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For more than a decade, electronic health records (EHR) have been used extensively in

biomedical research. However, structured data, such as diagnoses and procedural codes do

not necessarily capture the most precise medical conditions. Certain patient information,

such as signs and symptoms, adherence to medication, social history and clinician recommen-

dations, largely exist in unstructured clinical notes. Computational methods using natural

language processing (NLP) techniques offer alternative ways to extract information from

clinical notes by analyzing syntactic structure and semantics of words and phrases in un-

structured text. In the domain of medical imaging, the radiology report is the main com-

munication channel between radiologists and physicians. It contains a diverse and rich set

of information about the imaging test, findings, diagnoses, and recommendations for fur-

ther follow-up tests. While there has been some limited exploration of structured radiology

reports that capture finding details, radiologists’ findings today are predominantly docu-

mented in unstructured text. Since imaging tests are commonly used for cancer screening

and diagnosis, extracting the findings associated with lesions and medical problems could

facilitate many secondary use applications, including clinical decision-support systems, di-

agnostic surveillance of medical problems, and tracking follow-up recommendations. When

clinical important findings are observed in the images, radiologists may recommend further

imaging tests to the referring physicians. It is vital that these results, particularly if they are



unexpected, are not lost to follow-up. One study showed that approximately 16% of women

with abnormal mammograms were diagnosed with breast cancers in 6 months. Extracting

these follow-up recommendations and clinical findings (lesions and medication problems),

provides supporting evidence for clinicians to determine their course of action.

In this dissertation, we focused on extracting information from radiology reports using

state-of-the-art deep learning methods, through multiple research studies. One of the main

goals is to deliver an open-source high performance extraction framework. In the first study,

685,912 radiologist recommendations and associated entities (reason, test, time frame) were

extracted from 3 million radiology reports using recurrent neural network models. The

extraction models achieved 0.93 F1 for recommendation sentences, 0.65 F1 for reason, 0.73

F1 for test, and 0.84 F1 for time frame.

In the second study, we explored using the latest pre-trained language model, BERT,

to automatically classify radiology protocols. An in-domain BERT model pre-trained on

the radiology corpus was shown to outperform out-of-domain BERT model and statistical

ngram models based on Support Vector Machine (SVM), Gradient Boosting Machine (GBM),

and Random Forest (RF). The intrinsic imbalanced nature of the dataset was tackled by

using a knowledge distillation approach, which boosted the classification performance on the

minority classes.

In the third study, the classification framework using the BERT model was further ex-

panded to extract two clinical findings (Medical Problem and Lesion) from computed tomog-

raphy (CT) radiology reports. Each finding was represented by an event comprising trigger

and arguments. A corpus of 500 CT reports were annotated and a general-purpose deep

learning framework was developed to extract the finding entities and relations from the re-

ports. The entity extraction results showed that the in-domain BERT model pre-trained on

the 3 million radiology reports (obtained from the first study) achieved an overall F1 score of

85.5%, while the recurrent neural model achieved 83.1%. The best end-to-end event extrac-



tion results achieved an overall F1 of 92.9% for triggers and 75.0%-84.8% for arguments. To

assess model generalizability, we used an external validation set randomly sampled from the

MIMIC Chest X-ray (MIMIC-CXR) database. The extraction performance on this valida-

tion set was 95.6% for finding triggers and 79.1%-89.7% for arguments, demonstrating that

the model generalized well to the cross-institutional data with different imaging modality.

The general-purpose deep learning extraction framework processed annotated data di-

rectly from the BRAT rapid annotation tool and can be readily used to train entity and re-

lation extraction models for other annotated corpora. Both the event extraction framework

and the extracted MIMIC-CXR clinical findings will be shared with the research community.
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Chapter 1

INTRODUCTION

In 2009, the Health Information Technology for Economic and Clinical Health Act (HITECH

Act) was put in place to promote the nation wide adoption of electronic health records [1].

The Electronic Health Record (EHR) Mandate included financial incentive for healthcare

providers to adopt EHR systems and convert medical paper charts to digital records. One

of the key criteria for qualifying the incentives was to show ”meaningful use” of the EHR

system . While some requirements for ”meaningful use” include concrete actionable descrip-

tions, like ”Use computerized order entry for medication orders”, some overarching goals,

such as ”Improve the quality, safety, efficiency of health care, and reduce health disparities”

or ”Improve coordination of healthcare”, entail analysis of large amount of patient data [2].

On the one hand, most patient data are still in unstructured format, without well-defined

data points, making analysis challenging and difficult, on the other, converting sequence of

utterances and discourse from free text into structured formats greatly reduces the expres-

siveness of communication. Often, only relevant and useful information would be extracted

from clinical text for secondary use driven by the application [3]. Secondary use of EHRs

applies to using personal health information (PHI) outside of direct health care delivery,

including analysis, research, teaching, quality and safety improvement [4]. As a result, the

demand for natural language processing (NLP) in the clinical domain has motivated a body

of research in clinical Information Extraction (IE), forming a mainstream interest in bioNLP.

Clinical notes are common forms of documentation within a medical institution. They

include physician’s progress notes describing patient status over the course of patient care,

nurse triage notes briefly recording patient disposition, or discharge summaries capturing

patient present condition, significant findings, treatments, and any other information nec-
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essary to hand over care to the after care providers. Each type of note contains a different

set of health information related to the patient at different stages of care. This dissertation

specifically focused on extracting and classifying information in the radiology domain for

secondary use application. Through multiple research studies, different neural architectures

were explored with extensive experimentation and error analysis. The approach and tech-

niques employed in these studies can be leveraged for applications in other clinical domains.

One of the main objectives is to create a high performance extraction framework that can be

used as a tool to extract information from unstructured text, even without any deep learning

coding experience. The goal is to help radiologists and other physicians obtain more evidence

to support their courses of action, a step closer to achieving more ”meaningful use” of EHRs.

1.1 Problem description

This thesis explored different neural architectures and machine learning methods to classify

and extract radiological information, utilizing EHR data, most of which are unstructured

narratives in radiology reports. Three different research studies were conducted, with specific

research goals. However, each study expanded on the previous one and leveraged the data

and modeling technique as a new baseline.

1.1.1 Extraction and Analysis of Clinically Important Follow-up Recommendations in a

Large Radiology Dataset

Radiologists document the important observations that warrant further clinical follow-up

when creating imaging reports. These important recommendations are made by radiologists

to suggest that further investigation should be considered in order to avoid any potential

adverse outcome to the patient. Unfortunately, radiologists may not necessarily phone the

referring physicians and explain the findings and recommendations. The American College

of Radiology Practice Parameter for the Communication of Diagnostic Imaging Findings [5]

states that ”effective communication is a critical component of diagnostic imaging. Quality

patient care can only be achieved when study results are conveyed in a timely fashion to
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those responsible for treatment decisions.” However, the document further emphasizes that

”there is a reciprocal duty of information exchange. The referring physician or other relevant

health care provider also shares in the responsibility for obtaining results of imaging studies

ordered and acting on them in an appropriate manner.” While an official interpretation

(final radiology report) must be provided by the radiologist to the referring physician, verbal

communication by phone is not mandated. In 2005, the Joint Commission set a National

Patient Safety Goal (NPSG.02.03.01) to ensure the timely reporting of critical test and

diagnostic procedure results to licensed caregivers [6]. However, non life-threatening test

results and follow-up recommendations can still be communicated in written reports.

During clinical visits, patients can be transferred from one department to another during

the course of care, such as from emergency department to outpatient services. The high

patient turnover and short stay can cause follow-up information being missed [7]. Even if

the test results are forwarded to the referring providers, their demanding workload and time

spent with other patients can delay reviewing the results. One survey of 262 providers showed

that physicians spent on average 74 minutes per clinical day managing test results. 83% of

them reported at least one delay in reviewing test results over a period of two months [8].

Delay in communication and loss to follow-up can result in adverse outcomes, particularly

if the findings are incidental and unexpected. One study showed that approximately 16%

of women with abnormal mammograms were diagnosed with breast cancers at the 6-month

follow-up [9].

Failure to follow up test results not only can compromise patient care and cause negative

impact on patient health but also entail medical malpractice and financial consequences. In

1997, a claims survey of malpractice data collected from insurance companies showed that

”failure to communicate results of radiologic examinations” was the second most common

cause of medical malpractice lawsuit in the United States [10]. In 2013, another study involv-

ing 8401 radiologists in 47 states revealed similar results [11]. Error in diagnosis remained the

top most common malpractice claim while inadequate communication remained the second.

31% of the radiologists had at least one claim in their career. It is concerning to see the
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similar severity of inadequate communication in the past twenty years and improvement was

greatly desired. Identifying follow-up recommendations in radiology reports systematically

could potentially augment existing channels of clinical information for preventing delays in

diagnosis.

Yetisgen-Yildiz et al. created a corpus of 800 de-identified radiology reports collected

from Harborview Medical Center [12, 13]. To identify recommendation sentences, they de-

veloped a Maximum Entropy classifier trained with a very rich set of linguistic features

including ngrams, UMLS concepts, syntactic, temporal and structural features, achieving

an extraction performance of 87% F1. This dissertation work extended their dataset of 800

reports with a much larger set of 3,301,748 radiology reports collected from two different

institutions, including the University of Washington Medical Center (1,903,772 reports) and

Harborview Medical Center (1,397,976 reports) from year 2008 to 2018. In addition to fol-

low up sentences extraction, three associated entities (reason, time frame, test) were also

extracted. This dissertation study explored using recurrent neural networks for both rec-

ommendations and entities extraction. Specifically, the recommendations were extracted by

Hierarchical Attention Networks (HAN) [14] and entities were extracted by bi-directional

Long-Short term memory (LSTM) with conditional random field (CRF). Based on the ex-

traction results, a follow-up analysis was conducted to investigate the adherence of follow-up

encounters by imaging modalities.

1.1.2 Automatic Assignment of Radiology Examination Protocols

Radiologists are constantly juggling between tasks. A Medscape survey in 2015 reported

that 49% of radiologists had burnout symptoms. Their burnout rate was ranked the 7th

highest among all physicians [15]. One of the risk factors was constant interruption in

their complex working environments. Besides image interpretation, other responsibilities

include phone calls with referring physicians (as described in previous section), answering

pages, consultation, teaching and protocol assignment. The interruptions not only have

negative impact on radiology report turn-around times [16] but can also lead to diagnostic
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discrepancy [17]. One study investigated the time spent on different tasks by a primary

neuroradiology fellow in a 48 hours time period. About 38% of the time was spent on

non-image interpretative tasks, in which 6% was on study protocoling [18].

In medical imaging, an examination protocol is referred to as a sequence of steps that

determine how an imaging test is administered. This could involve selecting the optimal

spatial orientation, resolution, parameter setting for image acquisition and reconstruction. In

a nonemergent setting, after receiving the suggested examination from the ordering provider,

the radiologist will look at the patient’s clinical information such as diagnosis and clinical

history before selecting the appropriate protocol for advanced imaging studies (e.g. computed

tomography, magnetic resonance imaging, nuclear medicine examinations) in order to answer

the clinical question that the study has been ordered to answer. The manual protocoling

process can be time-consuming, repetitive, and may delay performing timely imaging, and

result in unnecessary variability in the techniques used for image acquisition [19].

Generally, protocols are differentiated by the anatomic region of interest, the administra-

tion of intravenous, and/or oral contrast, or no contrast. For cancer screening and diagnosis,

computed tomography (CT) scans are often used to study different parts of the body. Chest,

Abdomen and Pelvis (CAP) are the common body regions since they cover major internal

organs, such as liver, pancreas, bowel, kidneys, bladder, lungs, and heart. Although pro-

tocoling can be time-consuming, some common imaging examinations are fairly simple and

repetitive, making this task a good candidate for automation.

In this study, a machine learning approach using pre-trained language model was investi-

gated to automate protocol assignment of 35,085 radiology body CT examinations. As noted,

CT examinations involving certain body regions, i.e. Chest, Abdomen and Pelvis (CAP),

are very common, and therefore, make up the majority of cases. To tackle the imbalanced

nature of the dataset, a novel approach using knowledge distillation was used to augment

the minority instances.
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1.1.3 Extraction of clinical findings from radiology reports

Radiology reports are the official interpretation of the imaging tests from radiologists. They

are also the principal means of communication and documentation. In fact, radiology reports

contain a diverse and rich set of information, including findings, overall impression and

recommendations for further diagnostic tests. As discussed in the previous study, some CT

exams are very common, specifically for certain body locations. According to RNSA and

ACR [20], CT imaging is one of the fastest and most accurate tools for examination because it

provides detailed, cross-sectional views of all types of tissue. It is also the best way to detect

cancers in the chest, abdomen and pelvis. Not only does it confirm the presence of a tumor,

but also identify the precise location in the organs such as lung, liver, kidney, pancreas, as

well as the measurement of the tumor size and metastasis in nearby tissues. CT is also

commonly used to evaluate blood clots (pulmonary embolism) and other medical problems.

It is often used in the Emergency Department to quickly assess injuries. Extracting clinical

findings from CT radiology reports provides great opportunities to improve clinical care and

decision support. However, the heterogeneous writing style, use of abbreviation, presence of

hedging statements in radiology reports poses some challenges to the extraction task. To

fully capture the clinical finding details, we introduced a new event-based annotation schema

focused on two clinical findings: Lesion and Medical Problem. Each finding event consisted

of relevant arguments to capture the detail of the finding. A new corpus of 500 CT reports

was annotated using this new schema.

In the first study, we extracted the recommendation associated entities from the multi-

institutional dataset using a recurrent neural network model. In the second study, we ex-

plored using the state-of-the-art pre-trained language model, BERT [21] in CT exam protocol

classification. This third study leveraged what we learned from the previous two studies.

Specifically, we used the model from the first study as a baseline and incorporated the multi-

institutional dataset. We further explored the BERT model employed in the second study,

and presented a new BERT model pre-trained on the multi-institutional dataset. A new
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deep learning framework was developed to fine-tune the same BERT model to extract both

the entities and relations in clinical finding events. To assess the generalizability of the ex-

traction model, we extracted all the clinical findings from the MIMIC Chest X-ray radiology

reports [22] and evaluated the extraction performance.

1.2 Contributions and objectives

The objectives of this dissertation are extracting and classifying information in the radiol-

ogy domain for secondary use, employing start-of-the-art neural NLP approaches. Three

research studies were conducted. Each study expanded on the previous one and leveraged

the knowledge and new techniques in machine learning and IE. The studies challenged pre-

vious baseline methods, employed novel neural approaches to achieve higher performance.

This work makes the following contributions: (1) extracting recommendations and related

entities from over 3 million radiology reports in UW medical institutions, (2) a detailed

event-based annotated corpus for extracting clinical finding in radiology reports, (3) a high

performance deep learning extraction framework that can be trained to predict entities and

relations from unstructured text, (4) a new approach to automatically classify protocols for

CT examinations and handle data imbalance using knowledge distillation.

This dissertation adopts recent advancements in artificial intelligence to unlock new op-

portunities to effectively extract information from radiology reports for secondary use. The

extracted clinical findings and recommendations can complement existing structured ele-

ments in EHR to enable better secondary research.

1.3 Outline for readers

The structure of this dissertation describes the different projects in distinct chapters. Chapter

2 starts with a general background on NLP in the clinical domain and reviews the IE research

in the radiology domain. Chapter 3, 4, and 5 describe the three research studies in detail

with their own specific literature reviews. A summary of each chapter is described as follows:
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Chapter 3 : this chapter introduces the multi-institutional radiology corpus, and presents

two neural approaches to extract follow-up recommendations and associated entities.

Chapter 4 : this chapter explores using the pre-trained language model, BERT, to clas-

sify CT protocols, and investigates different machine learning approaches to handle data

imbalance.

Chapter 5 : this chapter introduces a new annotation schema for 2 specific clinical finding

(Lesion, Medical Problem) and a new corpus of 500 CT reports annotated with the schema.

This work capitalizes what we have learned from the previous two studies and introduces a

new BERT model to extract clinical findings from both CT reports and chest X-ray reports.

