.949) 

0.901 
(0.854, 
0.948) 

osteophyte anterior 
column 0.271 

5.13E-

10 

0.953 

(0.930

, 

0.976) 

0.867 
(0.820, 
0.914) 

0.913 
(0.872
, 
0.954) 

0.846 
(0.785, 
0.907) 

0.882 
(0.831, 
0.933) 

0.874 
(0.825, 
0.923) 

spondylosis 0.217 

0.3997
4 

0.992 

(0.977

, 

1.010) 

0.936 
(0.881, 
0.99) 

0.990 
(0.974
, 
1.010) 

0.901 
(0.846, 
0.955) 

0.900 
(0.836, 
0.964) 

0.883 
(0.817, 
0.949) 

fracture 0.212 

0.6264
7 

0.949 

(0.912

, 

0.987) 

0.947 
(0.921, 
0.973) 

0.883 
(0.816
, 0.95) 

0.896 
(0.839, 
0.953) 

0.914 
(0.868, 
0.960) 

0.925 
(0.878, 
0.972) 

disc protrusion 0.197 

0.6934
8 

0.977 
(0.953
, 
1.000) 

0.940 
(0.906, 
0.973) 

0.927 
(0.879
, 
0.974) 

0.910 
(0.866, 
0.954) 

0.982 

(0.952, 

1.010) 

0.980 
(0.948, 
1.010) 

disc desiccation 0.189 

1.39E-

05 

0.981 

(0.953

, 

1.010) 

0.957 
(0.923, 
0.990) 

0.958 
(0.921
, 
0.994) 

0.923 
(0.884, 
0.962) 

0.817 
(0.745, 
0.888) 

0.822 
(0.747, 
0.898) 

nerve root 

displaced/compre

ssed 0.169 

1.08E-

06 

0.955 

(0.913

, 

0.996) 

0.913 
(0.854, 
0.972) 

0.785 
(0.698
, 
0.872) 

0.907 
(0.848, 
0.966) 

0.870 
(0.819, 
0.921) 

0.864 
(0.817, 
0.911) 

lateral recess 

stenosis 0.163 

0.0023
5 

0.966 

(0.921

, 

1.010) 

0.941 
(0.909, 
0.973) 

0.649 
(0.567
, 
0.731) 

0.948 
(0.918, 
0.978) 

0.843 
(0.771, 
0.914) 

0.844 
(0.773, 
0.915) 

annular fissure 0.099 

0.3835
8 

0.950 
(0.888
, 
1.010) 

0.944 
(0.886, 
1.000) 

0.957 

(0.905

, 

1.010) 

0.922 
(0.848, 
0.996) 

0.763 
(0.667, 
0.860) 

0.755 
(0.650, 
0.860) 

nerve root contact 0.097 

1.13E-

08 

0.972 

(0.949

, 

0.996) 

0.921 
(0.859, 
0.982) 

0.910 
(0.827
, 
0.993) 

0.914 
(0.856, 
0.973) 

0.797 
(0.716, 
0.877) 

0.818 
(0.741, 
0.894) 

disc extrusion 0.079 

0.0008

9 

0.994 

(0.963

, 

1.020) 

0.979 
(0.954, 
1.000) 

0.886 
(0.775
, 
0.997) 

0.948 
(0.901, 
0.995) 

0.969 
(0.914, 
1.020) 

0.962 
(0.897, 
1.030) 
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endplate edema 0.059 

0.0008

8 

0.916 

(0.831

, 

1.000) 

0.868 
(0.765, 
0.970) 

0.854 
(0.732
, 
0.976) 

0.838 
(0.713, 
0.963) 

0.789 
(0.683, 
0.896) 

0.778 
(0.626, 
0.930) 

hemangioma 0.049 0.0736 

0.991 
(0.950
, 
1.030) 

0.899 
(0.807, 
0.991) 

0.999 

(0.995

, 

1.000) 

0.875 
(0.705, 
1.050) 

0.963 
(0.867, 
1.060) 

0.951 
(0.845, 
1.060) 

disc herniation 0.038 

0.0462
9 

0.956 
(0.878
, 
1.003) 

0.890 
(0.715, 
1.060) 

0.975 

(0.927

, 

1.020) 

0.912 
(0.740, 
1.080) 

0.760 
(0.526, 
0.994) 

0.786 
(0.520, 
1.050) 

spondylolysis 0.032 

0.0056
7 

0.981 

(0.940

, 

1.020) 

0.832 
(0.654, 
1.010) 

0.936 
(0.795
, 
1.080) 

0.866 
(0.747, 
0.986) 

0.754 
(0.507, 
1.000) 

0.785 
(0.561, 
1.010) 

listhesis grade 2 0.028 

0.0001

8 

0.905 

(0.741

, 

1.070) 

0.799 
(0.604, 
0.994) 

0.767 
(0.580
, 
0.955) 

0.683 
(0.486, 
0.88) 

0.735 
(0.559, 
0.91) 

0.706 
(0.510, 
0.902) 

Table 1-3. For each representation, we trained and tested 26 models (one for each finding) on 80% and 

20% of the dataset, respectively. For group level, we averaged the AUC across all findings and across all 

potentially clinically important findings for each representation. We repeated this process 25 times with 

different splits of the data to calculate 95% confidence intervals (in parentheses). Table shows the best 

performing representation ordered left to right based on the All Findings row (1st row). The first column 

indicates the finding/group. For the findings, the second column indicates prevalence in the test set 

represented as a proportion. For each row, we bolded the best performing individual representation based 

on the average AUC and underlined the second-best representation. We show the 95% confidence interval 

in the parentheses. Finally, for each finding and group, we performed a t-test comparing the best 

representation's distribution of AUC values for the 25 repeats to the second-best representation. We 

bolded the significant comparisons with Bonferroni correction (p-value significance for the groups: 0.025 

= 0.05/2 groups, p-value significance for the findings: 0.0019 = 0.05/26 findings). Finally, we bolded the 

findings that were potentially clinically important. AUC = Area Under the Curve. 

