
 

 

 

© Copyright 2019 

 

Dae Hyun Lee 

  



 

Predictive Approaches for Acute Adverse Events in Electronic Health Records 
 

 

 

Dae Hyun Lee 

 

 

 

 

A dissertation 

 

submitted in partial fulfillment of the 

 

requirements for the degree of 

 

 

 

Doctor of Philosophy 

 

 

 

 

University of Washington 

 

2019 

 

 

 

 

Reading Committee: 

 

Meliha Yetisgen, Co-Chair 

 

Eric Horvitz, Co-Chair 

 

Lucy Vanderwende 

 

 

 

 

 

Program Authorized to Offer Degree:  

 

Biomedical and Health Informatics 

  



 

 

University of Washington 

 

 

 

Abstract 

 

 

 

 

 Predictive Approaches for Acute Adverse Events in Electronic Health Records 

 

 

 

Dae Hyun Lee 

 

 

 

Chair of the Supervisory Committee: 

Meliha Yetisgen and Eric Horvitz 

Biomedical and Health Informatics 

 

 

Medical errors have been cited as the third leading cause of death in the United States in 2013. 

Failure to rescue (FTR) is a subtype of medical errors and refers to the loss of an opportunity to 

save a patient’s life after the development of one or more preventable and treatable complications. 

Focusing on detecting early signs of deterioration may therefore provide opportunities to prevent 

and/or treat an illness in a timely manner, which may in turn reduce the number of FTR cases. 

When implementing a data-driven model to predict the risk of potential FTR onsets in a supervised 

setting, gold standard information for the target FTR onset is often not directly retrievable in 

electronic health records (EHR) so that it requires to manually annotate clinical observations with 

corresponding labels. This method results in a bottleneck to scalability and the full utilization of 



 

the clinical observations available in EHRs for model training. In this dissertation, I propose a 

machine learning framework that can be used to derive a risk prediction model using proxy events 

of the disease of interest, the administration of relevant clinical interventions, as a noisy label via 

a distant supervision approach. Moreover, this study evaluated the effects of considering the 

temporal progression of FTR risk estimates calculated using myopic evidence. Lastly, a case study 

is presented to demonstrate that the proposed prediction models can be deployed to quantify the 

adverse effects of clinical interventions with regard to the target disease of interest. This 

dissertation demonstrates 1) the feasibility of using proxy events of the target disease as a label for 

supervised model training, 2) the performance improvement when temporal progression is 

considered in the risk prediction model design, and 3) the applicability of the proposed risk 

prediction model to quantify the adverse effects of clinical interventions regarding the target 

disease. Suggestions are also provided on how the proposed model could be further improved by 

integrating experts’ knowledge with the proposed framework.  
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Chapter 1. Introduction 

1.1. Significance of the problem 

The aftermath of medical errors resulted in $17.1 billion in unnecessary expenditures in 2008 [1]. 

To mitigate the adverse effects of medical errors, many government agencies have implemented 

countermeasures, such as funding medical research to better understand the extent of medical 

error1 and penalizing clinical malpractice by denying reimbursement2. However, the mitigation 

of medical errors is still not fully addressed or understood, leaving medical error the third leading 

cause of death in the US in 2014 [2].  

The medical errors grabbed the attention of the medical community when they were first 

highlighted by the Institute of Medicine’s seminar paper “To Err is Human” in the late 1990s [3]. 

Upon being published, the report categorized different types of medical errors (Table 1.1). Of 

these different types of medical errors, patient harm caused by intra-management activities, such 

as error in the dose or method of using a drug and in the performance of an operation, procedure, 

or test, have been decreased because of safety guidelines [4] and policy measures [5]; the 

prevalence of catheter-induced infections was decreased significantly by implementing 

additional verification procedures before and after the interventions while the rate of errors 

around drug administration (e.g. administering the wrong dose or to the wrong patient) decreased 

significantly as barcode-based patient verification processes were implemented as a standard 

practice [6], [7]. Since the current electronic health records (EHRs) tend to log more information, 

not only about patients but also clinical practice around them, it would be less challenging to 

track how these types of errors were committed, thereby allowing practitioners to develop 

counteractive measures to systematically avoid such incidents [8]. 

Diagnostic 

- Error or delay in diagnosis 

- Failure to employ indicated tests 

- Use of outmoded tests or therapy 

- Failure to act on results of monitoring or testing 

Treatment 

- Error in the performance of an operation, procedure, or test 

- Error in administering the treatment 

- Error in the dose or method of using a drug 

- Avoidable delay in treatment or in responding to an abnormal test 

- Inappropriate (not indicated) care 

Preventive 

- Failure to provide prophylactic treatment 

- Inadequate monitoring or follow-up of treatment 

Other 

- Failure of communication 

- Equipment failure 

- Other system failure 

Table 1.1. Types of Medical Errors [3] 

 
1https://www.ahrq.gov/news/newsroom/press-releases/health-affairs-patient-safety-research.html 
2https://www.cms.gov/newsroom/fact-sheets/eliminating-serious-preventable-and-costly-medical-errors-never-events 
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In contrast, medical errors caused by omission—such as errors due to avoidable delays in 

treatment or in responding to an abnormal test, failure to act on results of monitoring or testing, 

and failure to provide prophylactic treatment—are still a challenge to be addressed in current 

practice [9], [10] because these types of errors are hard to foresee, thereby making them 

challenging to be defined and be extracted systematically from the existing EHR for further 

analyses. Of such cases, Silber et al. first identified groups of patients with preventable 

complications after cardiac surgeries [11]; they then introduced the concept of failure to rescue 

(FTR) [12]. The FTR refers to the failure to save patients who presented early signs of 

deterioration but on whom the current clinical workflow failed to apply proactive managements, 

even though such measures are currently available. This concept is now adopted as a standard 

quality metric from the Agency of Healthcare Research and Quality(AHRQ)’s patient safety 

indicators [13] because the proper management of FTR incidents not only improves the quality 

of care [14] but also would decrease hospital operation costs for handling unnecessary patient 

deterioration [15], [16]. However, although retrospective analyses could be done on such cases 

based on patients’ discharge diagnoses and evidence from the EHRs [17], [18], implementing a 

framework to prevent such cases in practice is still challenging as it is hard to pin-point the time 

where such incidents are prevalent compared to the patient harms committed through intra-

management activities. Therefore, if such an alerting system can be implemented into the 

workflow, thereby providing a quantitative estimates of the risk of future FTR incidents, it would 

allow caregivers to either verify biomarkers for the potential FTR incidents or handle such risk 

factors proactively in order to reduce the likelihood of these FTR event onsets. 

Within the clinical domains, experts came up with the early warning scores (EWSs), which aim 

to quantify patients’ risks of the adverse events or specific physiological states, as a tool to triage 

patients under management. The scores, such as the Glasgow Coma Score (GCS) [19] and the 

Acute Physiology and Chronic Health Evaluation (APACHE) [20] score, were designed to 

abstract multiple physiological measurements into fewer quantities so that caregivers could 

quickly assess the patient’s status quo, thereby allowing them to reevaluate or to intervene if 

necessary. As they were also designed to be calculated in time-critical care settings, they use the 

latest physiological measurements and simple scoring criteria to derive scores to minimize the 

chance of calculation errors. Moreover, the risks estimated by the framework are straightforward 

to caregivers due to their simplicity. The scoring systems, however, are not able to consider a 

patient’s physiological trajectory due to their static nature. Moreover, as most of EWSs are 

designed by groups of domain experts, they require significant effort to derive a standard scoring 

system that could be applied in various clinical settings. 

In the clinical informatics domain, many prior studies strove to build a counterpart to such EWS 

with more clinical variables so that they can estimate a likelihood of the target diseases more 

accurately, and they were able to show a reasonable accuracy when predicting the events at the 

time of discharge [21]. For clinical outcomes related to FTR incidents, however, there are still 

some challenges that need to be addressed. First, most machine-learning models predicting 

clinical outcomes are trained in a supervised setting, and there is no clear way to extract the exact 

time of FTR incidents systematically in most of the EHRs that are currently deployed. The 

terminal outcomes of patients are available from the EHRs as discharge diagnoses. However, 

since gold-standard information regarding the exact time of FTR event onsets are mostly 

unavailable, prior studies have been annotating the event onsets by relying on expert-driven 

criteria for the event onset or manually annotate instances based on richer but noisy resources 
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such as clinical notes [22]. Such approaches are labor-intensive and expensive, and the cost 

would be even higher in labeling clinical outcomes compared to generic tasks (e.g. such as 

annotating general images or texts) as it requires annotators with domain expertise. Therefore, 

the current practice using criteria-based or manual annotations has some limitations regarding the 

scalability of data preprocessing. As the complexity of models tends to be increased in the 

current machine learning practice, and as they require more training data for the optimization, the 

scarcity of available training instances would result in a bottleneck when deriving models for 

estimating FTR risks. 

To address this limitation, other studies have focused on using the timing of clinical 

interventions as the potential indicator of these event onsets. For example, Henry et al. annotated 

the onset of septic shock when hypotensive patients received volume resuscitations, which are 

frequently administered for patients with the event, and the trained model showed a reasonable 

accuracy for predicting the likelihood of the event [23]. Moreover, Suresh et al. showed that the 

timing of the clinical interventions dedicated to resuscitating a patient from severe deterioration 

could also be predicted with reasonable accuracy [24]. Although clinical indications of each 

intervention vary, the timing of clinical interventions is already documented in the EHRs and has 

the potential to be used as a proxy indicator for the FTR incidents. If clinical interventions 

frequently administered to the specific FTR events could be identified systematically, and the 

likelihood of receiving such interventions and the risk of developing the FTR incidents show a 

positive correlation, this approach would have the potential to generate a risk prediction model 

with less human labor compared to the current practice. 

1.2. Specific Aims 

The dissertation study focused on providing a framework that can derive risk estimation model 

on FTR incidents by using the timing of clinical intervention as a proxy label for the event onset. 

The framework first selects a list of clinical interventions that are frequently observed in patients 

discharged with the target FTR event, which could be verified through discharge diagnoses 

documented in the EHR. To improve the correlation between the timing of the clinical 

intervention and the event onset, the framework only considered the intervention administration 

from patients discharged with the target events as a proxy event for the event onset. The study 

specifically focused on acute organ failures (AOFs) developed in Intensive Care Units (ICUs) as 

FTR events because patients’ prognoses are comparably more volatile than patients in wards, and 

early intervention on patients with high risk of AOF are known to improve their prognoses. 

Similar to the EWS design currently used in the clinical settings, the study first evaluated 

whether such proxy events could be predicted by only using patients’ physiologies measured up 

to 24 hours prior to the time of prediction, and it evaluated whether the likelihood of proxy event 

onsets could be used as a risk estimator for the AOF onsets. Then, with risk estimates from the 

model trained above, not only temporal progression presented in the risk trajectory of the target 

event was considered but also the trajectories of potentially relevant FTR events as to whether 

they would improve the prediction performance was evaluated, which is not utilized in the most 

of EWS designs. Lastly, a case study was conducted to examine how these risk estimates could 

be used in the current practice as a clinical decision support. The specific aims for the 

dissertation are covered in detail below.  
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• Aim 1: Learn about the risk of target AOF onsets based on clinical intervention and 

discharge diagnosis using distant supervision 

Aim 1 focused on implementing a framework that can derive a risk prediction model for four 

target AOFs—Acute Heart Failure (AHF), Acute Lung Injury (ALI), Acute Kidney Injury 

(AKI), and Acute Liver Failure (ALF)—solely based on the data available from EHRs without 

experts’ annotations. The study was conducted with the hypothesis that clinical interventions 

related to the target AOFs would be observed more frequently from patients discharged with the 

diseases, and it could serve as proxy indicator of the occurrence of the target AOF. The trained 

model, the Acute Organ Failure Intervention (AOFI) model, was aimed at predicting the 

likelihood of receiving relevant intervention to the target AOF within the next 24 hours from the 

time of prediction and being discharged with the target AOF based on previous 24 hours of 

physiologic observations and demographics. After the training, clinical validation was conducted 

to examine the quality of the likelihood as risk estimates of the target AOF. 