Chapter 6 : finally, we conclude this dissertation work by providing insights into future

research opportunities using the extracted information.
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Chapter 2

BACKGROUND

This chapter presents a brief overview of how natural language processing has been ap-

plied in the clinical domain. In addition, we review the past research in radiology information

extraction and how the research shifted from rule-based, statistical approaches to the more

recent artificial intelligence based neural models.

2.1 Natural Language Processing in the Clinical Domain

NLP research in the clinical domain dates back to the 1960 [23]. Recognising a sentence as

a string of language structure, a context-free grammar can be defined recursively by gram-

matical formulas of substrings. The Linguistic String Project (LSP), initiated by Dr. Naomi

Sager, introduced a parsing program to process a sentence from left-to-right [24, 25]. The

parser was later adapted to include medical lexicons and dictionaries [26]. The Medical

Language Processor (MLP) transformed unstructured clinical documents into XML repre-

sentation of medical concepts by extracting symptoms, drug dosage and possible side effects

of prescriptions [27]. The MLP system laid a foundation work in syntactic parsing of clini-

cal text. To improve computer ”understanding” of clinical semantics, in 1986, the National

Library of Medicine (NLM) began the development of the Unified Medical Language Sys-

tem (UMLS) [28], an effort to disambiguate medical concepts from diverse machine-readable

sources, and to distribute useful information to research communities. The UMLS became

the semantic backbone of multiple notable clinical NLP systems, including MetaMap, a freely

available processing pipeline that automatically identifies UMLS concepts from unstructured

narratives [29], clinical Text Analysis and Knowledge Extraction System (cTAKES) from

Mayo Clinic [30], and the open source Health Information Text Extraction system (HITEx)
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developed by the Brigham and Women’s Hospital and Harvard Medical School [31], which

combines the language analysis capabilities from the General Architecture for Text Engi-

neering framework (GATE) [32] and the domain knowledge from UMLS.

2.1.1 NLP challenges and Open datasets

To motivate public interest in advancing clinical NLP research, different academic organi-

zations and conferences promoted community challenges with openly accessible datasets.

Informatics for Integrating the Biology and the Bedside (i2b2) has been organizing NLP

challenges on different types of clinical information extraction since 2006. These challenges

included private health information de-identification [33], medical concept extraction [34],

temporal information extraction [35], as well as medication information extraction [36]. Be-

sides i2b2, other conferences and workshops also hosted clinical NLP challenges. The Se-

mEval (Semantic Evaluation) has been hosting challenges since 1998. One example is the

2017 temporal evaluation which aimed to predict future medication conditions based on the

existing ones [37]. The Text Analysis Conference (TAC) also hosted and provided annotated

corpus for adverse drug reaction extraction [38]. Funded by the National Institutes of Health

(NIH), the collaboration between the Clinical E-Science Framework (CLEF) and the Shared

Annotated Resources (ShARe) hosted the 2013 challenge targeting extraction of disorders

and acronyms/abbreviations [39]. In the following year, they released the ShARe corpus

for identifying and mapping of diseases and disorders in clinical reports to UMLS concepts

[40]. The same corpus was also used in the 2014 challenge for identification of disorder re-

lated attributes [41]. The Association for Computational Linguistics (ACL) has organized

BioNLP workshops since 2008. Although not hosted in the format of community challenges,

the conference had a specific focus each year and often included sessions for clinical language

processing [42].

One of the largest publicly accessible clinical datasets is the MIMIC-III dataset, which con-

tains 7 years of de-identified patient data from intensive care [43]. The dataset consists of

medications, laboratory results, clinical notes, demographics, and billing information. It fa-
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cilitated a large body of biomedical research, from a longitudinal study in disease detection

[44] to pre-training a deep learning language model [45]. Another dataset released by the

same authors and mostly relevant to this dissertation is the MIMIC Chest X-ray (MIMIC-

CXR) dataset [22], which consists of 227,835 imaging studies for 65,379 patients hospitalized

in intensive care unites, with accompanying de-identified radiology reports. NLP researchers

have used the radiology reports in this dataset to predict chest related diseases, such pul-

monary edema [46].

2.2 IE in the Radiology Domain

Radiology reports contain findings and recommendations documented by radiologists. Ex-

tracting this information into structured representation can harness their potential to im-

prove clinical care and facilitate secondary use, such as generating alerts for follow up exam-

ination [47], or identifying patients with pulmonary nodules [48] and pulmonary embolism

[49].

Generally the extraction involved identifying clinical entities using named entity recog-

nition (NER), and additionally identifying the relations among the entities using relation

extraction (RE). NER is considered a sequence labelling task in IE. The goal is to correctly

locate and identify mentions of pre-defined concept labels in unstructured text. It can be

achieved by using some common tagging format, such as BIO (beginning, inside, outside).

For a simple example, the text sequence John Smith can be labelled as B-Person, I-Person

which signifies the beginning token and inside token of a Person entity. Early research efforts

on radiology IE employed rule-based approaches. The notable MedLEE system developed

by the Columbia University incorporated comprehensive syntactic and semantic grammars

to extract information from chest X-ray reports [50, 51]. The conceptual model comprised

350 semantic grammar rules, 1,720 single-word lexicons, and 1,400 multi-word phrases. It

took half a person-year to develop the semantic grammars [52, 53]. Sevenster et al. used

MedLEE to identify and correlate the finding observation and body location entities. How-

ever, the major drawback was that the extraction recall was less than 46% due to the lack of
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comprehensive lexicons and grammatical rules [54]. Domain adaptability is a major problem

for rule-based and lexicon-based approaches as these methods require expert intervention

to upkeep the logic of the rules and the dictionaries, which are often tailored to a specific

problem or domain.

To overcome the limitations of rule-based systems, more contemporary radiology extrac-

tion work has used statistical machine learning approaches to extract finding information.

Statistical machine learning incorporates numeric features derived from input observations

and makes probabilistic decisions based on the feature weights. Hassanpour et al. compared

three different NER approaches in the extraction of anatomy, observation, and uncertainty

from Chest CT reports [55]. For the rule-based approach, they leveraged cTAKES NER

module with a custom dictionary extracted from RadLex terms [56]. For the other two

statistical methods (Conditional Markov Model and Conditional Random Field), they used

linguistic features such as part of speech, word stems, n-grams, orthographical shape of

words, negation as well as RadLex semantic classes. Both models achieved a very similar

F1 score of 85% whereas the rule-based method achieved 58%. Further analysis showed that

the RadLex terms had higher feature weights in the model and boosted the F1 score another

15% higher when they were included in the feature set. Yim et al. employed maximum

entropy model to extract relations between tumor references and attributes from radiology

reports of hepatocellular carcinoma patients [57]. The feature set consisted of n-grams, part

of speech tags, dependency tree, UMLS concepts and custom linguistic rules. They achieved

87% in entity extraction and 74% in relation extraction. However, one challenge with the

statistical machine learning approach is that engineering the optimal set of features require

substantial data preprocessing.

Recent IE research in radiology employed neural network modeling to learn the opti-

mal features from high-dimensional data points. To capture the long distance dependen-

cies in text sequence, one popular architecture is Bi-directional Long Short-Term Memory

(BiLSTM). Cornegruta et al. extracted 4 different entities (body location, clinical finding,

descriptor and medical device) from an annotated corpus of 2,000 radiology reports using
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BiLSTM [58]. Despite the promising results using BiLSTM, such models often demand a

large collection of training data to learn the context of words. The same medical concept

can often be described by words in different inflected or synonymous forms. For instance,

the words “renal”, “nephric” and “kidney” refer to similar anatomical location despite their

different morphological structures. Furthermore, distributed word embeddings, such as the

Global Vectors for Word Representation (GloVe) [59], are not capable of representing words

that are absent in the training corpus, or represent the same word differently based on the

context. For example, the two instances of the word “back” would be given the same em-

bedding despite their polysemous meanings in these two sentences: “the patient will be back

for contrast study”, “Clinical history: Low back pain with history of compression”. If words

could be not represented based on their context, the limited knowledge encoded by these

embeddings can result in sub-optimal performance in the NLP tasks.

State-of-the-art neural language models, such as Bidirectional Encoder Representations from

Transformers (BERT) [21], and Generative Pre-trained Transformer 3 (GPT-3) [60], utilized

layers of multi-head self-attention architecture and pre-training to develop deep represen-

tation of words. Provided that the model is sufficiently pre-trained on unlabeled data in

the target domain, the expressive contextual representations can be transferred to specific

prediction tasks, including IE. This approach is particularly advantageous when the target

data is scarce. Sugimoto et al. extracted 7 different clinical entities from a corpus of 540

Japanese CT radiology reports using a pre-trained Japanese BERT model [61]. Zhang et

al. fine-tuned a BERT model to extract both breast cancer entities and relations from a

corpus of 600 Chinese clinical notes (100 radiology reports) [62]. Both studies demonstrated

that the BERT model outperformed the BiLSTM model. This dissertation explored using

the pre-trained language model, BERT, to classify CT examination protocols and extract

radiology clinical findings.
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Chapter 3

EXTRACTION AND ANALYSIS OF CLINICALLY
IMPORTANT FOLLOW-UP RECOMMENDATIONS IN A

LARGE RADIOLOGY DATASET

This chapter describes a study using recurrent neural models to extract follow-up recom-

mendations and associated entities from a large collection of UW radiology reports. Using

the extracted information, an analysis was conducted to understand whether follow-up rec-

ommendations actually occurred.

3.1 Introduction

Depending on circumstances after the imaging tests, radiologists may recommend further

investigation to clarify the diagnosis. If a finding is not expected, such as tumors, diagnostic

surveillance could be recommended to monitor the progression and clarify significance of the

finding. These recommendations are made to inform ordering providers about the clinical

significance of the findings and to ensure further investigation is considered to avoid possible

adverse outcomes. Despite the importance of follow-up recommendations in a radiology re-

port, follow-up encounters do not always happen. One reason is that the recommendations

are not explicitly highlighted in a report and therefore can be overlooked. Moreover, the

radiologists’ busy work schedule may prevent them from communicating to the physicians

verbally on the phone [8]. Patients can also be transferred between facilities, which could

cause miscommunication and delay of clinical intervention [7]. Lost to follow-up not only

can result in adverse outcomes [63], but potentially cause legal and financial consequences

[10]. In prior work, Yetisgen-Yildiz et al. created a corpus of 800 de-identified radiology re-

ports collected from Harborview Medical Center [12, 13]. Their Maximum Entropy classifier
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achieved 87% F1 score in identifying follow-up recommendations. This dissertation study ex-

tended their dataset and included a larger set of 3.3 millions radiology reports with different

imaging modalities. In addition, we extracted the entities associated with the recommenda-

tion using a BiLSTM-CRF model. We conducted a retrospective analysis on the extracted

recommendations and entities to understand the adherence of follow-up recommendations

across the imaging modalities.

In this study, we define a follow-up recommendation as a statement made by the radiol-

ogist in a given radiology report. The recommendation is to advise the ordering provider to

further evaluate an imaging finding by other imaging tests. Figure 3.1 presents a radiology

report with such a follow-up recommendation. In our annotation, we first labeled sentences

containing a recommendation. For each identified recommendation, we also annotated the

spans that describe (1) the reason for follow-up, (2) recommended test, and (3) time frame.

In Figure 3.1, the recommendation sentence is “Given family history, would recommend

repeat ultrasound in 4-5 weeks to evaluate fetal growth and complete anatomic survey”,

reason is “to evaluate fetal growth and complete anatomic survey”, recommended test is

“ultrasound”, and time frame is “4-5 weeks”.

IMPRESSION

Singleton pregnancy.Size consistent with dates. Anatomic survey limited by mater-

nal body habitus and fetal position. Inadequate views of fetal heart and spine.

Given family history, would recommend repeat ultrasound in 4-5 weeks

to evaluate fetal growth and complete anatomic survey. If unable to visualize fetal

heart at that time, consider fetal echo.

Figure 3.1: Example radiology report with recommendation information annotations.
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3.2 Related Work

Prior follow-up recommendation detection research were primarily based on rule-based ap-

proaches. Dutta et al. [64], Dang et al.[65], Mabotuwana et al. [66] used lexicons pattern

matching to identify the recommendations. Chapman et al. [67] and Johnson et al. [68]

added negation detection using the heuristic algorithm, ConText. More recent work was

based on statistical models. Carrodeguas et al. created a corpus of 1000 randomly se-

lected ultrasound, radiography, CT, and MRI reports. The extraction performance of three

statistical models were 75% F1 (random forest), 83% F1 (logistic regression), and 85% F1

(support vector machine) respectively [69]. Yetisgen-Yildiz et al. developed a maximum en-

tropy classifier and achieved a F1 score of 87% based on a very rich set of features including

ngrams, UMLS concepts, syntactic, temporal as well as structural features [13]. Their work

in particular is most relevant to our study and provides a baseline for our work.
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3.3 Methods

This section describes the datasets in this study and our neural modeling approach. We

conducted the same data imbalance experiments employed by Yetisgen-Yildiz et al [13] to

explore the optimal ratio of negative sentences over positive sentences.

3.3.1 Data

This work used two different corpora. The first one was the pilot corpus from Yetisgen-Yildiz

et al [13], which consisted of 800 de-identified radiology reports extracted from the radiology

information system of our institution. The reports represented four different imaging modali-

ties, including radiography computer tomography (CT), ultrasound, and magnetic resonance

imaging (MRI). The distribution of the reports is listed in Table 3.1.

Imaging modality Number of reports

Computer tomography 486

Radiograph 259

Magnetic resonance imaging 45

Ultrasound 10

Total 800

Table 3.1: Distribution of reports in pilot corpus.

The annotation was performed by one radiologist and one internal medicine specialist.

They independently went through each of the 800 reports and highlighted the boundary

of the sentences that contained follow-up recommendations. Out of 18,748 sentences in

800 reports, the radiologist annotated 118 sentences and the internal medicine specialist

annotated 114 sentences as recommendation. They agreed on 113 of the sentences annotated

as recommendation. The inter-rater agreement measured in terms of F-score was 97.4%.
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The second corpus was a much larger set of 3,301,748 radiology reports from two different

institutions including the University of Washington Medical Center (1,903,772 reports) and

Harborview Medical Center (1,397,976 reports) from year 2008 to 2018. Table 3.2 shows the

distribution of radiology reports by modality in this larger dataset.

Imaging modality Number of reports

Angiography 53,658

Computed Tomography 706,908

Fluoroscopy 1,072

Magnetic Resonance Imaging 243,833

Mammogram 157,374

Nuclear Medicine 58,350

Portable Radiography 310,311

Positron emission tomography 1,799

Ultrasound 351,761

X-Ray 1,416,682

Total 3,301,748

Table 3.2: Distribution of reports in multi-institutional radiology corpus

Two levels of annotations were performed on this dataset. First, one radiologist and

one neurologist highlighted the boundary of the sentences that contained follow-up recom-

mendations. Then one neurologist and one medical school student tagged three different

entities in the highlighted recommendation sentences: (1) Test: the imaging test or clinical

exam that is recommended for follow-up, e.g., screening breast MRI or CT, (2) Time frame:

the recommended time frame for the recommended follow-up test or exam, e.g., 1-3 weeks,

and (3) Reason: the reason for the critical follow-up recommendation, e.g., to assess the ac-

tual risk of Down’s Syndrome. Since only 15% of radiology reports in the corpus contained
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recommendations, to actively select reports with recommendations for annotations, a high

recall and low precision classifier was used [12]. By having the classifier predict reports with

potential recommendations, the annotators only needed to correct the false positives and

thereby expedited the annotation process. The annotator agreement for the recommenda-

tion sentences was 0.59 F1 score, and was subsequently improved after multiple meetings

of disagreement resolution and revision of annotation guidelines. At the entity level, the

agreement was 0.78 F1 for reason, 0.88 F1 for test, and 0.84 F1 for time frame.