 

Finding Proportion N-Grams 

Document 

LIRE 

Document 

MIMIC 

Controlled 

Vocabulary 

Controlled 

Vocabulary 
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Filter Only 

All Findings - 0.902 0.879 0.868 0.857 0.853 

Potentially 
Clinically 
Important 
Findings - 0.898 0.890 0.887 0.834 0.833 

any 
degeneration 0.896 0.905 0.881 0.848 0.927 0.874 

facet 
degeneration 0.762 0.919 0.952 0.927 0.914 0.898 

disc height 
loss 0.507 0.845 0.754 0.748 0.845 0.837 

any stenosis 0.480 0.907 0.957 0.955 0.946 0.943 

disc bulge 0.435 0.954 0.963 0.953 0.930 0.929 

foraminal 

stenosis 0.400 0.885 0.922 0.913 0.904 0.888 

central 

stenosis 0.351 0.916 0.881 0.897 0.891 0.878 

any 
osteophyte 0.332 0.874 0.874 0.860 0.831 0.833 

listhesis grade 
1 0.324 0.905 0.899 0.891 0.930 0.936 

disc 
degeneration 0.322 0.873 0.710 0.716 0.861 0.908 

scoliosis 0.274 0.911 0.892 0.891 0.865 0.870 

osteophyte 
anterior 
column 0.271 0.832 0.825 0.818 0.845 0.825 

spondylosis 0.217 0.985 0.801 0.764 0.823 0.781 

fracture 0.212 0.910 0.926 0.889 0.910 0.906 

disc 
protrusion 0.197 0.948 0.935 0.904 0.977 0.978 

disc 
desiccation 0.189 0.929 0.909 0.850 0.796 0.797 

nerve root 

displaced/co

mpressed 0.169 0.918 0.906 0.894 0.845 0.855 
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lateral recess 

stenosis 0.163 0.915 0.932 0.934 0.831 0.841 

annular 
fissure 0.099 0.908 0.921 0.886 0.766 0.763 

nerve root 
contact 0.097 0.917 0.885 0.854 0.736 0.746 

disc 

extrusion 0.079 0.947 0.972 0.925 0.968 0.959 

endplate 

edema 0.059 0.844 0.865 0.841 0.725 0.762 

hemangioma 0.049 0.917 0.869 0.908 0.963 0.963 

disc 
herniation 0.038 0.820 0.826 0.798 0.725 0.700 

spondylolysis 0.032 0.938 0.814 0.849 0.775 0.804 

listhesis 

grade 2 0.028 0.838 0.740 0.681 0.657 0.614 

Table 1-4. For each representation, we trained our model on reports from three systems and evaluated on 

the fourth, iteratively, for each finding. For each finding, we calculated the mean of the AUC across the 

four systems. We calculated group-level performance by averaging the AUC across all findings, and 

across all potentially clinically important findings for each system and then calculated the mean across the 

systems. Table shows the best performing representation ordered left to right based on the All Findings 

row (1st row). The first column indicates the finding/group. For the findings, the second column indicates 

prevalence in the test set represented as a proportion. Bold value indicates the best performing 

representation for that finding and group. Finally, we bolded the findings that were potentially clinically 

important. AUC = Area Under the Curve. 

 

Finding 
Proportio

n 
Documen

t LIRE 

Controlled 

Vocabular

y 
Documen

t MIMIC 

Controlled 

Vocabular

y Filter 

Only 
N-

Grams 
All Findings - 0.010 0.012 0.013 0.014 0.051 
Potentially 
Clinically Important 
Findings - 0.007 0.035 0.024 0.031 0.076 
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any degeneration 0.896 0.021 0.031 0.024 0.041 0.02 
facet degeneration 0.762 0.018 0.039 0.022 0.038 0.064 
disc height loss 0.507 0.033 0.050 0.010 0.057 0.103 
any stenosis 0.480 0.023 0.032 0.013 0.035 0.051 
disc bulge 0.435 0.019 0.022 0.009 0.015 0.04 
foraminal stenosis 0.400 0.016 0.058 0.035 0.077 0.042 
central stenosis 0.351 0.030 0.046 0.038 0.056 0.043 
any osteophyte 0.332 0.034 0.099 0.031 0.094 0.108 
listhesis grade 1 0.324 0.032 0.014 0.009 0.014 0.076 
disc degeneration 0.322 0.033 0.052 0.092 0.049 0.026 
scoliosis 0.274 0.017 0.051 0.025 0.043 0.068 
osteophyte anterior 
column 0.271 0.025 0.084 0.020 0.083 0.088 
spondylosis 0.217 0.040 0.156 0.036 0.164 0.015 
fracture 0.212 0.019 0.028 0.029 0.039 0.029 
disc protrusion 0.197 0.021 0.011 0.018 0.016 0.053 
disc desiccation 0.189 0.024 0.052 0.020 0.051 0.09 
nerve root 

displaced/compress

ed 0.169 0.020 0.018 0.015 0.011 0.021 
lateral recess 

stenosis 0.163 0.017 0.038 0.019 0.034 0.063 
annular fissure 0.099 0.015 0.064 0.057 0.065 0.063 
nerve root contact 0.097 0.071 0.035 0.044 0.014 0.09 
disc extrusion 0.079 0.007 0.024 0.015 0.023 0.076 
endplate edema 0.059 0.059 0.164 0.059 0.091 0.126 
hemangioma 0.049 0.073 0.048 0.007 0.048 0.105 
disc herniation 0.038 0.046 0.079 0.092 0.065 0.094 
spondylolysis 0.032 0.107 0.113 0.087 0.108 0.044 
listhesis grade 2 0.028 0.047 0.128 0.184 0.099 0.184 
Table 1-5. For each representation, we trained our model on reports from three systems and evaluated on 

the fourth, iteratively, for each finding. For each finding, we calculated the standard deviation of the AUC 

across the four systems. We calculated group-level consistency by averaging the AUC across all findings, 

and across all potentially clinically important findings for each system as a test set and then calculated the 

standard deviation across the systems. Table shows the most consistent representation ordered left to right 

based on the All Findings row (1st row). The first column indicates the finding/group. For the findings, the 

second column indicates prevalence in the test set represented as a proportion. Bold value indicates the 
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most consistent representation for that finding and group. Finally, we bolded the findings that were 

potentially clinically important. AUC = Area Under the Curve. 

