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Translational research has become an important bridge that moves findings from basic science 

research to patients' bedside and to the clinical community. Unfortunately, this notion of 

translational research seems to be unidirectional in that basic research is translated into clinical 

research and practice, but basic science research does not seem to benefit as much from clinical 

medicine. In my dissertation, I leverage the availability of retrospective EHR data and use them 

with biosimulation models to translate data from clinical medicine to benefit biosimulation 

modeling. Biosimulation models are mathematical representations of biological systems, and they 

can help with mechanistic understanding of physiology and predict the dynamics of a biological 

system. Using clinical data with biosimulation models has the potential to benefit both the 

biosimulation modelers, as well as clinicians. The abundance of retrospective clinical data 

available for research is a promising alternative to the traditional method of validating models by 



conducting resource-intensive prospective studies. These models can then be made patient-specific 

to simulate the physiology of individuals. When used in the clinical setting, these patient-specific 

models have the potential to be used by clinicians to better understand the underlying 

pathophysiology of the patient. In my research, I first conduct a scoping review of models in the 

literature to quantify model reproducibility and discover an appalling lack of model source code 

availability in publications. Then using a published hemodynamics model, I demonstrate using 

retrospective clinical dataset from right heart catheterizations to optimize and validate the model 

without needing to conduct burdensome prospective studies and explore potential clinical 

applications of patient-specific modeling. Finally, I describe an ontological approach to extend the 

data-model connection to be systematic and scalable. I demonstrate this approach by connecting 

cardiology data and lab results data with a hemodynamics model and several nephrology models, 

respectively.  
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Chapter 1. Introduction 
Translational research has become an important bridge that moves findings from basic science 

research to patient bedside and to the clinical community. Unfortunately, this notion of 

translational research seems to be unidirectional in that basic research is translated into clinical 

research and practice, but basic science research does not seem to benefit as much from clinical 

medicine. 

Yet, there is an increasing volume of clinical data being captured via electronic health records 

(EHRs) and clinical data repositories that could benefit basic research. While the clinical data may 

not be collected for the purpose of being translated for basic science research, researchers could 

benefit from the tremendous volume of data from real human subjects. 

My dissertation bridges this chasm between clinical medicine and basic science research by 

utilizing retrospective clinical data with computational physiology models to mitigate the burden 

on researchers to collect prospective physiological data. It leverages the abundance and ubiquity 

of electronic health record data, and the corpus of computational models available in model 

repositories and publications. As a result, biosimulation modeling benefits from being able to carry 

out model validation studies without conducting burdensome prospective data collection. 

Furthermore, clinical medicine can also benefit from the patient-specific models with the potential 

to aid clinical decision-making. 

1.1 Motivation for Research 

The motivation for this work is two-fold. First, there is the growing availability and prevalence of 

electronic health record (EHR) data. In fact, 84% of hospitals in the US have adopted at least a 

basic EHR system as of 2015 (Adler-Milstein et al., 2017). Even more astounding is the estimated 

2,314 exabytes (1 exabyte = 1 billion gigabytes) of clinical data projected to be collected by 2020 
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(IDC, 2014). The potential for using retrospective EHR data to improve patient care and 

biomedical research has long been recognized, with potential applications including observational 

studies, surveillance, regulatory research, clinical research, and clinical analytics for quality 

improvement and cost reduction. Further accelerating the secondary usage of EHR are initiatives 

like Big Data to Knowledge (BD2K) (Ohno-Machado, 2014) and the creation of research-ready 

clinical data repositories that can accommodate clinicians, researchers, and administrators to self-

query clinical data for different needs like cohort discovery, biomedical research, and quality 

improvement use, respectively. 

At the same time, there is the notion of the physiome, with the goal of quantitatively describing 

the physiological dynamics and functional behavior of an organism. The Physiome Project of the 

International Union of Physiological Sciences (IUPS), for example, is an initiative to establish a 

computational modeling framework for the human body across multiple scales of granularity, 

incorporating biochemistry, biophysics, and anatomy of cells, tissues, and organs (Hunter et al., 

2002). While the notion of physiome itself was conceived almost two decades ago, recent efforts 

in model curation, annotation, and model validation techniques have enabled an easier way to 

better utilize these mathematical models of physiology. The COmputational Modeling in BIology 

NEtwork (COMBINE) community, for example, has been combining various research groups and 

modeling standards under one roof for computational modeling practices that both meet individual 

needs, and promote interoperability (Neal et al., 2018a). Moreover, the recent inception of the 

Physiome Journal, with emphasis on reproducibility, reusability, and discoverability of 

mathematical and computational models, promotes this vision of physiome and further impowers 

computational physiology models to be utilized (Nickerson and Hunter, 2017). 

The exact nomenclature for these mathematical representations of physiology varies. Different 

publications or communities refer to them as “computational models of biology,” “computational 
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physiology models,” or “biosimulation models.” Throughout my dissertation, I use these terms 

interchangeably to refer to the same thing: mathematical representations of biology that can 

simulate biological processes. In this dissertation, I will sometimes use “models” as a shorthand 

for computational physiology models. 

One application for biosimulation models is patient-specific modeling. The goal of patient-specific 

modeling is to simulate the dynamics of tissues and organs of individual patients based on their 

patient-specific data. Patient-specific modeling has tremendous potential in biomedicine, not only 

as a research tool for understanding pathophysiology, but also as a clinical tool for improving 

clinical decision-making, predicting outcomes, and ultimately improving care for the patient. 

There is increasing interest and efforts to create patient-specific models, but one of the main 

challenges in patient-specific modeling is acquiring the data that is necessary to validate the model, 

to ensure that the modeler’s hypothesis on the mathematical representation of pathophysiology 

does in fact hold true, or at least within an acceptable range, according to empirical measurements 

from a patient (Neal and Kerckhoffs, 2009). In fact, this data challenge exists not only for patient-

specific modeling, but also for a wider range of models where the model must be validated against 

empirical data. Typically, these data are collected via prospective study where the modeler recruits 

human subjects and collects physiological data, or carries out wet lab benchwork to collect 

experimental data 

To reduce the burden on the modelers of conducting prospective studies, I propose using the 

abundant clinical data that has already been collected from patients during the course of routine 

care. However, this raises the problem of matching relevant clinical data to corresponding model 

variables. One could certainly take an ad hoc approach to matching clinical data to models, but 

this approach is not scalable for the variety of clinical data, and the gamut of computational models 

available. For example, a modeler needing to validate his or her patient-specific model against 
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patient data would want to find the right dataset that corresponds to the model and its parameters. 

On the other hand, a clinical researcher with a clinical dataset wants to better understand the 

underlying physiology or conduct simulation studies. Currently for both cases, one needs to match 

clinical data and model parameters by sifting through model repositories, carefully reading the 

publication associated with the model, determining what physiological measures match with 

model parameters, then trying to determine which clinical datasets contain those parameters, if 

any. However, there is a vast number of computational physiology models available in both 

curated model repositories and generally in the literature. Furthermore, there is a wide gamut of 

poorly annotated clinical data with cryptic data field names that may not be readily available for 

perusing to determine best fit with the model of interest. This approach is clearly not scalable. 

There needs to be a more systematic method of matching clinical data with models. 

1.2 Solution Approach and Scope 

In order to bridge the gap between clinical data and computational physiology models, I propose 

a combination of optimization and ontological approach for using clinical data with computational 

models. First, I need to understand the landscape of computational physiology models, especially 

those in literature. While there are model repositories with manually curated models, they do not 

necessarily represent the body of models in publications that are publicly available. Thus, I carried 

out a scoping review of model publications available in literature, which I describe in section 1.2.1. 

Second, I need to be able to match data to model, but there are gaps in data where the model has 

more parameters than available data. Therefore, I need to employ optimization techniques to fill 

in these missing parameters, as described below in section 1.2.2. However, if I refer back to the 

physiome vision of reproducible, reusable, and discoverable models and simulations, the ad hoc 
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data-model matching is insufficient and unscalable. Finally, to make this approach more scalable, 

I need to leverage semantics, which I describe below in section 1.2.3. 

1.2.1 Scoping Review of Models in Literature 

In Chapter 3, I scope the status quo of computational physiology models in the literature to better 

understand the landscape of computational physiology models. I describe the search strategy, and 

the characterization of the resulting model publications by physiology being modeled, modeling 

paradigm, and their reproducibility. While there are curated model repositories, namely the 

Physiome Model Repository and BioModels Database, the availability of models directly from the 

literature is rather unclear. In this scoping review, I conducted three studies, each with increasing 

specificity with respect to bona fide computational physiology model publications. 

In the first study, I searched for computational physiology models in PubMed using a combination 

MeSH terms. This primarily consisted of searching for publications that have been annotated with 

the MeSH terms, “Models, Biological,” and “Computer Simulation.” In addition to these MeSH 

terms, publication types were used to filter non-original model publications, such as review articles 

and meta-analyses. From this search, I sampled a subset of the search results and analyzed them 

to characterize the models by their biological domain, computational modeling paradigm, and 

modeling language or tool used. More importantly, I examined the publication for the availability 

of model code, model equations, and simulation parameters – either within the publication, 

supplemental material, or external hyperlink – for repeatability of the computational experiment 

and reproducibility of the biosimulation model. 

Although the first study captured a wide range of models from different biological domains, none 

of the model publications analyzed from this search made the model source code available. In 
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order to increase the specificity of the search, I conducted a second study with a narrower search 

scope. 

In the second study, I narrowed the scope of the search from all biosimulation models to just 

cardiovascular biosimulation models. While more specific than the first study with all 

biosimulation models, the cardiovascular biosimulation model search still returned no model 

publications that made model source code available. 

In the third study, I took a different approach than querying PubMed. I examined a specific list of 

model publication from a review article on mathematical models of diabetes by Ajmera, et al. 

(Ajmera et al., 2013). While this list of publication may not be representative of all model 

publications in the literature, it did represent a very specific type of model, namely ordinary 

differential equation models of diabetes, with a very high proportion of publications fitting the 

inclusion criteria. In this list of model publications, there were finally two publications that made 

model source code available. 

Very few model publications in this scoping review had model source code available, which is 

problematic for model reproducibility. Moreover, there is another issue: Curated models in 

repositories refer to the original publication, but those publications do not necessarily refer to the 

curated model code. In other words, even if a model publication might have a curated model code 

deposited in a centralized model repository, it may never be reachable from a literature search. 

Nonetheless, there are more recent publications that do include model source code in the 

supplemental materials section. Furthermore, there are recent publications that make great use of 

centralized model repositories, such as BioModels Database, in depositing their model in a 

standardized format, such as SBML, making their computational experiment repeatable and their 

model more accessible for reuse. Model availability and reproducibility are important concepts not 

only for this dissertation work, but also for the broader modeling community. 
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1.2.2 Parameterization and Optimization of a Model Using Patient Data 

In Chapter 4, I describe optimizing a biosimulation model using a previously published model and 

retrospective clinical data. Currently, the biosimulation modeling process consists of a modeler 

building a mathematical model of some biological phenomenon, then validating the model against 

experimental data. For subcellular models, the validation step might consist of wet lab benchwork 

to collect the necessary data, and for clinical models this might require recruiting human subjects 

and carrying out experiments to collect physiological data necessary to validate the model. This 

process can be a major bottleneck for modelers. 

My approach to optimizing and validating biosimulation models makes use of the already existing 

clinical data in lieu of conducting cumbersome prospective human subject experiments, thus 

drastically reducing the burden of the modelers on model validation. In Chapter 4, I demonstrate 

the feasibility of using patient data collected as a part of routine clinical workflow to parameterize 

an existing model for patient-specific modeling. With a better understanding of the model 

publication landscape from the work described in Chapter 3, I use a previously published model, 

and demonstrate model validation and patient-specific modeling using clinical data that has been 

collected during the normal course of clinical care. 

As a proof-of-concept, I took a hemodynamics dataset from right heart catheterizations and 

parameterize a cardiovascular model that describes the hemodynamic properties and processes of 

blood, heart, and the vasculature. The clinical data, not being collected specifically for the purpose 

of validating this particular hemodynamics model, do not match with all of the model parameters. 

In fact, the model contains a greater number of parameters than the data elements available in the 

clinical dataset. In order to extrapolate from the limited data elements, I used model optimization 

techniques to estimate a carefully selected subset of parameters that are not explicitly measured in 

the clinical dataset. The result is a cardiovascular model that has been parameterized and optimized 
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for a set of hemodynamic measurements from a specific patient. Such patient-specific model could 

be used to estimate additional physiological values of the patient that is not directly measurable, 

such as the elastance of the vasculature. It could also be used to conduct simulation studies, or 

track the patient’s trajectory over time. 

1.2.3 Generalizing Data - Model Connection via Semantic Annotation 

In Chapter 5, I describe a semantic approach to systematically, and precisely connect clinical data 

with model parameters. The data-model connection for model optimization described in Chapter 

4 was a manual approach. While this manual approach for connecting one type of clinical dataset 

with one model is manageable, it is not scalable given the variety of clinical data available in 

different clinical data repositories, and the large corpus of biosimulation models available through 

curated model repositories, as well as models described in literature. Thus, the data-model 

parameter matching process should be systematic and scalable. 

To generalize the matching of clinical data to biosimulation model parameters, I developed an 

approach for systematically connecting clinical data with computational physiology models via 

semantic annotation. This approach extends an existing biosimulation model annotation 

framework and tools to annotate clinical data in the same manner. To annotate clinical data, I used 

the composite annotation framework to precisely describe clinical measurements in the dataset.  