Note that the annotation in both corpora was performed by Yetisgen-Yildiz et al. in

the prior work [12, 13]. It is however important to present the annotation details in order

to better understand the gold standard used in this study. Our final annotated corpus

contained 597 positive instances of recommendation sentences and 11787 sentences without

recommendation from 567 radiology reports, taken from both datasets. At the entity level,

there were 735 test, 173 time frame and 545 reason entities in the final corpus.
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3.3.2 Approach

Recommendations extraction

To extract the recommendation sentences from the dataset , the reports were first chunked

into sentences using the NLTK1 sentence tokenizer. As shown in Table 3.3, some imaging

modalities generally have more sentences per report than others.

Imaging Modality Number of sentences
Average number of

sentences per report

Angiography 1,504,939 28.05

Computed Tomography 18,109,590 25.62

Fluoroscopy 13,452 12.55

Magnetic Resonance Imaging 5,688,512 23.33

Mammogram 2,016,911 12.82

Nuclear Medicine 1,144,518 19.62

Portable Radiography 2,055,534 6.62

Positron emission tomography 41,423 23.03

Ultrasound 6,841,966 19.45

X-Ray 10,008,031 7.06

Table 3.3: Distribution of sentences by image modality in the multi-institutional radiology

corpus

We defined our recommendation extraction task as a binary classification problem at the

sentence level. We implemented our sentence classifier based on Hierarchical Attention Net-

works (HAN) [14]. HAN is a neural model that employs a stacked recurrent neural network

architecture. In particular, the weights of the hidden layers for each word are aggregated

1https://www.nltk.org

https://www.nltk.org
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by an attention mechanism to form a sentence vector. The importance of each word in as-

sociation with the outcome label (binary value indicating the presence of recommendation)

is represented by the attention weight vector that can be learned by a layer of bidirectional

Gated Recurrent Unit (GRU). The attention weight vector is computed through a softmax

function of the input context vector and a single hidden layer. Intuitively, the attention

vector represents how important the word is in determining the outcome label. The sen-

tence vector which is made up of these word attentions are then passed to another similar

attention mechanism where the importance of sentences can also be learned by another layer

of bidirectional GRU (sentence encoder). The bidirectional nature of the encoders allows

the contextual information in the input to be read in both directions and summarized. The

hierarchical architecture allows the model to learn the context of a document by summariz-

ing the context of its sentences, each of which in turn was summarized by its own words.

The ability to selectively learn from local segments of text to predict the outcome labels is a

unique characteristic of attention mechanism in deep learning. This network model has been

proven to be more effective [70] than conventional statistical machine learning approaches

in extracting information from pathology reports. Since radiology recommendations follow

similar hierarchical structure which consist of multiple sentences made up of multiple words,

the HAN model is suitable for our recommendation classification task. Figure 3.2 shows how

a sentence is being classified by the HAN model. During the model inference, each sentence

would be predicted individually to determine the presence of recommendation. Consecutive

sentences both of which contained positive prediction would constitute a single recommen-

dation.

Hyperparameter optimization: We pretrained our word embeddings using Word2Vec 2

on the entire radiology dataset. Based on our preliminary experiments, taking into account

the limitation of hardware resources, we identified the range for each hyperparameter in the

search space: Word2Vec embedding dimension (100-300); number of bidirectional GRU unit

2code.google.com/p/word2vec

code.google.com/p/word2vec
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Figure 3.2: Architecture of the HAN model. *See Figure 3.1 for complete sentence
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on word encoder (100 - 500); number of bidirectional GRU unit on sentence encoder (100

- 500); drop out (0.3 - 0.5). We have also experimented with both Adam optimizer and

stochastic gradient descent (SGD). Table 3.4 shows our best hyperparameter configuration.

Parameter Value

word2vec embedding dimension 300

number of bidirectional GRU unit on word encoder 300

number of bidirectional GRU unit on sentence encoder 300

drop out 0.4

optimizer Adam

Table 3.4: HAN hyperparameter configuration

We used 0.8/0.2(train/validation) split and applied early stopping with the validation set

to avoid overfitting. The patience level was set to 10 epochs. On each epoch, we evaluated

the model based on the predicted F1 score on the validation set. The training would stop

when no improvement was shown in the last 10 epochs.

Entities extraction

We used NeuroNER [71] for the implementation of the BiLSTM-CRF model to process

the annotated files in BRAT standoff format 3. The core of NeuroNER consists of two

stacked layers of recurrent neural networks. The first layer is the Character-enhanced token-

embedding layer in which the embedding of each word token is learned by a BiLSTM from

its character embedding. The resulting token embedding is then concatenated with our

pretrained Word2Vec word embeddings to form an enhanced token embedding. These token

embeddings are then processed by another layer of BiLSTM, the Label prediction layer,

to learn the context of the sequence. Finally, the output states are sent to a feed-forward

layer, the Label sequence optimization layer, to determine the predicted entity for each token

3https://brat.nlplab.org/standoff.html
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with the highest confidence. The character embedding captures the morphological features

of word tokens and allows the model to learn morphemes, acronyms and out-of-vocabulary

tokens. It provides another level of word presentation that is not captured by sampling

word co-occurrence as in Word2Vec and GloVe. We used BIOES annotation (Begin, Inside,

Outside, End, Single) to tag each token in the sequence and performed 5-fold cross validation

on the training corpus. We used the same Word2Vec embeddings trained with the multi-

institutional radiology corpus of 3.3 million radiology reports as in the recommendations

extraction.
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3.4 Results

Recommendations extraction

We merged annotations from the pilot corpus and the multi-institutional radiology corpus

to create one gold standard corpus that contains 693 positive sentences and 30429 negative

sentences from a total of 1367 radiology reports. Following the same imbalance experiements

by Yetisgen-Yildiz et al. [12], a series of experiments were designed to determine the optimal

ratio of positive and negative instances. Let P the set of positive training sentences and

N be the set of negative sentences. For each k (k=1,...,n), we trained a classifier where

the cardinality of N was equal to k times the cardinality of P. We performed 5-fold cross-

validation at each value of K to obtain the average performance scores. We achieved the

best 5-fold cross validation results at K=32 with 0.94 precision, 0.92 recall, and 0.93 F1

score (true positive: 635, true negative: 11755, false positive: 39, false negative: 58), as

shown in Table 3.5 and Figure 3.3. The performance was better than Yetisgen-Yildiz et al.

[12] (0.66 precision, 0.88 recall, 0.76 F1 score using Max-Ent classifier with extensive feature

engineering ).
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K TP TN FP FN Precision Recall F1 Accuracy

1 672 11602 192 21 0.778 0.970 0.863 0.983

3 676 11618 176 17 0.793 0.975 0.875 0.985

5 664 11682 113 29 0.855 0.958 0.903 0.989

7 665 11680 114 28 0.854 0.960 0.904 0.989

9 661 11691 104 32 0.864 0.954 0.907 0.989

11 660 11710 84 33 0.887 0.952 0.919 0.991

13 650 11718 76 43 0.895 0.938 0.916 0.99

15 649 11724 70 44 0.903 0.937 0.919 0.991

17 648 11737 57 45 0.919 0.935 0.927 0.992

19 650 11730 64 43 0.910 0.938 0.924 0.991

21 646 11739 55 47 0.922 0.932 0.927 0.992

23 638 11746 48 55 0.930 0.921 0.925 0.992

25 631 11755 40 62 0.940 0.911 0.925 0.992

27 626 11757 38 67 0.943 0.903 0.923 0.992

29 633 11757 37 60 0.945 0.913 0.928 0.992

31 627 11761 34 66 0.949 0.905 0.926 0.992

32 635 11755 39 58 0.942 0.916 0.929 0.992

33 632 11757 37 61 0.945 0.912 0.928 0.992

34 614 11762 32 79 0.950 0.886 0.917 0.991

35 638 11745 49 55 0.929 0.921 0.925 0.992

36 621 11759 36 72 0.945 0.896 0.920 0.991

37 623 11753 41 70 0.938 0.899 0.918 0.991

38 619 11763 31 74 0.952 0.893 0.922 0.992

39 623 11763 31 70 0.953 0.899 0.925 0.992

40 624 11762 32 69 0.951 0.900 0.925 0.992

41 603 11765 29 90 0.954 0.870 0.910 0.990

42 627 11759 35 66 0.947 0.905 0.925 0.992

43 622 11759 35 71 0.947 0.898 0.921 0.992

Table 3.5: Performance evaluation. K: class ratio, TP, true positive; TN, true negative; FP,
false positive; FN, false negative; The highest precision, recall, and F1 score values are in
bold (k = 32).
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Figure 3.3: Precision, recall, F1 score curves. k: class ratio.



28

Entities extraction

Table 3.6 shows the token-based 5-fold cross validation results on the three entities.

Entity Precision Recall F1

Reason 68.53 62.05 65.10

Test 74.20 71.48 72.71

Time frame 83.38 85.05 84.16

Table 3.6: Token level entity extraction 5-fold cross-validation results in %

3.4.1 Extraction of multi-institutional radiology corpus

We used the trained recommendations extraction model to identify recommendations from

the multi-institutional radiology corpus. The corpus consisted of 47,424,876 sentences. A

total of 685,912 recommendations were extracted. The distribution by modality is shown in

Table 3.7. An example of recommendations in each modality was presented in Table 3.8.

Imaging Modality # of recommendations # of reports with recommendations (%)

Angiography 8455 7234 (13.48%)

Computed Tomography 193414 140066 (19.81%)

Fluoroscopy 103 100 (9.33%)

Magnetic Resonance Imaging 60954 34928 (14.32%)

Mammogram 210828 154255 (98.02%)

Nuclear Medicine 10141 7426 (12.73%)

Portable Radiography 13519 12951 (4.17%)

Positron emission tomography 472 336 (18.68%)

Ultrasound 109166 90266 (25.66%)

X-Ray 78860 75909 (5.36%)

Table 3.7: Number of predicted recommendations by modality
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Imaging Modality Example recommendation sentences

Angiography The patient will be followed up in the VIR clinic in approximately

2-3 weeks.

Computed Tomography For a low risk patient, CT follow-up is recommended in 6 to 12

months. In the high risk patient, follow up is recommended at 3

to 6 months.

Fluoroscopy Further evaluation with endoscopy is recommended.

Magnetic Resonance Imaging BI-RADS category 6. Take appropriate action. MRI would be

the best modality to assess response to neoadjuvant therapy.

Mammogram Normal interval follow-up is recommended in 12 months.

Nuclear Medicine Follow up nuclear medicine whole body scan is recommended in

approximately 7 to 10 days after discharge.

Portable Radiography A lateral radiograph or CT of the chest is recommended for further

evaluation of this nodule.

Positron emission tomography Follow up examination could be performed in 2 to 3 months to

re-evaluate these lesions on PET.

Ultrasound Recommend follow-up pelvic ultrasound in 2-3 months to evaluate

for change.

X-Ray Evaluation with weight bearing views is recommended.

Table 3.8: Example recommendation sentences extracted from the dataset for each modality

15.9% (523,471 reports) of the entire dataset contained recommendations. As can be ob-

served from Table 3.7, 98.02% of mammograms included a follow-up examination. For other

modalities, percentages of reports with recommendations varied between 4.17% (portable

radiography) and 25.66% (ultrasound). To evaluate the performance of our recommendation

extraction model, we randomly selected 40 recommendations for top 5 modalities with high-

est recommendation percentages: mammograms (98.02%), ultrasound (25.66%), computed

tomography (19.81%), positron emission tomography (18.68%), and Magnetic Resonance

Imaging (14.32%) and manually validated their correctness. We identified 185 out of 200

of those recommendations as true positives which resulted a precision value (0.925) on the
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target dataset similar to our 5-fold cross validation result (0.94) on the annotated set.

We then used the trained NER model to extract the entities within the predicted rec-

ommendation sentences. Not all recommendation sentences included reason, test, or time

frame information. For instance, the example recommendation of Fluoroscopy presented in

Table 3.8 does not have time frame entity. From 685,912 recommendations, the NER model

extracted 250,840 (36.57%) reason, 528,040 (76.98%) test, and 216,128 (31.51%) time frame

entities. Table 3.9 shows the distribution of predicted entities by modality.

Imaging Modality Reason Test Time frame

Angiography 7,732 8,421 4,474

Computed Tomography 191,453 221,941 25,440

Fluoroscopy 159 125 7

Magnetic Resonance Imaging 41,136 68,452 20,679

Mammogram 24,998 250,605 162,421

Nuclear Medicine 11,895 12,476 974

Portable Radiography 15,292 15,725 367

Positron emission tomography 449 525 12

Ultrasound 82,371 134,233 36,827

X-Ray 73,383 65,115 2,894

Table 3.9: Number of predicted entities by modality
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3.5 Analysis of Follow-up recommendations adherence rate

To understand the follow-up status of each identified recommendation, we performed a lon-

gitudinal analysis on the multi-institutional radiology dataset based on the information ex-

tracted by the NLP methods. Specifically, for each patient’s timeline, we identified all reports

with follow-up recommendations. The timestamps of the reports represented the timestamps

of the recommendations. For each identified recommendation in the patient’s timeline, we

checked whether a radiology test with the same modality actually occurred to roughly es-

timate the percentage of patients who stayed within the network of two hospitals in our

dataset. Table 3.10 presents the results of this initial analysis.

Imaging Modality # of reports

with follow-up

recommenda-

tion

No following

tests of same

modality

Had following

tests of same

modality

Angiography 7234 2972 (41.08%) 4262 (58.92%)

Computed Tomography 140066 43698 (31.20%) 96368 (68.80%)

Fluoroscopy 100 84 (84.00%) 16 (16.00%)

Magnetic Resonance Imaging 34928 15791 (45.21%) 19137 (54.79%)

Mammogram 154255 45357 (29.40%) 108898 (70.60%)

Nuclear Medicine 7426 4131 (55.63%) 3295 (44.37%)

Portable Radiography 12951 3629 (28.02%) 9322 (71.98%)

Positron emission tomography 336 282 (83.93%) 54 (16.07%)

Ultrasound 90266 35067 (38.85%) 55199 (61.15%)

X-Ray 75909 22952 (30.24%) 52957 (69.76%)

Table 3.10: Number of patients who did / didn’t have follow-up tests

We further analysed the patient adherence to follow-up recommendations, using the ex-
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tracted time frame entities. Since the time-frame entities were free-text spans, we normalized

the values by using the Stanford temporal tagger (SUTime) [72]. SUTime normalizes the

temporal phrases into a value (e.g., 3 months = P3M, 1 year = P1Y). Then using the normal-

ized time frame value for follow-up, we projected the next imaging test date for the patient.

If the recommended time consists of a range such as “6 to 12 months”, we used the end of

the range to project the next visit for recommended imaging test. Because some projected

dates are outside of the collected time range of the dataset, we considered those radiology

encounters censored (18,338 records). Furthermore, a report could contain multiple follow-

up recommendations (122,256 records). If the patient did not have any one of the follow-up

encounters as recommended in the report, we considered no follow-up for that report. If

the patient was late to any one of the recommended follow-up encounters in the report, we

considered late follow-up for that report. Table 3.11 shows the number of patients who did

not have a follow-up encounter as recommended by radiologist as well as those who had a

follow-up earlier or later than the recommended time.

Imaging

Modality

Reports with recommendation

and projected time frame

No follow-up Early follow-

up

Late follow-up

Angiography 2075 759 (36.58%) 393 (18.94%) 923 (44.48%)

CT 14506 5516 (38.03%) 4716 (32.51%) 4274 (29.46%)

Fluoroscopy 5 3 (60.00%) 0 (0%) 2 (40.00%)

MRI 8708 3393 (38.96%) 1736 (19.94%) 3579 (41.10%)

Mammogram 121716 27689 (22.75%) 19935 (16.38%) 74092 (60.87%)

NM 349 143 (40.97%) 124 (35.53%) 82 (23.50%)

Portable Ra-

diography

222 113 (50.90%) 62 (27.93%) 47 (21.17%)

PET 7 6 (85.71%) 0 (0%) 1 (14.29%)

Ultrasound 21083 8599 (40.79%) 5060 (24.00%) 7424 (35.21%)

X-Ray 976 354 (36.27%) 233 (23.87%) 389 (39.86%)

Table 3.11: Number of patients who had no follow-up / early follow-up / late follow-up
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The results shows that mammograms had the highest follow-up rate (77%: 16% early,

61% late follow-up). This is expected as mammograms are commonly used as a screening

tool to detect early breast cancer in women and annual exam is recommended for women

over age 40. For the other modalities, the follow-up rates varied between 14% (positron

emission tomography) and 64% (X-Ray).