Group Codes 

Lumbar Stenosis ICD-9 

 

344.6, 344.60, 344.61, 721.4, 721.42, 724, 724.02, 
724.03, 724.09 

ICD-10 

G83.4, M47.15, M47.16, M48.05, M48.06, 
M48.061, M48.062, M48.07, M48.08 

Lumbar Disc Herniation ICD-9 

 

344.6, 344.60, 344.61, 353.4, 355.0, 721.4, 721.42, 
722.1, 722.10, 724.3, 724.4 

ICD-10 

G54.4, G57.0, G57.00, G57.01, G57.02, G83.4, 
M47.15, M47.16, M47.25, M47.26, M47.27, 
M47.28, M51.15, M51.16, M51.17, M54.18, 
M51.25, M51.26, M51.27, M54.10, M54.15, 
M54.16, M54.17, M54.18, M54.30, M54.31, 
M54.32, M54.4, M54.40, M54.41, M54.42 

Decompression CPT 

 

0274T, 0275T, 22818, 22819, 63003, 63005, 63010, 
63011, 63012, 63016, 63017, 63030, 63035, 63042, 
63044, 63046, 63047, 63048, 63050, 63051, 63055, 
63056, 63057, 63064, 63066, 63077, 63078, 63085, 
63086, 63087, 63088, 63090, 63091, 63101, 63102, 
63103, 63170, 63172, 63173, 63185, 63190, 63191, 
63195, 63197, 63199, 63200, 63266, 63267, 63268, 
63271, 63272, 63273, 63276, 63277, 63278, 63281, 
63282, 63283, 63286, 63287, 63290, 63301, 63302, 
63303, 63305, 63306, 63307, 63308 

HCPCS Level II 

S2350, S2351, S9090 

ICD-9-PCS 

03.02, 03.09, 03.6, 80.50, 80.51, 80.53, 80.54, 80.59 

ICD-10-PCS 

00NX0ZZ, 00NY0ZZ, 01N80ZZ, 01N83ZZ, 
01NB0ZZ, 01NB4ZZ, 01NR0ZZ, 0PB40ZZ, 
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0PB43ZX, 0QB00ZZ, 0QB03ZX, 0QB03ZZ, 
0QB10ZZ, 0QB13ZX, 0QS004Z, 0QS134Z, 
0QU007Z, 0QU00JZ, 0QU03JZ, 0QW004Z, 
0QW034Z, 0QW104Z, 0RB90ZZ, 0RB93ZX, 
0RBB3ZX, 0SB00ZX, 0SB00ZZ, 0SB03ZX, 
0SB20ZZ, 0SB23ZX, 0SB23ZZ, 0SB40ZZ, 
0SB43ZX, 0SC00ZZ, 0ST20ZZ, 0ST40ZZ 

Kaiser-Specific 

213730, 222494, 222572, 222573, 222590, 222865, 
223880, 223899, 223900, 223901, 224085, 224086, 
224087, 224088, 224089, 224131, 224170, 224238, 
224928, 224929, 226803, 226929, 227538, 227539, 
227553, 231207, 231208, 245922, 245923, 245925, 
245926, 245927, 245929, 245930, 245931, 245935, 
245936, 245937, 245938, 245939, 245940, 245941, 
245942, 245944, 245945, 245946, 245947, 245948, 
245949, 245963, 245964, 245965, 245977, 245978, 
245980, 245983, 245986, 245987, 245988, 245989, 
245991, 245993, 245994, 245996, 245997, 245998, 
245999, 246000, 246033, 246034, 246035, 246789, 
246790, 246791, 246792, 246793, 246794, 246795, 
246796, 246797, 251410, 251411, 253030, 707346, 
707347, 756636 

Table 2-1. List of Codes for Lumbar Stenosis, Lumbar Disc Herniation, and Decompression 

Characteristics Early Surgery Late Surgery 

N 8,387 31,210 

Negative 8,189 (97.6%) 29,845 (95.6%) 

Positive 198 (2.4%) 1,365 (4.4%) 

Average Days Between LIRE 
Enrollment and Decompression 
Surgery 34.3 180.7 

Average Age 57 57.7 

Gender   

Female 4,713 (56.2%) 17,466 (56.0%) 

Race   

White 5,317 (63.4%) 20,287 (65.0%) 

Black 991 (11.8%) 2,992 (9.6%) 

Unknown 990 (11.8%) 3,871 (12.4%) 

Asian 928 (11.1%) 3,516 (11.3%) 
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Native American 67 (0.8%) 226 (0.7%) 

Pacific Islander 50 (0.6%) 199 (0.6%) 

Other 27 (0.3%) 65 (0.2%) 

Multiracial 17 (0.2%) 54 (0.2%) 

Ethnicity   

Not Available 5,945 (70.9%) 22,420 (71.8%) 

Not Hispanic 1,233 (14.7%) 4,081 (13.1%) 

Hispanic 1,209 (14.4%) 4,709 (15.1%) 

Image Type   

MRI 5,810 (69.3%) 11,852 (38.0%) 

X-Ray 2,517 (30.0%) 19,189 (61.5%) 

CT 60 (0.7%) 169 (0.5%) 

System   

Kaiser Permanente 7,071 (84.3%) 26,870 (86.1%) 

Henry Ford 654 (7.8%) 1,581 (5.1%) 

Group Health 486 (5.8%) 1,755 (5.6%) 

Mayo Clinic 176 (2.1%) 1,004 (3.2%) 

Table 2-2. Data Characteristics 

Hyperparamter Values 

Learning Rate 0.001, 0.0001 

GRU Hidden Size 200, 300, 400 

# of Filters 200, 300, 400 

Dropout Rate 0.0, 0.2, 0.5, 0.9 

Weight Decay 0.1, 0.01, 0.001 

Table 2-3. Hyperparameter Search Space 

 