The composite annotation framework uses multiple ontology terms to describe a biosimulation 

model variable. For example, there is no single ontology term that can fully describe a model 

variable that represents “right ventricular blood volume.” Instead, the semantics of this variable 

can be decomposed into the physical property, “volume,” and the physical entity “blood in the 

right ventricle.” 
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There is already a body of biosimulation models whose variables have already been annotated with 

composite annotations such as the above. There is also a major push for model annotation in the 

biosimulation modeling community with initiatives like the Center for Reproducible Biological 

Models, whose goals include annotating biosimulation models to enhance reproducibility and 

reusability (Sauro et al., 2018). In my approach with clinical data, I used the same composite 

annotation framework to annotate clinical data and enable data interoperability and reusability with 

annotated biosimulation models. 

To streamline the data annotation process, I leveraged SemGen, a model composition tool suite 

that includes an annotation module. The annotation module in SemGen is built around the notion 

of composite annotation. Since SemGen is not explicitly designed to annotate data, I converted the 

clinical data headers into a SemGen-readable format which can then be annotated using the 

existing tool. To help automate the annotation process, I developed a function in SemGen that can 

decompose a unit of measurement into its fundamental base units, which are then mapped to 

physical properties. Thus, SemGen can automatically annotate the physical property portion of the 

composite annotation given the unit of measurement for a data header. 

1.3 Contributions 

My research has two major contributions: 1) Supporting basic science in biosimulation modeling, 

and 2) augmenting clinical decision support with patient-specific modeling. For biologists and 

modelers, utilizing retrospective clinical data can accelerate the modeling process by providing an 

alternative to conducting burdensome and limited prospective experiments for model validation. 

For example, a biologist studying diabetes could create a computational model of insulin 

metabolism. Instead of having to recruit human subjects and performing phlebotomy to collect 

blood samples for a metabolic panel of chemicals in the subject’s blood, the biologist could instead 
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source the data from a clinical data repository, where there might be decades worth of blood 

metabolic panel lab data from hundreds of thousands of patients and validate his or her model 

using these data. With my approach, translational research can benefit not just clinical research, 

but also basic science. 

For clinicians, patient-specific models created by marrying biosimulation model with patient data 

has the potential to provide clinical insight. For example, a cardiology treating patients after a heart 

transplant could use a patient-specific hemodynamics model to simulate the patient’s cardiac 

physiology. As further described in Chapter 4, such model could reveal physiological factors about 

the patient that would otherwise be impossible to measure directly, such as the resistance in the 

coronary arteries that might be indicative of cardiac allograph vasculopathy and ultimately 

transplant rejection. In another scenario, computational physiology models could use 

noninvasively collected physiological measurements to estimate physiological measurements that 

are traditionally collected via invasive methods. In my work, I used hemodynamics data from right 

heart catheter data to optimize a model, and one category of measurements that the model 

estimated was volumes of the heart chambers. However, if blood pressures and flows could be 

accurately estimated using volumetric measurements from noninvasive procedures like cardiac 

MRI or echocardiogram, the patient would not need to undergo invasive procedures like 

catheterization to collect the pressure and flow measurements. 

1.4 Summary 

The broad goal of my dissertation work is to leverage the abundance of existing clinical data and 

to use them with existing computation physiology models. My approach has three major 

components: 1) Reviewing the literature for model publications and assessing their model code 

availability, 2) using a published model and retrospective clinical data to demonstrate the 
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feasibility of optimizing and validating a model for patient-specific modeling, and 3) streamlining 

the clinical data and model matching process to make the use of retrospective clinical data for 

modeling more scalable and generalizable. 

In my scoping review of model code availability from publications, only 2 out of 150 model 

publications examined made the model computational code available. This is a rather surprising 

and significant elucidation into the appalling state of model reproducibility in literature. Many 

modelers are keen on the importance of model reproducibility, and many are aware that model 

repeatability and reproducibility from publications is problematic. However, there is very little 

work quantifying the lack of model source code in literature. Furthermore, this scoping review 

described could better guide future efforts for the broader modeling community by describing the 

status quo of models in literature and highlighting some of the issues with model reproducibility, 

and the asymmetry of curated models referring to model publications but not vice versa. 

Using such computational model available in literature, in conjunction with retrospective clinical 

data, I optimized and validated a computational physiology model with patient physiology data. 

This demonstrate the feasibility of optimizing and validating a model using retrospective data 

without needing to conduct burdening prospective studies that are currently used to collect data 

for model validation. In addition to the benefits for modelers, my approach also has important 

implications for clinicians. The patient-specific model can then be used to simulate the patient's 

physiology with the ability to estimate physiological measurements that are difficult to measure 

directly (e.g., elasticity of the aorta), track patient trajectories over time, and conduct perturbation 

studies. Furthermore, the retrospective data was collected during the course of normal clinical care 

from actual patients, demonstrating not only patient-specific modeling, but patient-specific 

modeling that could be more easily incorporated to clinical workflow without needing to collect 

additional patient data. 
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I extend the methodology described in Section 1.2.2 and Chapter 4 (optimization of biosimulation 

model using clinical data) to be generalizable by developing an informatics pipeline that leverages 

ontologies and semantic annotations. By annotating clinical data and matching them to model 

parameter annotations, the data-model matching process can be better automated, and with more 

semantic precision. More importantly, the broader potential for this work is building a 

knowledgebase of annotated clinical datasets in parallel to repositories of annotated biosimulation 

models. For modelers, finding suitable dataset to validate and simulate their models is a major 

hurdle. Finding suitable clinical dataset can be even more challenging due to the disparity of 

standards and controlled terminologies used in biosimulation modeling and clinical practice. My 

work bridges this gap by establishing an annotation process for clinical data that aligns with model 

annotations. 
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Chapter 2. Background 

2.1 Biosimulation Models 

A model is essentially a representation of something real. While a model can represent a variety 

of things in different formats, biosimulation models, or computational physiology models 

represent biological phenomena or biological systems. More specifically, these models represent 

physiological phenomena using mathematics.  

So why do we bother with models? Modeling by definition takes a reductionist approach to reality 

— scoping reality into a tractable portion, reducing it into comprehensible parts, describing the 

relationship between those parts, and testing those relationships with observable outcome. As a 

result of translating reality into a model, information is lost. However, this reduction certainly has 

its benefits. In the context of biosimulation modeling, it helps us better understand biological 

phenomena by making explicit the various components and actors of biological processes and 

describing their relationships in the precise language of mathematics. 

Computational physiology models have proven to be useful in a number of ways. These include 

better understanding of the mechanisms determining physiological function, conducting 

perturbation simulations, and predicting physiological trajectories over time. As these 

computational physiology models improve, they are better able to simulate patient-specific 

physiology with the ultimate goal of supporting clinical decision-making (Neal and Kerckhoffs, 

2009). 

These models are created based on theory and data, where theory guides the initial set of equations 

and parameters, and data are used in the crucial validation step to test the hypothesis set by the 

model. However, the model validation step is often costly and time-consuming as it requires 

prospective data collection. And yet, there is a wealth of underutilized retrospective clinical data. 
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One utility for these data is in computational physiology modeling, where retrospective clinical 

data has the potential to be a less costly source of data for model validation. Furthermore, to 

achieve the ultimate goal of supporting clinical decision-making in a patient-specific manner, these 

computational physiology models must be able to utilize the currently available clinical data and 

produce clinically relevant output. 

There is a general consensus that computational physiology models can have a positive clinical 

impact with paradigms such as pharmacokinetic/pharmacodynamic (PK/PD) modeling or patient-

specific modeling, but there is not any clear indication on the status quo of computational 

physiology models: How many of these models exist? What physiological phenomena do they 

model? Can models from the literature be reproduced by another modeler and be reused? 

2.1.1 Modeling Standards 

As biosimulation models have become more complex, solely relying on mathematics is insufficient 

to clearly describe the model. Furthermore, with the emphasis on reproducibility of these models 

and the computational experiments, we need standards to clearly define the format in which these 

models should be encoded in, as well as standards for how to annotate the model and the biology 

being described. In this section, I provide the background information on some of the existing 

modeling encoding standards and model annotation standards. 

2.1.1.1 Physiome 

The physiome is the quantitative and integrated description of an organism's physiological 

dynamics. Since its inception almost two decades ago, there have been numerous physiome 

projects with this common goal. Notably, there is the NSR Physiome Project based here in Seattle, 

which is an effort to define the physiome via the development of integrated quantitative and 

descriptive modeling (Bassingthwaighte, 2000). In addition, there is also the IUPS Physiome 
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Project for building a computational physiology modeling framework across scale, including 

biochemical, biophysical, and anatomical information on cells, tissues, and organs (Hunter and 

Borg, 2003). The IUPS Physiome Project also develops and maintains an XML-based modeling 

language, CellML, and a repository of CellML models, the Physiome Model Repository. 

2.1.1.2 CellML and Physiome Model Repository 

CellML is an XML-based modeling language, developed by the Auckland Bioengineering Institute, 

for describing biological models (Cuellar et al., 2003). Its purpose is to store and exchange 

computational models, and to facilitate better model reuse using model components. Model 

components are substructures within a model that encapsulates a portion of the model, allowing 

reuse of components from one model in another to accelerate model building. 

CellML can be used to describe a wide range of biological phenomena, including sub-cellular 

biochemistry, to gross physiology, and it can describe the mathematics, typically algebraic 

equations or ordinary differential equations ODEs, and the model metadata, information about the 

model publication, authorship, and curation. The Physiome Project also maintains the Physiome 

Model Repository (PMR), which includes more than 500 curated CellML models (Yu et al., 2011) 

[available at: https://models.physiomeproject.org]. 

2.1.1.3 SBML and BioModels Database 

Similar to CellML, SBML (Systems Biology Markup Language) is another XML-based modeling 

language (Hucka et al., 2003). It is commonly used to represent mathematical models of 

biochemical reactions, but it can also be used to encode models of cell signaling pathways, 

metabolic pathways, and gene regulation. Unlike CellML, SBML representation is typically 

limited to cellular and sub-cellular domain. 
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The SBML community also maintains a suite of software tools, including LibSBML API for 

working with SBML models, SBMLToolbox for working with SBML in MATLAB, MOCCASIN 

for translating ODE models in MATLAB to SBML. While the SBML Project does not itself 

produce models, the European Bioinformatics Institute (EMBL-EBI) maintains the BioModels 

Database (Le Novere et al., 2006; Li et al., 2010) [available at: http://www.ebi.ac.uk/biomodels-

main/]. BioModels Database is a repository of computational models of biological processes that 

includes more than 600 curated models and more than 1,000 non-curated models encoded in 

SBML. 

2.1.1.4 SemSim and SemGen 

SemSim is a model-description architecture specifically designed to facilitate the sharing, reuse, 

and modular construction of biological models (Neal et al., 2009). The SemSim architecture is 

implemented in Web Ontology Language (OWL) (McGuinness et al., 2004), and the model is 

described with not only the mathematics, but also rich semantic knowledge. 

SemGen is a tool that makes use of the SemSim model architecture to help automate modeling 

workflow of model visualization, annotation, extraction, and merge (Neal et al., 2015, 2018b). 

SemGen’s annotator is particularly useful for my dissertation in annotating not only biosimulation 

models, but also clinical data. The annotator can convert CellML, SBML, and JSim (MML format) 

models into SemSim model format and annotate model variables using ontology terms. Moreover, 

the annotator can automatically determine the physical property and the corresponding Ontology 

of Physics for Biology term based on the unit of measurement of each model variable. In Chapter 

5, I describe a method for converting clinical data into SemGen-compatible file format and 

annotating the dataset with SemSim-style composite annotations. Releases and source code for 

SemGen can be found on GitHub: https://github.com/SemBioProcess/SemGen/ 
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2.1.1.5 Others 

There are of course other modeling languages than the ones mentioned above. For example, there 

is JSim, a Java-based system for building and simulating numerical models and analyzing them 

(Butterworth et al., 2014). MATLAB (MATLAB Inc., Natick, MA. USA) is yet another commonly 

used modeling language in biosimulation. While MATLAB can be a powerful tool for numerical 

computing, its scope is not limited to biosimulation, and the MATLAB language does not have a 

strict format, giving modelers much freedom in how they describe a model. This can be useful for 

rapid model building, but it becomes quite problematic for model reuse. Since there is no standard 

format in which the model is written, there is no systematic method to parse the model code. Thus, 

reusing a model written in generic MATLAB code becomes a labor-intensive exercise. 

In addition to these specialized modeling languages, modelers also use generic programming 

languages to represent their models. These include Python, C/C++, Fortran, and many more. All 

of these generic programming languages have a similar problem to generic MATLAB code in that 

model reuse can be very difficult due to the freedom the initial modeler has in writing the model, 

especially without proper documentation or annotation. 

2.1.2 Model Annotation 

In order for biosimulation models to be interoperable, reusable, and reproducible, they must be 

properly annotated with semantic precision using machine-readable knowledge resource terms. 

There are two levels of model annotation. One is the model-level annotation that describes the 

metadata about the model in general, including source publication, model authorship, and 

curatorial information. The other is model variable/parameter-level annotation that describes the 

physical and biological meaning of each model variable or parameter. In the scope of my 

dissertation, I focus on model variable/parameter-level annotation. While different model file 
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formats have different annotation syntax, most are limited to a single ontology term per model 

variable. However, a single ontology term is not sufficient to describe both the physics and the 

biology that a model variable or parameter represents. For example, there does not exist a single 

ontology term that can be used to annotate a model variable that represents blood volume in the 

right ventricle. Instead, one must use composite annotations to combine multiple ontologies to 

describe the physical property as well as the biological entity (Gennari et al., 2011). Continuing 

with the same example, blood volume in the right ventricle can be described with a composite 

annotation using both the Ontology of Physics for Biology (OPB) (Cook et al., 2008, 2011)and the 

Foundational Model of Anatomy (FMA) (Rosse and Mejino, 2003, 2008): 

OPB:Fluid volume <property_of> FMA:Portion of blood <part_of> FMA:Right ventricle 

 

 

Figure 2.1 Structure of a composite annotation. Composite annotation uses multiple ontologies to 

describe both the physical property and the physical entities. 