3.6 Summary

The main contribution of this study is identifying recommendation information in radiology

notes using neural models and subsequently analysing follow-up adherence with the extracted

data. We applied the trained models to a multi-institutional dataset of 3.3 million radiology

notes and presented our analysis of recommendation follow-up adherence over a period of

10 years. There are several limitations in our analyses. First we assume that the follow-up

exams will be performed in the UW network of care facilities, while in reality, some patients

could also have imaging tests elsewhere and continue to be followed up from other providers.

Second, we assume the recommended imaging test is the same one based on which the

recommendation was provided. However, it is entirely possible that a different imaging test

is recommended for a different diagnostic purpose. To account for this scenario, a better way

is to include the recommended test entity when projecting the next encounter. In the case

where a recommended time frame was not provided by the radiologist, one possible solution

is to develop a document level classifier to predict the recommended time frame based on

the radiology report. Another limitation of this study was the size of the training set for

recommendations. Our labeled training corpus consisted of 1367 reports. To achieve good

performance, sequential neural approaches require relatively larger dataset than traditional

machine learning methods. Although the presented performance results were promising,

there was still room for improvement in the extraction. This motivated my later research

using the contextual embedding and transformer architecture such as BERT [21]. Through

model pre-training on unlabelled in-domain text, the knowledge can be transferred to another

task even with limited annotated labels.
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Chapter 4

AUTOMATIC ASSIGNMENT OF RADIOLOGY
EXAMINATION PROTOCOLS USING PRE-TRAINED

LANGUAGE MODELS WITH KNOWLEDGE DISTILLATION

This chapter describes a study using the pre-trained language model, BERT [21] to clas-

sify radiology protocols. We investigated the effect of in-domain pre-training in classification

performance. We also conducted different re-sampling experiments to handle the data im-

balance in the dataset, and employed a new approach called knowledge distillation using

augmented data.

4.1 Introduction

Imaging tests are commonly used for diagnosis and screening. They reveal conditions inside

the patient’s body and offer evidence to answer clinical questions. To be able to collect this

evidence, physicians rely on radiologists to design a sequence of imaging scans, with specific

technical parameters, such as use of intravenous or oral contrast, number of scanning planes

and the orientations. Selecting these technical parameters is a main part of protocoling.

Radiologists make the protocol decision based on structured data, such as patient demo-

graphics, and the unstructured clinical information in the electronic order for the suggested

examination request by the ordering clinician.

This manual protocoling is an important task but can also be time consuming due to

the variation in the equipment parameter setting [73], complexity in procedural terminology

[74], and lack of best practice standardization [75]. Reviewing each patient record and

designing an optimal protocol tailored to each patient’s profile can be overwhelming and

cumbersome [19]. Apart from protocol assignment, radiologists often need to attend to
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other responsibilities, including image interpretation, report dictation, clinical consultation,

teaching, and communicating test results to referring physicians through phone calls and

pages. One study showed that radiologists on average spend 3 hours in a 48-hour period

to assign protocols [18]. In addition, on-call radiologists can be disrupted as many as 2 to

3 times by phone calls while interpreting routine CT examinations [76]. The distraction

from phone calls not only has negative impact on radiology report turn-around times [17]

but can also lead to diagnostic discrepancy [16]. Despite the potential complexity, certain

examinations are very common, and protocoling these common examinations is a fairly simple

and repetitive task. It is therefore a strong candidate for automation. By applying machine

learning techniques to protocoling, radiologists could spend a greater proportion of their

time performing interpretive tasks, thereby improving the cost-effectiveness of a radiology

practice, reducing interruptions for protocoling, improve interpretation accuracy and shorten

report turnaround time.

In this study, we used structured radiology exam meta-data (exam name and code pro-

vided by the referring physician) and patient demographics (age and gender) as well as

unstructured diagnoses and history information to train our models. Table 4.1 presents an

example of the radiology examination data from our dataset. We (1) compared different

statistical ML models to the state-of-the-art BERT [21] model for radiology protocol clas-

sification task, (2) evaluated the BERT model pre-trained on general domain (BERTbase)

in comparison to a BERT model pre-trained on our radiology corpus (BERTrad), and (3)

applied deep learning knowledge distillation approach to tackle high data imbalance in our

dataset.

4.2 Related Work

Prior studies in automating protocol selection used machine learning approaches. Brown et

al. compared three different models to classify MRI protocols, including support vector ma-

chine (SVM), gradient boosting machine (GBM), and random forest (RF) [77]. They used

bag-of-words approach with unigrams to represent features for the text data and combined
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Exam metadata Demo Patient history
Protocol

Code Name Sex Age History Diagnosis

CABDWC

CT

ABDOMEN

W

CONTRAST

2 67 heart failure,

hepatic vein

concern for liver lacera-

tion post procedure, post

biopsy, on apixaban

BODY CT Liver 2 phase for

hypervascular liver metastases

(art venous, no delay)

Table 4.1: Example examination data from our dataset

them with the structured variables (age, sex, location and ordering service). The dataset

consisted of 7487 observations. Since each protocol can consist of a sequence of procedures,

they trained 41 binary classifiers for each model to predict each procedure in a sequence.

The three ML algorithms included in this study demonstrated similar performance. GBM

achieved 86% precision and 80% recall. SVM achieved 83% precision and 82% recall, followed

by RF with 85% precision and 80% recall. Trivedi et al. used IBM Watson to determine the

use of intravenous contrast for musculoskeletal MRI protocols using only clinical text [78].

The dataset consisted of 650 positive and 870 negative labels. Watson achieved over 90%

precision and 74% recall. The overall performance is similar to their ensemble model com-

prising 8 traditional statistical models (SVM, scaled linear discriminant analysis, boosting,

bagging, classification and regression tree, RF, Lasso and elastic-net regularized generalized

linear model, maximum entropy). Although they claimed that Watson’s classifier was based

on deep learning, no specific details about the model architecture and hyperparameters were

provided by IBM. One study conducted by Kalra et al. is the most similar to our study. They

developed two statistical ML models and one deep learning model to automate CT and MRI

protocol assignment. The dataset contained 18000 CT and MRI examinations in 108 unique

protocols. Similar to our dataset, their protocol frequency distribution is highly imbalanced

with the 5 most commonly assigned protocols making up 49% of the entire dataset. They

trained a k-nearest neighbor and a random forest classifier using TF-IDF feature vectors on

unigrams from clinical text. Interestingly, they excluded structured data elements such as

age and gender, which could be strong predictor variables. The performance results from
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the top two classifiers, RF (80% precision, 82% recall) and DNN (82% precision, 84% recall),

were comparable. However, they only reported weighted micro-averages and did not report

performance metrics per protocol. Hence, we do not know how the model performed on the

minority classes.

4.3 Methods

4.3.1 Data

Our dataset included 35,085 radiology body CT examinations performed at 7 hospital-based

and clinic-based imaging sites between January 2018 and June 2019. The data were extracted

from the University of Washington radiology information system. As shown in Table 4.1,

each exam is represented with 4 structured data fields including exam meta-data (exam

code, protocol code) and patient demographics (age, gender) as well as 2 unstructured fields

to capture patient clinical history (history, diagnosis). Table 4.2 describes the word level

statistics on the two unstructured fields. Our initial analysis showed that the lengths of the

unstructured data were relatively short (average numbers of words for history and diagnosis

fields were 8 and 10 with standard deviations 6.57 and 8.6 respectively). 4759 (13.6%)

examinations contained no history data and 3 (0.01%) examinations contained no diagnosis

data.

Min Max Mean Median Standard deviation

History 0 47 8 6 6.57

Diagnosis 0 108 10 8 8.6

Table 4.2: Word statistics on unstructured fields.

Due to the different naming and coding of the same protocols in different clinical sites, our

radiologists consolidated them into 27 unique “protocol groups”, each uniquely identify the

protocol with similar acquisition parameters. Generally, the protocols were categorized by the

anatomical region, administration of contrast, number of pre and post-contrast phases and



38

scan range. We excluded 2 groups that had less than 20 examinations in our experiments (CT

CA Oral Only and CT Abdomen IV Only). Table 4.3 shows the examination frequency with

percentages for each protocol group. As can be observed, the dataset is highly imbalanced,

with the first two protocol groups constituting 57% of the entire dataset. The distribution of

examination frequency among the groups has a mean of 1299, median of 200 and standard

deviation of 2706.

Protocol group Frequency %

1 CT CAP IV and Oral 11911 33.95%

2 CT Abdomen Pelvis w IV Only 8057 22.96%

3 CT CAP IV Only 3351 9.55%

4 CT Abdomen Pelvis w IV and Oral 2941 8.38%

5 CT Renal Mass 2036 5.80%

6 CT Liver 3 Phase 1652 4.71%

7 CT Abdomen Pelvis No Contrast 931 2.65%

8 CT IVP 50 yrs + 854 2.43%

9 CT CAP Oral Only 531 1.51%

10 CT CAP No Contrast 336 0.96%

11 CT Abd Pel Enterography 297 0.85%

12 CT Liver 4 Phase 252 0.72%

13 CT CA IV Only 226 0.64%

14 CT IVP < 50 220 0.63%

15 CT Pancreas Mass 3 Phase 202 0.58%

16 CT Abdomen No Contrast 195 0.56%

17 CT CA IV and Oral 194 0.55%

18 CT Pelvis IV Only 192 0.55%

19 CT Abdomen IV and Oral 173 0.49%

20 CT Pancreas Mass 2 Phase 143 0.41%

21 CT Abdomen Pelvis w Oral only 132 0.38%

22 CT CA No Contrast 75 0.21%

23 CT Pelvis Cystogram 68 0.19%

24 CT Liver 2 Phase 51 0.15%

25 CT Pelvis IV and Oral 42 0.12%

26 CT CA Oral Only (excluded) 15 0.04%

27 CT Abdomen IV Only (excluded) 8 0.02%

Table 4.3: Distribution of examinations across protocols
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4.3.2 Approach

We trained a classifier to automatically assign protocols to computer tomography (CT)

examinations. The classifier was implemented by fine-tuning the pre-trained language model,

BERT [21]. The fine-tuning process followed Devlin et al.’s suggestion to use a linear layer

on top of the BERT model and train with the cross-entropy loss. Because BERT is a

language model, we therefore first transformed the structured and unstructured data into

the following template: “Exam is <exam code>. Sex is <gender>. Age at Exam <age>.

History: <history>. Diagnosis: <diagnosis>” and subsequently classifying it into one of 25

protocol groups listed in Table 4.3. We observed that the mean and median of number of

characters in the templated data are 192 and 178. In order to capture context presented in

the training instances, we set the maximum sequence length parameter of the BERT model

to be 200 with a batch size of 48. We followed the suggestions described in the BERT paper

and used the Adam optimizer with a learning rate of 2-e5. We fine-tuned the BERT model

for 4 epochs.

Conceptually, BERT learns the relationships between words by randomly masking words

in a sequence with a [MASK] token and then trains itself to predict them from the context

of the unmasked ones. Additionally, it learns the sentence relationships by training itself to

predict if two sentences are adjacent to each other. These two learning tasks allow BERT to

self-train and capture the context of language used in an unlabeled corpus before transferring

all parameters to down-stream applications. Previous studies showed promising results of

using BERT in clinical applications. Examples include chest x-ray reports classification [79],

and relation extraction in clinical domain [80].

In this study, we first experimented with the google BERTbase model which was originally

pre-trained on BookCorpus and English Wikipedia. However, by fully encoding the semantic

context in clinical and biomedical text, it has been shown that further training BERTbase

on MIMIC and PubMed data can boost the performance of named entity recognition in the

biomedical domain [81, 45]. Inspired by these studies, we further pre-trained BERTbase on
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our radiology protocol corpus and named it BERTrad. We repeated the same experiment

with BERTrad using the same hyperparameters listed above. All BERT experiments were

implemented with Huggingface’s transformer library [82].

Knowledge Distillation

Imbalanced class distribution usually leads to poor classification results on the minority

classes [83]. A popular approach in dealing with imbalanced datasets is to use the Synthetic

Minority Oversample Technique (SMOTE) which generates new artificial samples for the

minority classes by interpolating the nearest neighbors of the existing samples [84]. This

method reduces the likelihood of overfitting minority classes commonly observed in random

over sampling approach. Because BERT utilizes WordPiece tokenization which incorporates

special tokens, such as the classifier token [CLS] and separator token [SEP], synthesizing

these input values in vector space using interpolation will lose the context of the tokens in

the samples.

Recent studies have successfully demonstrated the possibility of transfering task specific

knowledge from the large BERT model to a smaller neural architecture without significantly

degrading performance [85, 86], using a technique called knowledge distillation. The process

involves training a second model (student) to match the predictions from the first model

(teacher). We hypothesized that by transferring knowledge specific to the minority classes

from the BERTrad model to a second BERT model, we could improve the classification

performance on the minority classes. In particular, we aimed to train a student model that

could outperform the teacher with identical neural architecture. Furlanello et al. referred to

this approach as Born-Again Neural Network (BAN) [87], which has been shown to produce

better results in both single and multi-task settings [88]. During the knowledge distillation

process, the raw predictions from the teacher model, known as logits, are being used as

“soft labels” for training the student model. The distribution in the logits, even among

incorrect predictions, contains information about how the teacher model is generalizing,
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thereby offering more training signals than one-hot categorical labels [85].

To effectively transfer knowledge about the minority classes to a student model, a large

unlabeled dataset is needed to generate enough soft labels from the teacher model. We

applied Tang et al.’s data augmentation techniques to synthesize masked data in order to

allow the teacher to fully express its knowledge [89]. To augment a given training instance, we

randomly sampled a number P from the uniform distribution [0,1]. If P < 0.1, we randomly

replaced a word in the history and diagnosis section with the [MASK] token. If P is between

0.1 and 0.2, we randomly replaced a word with another word in the training set that has

the same POS tag. Finally, we randomly replaced an n-gram (n ∈ [1, 3]) in the training

instance with the [MASK] token. We repeated this augmentation process to generate 30 new

instances, without duplication, for each training instance. We evaluated different numbers

of augmented instances (25, 30, 35, 40, 50) by running 5-fold cross validation with the

augmented data. Our evaluation showed that the experiment with 30 augmented instances

achieved the best result. To limit the augmented sample size of the dominant classes, we

set a maximum sampling limit of 12000, such that the final sample size of each class after

augmentation could not exceed 12000. We then ran inferencing on the augmented dataset

using the teacher model BERTrad to generate soft labels for distillation. Finally, we initialized

a student BERTrad model with a different random seed and trained it to imitate the teacher

by minimizing the mean squared error (MSE) between the student’s logits and teacher’s

logits. At the same time, we allowed the student model to surpass the teacher by training

with the true labels by minimizing the cross-entropy loss against the one-hot multi-class

labels:

Ldistill = α ∗ Lcross entropy + (1− α) ∗ LMSE

where α is the ratio of true labels within a single batch of training samples. After each

iteration of knowledge distillation, the student model became the teacher for next generation.

To establish the baselines, we trained three separate statistical models that were em-
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ployed in prior research studies: Support Vector Machine (SVM), Gradient Boosting Ma-

chine (GBM) and Random Forest (RF). The feature sets included the unigrams and bigrams

of the history and diagnosis notes and were transformed into vector space using TF-IDF

before combining with the numeric values in the structured data.

4.4 Results

We used 5-fold cross validation to evaluate the general performance of the models. For each

fold, the models were trained on the same training data and evaluated on the same held-out

test data. We used precision, recall, and F1-score as metrics to measure the performance.