Target Prev. N Model Recall Precision 
Balanced 

Accuracy F1 AUC AUPRC 

Early 
Surgery 0.024 824 

MDL 
0.3 +/- 
0.077* 

0.086 +/- 
0.021* 

0.61 +/- 
0.039* 

0.133 +/- 
0.033* 

0.725 +/- 
0.04* 

0.061 +/- 
0.014* 

Baseline 
0.375 +/- 
0.076 

0.069 +/- 
0.014 

0.624 +/- 
0.038 

0.116 +/- 
0.023 

0.597 +/- 
0.05 

0.047 +/- 
0.011 

Late 
Surgery 0.044 3,121 MDL 

0.725 +/- 
0.026* 

0.145 +/- 
0.006* 

0.765 +/- 
0.013* 

0.242 +/- 
0.009* 

0.833 +/- 
0.012* 

0.241 +/- 
0.023* 
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Baseline 
0.663 +/- 
0.028 

0.156 +/- 
0.007 

0.75 +/- 
0.014 

0.253 +/- 
0.011 

0.84 +/- 
0.012 

0.266 +/- 
0.026 

Table 2-4. We compared the performance of the MDL architecture against the baseline (i.e. LASSO). We 

calculated 1,000 bootstrap samples from the test set. For each sample, we calculated the performance 

metrics: recall, specificity, balanced accuracy, precision, F1-score, AUC, and AUPRC. We then 

calculated the average and standard deviation across the samples. For each prediction task, we underline 

the model that had the best performance for each metric. Finally, we performed a t-test to assess 

significance between each model’s performance metrics for each prediction task; we indicate significance 

with an asterisk. AUC = Area Under the Curve, AUPRC = Area Under the Precision-Recall Curve, MDL 

= Multimodal Deep Learning, Prev. = Prevalence. 

Target Prev. N Data Type Recall Precision 
Balanced 

Accuracy F1 AUC AUPRC 

Early 
Surgery 0.024 824 

All 
0.3 +/- 
0.077 

0.086 +/- 
0.021 

0.61 +/- 
0.039 

0.133 +/- 
0.033 

0.725 +/- 
0.04 

0.061 +/- 
0.014 

Demographics 
0.475 +/- 
0.084* 

0.043 +/- 
0.008* 

0.608 +/- 
0.042 

0.08 +/- 
0.014* 

0.593 +/- 
0.055* 

0.043 +/- 
0.01* 

Temporal 1.0 +/- 0.0* 
0.024 +/- 
0.0* 0.5 +/- 0.0* 

0.047 +/- 
0.0* 

0.5 +/- 
0.042* 

0.023 +/- 
0.002* 

Textual 
0.4 +/- 
0.083* 

0.087 +/- 
0.018 

0.648 +/- 
0.042* 

0.143 +/- 
0.029* 

0.72 +/- 
0.043* 

0.06 +/- 
0.013 

Late 
Surgery 0.044 

3,12
1 

All 
0.725 +/- 
0.026 

0.145 +/- 
0.006 

0.765 +/- 
0.013 

0.242 +/- 
0.009 

0.833 +/- 
0.012 

0.241 +/- 
0.023 

Demographics 
0.59 +/- 
0.031* 

0.065 +/- 
0.003* 

0.6 +/- 
0.016* 

0.117 +/- 
0.006* 

0.637 +/- 
0.017* 

0.076 +/- 
0.008* 

Temporal 
0.696 +/- 
0.027* 

0.144 +/- 
0.006* 

0.753 +/- 
0.014* 

0.239 +/- 
0.01* 

0.824 +/- 
0.013* 

0.255 +/- 
0.024* 

Textual 
0.396 +/- 
0.029* 

0.084 +/- 
0.006* 

0.599 +/- 
0.015* 

0.138 +/- 
0.01* 

0.656 +/- 
0.017* 

0.088 +/- 
0.009* 

Table 2-5. We compared the performance of the MDL architecture against each individual network (i.e. 

temporal, textual, and demographics). We calculated 1,000 bootstrap samples from the test set. For each 

sample, we calculated the performance metrics: recall, specificity, balanced accuracy, precision, F1-score, 

AUC, and AUPRC. We then calculated the average and standard deviation across the samples. For each 
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prediction task, we underline the model that had the best performance for each metric. Finally, we 

performed a t-test to assess significance between each model’s performance metrics for each prediction 

task; we indicate significance with an asterisk. We used a Bonferroni correction to correct for multiple 

hypothesis testing when comparing MDL to the three individual networks (0.05/3 = 0.0167). AUC = Area 

Under the Curve, AUPRC = Area Under the Precision-Recall Curve, Prev. = Prevalence 