2.1.2.1 COMBINE Archive and OMEX Metadata 

COmputational Modeling in BIology NEtwork (COMBINE) is an initiative that coordinates a 

variety of computational modeling communities and standards [https://co.mbine.org/]. In fact, the 

aforementioned CellML and SBML modeling formats are part of the COMBINE standards. One 
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of the standards defined by COMBINE is the COMBINE archive, which is a single file that 

bundles all of the files necessary to describe a computational model and its simulation experiment 

(Bergmann et al., 2014). This may include model files, data files, simulation experiment 

description, and annotation files, and this archive is encoded in the Open Modeling EXchange 

(OMEX) format. 

Driven by the COMBINE community, there is a consensus to harmonize the semantic annotation 

in biosimulation modeling. The recent publication Harmonizing semantic annotations for 

computational models in biology describes the motivation and best practice recommendations for 

building a consensus approach to semantic annotation (Neal et al., 2018a). The recommendations 

are: 1) Encode annotations as RDF; use identifiers.org URI formatting and BioModels.net 

qualifiers. 2) Store annotations in a separate file. 3) Establish a dedicated group for developing a 

software library that supports semantic annotation standards. 4) Document which knowledge 

resources should be used for annotation and why. 5) Establish a repository of reusable annotations. 

6) Ensure high-quality semantic annotations through training and quality control processes. 7) 

Establish and maintain collaborations with knowledge resource developers. 

The OMEX Metadata specification is a document that formalizes the first two recommendations 

so that the community can adopt it as the standard for encoding and storing model annotations in 

the COMBINE archive. The specification is currently under work. 

2.2 Electronic Health Record Data 

Aside from biosimulation models, the other major component of my dissertation is electronic 

health record (EHR) data. 84% of hospitals in the United States had with at least a basic EHR 

system as of 2015 (Adler-Milstein et al., 2017). According to another research, the amount of 

electronic health record data in 2013 was 53 exabytes (1 exabyte = 1 billion gigabytes) and is 
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projected to be over 2,000 exabytes in 2020 (IDC, 2014). This increasing volume of EHR data 

presents a great opportunity for research use. Further elevating the opportunity of using EHR data 

for research use are initiatives like i2b2 (Informatics for Integrating Biology and the Bedside) 

(Murphy et al., 2010) that have led to the development of clinical data repositories, including 

research-ready de-identified clinical data repositories. Such repositories allow for much more 

efficient access to EHR data. The value of secondary usage of EHR data has been recognized for 

over a decade, with uses including quality assurance, public health surveillance, and clinical 

research (Hersh, 2007; Reis et al., 2017). In my dissertation, I demonstrate the secondary usage of 

EHR data with biosimulation models to explore a mechanistic, dynamical view of the relevant 

physiological systems and a patient-specific platform for clinical insight. 

2.2.1 Usable EHR Data 

While the raw amount of EHR data seems daunting, not all data are suitable for use with 

computational physiology models. The electronic health record captures a wide gamut of data, 

including both structured and unstructured data. Structured data includes data that have been 

captured in structured fields through a standardized data capture process. These include 

quantitative physiological measurements like vitals and lab results, but also non-physiological data 

like patient demographics and diagnoses. In the scope of my dissertation, I primarily focus on 

quantitative, structured, physiological data that are more conducive to use with computation 

physiology models. 

Unstructured clinical data are typically qualitative data that are either captured in a non-

standardized manner, or the information captured cannot be programmatically extracted. For 

examples, free-text narrative notes written by clinicians or unprocessed medical images fall under 

this category. By some industry estimates, 80% of EHR data is unstructured (Pak). With the 
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advancement of artificial intelligence (AI), natural language processing (NLP), and image 

segmentation, there are ongoing efforts to extract valuable information from unstructured clinical 

data and transform them into structured data that can be more readily used for research and 

analytics. 

There is another category of underutilized clinical data. In my observation of the clinical workflow 

in the cardiac catheter lab, I noticed the catheter lab recording system was capturing a lot more 

data than what was actually recorded in the EHR. For instance, the catheter lab recording system 

records continuous measurements of the fluid pressure and its waveforms inside the patient's 

vasculature. Once the catheterization procedure is completed, the clinician interprets the 

waveforms and only records the summary hemodynamics data for the patient (e.g., mean arterial 

pressure, right ventricular end diastolic and end systolic pressure). Even though all of the 

continuous pressure waveforms were captured, only a few discrete data points are recorded in the 

medical record. For clinicians, perhaps only these summary data are of importance, but for 

researchers the raw data that is captured can be of tremendously rich source of information. 

2.2.2 Clinical Standards 

With regard to clinical data interoperability with computational models, there are two broad 

categories of clinical standards. First, there are clinical terminologies that represent the real-world 

meaning of clinical concepts. The Systematized Nomenclature of Medicine Clinical Terms 

(SNOMED CT) (SNOMED International) is a comprehensive controlled vocabulary 

encompassing more than 300,000 unique concepts. The scope of SNOMED CT is the entirety of 

the electronic health record, including standardized terms ranging from anatomical structures to 

clinical measurement and diagnoses. SNOMED CT also defines a mechanism for creating 
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composites by combining multiple concepts into a SNOMED CT expression. For example, 

pneumococcal pneumonia in the lungs can be written as a SNOMED CT expression: 

|Pneumococcal pneumonia| (SCTID: 233607000) |Finding site| (SCTID: 363698007) |Lung 

structure| (SCTID: 39607008) 

Another commonly used clinical terminology standard is Logical Observation Identifiers Names 

and Codes (LOINC) (Forrey et al., 1996). LOINC is used for identifying laboratory tests, 

establishing a common language and codes for identifying health measurements and observations. 

The other category of clinical standards important for data interoperability is clinical information 

models that define the structure and semantics of clinical information. openEHR and Fast 

Healthcare Interoperability Resource (FHIR) are examples of clinical information model standards. 

openEHR is an information model for EHR data that specifies how health data should be 

represented, processed, and visualized, rather than attempting to define the underlying concepts 

per se (Kalra et al., 2005). In Chapter 5, I describe how the openEHR platform can be used to map 

between standards and biosimulation modeling standards. While the use of FHIR is not explicitly 

explored in my dissertation, the API-based exchange of health information that FHIR enables is 

very promising for systematically getting patient data for computational modeling (FHIR 

Specification). 

2.3 Summary 

In this chapter, I have described the important concepts in biosimulation modeling and clinical 

data. In the following chapters, I build on these concepts and established knowledge, and describe 

my work in quantifying the model reproducibility from publications, connecting clinical data and 

biosimulation models, and creating a generalizable and scalable data-model connection 

methodology.  
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Chapter 3. Scoping Review of Computational Physiology 
Models for their Reproducibility 

3.1 Background and Motivation 

Public model repositories, such as the Physiome Model Repository (PMR) and BioModels 

Database, are vital resources for accessing computational models of biological processes. There is 

broad recognition that these resources provide value for scientists aiming to build from others’ 

works. Both repositories are manually curated: Curators identify a publication with a model, and 

then work to develop and establish reproducibility of the code. These curators manually 

supplement models described in the literature with cross references and model source code, so the 

models can be reproduced and reused by other modelers. While these curated model repositories 

provide tremendous value for the modeling community, this method does not scale well with the 

pace of model publication.  

Furthermore, it is unclear to what extent these repositories capture the models available in literature. 

Without these third-party curators, what percentage of models described in the literature are 

reproducible? More fundamentally, what percentage of publications about models include some 

access to, or information about the model code?  

In order to elucidate the status of model availability and reproducibility in literature, I conducted 

a scoping review to characterize computational physiology models in literature. I looked at 

whether or not (a) the model code is available, (b) the modeling language used is stated, and (c) 

the equations and parameters used in the model are listed. I examined three categories of model 

publications, beginning from broad and going to narrow. First, using a combination of MeSH terms, 

I searched PubMed for computational physiology models broadly—this resulted in over 6,500 

publications, of which only a fraction was relevant. Next, I searched more specifically for 
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cardiovascular models in PubMed—which returned over 1,000 publications. Finally, I examined 

96 diabetes model publications identified in a diabetes modeling review article (Ajmera et al., 2013) 

as "Clinical Models". From each of the three categories, I randomly sampled and screened 

publications for inclusion. I analyzed the content of 50 full-text publications from each of 

categories for model code availability. In this chapter, I describe the specific method used in the 

scoping review, and the resulting revelation on the appalling state of model reproducibility or lack 

thereof. 

3.2 Scoping Review Methods 

3.2.1 Review Question and Objective 

Scoping reviews are relatively emergent approach to reviewing research evidence (Davis et al., 

2009). They are used to contextualize knowledge, identify the current state of understanding for a 

given topic, and identify gaps in the existing literature (Anderson et al., 2008; Arksey and 

O’Malley, 2005). While less formal than systematic reviews, scoping reviews can be useful for 

getting a broad survey of the literature in areas with much uncertainty. The objective of this 

scoping review is to better elucidate the availability and reproducibility of computational 

physiology models in literature. I characterize them by their modeling paradigm, modeling 

language used, availability of model equations, availability of simulation parameters, and 

availability of model source code used for simulation. 

3.2.2 Search Strategy 

I examined computational physiology models in three categories. First, I examine model 

publications over all biological and clinical domain searched and sampled from PubMed. Second, 

I focus on cardiovascular model publications searched and sampled from PubMed. And third, I 
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focus on diabetes model publications from a particular diabetes modeling review article, The 

impact of mathematical modeling on the understanding of diabetes and related complications by 

Ajmera, et al. The categories were chosen to gradually narrow the scope of models and increase 

the specificity of reviewing bona fide model publication. 

The first category covers all biosimulation models available in PubMed. While this broad search 

provided a nice overview of models across all biological domains and modeling paradigm, it also 

returned a large number of publications describing models that did not fit the inclusion criteria, 

such as physical models (e.g., mannequins), signal processing models for MRIs and ECGs, and 

statistical models lacking mechanistic explanation of the biological phenomena. 

In order to bolster the specificity of the search with model publications meeting the inclusion 

criteria, I examined a second category of model publications focusing solely on cardiovascular 

models by including the MeSH heading "Models, Cardiovascular," a subheading under "Models, 

Biological."  

Finally, I examined diabetes model publications examined in a review article, The impact of 

mathematical modeling on the understanding of diabetes and related complications by Ajmera, et 

al. This analyzes mathematical modeling of glucose homeostasis, diabetic condition, and its 

associated complications. As such, the model publications discussed in this review article have 

already been identified as mathematical models, some of which have been coded into SBML 

models as indicated in the article. 

3.2.2.1 Models from All Domains 

Database searched: PubMed 

Query used: "Models, Biological"[MH] AND "Computer Simulation"[MH] AND Humans[Mesh] 

NOT review[ptyp] NOT Meta-Analysis[ptyp] AND (Research Support, American Recovery and 
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Reinvestment Act[ptyp] OR Research Support, N I H, Extramural[ptyp] OR Research Support, U 

S Gov't, Non P H S[ptyp] OR Research Support, U S Gov't, P H S[ptyp] OR Research Support, 

U.S. Government[ptyp] OR Research Support, Non U S Gov't[ptyp] OR Research Support, N I H, 

Intramural[ptyp] OR Validation Studies[ptyp] OR Comparative Study[ptyp] OR Evaluation 

Studies[ptyp]) 

Date range: Up to May 11, 2018 

Exclude: Statistical models, signal processing models, non-physiological models, non-

computation models (e.g., simple mannequin), studies using previously published models without 

modification, studies comparing previously published models. 

While the PubMed search query looks rather convoluted, the core of the query searches for 

publications annotated with MeSH terms for biological models and computer simulations for 

humans. The additional [ptyp] query parts screen for different publication types. Review articles 

and meta-analysis are explicitly excluded from the search since these articles analyze previously 

published models and does not describe an original model. The other [ptyp] query parts includes 

research articles that typically pertains to publication types that model publications are annotated 

with. 

3.2.2.2 Models from Cardiovascular Domain 

Database searched: PubMed 

Query used: "Models, Cardiovascular"[MH] AND "Computer Simulation"[MH] AND 

Humans[Mesh] NOT review[ptyp] NOT Meta-Analysis[ptyp] AND (Research Support, American 

Recovery and Reinvestment Act[ptyp] OR Research Support, N I H, Extramural[ptyp] OR 

Research Support, U S Gov't, Non P H S[ptyp] OR Research Support, U S Gov't, P H S[ptyp] OR 

Research Support, U.S. Government[ptyp] OR Research Support, Non U S Gov't[ptyp] OR 
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Research Support, N I H, Intramural[ptyp] OR Validation Studies[ptyp] OR Comparative 

Study[ptyp] OR Evaluation Studies[ptyp]) 

Date range: Up to May 4, 2018 

Exclude: Statistical models, signal processing models, non-physiological models, non-

computation models (e.g., simple mannequin), studies using previously published models without 

modification, studies comparing previously published models. 

Similar to the query used for the PubMed search for models across all biological domains, the 

query for cardiovascular model publications also use a combination of MeSH terms. The only 

difference between the all domain search and cardiovascular search is the first MeSH term, 

“Models, Cardiovascular” instead of “Models, Biological.” In fact, “Models, Cardiovascular” is a 

subheading under “Models, Biological,” thus the resulting publications returned from this query 

is a subset of the all domain search, focusing on models of the cardiovascular system. 