• Aim 2: Improve clinical risk estimation by integrating risk trajectory holistically 

In Aim 2, I focused on evaluating whether integrating the estimated risk trajectories of both the 

target AOF and the other AOFs could improve the prediction accuracy. As mentioned above, 

many EWSs have been proposed to quantify the risk of target diseases, and the AOFI models 

also aimed to predict the risk of each AOF onset. For scores from EWSs and probabilities from 

AOFI models, they only utilize the most recent physiologic measurements (e.g. using summary 

statics of the measurements within previous 24 hours or the most recent measurement) in order 

to derive a simpler model (for EWSs) and to facilitate clinical validation purposes (for AOFI 

models). Therefore, risks estimated in the earlier time periods were not utilized during the 

prediction in both cases. Aim 2 focused on evaluating the effects of considering temporal 

dynamics in risk trajectories on both the target AOF and the other AOFs where each quantity 

was estimated based on myopic evidence. I hypothesized that these trajectories would improve 

the prediction performance by providing additional information, which was either unavailable or 

underestimated in the original risk estimate. To do so, I first evaluated how the prediction 

performance of the expert-driven EWS, Multiple Organ Dysfunction Score (MODS) [25], on 

four different organ system (heart, respiratory, kidney, and liver) could be improved when 

screening high-risk AOF patients by consolidating EWS trajectories on four organ systems into 

the probabilistic framework using the hidden Markov model (HMM). The second experiment 

was conducted by considering the risk estimates from the AOFI models as an EWS for each 

AOF, and it measured how the performance was changed after the integration. Furthermore, the 

trained hidden Markov models in both experiments were clinically validated to evaluate how 

each model described patients’ prognoses.  

• Aim 3: Quantify intervention-induced risks using counterfactual analyses 

Aim 3 was conducted as a case study showing how the risk prediction model trained from earlier 

aims could be used in the clinical workflow as a clinical decision support. In the critical care 

setting, the prevalence of clinical interventions that rapidly revert a patient’s adverse physiology 

is higher than in wards, and their intensity comes with a higher risk of side effects. To 

quantitatively compare the magnitude of toxicity due to such clinical interventions, the objective 

of aim 3 was to decompose the adverse influence of target clinical interventions from the risks 

estimated by observed patients’ physiologies. To do so, two submodels were trained jointly: one 
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model estimating a patient’s baseline risk trajectory with the assumption that no clinical 

intervention was administered and another model estimating the magnitude of risk induced by 

the administered clinical interventions. Then, the estimated risk increments from the latter model 

were used to conduct a clinical validation using a counterfactual analysis: comparing the risk 

predicted with and without the clinical intervention. The first part of the experiment aimed to 

quantify the nephrotoxicity of antibiotics administered to ICU patients, and the model estimated 

the baseline kidney function trajectory and the nephrotoxicity of the administered antibiotics 

based on patient’s serum creatinine level trajectories. The second part aimed to quantify the 

organ toxicity of clinical interventions frequently administered in ICUs based on the risk of AOF 

estimated by AOFI models. 

1.3. Outline 

In Chapter 2, I discuss how Aim 1 was conducted. 

In Chapter 3, I discuss how the trajectory consideration changed the performance of both expert-

driven risk estimates and the estimates from Aim 1 when predicting the target AOF onsets.  

In Chapter 4, I discuss how the risk increment of individual interventions could be quantified and 

analyzed in the clinical sense.  

In Chapter 5, I summarize my dissertation’s findings. I discuss modeling recommendations for 

future studies that could potentially improve the prediction performance of modeling approaches 

presented in this dissertation. Furthermore, I outline how the proposed modeling approach could 

benefit the current clinical workflow as a clinical decision support. 
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Chapter 2. Predicting Severe Clinical Events by Learning 

about Life-Saving Actions and Outcomes using Distant 

Supervision 

The methods described in this chapter are adopted from the following manuscript: 

Lee D, Yetisgen M, Vanderwende L, Horvitz E. Predicting Severe Clinical Events by Learning 

about Life-Saving Actions and Outcomes using Distant Supervision. Journal of biomedical 

informatics (Under review) 

Introduction 

Medical errors have been cited as the third leading cause of death in the United States. A recent 

study estimated that more than 250,000 deaths were caused by medical error across the United 

States in 2013 [2]. Failure to Rescue (FTR) is a subtype of medical error, referring to the loss of 

opportunity to save a patient’s life after the development of one or more preventable and 

treatable complications [26]. Thus, focusing on detecting early signs of deterioration may 

provide opportunities for preventing and/or treating illness in a timely manner, which promises 

to reduce the number of FTR cases [27]. 

To decrease the occurrence of FTR, several Early Warning Scores (EWSs) have been designed 

to detect and guide actions in time-critical care settings. The aim of EWSs is to give healthcare 

providers easily computable measures that provide insight into a patient’s physiological status. 

Many EWSs, including the Acute Physiologic Assessment and Chronic Health Evaluation 

(APACHE) score [20], the Simplified Acute Physiology Score (SAPS) [28], and the Sequential 

(Sepsis-related) Organ Failure Assessment (SOFA) score [29], employ static scoring tables, 

predefined by domain experts, that map clinical measurements to discretized scores. Figure 2.1 

presents the scoring table for the SOFA score as an example. Sepsis is a complex, time-critical 

condition, and prior studies have demonstrated reduced patient mortality with early detection and 

treatment of severe sepsis or septic shock [30], [31]. Therefore, if deployed carefully in existing 

clinical workflows, EWSs have the potential to improve patient outcomes, especially for those 

with acute onset diseases.  

While manually curated EWSs can provide useful alerts in clinical settings [32], they make use 

of only a small portion of the information available in the Electronic Health Record (EHR). 

Today’s EHRs include content ranging from hospital-operation-related information—such as 

patient locations and hospital charges—to care-related information—such as charted clinical 

observations, clinical notes, and demographic information—for each patient. Among such 

content, charted clinical observations with timestamps, including vital signs and lab test results, 

serve as valuable data sources when inferring a patient’s prognosis. Therefore, instead of using 

only variables manually curated by specialists, implementing clinical risk prediction models that 

use all available information from the EHR could improve the accuracy of predicting the onset of 

clinically adverse events when compared to existing EWSs [23], [33], [34].  
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Figure 2.1. Scoring table for the SOFA score  [35] 

Although data-driven counterparts to EWSs have shown a higher accuracy in predicting clinical 

events in general, the medical community continues to focus on evaluating EWSs as clinical 

decision support tools for in-patient care settings [36], [37]. This reluctance to study data-driven 

models might suggest that their practicality is questioned [38], and physicians insist that the 

structure and representations provided by EWSs are more straightforward and actionable in 

practice. One aspect of EWSs that may make them preferable is that existing EWSs often 

quantify the patient’s physiological status by simplifying multiple clinical measurements into a 

few clinically actionable representations, such as organ-level severities. For example, calculating 

a SOFA score entails first determining organ-level subscores using the predefined scoring table, 

then calculating the final severity score from those subscores. Similarly, the APACHE score uses 

selected representative physiologic variables for each organ system to calculate the final score 

from the predefined scoring table. As these two examples illustrate, the organ-level abstraction 

of a patient’s physiological status is common in EWSs since physicians see it as a convenient 

decision support tool within existing clinical workflows. To be seamlessly merged with existing 

clinical workflows, data-driven models should also provide some form of risk estimates that 

physicians can interpret and use to plan corresponding action proactively. 

In this paper, we present a machine learning approach for predicting the risk of acute onset 

diseases in an Intensive Care Unit (ICU) setting, which has the potential to allow a timely 

detection of patient deterioration and thereby prevention of possible FTR incidents. Compared to 

EWSs, the proposed approach considers all available physiological variables observed during a 

patient’s ICU stay when training risk prediction models, and systematically selects variables that 

can maximize model accuracy in predicting the risk of developing the target acute-onset diseases 

in the near future.  
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Supervised machine learning approaches require annotated data to train models. In the study 

setting, however, human annotation is expensive and does not scale to large datasets. Instead of 

relying on human annotation, we use distant supervision [39]–[41] by defining the administration 

of clinical interventions dedicated to managing the target acute-onset disease as proxy events for 

the onset of the disease. Then, we predicted the proxy event onset based on previous 

physiological observations from the EHR. In an attempt to provide actionability of our approach 

comparable to that of EWSs, we examined four types of acute organ failures (AOFs)—acute 

heart failure (AHF), acute lung injury (ALI), acute kidney injury (AKI), and acute liver failure 

(ALF)—to answer the following research questions: (1) Can we systematically identify clinical 

interventions, which will serve as distant supervision, that are frequently administrated for each 

type of acute organ failure? And (2) Can we use these interventions as supervisory signals to 

build models that predict the onset of acute organ failure? 

2.1. Related Work 

In the clinical informatics domain, risk prediction models have been studied to predict the onset 

of diseases within a specified timeframe using supervised learning methods [42]–[46]. When 

implementing such supervised models, researchers often try to balance the tradeoff between 

prediction accuracy and model interpretability, though the definition of interpretability varies 

based on each model’s objectives [47], [48]. When representing the influence of the features 

used in the model is important, simple logistic regression and linear regression are preferred 

because they can provide both the magnitude and direction of each feature’s influence [49], [50]. 

Alternatively, if a proposed model is intended for use in clinical decision-making—such as 

medical imaging classification models—it can focus more on improving prediction accuracy 

while providing the evidence used to derive the predictions; in this case, there is less emphasis 

on why such portion of the instance were identified as evidence because a model’s user is 

assumed to have background knowledge of potential relationships between predictions and 

evidence provided [51]. These relaxed constraints on interpretability allow models to use more 

complex conditions to provide more accurate predictions than those of logistic regression and 

linear regression models. 

Based on the results of many comparative analyses [52], [53], tree-based ensemble modeling 

approaches tend to show moderately better performance over other modeling approaches by 

offering reasonable training time and computational resource requirements, while showing the 

extent to which each feature contributes to the model. This higher performance of tree-based 

ensemble approaches can be explained by the following: first, such ensemble approaches train 

submodels using subsampling. Therefore, although the objective of each submodel is to 

maximize accuracy of the given subsamples (making it prone to overfit), the prediction from an 

ensemble model can be more robust compared to other modeling approaches because it considers 

the predictions of all submodels trained with different parts of the training dataset. Moreover, the 

main criteria used by each tree-based submodel are logical conditions. They are therefore less 

influenced by how inputs are preprocessed compared to other approaches [54]. As the dataset for 

our study was expected to have heterogenous characteristics among different types of clinical 

observations, we chose to use a tree-based ensemble approach for modeling. Since the 

prevalence of the clinical problem we aimed to predict is known to be small, we selected a 

gradient boosting tree modeling approach over a random forest modeling approach because 

training error and generalization error can be bounded [55]. 
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A major challenge of using supervised learning in a clinical informatics setting is creating a 

dataset annotated with the target event onsets for model training and testing. Such annotated 

datasets are often not readily extractable from EHRs, so manual annotation of disease onset is 

necessary. For example, Bejan et al. [22] identified the onset of ventilator-associated pneumonia 

among patients in the ICU using manual annotation according to criteria predefined by domain 

experts. Next, the labeled dataset and identified features from clinical notes were used to train a 

support vector machine to predict pneumonia onset within the upcoming 24 hours. However, 

such a manual annotation approach is labor-intensive, and it does not scale well to larger 

datasets. It is also prone to annotator bias. Therefore, if the annotation process can rely solely on 

information available in the EHR without any human intervention, it will render the process 

more scalable and more systematic, thereby reducing potential biases during the annotation 

process.  