Target Model System Prev. N Recall Precision 
Balanced 

Accuracy F1 AUC AUPRC 

Early 
Surgery 

MDL 

Group 
Health 0.021 239 

0.6 +/- 
0.161 

0.075 +/- 
0.02 

0.72 +/- 
0.081 

0.132 +/- 
0.036 

0.731 +/- 
0.109 

0.105 +/- 
0.05 

Henry 
Ford 0.039 324 

0.64 +/- 
0.097 

0.127 +/- 
0.021 

0.732 +/- 
0.05 

0.212 +/- 
0.033 

0.795 +/- 
0.047 

0.128 +/- 
0.031 

Average 0.03 281 
0.62 +/- 
0.091* 

0.101 +/- 
0.014* 

0.726 +/- 
0.046* 

0.172 +/- 
0.024* 

0.763 +/- 
0.059* 

0.116 +/- 
0.029 

Baseline 

Group 
Health 0.021 239 

0.3 +/- 
0.152 

0.056 +/- 
0.028 

0.595 +/- 
0.076 

0.094 +/- 
0.047 

0.656 +/- 
0.113 

0.149 +/- 
0.114 

Henry 
Ford 0.039 324 

0.2 +/- 
0.079 

0.087 +/- 
0.034 

0.557 +/- 
0.04 

0.12 +/- 
0.047 

0.714 +/- 
0.05 

0.088 +/- 
0.023 

Average 0.03 281 
0.25 +/- 
0.085 

0.071 +/- 
0.022 

0.576 +/- 
0.042 

0.107 +/- 
0.033 

0.685 +/- 
0.061 

0.119 +/- 
0.058 

Late 
Surgery 

MDL 

Group 
Health 0.066 878 

0.557 +/- 
0.05 

0.157 +/- 
0.013 

0.673 +/- 
0.025 

0.244 +/- 
0.021 

0.745 +/- 
0.025 

0.181 +/- 
0.026 

Henry 
Ford 0.05 791 

0.443 +/- 
0.057 

0.169 +/- 
0.021 

0.664 +/- 
0.029 

0.244 +/- 
0.03 

0.776 +/- 
0.029 

0.168 +/- 
0.032 

Average 0.058 834 
0.5 +/- 
0.039* 

0.163 +/- 
0.013* 

0.669 +/- 
0.02* 

0.244 +/- 
0.019* 

0.76 +/- 
0.019* 

0.175 +/- 
0.021* 

Baseline 

Group 
Health 0.066 878 

0.843 +/- 
0.035 

0.096 +/- 
0.004 

0.644 +/- 
0.019 

0.173 +/- 
0.007 

0.728 +/- 
0.025 

0.162 +/- 
0.022 

Henry 
Ford 0.05 791 

0.532 +/- 
0.055 

0.145 +/- 
0.015 

0.683 +/- 
0.028 

0.228 +/- 
0.023 

0.767 +/- 
0.028 

0.192 +/- 
0.038 

Average 0.058 834 
0.688 +/- 
0.033 

0.121 +/- 
0.008 

0.664 +/- 
0.017 

0.2 +/- 
0.012 

0.748 +/- 
0.019 

0.177 +/- 
0.022 

Table 2-6. We compared the generalizability performance of the MDL architecture against the baseline 

(i.e. LASSO). For each test system, we evaluated models’ performance using the performance metrics. 
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We estimated significance performance between models by bootstrapping 1,000 samples for each test 

system. For each pair of samples (i.e. one sample from each healthcare system), we calculated different 

performance metrics for each sample then averaged. We performed a t-test for each performance metric 

using each model’s resulting 1,000 average values; we indicate significance with an asterisk. For each 

prediction task, we underline the model that had the best average performance metric. AUC = Area Under 

the Curve, AUPRC = Area Under the Precision-Recall Curve, MDL = Multimodal Deep Learning, Prev. 

= Prevalence 

Target 
Data 

Type System Prev. Size Recall Prec. 
Balanced 

Accuracy F1 AUC AUPRC 

Early 
Surgery 

All 

Group 
Health 0.021 239 

0.6 +/- 
0.161 

0.075 +/- 
0.02 

0.72 +/- 
0.081 

0.132 +/- 
0.036 

0.731 +/- 
0.109 

0.105 +/- 
0.05 

Henry 
Ford 0.039 324 

0.64 +/- 
0.097 

0.127 +/- 
0.021 

0.732 +/- 
0.05 

0.212 +/- 
0.033 

0.795 +/- 
0.047 

0.128 +/- 
0.031 

Average 0.03 281 
0.62 +/- 
0.091 

0.101 +/- 
0.014 

0.726 +/- 
0.046 

0.172 +/- 
0.024 

0.763 +/- 
0.059 

0.116 +/- 
0.029 

Demo. 

Group 
Health 0.021 239 

0.3 +/- 
0.157 

0.068 +/- 
0.035 

0.606 +/- 
0.078 

0.11 +/- 
0.057 

0.656 +/- 
0.111 

0.058 +/- 
0.025 

Henry 
Ford 0.039 324 

0.4 +/- 
0.101 

0.125 +/- 
0.031 

0.644 +/- 
0.051 

0.19 +/- 
0.047 

0.668 +/- 
0.067 

0.085 +/- 
0.021 

Average 0.03 281 
0.35 +/- 
0.093* 

0.097 +/- 
0.024* 

0.625 +/- 
0.047* 

0.15 +/- 
0.037* 

0.662 +/- 
0.066* 

0.072 +/- 
0.017* 

Temp. 

Group 
Health 0.021 239 

0.3 +/- 
0.156 

0.031 +/- 
0.016 

0.548 +/- 
0.079 

0.055 +/- 
0.029 

0.624 +/- 
0.068 

0.027 +/- 
0.005 

Henry 
Ford 0.039 324 

0.2 +/- 
0.086 

0.049 +/- 
0.021 

0.522 +/- 
0.044 

0.079 +/- 
0.034 

0.563 +/- 
0.057 

0.046 +/- 
0.008 

Average 0.03 281 
0.25 +/- 
0.09* 

0.04 +/- 
0.013* 

0.535 +/- 
0.045* 

0.067 +/- 
0.022* 

0.593 +/- 
0.044* 

0.037 +/- 
0.005* 

Textual 

Group 
Health 0.021 239 

0.7 +/- 
0.151 

0.102 +/- 
0.024 

0.784 +/- 
0.076 

0.178 +/- 
0.04 

0.815 +/- 
0.089 

0.121 +/- 
0.065 

Henry 
Ford 0.039 324 

0.08 +/- 
0.055 

0.071 +/- 
0.048 

0.519 +/- 
0.027 

0.075 +/- 
0.05 

0.793 +/- 
0.045 

0.107 +/- 
0.02 



86 

Average 0.03 281 
0.39 +/- 
0.079* 

0.087 +/- 
0.027* 

0.651 +/- 
0.04* 

0.126 +/- 
0.032* 

0.804 +/- 
0.05* 

0.114 +/- 
0.034 

Late 
Surgery 

All Average 0.058 834 
0.5 +/- 
0.039 

0.163 +/- 
0.013 

0.669 +/- 
0.02 

0.244 +/- 
0.019 

0.76 +/- 
0.019 

0.175 +/- 
0.021 

Demo. Average 0.058 834 
0.597 +/- 
0.037* 

0.094 +/- 
0.006* 

0.623 +/- 
0.019* 

0.163 +/- 
0.01* 

0.655 +/- 
0.023* 

0.114 +/- 
0.013* 

Temp. Average 0.058 834 
0.476 +/- 
0.038* 

0.152 +/- 
0.012* 

0.652 +/- 
0.019* 

0.228 +/- 
0.018* 

0.72 +/- 
0.023* 

0.159 +/- 
0.019* 

Textual Average 0.058 834 
0.438 +/- 
0.036* 

0.082 +/- 
0.006* 

0.569 +/- 
0.018* 

0.137 +/- 
0.011* 

0.614 +/- 
0.021* 

0.085 +/- 
0.008* 

Table 2-7. We compared the generalizability performance of the MDL architecture against the individual 

networks (i.e. temporal, textual, and demographics). For each test system, we evaluated models’ 

performance using the performance metrics. We estimated significance performance between models by 

bootstrapping 1,000 samples for each test system. For each pair of samples (i.e. one sample from each 

healthcare system), we calculated different performance metrics for each sample then averaged. We 

performed a t-test for each performance metric using each model’s resulting 1,000 average values; we 

indicate significance with an asterisk. We used a Bonferroni correction to correct for multiple hypothesis 

testing when comparing MDL to the three individual networks (0.05/3 = 0.0167). For each prediction 

task, we underline the model that had the best average performance metric. AUC = Area Under the 