3.2.2.3 Models from Diabetes Domain 

For this category, I reviewed the 96 model publications listed as "Clinical Models" in the diabetes 

model review article by Ajmera, et al. Figure 3.1 lists these models as categorized by the authors 

of the review article. In this review article, the authors have categorized a corpus of mathematical 

models of diabetes as “clinical” and “non-clinical” based on the data used, the level of complexity, 

and the biological description. Within the “Clinical Models” category, they have further stratified 

the models by their purpose and physiological scale. In Figure 3.1, the four sub-categories of 

clinical diabetes models are: a) diagnosis; b) control; c) progression; and d) complications. The 

arrows in the figure indicates that a model was derived/adopted from the parent model. The lines 

indicate models representing similar biological phenomenon, but not derived from another model. 
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Figure 3.1. List of clinical diabetes model publications reviewed in Ajmera 2013. 

 

3.3 Framework for Analysis 

Biological domain: This only applies for the search results over all model domains, as the other 

two categories already have specified biological domains. This field indicates the broad category 

of biological phenomena that the model publication describes. 

Modeling paradigm: This field describes the type of modeling paradigm used by the model, such 

as a system of ordinary or partial differential equations, or finite elements. 

Modeling language: This field indicates the modeling tool or programming language used to code 

the model. Sometimes the publications describe both the software and language used to generate 

the model as well as code used for parameter estimation or curve fitting. Only the modeling 

language is indicated here. 
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Model equations available: Model publications were then analyzed for whether they listed a 

comprehensive list of model equations. Model equations are certainly more important for ODE 

and PDE models, but finite element and CFD models still require mathematical equations to 

describe the structural characteristics or flow dynamics. 

Model parameters available: Similar to model equation availability, model publications were 

analyzed for whether they listed a comprehensive list of model simulation parameters. Oftentimes, 

publications resulting from model optimization, parameter estimation, or curve fitting. However, 

these parameters are not indicative of the initial conditions or parameters used to run the model 

simulation, thus resulting in very difficult, if not impossible, reproduction of the simulation 

described in the publication. 

Model code available: This is perhaps the most important aspect of faithful and practical 

reproducibility of published models. For model code availability, publications were searched for 

the raw model/simulation code, as well as availability of the code in a remote repository via 

hyperlinks.  

3.4 Results 

From each of these categories, publications were randomly sampled until I identified 50 model 

publications that met the inclusion criteria. I conducted a detailed review on these 50 model 

publications from each category (150 total) and analyzed their model characteristics and 

reproducibility. The result of the analysis is listed below. 

 

 

 



30 
 

3.4.1 Results from All-Domain 

Table 3.1 Scoping review results for the broad search for models in all biological domains. 

Search Number of publications  
Total publications retrieved 
from search 

6909  

Number of publications 
randomly sampled 

150  

Excluded from analysis 100  
Included for analysis 50  
   
Biological domain (Some 
model publications describe 
multiple domains) 

Number of publications Percentage of total 
publications included for 
analysis 

Biomechanics 19 38% 
CV 18 36% 
Metabolism 6 12% 
PKPD 4 8% 
Electrophysiology 4 8% 
Respiratory 3 6% 
Diabetes 2 4% 
Oncology 2 4% 
Radiation 2 4% 
Neural 1 2% 
   
Model paradigm (ODE, PDE, 
etc.) 

  

Finite element 14 28% 
ODE 12 24% 
CFD 6 12% 
PDE 5 10% 
Population PK 3 6% 
Others 10 20% 
   
Model language (MATLAB, 
C++, etc.) 

Number of publications Percentage of total 
publications included for 
analysis 

MATLAB 8 16% 
ANSYS 5 10% 
ABAQUS 4 8% 
NONMEM 3 6% 
C++ 2 4% 
Python 1 2% 
Fortran 1 2% 
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SAAM II 1 2% 
Others 10 20% 
Not specified 18 36% 
   
Reproducibility Number of publications Percentage of total 

publications included for 
analysis 

Model equations listed 9 18% 
Model equations NOT listed 41 82% 
Simulation parameters listed 20 40% 
Simulation parameters NOT 
listed 

30 60% 

Model code available 0 0% 
Model code not available 50 100% 

 

3.4.2 Results from Cardiovascular Domain 

Table 3.2 Scoping review results for the search for cardiovascular models. 

Search Number of 
publications 

 

Total publications retrieved from 
search 

1111 
 

 

Number of publications randomly 
sampled 

96  

Excluded from analysis 46  
Included for analysis 50  
   
Model paradigm (ODE, PDE, etc.) Number of 

publications 
Percentage of total 
publications included for 
analysis 

CFD 15 30% 
Finite element 12 24% 
ODE 8 16% 
PDE 5 10% 
Others 10 20% 
   
Model language (MATLAB, C++, 
etc.) 

Number of 
publications 

Percentage of total 
publications included for 
analysis 

ANSYS 13 26% 
MATLAB 7 14% 
C/C++ 4 8% 
ADINA 2 4% 
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COMSOL 1 2% 
Maple 1 2% 
SolidWorks 1 2% 
LabVIEW 1 2% 
Others 7 14% 
Not specified 13 26% 
   
Reproducibility Number of 

publications 
Percentage of total 
publications included for 
analysis 

Equations listed 15 30% 
Equations NOT listed 35 70% 
Simulation parameters listed 15 30% 
Simulation parameters NOT listed 35 70% 
Model code available 0 0% 
Model code not available 50 100% 

 

3.4.3 Results from Diabetes Domain 

Table 3.3 Scoping review results for the diabetes model publications from Ajmera, et al. 

Search Number of 
publications 

 

Total publications retrieved 96 
 

 

Number of publications randomly 
sampled 

53  

Excluded from analysis 3  
Included for analysis 50  
   
Model paradigm (ODE, PDE, etc.) Number of 

publications 
Percentage of total 
publications included for 
analysis 

ODE 34 68% 
PDE 8 16% 
Mixed effect 6 12% 
Agent-based 1 2% 
Matrix model 1 2% 
   
Model language (MATLAB, C++, 
etc.) 

Number of 
publications 

Percentage of total 
publications included for 
analysis 

MATLAB 8 16% 
NONMEM 6 12% 
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XPP 2 4% 
SAAM II 3 6% 
C++ 2 4% 
Fortran 1 2% 
BASIC 1 2% 
Others 3 6% 
Not specified 24 48% 
   
Reproducibility Number of 

publications 
Percentage of total 
publications included for 
analysis 

Model equations listed 36 72% 
Model equations NOT listed 14 28% 
Simulation parameters listed 28 56% 
Simulation parameters NOT listed 22 44% 
Model code available 2 4% 
Model code not available 48 96% 

 

3.4.4 Results Summary 

Surprisingly, all but two model publication examined had no model code available. One was a 

journal publication while the other was described in a doctoral dissertation. A few publications 

referred to an external link with model source code that is no longer available). Furthermore, most 

model publications in the general and cardiovascular categories only listed a subset of equations 

and parameters used for model simulation. More than a third of model publications in the diabetes 

category only list a subset of the model equations and parameters. In this third category, about 7% 

of the models were included in BioModels library, but all of these were added and curated after 

publication. Thus, even for publications with curated models, a scientist simply reviewing the 

literature would have no easy way of finding these model codes. 

3.5 Conclusion 

Despite the push towards reproducibility of computational models, the vast majority of model 

publications do not provide sufficient information to reproduce the model simulations they 
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describe. At a minimum, modelers and authors should indicate where the source code is available 

along with some information about the language used so that their computational experiment can 

be reproduced by others. Ideally, this would include describing all of the simulation parameters 

used to produce the published results, and also submitting the model source code into centralized 

repositories such as BioModels Database or the PMR. 

In the past, the printed publication medium may not have been conducive to including long lines 

of source code. However, with digital publication, online source code repositories like GitHub, 

and centralized model repositories, the sharing of source code is no longer an infrastructure issue. 

Perhaps there has been a publication cultural bias on the unimportance of raw code, but rather a 

heavier emphasis on results. Moving forward, one approach to ameliorate this situation would be 

if journals and publishers require or at least encourage authors to submit model source code and 

all of the equations and simulation parameter as part of the supplemental material for the 

publication. 

Fortunately, I do think more and more emphasis is being placed on publishing the source code and 

data. Although they were not sampled and analyzed in my scoping review, there are recent 

submissions to the BioModels Database whose publications do in fact include model source in the 

supplemental material of the publication or by making explicit that the model code was deposited 

to BioModels Database. Furthermore, the Center for Reproducible Biomedical Modeling is 

partnering with journal publishers to not only encourage model code sharing but also help annotate 

models being published to make them more reusable (Sauro et al., 2018). 

3.5.1 Limitations 

While the paucity of model code from publication in this scoping review was quite appalling, this 

work does have its limitations. First, the literature searches described in section 3.2.2.1 and 3.2.2.2 
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are limited to PubMed searches. While PubMed searches across a wide range of biomedical 

journals, there might be other journals, especially those with a focus on mathematics or computer 

science such as Society for Industrial and Applied Mathematics journals, that are not index in 

PubMed. These journals might include publications on biosimulation modeling, and given the 

journal’s focus on computation, the source code availability might differ from my results for 

PubMed. 

Another limitation is that I was the only reviewer during this process. While the most important 

question of whether the model publication contained source code can be assessed with objectivity, 

other characteristics like the inclusion of equations and parameters had more room for 

interpretation. In fact, most model publications include at least some equations, but they did not 

always include a full set of equations necessary to reproduce the model. This process was even 

more challenging when equations were embedded in the text along with supporting equations that 

are not part of the model, per se, but used to derive another equation. Having a second reviewer 

independently assess these characteristics and then together reaching a consensus would have been 

a stronger analysis approach. 

3.5.2 Future Work 

There are several avenues of future work that could be explored stemming from this work. An 

obvious short-term work to bolster the current work would be to increase the sample size and 

perhaps include a second reviewer to confirm the characterization of model publications. Given a 

larger sample, an additional useful analysis would be to stratify the model publications by year to 

uncover any trends in model reproducibility. As mentioned before, I have anecdotally identified 

several recent publications making the model source code available and depositing the model to a 

model repository. Quantitative analysis of model code availability, especially with respect to the 
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start of efforts like the Center for Reproducible Biomedical Modeling, would serve as valuable 

evidence of the positive impact these efforts are making.  
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Chapter 4. Model Optimization Using Clinical Data 

4.1 Introduction 

In this chapter, I demonstrate the feasibility of using retrospective clinical data with computational 

physiology models. To do so, I use right heart catheterization (RHC) hemodynamics data, and 

parameterize the Minimal haemodynamic system model including ventricular interaction and 

valve dynamics (Smith et al., 2004). Using established computational techniques, I optimize the 

model to fit patient data from RHC, and I discuss the clinical and modeling implications of patient-

specific modeling with EHR data. 

4.1.1 Patient-Specific Modeling 

While biosimulation models are often used as research tools, one of the more exciting and 

clinically applicable uses of biosimulation models is in patient-specific modeling. As the name 

suggests, patient-specific modeling simulates the individual physiology of a patient, and it has 

tremendous potential in biomedicine. 

The notion of patient-specific modeling is not novel in itself. In fact, there have been numerous 

models that simulate patient physiology using patient-specific data. These studies prospectively 

recruit subjects and conduct procedures for data collection. While these studies are able to collect 

controlled data specific to the model in question, the procedures are costly and time-consuming. 

For example, a study by Caroli, et al. validated a patient-specific computational vascular 

network model by conducting a multicenter, prospective clinical study to collect longitudinal data 

on arm vasculature before and after surgery (Caroli et al., 2013). In another case, a patient-specific 

model was simply validated against previously accepted literature data as described in Patient-

Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries (Kim et al., 2010): 
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“The computed coronary flow and pressure and the aortic flow and pressure waveforms were 

realistic as compared to literature data.” 

Unlike these previous models and model validation studies, I leverage the abundant clinical data 

stored in the EHR and use existing patient data to address some of the current challenges in 

burdensome data collection process. The main goal of this work is to validate the feasibility of 

using a limited set of retrospective patient data to create a patient-specific instantiation of a 

hemodynamic system model. One potential clinical implication of this work is estimating patients' 

physiological characteristics that are typically unmeasurable in a clinical setting, such as the 

elastance of the aorta or the pulmonary vasculature resistance. Another potential clinical 

application is in tracking these clinically unmeasurable patient-specific physiology longitudinally 

over time. 

4.2 The Model 

4.2.1 Model Selection 

In order for a model to be made patient-specific, it has to check off a list of requirements. Firstly, 

it should be in a clinically relevant scale and domain. Many models, especially those in the 

BioModels Database, model sub-cellular biological phenomena, such as ion transport and 

electrophysiology. While these models are useful for better understanding and simulating 

subcellular physiology, they have less immediate clinical relevance, i.e., routine clinical workflow 

does not capture the data that such a model simulates, and the clinician would not be able to directly 

utilize these models to improve care for a patient. 

Secondly, it needs to be simple enough. A complex model with a plethora of variables and 

equations, or a very detailed 3D model may require too much computational time. This is 
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especially problematic if the model were to be used at the point of care. In addition, for a model 

with numerous constitutive variables, i.e., variables with no physiological meaning such as curve-

fitting variables, only a small portion of the model variables may be useful clinically. Also 

importantly, a model with a large number of parameters may not be uniquely identified with the 

relatively sparse clinical data, yielding an optimization open to too many degrees of freedom and 

resulting in potential overfitting and a physiologically less meaningful interpretation of the data. 