Table 4.4 presents the overall macro-average and weighted micro-average results. The macro-

averaged results were the mean of the metrics for each class, where each class was given

equal weight. The weighted micro-averaged metrics were the metric averages weighted by

the number of true labels in each class. As can be observed, the micro-average results are

largely similar due to the bias towards the majority classes. In the macro-average results,

among the baselines, RF performed the best with 0.60 F1-Score. Both SVM and GBM

produced 0.45 F1-score. The SVM in general produced higher precision and lower recall,

when compared to GBM. The classifiers based on BERT models performed better than the

SVM, GBM and RF baselines. Furthermore, the in-domain BERTrad produced 0.2 higher

macro F1 score than the out-of-domain BERTbase model (0.63 versus 0.61).

Model
Macro average Micro (Weighted) average

Precision Recall F1 Precision Recall F1

SVM 0.60 0.42 0.45 0.79 0.80 0.79

GBM 0.46 0.46 0.45 0.80 0.81 0.80

RF 0.63 0.59 0.60 0.83 0.83 0.83

BERTbase 0.68 0.60 0.61 0.84 0.84 0.84

BERTrad 0.67 0.62 0.63 0.84 0.84 0.84

Table 4.4: Comparison of model results.
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To mitigate the high data imbalance, two resampling experiments were conducted with

the best performing BERTrad. Note that the resampling was performed only on the training

data while the validation data were kept the same. First, we under-sampled the 2 majority

classes by randomly removing some training instances such that their sample sizes matched

the size of the third largest protocol group (#3). As shown in Table 4.5, the macro-average

F1 dropped 0.24 and the weighted-average F1 dropped 0.2 due to the misclassification of

the majority classes given their smaller sample sizes. In the over-sampling experiment, the

training instances in the minority classes were randomly replicated so that their sample

sizes matched the size of the second largest protocol group (#2). The result shows no

performance improvement in the macro-average F1 but degradation in the weighted-average.

This can be caused by overfitting the duplicate training samples in the minority classes. Using

knowledge distillation, the BAN models{2,3} achieved better macro-average performance

than BERTbase and BERTrad, without any degradation in weighted-average performance.

More specifically, the macro-average F1 in generations of student BAN models improved,

suggesting that the classifiers achieved better performance in predicting the minority classes.

We also observed that the performance saturated after training the second generation of BAN

student model. This finding is also observed by Furlanello et al [87].

Model
Macro average Micro (Weighted) average

Precision Recall F1 Precision Recall F1

BERTrad 0.67 0.62 0.63 0.84 0.84 0.84

BERTrad undersample 0.42 0.38 0.39 0.63 0.66 0.64

BERTrad oversample 0.63 0.63 0.63 0.83 0.82 0.82

BAN1 0.68 0.64 0.65 0.84 0.84 0.84

BAN2 0.69 0.65 0.66 0.84 0.84 0.84

BAN3 0.69 0.65 0.66 0.84 0.84 0.84

Table 4.5: Comparison of resampling results. BAN1,2,3 denotes the 1st, 2nd and 3rd gener-
ation of knowledge distillation.
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4.5 Analysis of Protocol level classification results

We observed that BERTrad performed better than BERTbase in some protocol groups. For

example, as shown in Table 4.6 in the protocol group “CT Abd Pel Enterography” (#11),

the word hernia, which describes the condition that a tissue pushes through an abdominal

opening, appeared in over 79% of the diagnosis fields, while another word CREATININE,

a compound that indicates the level of kidney function, appeared in over 73% of the his-

tory fields. These two medical terms are not commonly seen in the general corpora. By

pre-training on the radiology corpus, BERTrad was able to learn better contextual represen-

tation and outperformed BERTbase by 0.07 F1 in that protocol group. We observed similar

improvement in protocol groups (#19) and (#21).

Protocol group Exam

count

SVM GBM RF BERTbase BERTrad BAN1 BAN2 BAN3

11. CT Abd Pel Enterography 59 0.54 0.41 0.5 0.53 0.6 0.63 0.61 0.62

19. CT Abdomen IV and Oral 35 0.06 0.03 0.36 0.41 0.45 0.48 0.48 0.48

21. CT Abdomen Pelvis w Oral only 26 0 0.05 0.26 0.23 0.37 0.39 0.38 0.37

Table 4.6: Comparison between BERTbase and BERTrad

Table 4.7 shows that the minority groups classification were improved by the BAN models.

One interesting observation, shown in Table 4.8, was BERTbase model’s substantially low

F1-score of 0.16 for group “CT IVP < 50” (#14) when compared to the F1-scores (SVM:

0.61, GBM: 0.73, RF: 0.88) of statistical baselines. Further investigation showed that 87%

of the false negatives for “CT IVP < 50” (#14) were misclassified to “CT IVP 50 yrs +”

(#8) by BERTbase. The main difference between these two protocol groups is the age of

patient, and the age feature by itself offered high information gain to allow RF to learn

a more robust model. On the other hand, the smaller sample size of protocol group #14
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Protocol group Exam

count

SVM GBM RF BERTbase BERTrad BAN1 BAN2 BAN3

9. CT CAP Oral Only 107 0.29 0.56 0.31 0.58 0.59 0.59 0.61 0.61

15. CT Pancreas Mass 3 Phase 41 0.46 0.36 0.58 0.64 0.62 0.63 0.67 0.65

19. CT Abdomen IV and Oral 35 0.06 0.03 0.36 0.41 0.45 0.48 0.48 0.48

23. CT Pelvis Cystogram 14 0.69 0.27 0.95 0.95 0.95 0.95 0.95 0.96

Table 4.7: Improvement on the minority groups

limited the BERTbase model to learn to differentiate from protocol group #8. However, data

augmentation in the knowledge distillation process eventually supplied additional training

signals for the model to generalize, leading to the similar performance levels as RF.

Protocol group Exam

count

SVM GBM RF BERTbase BERTrad BAN1 BAN2 BAN3

8. CT IVP 50 yrs + 171 0.81 0.9 0.92 0.84 0.84 0.91 0.93 0.92

14. CT IVP < 50 44 0.61 0.73 0.88 0.16 0.24 0.78 0.88 0.87

Table 4.8: Misclassifcation by BERTbase

One protocol group “CT Liver 2 Phase” (#24) in particular was difficult to predict by

any models, as shown in Table 4.9. The error analysis showed that the models misclassified

some 24 cases to “CT Liver 3 Phase” (#6) because of similar patient diagnosis and history.

Protocol group Exam

count

SVM GBM RF BERTbase BERTrad BAN1 BAN2 BAN3

24. CT Liver 2 Phase 10 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.9: Poor classification performance on one protocol group

Table 4.10 presents one of these cases. While these were the correct protocol assignments
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in clinical practice, because #24 only constituted 0.15% of the training data and was 30

times less than #6, there were not enough data to train the models to differentiate #24

from #6. Additionally, we found that some #24 cases were misclassified to “CT CAP IV

and Oral” (#1) because of the exact same history and diagnosis found in #24. Without any

additional clinical information to help differentiate the two protocol assignments, the models

simply inferred to the group that was more dominant in the training data.

Protocol group History Diagnosis

6. CT Liver 3 Phase
Last creatine

level:CREATININE 0.92
ABDOMEN W/CONTRAST;

6MO REPEAT F/U FOR HCC

SURVEILLANCE, S/P LIVER

TRANSPLANT

24. CT Liver 2 Phase
Last creatine

level:CREATININE 0.81
ABDOMEN W/CONTRAST;

TO EVALUATE SIZE OF

PSEUDOCYST, S/P LIVER

TRANSPLANT

Table 4.10: Examinations in two different protocol groups with similar history and diagnosis.

4.6 Summary

This study explores using the state-of-the-art pre-trained language model, BERT, to classify

radiology examination protocols. The results shows that overall pre-trained language models

perform better than traditional n-gram models. The in-domain pre-training allows the model

to develop better contextual representations. Additionally, the results demonstrate that

knowledge distillation with augmented data improves overall classification performance for

most of the under-represented groups. In the next study, we will apply the in-domain pre-

training of BERT to a much larger scale and develop a more robust IE deep learning pipeline

to extract different clinical findings from radiology reports.



47

Chapter 5

EVENT-BASED CLINICAL FINDINGS EXTRACTION FROM
RADIOLOGY REPORTS WITH PRE-TRAINED LANGUAGE

MODEL

This chapter describes a study using pre-trained language models to extract two clinical

findings (Lesion and Medical Problem) from radiology reports. A new corpus consisting

of 500 computed tomography (CT) radiology reports were annotated using an event-based

schema to capture fine-grained details of both clinical findings. In addition, a general-purpose

deep learning framework was developed to fine-tune a BERT model in a multi-task fashion.

We pre-trained a new BERTrad model on the 3.3 million multi-institutional corpus from our

first study [90] (Chapter 3) . To demonstrate the generalizability of the model with cross-

institutional data and imaging modality, we fine-tuned the BERTrad with the 500 CT corpus

and used it to extract all the clinical findings from the chest X-ray reports from the MIMIC

Chest X-ray (MIMIC-CXR) database [22].

5.1 Introduction

Radiology reports remain the primary channel of communication for radiologists to docu-

ments their findings in imaging tests. Extracting clinical findings from these unstructured

narratives facilitates many secondary use applications, including clinical decision-support

systems [91], diagnostic surveillance of medical problems [92], identification of patient co-

horts with specific phenotypes [48], and simplification of report language for patients [93].

To support various types of applications in large scale, a detailed semantic representation of

the findings is needed to capture the important information in the findings, such as anatomy,
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assertion, characteristics and size.

This chapter discusses a novel event-based annotation schema that focuses on two clinical

findings: Lesion and Medical Problem. A lesion finding is defined as an abnormal space occu-

pying mass that is observable on the images. Lesions included primary tumors, metastases,

benign tumors, abscesses, nodules, other masses. A medical problem finding is a patholog-

ical process describing other types of clinical problems, for example cirrhosis, air-trapping,

atherosclerosis, effusions. A new corpus of 500 computed tomography (CT) randomly sam-

pled from the UW clinical data warehouse was annotated. The gold standard included 2,344

Lesion and 8,065 Medical Problem finding events. To extract the finding events, we developed

a deep learning extraction framework that fine-tuned a single BERT model. We explored

different contextualized embeddings through pre-training on different clinical text sources

and introduced a new BERT model that was pre-trained with the multi-institutional corpus

in the first study, coverage a wide range of modalities (Table 3.2). To assess the generaliz-

ability of the event extraction model, we annotated a subset of the MIMC-CXR radiology

reports. The extraction model achieved comparable performance on the MIMIC-CXR and

UW datasets, despite the differences between the datasets. The extracted MIMIC-CXR

clinical findings, the annotation guidelines and the event extraction framework are made

available to the public.

5.2 Related Work

5.2.1 Clinical finding entity extraction from radiology reports

Numerous studies have applied rule-based patterns to extract clinical entities specific to cer-

tain diseases, including appendicitis [94], adrenal abnormalities [95], osteoporosis [96], and

pneumonia [92]. Other studies employed statistical machine learning approaches. Hassan-

pour et al. extracted anatomy, observations, modifiers, uncertain expressions using Condi-

tional Markov Model and Conditional Random Field from a corpus of 150 chest CT reports

[55]. Cheng et al. combined rule-based and statistical methods to identify tumor status,
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magnitude of change and significance of change from a corpus of 778 MRI reports. Recent

research employed neural network approaches. Cornegruta et al. extracted 4 different entities

(body location, clinical finding, descriptor and medical device) with a corpus of 2000 radiol-

ogy reports using BiLSTM network [58]. Most state-of-the-art neural modeling however used

the pre-trained language model, BERT. Sugimoto et al. extracted 7 different clinical terms

from a corpus of 540 Japanese CT radiology reports using a pre-trained Japanese BERT

model [61]. Miao et al. extracted entities associated with the Breast Imaging Reporting

and Data System (BI-RADS) from an annotated corpus of 540 Chinese ultrasound reports

[97]. While these studies demonstrated the effectiveness of extracting finding entities from

radiology reports, they did not attempt to identify the association or relation between the

entities.

5.2.2 Clinical finding relation extraction from radiology reports

Identifying the relationships between entities provides more contextual information associ-

ated with clinical finding. For example, an anatomical location can be associated with one or

more tumors, or a negative assertion can indicate the absence of a clinical finding. Early stud-

ies used rule-based methods with lexicons and grammars to extract clinical finding relations

from radiology reports. Sevenster et al. identified the relations between finding observations

and body locations using MedLEE [54]. Savova et al. used Mayo’s clinical Text Analysis and

Knowledge Extraction System (cTAKES) to extract evidence entities and assertion relations

of peripheral arterial disease cases from 455 reports [98]. Other studies employed statistical

approaches to extract disease specific entities and relations from radiology reports, including

metastatic lung disease [99], and hepatocellular carcinoma [57]. Recent relation extraction

work used the recurrent neural network (RNN) model. Steinkamp et al. extracted clinical

finding observations and their relations to modifier entities, such as location, size and change

over time using GRU [100]. Most recent state-of-the-art relation extraction work used the

BERT model. Zhang et al. fine-tuned a BERT model to extract both breast cancer entities

and relations from a corpus of 600 Chinese clinical notes (100 radiology reports) [62].
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5.3 Methods

This section describes (1) the event-based annotation schema, (2) the event evaluation scoring

method, (3) a new corpus annotated based on the schema, and (4) the new extraction

framework that can fine-tune a BERT model to extract both entities and relations.

5.3.1 Data

We collected 706,908 CT reports between 2008 and 2018 from our UW clinical data ware-

house. We randomly sampled 500 reports from the collection, and annotated as our gold

standard corpus.

5.3.2 Annotation schema

An event-based representation was used to capture the details of the two clinical findings.

Each event was characterized with a trigger and a set of connected arguments. The trig-

ger was a required key phrase identifying the finding event, while the arguments provided

fine-grained details about the event. The arguments were linked to the corresponding trig-

gers through argument roles, forming a detailed and nuanced semantic representation of the

clinical findings. A finding event comprised two types of arguments: span-only and span-

with-value. The annotation of span-only arguments included the selection of the relevant

phrase and connection to the trigger. The annotation of span-with-value arguments included

the selection of the relevant phrase and connection to the trigger, as well as the assignment

of a categorical label that captures the clinical meaning of the selected phrase (e.g., asser-

tion). The categorical labels normalized the contents of the annotated phrase, allowing the

extracted information to more easily be incorporated into secondary use applications. For

example, annotating the phrase ”concern for” as Assertion would include the assignment of

the categorical label possible (Please refer to Appendix A for example sentences). Because

the presence of a lesion or medical problem could be implied rather than explicit, the present

label of the argument Assertion was the default value for finding events, unless a possible or
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absent label was explicitly annotated. The annotation schema is summarized in Table 5.1.

Argument Type Value Example

Lesion

Finding

Lesion Description

(Trigger)

span-only - “mass”, “lesion”,

“nodule”

Anatomy span-only - “left lower lobe”

Assertion span-with-

value

present (default),

absent, possible

“no”, “possible”

Characteristics span-only - “hypodense”, “septal”

Count span-only - “2”, “numerous”,

“multiple”

Size span-only - “4.1 x 3.1 cm”, “small”

Size Trend span-with-

value

new, increasing, de-

creasing, no-change

“stable”, “unchanged”

Medical

Problem

Finding

Medical Problem

(Trigger)

span-only - “atherosclerotic calcifi-

cations”

Anatomy span-only - “abdominal aorta”,

“right kidney”

Assertion span-with-

value

present (default),

absent, possible

“no”, “possible”

Table 5.1: Annotation schema of lesion finding and medical problem finding.
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Extraction of these findings was treated as a slot filling task by the text spans that

corresponded to the arguments (argument entities with roles) of the clinical finding events.

Figure 5.1 presents example annotations for a Lesion event and a Medical Problem event.

For span-only arguments, the slot values would be the identified text spans. For span-with-

value arguments, the slot values would be the identified categorical labels, which captured

the meaning of the annotated phrase. A finding event might include multiple arguments

of the same type. For example, a medical problem could be linked to multiple anatomical

locations, or a lesion could be described by multiple characteristics.