As an alternative to manual annotation, some studies have used distant supervision—leveraging 

patterns frequently observed from target events as noisy labels—to train supervised models. This 

approach is more widely used in natural language understanding, including sentiment analysis 

[41] and relation extraction [39], [40]. For example, Go et al. [41] trained a sentiment 

classification model from Twitter feeds, where tweets containing “:)” were labeled as positive 

sentiments and tweets containing “:(“ were labeled as negative sentiments. The authors achieved 

accuracy above 80% for the task, and they showed that a reliance on distant supervision can 

yield performances similar to that of models trained by manually annotated labels [56]. 

Distant supervision has also been used in clinical informatics research by leveraging the 

administration timing of certain clinical interventions documented in EHRs as evidence of the 

time of disease onset. First-line interventions are actions taken by clinicians in response to a 

rapid deterioration in a patient’s physiological status, and these measures aim to stabilize patients 

and improve their outcomes over a short period of time. Such interventions can provide strong 

signals that can be used when systematically annotating target events, thereby having the 

potential to be used as labels when training a supervised model in larger datasets. For example, 

Henry et al. [23] considered using the time of the initiation of fluid resuscitation with 

hypotension to identify the time at which septic shock onset was likely. Then, they fit a Cox 

proportional hazards model, which predicted the onset of septic shock with high accuracy. 

Although fluid resuscitation is frequently employed during septic shock and hypovolemia is 

often comorbid with septic shock, some patients develop hypovolemic shock from non-infectious 

causes. Distinguishing between shock with infectious and non-infectious causes is important 

when deploying this model into practice, but an analysis of these cases was not reported in the 

study. As this example illustrates, if the annotation process relies only on proxy events when 

labeling a potential onset of target clinical events, it is expected to yield labels with high 

uncertainty. However, since patients’ discharge diagnoses are available in EHRs, using the time 

of proxy events as a marker of the potential event onset and verifying that annotations using 

discharge diagnoses might reduce the level of uncertainty in labels so that it can improve the 

performance of trained models. 

In another example, Suresh et al. [24] trained an unsupervised switching state autoregressive 

model and then used the learned states, along with clinical variables, to predict future first-line 

intervention administration behavior in the ICU. The study showed that a subset of clinical 

intervention administrations could be predicted with high accuracy. Since these types of 

interventions tend to be administered in reaction to a specific physiological status, the 
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administration behavior could be considered as a marker of the physiological status that required 

the intervention to sustain the patient’s life. Although the study did not further analyze the 

relationship between the predicted probabilities of intervention administration and the prognosis 

of potentially relevant diseases, it may exist between such factors, such as the probability of 

initiating mechanical ventilation and the risk of a patient developing hypoxemia or hypercarbia. 

Our study aimed to compare the probability of receiving interventions relevant to the target 

diseases with the likelihood of the target disease using the confirmatory measures available in the 

EHR. 

Compared to the related works mentioned above, our study used a combination of intervention 

administrations and discharge diagnoses to annotate the potential onset of target acute organ 

failure. We then aimed to predict the identified potential onsets in the near future using 

physiological observations from larger-scale EHR datasets. We also conducted an additional 

analysis to examine whether the model—predicting the probability of the administration of first-

line intervention in proximity and observing target acute organ failure discharge diagnoses—

could be used as a risk estimator for the onset of target acute organ failure. 

2.2. Methods 

Through our work, we aimed to derive risk prediction models for four different acute organ 

failures (AHF, ALI, AKI, and ALF) as identified in patients’ discharge diagnoses. Our approach 

included four steps: (1) representation of patient physiology from clinical data, (2) selection of 

relevant interventions for the onset of each acute organ failure, (3) annotation of the potential 

onset with selected interventions and discharge diagnoses, and (4) training models that estimate 

acute organ failure risks by predicting the likelihood of receiving one of the relevant 

interventions in the near future and being discharged with the target acute organ failure 

according to discharge diagnoses from the EHR. In the following sections, we will explain each 

step of our approach in detail. 

2.2.1. Representation of Patient Physiology from Clinical Data  

We represented each patient with multiple instances, in which each instance captured 

demographic information and clinical observations within a specific time window. In our 

experiments, we only considered clinical variables that were measured for at least 50% of 

patient-day observations in the EHR as clinical observations—these included vital signs, patient 

assessments documented in clinical charts (e.g., physical exam results), and lab test results. For 

demographic information, we used age, gender, admission source, ethnicity, insurance, language, 

religion, and marital status. 

In our representation, the feature vector 𝑥𝑝𝑡𝑠,[𝑡𝑖−1,𝑡𝑖) captured clinical observations from 𝑡𝑖−1 to 𝑡𝑖 

for the patient pts in addition to the demographic information, and it was possible for there to be 

several clinical observations associated with a feature for the given time interval. We 

experimented with several summary functions—𝜙𝑗(𝑜𝑏𝑠𝑇0 , … , 𝑜𝑏𝑠𝑇𝑙), where 𝜙𝑗: 𝑅
𝑘 → 𝑅, 𝑇𝑠 ∈

[𝑡𝑖−1, 𝑡𝑖), and 𝑠 = 0,1, … , 𝑙—and used average, min, max, and standard deviation to populate the 

all non-demographic and numeric features in the vector. To quantify the sustainment of each 

clinical observation from 𝑡𝑖−1 to 𝑡𝑖 (e.g., sustained high heart rate due to acutely developed 

tachycardia during the day), the sustainment quantifiers proposed in our previous work [57] were 

used as an additional summary function. For each type of numerical clinical observation, 
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sustainment quantifiers were derived by conducting t-tests comparing observations during the 

time window [𝑡𝑖−1, 𝑡𝑖) for the patient to population observations. The resulting p-value was used 

as a measure of sustainment for numerical observations during the given time period. Two 

sustainment quantifiers were added for each numerical clinical observation—one from a two-

tailed t-test and another from a one-tailed t-test. Categorical variables, such as ethnicity and 

admission type, were transformed using one-hot encoding.  

Observational studies have suggested that the signs of clinical deterioration can be seen up to 24 

hours before a serious clinical event requiring intensive interventions [58]. We, therefore, set the 

length of the time interval for feature representation, |𝑡𝑖 − 𝑡𝑖−1|, to 24 hours. When the feature 

vector could not be populated because of missing observations, we imputed such features with 

mean values from the training set.  

2.2.2. Selection of Relevant Interventions for Each Acute Organ Failure 

We used statistical testing to identify clinical interventions that were potentially relevant to each 

acute organ failure. First, we identified subtypes for each acute organ failure discharge diagnosis 

in the ICD-9 (International Classification of Diseases, 9th revision). ICD-9 diagnosis codes with 

“acute” and “acute on chronic” for each acute organ failure were selected as subtypes because 

both included patients who acutely developed the target acute organ failure during their hospital 

stay, with or without being predisposed to the condition [59]. Table 2.1 presents the list of 

selected ICD-9 diagnosis codes. For each acute organ failure, we aggregated the selected codes 

into a single binary outcome variable, discharge status, in order to increase the statistical power 

of the findings.  

Target Acute 

Organ Failure 
ICD-9 Diagnosis Code 

AHF 

428.21 Acute systolic heart failure 

428.23 Acute on chronic systolic heart failure 

428.31 Acute diastolic heart failure 

428.33 Acute on chronic diastolic heart failure 

428.41 Acute combined systolic and diastolic heart failure 

428.43 Acute on chronic combined systolic and diastolic heart failure 

ALI 

518.81 Acute respiratory failure 

518.51 Acute respiratory failure following trauma and surgery 

518.84 Acute on chronic respiratory failure 

518.53 Acute on chronic respiratory failure following trauma and surgery 

AKI 

584.9 Acute kidney failure, unspecified 

584.6 Acute kidney failure with lesion of cortical necrosis 

584.7 Acute kidney failure with lesion of medullary necrosis 

584.5 Acute kidney failure with lesion of tubular necrosis 

584.8 Acute kidney failure with specified pathology NEC 

ALF 570 Acute and subacute necrosis of liver 

Table 2.1. List of ICD-9 diagnosis codes for each target acute organ failure 

We hypothesized that the probability of observing interventions which are relevant to managing 

the target acute organ failure would be higher for patients discharged with the corresponding 
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diagnoses than for the overall population of patients. To identify interventions relevant to each 

acute organ failure, we conducted a binomial test. To conduct the test, we first considered 

medication administrations and interventions charted in the EHR with Current Procedural 

Terminology (CPT), the Healthcare Common Procedure Coding System (HCPCS), or ICD-9 

procedural codes with timestamps as clinical interventions. The binomial test then compared the 

probability of observing a clinical intervention in patients discharged with the target acute organ 

failure with the same probability for all patients in the training set. The p-value was used as a 

quantifier representing the strength of the relationship between the intervention and each acute 

organ failure, as presented in the dataset. For each type of acute organ failure, all clinical 

interventions under consideration from training hospital admissions were ranked by p-value in 

ascending order. Then, first k interventions (k=5, 10, 20, 50) were assumed to be relevant to the 

target acute organ failure and were subsequently used for the annotation.  

2.2.3. Annotation with Interventions and Discharge Diagnoses 

In our annotation approach of each target acute organ failure (AHF, ALI, AKI, and ALF), we 

labeled an instance 𝑥𝑝𝑡𝑠,[𝑡𝑖−1,𝑡𝑖) as positive if the patient received at least one of the identified 

interventions between 𝑡𝑖 and 𝑡𝑖 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (Figure 2.2) and was discharged with one of the 

discharge diagnoses selected for the target organ failure as shown in Table 2.1.  

 

Figure 2.2. Illustration of clinical vector representation 

On the other hand, we labeled an instance 𝑥𝑝𝑡𝑠,[𝑡𝑖−1,𝑡𝑖) as negative based on the three following 

conditions: (1) if the patient did not receive any of selected interventions and was not discharged 

with the target acute organ failure, (2) if the patient did not receive any of the selected 

interventions but was discharged with the target acute organ failure, or (3) if the patient received 

one of the selected interventions between 𝑡𝑖 and 𝑡𝑖 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 but was not discharged with the 

target organ failure.  

For the second condition, instances were labeled negative because our primary focus was to learn 

about physiological patterns that preceded the potential onset of the target acute organ failure. 

Therefore, if there was no indicator of the onset of the patient’s acute organ failure on which we 

could rely, we treated those instances as negative.  

For the third condition, we hypothesized that the administration of the selected interventions in 

patients who were not discharged with the target acute organ failure could only indicate the 

development of comorbidity of the target acute organ failure, rather than the onset of target acute 

organ failure. Since the developed comorbidities did not result in the target acute organ failure 

for the patient according to discharge diagnoses, we did not consider the physiology that 

necessitated the selected interventions as a preceding physiological pattern of the target acute 

organ failure onset. For example, heparin sodium is commonly used as an anticoagulant, and is 
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administered to patients who have a higher risk of thromboembolism. However, even though 

thrombotic complication is common in heart failure [60], [61], the indication of heparin sodium 

injection varies from “prophylaxis and treatment of venous thromboembolism and pulmonary 

embolism” to “prevention of clotting in arterial and cardiac surgery” [62]. Therefore, even if 

heparin sodium was identified as one of the relevant interventions for acute heart failure, we 

were not confident in considering all of the physiological characteristics that necessitate heparin 

sodium injection as a preceding sign of the acute heart failure onset, unless the patient was 

specifically discharged with this disease. As explained in Section 2.2.2, we aimed to select 

interventions that were frequently observed in patients discharged with the target acute organ 

failure but comparably infrequent from the patient population in the dataset. Therefore, when the 

selected intervention is known to manage certain comorbidities, and those are prevalent from 

patients discharged with the target acute organ failure, we expected that the number of potential 

positive instances that were labeled as negative by this condition would be marginal and that 

their effect on the trained model’s quality would be insignificant.  