Lastly, the model should yield clinical insight that cannot be derived otherwise. An example of a 

model that meets the first two requirements, but not the third is the Creatinine kinetics and the 

definition of acute kidney injury (Waikar and Bonventre, 2009). This model simulates kidney 

function using serum creatinine concentration to better define acute kidney injury. While this 

model is at a scale and domain of high clinical relevance and simplicity, it does not provide much 

insight about a patient's renal physiology. This model simulates the serum creatinine concentration 

over time and proposes new definitions for acute kidney injury. While serum creatinine level is an 

important proxy for renal function, there already exists a blood test that can directly measure serum 

creatinine level. 

Given these constraints, I chose the cardiovascular model described in the publication, Minimal 

haemodynamic system model including ventricular interaction and valve dynamics by Smith, et al. 

(henceforth referred to as the "Smith model"). The Smith model was developed with the possibility 

of using clinical data for patient-specific modeling, and as such, it is a simple yet robust 

representation of hemodynamics in the cardiac chambers and the vasculatures.  

4.2.2 The Smith Model 

As previously stated, the Smith model was developed with the possibility of patient-specific 

modeling and providing rapid diagnostic feedback. Thus, the authors of the Smith model had the 
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following criteria for a minimal hemodynamics model: 1) Model parameters can be relatively 

easily determined or approximated for a specific patient; 2) The model can be run on a desktop 

computer in reasonable time; 3) Accurate prediction of trends; And 4) the full closed-loop model 

must be stable with minimal complexity and physiologically realistic inertia and valve effects. 

The Smith model includes the hemodynamics in the heart, as well as the pulmonary and systemic 

circulations. The heart in the Smith model includes the two ventricles and their ventricular-

ventricular interaction, but it does not include the atria in order to reduce the overall complexity 

of the model. The Smith model contains 41 input parameters including resistances and inertances 

of blood through the vasculature and valves, elastances of the vasculatures and ventricles, as well 

as end-diastole pressures and end-systole zero pressure volumes of the ventricles and the septum, 

and various constitutive parameters, such as exponent factors that determine the relationship 

between the ventricular volume and pressure during diastolic filling. Given these parameters, the 

model simulates output values for various blood flows, pressures, and volumes. Figure 4.1 

illustrates a simplified schematics of the Smith model using analogous electrical circuit notations. 

The Smith model has been encoded in CellML, and is available in the Physiome Model Repository 

at: 

https://models.cellml.org/exposure/9d046663ba5cac5c8a61ac146183614b/smith_chase_nokes_s

haw_wake_2004.cellml/view. 
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Figure 4.1 Schematic diagram of the Minimal haemodynamic system model. Smith, et al. 

 

4.3 The Data 

Given the model choice of the Smith hemodynamics model, I sought a suitable dataset that could 

be used to parameterize and validate the model. After consulting with several cardiologists, Drs. 

T. Dardas, P. Leary, and C. Masri, I decided to use the hemodynamics data that is collected during 

a typical right heart catheterization as a suitable data source for parameterizing the Smith model. 
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The right heart catheterization is an invasive procedure for obtaining hemodynamics data, during 

which a Swan-Ganz catheter is inserted into the heart via the jugular or another major vein and 

hemodynamics measurements are taken at the right atrium, right ventricle, and pulmonary artery. 

It is typically used to diagnose and manage patients with heart failure (HF), heart failure with 

preserved ejection fraction (HFpEF), and pulmonary hypertension (PH) (Patil et al., 2017). The 

RHC procedure is also routinely administered to heart transplant patients not only for 

hemodynamics measurements, but also for a heart tissue biopsy to monitor for rejection of the 

transplanted heart. 

For this study, the data was limited to heart transplant patients with the rationale that a newly 

transplanted heart should be relatively healthy without any anatomical or physiological defects, 

such as ventricular septal defects or regurgitation that the Smith model does not accommodate for. 

One might raise the concern that a transplanted heart lacks baroreflex due to denervation. While 

this could be problematic in some models, the Smith model does not model baroreceptors, thus 

making data from transplant patients well suited. 

I acquired the RHC data from the clinical data repository at the University of Washington Medicine 

Regional Heart Center. The RHC data in this repository was imported from the Mac-Lab 

Hemodynamic Recording System (GE Healthcare, Chicago, IL, USA) used in the UW cardiac 

catheterization lab. The repository was queried for RHC datasets from heart transplant patients 

with catheterization procedures ranging from March 6, 2014 to March 21, 2016. With an IRB 

approval, I received the dataset from the database administrator at the Regional Heart Center. 

The datasets contain a minimum of the following twelve clinically measured values: right 

ventricular, pulmonary artery, and aortic pressures at diastole and systole; average pulmonary 

capillary wedge pressure, heart rate, cardiac output, body weight, height, and gender. The RHC 

dataset also includes calculated values of systemic vascular and pulmonary vascular resistance. 
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4.4 Model Parameterization and Optimization 

In order to create a patient-specific version of the Smith model, the Smith model was parameterized 

and optimized using the data from RHC procedures. The optimization work was carried out in 

collaboration with Brian Carlson, a physiological modeling expert. All model code was developed, 

and optimization and simulation were performed in MATLAB (MATLAB Inc., Natick, MA. USA). 

Comparing the parameters and variables simulated by the Smith model, and the data measured and 

recorded in the RHC procedure, I have identified 9 data points as suitable matches: RV systolic 

pressure, RV diastolic pressure, pulmonary arterial systolic pressure, pulmonary arterial diastolic 

pressure, pulmonary capillary pressure, aortic systolic pressure, aortic diastolic pressure, cardiac 

output, and average heart rate. In addition, I used height, weight, and gender from the patient record 

to estimate the total blood volume using Nadler's Formula (Nadler et al., 1962). 

Most of these data points, with the exception of average heart rate, and total blood volume are 

model output measures. As such, I applied optimization techniques to adjust the model input 

parameters to produce model output measures that "fit" the clinical data. Given that the Smith 

model has 41 input parameters, adjusting all of these input parameters would both risk overfitting, 

as well as being too computationally burdensome. 

4.4.1 Adjustable Parameter Set – Physiological Features 

After consulting with cardiac modeling experts and cardiologist, I chose a minimal set of 

parameters from the Smith model to be adjustable in the optimization process to fit the RHC patient 

data. This parameter set was chosen based on their potential physiological and clinical significance, 

i.e., the adjustable parameters are not constitutive variables solely with mathematical purpose (e.g., 

curve-fitting parameters), but rather they represent properties of anatomical entities. Table 4.1 lists 

the adjustable parameter set chosen based on physiological features and their potential relevance 
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to cardiac pathophysiology. These parameters include various elastances and resistances, as well 

as the left ventricular free wall unstressed volume. The remaining parameters in the model were 

estimated from the clinical data where possible or set to the normal values used in the Smith model. 

 

Table 4.1 A set of adjustable parameters selected based on physiological features to be optimized 

to fit the patient data. 

Adjustable Parameters - 
Physiological 

Description 

Ees,lvf LV Free Wall Elastance (mmHg/mL) 

Vd,lv LV Free Wall Unstressed Volume (mL) 

Ees,rv RV Free Wall Elastance (mmHg/mL) 

Ees,pa Pulmonary Artery Elastance (mmHg/mL) 

Ees,pu Pulmonary Vein Elastance (mmHg/mL) 

Rpul Pulmonary Vascular Resistance (mmHg*s/mL) 

Ees,ao Aorta Elastance (mmHg/mL) 

Rsys Systemic Vascular Resistance (mmHg*s/mL) 

Rpv Pulmonary Valve Resistance (mmHg*s/mL) 

Ees,spt Septum Wall Elastance (mmHg/mL) 

 

While these adjustable parameters for optimization have physiological significance, they may not 

necessarily be easily identified in the Smith model. For example, the value for a parameter with 
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low sensitivity could be greatly altered without affecting the model output very much. In this case, 

the optimization result for an insensitive parameter could potentially vary widely, since the model 

output would not be affected as much as other more sensitive parameters. This may cause the 

optimization results to have physiologically nonsensical values, or inconsistent optimized values 

over different iterations of optimization. Furthermore, even after performing a sensitivity analysis, 

optimizing a parameter set with correlated parameters could also cause issues if the correlated 

parameters can negate each other’s effect on the model output. In the next section, I report on the 

sensitivity analysis and correlation analysis, carried out with colleagues, as a more systematic 

approach to determine which parameters have the most impact on the output of the model, and 

which parameters are correlated by mathematical dependencies. 

4.4.2 Adjustable Parameter Set – Sensitivity and Correlation Analysis 

In collaboration with P. Woodall, et al., we conducted a sensitivity analysis and correlation 

analysis on a simplified Smith model to systematically identify a parameter set suitable for 

optimization with the RHC dataset (Woodall et al., 2018). In this work, we used a simplified 

version of the Smith model that does not include the ventricular-ventricular interaction, nor the 

inertances of blood through the valves. 

Sensitivity analysis calculates how much each input parameter affects the model output in response 

to a perturbation. Furthermore, correlation analysis identifies which parameters are mathematically 

codependent using a sensitivity-based covariance analysis. The detailed mathematics and methods 

used for these analyses are described in Woodall, et al, 2018. 

Using a sensitivity threshold of 0.01 and correlation threshold of 0.9, we identified the parameter 

set listed in Table 4.2. The sensitivity analysis identified diastolic filling exponents (numerical 

factors that describes the exponential relationship between the ventricular volumes and pressures 
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during diastole) in the left (llv) and right ventricle (lrv) as most sensitive parameters in the reduced 

model. The sensitivity analysis identified left ventricular unstressed volume (Vd,lv) as not sensitive. 

In addition, correlation analysis found left ventricular elastance (Ees,lv) and right ventricular 

elastance (Ees,rv) to be correlated with the more sensitive left (llv) and right ventricle (lrv) diastolic 

filling exponents, suggesting one set or the other can be identified but not both. Thus, the less 

sensitive ventricular elastances were not included in the parameter set in Table 4.2. While 

pulmonary valve resistance (Rpv) was identified as having low sensitivity, we included this 

parameter in the adjustable parameter set to provide maximum flexibility in optimizing right 

ventricular pressure, pulmonary arterial pressure, and cardiac output, which are available in the 

RHC dataset. 

 

Table 4.2 A set of adjustable parameters selected based on sensitivity and correlation analysis to 

be optimized to fit the patient data. 

Adjustable Parameters – 
Sensitivity Analysis 

Description 

llv LV diastolic filling exponent 

lrv RV diastolic filling exponent 

Ees,pa Pulmonary Artery Elastance (mmHg/mL) 

Ees,pu Pulmonary Vein Elastance (mmHg/mL) 

Rpul Pulmonary Vascular Resistance (mmHg*s/mL) 

Ees,ao Aorta Elastance (mmHg/mL) 

Rsys Systemic Vascular Resistance (mmHg*s/mL) 

Rpv Pulmonary Valve Resistance (mmHg*s/mL) 
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The optimization results and longitudinal analysis using the parameter set in Table 4.2 is further 

described in the manuscript under preparation with Woodall, et al. For the purpose of my 

dissertation, I describe the optimization results using the parameter set in Table 4.1, chosen based 

on physiological significance. 

4.4.3 Optimization Techniques 

I initially considered a gradient descent algorithm that iteratively steps towards the negative of the 

gradient to find the local minimum (Ruder, 2016). However, this required manually selecting 

initial values for each optimization. Thus, this method was not scalable for batch processing a large 

number of optimizations. Furthermore, the optimization results could vastly differ depending on 

the choice of initial values as the optimization algorithm was finding a local minimum near the 

initial values, rather than find the global minimum solution set. To address these concerns, I 

ultimately chose genetic algorithm optimization method, which stochastically samples the 

parameter space given only initial bounds. 

A genetic algorithm (GA) is a method for solving both constrained and unconstrained optimization 

problems based on a natural selection process that mimics biological evolution (Sivanandam and 

Deepa, 2008). The algorithm repeatedly modifies a population of individual solutions. At each 

step, the genetic algorithm randomly selects individuals from the current population and uses them 

as parents to produce the children for the next generation. Over successive generations, the 

population "evolves" toward an optimal solution. 

I performed the optimization on a shared scalable compute cluster for research (Hyak) at the 

University of Washington. The MATLAB optimization script was run on 1 node with 16 cores 

and 40 GB of memory. The runtime for the optimization widely varied depending on the initial 

seed population values for the GA, ranging from a few hours up to 20+ hours, sometimes timing 
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out on Hyak. Despite the varied optimization time, the GA was a better optimization algorithm 

than the gradient descent algorithm for finding a globally optimal solution set. 

4.5 Optimization Results 

RHC datasets from four patients were used to optimize the Smith model. Table 4.3 lists the 

optimized results of the 10 parameters chosen based on physiological features (Table 4.1) and their 

residuals, which indicates the error in the optimization result. The residual from these 

optimizations range between 0.79% to 4.2%, indicating that the optimized parameters result in 

output that fit relatively well to the patient RHC data. One interesting aspect of the optimization 

results is the variability of septum wall elastance between the patients. The optimization results 

would indicate patients 266 and 572 have very stiff septal walls, while patients 233 and 558 have 

more compliant septal walls. The extraordinarily stiff septal walls may indicate some 

pathophysiology causing the stiffening. However, it could also be a potential weakness of the 

optimization, especially if the septal wall elastance parameter has low sensitivity or correlation 

with another parameter. 

Figures 4.2 through 4.5 show the simulation output for four patients. In subplot A, the right 

ventricular, aortic, pulmonary arterial, and pulmonary venous pressures are all plotted. Subplots D 

and E separates the pressures by left heart and right heart, respectively. Subplot B shows the left 

ventricular and right ventricular volumes. Subplots C and F combine the visualization of pressures 

and volumes into pressure-volume (PV) loops, with subplot C plotting the left ventricular PV loop, 

and subplot F showing the right ventricular PV loop. 