Curve, AUPRC = Area Under the Precision-Recall Curve, Prev. = Prevalence, Prec. = Precision, Demo. = 

Demographics, Temp. = Temporal 

Question Min Q1 Mean Median Q3 Max 
Standard 

Deviation 

Overall, I am staisfied with how easy it is to use 
this app. 2 3 3.62 4 4 5 0.96 

It was simple to use this app. 2 3 3.77 4 4 5 0.83 
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I could effectively complete the tasks and 
scenarios quickly using this app. 2 3 3.92 4 5 5 1.12 

I was able to complete the tasks and scenarios 
quickly using this app. 2 2.75 3.5 4 4 5 1.09 

I was able to efficiently complete the tasks and 
scenarios using this app. 2 3 3.77 4 4 5 0.83 

I felt comfortable using this app. 3 3 4.08 4 5 5 0.9 

It was easy to learn to use this app. 2 4 4 4 5 5 0.91 

I believe I could become productive quickly 
using this app. 3 4 4.31 4 5 5 0.63 

The app gave error messages that clearly told me 
how to fix problems. 1 2 2.64 2 3 5 1.12 

Whenever I made a mistake using the app, I 
could recover easily and quickly. 2 2 3.08 3 4 5 1 

The information provided with this app was 
clear. 2 2.75 3 3 3.25 4 0.74 

It was easy to find the information I needed 2 3 3.45 4 4 4 0.69 
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The information provided for the app was easy 
to understand. 2 4 3.83 4 4 5 0.72 

The information was effective in helping me 
complete the tasks and scenarios. 3 4 3.92 4 4 5 0.64 

The organization of information on the app 
screens was clear. 2 3 3.54 3 4 5 1.05 

The interface of this app was pleasant. 3 4 3.85 4 4 5 0.55 

I liked using the inferface of this app. 2 3 3.67 4 4 5 0.89 

The app has all the functions and capabilities I 
expect it to have. 2 3 3.75 4 5 5 1.14 

Overall I am staistfied with this app. 2 3 3.77 4 4 5 0.93 

Table 3-1. The scale is out of five, with one indicating “strongly disagree” and five indicating “strongly 

agree”. PSSUQ = Post-Study System Usability Questionnaire 

 

Issue Recommendation 

Default messaging was impersonal/generic Leave blank with suggested wording above 

the text box. Most participants felt the 

wording should be in first person since it 

would come from their number/email. 
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Redundancy in requiring password Remove additional password requirements 

once the user is logged into their account. Or 

an option to require the password before 

sending test results to recipients. 

Adding multiple recipients wasn’t intuitive Add a feature to “save” recipient contact info 

and the “+” to add more recipients. 

Light greys were difficult to see Darken grey or change color to indicate the 

text can be altered. 

Confusion from intro screens Once all screens/dialogue has been rotated 

through (i.e. pressed “Next” 3 times), enter 

the login/create an account screen 

automatically. 

“Create an account” was overlooked If the email entered does not have an account 

yet, navigate to the “create an account” page 

with the information already entered. 

“Share” icon wasn’t clear Older users didn’t intuitively know the icon 

to share and the font was small, a larger 

button with text would be more clear. 
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Scrolling function wasn’t shown Add scrolling sidebar to “More information” 

section to show additional text is below. 

UW branding was confusing to non-UW 

patients 

Consider de-emphasizing UW look and feel 

if using with external patients. 

Some participants didn’t intuitively go to 

“Files” to send their test results again. 

From upper left menu, include a “Share” 

option. 

Table 3-2. Outlines the major issues that participants found along with their recommended improvements 

Supplemental 

Tables 

 

Feature Coefficient Feature Coefficient 

Descend (text) 0.971 Diffus (text) -0.519 

s1 nerv (text) 0.897 Within (text) -0.533 

disc diseas l4 (text) 0.849 Otherwis (text) -0.537 

Larg (text) 0.781 siteID_2 (KP NorCal) -0.561 

stenosi facet (text) 0.771 l4 mild (text) -0.583 

Dx_99282 (proc code) 0.763 Female -0.637 

Equina (text) 0.682 
find techniqu 
multiplanar (text) -0.649 

ligamentum flavum moder 
(text) 0.581 Sacroiliac (text) -0.741 

14 (text) 0.578 Contact (text) -0.84 

action requir (text) 0.569 Intact (text) -0.933 

Table 2-1. Top 10 and Bottom 10 Predictors for Early Surgery Baseline Model for Classical Performance 
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Feature Coefficient Feature Coefficient 

Dx_72110 (proc code) 1.402 acut bone (text) -0.376 

Dx_99205 (proc code) 1.365 May (text) -0.388 

Dx_64483 (proc code) 1.325 comparison 11 (text) -0.405 

Dx_62311 (proc code) 1.163 disc bulg asymmetr (text) -0.427 

Dx_99204 (proc code) 1.023 stenosi impress (text) -0.428 

sever central (text) 0.878 
drugnamerx_DICLOFENAC 
SODIUM (drug name) -0.429 

Dx_99243 (proc code) 0.842 Degener (text) -0.43 

sever spinal (text) 0.812 foramen l5 (text) -0.567 

Dx_72120 (proc code) 0.795 Dx_805 (dx code) -0.696 

obtain acut fractur 
(text) 0.789 siteID_2 (KP NorCal) -0.896 

Table 2-2. Top 10 and Bottom 10 Predictors for Late Surgery Baseline Model for Classical Performance 
 
 