2.2.4. Training Models to Predict the Proxy Events of the Onsets of Acute 

Organ Failure  

We employed the annotation criteria described in the previous section to train the acute organ 

failure intervention (AOFI) models and used the Gradient Boosted Tree (spark.ml library version 

2.2.0 [63]) as our model building algorithm. The trained models predicted whether the patient 

would receive selected interventions within the next 24 hours (=𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and be discharged 

with the target acute organ failure based on available demographic information and the previous 

24 hours (= |𝑡𝑖 − 𝑡𝑖−1|) of clinical observation: 𝑝pts,[ti,ti+24ℎ𝑟𝑠)
𝐴𝑂𝐹 = 𝑓𝐴𝑂𝐹(𝑥𝑝𝑡𝑠,[𝑡𝑖−1,𝑡𝑖)), where 𝑓𝐴𝑂𝐹 

is the trained AOFI model for the target acute organ failure AOF. Before training the AOFI 

models, we excluded patients who were discharged with the target discharge diagnoses but did 

not receive any of the relevant interventions during their entire stay in the ICU from the training 

set. However, we kept such patients in the test set as discharge diagnoses were not known during 

the testing time. For this study, we did not make predictions on the date when the patient was 

admitted to the ICU, as there is no available evidence that AOFI models can use to make 

predictions. 

2.2.5. Evaluation 

To evaluate the performance of the AOFI models, we calculated the aggregated probability 

𝑝𝑝𝑡𝑠,𝑎𝑔𝑔
𝐴𝑂𝐹  for each acute organ failure AOF and for each patient pts with the following formula:  

𝑝𝑝𝑡𝑠,𝑎𝑔𝑔
𝐴𝑂𝐹 ≜ 1 −∏[1 − 𝑝𝑝𝑡𝑠,[𝑡𝑖,𝑡𝑖+24ℎ𝑟𝑠)

𝐴𝑂𝐹 ]

𝑖

 

The formula allowed us to represent the probability of patients receiving selected interventions at 

least once during their ICU stay and being discharged with the target acute organ failure. Then, 

the aggregated probability for each acute organ failure was compared with the discharge status 

presented in Table 2.1. 

Optimal hyperparameters, including the number of relevant interventions for the annotation 

process and other hyperparameters for the Gradient Boosting Tree (such as the number of trees, 

the learning rate, and max depth) were selected based on the highest area under the precision-
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recall curve (AUPRC) with the acute organ failure discharge status and aggregated probabilities 

from the validation set. We used the AUPRC as the performance metric for selecting the best 

model because it is a more sensitive metric for evaluating supervised machine learning models 

with unbalanced datasets (i.e., datasets in which the proportions of different types of labels are 

significantly different) for their discriminative power [64]. 

After we selected the highest performing AOFI model for each acute organ failure using the 

validation set, each model was then evaluated using observations from the test set. Evaluation 

was performed at two different levels: (1) predictions at instance-level (24-hours, 

𝑝𝑝𝑡𝑠,[𝑡𝑖,𝑡𝑖+24ℎ𝑟𝑠)
𝐴𝑂𝐹 ) and (2) predictions at patient-level (entire ICU stays, 𝑝𝑝𝑡𝑠,𝑎𝑔𝑔

𝐴𝑂𝐹 ). We measured 

the prediction performance of trained AOFI models on the test set using the following standard 

evaluation metrics: precision, recall, and F1-score. 

2.3. Results 

2.3.1. Dataset 

We trained and evaluated the AOFI models with two datasets. The first dataset was the MIMIC-3 

dataset [65], which is composed of ICU stays at the Beth-Israel Hospital in Boston, MA. This 

dataset contained two different EHR systems documenting patients admitted between 2001 and 

2013. The first EHR system, CareVue (Phillips), covers admissions from 2001 to 2008; the 

second, MetaVision (iMD Soft), covers admissions from 2008 to 2013. For this study, we only 

considered clinical data from MetaVision because it contained more detailed information on 

clinical interventions. The second dataset was extracted from the University of Washington 

Clinical Data Repository (UW-CDR dataset). This dataset contained information about patients 

admitted to ICUs at the University of Washington Medical Center and Harborview Medical 

Center between 2014 and 2016.  

For both the MIMIC-3 and UW-CDR datasets, patients under the age of 18 were excluded 

because the normal range of physiological variables differs between children and adults. We also 

censored clinical observations after patients’ code status was changed from full code (a care 

preference indicating that patients desire all necessary clinical measures be taken to prolong their 

lives) to Do Not Intubate, Do Not Resuscitate, or Comfort Measure Only because care 

preferences other than full code significantly alters the pattern of standard clinical intervention 

administrations. Table 2.2 shows a brief summary of patient demographics in the final datasets.  
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Descriptor MIMIC-3 UW-CDR 

Number of hospital admissions 22,020 14,506 

Number of ICU admissions 23,593 16,612 

Number of patient-days 98,529 65,875 

Age  64.39±17.06* 57.63±17.19 

Admission type – Number Elective: 3,006 Elective: 3,861 

 Emergency: 18,744 Emergency: 7,819 

 Urgent: 243 Urgent: 1,631 

  Trauma: 281 

  Unknown: 6 

Number of in-hospital deaths 2,294 (10.42%) 2,275 (16.77%) 

Table 2.2. Patient demographics. *981 hospital admissions were for patients over the age of 90, 

and their ages were hidden by the data provider for de-identification purposes. 

To train and test the AOFI models, we divided hospital admissions in each MIMIC-3 and UW-

CDR dataset into training, validation, and test sets, with a 7:2:1 ratio, respectively. After 

preprocessing, as described in Section 3.1, we generated 1,177 features for the MIMIC-3 dataset 

and 287 features for the UW-CDR dataset for each feature vector 𝑥𝑝𝑡𝑠,[𝑡𝑖−1,𝑡𝑖). 

2.3.2. Selection of Relevant Interventions and Dataset Annotation 

For each acute organ failure, we performed experiments on different numbers of interventions 

(k=5, 10, 20, 50) to select the best k value that maximized the AUPRC on aggregated 

probabilities, in addition to other hyperparameters (see Section 2.2.4), using the validation set. 

To  

accomplish this, aggregated probabilities for each patient were calculated using the predicted 

probabilities from each AOFI model. We then compared those aggregated probabilities against 

the patients’ discharge statuses on each acute organ failure. As shown in Table 2.3, for the 

MIMIC-3 dataset, 10 interventions were selected to annotate AHF and AKI; 5 interventions were 

selected for ALI; and 20 interventions were selected for ALF. In the UW-CDR dataset, 5 

interventions were selected for AHF and ALI; 20 interventions were selected for AKI; and 10 

interventions were selected for ALF. The selected interventions are presented in Table 2.4.  
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# Intervention (k) 
MIMIC-3 UW-CDR 

AHF ALI AKI ALF AHF ALI AKI ALF 

5 0.3451 0.6754 0.6209 0.1667 0.4132 0.5745 0.5252 0.0802 

10 0.3863 0.6754 0.6570 0.1464 0.3599 0.5732 0.5986 0.1662 

20 0.3833 0.6481 0.6397 0.2215 0.3912 0.5688 0.6131 0.1495 

50 0.3644 0.6010 0.6214 0.2201 0.3977 0.5501 0.5993 0.1451 

Table 2.3. AUPRC of aggregated probability and discharge diagnoses from the validation set 

In our analysis of the selected interventions presented in Table 2.4, we observed that those from 

the MIMIC-3 dataset were mostly first-line interventions for each acute organ failure onset (e.g., 

heparin sodium—AHF, invasive ventilation—ALI, continuous renal replacement therapy—AKI, 

and fresh frozen plasma transfusion—ALF). For the UW-CDR dataset, confirmatory test orders 

for the target acute organ failure were also selected along with first-line interventions in the cases 

of AHF, AKI, and ALF (e.g., echocardiography—AHF, creatinine and urine tests—AKI, and 

hepatitis infection tests—ALF). In the case of ALI, first-line interventions were mainly selected, 

similar to the MIMIC-3 dataset.   
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Target Acute 

Organ 

Failure 

AHF ALI AKI ALF 

MIMIC-3 • Heparin Sodium 

• Insulin – Humalog 

• Non-invasive 

Ventilation 

• Dopamine 

• Milrinone 

• Furosemide (Lasix) 

500/100 

• Furosemide (Lasix) 

• Coumadin 

(Warfarin) 

• Cardiac Cath 

• Nitroglycerin 

• Invasive Ventilation 

• Midazolam 

(Versed) 

• Fentanyl 

• Fentanyl 

(Concentrate) 

• Ventilation assist 

and management, 
subsequent day [C] 

• ACD-A Citrate (1000ml) 

• Calcium Gluconate (CRRT) 

• Insulin – Humalog 

• Vasopressin 

• Sodium Bicarbonate 8.4% 

• KCl (CRRT) 

• Albumin 25% 

• Dialysis – CRRT 

• Citrate 

• Norepinephrine 

• Intubation 

• Platelets 

• Citrate 

• KCl (CRRT) 

• Albumin 25% 

• Ventilation assist and 

management, 
subsequent day [C] 

• Calcium Gluconate 

(CRRT) 

• Pantoprazole (Protonix) 

• Cryoprecipitate 

• Midazolam (Versed) 

• ACD-A Citrate 

(1000ml) 

• Sodium Bicarbonate 

8.4% 

• Cisatracurium 

• Vasopressin 

• Fresh Frozen Plasma 

• Calcium Gluconate 

• Dialysis – CRRT 

• Fentanyl (Concentrate) 

• Norepinephrine 

• Fentanyl 

UW-CDR • Dobutamine 

• Assay of Natriuretic 

Peptide [C] 

• Echocardiography 

[C] 

• Blood gases, O2 

saturation only [C] 

• Dobutamine, 

Hydro-Chloride 
Injection [H] 

• Emergency 

endotracheal 
intubation [C] 

• Ventilation assist 

and management, 
initial day [C] 

• Radiologic exam, 

abdomen [C] 

• Blood culture, 

aerobic bacteria [C] 

• Ventilation assist 

and management, 
subsequent day [C] 

• Infusion, Albumin (human), 25% 

[H] 

• Gases, blood, O2 saturation; 

direct measurement [C] 

• Creatinine; other source[C] 

• Hepatitis B surface antigen 

detection [C] 

• Norepinephrine 

• Lactate dehydrogenase [C] 

• Creatinine measurement, other 

source [C] 

• Urine bacterial culture [C] 

• Urine sodium measurement [C] 

• Hepatitis B surface antibody 

(HBsAb) 

• Blood bacterial culture, aerobic 

[C] 

• Urine Chloride measurement [C] 

• Vancomycin HCL injection, 250 

MG [H] 

• Automated complete blood count 

and diff. WBC count [C] 

• Hepatitis C antibody [C] 

• Vancomycin drug assay [C] 

• Urine potassium measurement 

[C] 

• Vancomycin, HCL injection, 500 

MG [H] 

• Total Hepatitis B core antibody 

(HBcAb) [C] 

• Albumin, human 

• Phytonadione 

• Lactulose 

• Infectious agent antigen 

detection with 
immunoassay, hepatitis 

B surface antigen 

(HBsAg) [C] 

• Ammonia [C] 

• Duplex scan of arterial 

inflow and venous 

outflow of abdominal, 

pelvic, scrotal contents, 
and/or retroperitoneal 

organs; complete study 

[C] 

• Hepatitis B core 

antibody (HBcAb); 
total [C] 

• Hepatitis C antibody 

[C] 

• Abdominal Ultrasound 

[C] 

• Hepatitis B surface 

antibody (HBsAb) [C]  

• 25% Albumin infusion 

[H] 

Table 2.4. Selected interventions used for annotating the onset of each acute organ failure; [C]: 

interventions documented with CPT code; [H]: interventions documented with HCPCS code.   
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Table 2.5 shows the number of positively labeled instances from training, validation, and the test 

set for each dataset, according to our annotation criteria with the selected interventions and 

discharge statuses. 