Although clinician assessment would be needed to verify, these very different PV loops strongly 

suggest that these patients are in very different clinical states. For example, the PV loops for 

patients 266 and 572 show much more limited stroke volume in the right ventricle with elevated 
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end systolic volume compared to patients 233 and 558. This may be indicative of serious 

conditions like right heart failure. PV loops like these provide clinicians with snapshots of the 

patient’s cardiac function, which can help them elucidate the underlying pathophysiology. 

 
Table 4.3 Optimization results for each patient dataset. 

Adjustable Parameter Patient 
233 

Patient 
266 

Patient 
558 

Patient 
572 

LV Free Wall Elastance (mmHg/mL) 3.840 6.993 3.820 3.322 

LV Free Wall Unstressed Volume 
(mL) 

16.441 3.057 5.862 15.066 

RV Free Wall Elastance (mmHg/mL) 0.858 0.197 0.510 0.328 

Pulmonary Artery 
Elastance (mmHg/mL) 

0.240 0.370 0.274 0.424 

Pulmonary Vein 
Elastance (mmHg/mL) 

0.221 0.624 0.238 0.717 

Pulmonary Vascular 
Resistance (mmHg*s/mL) 

0.0732 0.0957 0.0875 0.107 

Aorta Elastance (mmHg/mL) 0.981 0.896 1.038 1.333 

Systemic Vascular Resistance 
(mmHg*s/mL) 

0.911 1.126 0.588 0.909 

Pulmonary Valve 
Resistance (mmHg*s/mL) 

0.0118 0.0162 0.00422 0.0142 

Septum Wall Elastance (mmHg/mL) 11.972 101.44 2.858 106.157 

Residual 0.00791 0.0244 0.04172 0.01438 
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Figure 4.2 Simulation output of optimized model for patient 233. 

 

Figure 4.3 Simulation output of optimized model for patient 266. 
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Figure 4.4 Simulation output of optimized model for patient 558. 

 

Figure 4.5 Simulation output of optimized model for patient 572. 
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4.6 Discussion and Significance 

4.6.1 Clinical and Modeling Implications 

There are several clinical benefits and implications associated with this work. Through 

optimization techniques, the model is able to estimate parameters about the patient that are 

clinically difficult, or even impossible to measure directly, such as the specific elastances of the 

aorta, pulmonary vein, pulmonary artery, left ventricular free wall, right ventricular free wall, and 

septal wall.  

There are, however, accepted methods for estimating arterial stiffness (elastance), ranging from 

simple calculations based on pressures and volumes (Amin et al., 2011) to pulse wave velocity 

(PWV) measurements, which is the noninvasive gold standard for comparative measure of arterial 

stiffness (Townsend, 2017). Nonetheless, the model provides a more detailed and holistic 

characterization of the patient's physiology. The RHC procedure can only directly measure 

hemodynamic properties related to pressure and flow. Furthermore, the model simulates patient 

physiology as a function of time, whereas the clinically recorded measurements are generally 

limited to discrete data points or average values. Since the model is able to estimate volume 

parameters in addition to the pressure parameters over time, it can generate patient-specific 

pressure-volume loops, which can be used by clinicians to assess cardiovascular function, and even 

help diagnose difficult to diagnose conditions such as heart failure with preserved ejection fraction 

(HFpEF) in stable patients (Penicka et al., 2010). 

Using multiple datasets over time for the same patient, the model could even be used to track the 

patient's physiology longitudinally, with the potential to highlight changes or abnormalities in the 

patient physiology that could lead to better prognosis and treatment. In fact, in collaboration with 

Woodall, et al., we have conducted sensitivity analysis on a cardiovascular system model based 
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on the Smith model to identify the more impactful parameters and optimize those parameters with 

longitudinal patient datasets to predict their cardiovascular function over time (Woodall et al., 

2018). In this work, we optimized the modified Smith model using RHC data collected at several 

time points after the heart transplant for several patients. In this analysis, we were able to identify 

distinct trends in cardiac function for different patients, which could be used to suggest which 

patients might be having a less successful post-transplant recovery and warrant a closer monitoring. 

In additional to clinical implications, this work also has modeling implications. Namely, this work 

demonstrates the feasibility of model parameterization and validating using existing clinical data. 

For modelers, this could mean real human data can be used to validate models without needing to 

conduct time-consuming and costly prospective studies, especially when recruiting for specific 

cohorts (e.g., heart transplant patients) that may be limited in sample size, or for data that may be 

difficult to collect (e.g., invasive right heart catheterization). 

4.6.2 Limitations and Future Work 

One limitation of this work is that RHC procedures are invasive. Using data collected via 

noninvasive procedures to estimate parameters that could only be directly measured by invasive 

procedures would establish far greater clinical benefits of using computational physiology models. 

In fact, one possible future work is to apply similar model optimization method using volumetric 

and cardiac output data collected via noninvasive modalities, such as echocardiogram and cardiac 

MRI, with the goal of estimating parameters, such as pressures that are currently collected via 

invasive procedures like right heart catheterization. This future work is further explored in the 

Future Directions section of Chapter 6. 

Another limitation of this work is the lack of clinical validation. While the residuals from the 

optimized parameters indicate good mathematical fit, the parameter values and the simulation 
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results have not been thoroughly validated as a useful clinical tool. One potential clinical validation 

would be to compare the actual patient outcomes (e.g., survivability, transplant rejection, 

hypertension) with the physiological parameters of what the patient-specific model indicates. This 

work is currently in progress in collaboration with cardiologists to compare patient 

pathophysiology as predicted by the model versus their clinical outcomes and diagnoses.  

4.7 Conclusion 

In this chapter, I have described the process of selecting a published cardiovascular system model, 

parameterizing and optimizing it with hemodynamics data from right heart catheterization, and 

generating a patient-specific model. In theory, this process could be applied to a gamut of 

computational physiology model with parameters corresponding to available clinical data. For 

example, renal function models could be paired with blood electrolytes data. However, the process 

of selecting a suitable model and searching for a dataset that describes the corresponding properties 

and anatomies can be arduous without a more systematic approach. As such, in the next chapter, I 

describe an informatics pipeline that could better bridge the gap between clinical data and 

computational physiology models using semantic annotations. 
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Chapter 5. Linking Data to Models 
As demonstrated in Chapter 4, computational physiology models can be made patient-specific 

using existing clinical data, and the benefits of patient-specific modeling with retrospective clinical 

data are described in Chapter 4, Section 4.6.1 and 4.6.2. While this approach for model 

optimization can be broadly applied, the ad hoc method for linking clinical data to model variables 

does not scale well as the number of data elements or model variables increase. 

As I describe in Chapter 4, there is currently a large corpus of published models as discovered in 

the scoping review described in Chapter 3. At the same time, there is an abundance and a wide 

variety of clinical data available via the near-ubiquitous adoption of EHR systems. Albeit there are 

regulatory and accessibility barriers to using retrospective EHR data for research, there are existing 

and ongoing efforts to build and support research-ready clinical data repositories (Murphy et al., 

2010). In order to take advantage of these resources, there needs to be a more precise and 

systematic method for linking clinical data to computational models. As such, I have developed 

an informatics pipeline for more systematically linking clinical data with computational models 

by leveraging semantic annotations. 

5.1 Background and Motivation 

As described in Chapter 2, biosimulation models are mathematical representations of biological 

processes. More specifically, computational physiology models represent physiological processes. 

Researchers often use such models to computationally test hypotheses about the mechanisms of 

underlying pathophysiology. Spurred by initiatives such as the Physiome Project and the Virtual 

Physiological Human (VPH) (Hunter and Viceconti, 2009), researchers are actively applying 

biosimulation modeling to advance personalized medical care and to improve drug design. These 

biosimulation models range in scale from subcellular processes, such as glycolysis (Vinnakota et 
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al., 2010) to that of fluid flow through the human circulatory system (Beard et al., 2013; Pettersen 

et al., 2014; Tewari et al., 2013, 2016). To validate and test these models, researchers match a 

model’s simulated output to empirical physiological measurements. If the model can replicate the 

observed, measured behaviors, then it validates that the physiological theory is viable. This 

approach, from hypothesis, to animal validation, and to prospective human trials is well-proven, 

thorough, and systematic. However, it is very costly and is only ethical for data that can be 

collected via non-invasive, low-risk methods in human trials. In contrast, I propose that by using 

retrospective EHR data, researchers could validate physiological models in a more time- and cost-

effective manner. As an example, this approach might allow researchers to more efficiently discard 

seemingly plausible hypotheses prior to the costly process of prospective human trials for 

validation. 

Although only a small fraction of EHR data may be relevant for models of physiology, utilizing 

these data is still less expensive than designing a trial and prospectively collecting data from 

participants. By making these clinical data searchable and linkable to biosimulation models, 

researchers using biosimulation models could better find existing retrospective clinical data that 

facilitate the validation of hypotheses in humans. Conversely, clinical researchers can test 

hypotheses by finding appropriate models that are relevant to the clinical measurements of interest. 

Thus, a goal of this work is to connect biosimulation models to relevant EHR data for validation 

of those models, and likewise to connect EHR data to relevant biosimulation models. These 

connections could improve and allow for patient-specific modeling—the simulation of individual 

physiology and the potential to support clinical decisions in patient-specific treatment, prognosis, 

and diagnosis. In fact, there are ongoing patient-specific research efforts (Arthurs et al., 2016; Kim 

et al., 2010; Youssefi et al., 2018), and while these demonstrate important progress toward patient-
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specific modeling, they require prospective collection of data specific to the models, which may 

not be practical nor part of the normal clinical workflow. 

5.2 A Semantic Approach to Models and Data 

My approach to connecting models to EHR data is semantics-based. I leverage existing 

biosimulation semantic annotation framework and ontologies to create mappings between clinical 

and computational physiology domains. The long-term goal is to develop a library of searchable 

biosimulation models that can be matched against physiological data measurements found in 

clinical data repositories. This library of annotated physiological models builds upon current 

libraries of models such as the BioModels Database (Le Novere et al., 2006) and the Physiome 

Model Repository (PMR) (Yu et al., 2011). In this chapter, I describe the informatics pipeline for 

annotating clinical data and matching these to annotated models. While this informatics pipeline 

is generalizable to any structured clinical data and computational physiology models, here, I 

demonstrate the pipeline with concrete examples using several quantitative clinical datasets 

available from the University of Washington Medical Center clinical data repository. Using 

clinical datasets from right heart catheterization and cardiac magnetic resonance imaging (cMRI), 

I describe how these two different datasets can be matched to the cardiovascular model used in 

Chapter 4 (Minimal haemodynamic system model including ventricular interaction and valve 

dynamics by Smith, et al.). In addition, I describe how a blood electrolytes lab panel dataset can 

be matched to two different renal function models and an ischemia model. 

5.2.1 Semantics in Computational Physiology Models 

Computational physiology and bioinformatics communities make good use of Semantic Web. For 

example, SBML models in BioModels Database and CellML models in the PMR both support 

semantic annotation. On the contrary, while the use of Semantic Web and domain ontologies in 
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healthcare is key for advanced analytics and automated reasoning, their use remains very limited 

(Atalag et al., 2017). In order to link these domains, it is imperative to represent and semantically 

annotate both computational and health information models using compatible standards and 

ontologies. Leveraging prior work in this area, I use biological and physical semantics as a 

common ground and annotate the data and model variables with composite annotations to 

unambiguously define both the physical property being measured, and the entity or process being 

involved (Gennari et al., 2011). The physical properties of interest may include attributes such as 

fluid volumes and pressures, flow rates, or chemical concentrations. To refer to these properties in 

an unambiguous manner, I use the Ontology of Physics for Biology (OBP), which contains a rich 

taxonomy of physical property types. For physical entities, I use knowledge resources such as 

Chemical Entities of Biological Interest (ChEBI) (Hastings et al., 2016) for chemicals, and the 

Foundational Model of Anatomy (FMA) for human anatomy. For example, “sodium ion 

concentration in blood” can be precisely described as: 

OPB:Chemical concentration <property_of> CHEBI:sodium(1+) <part_of> FMA:Portion 

of blood 

The details of biomedical ontologies and the composite annotation framework are described in 

Chapter 2. 

5.2.2 Clinical Informatics Standards and Ontologies 

Clinical informatics standards and ontologies do in fact exist. The Systematized Nomenclature of 

Medicine Clinical Terms (SNOMED CT) is a very comprehensive controlled vocabulary 

encompassing more than 400,000 unique concepts and 1.4 million relationships. Its scope is the 

entire EHR and supports both care delivery and secondary use. Logical Observation Identifiers 
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Names and Codes (LOINC) is widely used for identifying laboratory tests, and it aims to establish 

common language and codes for identifying health measurements and observations. 

However, there is still a gap between these health informatics standards and standards used by the 

biosimulation modeling community. This issue is partially addressed in a separate work in 

collaboration with K. Atalag, R. Kalbasi, and D. Nickerson, where we map clinical information 

standards to model standards using the openEHR information model, an information model for 

EHR data that specifies how health data should be represented, processed, and visualized. 

5.3 A Pipeline for Semantic Annotation of Clinical Datasets and 

Models 

Electronic health records are valuable sources of clinical data for research, but it takes significant 

effort to identify and transform raw EHR data into a form that can be used by researchers. In this 

section, I describe a bidirectional informatics pipeline for annotating clinical data with clinical 

standards and mapping them to model variable annotations. 

As previously mentioned, I processed data from right heart catheterization, cardiac MRI, and blood 

electrolytes lab test datasets through the pipeline. All of these datasets contain quantitative 

measurements, making them amenable to connect with biosimulation models that simulate 

quantitative aspects of physiology. 