Feature Coefficient Feature Coefficient 

view mild (text) 1.13 incident (text) -0.514 

action requir (text) 0.939 canal narrow mild (text) -0.515 

sever central (text) 0.774 upper (text) -0.515 

descend (text) 0.768 multilevel disc (text) -0.545 

also facet (text) 0.736 otherwis (text) -0.589 

s1 diffus disc (text) 0.736 disc bulg facet (text) -0.696 

lumbar spine mri (text) 0.719 l5 mild (text) -0.738 

disc space mild (text) 0.672 intact (text) -0.757 

multiplanar multisequ 
mr (text) 0.658 raceID_2 (Black) -0.804 

Dx_97001 (proc code) 0.622 sacroiliac joint (text) -1.027 

Table 2-3. Top 10 and Bottom 10 Predictors for Early Surgery Baseline Model for Generalizability 
Performance 
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Feature Coefficient Feature Coefficient 

Dx_72110 
(proc code) 1.71 Degener (text) -0.449 

dx_99205 (proc 
code) 1.516 Impress (text) -0.452 

dx_72120 (proc 
code) 1.401 si joint (text) -0.531 

dx_62311 (proc 
code) 1.365 

flexion extens 
(text) -0.572 

dx_64483 (proc 
code) 1.341 

Dx_805 (dx 
code) -0.576 

pedicl intact 
(text) 1.074 

foramen l5 
(text) -0.579 

dx_99204 (proc 
code) 0.963 Intercept -0.584 

sever central 
(text) 0.882 Find (text) -0.626 

sever spinal 
(text) 0.851 

siteID_2 (KP 
NorCal) -0.633 

sclerosi anterior 
(text) 0.764 

dx_V54 (dx 
code) -0.776 

Table 2-4. Top 10 and Bottom 10 Predictors for Late Surgery Baseline Model for Generalizability 
Performance 
 
 

Target Prev. N 
Data 

Type Recall Precision 
Balanced 

Accuracy F1 AUC AUPRC 

Early 
Surgery 0.024 824 

All 
0.375 +/- 
0.076 

0.069 +/- 
0.014 

0.624 +/- 
0.038 

0.116 +/- 
0.023 

0.597 +/- 
0.05 

0.047 +/- 
0.011 

Demogra
phics 

0.55 +/- 
0.081* 

0.037 +/- 
0.005* 

0.599 +/- 
0.041* 

0.069 +/- 
0.01* 

0.599 +/- 
0.054 

0.046 +/- 
0.012 

Codes 
0.35 +/- 
0.078* 

0.032 +/- 
0.007* 

0.541 +/- 
0.039* 

0.058 +/- 
0.013* 

0.597 +/- 
0.048 

0.039 +/- 
0.008* 

Textual 
0.35 +/- 
0.077* 

0.062 +/- 
0.013* 

0.611 +/- 
0.039* 

0.106 +/- 
0.023* 

0.592 +/- 
0.052 

0.042 +/- 
0.009* 

Late 
Surgery 0.044 3,121 All 

0.663 +/- 
0.028 

0.156 +/- 
0.007 

0.75 +/- 
0.014 

0.253 +/- 
0.011 

0.84 +/- 
0.012 

0.266 +/- 
0.026 
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Demogra
phics 

0.604 +/- 
0.029* 

0.062 +/- 
0.003* 

0.593 +/- 
0.015* 

0.112 +/- 
0.005* 

0.638 +/- 
0.016* 

0.072 +/- 
0.006* 

Codes 
0.722 +/- 
0.028* 

0.149 +/- 
0.006* 

0.766 +/- 
0.014* 

0.246 +/- 
0.01* 

0.824 +/- 
0.014* 

0.262 +/- 
0.027* 

Textual 
0.538 +/- 
0.033* 

0.07 +/- 
0.004* 

0.605 +/- 
0.016* 

0.124 +/- 
0.007* 

0.655 +/- 
0.018* 

0.08 +/- 
0.007* 

Table 2-5. We compared the performance of the baseline using all data types against each individual data 
type (i.e. codes, textual, and demographics). We calculated 1,000 bootstrap samples from the test set. For 
each sample, we calculated the performance metrics: recall, specificity, balanced accuracy, precision, F1-
score, AUC, and AUPRC. We then calculated the average and standard deviation across the samples. 
AUC = Area Under the Curve, AUPRC = Area Under the Precision-Recall Curve, Prev. = Prevalence. 
 

Target Model System Prev. N Recall Precision 
Balanced 

Accuracy F1 AUC AUPRC 

Early 
Surgery 

All 

Group 
Health 0.021 239 

0.3 +/- 
0.152 

0.056 +/- 
0.028 

0.595 +/- 
0.076 

0.094 +/- 
0.047 

0.656 +/- 
0.113 

0.149 +/- 
0.114 

Henry 
Ford 0.039 324 

0.2 +/- 
0.079 

0.087 +/- 
0.034 

0.557 +/- 
0.04 

0.12 +/- 
0.047 

0.714 +/- 
0.05 

0.088 +/- 
0.023 

Average 0.03 281 
0.25 +/- 
0.085 

0.071 +/- 
0.022 

0.576 +/- 
0.042 

0.107 +/- 
0.033 

0.685 +/- 
0.061 

0.119 +/- 
0.058 

Demo. 