  
MIMIC-3 UW-CDR 

Training Validation Test Training Validation Test 

# of hospital admissions 15,855 3,963 2,202 10,445 2,611 1,450 

# of instances 
70,452 18,207 9,870 47,174 12,426 6,275 

(patient-day) 

AHF 6,063 1,602 657 1,621 723 215 

ALI 14,962 4,136 2,222 9,494 2,823 1,184 

AKI 8,862 2,773 1,258 7,952 2,458 924 

ALF 2,263 906 311 1,180 349 113 

Table 2.5. Number of positive training, validation, and test instances for the MIMIC-3 and  

UW-CDR datasets. 

2.3.3. Prediction Performance 

2.3.3.1. Instance-Level Prediction Performance 

For instance-level evaluation, predicted probabilities 𝑝𝑝𝑡𝑠,[𝑡𝑖,𝑡𝑖+24ℎ𝑟𝑠)
𝐴𝑂𝐹  were compared with the 

labels assigned according to annotation criteria (i.e., when the patient received one of the 

selected interventions for the target acute organ failure within the next 24 hours and was 

discharged with the target acute organ failure). Table 2.6 shows the contingency tables for 

instance-level predictions in the test set from the MIMIC-3 and UW-CDR datasets. 

In both datasets, the ALI and AKI AOFI models showed comparably higher F1 scores (0.6758 

and 0.4858 for ALI; 0.4569 and 0.4583 for AKI) than the AHF and ALF AOFI models (0.2518 

and 0.2891 for AHF; 0.2202 and 0.0906 for ALF). As shown in Table 2.5, the proportion of 

positive instances for training AHF and ALF AOFI models was lower than the proportion of 

positive instances for training the ALI and AKI AOFI models in both datasets. Consequently, we 

suspect that the lower performance on AHF and ALF AOFI models is mainly due to an 

insufficient number of positive instances, which might not yield enough distinctive patterns for 

training AHF- and ALF-positive cases. The difference in performance between datasets on the 

same acute organ failure might be due to the difference in the strength of relationship between 

selected interventions and the discharge status presented in each dataset.  
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(a) MIMIC-3 

AHF 
Label  

ALI 
Label 

0 1  0 1 

Prediction 
0 8447 452  

Prediction 
0 6637 572 

1 766 205  1 1011 1650 

 Precision Recall F1   Precision Recall F1 

 0.2111 0.3120 0.2518   0.6201 0.7426 0.6758 

         

AKI 
Label  

ALF 
Label 

0 1  0 1 

Prediction 
0 7705 617  

Prediction 
0 9296 240 

1 907 647  1 263 71 

 Precision Recall F1   Precision Recall F1 

 0.4141 0.5095 0.4569   0.2126 0.2283 0.2202 

(b) UW-CDR 

AHF 
Label  

ALI 
Label 

0 1  0 1 

Prediction 
0 5914 154  

Prediction 
0 4361 570 

1 146 61  1 730 614 

 Precision Recall F1   Precision Recall F1 

 0.2947 0.2837 0.2891   0.4568 0.5186 0.4858 

         

AKI 
Label  

ALF 
Label 

0 1  0 1 

Prediction 
0 4657 443  

Prediction 
0 5980 99 

1 694 481  1 182 14 

 Precision Recall F1   Precision Recall F1 

 0.4094 0.5206 0.4583   0.0714 0.1239 0.0906 

Table 2.6. Contingency table and performance metrics on instance-level prediction from (a) the 

MIMIC-3 dataset, and (b) the UW-CDR dataset. 
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To measure the clinical validity of the probabilities predicted by the AOFI models as risk 

estimates for the target AOF, we first conducted a literature review to identify lab tests that were 

suggested as biomarkers for each acute organ failure by the clinical community. From the 

review, we identified brain natriuretic peptide for AHF [66], arterial CO2 pressure for ALI [67], 

urea nitrogen for AKI [68], and total bilirubin for ALF [69]. Then, the predicted probabilities 

from each AOFI model on test instances, 𝑝𝑝𝑡𝑠,[𝑡𝑖,𝑡𝑖+24ℎ𝑟𝑠)
𝐴𝑂𝐹 , were compared to selected lab test 

measurements available during the prediction window, [𝑡𝑖, 𝑡𝑖 + 24ℎ𝑟𝑠), by calculating Pearson’s 

correlation coefficient (see Figure 2.3). The correlation analysis results in Table 2.7 indicate a 

high correlation between predicted probabilities from the AKI and ALF AOFI models and the 

confirmatory lab test results in both datasets (min: 0.2165 from the ALF AOFI model in the UW-

CDR dataset; max: 0.3492 from the AKI AOFI model in the MIMIC-3) while the AHF and ALI 

AOFI models still showed the expected direction of correlation (min: 0.0526 from the AHF 

AOFI model in the MIMIC-3 dataset; max: 0.1786 from the ALI AOFI model in the UW-CDR 

dataset). This indicates that when lab tests do not provide immediate results that can be used to 

evaluate a patient’s risk of acute organ failure onset, the AOFI model’s capability to provide 

information on the probability of receiving relevant interventions and being discharged with the 

target acute organ failure might offer critical information in a more timely manner. 

 

Figure 2.3. Study design of the correlation analysis between lab test measurements and predicted 

probabilities. 

AOFI Model Lab Test MIMIC-3 UW-CDR Reference 

AHF Brain Natriuretic Peptide 0.0526 (58) 0.0693 (98) [66] 

ALI pCO2 0.0613 (9427) 0.1786 (650) [67] 

AKI Urea Nitrogen 0.3492 (10596) 0.3492 (6917) [68] 

ALF Total Bilirubin 0.3086 (2563) 0.2165 (1481) [69] 

Table 2.7. Pearson’s correlation coefficient between predicted probabilities and lab test 

measurements (number of available lab test measurements from test patients). 

2.3.3.2. Patient-Level Prediction Performance 

For patient-level evaluation, aggregated probabilities from each patient, 𝑝𝑝𝑡𝑠,𝑎𝑔𝑔
𝐴𝑂𝐹 , were compared 

with discharge statuses. The contingency tables of the aggregated probabilities and discharge 

statuses with corresponding precision, recall, and F1 scores are shown in Table 2.8.  
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(a) MIMIC-3  

AHF 
Label  

ALI 
Label 

0 1  0 1 

Prediction 
0 1891 169  

Prediction 
0 1692 147 

1 79 48  1 120 228 

 Precision Recall F1   Precision Recall F1 

 0.3780 0.2211 0.2791   0.6552 0.6080 0.6307 

         

AKI 
Label  

ALF 
Label 

0 1  0 1 

Prediction 
0 1614 321  

Prediction 
0 2105 31 

1 68 184  1 37 14 

 Precision Recall F1   Precision Recall F1 

 0.7302 0.3644 0.4861   0.2745 0.3111 0.2917 

(b) UW-CDR  

AHF 
Label  

ALI 
Label 

0 1  0 1 

Prediction 
0 1278 42  

Prediction 
0 1096 76 

1 15 10  1 79 94 

 Precision Recall F1   Precision Recall F1 

 0.4000 0.1923 0.2597   0.5434 0.5529 0.5481 

         

AKI 
Label  

ALF 
Label 

0 1  0 1 

Prediction 
0 1105 80  

Prediction 
0 1279 21 

1 72 88  1 35 10 

 Precision Recall F1   Precision Recall F1 

 0.5500 0.5238 0.5366   0.2222 0.3226 0.2632 

Table 2.8. Contingency table and performance metric on patient-level prediction performance 

from (a) the MIMIC-3 dataset, and (b) the UW-CDR dataset. 
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Similar to the instance-level prediction performance presented in Table 2.6, the ALI and AKI 

AOFI models showed higher F1 scores on both datasets (0.6307 and 0.5481 for ALI; 0.4861 and 

0.5366 for AKI) compared to the AHF and ALF AOFI models (0.2741 and 0.2597 for AHF; 

0.2917 and 0.2632 for ALF). As discussed in the instance-level prediction performance in 

Section 2.3.3.1, the performance difference between the AHF and ALF AOFI models and the 

ALI and AKI AOFI models in both datasets could be a result of an insufficient number of 

positive instances for training the AHF and ALF AOFI models. For the ALF AOFI model in the 

UW- CDR dataset, we suspect that the labeling criteria might focus too highly on specific ALF 

subtypes. Although it performed the worst in instance-level predictions, the ALF AOFI model in 

the UW-CDR dataset nevertheless showed a correlation with total bilirubin levels and had 

comparable results in patient-level predictions to the ALF AOFI model from the MIMIC-3 

dataset. 

There is medical consensus that the risk of one organ failure depends on the risk of other organ 

failures [70]. As the scatter matrix plot in Figure 2.4 illustrates, we observed a strong positive 

correlation in all pairs of aggregated probabilities from the AOFI models in both datasets. 

Moreover, the aggregated probabilities of ALF tend to be lower than the aggregated probabilities 

of ALI and AKI from most patients in both datasets, and these trends can be written as the 

inequality with a conditional probability: 𝑝(𝐴𝑂𝐹1) > 𝑝(𝐴𝑂𝐹2) ↔ 𝑝(𝐴𝑂𝐹1|𝐴𝑂𝐹2) >
𝑝(𝐴𝑂𝐹2|𝐴𝑂𝐹1). Accordingly, two probabilistic inequalities shared by both datasets can be 

derived, 𝑝(𝐴𝐿𝐼|𝐴𝐿𝐹) > 𝑝(𝐴𝐿𝐹|𝐴𝐿𝐼) and 𝑝(𝐴𝐾𝐼|𝐴𝐿𝐹) > 𝑝(𝐴𝐿𝐹|𝐴𝐾𝐼), which agree with the 

observation from discharge diagnoses in both datasets (Table 2.9). Through literature review, we 

found supporting evidence of these findings—that subtypes of acute kidney injury are frequently 

observed in patients with liver dysfunction [71], and pulmonary infection is prevalent in patients 

with acute liver failure [72], [73]; this might explain the higher aggregated probabilities from 

ALI and AKI AOFI models than the probabilities from ALF AOFI models in both datasets. 

Data Sources 
#(𝐴𝐿𝐼 ∩ 𝐴𝐿𝐹)

#(𝐴𝐿𝐹)
 

#(𝐴𝐿𝐼 ∩ 𝐴𝐿𝐹)

#(𝐴𝐿𝐼)
 

#(𝐴𝐾𝐼 ∩ 𝐴𝐿𝐹)

#(𝐴𝐾𝐼)
 

#(𝐴𝐾𝐼 ∩ 𝐴𝐿𝐹)

#(𝐴𝐿𝐹)
 

MIMIC-3 0.4222 0.0507 0.7333 0.0661 

UW-CDR 0.7667 0.1353 0.8667 0.1576 

Table 2.9. Conditional probabilities of observing discharge diagnoses of ALI, AKI, and ALF; 

#(𝐴 ∩ 𝐵) represents the number of patients discharged with both AOF A and B. 
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Figure 2.4. Scatter matrix plot for aggregated probabilities from (a) the MIMIC-3 dataset, and 

(b) the UW-CDR dataset. Diagonal entries represent the probability density of aggregated 

probabilities for each AOFI model. 
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2.3.4. Error Analysis 

2.3.4.1. Instance-Level Analysis 

We conducted error analyses at both the instance and patient levels. An analysis of instance-level 

predictions showed that an average of 18.83% false-positive instances were generated from 

patients discharged with the target acute organ failure—12.14% (93 instances) from the AHF 

AOFI model, 13.85% (140 instances) from the ALI AOFI model, 38.15% (346 instances) from 

the AKI AOFI model, and 3.80% (10 instances) from the ALF AOFI model in the MIMIC-3 

dataset; 26.71% (39 instances) from the AHF AOFI model, 21.78% (159 instances) from the ALI 

AOFI model, 26.51% (184 instances) from the AKI AOFI model, and 7.69% (14 instances) from 

the ALF AOFI model in the UW-CDR dataset. Of those false-positive predictions, an average of 

17.74% occurred one day before the target date (i.e., when patients who discharged with the 

target acute organ failure received selected interventions; Figure 2.5a)—11.83% from the AHF 

AOFI model, 17.14% from the ALI AOFI model, 16.73% from the AKI AOFI model, and 20% 

from the ALF AOFI model in the MIMIC-3 dataset; 30.77% from the AHF AOFI model, 

26.42% from the ALI AOFI model, 19.02% from the AKI AOFI model, and none from the ALF 

AOFI model in the UW-CDR dataset. Although classified as false-positives according to our 

annotation criteria, these false-positive predictions could be useful as early warning signals when 

trained AOFI models are deployed.  