5.3.1 Clinical Data 

While this annotation methodology can be generalized to any clinical dataset, I will focus on 

quantitative clinical data from the De-identified Clinical Data Repository (DCDR) from University 

of Washington Institute of Translational Health Sciences. In recent years, initiatives like i2b2 

(Informatics for Integrating Biology and the Bedside) have led to the development of clinical data 



60 
 

repositories, including the DCDR. Such repositories allow for much more efficient access to EHR 

data. In particular, the DCDR allows the researcher to directly query a de-identified subset of data 

from various UW Medicine clinical systems without requiring individual IRB approval, and 

without relying on a database administrator to query and relay the data. I obtained the blood 

electrolytes datasets from the DCDR by querying for “Labs > Chemistry > Blood Electrolytes”. 

The entire blood electrolytes dataset includes 379,316 patients over a 5-year period, and I selected 

a random subset of 10,000 lab results. 

In my initial approach, I transformed the source data from flat comma-separated value (CSV) 

format into CellML format using a Python script, which allowed me to annotate each data type 

using SemGen’s model annotation tool as if it were a model variable. While this method made use 

of the available annotation tools for biosimulation models, it was not utilizing any existing clinical 

standards. In a more systematic approach outlined in Figure 5.1, the source data was imported into 

openEHR by mapping each data element to corresponding openEHR archetype nodes and 

annotating them with SNOMED or LOINC terms. 

 

Figure 5.1 Bidirectional informatics pipeline for mapping EHR data to model variables. 

5.3.2 Model Selection and Semantic Annotations 

On the right-hand side of the pipeline in Figure 5.1 is the computational physiology model. The 

model can be selected from a model repository, such as the Physiome Model Repository or 
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BioModels. The selection can be driven either by the modeler with a specific model of interest, or 

by the clinical data of interest and the resulting model annotations mapped from those clinical 

annotations. 

The selected model must have semantic annotations (i.e., composite annotations) of its variables 

in order to map these to appropriate data annotations. Recent work in the modeling community has 

encouraged this sort of semantic annotation and the use of the COMBINE Archive standard for 

archival storage of these annotations has gained traction. 

5.4 Matching Annotated Datasets with Annotated Model Variables 

Once the datasets were semantically annotated, I matched them with relevant biosimulation models. 

I matched data fields in the RHC and cardiac MRI datasets with variables from the Smith model 

(Table 1a and 1b). This cardiovascular systems model includes interactions between right and left 

ventricle and is able to evaluate the effects of pulmonary hypertension (increased right ventricular 

pressure) on cardiac function. Clinically, some of the RHC data are used to directly monitor and 

understand cardiac function: e.g., cardiac output as a measure of overall heart function. However, 

if I can use these data in conjunction with the Smith model, I can predict parameters in that 

mechanistic model that are not readily measurable or apparent in the RHC data. For example, the 

Smith model includes variables such as the elastance of the left ventricular free wall.  Changes in 

such variables for a single patient over time have the potential to help clinicians better understand 

pathologies as they emerge, and better guide therapy for improved outcome.  

Although non-invasive, cardiac MRIs include some of the same sorts of data; in particular, 

volumes of heart chambers can be readily measured, although pressures and flows cannot. 

Therefore, I matched the same Smith model to this dataset, albeit there were fewer matches to 

model variables. As with the RHC data, when I fit the model to the cardiac MRI dataset, changes 
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in model parameter values may correspond to specific diagnoses, such as cardiac hypertrophy, or 

heart failure with preserved ejection fraction (HFpEF). 

Table 5.1 Examples of RHC data fields, their annotations, and matching model variables. 

Data Field Description Composite Annotation Model 
Variable 
(Source 
Model)  

Pressure_AO Aortic pressure OPB:Fluid Pressure <property_of> 
FMA:Portion of blood <part_of> 
FMA:Aorta 

P_ao (Smith) 

Pressure_LV Left ventricular 
pressure 

OPB:Fluid Pressure <property_of> 
FMA:Portion of blood <part_of> 
FMA:Left ventricle 

P_lv (Smith) 

Pressure_RV Right ventricular 
pressure 

OPB:Fluid Pressure <property_of> 
FMA:Portion of blood <part_of> 
FMA:Right ventricle 

P_rv (Smith) 

Pressure_PA Pulmonary artery 
pressure 

OPB:Fluid Pressure <property_of> 
FMA:Portion of blood <part_of> 
FMA:Pulmonary artery 

P_pa (Smith) 

Thermo_Cardi
ac_Output 

Cardiac output 
(thermodilution) 

OPB:Fluid Flow Rate <property_of> 
Blood flow through aortic valve 
Source: Portion of blood in Left 
ventricle 
Sink: Portion of blood in Aorta 

Q_av (Smith) 

Pulmonary_Bl
ood_Flow 

Pulmonary blood 
flow 

OPB:Fluid Flow Rate <property_of> 
Blood flow through pulmonary valve 
Source: Portion of blood in Right 
ventricle 
Sink: Portion of blood in Pulmonary 
artery 

Q_pul (Smith) 

Systemic_Bloo
d_Flow 

Systemic blood 
flow 

OPB:Fluid Flow Rate <property_of> 
Systemic circulatory blood flow 
Source: Portion of blood in Aorta 
Sink: Portion of blood in Vena cava 

Q_sys (Smith) 

PulmVasc_Res
istance 

Pulmonary 
vascular resistance 

OPB:Fluid Flow Resistance 
<property_of> FMA:Portion of blood 

R_pul (Smith) 
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<part_of> FMA:Pulmonary vascular 
system 

SV_Resistance Systemic vascular 
resistance 

OPB:Fluid Flow Resistance 
<property_of> FMA:Portion of blood 
<part_of> FMA:Systemic circulatory 
system 

R_sys (Smith) 

Heart_Rate Heart rate OPB:Temporal frequency period 
(Smith) 

 

Table 5.2 Examples of cardiac MRI data fields, their annotations, and matching model variables. 

Data Field Description Composite Annotation Model 
Variable 
(Source 
Model)  

LVEDV Left ventricular 
end diastolic 
volume 

OPB:Fluid volume <property_of> 
FMA:Portion of blood <part_of> 
FMA:Left ventricle 

V_lv (Smith) 

LVESV Left ventricular 
end systolic 
volume 

OPB:Fluid volume <property_of> 
FMA:Portion of blood <part_of> 
FMA:Left ventricle 

V_lv (Smith) 

RVEDV Right ventricular 
end diastolic 
volume 

OPB:Fluid volume <property_of> 
FMA:Portion of blood <part_of> 
FMA:Right ventricle 

V_rv (Smith) 

RVESV Right ventricular 
end systolic 
volume 

OPB:Fluid volume <property_of> 
FMA:Portion of blood <part_of> 
FMA:Right ventricle 

V_rv (Smith) 

LVCO Left ventricular 
cardiac output 

OPB:Fluid Flow Rate <property_of> 
Blood flow through aortic valve 
Source: Portion of blood in Left 
ventricle 
Sink: Portion of blood in Aorta 

Q_av (Smith) 

RVCO Right ventricular 
cardiac output 

OPB:Fluid Flow Rate <property_of> 
Blood flow through pulmonary valve 
Source: Portion of blood in Right 
ventricle 
Sink: Portion of blood in Pulmonary 
artery 

Q_pul (Smith) 
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Table 5.3 shows the same information for the third dataset, the blood electrolyte lab values, when 

compared to three different models. For the first two models, I focus on creatinine concentration, 

as both models use this data to calculate an estimate of the glomerular filtration rate of the kidney, 

an important indicator of kidney function. The first model by Waikar and Bonventre (Waikar and 

Bonventre, 2009) uses a two-compartment transport model to define the severity of acute kidney 

injury (AKI). The second model by Chen (Chen, 2013) calculates glomerular filtration rate (GFR) 

when the creatinine values change acutely over a 12 – 48 hour timespan, often as a result of AKI. 

Both models can be used to more accurately predict GFR during these rapid changes in blood 

serum creatinine, and the Waikar and Bonventre model can also be used to consider the effects of 

chronic kidney disease (CKD) if the patient has a previous diagnosis of CKD. The third model 

developed by Yi, et al. (Yi et al., 2003), tracks various ion concentrations during ischemia and 

hypoxia, and aims to determine the underlying mechanism behind increased extracellular 

potassium during ischemia. 

 

Table 5.3 Examples of blood electrolytes data fields, their annotations, and matching model 

variables. 

Data Field Description Composite Annotation Model 
Variable 
(Source 
Model)  

CRE - 
CREATININE 

Concentration of 
creatinine in 
blood 

OPB:Chemical concentration 
<property_of> CHEBI:creatinine 
<part_of> FMA:Portion of blood 

C (Waikar); 
MeanPCr, DPCr 
(Chen) 

NA - SODIUM Concentration of 
sodium in blood 

OPB:Chemical concentration 
<property_of> CHEBI:sodium(1+) 
<part_of> FMA:Portion of blood 

Na_v (Yi) 
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K - POTASSIUM Concentration of 
potassium in 
blood 

OPB:Chemical concentration 
<property_of> 
CHEBI:potassium(1+) <part_of> 
FMA:Portion of blood 

K_v (Yi) 

CL - CHLORIDE Concentration of 
chloride in blood 

OPB:Chemical concentration 
<property_of> CHEBI:chloride(1-) 
<part_of> FMA:Portion of blood 

Cl_v (Yi) 

 

While Table 5.1, 5.2, and 5.3 show a number of semantic matches between data fields and model 

variables, the majority of EHR data does not fit the needs of the model. Some data fields, such as 

patient ID, are simply data that do not represent a physiological state or process. Others do 

represent interesting physiology but are not considered in the particular model of interest. For 

example, the left and right ventricular ejection fraction data from cardiac MRI, while very 

important indicators of heart function, does not have a semantic equivalence in the Smith model. 

Furthermore, some data may not have semantic equivalences in the model of interest, but they may 

be used to calculate another variable in the model. For example, I can use gender, height, and 

weight data in the RHC dataset with Nadler's formula to obtain an accurate estimate the patient's 

total blood volume, which does in fact have a corresponding variable in the Smith model. 

Conversely, the model also contains numerous variables that do not match the EHR data. Some of 

these, such as "Gaussian Curve Delay," or "Pericardial Diastolic Exponential Parameter" are model 

parameters used to support the mathematics of model simulations. Others, such as "Pressure across 

the pericardial wall," or "Blood flow across tricuspid valve" are physiologically meaningful 

variables that are not available in the RHC or cardiac MRI dataset, and very unlikely to be captured 

in a clinical setting. 

In addition, to better connect data to models, the researcher should consider contextual information. 

For example, the Waikar model is for pathophysiology—physiology under a diseased condition. 

Thus, it would be more appropriate to validate this model with EHR lab data that is collected only 
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from patients in that diseased state. In the openEHR model, I can easily create a selection query 

over my defined archetypes that retrieves only those lab values with a certain semantic constraint 

matching the desired SNOMED term—namely, for the Waikar model, those lab results that include 

a diagnosis of “kidney disease” per the constraint on a creatinine test. 

5.5 Summary 

I have described an informatics pipeline for matching EHR datasets with biosimulation models 

that serves as a modest first step towards connecting clinical data with physiological models.  

Although portions of this pipeline are manually created, some of these manual steps could be 

replaced by automation. Although for models with a limited number of variables, manual 

mappings may be sufficient. In the long term, mapping clinical data to biosimulation models has 

the potential to benefit both biosimulation modelers by better facilitating the use of retrospective 

clinical data for model validation, and clinical researchers by better connecting biosimulation 

models that can simulate patient physiology using available clinical data. 

I am streamlining the process for physiological modelers to use EHR data as a new valuable 

resource for model validation. Model validation is currently a time-consuming and costly step in 

creating biosimulation models. Simultaneously, I am streamlining the process for clinical 

researchers to use biosimulation models. While the EHR data may not fit the needs of the modeler 

as well as a prospectively designed data collection experiment, it does provide a much easier 

avenue for collecting data with sample sizes that are often infeasible in a prospective experiment. 

Additionally, connecting EHR data to biosimulation models has the potential to make 

biosimulation models patient-specific. By parameterizing a model with a patient's data, the given 

models could better track the progression of acute kidney injury or ionic imbalance during 

ischemia at an individual level. Furthermore, by optimizing the parameters not explicitly defined 
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in the model to simulate the patient’s data, the model could be used to estimate values that describe 

underlying physiological features that are not readily measurable in a clinical setting. It is 

important to note that not all clinical data are going to be relevant to the model. This is especially 

true for unstructured or less quantitative data, such as medical history and clinical notes. While 

these are all valuable information for the assessment and treatment of the patient, computational 

models cannot directly utilize these data. 

In conclusion, I have described an informatics pipeline for applying clinical standards to EHR 

datasets and mapping them with computational physiology model annotations. I have also 

demonstrated how this pipeline can connect specific EHR data with specific biosimulation models, 

using blood electrolytes datasets as an example. My work aims to support clinical research 

informatics; by connecting physiological models to EHR data, I can better support the basic 

research being carried out by physiologists, with the long-term potential of developing patient-

specific models for improved clinical decision making. 
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Chapter 6. Conclusion 
In this chapter, I conclude my dissertation by summarizing the research, identifying its limitations, 

and discussing broader implications for biosimulation modelers and clinicians. Furthermore, I 

explore future directions stemming from this work beyond the scope of this dissertation. 

6.1 Dissertation Summary 

In this dissertation, I have described my work using retrospective EHR data to optimize and 

validate a biosimulation model. By optimizing a cardiovascular systems model with patient-

specific data, I have demonstrated the feasibility of patient-specific modeling using existing 

clinical data and a biosimulation model available from a model repository. 