Figure 5.1: Example annotations for Lesion and Medical Problem events.
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5.3.3 Evaluation

Inter-annotator agreement and model extraction performance was evaluated using the same

scoring criteria. The annotated and extracted events include trigger and argument entities

that are connected through argument roles. The pairing of triggers and arguments (entities

with identified roles) assembles events from the individual entities. The scoring criteria for

trigger and argument entities and argument roles are presented below.

Trigger and argument entities

Trigger and argument entities scoring considered the span identification and labeling, without

considering the roles linking trigger and argument entities. All trigger and argument entities

were compared at the token-level (rather than span-level) to allow partial matches, since

partially matched text spans could still contain clinically relevant information, e.g. “mass

lesions” vs “lesions”.

Argument roles

Argument role scoring considered three annotated/extracted phenomena: (1) the trigger

entity, (2) the argument entity, and (3) the argument role (linking the trigger-argument

entity pair). Argument role equivalence required the trigger entity, argument entity, and role

label to be equivalent. In argument role scoring, the entity equivalence criteria for triggers,

span-only arguments, and span-with-value arguments were based on their semantics in the

event representation, and the most salient information being captured by the entities.

Trigger: Events were aligned based on trigger equivalence, and the arguments associated

with aligned events (events with equivalent triggers) were compared based on the argument

types. Triggers were considered equivalent if the spans overlapped by at least one token.

Figure 5.2 shows an example of two Medical Problem annotations. Although the word

“displaced” is not part of the trigger in Annotation 2, their overlapping text spans and

connections to the Medical-Anatomy argument entities indicates that both argument entities
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belong to the same event and can be scored accordingly.

Figure 5.2: Two Medical Problem Finding event annotations with equivalent triggers.

Span-only: When evaluating argument role performance, span-only argument entity

equivalence was assessed at the token-level rather than span-level, because partial matches

can capture clinically relevant information. The example in 5.3, includes the same sentence

with two sets of annotations for a Lesion event with multiple Lesion-Anatomy arguments.

The second Lesion-Anatomy entities in the annotation do not match exactly. The discrep-

ancy between the Lesion-Anatomy annotations (”extending” in Annotation 1) includes some

clinical information; however, a majority of the clinically relevant information is captured

by both spans (”posteriorly to the nasopharynx”). The token-level equivalence criteria for

span-only argument entities was intended to reward such partial matches.

Figure 5.3: Two Lesion Finding events with partially matched span-only arguments.

Span-with-value: The categorical labels of span-with-value argument normalized the

contents of the annotated phrase, allowing the extracted information to more easily be in-
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corporated into secondary use applications. When evaluating argument role performance,

the span-with-value argument entity equivalence was assessed based on the categorical labels

only, without considering the spans. In Figure 5.4, although the Lesion-Size-Trend argument

entity in Annotation 2 does not include the words “and number”, both Lesion-Size-Trend

annotations have the same categorical label and slot value (increasing). Hence both annota-

tions are considered equivalent.

Figure 5.4: Two Lesion Finding event annotations with the same value for Lesion-Size-Trend.

5.3.4 Annotation agreement

The annotation was performed by one medical student and one graduate student using the

BRAT rapid annotation tool [101]. An annotation guideline was provided to describe the

details of each clinical finding event. Our annotators were trained in the initial iterations.

They were given the same samples to annotate independently. After each iteration, they met

to discuss disagreements and consulted a radiologist for advice. The annotation guideline

was updated accordingly.

Inter-annotator agreement was evaluated using the same event scoring criteria described

in the previous section. The agreement was calculated using pair-wise F1 score [102]. After

four iterations, the final inter-annotator agreement over 30 CT reports was 93.0% F1 for

triggers, 83.7% F1 for span-only arguments, and 86.9% F1 for span-with-value arguments.

The medical student then annotated the remaining 470 CT reports.
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5.3.5 Gold standard corpus

The final corpus contained 2,344 Lesion events (6,337 arguments and 6,617 roles), and 8,065

Medical Problem events (5,783 arguments and 7,406 roles). The argument counts represented

the number of annotated spans (entities), and the role counts indicated the number of trigger-

argument pairings. Since an argument could be linked to multiple triggers, the argument

role counts could be greater than the argument counts. The distributions of the annotated

arguments and roles are shown in Table 5.2. The number of annotated Medical Problem

events was more than 3 times higher than the number of Lesion events. In general, each

argument corresponded to a single role in the event, with the exception of Lesion-Size, which

could be either identified as the size at the present time or in the past.

Trigger/Argument Frequency Argument role Frequency

Lesion-Description 2,344 -

Lesion-Anatomy 2,039 Lesion-Anatomy 2,187

Lesion-Assertion 945 Lesion-Assertion 1,008

Lesion-Characteristic 1,931 Lesion-Characteristic 1,968

Lesion-Count 235 Lesion-Count 237

Lesion-Size 816 Lesion-Size-Past 94

Lesion-Size-Present 736

Lesion-Size-Trend 371 Lesion-Size-Trend 387

Medical-Problem 8,065 -

Medical-Anatomy 2,990 Medical-Anatomy 3,952

Medical-Assertion 2,793 Medical-Assertion 3,454

Table 5.2: Event annotation statistics.
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Overall gold standard corpus statistics are presented in Table 5.3. On average, there were

16 Medical Problem events and 5 Lesion events in a radiology report. Some radiology reports

in the gold standard were very dense and contained over 100 Medical Problem events.

Minimum Mean Median Maximum

Number of words per report 50 327 288 1383

Number of events per report 2 21 18 130

Number of Medical Problem events per report 0 16 13 129

Number of Lesion events per report 0 5 3 36

Number of arguments per Medical Problem event 0 1 1 5

Number of arguments per Lesion event 0 3 3 16

Table 5.3: Gold standard corpus statistics.

5.3.6 Event extraction

The finding events were extracted in two separate steps: (1) the trigger and argument entities

were extracted and (2) the argument roles were identified by connecting extracted trigger

and argument entities through relations. The pairing of the trigger and argument entities

through the argument roles assembles events from the individual entity extractions. Our

event extraction pipeline operated on sentences, which were treated as independent samples.

Trigger and argument entity extraction

The extraction of trigger and argument entities was defined as a NER task. We evaluated

two state-of-the-art neural network architectures: BiLSTM-CRF [103] and BERT [21].

BiLSTM-CRF:

BiLSTM-CRF was considered a strong NER baseline by multiple studies [61, 62, 104]. We

used the open source NeuroNER [71] for the BiLSTM-CRF implementation, which was also

used in our first study [90] (Chapter 3). In the BiLSTM-CRF architecture, each token in the
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input sentence was represented by the concatenation of a pretrained word embedding and a

character-aware word embedding. The character-aware word embedding was generated by a

BiLSTM operating on the individual characters associated with each token. The character-

aware word embedding enabled the model to learn the morphological structure in each word

and to encode out-of-vocabulary tokens. The word sequence was then encoded using a

second BiLSTM layer to create a contextualized representation of the sentence. The label

of each word was predicted by a CRF output layer which took into account the conditional

dependencies across the neighboring labels. To create input data for the NER model from

our annotated corpus, a series of preprocessing steps was taken. First, each annotated report

was segmented into sentences. We used the Begin, Inside, Outside (BIO) tagging schema,

based on whether the token was at the beginning, inside or outside of a label. For instance,

consider the sentence “Probable malignant pancreatic mass with no evidence of vascular

encasement”. The labels would be classified by the model, as illustrated in Figure 5.5.

Figure 5.5: Architecture of the NeuroNER BiLSTM-CRF model.
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BERT NER:

The BERT NER model was implemented by adding a single linear layer to the BERT

output hidden states and fine-tuning a pre-trained BERT model, as described by Devlin et

al. [21]. To prepare input data for the BERT NER model, the reports were also segmented

into sentences. Because BERT utilized WordPiece tokenization [105], each word that was not

in the BERT vocabulary would be segmented into multiple sub-tokens. These sub-tokens,

prefixed by “##” if not the first sub-token, allowed the segments of the words to be repre-

sented in a deterministic fashion. Rather than representing all the out-of-vocabulary words

with a universal token like [UNK], the sub-token representation provided richer contextual

embeddings for the model to generalize. During the BIO labeling, the sub-tokens starting

with “##” were assigned a special label #. In addition, the BERT input included the special

tokens [CLS] and [SEP] at the beginning and end of a sentence respectively, to signify the

sentence boundaries. Figure 5.6 illustrates how the labels of an input sentence were classified

by BERT NER.

Figure 5.6: Architecture of the BERT NER model.
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Argument Role Extraction

Once the triggers and argument entities were extracted, the argument roles were identified

by predicting the relations between triggers and argument entities. All events comprised

a single trigger that anchored the event, with zero or more argument connections. Each

relation was unidirectional where the head was the trigger and the tail was an argument.

Relations were predicted using BERT by adding a linear layer to the pooled output state

(encoded in the [CLS] token) and fine-tuning the model. Figure 5.7 presents the BERT

RE model with an example input sentence. A unique input sentence was created for each

candidate trigger-argument relation. The trigger and argument locations were marked with

two pairs of special tokens, namely ([unused0], [unused1]) and ([unused2], [unused3]), which

provided positional information about the entities and the direction of the relation. These

special tokens were part of the BERT vocabulary designed for introducing new domain

specific samples for fine tuning purposes. Consider the aforementioned example where the

word “Probable” is the Lesion-Assertion of the Lesion trigger “mass”. The trigger would be

marked as “[unused0] mass [unused1]” and the Lesion-Assertion would be marked as “[un-

used2] probable [unused3]”. Furthermore, we introduced a new relation called “No relation”

for negative training instances indicating the absence of relations between some arguments

and triggers.

Figure 5.7: Architecture of the BERT RE model.



61

We fine-tuned a single BERT model for both of the NER and RE tasks. While the input

sequence encoding is task specific, the Wordpiece tokenization as well as the BERT model

was shared. During training, the NER and RE batches were randomly alternated and each

minimizing the cross-entropy loss of its target labels. The gradient of the loss is then applied

to the same BERT model, effectively allowing the model to learn from both tasks.

Algorithm 1 Training NER and RE one a single BERT model

Preprocess the training samples for each task, i.e. NER, RE

Group the training samples into batches

Combine all sample batches

for each epoch do

Shuffle the training samples

for each batch in the samples do

1. Train the batch samples

2. Calculate the task-specific cross-entropy loss for the batch

3. Calculate gradient

4. Update model

end for

end for

5.3.7 Experiment settings

All experiments were performed by 5-fold cross validation (CV) with the same data splits

ratio (80% for training, 10% for validation, 10% for testing). For the entity extraction base-

line (BiLSTM-CRFrad), we used the word2vec embedding pre-trained on a radiology report

dataset from our previous work [90]. This dataset contained over 3 million reports cover-

ing a wide range of imaging modalities, and were collected from two institutions including

University of Washington Medical Center and Harborview Medical Center. In terms of the

model hyperparameters, the embedding dimension and the hidden state dimension of the
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character and sequence LSTM layers were 25 and 100. We used the Adam Optimizer with a

learning rate of 0.005, as recommended by NeuroNER. We applied early stopping with the

validation set in order to avoid overfitting the training data [106]. The training was stopped

when the validation results no longer showed improvement.

Three different pre-trained BERT models (BERTbase, BERTclinical and BERTrad) were

used experimentally. BERTbase was pre-trained on Wikipedia and BookCorpus, and made

available by Google [21]. BERTclinical was pre-trained on 2 million clinical documentation,

including over 500,000 radiology reports, from the MIMIC-III database [45, 43]. BERTrad was

pre-trained on over 3 million UW radiology reports and was initialized from the BERTclinical.

We pre-trained BERTrad for 150,000 steps with a batch size of 32, maximum sequence length

of 128, and a learning rate of 2e-5. In our experiments, both entities and relations were

extracted by fine-tuning the same BERT model. We used the same set of hyperparameters

in all the extraction experiments, using the recommended values for fine-tuning suggested

by Devlin et al., with a learning rate of 3e-5, a drop-out rate of 0.1. Early stopping was also

employed using the validation set.

To better assess the general performance of the models with different subsamples, we

repeated the cross validation 10 times. For each run, the cross validation data splits were

created with a different random seed [106]. We reported the average precision, recall and F1

scores across these 50 different runs and included the 95% confidence intervals.
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5.4 Results

5.4.1 Trigger and argument entity extraction results

All of the trigger and argument entities were extracted first before their relations were iden-

tified. Trigger and argument entity extraction performance was evaluated at the token-level.

Table 5.4 presents the results.

Entity
BiLSTM-CRFrad BERTbase BERTclinical BERTrad

P R F P R F P R F P R F

Medical-Problem 88.8 84.9 86.7 (±0.45) 89.1 83.9 86.4 (±0.37) 90.5 83.6 86.8 (±0.37) 91.3 85.0 88.0 (±0.34)

Medical-Anatomy 79.1 79.9 79.3 (±0.92) 82.3 77.9 79.9 (±0.87) 83.8 77.3 80.3 (±0.84) 85.7 78.5 81.8 (±0.75)

Medical-Assertion 85.6 84.5 84.9 (±0.79) 86.9 85.7 86.3 (±0.70) 87.8 84.7 86.1 (±0.63) 88.5 86.3 87.3 (±0.78)

Lesion-Description 87.2 87.9 87.5 (±0.71) 89.1 86.8 87.9 (±0.66) 89.0 87.6 88.2 (±0.62) 90.0 88.4 89.1 (±0.63)

Lesion-Anatomy 80.2 78.6 79.0 (±0.92) 85.5 76.5 80.6 (±0.94) 85.8 76.8 80.8 (±0.89) 86.8 80.7 83.5 (±0.86)

Lesion-Assertion 81.3 72.1 76.2 (±1.55) 86.0 70.0 76.8 (±1.60) 85.6 70.5 77.1 (±1.48) 86.5 73.6 79.3 (±1.26)

Lesion-Characteristic 76.6 72.6 74.1 (±1.36) 81.8 70.5 75.4 (±1.22) 82.8 71.3 76.3 (±1.11) 84.2 73.6 78.3 (±1.14)

Lesion-Size 84.1 85.8 84.4 (±1.88) 91.1 84.2 87.3 (±1.37) 89.1 84.4 86.4 (±1.56) 90.7 88.2 89.3 (±1.43)

Lesion-Count 89.1 85.6 86.7 (±2.20) 90.9 86.6 88.0 (±2.15) 92.0 88.0 89.3 (±2.07) 91.0 87.5 88.7 (±2.16)

Lesion-Size-Trend 69.0 63.2 65.5 (±3.20) 78.0 60.7 67.6 (±3.14) 75.2 59.5 65.5 (±2.98) 77.3 63.6 68.9 (±3.06)

Overall 84.2 82.1 83.1 (±0.37) 86.7 80.9 83.7 (±0.36) 87.7 80.6 84.0 (±0.28) 88.8 82.4 85.5 (±0.28)

Table 5.4: Entity extraction results (average precision, recall and F1 in %), based on 10
runs of 5-fold cross validation. The numbers in brackets are 95% confidence intervals of the
averages. The best F1 values are in bold.

The BERT models outperformed the BiLSTM-CRFrad baseline. With in-domain pre-

training, BERTrad achieved higher overall performance other other BERT variants. In

Lesion-Count prediction, BERTclinical was slightly higher than BERTrad. In Lesion-Size-

Trend prediction, the decreasing label had relatively low extraction performance due to the

small sample size. For the Assertion extraction, the absent label was easier to predict since

most of the annotated text spans comprised a single word “no”, which constituted 70% of

the Medical-Assertion and 84% of the Lesion-Assertion. We conducted statistical signifi-

cance tests using the overall F1 to access whether the difference in model results were due

to randomness or sampling variability. In cross validation, the training sets overlap between
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different folds. As a result, the classification performance from each fold is not completely

independent, and can lead to misleading statistical results when applying standard paired

t-tests [107]. Hence, we applied the corrected resampled t-test, as suggested by Nadeau and

Bengio [108], to better estimate the sample variance. The test results in Table 5.5 show that

the overall performance of BERTrad was better than the other architectures with significance

(p-value < 5e-6).