Similarly, of the all false-negative predictions generated from patients discharged with the target 

acute organ failure according to our annotation criteria, we found that an average of 63.12% 

were made one day after the target date (Figure 2.5b)—58.85% from the AHF AOFI model, 

62.59% from the ALI AOFI model, 53.97% from the AKI AOFI model, and 77.08% from the 

ALF AOFI model in the MIMIC-3 dataset; and 55.84% from the AHF AOFI model, 68.95% 

from the ALI AOFI model, 61.85% from the AKI AOFI model, and 57.57% from the ALF AOFI 

model in the UW-CDR dataset. We suspect these false-negative predictions occurred because the 

selected interventions had been administered as late as the day before the target date to manage 

patients’ risks of the target acute organ failure, and the interventions might control abnormal 

physiological statuses. Therefore, the predictions, which are based on clinical observations after 

the interventions, might yield lower risks. Consequently, we could consider those predictions as 

true-negative predictions regarding the risk of the target acute organ failure onset, even though 

they were classified as false-negatives according to the annotation criteria.  

 

Figure 2.5. Illustration of (a) false-positive occurred one day before the target date and (b) false-

negative instance-level predictions one day after the target date. 
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By assuming false-negative predictions the day after the target date and false-positive predictions 

the day before the target date as clinically valid predictions, we reevaluated the models by 

changing the evaluation criteria. First, we evaluated the performance after accepting false-

positives occurred one day before the target date as true-positive predictions (Table 2.10, 

“Accepting FP” column). This yielded F1 scores that were an average of 5.24% higher (min: 0% 

in the ALF AOFI model from the UW-CDR dataset; max: 16.36% in the AHF AOFI model from 

the UW-CDR dataset). We also evaluated the performance change by accepting false-negatives 

occurring one day after the target date as true-negative predictions (Table 2.10, “Accepting FN” 

column). This yielded F1 scores that were an average of 20.34% higher (min: 7.92% in the ALI 

AOFI model from the MIMIC-3 dataset; max: 40.19% in the ALF AOFI from the MIMIC-3 

dataset). When combined (Table 2.10, “Accepting Both” column), we observed F1 scores that 

were an average of 26.39% higher compared to the F1 scores evaluated by the annotation criteria 

(min: 8.90% in the ALI AOFI model from the MIMIC-3 dataset; max: 45.10% in the AHF AOFI 

model from the UW-CDR dataset). Under the assumption that such false-positives and false-

negatives are clinically valid predictions, the actual performance of AOFI models as a risk 

estimator for acute organ failure onset could be higher than what we evaluated according to the 

annotation criteria in Table 2.6. Changes in F1 scores, by accepting these false predictions as true 

predictions, are provided in Table 2.10. 

 MIMIC-3 UW-CDR 

Positive 

Criteria 

Original 

Criteria 

Accepting 

FP 

Accepting 

FN 

Accepting 

Both 

Original 

Criteria 

Accepting 

FP 

Accepting 

FN 

Accepting 

Both 

AHF 0.2518 0.2636 0.3010 0.3146 0.2891 0.3364 0.3631 0.4195 

ALI 0.6758 0.6823 0.7293 0.7360 0.4858 0.5105 0.5752 0.6027 

AKI 0.4569 0.4881 0.5184 0.5524 0.4583 0.4836 0.5271 0.5548 

ALF 0.2202 0.2257 0.3087 0.3160 0.0906 0.0906 0.1111 0.1111 

Table 2.10. Reevaluated F1 scores with modified criteria. 

2.3.4.2. Patient-level Analysis 

During the patient-level error analysis, we observed that an average of 57.49% of false-positive 

patients were discharged with other acute organ failures on both datasets (Table 2.11). This 

indicated that some physiological changes that resulted from non-target acute organ failures 

might increase predicted risks in the target AOFI models. For example, it is known that AKI has 

a distant effect on other organ systems [74], [75], and ALI aggravates hepatic functionality [76]. 

Therefore, patients discharged with ALI and AKI might present with an adverse physiology of 

ALF during their hospital stay, thereby yielding high predicted probabilities of ALF, despite the 

fact that these patients were not discharged with ALF.   
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  MIMIC-3 UW-CDR 

Predicted 

discharge 

status 

AHF ALI AKI ALF AHF ALI AKI ALF 

# of FP 79 120 68 37 15 79 72 35 

Discharge Status of False Positive Patients 

No AOF 17 73 30 4 4 65 47 10 

AHF   15 15 2   4 7 4 

ALI 44   32 26 11   24 22 

AKI 57 40   30 11 12   20 

ALF 10 7 2   3 2 1   

Table 2.11. The number of frequently observed discharge diagnoses from false-positive patients 

in both the MIMIC-3 and UW-CDR datasets; a patient can be discharged with more than one 

acute organ failure. 

2.4. Limitations 

This study is based on clinical observations from ICUs, where the physiology of patients is 

worse compared to overall patient population. Moreover, the two datasets used for the study 

were collected from only three tertiary hospitals, so it is possible that each dataset reflects 

hospital-specific characteristics, which yielded different characteristics on annotation criteria 

between the MIMIC-3 and UW-CDR datasets. As a result, the study population and annotation 

criteria may not reflect general patient characteristics. 

Moreover, the proposed annotation strategy relies on automatically selected interventions to 

annotate the potential acute organ failure onset. However, some of the measures that manage 

acute organ failure might be documented outside of the data sources considered in this study 

(e.g., participating in late-phase clinical trials). Therefore, this approach might miss some of the 

potential acute organ failure onset cases with other identifiable precursors. Also, the medical 

coding criteria might vary not only by medical coders but also by institution. Although we 

showed the feasibility of using the timing of intervention administration and discharge diagnoses 

as a simple annotation strategy for acute organ failure onset, this annotation strategy might rely 

too heavily on institution-specific diagnosis coding practices and treatment guidelines. 

2.5. Conclusion 

In this study, we demonstrated that statistical testing with discharge diagnoses was able to 

systematically identify clinical interventions that were frequently administered to patients 

discharged with the target acute organ failure. Moreover, by using the identified clinical 

interventions and the target discharge diagnoses as labels, trained models were able to show that 

the probability of receiving relevant interventions in the near future and being discharged with 

the target diseases could be used as a risk estimate for developing the target acute organ failure 

in the near future. Our approach produced reasonable prediction accuracies, particularly from the 
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ALI and AKI AOFI models across two datasets. Moreover, our error analyses indicated that 

false-positive and false-negative predictions in AOFI models that performed worse than other 

AOFI models, AHF and ALF AOFI models in both datasets, still might be clinically valid so the 

performance of predicted probabilities as an acute organ failure risk estimate could be higher 

than what was presented in this study. The conducted experiments also demonstrated that 

inferred probabilities tend to be well-aligned with known lab tests which are used to diagnose 

acute organ failure onset in practice. The presented automatic annotation strategy was able to 

derive risk prediction models for selected acute-onset diseases without human annotators based 

on the transparent annotation criteria, which can be further refined following physician 

evaluation.  



40 

 

Chapter 3. Extending Expert Scores of Patient Risk with 

Probabilistic Temporal Models 

3.1. Introduction 

Forecasting patient progress and improving patient outcomes by using predictive analysis has 

been one of the widely studied research areas in medicine, and early warning scores (EWS) aim 

to quantify patients’ risk of developing clinical events of interest (e.g., sepsis) in advance [25], 

[77]–[79]. With frequently measured clinical variables taken from existing clinical workflows, 

these scores use a simple calculation to quickly evaluate a patient’s risk with only a minimal 

chance of calculation error in time-critical care settings. These scores are proposed by 

practitioners, and they are designed as clinical decision support tools. For example, when high 

risk scores are observed, practitioners may initiate the order of high sensitivity diagnostic tests or 

increase the frequency of patient monitoring. Moreover, because these scores often require only 

a few clinical variables, the calculated risks are easy to compute and to interpret by caregivers. 

EWS summarize multiple physiological variables into a few quantities that are aimed at 

providing a measure of the likelihood of clinical events of interest. Therefore, they are often used 

to screen high-risk patients for a target event by creating alerts when the patient’s EWS exceed a 

predefined threshold [36], [37]. When alerted, the screening often involves additional reviews 

from physicians, which are performed by verifying risk factors of the target event. Most EWS 

only focus on the specific clinical event and do not consider the temporal trends of physiology 

due to their static nature. Therefore, this procedure could fail to generate proper alerts when 1) 

the patient is close to, but does not meet, the screening criteria for extended periods; that is, the 

patient is still developing the target disease because of the sustained abnormal physiology or 2) 

the EWS for the target event cannot be calculated because the required variables are 

undocumented. To cover the cases above and improve the performance of EWS-based screening, 

we can leverage these expert-driven risk estimates while accounting for aspects that are not 

considered by the criteria. 

In the present study, we aimed to improve the screening performance of the widely adopted 

EWS that quantifies the general risk of organ failures, the Multiple Organ Dysfunction Score 

(MODS)[25], to identify patients with a high risk of each of the four acute organ-system failure 

(AOF) onsets: acute heart failure (AHF), acute lung injury (ALI), acute kidney injury (AKI), 

and acute liver failure (ALF). We hypothesized that the performance of EWS-based screenings 

can be improved by considering EWS on potentially relevant clinical events as well as their 

trajectories along with the EWS on the target event. To do this, we used the Hidden Markov 

Model (HMM) to integrate the trajectories of MODS subscores on the four target organ systems 

(cardiovascular, respiratory, renal, and hepatic) to generate risk estimates for the target AOF 

onset during a patient’s intensive care unit (ICU) stay. Gold standard information about the 

timing of each AOF onset is not available from most of the electronic health records (EHRs). 

Thus, we trained the model based on patients’ discharge statuses. In our approach, each latent 

state in the HMM was designed to be mapped to disjoint AOF risk states so that the likelihood 

of each latent state could be utilized as the risk estimates for the corresponding AOF risk states. 

After model training, we conducted a comparative analysis of the performance between the 

threshold-based screening using the MODS and the proposed method. We also analyzed how 

the trained HMM describes the general AOF prognoses on the dataset. 
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3.2. Related Work 

3.2.1. Classifier Fusion 

Classifier fusion is an ensemble approach that merges the predictions from submodels through 

algebraic combinations or a probabilistic framework. To do so, classifier fusion often treats 

predictions from each submodel as a support or a conditional posterior probability for each class 

[80], [81]. We designed our approach as a classifier fusion regarding the simple threshold-based 

screening criteria by using MODS for each organ system as weak classifiers evaluating patients’ 

risk of AOF onsets. We hypothesized that classifier fusion could reduce potential false negative 

predictions when 1) the MODS for the target organ system was not available given the absence 

of required variables or 2) the MODSs were lower than the threshold from patients discharged 

with the target AOF. In such cases, calculated scores on other relevant organ systems based on 

the available clinical variables were assumed to be used as additional evidence via classifier 

fusion. 

3.2.2. HMM for Clinical Event Prediction 

For the current study, HMM was selected as the framework for integrating the calculated MODS 

trajectories during a patient’s ICU stay. In general, HMM assumes the temporal transition among 

latent states and the sequence of observations as emitted evidence from these latent states. 

Because the model simplifies temporal state transitions and provides a probabilistic description 

of its behavior, HMMs have been widely used to illustrate patient prognoses [82]–[85]. 

Moreover, certain studies have leveraged the descriptive capacity of HMM to extract temporal 

physiological patterns that are frequently observed from target events. For example, Sukkar et al. 