Group 
Health 0.021 239 

0.6 +/- 
0.165 

0.036 +/- 
0.01 

0.63 +/- 
0.083 

0.067 +/- 
0.018 

0.628 +/- 
0.107 

0.046 +/- 
0.02 

Henry 
Ford 0.039 324 

0.64 +/- 
0.099 

0.109 +/- 
0.018 

0.716 +/- 
0.051 

0.186 +/- 
0.03 

0.715 +/- 
0.063 

0.146 +/- 
0.056 

Average 0.03 281 
0.62 +/- 
0.096* 

0.072 +/- 
0.01 

0.673 +/- 
0.049* 

0.127 +/- 
0.018* 

0.672 +/- 
0.062* 

0.096 +/- 
0.03* 

Codes 

Group 
Health 0.021 239 

0.4 +/- 
0.158 

0.031 +/- 
0.012 

0.565 +/- 
0.08 

0.057 +/- 
0.023 

0.589 +/- 
0.078 

0.029 +/- 
0.009 

Henry 
Ford 0.039 324 

0.12 +/- 
0.068 

0.035 +/- 
0.02 

0.493 +/- 
0.035 

0.054 +/- 
0.031 

0.611 +/- 
0.049 

0.092 +/- 
0.047 

Average 0.03 281 
0.26 +/- 
0.088* 

0.033 +/- 
0.012* 

0.529 +/- 
0.044* 

0.056 +/- 
0.019* 

0.6 +/- 
0.046* 

0.06 +/- 
0.024* 

Textual 

Group 
Health 0.021 239 

0.3 +/- 
0.142 

0.056 +/- 
0.026 

0.596 +/- 
0.071 

0.094 +/- 
0.044 

0.582 +/- 
0.111 

0.093 +/- 
0.079 

Henry 
Ford 0.039 324 

0.28 +/- 
0.095 

0.111 +/- 
0.036 

0.595 +/- 
0.048 

0.159 +/- 
0.052 

0.712 +/- 
0.057 

0.103 +/- 
0.033 
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Average 0.03 281 
0.29 +/- 
0.086* 

0.083 +/- 
0.023* 

0.596 +/- 
0.043* 

0.126 +/- 
0.034* 

0.647 +/- 
0.062* 

0.098 +/- 
0.043* 

Late 
Surgery 

All 

Group 
Health 0.066 878 

0.843 +/- 
0.035 

0.096 +/- 
0.004 

0.644 +/- 
0.019 

0.173 +/- 
0.007 

0.728 +/- 
0.025 

0.162 +/- 
0.022 

Henry 
Ford 0.05 791 

0.532 +/- 
0.055 

0.145 +/- 
0.015 

0.683 +/- 
0.028 

0.228 +/- 
0.023 

0.767 +/- 
0.028 

0.192 +/- 
0.038 

Average 0.058 834 
0.688 +/- 
0.033 

0.121 +/- 
0.008 

0.664 +/- 
0.017 

0.2 +/- 
0.012 

0.748 +/- 
0.019 

0.177 +/- 
0.022 

Demo. 

Group 
Health 0.066 878 

0.696 +/- 
0.045 

0.095 +/- 
0.006 

0.616 +/- 
0.024 

0.167 +/- 
0.011 

0.645 +/- 
0.028 

0.127 +/- 
0.02 

Henry 
Ford 0.05 791 

0.608 +/- 
0.056 

0.077 +/- 
0.007 

0.611 +/- 
0.029 

0.136 +/- 
0.012 

0.66 +/- 
0.034 

0.098 +/- 
0.015 

Average 0.058 834 
0.652 +/- 
0.036* 

0.086 +/- 
0.005* 

0.613 +/- 
0.018* 

0.152 +/- 
0.008* 

0.652 +/- 
0.022* 

0.113 +/- 
0.013* 

Codes 

Group 
Health 0.066 878 

0.496 +/- 
0.048 

0.162 +/- 
0.015 

0.658 +/- 
0.024 

0.244 +/- 
0.022 

0.738 +/- 
0.023 

0.167 +/- 
0.021 

Henry 
Ford 0.05 791 

0.418 +/- 
0.055 

0.167 +/- 
0.021 

0.654 +/- 
0.028 

0.238 +/- 
0.03 

0.77 +/- 
0.028 

0.18 +/- 
0.034 

Average 0.058 834 
0.457 +/- 
0.036* 

0.164 +/- 
0.013* 

0.656 +/- 
0.018* 

0.241 +/- 
0.019* 

0.754 +/- 
0.019* 

0.173 +/- 
0.021* 

Textual 

Group 
Health 0.066 878 

0.687 +/- 
0.042 

0.08 +/- 
0.005 

0.567 +/- 
0.022 

0.144 +/- 
0.009 

0.6 +/- 
0.027 

0.089 +/- 
0.009 

Henry 
Ford 0.05 791 

0.481 +/- 
0.057 

0.073 +/- 
0.008 

0.58 +/- 
0.029 

0.127 +/- 
0.015 

0.627 +/- 
0.033 

0.093 +/- 
0.016 

Average 0.058 834 
0.584 +/- 
0.035* 

0.077 +/- 
0.005* 

0.574 +/- 
0.018* 

0.135 +/- 
0.008* 

0.614 +/- 
0.021* 

0.091 +/- 
0.009* 

Table 2-6. We compared the generalizability performance of the baseline using all data types against each 
individual data type (i.e. codes, textual, and demographics). For each test system, we evaluated models’ 
performance using the performance metrics. We estimated significance performance between models by 
bootstrapping 1,000 samples for each test system. For each pair of samples (i.e. one sample from each 
healthcare system), we calculated different performance metrics for each sample then averaged. We 
performed a t-test for each performance metric using each model’s resulting 1,000 average values; we 
indicate significance with an asterisk. We used a Bonferroni correction to correct for multiple hypothesis 
testing when comparing MDL to the three individual networks (0.05/3 = 0.0167). For each prediction 
task, we underline the model that had the best average performance metric. AUC = Area Under the 
Curve, AUPRC = Area Under the Precision-Recall Curve 
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Performance Target Prevalence N Model AUC AUPRC 

Classical 

Early Surgery 0.024 824 

MDL 0.725 +/- 0.040 0.061 +/- 0.014 

Baseline 0.597 +/- 0.050 0.047 +/- 0.011 

Late Surgery 0.044 3,121 

MDL 0.833 +/- 0.012 0.241 +/- 0.023 

Baseline 0.840 +/- 0.012 0.266 +/- 0.026 

Generalizability 

Early Surgery 0.03 281 

MDL 0.763 +/- 0.059 0.116 +/- 0.029 

Baseline 0.685 +/- 0.061 0.119 +/- 0.058 

Late Surgery 0.058 834 

MDL 0.76 +/- 0.019 0.175 +/- 0.021 

Baseline 0.748 +/- 0.019 0.177 +/- 0.022 

Table 2-7. Summary of Major Findings. For each evaluation (i.e. classical and generalizability), we 
provide the comparison (only using AUC and AUPRC) between MDL and Baseline for each prediction 
task. AUC = Area Under the Curve, AUPRC = Area Under the Precision-Recall Curve, MDL = 
Multimodal Deep Learning 
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