BERTbase BERTclinical BERTrad

BiLSTM-CRFrad 0.000665 0.00143 5.70E-08

BERTbase - 0.001506 0.000028

BERTclinical - - 0.000005

Table 5.5: Statistical test results on trigger and argument entity extraction.
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5.4.2 Argument role extraction results

In this section, we present the argument role extraction results, shown in Table 5.6. Specif-

ically, we predicted the argument roles using the extracted triggers and argument entities

rather than the gold standard entities. The evaluation of the event arguments was based

on the scoring described in section 5.3.3, which considered the most salient information,

i.e. slot value of each argument type in the finding events. The in-domain contextualized

representations helped the BERTrad model achieved higher performance in general, with the

exception of Lesion-Count.

Argument

type
Argument role

BERTbase BERTclinical BERTrad

P R F P R F P R F

Span-only Medical-Anatomy 78.4 67.1 72.1 (±1.12) 80.0 66.6 72.5 (±1.02) 81.4 68.3 74.2 (±1.00)

Span-with-

value
Medical-Assertion 86.8 82.3 84.5 (±0.54) 87.5 81.7 84.4 (±0.43) 88.6 83.0 85.6 (±0.45)

Span-only

Lesion-Anatomy 83.6 67.7 74.7 (±1.15) 84.2 68.1 75.1 (±0.98) 84.7 71.3 77.3 (±1.06)

Lesion-Characteristic 80.4 65.2 71.6 (±1.32) 81.5 66.0 72.6 (±1.21) 82.6 67.9 74.2 (±1.28)

Lesion-Count 87.0 81.6 83.4 (±2.11) 89.8 83.6 86.0 (±2.18) 88.1 83.3 85.1 (±2.09)

Lesion-Size 85.1 59.9 69.9 (±2.56) 85.5 60.6 70.5 (±2.10) 86.4 62.5 72.0 (±2.25)

Span-with-

value

Lesion-Assertion 85.4 79.7 82.4 (±0.69) 84.9 80.0 82.3 (±0.76) 86.1 81.2 83.5 (±0.61)

Lesion-Size-Trend 82.1 71.4 76.0 (±1.94) 80.3 70.4 74.4 (±2.21) 81.9 74.1 77.4 (±2.28)

Table 5.6: End-to-end argument roles extraction results (average precision, recall and F1 in
%), based on 10 runs of 5-fold cross validation. The numbers in brackets are 95% confidence
intervals of the averages. The best F1 values are in bold.
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5.4.3 Overall trigger and argument role extraction results

Table 5.7 presents the overall extraction performance for the triggers and the arguments

(entities with roles). The BERTrad model achieved the highest average F1 of 92.9% for

triggers, 75.0% for span-only arguments and 84.8% for span-with-value arguments. The

performance of BERTbase was comparable to BERTclinical. While BERTclinical performed

slightly better than BERTbase on triggers and span-only arguments, BERTbase performed

slightly better on span-with-value arguments.

Argument

type

BERTbase BERTclinical BERTrad

P R F P R F P R F

Trigger 90.9 92.1 91.5 (±0.24) 91.5 92.2 91.8 (±0.26) 92.6 93.2 92.9 (±0.25)

Span-only 79.8 67.1 72.8 (±0.71) 81.1 67.0 73.3 (±0.66) 82.3 69.0 75.0 (±0.66)

Span-with-value 86.3 81.2 83.6 (±0.46) 86.3 76.3 83.5 (±0.41) 87.6 82.1 84.8 (±0.39)

Table 5.7: Overall extraction performance for triggers and arguments (average Precision,
Recall and F1 in %).

Similar statistical tests were conducted on the overall extraction results. As can be

observed in Table 5.8, BERTrad achieved the best overall performance with significance (p-

values < 1.6e-4).

Trigger Span-only Span-with-value

BERTclinical BERTrad BERTclinical BERTrad BERTclinical BERTrad

BERTbase 0.002617 0.000001 0.005315 0.001638 0.001639 0.000459

BERTclinical 0.000037 0.000924 0.000224

Table 5.8: Statistical test results on trigger and argument role extraction.
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5.5 Extracting findings from MIMIC-CXR radiology reports

Section 5.4.2 shows the end-to-end event extraction results of our repeated cross-validation

using the gold standard CT radiology reports. To explore how the extraction model general-

izes on radiology reports from another institution as well as from another imagine modality,

we created a validation dataset from the MIMIC-CXR chest X-ray reports 1. 50 reports were

randomly selected from the 227,835 reports in the database and annotated using the same

finding event schema. This validation set included 257 Medical Problem finding events (141

argument entities and 313 roles) and 7 Lesion finding events (9 argument entities, 15 roles).

We extracted the findings from this validation dataset and evaluated the extraction perfor-

mance using the same argument role scoring described in section 5.3.3. The overall F1 scores

on this validation set were 95.6% for triggers, 79.1% for span-only arguments and 89.7% for

span-with-value argument. The performance was comparable to our repeated 5-fold cross

validation performance, despite the fact that the MIMC-CXR reports were from a different

institution and based on a different imaging modality.

Interestingly, the extracted MIMIC-CXR findings contained clinical concepts that were

absent in the UW CT corpus. For instance, the words “plasmacytoma” and “fibroadenomas”

were correctly identified as lesions and “acute respiratory distress syndrome” was correctly

identified as medical problem, even though these lesion and medical problem mentions did

not appear in any radiology reports in the training corpus. This could be attributed to

the pre-training of BERTrad with 3 million UW radiology reports covering a wide range of

modalities. To contribute to the core aim of the MIMIC-CXR project and facilitate future

research studies in medical imaging, we extracted all clinical findings from 227,835 radiology

reports in MIMIC-CXR using the fine-tuned BERTrad model. A total of 1,420,604 medical

problem findings and 31,706 lesion findings were extracted. We are releasing the finding

extraction results to the research community 2.

1https://physionet.org/content/mimic-cxr/2.0.0/

2https://github.com/uw-bionlp/MIMIC-CXRclinicalf indings
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5.6 Discussion and error analysis

In section 5.4.1, we show the superior performance of BERT models in entity extraction

compared to the BiLSTM-CRF baseline. Furthermore, the in-domain pre-training allowed

BERTrad to develop better contextual representations and generally achieved higher perfor-

mance in both entities and argument roles extraction. Knowledge of clinical concepts that

are unseen in the training corpus can be learned and transferred to other tasks.

In this section, we analysed the extraction results and discussed some limitations. Among

the finding entities, Medical-Problem and Medical-Anatomy had relatively long text spans.

Over 25% of Medical-Problem spans and 35% of Medical-Anatomy spans contained at least 5

words. We found that some entities with lengthy spans were extracted into multiple separate

entities, particularly before and after a conjunctive word. About 4% of all Medical-Problem

entities and 7% of all Medical-Anatomy entities were split into multiple entities by the entity

extraction models. Figure 5.8 presents an example of each case.

Figure 5.8: Examples of long text spans being extracted into multiple entities.

Our annotation schema allowed a text span assigned with multiple labels. For example, a

body location can be both the anatomical region of a lesion and a medical problem. However,

our NER model could only predict a single label for each token, and therefore cannot assign

the same text spans for both Medical-Anatomy and Lesion-Anatomy. Approximately 1% of



69

all entities in the corpus had multiple labels, so this limitation does not impact the overall

extraction performance. One way to circumvent this single-label limitation is by having a

single entity for both findings. Although a single anatomy entity no longer carries any clinical

finding connotation, its association with the finding events can still be identified by the RE

model.

Our extraction framework employed multi-task learning to optimize the parameters of

a single BERT model. Other fine-tuning approaches applied additional components to the

architecture to boost performance. One example is using graph structures to jointly model

the span relations in the different tasks [109]. Another example is using entity aware markers

to encode input sentences in a relation extraction model, which was shown to outperform

joint modeling architectures [110]. Our BERTrad model was pre-trained using the common

transfer learning paradigm by initializing its weight from another BERT model in relevant do-

main. This approach is particularly advantageous when the target data are scarce. However,

a recent study showed that pre-training the language model from scratch in a domain with

abundant unlabeled text could derive better in-domain vocabulary and result in substan-

tial performance improvement [111]. Since our UW dataset contained more than 3 million

radiology reports, this pre-training approach could potentially improve the contextual rep-

resentation of the BERTrad model and possibly lead to better event extraction performance.

5.7 Summary

In this work, we present a new schema for extracting lesion and medical problem findings

from radiology reports. Based on the schema, we annotated a new corpus of 500 CT reports.

We used the corpus to train the same BiLSTM-CRF model in the first study [90] (Chapter

3) as the baseline for entity extraction. We then employed the same pre-trained language

model, BERT, in the second study [112] (Chapter 4) to extract both entities and relations.

We demonstrated that the BERT model not only outperformed the baseline in finding argu-

ment entities extraction, but also achieved superior performance in relation extraction. In

particular, the one that was pre-trained with 3 million radiology reports achieved the highest
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performance in both entity and relation extraction. Because our multi-institutional corpus

covered a wide range of imaging modalities, the acquired deep contextual knowledge from

these reports allowed the model to perform comparatively well in another imaging modality.

We demonstrated that by extracting clinical findings from the MIMIC-CXR chest X-ray

reports.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

This thesis details how unstructured text in radiology reports can be applied to secondary

use. In the first study, we extracted follow-up recommendations and the related entities

from 3 million UW radiology reports. We analysed patient follow-up adherence rate by

imagine modalities and discovered that mammogram exams had the highest follow-up rate

of 77%. However, over 38% of patients with CT exams did not have any follow-up tests as

recommended by radiologists. This finding may be concerning as missing follow-up diagnosis

can compromise patient health, especially if an unexpected lesion was discovered in the

image. In the second study, we developed a deep learning model using BERT to classify CT

exam protocols. To train our models, we used structured EHR data (age, gender) as well

as unstructured text of patient history and diagnosis. The most common exams, specifically

the CT Chest, Abdomen, Pelvis with IV and Oral, could be classified at 93% F1. Some

exams could be classified at up to 96% F1 (CT Pelvis Cystogram). Potentially, the machine

learning model can be integrated into clinical workflow to make suggestions for radiologists.

As the advancement of NLP and AI research continue to progress, the model performance is

approaching human performance. In the third study, we extracted clinical findings using an

in-domain pre-trained BERT model, the extraction performance for triggers and arguments

were (92.9%,75.0%,84.8%), while the human annotator performance were (93.0%, 83.7%,

86.9%). Although our span-only argument extraction performance was below annotator

agreement, both triggers and span-with-value arguments extraction were close to human

performance. Furthermore, the BERTrad model trained with CT reports performed equally

well in the extraction of chest X-ray reports.
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6.1 Contribution

Collectively, the information extracted in our studies provided vast opportunities for sec-

ondary use application. The clinical findings of lesions and medical problems offered ad-

ditional evidence to support radiologists’ follow-up recommendations. For those patients

who did not have follow-up imaging tests, we can investigate the possible correlation in the

presence of lesions/medical problems, and certain anatomical regions. Are patients with

certain lesion/medical problem findings at specific anatomical locations more likely to miss

recommended follow-up tests? How many of these patients had an unexpected lesion finding?

Although our extraction work focused on radiology reports, the deep learning NER and

RE approaches can also be applied to other clinical text. For that reason, the multi-task

event extraction framework used in the third study (Chapter 5) was developed to be able to

train/validate/predict any annotated corpora. The file path of the annotations, as well as

model parameters can be set easily in a configuration file. Any extraction experiments can

therefore be performed with minimal effort, and the results are reproducible.

6.2 Future work

One of the limitations in supervised machine learning is that the model performance hinges

on the quality of the annotation. Achieving high quality of annotation requires substantial

time and effort from clinicians especially if the annotation schemas are complex. Unlike other

clinical domains, one unique aspect of radiology is the abundance of imaging data. The raw

pixels, even without annotations, depict the body locations, effusion, and lesions. Some

examinations also include multiple views. Theses images offer additional training data to

each radiology report, and can be trained in a multi-modal network to boost the performance

of the extraction work.

In recent years, multi-modal learning has been applied to natural language generation

(NLG). Using pre-trained image encoders and RNN decoders, researchers were able to gener-

ate captions describing images [113, 114]. These models were later adapted to the radiology
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domain, where an image encoder was trained to read the X-ray image with a RNN or trans-

former decoder to generate the report of clinical findings. Table 6.1 presents an example of

predicted reports using the Show, Attend, and Tell model [114]. The gold standard images

and reports were taken from the MIMIC-CXR database.

Gold Generated report

As compared to the previous ra-

diograph, there is no relevant

change. No change in posi-

tion of the left pleural pig-

tail catheter. No evidence

of recurrent left pneumothorax.

Unchanged opacities at the left

lung base and in the retrocar-

diac lung regions. Unchanged

appearance of the right lung with

mild cardiomegaly and a right

basal combined atelectasis

and pleural effusion. Un-

changed position of the en-

dotracheal tube and the na-

sogastric tube.

In comparison with the study of

, the monitoring and

support devices remain in

place . There is again enlarge-

ment of the cardiac silhou-

ette with pulmonary vascular

congestion and bilateral pleural

effusions with compressive at-

electasis at the bases . Mon-

itoring and support devices

remain in place .

Table 6.1: Generated report of clinical findings using MIMIC-CXR image.

Radiology report generation is an emerging research area. One potential approach to

improve the report generation is by leveraging our extracted MIMIC-CXR clinical findings

as a secondary training objective to fine tune the sequence decoder. The decoded sequence

can be used to predict the one-hot representation of the extracted clinical findings, using

an additional cross-entropy loss function. This secondary training objective can reinforce

the NLG model’s understanding of common clinical findings in chest X-ray images, such
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as pleural effusion, pneumonia, and pneumothorax, thereby allowing the model to generate

more accurate reports.

6.3 Final remarks

AI technology is already part of our everyday lives, from online shopping recommenda-

tions, digital voice assistant, to autonomous driving. The opportunity of integrating AI into

hospital EHR systems is immense. The vast amount of clinical data offer tremendous op-

portunities to derive new and important insights, which can assist health care providers

and improve patient care. Recognizing the importance of clinical AI, FDA proposed a

framework, namely “Proposed Regulatory Framework for Modifications to Artificial Intelli-

gence/Machine Learning-Based Software as a Medical Device” [115], to ensure changes made

to the AI algorithms are transparent so that real-world performance can be monitored for

safety assurance. In addition, FDA organized a public workshop in February 2020, with the

title of ”Evolving Role of Artificial Intelligence in Radiological Imaging.”, to discuss appli-

cations of AI in radiological imaging, focusing on computer aided-detection and diagnosis

software (CADe and CADx). CADe and CADx software make suggestion on clinical relevant

findings after analyzing radiological images. Unlike the software from early generation which

only augmented the tasks performed by radiologists, FDA acknowledged that the latest soft-

ware powered by advanced AI can perform some tasks autonomously. This perspective is

concurred by Dr. Geoff Hinton, a renowned professor and researcher in deep learning, who

popularized backpropagation in neural networks, and consequently contributed to the recent

deep learning movement. Hinton asserted that within the next 5-10 years, deep learning can

do better than radiologists in interpreting radiological images [116].

Whether Hinton’s prediction is true or not still yet to be seen. However, undoubtedly,

deep learning allows us to extract valuable information from radiology reports with state-of-

the-art performance. The extracted information provides supporting evidence for clinicians

to determine their course of action. At the minimum, they can serve as reminders to pre-

vent clinicians from overlooking clinically important findings and recommendations. We are
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optimistic that deep learning and AI will continue to mature and, with FDA’s governance

and careful evaluation in prospective clinical trials, can eventually be integrated into clinical

decision support systems to improve quality of patient care. We hope that this dissertation

work contributes to this noble cause and brings a step closer to achieving more ”meaningful

use” of EHRs.



76

BIBLIOGRAPHY

[1] The american recovery and reinvestment act of 2009. https://www.healthit.gov/

sites/default/files/hitech_act_excerpt_from_arra_with_index.pdf.

[2] Improve quality safety, efficiency and reducing health disparities. https://www.

healthit.gov/sites/default/files/mu_wg_stage_3_planning_16_jul_12.docx.