[86] trained an HMM to derive latent representations on time-series biomarker observations 

related to Alzheimer’s disease with unsupervised training, and analyzed the disease progression 

as described through the estimated likelihood of latent states. We also leveraged the descriptive 

power of HMM to understand how the model describes patients’ prognoses for the four AOFs. 

By mapping each latent state to disjoint AOF risk states, we expected the HMM’s probabilistic 

components to facilitate the clinical evaluation, such as evaluating the general transition patterns 

among AOF risk states, which might be challenging with other sequence models based on neural 

architectures. 

3.3. Methods 

3.3.1. Background 

In this study, we aimed to improve the performance of AOF onset screening in the ICU setting 

using the widely adopted EWS, the MODS. The MODS quantifies a patient’s general severity 

for each of the following organ systems based on relevant clinical variables: the cardiovascular, 

respiratory, renal, hepatic, hematologic, and neurologic systems3. The severity score for each 

organ system ranges from 0 to 4, with 4 being assigned to the most severe state. For the baseline 

screening criteria of the target AOF, we assumed that the MODS of the corresponding organ 

system was used to screen high-risk patients (e.g., using cardiovascular MODS for the AHF 

screening). The detailed MODS scoring criteria are provided in Table 3.1.  
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Organ System 
Severity Score 

0 1 2 3 4 

Cardiovascular (PAR∗) < 10.1 10.1 − 15.0 15.1 − 20.0 20.1 − 30.0 > 30 

Respiratory (PaO2/FiO2) > 300 226 − 300 151 − 225 75 − 150 ≤ 75 

Renal (Creatinine,µmol/L) < 100 101 − 200 201 − 350 351 − 500 > 500 

Hepatic (Bilirubin,µmol/L) ≤ 20 21 − 60 61 − 120 121 − 240 > 240 

Table 3.1. MODS for the cardiovascular, respiratory, renal and hepatic systems [25]; * Pressure-

adjusted Heart Rate (PAR) = [Heart Rate] × [Central Venous Pressure]/[Mean Arterial Pressure] 

3.3.2. Prediction Problem 

The HMM for the presented study was designed to take the MODS history (#1 in Figure 3.1), 

including the evaluation time window (𝑡𝑖 in Figure 3.1), and estimate the risk of the target AOF 

onset during the evaluation time window. For each day, the trained HMM generated the risk 

estimates for the onset of AHF, ALI, AKI, and ALF based on the patient’s MODS history. 

The HMM modeled each patient’s prognosis regarding the four AOFs. To describe the model, 

we assumed that there exists a latent state that holds the true information of the four target AOF 

onsets not directly available from the EHR, and we considered the calculated MODS for the 

patient’s cardiovascular, respiratory, renal, and hepatic systems as evidence emitted by the latent 

states. To directly compare the performance changes due to trajectory consideration of relevant 

organ systems with the threshold-based baseline, we did not include the hematologic and 

neurologic MODS for this study. Moreover, to measure the contribution of trajectory information 

compared with the latest evidence observed at time 𝑡𝑖 during the likelihood estimation, we 

merged risk estimates from trajectory information and the latest evidence (#2 in Figure 3.1) with 

different weights. 

 

Figure 3.1. HMM design evaluating the AOF risks at the evaluation time window 𝑡𝑖; 1. 

Trajectory information from time 𝑡1 to 𝑡𝑖, 2. Latest evidence at time 𝑡𝑖. 

3.3.3. Input 

To train the HMM, calculated MODS subscores for the four organ systems—cardiovascular, 

lung, renal, and hepatic systems—were used as an input. To provide a general description of the 

design, we noted the number of organ systems as k=4. We denoted the calculated MODS on the 

j-th organ system at time 𝑡𝑖  as 𝑟𝑖𝑠𝑘𝑗,𝑡𝑖 = 𝑀𝑂𝐷𝑆𝑗(𝑥𝑝𝑡𝑠,[𝑡𝑖,𝑡𝑖+1)), which took patients’ clinical 

observations from time 𝑡𝑖  to 𝑡𝑖+1, 𝑥𝑝𝑡𝑠,[𝑡𝑖,𝑡𝑖+1), and calculated the highest MODS, the worst 

potential patient risk, for the target organ system. The vector representing the calculated MODSs 
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for all organ systems during [𝑡𝑖, 𝑡𝑖+1] was noted as 𝑟𝑖𝑠𝑘𝑡𝑖 =< 𝑟𝑖𝑠𝑘1,𝑡𝑖 , … , 𝑟𝑖𝑠𝑘𝑘,𝑡𝑖 >∈

{0,1,2,3,4}𝑘  for brevity. 

3.3.4. Target Labels 

The HMM took the discharge diagnoses as gold standard information for training and evaluation. 

We noted the terminal outcomes for the patient pts according to the discharge diagnoses 

available in the EHR as 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑝𝑡𝑠 =< 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙1, … , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑘 >, where 

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑗 ∈ {0,1} for all 𝑗 ∈ {1,… , 𝑘}: 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑗 was a binary variable indicating the patient’s 

discharge status on the j-th AOF. For each 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑗, a positive label was assigned when the 

patient was discharged with the target AOF, and a negative label was assigned otherwise. 

3.3.5. Trajectory Modeling 

The HMM modeled patients’ AOF prognoses by considering MODSs at time 𝑡𝑖  for k target organ 

systems, 𝑟𝑖𝑠𝑘𝑡𝑖, as emitted evidence from latent states during the evaluation time window 

[𝑡𝑖, 𝑡𝑖+1]. Each latent state 𝑠𝑡𝑎𝑡𝑒𝑡𝑖 ∈ 𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡 was assumed to have information about the true 

onset of AOFs during [𝑡𝑖 , 𝑡𝑖+1], which was not available from the dataset. We assigned disjoint 

AOF states, comprising k binary variables indicating each AOF onset, to each latent state, 

thereby generating 2𝑘(= |𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡|) possible latent states for each evaluation time window. 

To describe the HMM, we estimated the prior probabilities of each latent state, the transition 

probability between latent states, and the likelihood of observing 𝑟𝑖𝑠𝑘𝑡𝑖 given each state 𝑠 ∈

𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡. We noted the prior probability of each state as P(state), and optimized the vector 

𝑝𝑟𝑖𝑜𝑟⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑝𝑟𝑖𝑜𝑟⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =< 𝑝𝑟𝑖𝑜𝑟𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡[1], … , 𝑝𝑟𝑖𝑜𝑟𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡[2𝑘] >∈ [0,1]
2𝑘 where ∑ 𝑝𝑟𝑖𝑜𝑟𝑠𝑠∈𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡 = 1, 

to estimate the probabilities. The transition matrix was noted as 𝑇𝑀 ∈ [0,1]2
𝑘×2𝑘, and 

𝑇𝑀[𝑓𝑟𝑜𝑚, 𝑡𝑜] represents the transition probability from 𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡[𝑓𝑟𝑜𝑚] to 𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡[𝑡𝑜], 
𝑃(𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡[𝑓𝑟𝑜𝑚] → 𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡[𝑡𝑜]), where ∑ 𝑇𝑀[𝑓𝑟𝑜𝑚, 𝑙] = 1𝑙∈𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡 . The parametric 

function 𝑓𝜓 estimating the likelihood of 𝑟𝑖𝑠𝑘𝑡𝑖 for each state was implemented using a neural 

network with a single hidden layer to meet the following property: 𝑃(𝑟𝑖𝑠𝑘𝑡𝑖|𝑠𝑡𝑎𝑡𝑒) =

𝑓𝜓(𝑟𝑖𝑠𝑘𝑡𝑖) where 𝑓𝜓: {0, … ,4}
𝑘 → [0,1]2

𝑘
. 

Using the probabilistic components above, the HMM estimated the likelihood of each 𝑠𝑡𝑎𝑡𝑒𝑡𝑖   

given the emitted evidence from 𝑡1 to 𝑡𝑖, 𝑃(𝑠𝑡𝑎𝑡𝑒𝑡𝑖|𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖), as follows: 

𝑃(𝑠𝑡𝑎𝑡𝑒𝑡𝑖|𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖) =
𝑃(𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖|𝑠𝑡𝑎𝑡𝑒𝑡𝑖)𝑃(𝑠𝑡𝑎𝑡𝑒𝑡𝑖)

∑ 𝑃(𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖|𝑠𝑡𝑎𝑡𝑒𝑡𝑖 = 𝑠)𝑃(𝑠𝑡𝑎𝑡𝑒𝑡𝑖 = 𝑠)𝑠∈𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡

 

Under the Markov assumption, we could rewrite 𝑃(𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖|𝑠𝑡𝑎𝑡𝑒𝑡𝑖) as follows: 

𝑃(𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖|𝑠𝑡𝑎𝑡𝑒𝑡𝑖) = ∑ [
𝑃(𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖−1|𝑠𝑡𝑎𝑡𝑒𝑡1 , … , 𝑠𝑡𝑎𝑡𝑒𝑡𝑖−1 = 𝑠)

× 𝑃(𝑠𝑡𝑎𝑡𝑒 = 𝑠)𝑃(𝑠 → 𝑠𝑡𝑎𝑡𝑒𝑡𝑖)𝑃(𝑟𝑖𝑠𝑘𝑡𝑖|𝑠𝑡𝑎𝑡𝑒𝑡𝑖)
]

𝑠∈𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡

 

For the calculation, 𝑃(𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖−1|𝑠𝑡𝑎𝑡𝑒𝑡1 , … , 𝑠𝑡𝑎𝑡𝑒𝑡𝑖−1 = 𝑠) was estimated using 

recursion, and 𝑃(𝑠𝑡𝑎𝑡𝑒 = 𝑠), 𝑃(𝑠 → 𝑠𝑡𝑎𝑡𝑒𝑡𝑖), and 𝑃(𝑟𝑖𝑠𝑘𝑡𝑖|𝑠𝑡𝑎𝑡𝑒𝑡𝑖) were estimated using the 
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prior probability (𝑃(𝑠𝑡𝑎𝑡𝑒)), the transition matrix (TM), and the likelihood estimator (𝑓𝜓), 

respectively. 

During the likelihood estimation, we assumed that some states could be predicted more 

accurately with trajectory information while other states relied more on the latest evidence. To 

measure how the importance of trajectory information varies for the likelihood estimation on 

each state, we combined two likelihood estimates for 𝑠𝑡𝑎𝑡𝑒𝑡𝑖—one using latest evidence, 

𝑃(𝑠𝑡𝑎𝑡𝑒𝑡𝑖|𝑟𝑖𝑠𝑘𝑡𝑖), and another using trajectory information, 𝑃(𝑠𝑡𝑎𝑡𝑒𝑡𝑖|𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖)—as a 

weighted sum with 𝛼𝑠𝑡𝑎𝑡𝑒𝑡𝑖
∈ [0,1]: 

𝑃𝑡𝑜𝑡𝑎𝑙(𝑠𝑡𝑎𝑡𝑒𝑡𝑖|𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖)

= (1 − 𝛼𝑠𝑡𝑎𝑡𝑒𝑡𝑖
)𝑃(𝑠𝑡𝑎𝑡𝑒𝑡𝑖|𝑟𝑖𝑠𝑘𝑡𝑖) + 𝛼𝑠𝑡𝑎𝑡𝑒𝑡𝑖

𝑃(𝑠𝑡𝑎𝑡𝑒𝑡𝑖|𝑟𝑖𝑠𝑘𝑡1 , … , 𝑟𝑖𝑠𝑘𝑡𝑖) 

3.3.6. Model Optimization 

Although the forward-backward [87] and Viterbi algorithms [88] are common approaches for 