In Chapter 2, I provide the necessary background information on biosimulation modeling, and 

EHR data. Specifically, I describe the standards used in both fields, as well as annotation efforts 

in the modeling community. 

In Chapter 3, I describe the scoping review of biosimulation models in literature. Motivated by the 

push from the modeling community towards reproducible models, I reviewed 150 biosimulation 

model publications, consisting of 50 general biosimulation models from PubMed, 50 

cardiovascular biosimulation models from PubMed, and 50 diabetes models from a review article 

by Ajmera, et al. From the 150 model publications, I discovered a stark lack of reproducibility as 

characterized by just 2 model publications making the model source code available. 

In Chapter 4, I describe model optimization using retrospective EHR data. Using right heart 

catheter hemodynamics dataset from UW Medicine Regional Heart Center, I optimize a subset of 

parameters in a cardiovascular model from the Physiome Model Repository to fit the RHC data. 

By optimizing this model with patient-specific data, I demonstrate patient-specific modeling using 
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existing clinical data. Furthermore, I discuss the potential uses for patient-specific modeling for 

clinicians, including estimating values that are physiologically interesting but clinically difficult 

to measure, and generating PV loops from right heart catheterization alone. 

In Chapter 5, I describe my approach to generalizing the connection between clinical data and 

biosimulation models. In my approach, I leverage biomedical ontologies and the composite 

annotation framework, and map the model annotations to clinical controlled terminologies. 

6.2 Broader Implications 

While I mainly focused on a cardiovascular example for model validation and patient-specific 

modeling, the same methodology can be extended to other clinical and biological domains. 

Especially as more models are semantically annotated, and more data-model mappings are created 

and stored, semantic queries will allow for more automatic and precise search for models with 

corresponding data, and vice versa. 

The broader implications of this work can be divided into two main categories: Implications for 

biosimulation modelers; and implications for clinicians. This two-pronged impact bridges the gap 

in translational research to benefit not only clinical practice, but also to benefit and accelerate basic 

research by leveraging the ever-growing volume of clinical data. 

6.2.1 Modeling Implications 

For biosimulation modelers, this work demonstrates the feasibility of using retrospective EHR data 

for model validation. As a part of the model development process, the modeler must validate his 

or her model against data. Typically, the modeler must conduct a prospective study to collect the 

necessary data. Whether the data is collected from human subjects, or through laboratory 

benchwork experiments, the data collection process can be time-consuming, and costly. 
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Furthermore, data collected from human subjects can be limited by the sample size, especially for 

a subject cohort with very specific inclusion criteria. The data type collected is also limited to those 

that can only be collected by procedures that do not harm the human subject. 

My approach of using retrospective data can potentially alleviate the burden of arduous data 

collection required for model validation. With retrospective data, the data has already been 

collected through ordinary course of care. The only burden for the modeler is finding the dataset 

that corresponds to the model and optimizing the model to estimate selected model parameters not 

directly prescribed by the corresponding data. In addition to the retrospective nature of data 

alleviating the burden of data collection, my approach utilizes clinical data collected from actual 

patients. Especially for modelers studying human diseases, human pathophysiological data cannot 

be readily substituted by experimental animal data or canonical values. While this is can be a non-

trivial process, the model optimization approach in Chapter 4 and the semantic mapping approach 

in Chapter 5 addresses these issues. By providing modelers with an alternative method for 

acquiring data without burdensome prospective data collection, my approach has the potential to 

lower the barrier and accelerate biosimulation model development. 

6.2.2 Clinical Implications 

For clinicians, patient-specific models can serve as a powerful clinical decision support tool. Using 

patient data ordinarily collected through the course of care, my approach enables those data to be 

coupled with biosimulation models that represent the relevant physiology. The biosimulation 

models can then be optimized to patient data, making the model patient-specific, and representative 

of the patient's pathophysiology. 

The patient-specific model has several benefits for the clinicians. First, it can paint a more holistic 

picture of the patient's physiology. The work described in Chapter 4 with the Smith model and 
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right heart catheter hemodynamics data shows how blood pressure measurements can be used to 

estimate volume, resistance, and elastance measurements. These additional estimated values 

provide the clinician with additional information regarding the patient's physiology that could help 

clinicians make more informed clinical decisions. For example, using patient-specific 

hemodynamics data with a cardiovascular model, the model can estimate physiologically 

interesting values like the elastance of pulmonary veins, which cannot be directly measured. 

Additional physiological information like this could be useful in elucidating the pathophysiology 

of poorly understood diseases like pulmonary hypertension, where different sub-categories of 

pulmonary hypertension have vastly different treatment options, and identifying the root cause is 

crucial but difficult. 

Because the model can estimate volume measurements from the pressure measurements, and 

because it estimates the time course measurements for pressure and volume, the model is able to 

generate patient-specific pressure-volume (PV) loops, which plots the pressure against the volume 

at corresponding time points. The left ventricular PV loop provides a framework for clinicians and 

clinical researchers to quickly understand the cardiac function, including stroke volume, cardiac 

output, ejection fraction, as well as determine various cardiac abnormalities based on the shape of 

the PV loop. While the PV loop is a useful tool, it requires simultaneous capture of pressure and 

volume in the cardiac system. However, hemodynamics measurements are typically limited to 

capturing one physical property at a time: Cardiac catheterization captures pressures, but not 

volumes; Echocardiography captures volumes, but not pressures. As a result, PV loops are very 

difficult to generate in a clinical setting without specialized equipment. However, as demonstrated 

in Chapter 4, they can be estimated from pressure measurements using biosimulation models. 

Given longitudinal patient data, the model could also be used to track patient trajectory over time 

to monitor how the patient’s pathophysiology changes over a period of time. As stated in Section 
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4.6.1, this type of longitudinal analysis is performed in a collaboration with Woodall, et al. to track 

cardiac function in heart transplant patients following the transplantation (Woodall et al., 2018). 

In this work, we used longitudinal right heart catheter hemodynamics data from heart transplant 

patients to create patient-specific models at various time points following the heart transplant. With 

this analysis, we estimated various cardiac functions over time, including ejection fraction, aortic 

elastance, and systemic resistance. Based on these cardiac functions following the transplant, we 

were able to see distinct progressions of cardiac function for different patients. 

Furthermore, the model could be used to conduct perturbation studies. For example, parameter 

values for the elastance of aorta and the arterial vasculature could be increased to explore the 

downstream effects of arterial stiffening on the rest of the patient’s hemodynamics system. 

6.3 Research Limitations 

While my work demonstrates the feasibility of using a published model with retrospective EHR 

data for model validation and patient-specific modeling, it has limitations that could be addressed 

to bolster the research work and move towards widespread and practical application. Overall, this 

dissertation is a step towards enabling the secondary use of EHR data for biosimulation modeling. 

However, it is limited in scope, lacks rigorous clinical validation, and relies on manual steps.  

As described in section 3.5.1, my scoping review was limited only to publications available in 

PubMed. While PubMed contains publications in life sciences and biomedicine, there are other 

journals not index in PubMed that contain biosimulation model publications, and relevant for this 

scoping review. Some of these journals not included in PubMed pertain to mathematics and 

engineering, and these journals may have more stringent requirement on publishing the source 

code or data. The overall sample size of publications analyzed in the scoping review was also 

limited. Nonetheless, this work revealed a consistent lack of the source code in model publications 
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I reviewed, and more publications from a wider range of journals could be reviewed to address 

this weakness. 

Perhaps the biggest limitation of my dissertation is the lack of rigorous clinical validation of the 

patient-specific models in Chapter 4. The patient-specific models were mathematically valid, and 

produced outputs with reasonable residual values compared to the patient data. The models also 

elucidated information about the patient’s physiology. For patient-specific models at single time 

point, the results in Section 4.5 indicates systolic dysfunction in the right heart for patient 266 and 

572. Furthermore, the longitudinal analysis described in Section 4.6.1 and Woodall, et al., 

predicted patients with decreasing cardiac function over time, suggesting a less successful recovery 

from the heart transplant. However, this model-derived information was not clinically validated, 

and it is unclear if the model correctly estimated the pathophysiology of the patient. Conducting a 

chart review, or prospective study to track the patient outcomes is needed to confirm the validity 

of the model predictions. In addition, for patient-specific modeling to be practical, especially at 

the point of care in a clinical setting, the runtime for the optimization would need to be reduced 

drastically. With my optimizations, the runtime ranged in the scale of hours to days. Reducing the 

model complexity could reduce the optimization time. Perhaps if patient-specific modeling were 

to be used in clinical setting, the model could be developed specifically with the available data in 

mind. With a model that simply used available data as inputs, and produced useful output, time-

consuming optimizations would be unnecessary. 

Finally, the mapping of clinical terminologies with model annotations described in Chapter 5 is 

certainly a more systematic approach than an ad hoc approach to linking clinical data with 

biosimulation models, leveraging precise semantics that make the linkages more reusable. 

However, the current approach still relies on creating manual mappings. Similar limitation exists 

for model annotation, where the annotation of model variables still remains a manual process in 
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which the annotator must clearly understand the model and its variables. Although this process 

may require a large initial investment in creating the mappings and annotations, in the long run it 

will enable better interoperability between clinical data and models. 

6.4 Future Directions 

There are several directions for future research that can stem from this work. In my scoping review 

of model literature described in Chapter 3, I discovered and quantified the lack of model source 

code availability from publications. While this work did not identify the root cause, it could be 

used to drive broader change in the modeling community, and perhaps more importantly for 

journals and publishers to encourage, if not require, authors to publish their data and source code. 

In order for computational experiments to be reproducible, the publication must include all of the 

necessary information to repeat the experiment. There are efforts, such as the Center for 

Reproducible Biomedical Modeling, that are working with journals to annotate the models and 

make them more reusable. My scoping review could be synergistic with such efforts in moving 

the broader modeling community and journals towards more reproducible models. Using my 

scoping review as a baseline, another interesting and useful study would be to stratify the mode 

code availability by year to identify any trends in model publication. Especially if such study were 

to be done several years after the establishment of the Center for Reproducible Biomedical 

Modeling, it could be reveal the potential effect the center might have on the publication culture 

and reproducibility of biosimulation models in literature. 

In Chapter 4, I described patient-specific modeling of the cardiovascular system using RHC 

datasets. The patient-specific model in this work is able to extrapolate volumetric data by 

optimizing the model parameters to the pressure measurements taken through catheterization 

process, which involves making an incision and inserting a catheter through the patient’s superior 
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vena cava into the right side of the heart. While this procedure is performed routinely for heart 

transplant patients, it is still an invasive procedure. A future work for this work would be to apply 

the same model optimization and patient-specific modeling approach to a cardiovascular model 

with data from less invasive procedures, such as cardiac MRI or echocardiograms. If patient-

specific modeling could be used to extrapolate pressure values, typically measured invasively, 

from noninvasive volumetric data, it could be a valuable tool for clinicians and patients for 

replacing invasive procedures with noninvasive procedures. Especially with additional future work 

with clinical validation of the results of Chapter 4, this approach of using non-invasive 

measurements for patient-specific modeling could have tremendous clinical impact. 

The data-to-model mapping work in Chapter 5 could be extended to connect more clinical data 

and model annotations. This work could be accelerated by advancements in the field of ontology 

alignment. Not only could the number of mappings be increased, but these mappings could make 

use of existing annotation archiving standards and potential future annotation infrastructure. In 

order to make the mappings more accessible and usable, they should be archived in a standard 

structure. One promising near-term potential would be to store these mappings, along with the 

model file and the data file, in a COMBINE archive. COMBINE archive is already in use by the 

modeling community as a method of bundling the model file with the supporting files, such as 

model annotation and experimental data (Bergmann et al., 2014; Neal et al., 2018a). For a long-

term future work, the mappings could be stored in a centralized knowledgebase, where the 

community can upload new mappings between clinical concepts and model annotations, or access 

previously created mappings, so as to not expend efforts in recreating mappings that others have 

already created. 

The grand vision of this work is as follows: A clinician would like to better understand the 

pathophysiology of a patient. He or she queries a biosimulation model knowledge base and finds 
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models with semantic overlaps with the patient data. Using this model, the clinician performs 

patient-specific modeling at the point of care to better understand the patient's physiology, and to 

conduct perturbation studies to simulate how the patient's physiology is affected by various 

treatment options. Especially with better interoperability standards like FHIR and CDS hooks, 

patient-specific modeling could be a powerful tool as a part of the clinical workflow. 

6.5 Final Conclusion 

In this dissertation, I have described my work on the secondary usage of electronic health record 

data for patient-specific modeling. I conducted a scoping review to better understand the 

characteristics and reproducibility of biosimulation models in literature. By optimizing a published 

cardiovascular model to patient-specific right heart catheter hemodynamics data, I have 

demonstrated the feasibility of patient-specific modeling using retrospective clinical data. 

Extending the process of matching data to model parameters, I have described an annotation 

pipeline and a mapping approach to systematically link clinical data to biosimulation models. 

My dissertation makes use of existing resources, including retrospective EHR data and published 

models, to create additional value for modelers and clinicians. My work has the potential to 

accelerate biosimulation modeling by paving the way to a new approach to validate models without 

the burden of prospective data collection. Furthermore, the patient-specific modeling described in 

my dissertation can help clinicians better understand the patient’s pathophysiology and make more 

informed clinical decisions. Patient-specific models could be used to estimate additional 

physiological values that cannot be measured otherwise in a clinical setting, or to conduct 

perturbation studies that simulate the patient physiology. Especially for diseases that are difficult 

to diagnose, such as pulmonary hypertension or heart failure with preserved ejection fraction 

(HFpEF), patient-specific modeling could be a valuable clinical tool.  
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