[3] Ellen Kim, Samuel M Rubinstein, Kevin T Nead, Andrzej P Wojcieszynski, Peter E
Gabriel, and Jeremy L Warner. The evolving use of electronic health records (ehr) for
research. In Seminars in radiation oncology, volume 29, pages 354–361. Elsevier, 2019.

[4] Charles Safran, Meryl Bloomrosen, W Edward Hammond, Steven Labkoff, Suzanne
Markel-Fox, Paul C Tang, and Don E Detmer. Toward a national framework for the
secondary use of health data: an american medical informatics association white paper.
Journal of the American Medical Informatics Association, 14(1):1–9, 2007.

[5] The acr practice parameter for the communicationof diagnostic imaging find-
ings. https://www.acr.org/-/media/acr/files/practice-parameters/

communicationdiag.pdf.

[6] The joint commission. improve the effectiveness of communication among care-
givers. https://www.jointcommission.org/-/media/tjc/documents/standards/

national-patient-safety-goals/2020/npsg_chapter_cah_jul2020.pdf.

[7] Joanne Callen, Andrew Georgiou, Julie Li, and Johanna I Westbrook. The safety
implications of missed test results for hospitalised patients: a systematic review. BMJ
quality & safety, 20(2):194–199, 2011.

[8] William E Holden, David M Lewinsohn, Molly L Osborne, Chris Griffin, Ann Spencer,
Carol Duncan, and Mark E Deffebach. Use of a clinical pathway to manage unsuspected
radiographic findings. Chest, 125(5):1753–1760, 2004.

[9] Eric G Poon, Jennifer S Haas, Ann Louise Puopolo, Tejal K Gandhi, Elisabeth Burdick,
David W Bates, and Troyen A Brennan. Communication factors in the follow-up of
abnormal mammograms. Journal of General Internal Medicine, 19(4):316–323, 2004.

 https://www.healthit.gov/sites/default/files/hitech_act_excerpt_from_arra_with_index.pdf
 https://www.healthit.gov/sites/default/files/hitech_act_excerpt_from_arra_with_index.pdf
https://www.healthit.gov/sites/default/files/mu_wg_stage_3_planning_16_jul_12.docx
https://www.healthit.gov/sites/default/files/mu_wg_stage_3_planning_16_jul_12.docx
 https://www.acr.org/-/media/acr/files/practice-parameters/communicationdiag.pdf
 https://www.acr.org/-/media/acr/files/practice-parameters/communicationdiag.pdf
 https://www.jointcommission.org/-/media/tjc/documents/standards/national-patient-safety-goals/2020/npsg_chapter_cah_jul2020.pdf
 https://www.jointcommission.org/-/media/tjc/documents/standards/national-patient-safety-goals/2020/npsg_chapter_cah_jul2020.pdf


77

[10] R James Brenner, Leonard L Lucey, John J Smith, and Roger Saunders. Radiology
and medical malpractice claims: a report on the practice standards claims survey of
the physician insurers association of america and the american college of radiology.
AJR. American journal of roentgenology, 171(1):19–22, 1998.

[11] Jeremy S Whang, Stephen R Baker, Ronak Patel, Lyndon Luk, and Alejandro Cas-
tro III. The causes of medical malpractice suits against radiologists in the united states.
Radiology, 266(2):548–554, 2013.

[12] Meliha Yetisgen-Yildiz, Martin L Gunn, Fei Xia, and Thomas H Payne. A text process-
ing pipeline to extract recommendations from radiology reports. Journal of biomedical
informatics, 46(2):354–362, 2013.

[13] Meliha Yetisgen-Yildiz, Martin L Gunn, Fei Xia, and Thomas H Payne. Automatic
identification of critical follow-up recommendation sentences in radiology reports. In
AMIA Annual Symposium Proceedings, volume 2011, page 1593. American Medical
Informatics Association, 2011.

[14] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical attention networks for document classification. In Proceedings of the 2016
conference of the North American chapter of the association for computational linguis-
tics: human language technologies, pages 1480–1489, 2016.

[15] Jay A Harolds, Jay R Parikh, Edward I Bluth, Sharon C Dutton, and Michael P
Recht. Burnout of radiologists: frequency, risk factors, and remedies: a report of the
acr commission on human resources. Journal of the American College of Radiology,
13(4):411–416, 2016.

[16] Brad J Balint, Scott D Steenburg, Hongbu Lin, Changyu Shen, Jennifer L Steele, and
Richard B Gunderman. Do telephone call interruptions have an impact on radiology
resident diagnostic accuracy? Academic radiology, 21(12):1623–1628, 2014.

[17] McKinley Glover IV, Renata R Almeida, Pamela W Schaefer, Michael H Lev, and
William A Mehan Jr. Quantifying the impact of noninterpretive tasks on radiology
report turn-around times. Journal of the American College of Radiology, 14(11):1498–
1503, 2017.

[18] Andrew Schemmel, Matthew Lee, Taylor Hanley, B Dustin Pooler, Tabassum Kennedy,
Aaron Field, Douglas Wiegmann, and J Yu John-Paul. Radiology workflow disruptors:
a detailed analysis. Journal of the American College of Radiology, 13(10):1210–1214,
2016.



78

[19] Giles W Boland, Richard Duszak, and Mannudeep Kalra. Protocol design and opti-
mization. J Am Coll Radiol, 11(5):440–1, 2014.

[20] Computed tomography (ct) - body. https://www.radiologyinfo.org/en/info/

bodyct.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, 2019.

[22] Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz, Nathaniel R Greenbaum,
Matthew P Lungren, Chih-ying Deng, Roger G Mark, and Steven Horng. Mimic-cxr,
a de-identified publicly available database of chest radiographs with free-text reports.
Scientific data, 6(1):1–8, 2019.

[23] Peter Spyns. Natural language processing in medicine: an overview. Methods of infor-
mation in medicine, 35(04/05):285–301, 1996.

[24] Naomi Sager. A procedure for left to right analysis of sentence structure. https:

//cs.nyu.edu/cs/projects/lsp/pubs/TDAP_27_1960.pdf.

[25] Naomi Sager. Report on the String Analysis Programs: Introductory Volume. Univer-
sity of Pennsylvania, Department of linguistics, 1966.

[26] Naomi Sager, Carol Friedman, and Margaret S Lyman. Medical language processing:
computer management of narrative data. Addison-Wesley Longman Publishing Co.,
Inc., 1987.

[27] M Lyman, N Sager, C Friedman, and E Chi. Computer-structured narrative in ambu-
latory care: its use in longitudinal review of clinical data. In Proceedings of the Annual
Symposium on Computer Application in Medical Care, page 82. American Medical
Informatics Association, 1985.

[28] Donald AB Lindberg, Betsy L Humphreys, and Alexa T McCray. The unified medical
language system. Yearbook of Medical Informatics, 2(01):41–51, 1993.

[29] Alan R Aronson. Effective mapping of biomedical text to the umls metathesaurus:
the metamap program. In Proceedings of the AMIA Symposium, page 17. American
Medical Informatics Association, 2001.

https://www.radiologyinfo.org/en/info/bodyct
https://www.radiologyinfo.org/en/info/bodyct
https://cs.nyu.edu/cs/projects/lsp/pubs/TDAP_27_1960.pdf
https://cs.nyu.edu/cs/projects/lsp/pubs/TDAP_27_1960.pdf


79

[30] Guergana K Savova, James J Masanz, Philip V Ogren, Jiaping Zheng, Sunghwan
Sohn, Karin C Kipper-Schuler, and Christopher G Chute. Mayo clinical text analysis
and knowledge extraction system (ctakes): architecture, component evaluation and
applications. Journal of the American Medical Informatics Association, 17(5):507–
513, 2010.

[31] Sergey Goryachev, Margarita Sordo, and Qing T Zeng. A suite of natural language pro-
cessing tools developed for the i2b2 project. In AMIA Annual Symposium Proceedings,
volume 2006, page 931. American Medical Informatics Association, 2006.

[32] Hamish Cunningham. Gate, a general architecture for text engineering. Computers
and the Humanities, 36(2):223–254, 2002.
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Appendix A

ANNOTATION GUIDELINES FOR CLINICAL FINDING
EXTRACTION
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The goal of this annotation is to extract two different clinical findings from radiology

reports, namely Medical problem finding, and Lesion finding. Each finding is represented

by an event consisting of a trigger and multiple arguments. The annotation process involves

identifying text spans within the notes that directly associate with the different clinical

information as well as the relationships among them. Each piece of information (entity) is

related to an event trigger, which link all information together cohesively. The following

diagram shows the different clinical entities with the event triggers marked in red. The

entities with * are categorical with pre-defined values. The following sections describe how

each piece of information will be annotated. Not all entities are present in a radiology report.

However, when annotating an entity within a clinical finding, the corresponding trigger (red)

should always be identified and annotated first.

Figure A.1: Clinical finding events and their associated arguments.
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Annotation is done on the BRAT tool. When highlighting a text span, a window will

pop up showing the selections.

Figure A.2: BRAT tool entity selections for new annotation.

The right panel indicates the event triggers for the clinical findings. The left panel shows

the entity types that are associated with each event trigger. The medical finding entities

are highlighted in green while the lesion finding entities are in yellow. The ones in dark

green and dark yellow are categorical which require selecting one of the possible values in
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the drop-down box down below. More details will be provided in the following sections. In

general, entities highlighted in red are the event triggers and should be annotated first before

others.

Annotating a text span involves selecting the entire text span with a mouse, and then

choose one of the entities on Figure 2. If the entity is categorical, a drop-down box will be

presented on the window. Choose the appropriate value from the drop-down box.
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medical problem finding

Medical problem findings are abnormal pathological process uncovered by the radiology

imaging test, such as cirrhosis, air-trapping, fracture, and effusion. A medical finding includes

problem description, affected anatomy, and assertion.

A.1 Problem Description (required)

The description of medical problem serves as the event trigger. The text span can be a

multi-word phase that identifies the actual medical problem, such as “osteophyte formation”

and “fracture”.

A.2 Anatomy

Medical finding anatomy entity is a text span which captures one or more body parts as-

sociated with the medical problem, such as “C5-6” in the following example. Notice that a

link “has-Medical-Anatomy” needs to be created from the trigger “osteophyte formation” to

“C5-6” indicating their relationship. The link can be created on the UI by simply dragging

an arrow from the event trigger to the anatomy entity.
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A.3 Assertion

Medical finding assertion is a categorical value (possible, absent) indicating the likelihood

of the medical problem. The following shows some assertions highlighted in dark green.

Assertion has a default value of present. If no other explicit assertion value is annotated for

the medical problem, it is implied that the medical problem has a present assertion.

The following table presents some examples of each category. The underlined text spans

are the medical problem event triggers.

value examples

possible
There is a possible nondisplaced L5 spinous process fracture.

Liver: There is a mildly nodular contour of the liver as before, possibly representing cirrhosis.

present (default)
Calcified atherosclerosis of the LAD.

C5-6 lucency with well corticated margins is consistent with osteophyte formation.

absent
No evidence of radiopaque nephrolith.

Visualized osseous structures show no acute osseous abnormality.



96

When annotating a text span with this entity type or any categorical types, make sure

a corresponding entity attribute is selected from the bottom drop-down on the BRAT tool.

Select the values from the corresponding drop-down for each type

Figure A.3: Brat annotation screen showing categorical drop-down at the bottom.
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lesion finding

Lesion finding describes the extent of lesion development that can be observed on the

imaging, which includes description, anatomy, lesion size, size trend, count and assertions.

Noun phrases containing anatomical location as part of a lesion description, (e.g. brain lesion

or pulmonary nodules) should be annotated as two separate entities, i.e. lesion-anatomy

(brain, pulmonary) and lesion-description (lesion, nodules).

A.4 Lesion description (required)

The description of lesion finding serves as the event trigger and is mandatory. Common text

spans are (“mass”, “node”, “nodule”, “nodular opacity”, “lesion”). “Opacity” on its own is

considered a medical problem.

A.5 Anatomy

Lesion anatomy entity is a text span capturing one or more body parts where the lesion

is located, such as “bilateral pulmonary” in this example. The links labelled “has-Lesion-

Anatomy” indicate the relations between the Lesion-Anatomy entities and the corresponding

lesion descriptions.
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A.6 Size

Some lesion descriptions contain size, such as “7.7 x 6.4 cm” and “4.8 x 4 cm” in the example.

The links labelled “has-Lesion-Size-Present” indicate the relations between the Lesion-Size

entities and the corresponding lesion descriptions. A separate relation “has-Lesion-Size-Past”

should be used to link to lesion sizes in the past exams.

A.7 Size trend

Some lesion descriptions contain size trend which is a categorical value (new, increasing,

deceasing, no-change), such as the word “Unchanged” in the following example. The links

labelled “has-Lesion-Size-Trend” indicate the relations between the Lesion-Size-Trend enti-

ties and the corresponding lesion descriptions.
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The following table presents some examples of each category. The underlined text spans

are the medical problem event triggers.

value examples

new
On the current exam, there is a newly identified hypodense well-delineated mass.

Liver: There is a mildly nodular contour of the liver as before, possibly representing cirrhosis.

increasing

One nonhypermetabolic lymph node which is increased in size.

More peripherally, there is 10 x 9 mm nodule adjacent to the suture line (4/63)

which is gradually increasing in size since 2/17/2017, too small to characterize on PET.

decreasing

Decreasing size of the hypodense lesion within the inferior aspect of the right hepatic lobe

now measuring 0.6 cm compared to 1.5 cm on 06/04/2014

The mass in the proximal ureter has decreased significantly in size, currently measuring

3 mm (4/104), decreased from 7 x 8 mm.

no-change

There is a hypoattenuating left adrenal nodule that has been increasing in size since 2009

though it is unchanged since May.

Enlarged inferior mediastinal and right hilar lymph nodes are unchanged since January.

A.8 Count

Some lesion findings include the number of nodules or lesions, such as “multiple” in the

following example. The link “has-Lesion-Count” indicates the relation between the Lesion-

Count entity and the corresponding lesion description.
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A.9 Assertion

Assertion is a categorical value (possible, absent) indicating the likelihood of the lesion

finding, such as the word “no” in this example. The link “has-Lesion-Assertion” indicate the

relation between the assertion entity and the corresponding lesion description. Like Medical

Assertion, Lesion Assertion also has a default value of present. If no other explicit assertion

value is annotated for the lesion finding, it is implied that the lesion finding has a present

assertion.

The following table presents some examples of each category. The underlined text spans

are the medical problem event triggers.

value examples

possible

Cannot completely exclude mass.

Focal lesion seen in segment five shows delayed phase contrast washout indeterminate in

nature, possibly dysplastic nodule vs. low grade HCC.

present (default)

Stable segment 7 metastasis status post radiation therapy.

Intense FDG uptake (max SUV 17.1) is noted within 27 x 21 mm nodule in left lower

lobe (4/76), consistent with biopsy-proven invasive adenocarcinoma.

absent
Findings: No suspicious enhancing nodule is seen.

No obvious intracystic septations or mural nodularity are seen.
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A.10 Characteristic

Characteristic attribute indicates the lesion characteristics such as the word “osseous” in

this example. The link “has-Lesion-Characteristc” indicates the relation between the Char-

acteristic entity and the corresponding lesion description.
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Notes

• Avoid annotate articles (e.g. a, an, the), and unnecessary adjectives.

• Avoid annotate overlapping text spans. i.e. text spans overlapped with more than one

annotation.

• Typical lesion description noun phrases (“mass”, “node”, “nodule”, “nodular opaci-

ties”, “lesion”)

• “opacity” itself is considered a medical problem.

• Noun phrases containing anatomical location as part of a lesion description, (e.g. brain

lesion or pulmonary nodules) should be annotated as two separate entities, i.e. lesion-

anatomy (brain, pulmonary) and lesion-description (lesion, nodules).

• Avoid annotating assertion modifiers (‘likely’, ‘possible’) for non-triggers. E.g. in the

span, much less likely a metastatic lesion, “much less likely” is not Lesion-Assertion

(possible) for “lesion”, as it is describing the extent of metastasis.
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