HMM training, they were not applicable in the current study because the labels for the predicted 

states were not available. Instead, we compared the estimated state likelihoods from the time of 

admission (𝑡𝑎𝑑𝑚), 𝑃𝑡𝑜𝑡𝑎𝑙(𝑠𝑡𝑎𝑡𝑒𝑡𝑎𝑑𝑚|𝑟𝑖𝑠𝑘𝑡𝑎𝑑𝑚), to the time of discharge (𝑡𝑑𝑖𝑠𝑐ℎ), 

𝑃𝑡𝑜𝑡𝑎𝑙(𝑠𝑡𝑎𝑡𝑒𝑡𝑑𝑖𝑠𝑐ℎ|𝑟𝑖𝑠𝑘𝑡𝑎𝑑𝑚 , … , 𝑟𝑖𝑠𝑘𝑡𝑑𝑖𝑠𝑐ℎ), with the binary labels in 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑝𝑡𝑠 by 

aggregating the estimated state likelihood sequence into a scalar. We then optimized the model 

with convex optimization. During the probability aggregation, the state without any AOF onset, 

𝑍𝑒𝑟𝑜𝑆𝑡𝑎𝑡𝑒 = {0}𝑘, was treated separately because the patients who were discharged with no 

AOF should remain in this 𝑍𝑒𝑟𝑜𝑆𝑡𝑎𝑡𝑒 throughout their ICU stay; otherwise, at least one AOF 

would be documented in their discharge diagnoses. The likelihood of patients being assigned to 

the latent state 𝑠 ∈ 𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡 at least once throughout their ICU stay was calculated as follows: 

𝛽𝑝𝑡𝑠,𝑠 =

{
 
 

 
 1 − [∏(1 − 𝑃𝑡𝑜𝑡𝑎𝑙(𝑠𝑡𝑎𝑡𝑒𝑡 = 𝑠|𝑟𝑖𝑠𝑘𝑡𝑎𝑑𝑚 , … , 𝑟𝑖𝑠𝑘𝑡))

𝑡

]  𝑖𝑓 𝑠 ≠ 𝑍𝑒𝑟𝑜𝑆𝑡𝑎𝑡𝑒

∏𝑃𝑡𝑜𝑡𝑎𝑙(𝑠𝑡𝑎𝑡𝑒𝑡 = 𝑠|𝑟𝑖𝑠𝑘𝑡𝑎𝑑𝑚 , … , 𝑟𝑖𝑠𝑘𝑡)

𝑡

 𝑖𝑓 𝑠 = 𝑍𝑒𝑟𝑜𝑆𝑡𝑎𝑡𝑒

∈ [0,1] 

Because the prevalence of each AOF varied, the AOF with comparably lower prevalence, such 

as ALF, would be presented with an even lower prevalence if we expanded 

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑝𝑡𝑠 on the outcome basis, |𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑝𝑡𝑠| = 𝑘, into the state basis, 

|𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡| = 2𝑘. Therefore, we compared 𝛽𝑝𝑡𝑠  and 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑝𝑡𝑠  on the outcome basis 

by further aggregating 𝛽𝑝𝑡𝑠 into 𝛾𝑝𝑡𝑠,𝑗
+  and 𝛾𝑝𝑡𝑠,𝑗

− , in which each quantified the probability of the 

patient being assigned to either the AOF-positive or AOF-negative states on the j-th AOF at least 

once throughout their ICU stay, respectively: 

𝛾𝑝𝑡𝑠,𝑗
+ = 1 − ( ∏ (1 − 𝛽𝑝𝑡𝑠,𝑠)

𝑠∈{𝑠̃|𝑠̃ ∈ 𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡, 𝑠̃[𝑗] = 1}

), 
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𝛾𝑝𝑡𝑠,𝑗
− = 1 − ( ∏ (1 − 𝛽𝑝𝑡𝑠,𝑠)

𝑠∈{𝑠̃|𝑠̃ ∈ 𝑆𝑡𝑎𝑡𝑒𝑆𝑒𝑡, 𝑠̃[𝑗] = 0}

) 

Finally, the following loss function was used to train the HMM: 

𝑙𝑜𝑠𝑠(𝜆, 𝜓) = ∑ ∑ [

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝛾𝑖,𝑗
+ , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖[𝑗], 𝑤𝑒𝑖𝑔ℎ𝑡[𝑗])

+𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝛾𝑖,𝑗
− , 1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖[𝑗], 𝑤𝑒𝑖𝑔ℎ𝑡[𝑗]

−1)

+𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟(𝜆)

]

𝑗∈{1,…,𝑘}𝑖∈𝑝𝑡𝑠

 

, 

where the weighted cross entropy 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝, 𝑦, 𝜙) was calculated on the probability p, 

the label y, and the weight on the positive prediction for the class φ. Tensorflow library [89] was 

used for the implementation. 

3.3.7. Evaluation 

To evaluate our approach, we predicted the patient’s discharge status based on state predictions 

Ptotal throughout the patient’s ICU stay. By aggregating the positive predictions on the predicted 

state 𝑠𝑡𝑎𝑡𝑒𝑡𝑖̂ = [𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑃𝑡𝑜𝑡𝑎𝑙(𝑠𝑡𝑎𝑡𝑒𝑡𝑖 = 𝑠|𝑟𝑖𝑠𝑘𝑡𝑎𝑑𝑚 , … , 𝑟𝑖𝑠𝑘𝑡𝑖)] ∈ {0,1}
𝑘, we defined the 

predicted discharge state for each patient as follows: 

𝐷𝑖𝑠𝑐ℎ𝑆𝑡𝑎𝑡𝑒𝑝𝑡𝑠 =< max
t∈{tadm,…,tdisch}

𝑠𝑡𝑎𝑡𝑒𝑡̂ [1] ,… , max
t∈{tadm,…,tdisch}

𝑠𝑡𝑎𝑡𝑒𝑡̂ [𝑘] > 

Then, we compared this with terminaloutcomepts on the outcome basis. For example, for the 

predicted DischStatepts =< 1,0,0,1 > and 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑝𝑡𝑠 =< 1,1,0,1 >, pts was 

counted as a true-positive during the evaluation on 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙1 and a false-negative during the 

evaluation on 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙2 and so on. From the models trained with various hyperparameters, we 

selected the model that achieved the highest micro-F1 score in the validation set because we 

wanted to minimize the total number of false AOF predictions. 

Using the test set, the screening performance of the selected model was evaluated based on three 

different deployment settings: 1) MODS only (MODS), 2) HMM only (HMM), and 3) MODS 

and HMM together (MODS+HMM). For each setting, we assumed a patient was called out for 

additional review when: 1) the MODS for the target organ system was ≥ 3, 2) the HMM made a 

positive prediction for the target AOF, and 3) either the HMM made a positive prediction or the 

MODS for the target organ system was ≥ 3, respectively. 

3.4. Results 

We used the MIMIC-3 dataset [65] in the current study. The dataset comprises the clinical 

observations of patients admitted to ICUs at the Beth Israel Hospital in Boston, MA. From the 

dataset, we included patients who were found to have at least one of the required clinical 

variables to calculate their MODSs during their ICU stays. Patients under the age of 18 were 

excluded because the normal range of physiological variables differs between children and 

adults. A brief summary of the patient demographics was presented in Table 3.2. 
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Descriptor 

Number of hospital admissions 27,769 

Number of patient-days 160,980 

Age* 63.73 ± 17.30 

Admission type: Number of hospital admissions Elective — 4,002 

Emergency — 22,777 

Urgent — 990 

Number of in-hospital deaths 3,492 (12.57%) 

Table 3.2. Patient demographics from the dataset; * the ages of 2,616 patients older than 90 

years were randomly adjusted for de-identification purposes. 

To train and test the HMM, we divided a total of 27,769 hospital admissions (a total of 160,980 

patient-days) into training, validation, and test sets at a 7:2:1 ratio. For the terminal outcomes, we 

considered the four different AOFs: AHF, ALI, AKI, and ALF. For the terminal states terminalj 

of each AOF, we assigned a positive label when a patient was discharged with the target AOF 

and a negative label otherwise. Selected ICD-9 (International Classification of Diseases, 9th 

revision) codes for each AOF terminal outcome labeling were presented in Table 3.3. 

For the HMM training, the MODSs for the four organ systems on each patient-day were 

considered as evidence emitted from the latent states, which are assumed to hold information 

about true AOF onsets. We assigned 0 MODS to an organ system when the score could not be 

calculated because at least one of the required variables was not available on the patient-day 

from the EHR. The overall distribution of MODSs in the test set was presented in Table 3.4. We 

described the results using predictions of the patient’s terminal outcome (𝐷𝑖𝑠𝑐ℎ𝑆𝑡𝑎𝑡𝑒𝑝𝑡𝑠; patient-

level) and predictions of each patient-day (statetî ; instance-level).  
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Target Acute 

Organ Failure 
ICD-9 Diagnosis Code 

AHF 

428.21 Acute systolic heart failure 

428.23 Acute on chronic systolic heart failure 

428.31 Acute diastolic heart failure 

428.33 Acute on chronic diastolic heart failure 

428.41 Acute combined systolic and diastolic heart failure 

428.43 Acute on chronic combined systolic and diastolic heart failure 

ALI 

518.81 Acute respiratory failure 

518.51 Acute respiratory failure following trauma and surgery 

518.84 Acute on chronic respiratory failure 

518.53 Acute on chronic respiratory failure following trauma and surgery 

AKI 

584.9 Acute kidney failure, unspecified 

584.6 Acute kidney failure with lesion of cortical necrosis 

584.7 Acute kidney failure with lesion of medullary necrosis 

584.5 Acute kidney failure with lesion of tubular necrosis 

584.8 Acute kidney failure with specified pathology NEC 

ALF 570 Acute and subacute necrosis of liver 

Table 3.3. Selected ICD-9 codes for terminal outcome labeling. 

 

Maximum 

score 

during 

ICU stay 

Discharged with AOF Population 

MODS on 

the target 

organ 

AHF ALI AKI ALF Cardiovascular Respiratory Renal Hepatic 

0 63 77 140 7 1,737 1,461 1,685 682 

1 1 21 182 0 79 125 654 241 

2 2 66 130 3 158 293 213 1,003 

3 5 140 56 14 304 596 74 508 

4 19 125 50 28 494 297 146 338 

Total 90 429 558 52  2,772   

Table 3.4. Per-patient maximum MODS distribution in the test set. 

3.4.1. Performance Comparison on Patient-level Predictions 

The patient-level prediction performance is provided in Table 3.5. The HMM showed a higher 

micro-F1 score (0.374 vs. 0.225) with a significantly improved micro-recall (0.661 vs. 0.387) as 

compared to the MODS setting, which indicated that considering the MODS trajectories of the 

target and potentially relevant organ systems yielded more accurate predictions in high-risk 

patient screening tasks overall. The performance improvement was mainly achieved by correctly 

identifying high-risk patients who were not detected in the MODS setting. The MODS+HMM 
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setting also showed a higher micro-F1 score as compared with the MODS setting (0.299 vs. 

0.225), which showed the potential of the HMM to complement the threshold-based screening 

when it cannot be deployed by itself. 

 

Deployment 

Setting 
MODS HMM HMM+MODS 

Performance Rec Prec F1 Rec Prec F1 Rec Prec F1 

AHF 0.267 0.030 0.054 0.411 0.076 0.128 0.644 0.048 0.090 

ALI 0.618 0.297 0.401 0.620 0.256 0.362 0.786 0.239 0.366 

AKI 0.190 0.482 0.273 0.753 0.374 0.500 0.755 0.367 0.494 

ALF 0.808 0.050 0.094 0.442 0.109 0.175 0.808 0.049 0.093 

Micro 

measures 
0.387 0.159 0.225 0.661 0.261 0.374 0.760 0.186 0.299 

Table 3.5. Patient-level performance comparison for different deployment settings. 

With respect to the performance for each AOF onset screening, AHF, AKI, and ALF showed the 

best F1 scores of 0.128, 0.500, and 0.175 in the HMM setting, respectively, while ALI showed 

the best performance in the MODS setting (F1: 0.401). The ALI screening result from the HMM 

did not show a higher F1 score and presented a similar recall with decreased precision as 

compared to the MODS setting. There could be two explanations for this observation. First, 

considering the MODS trajectories on other organ systems might not provide additional 

information for the high-risk ALI patient screening task. Compared to the MODS of other organ 

systems, the respiratory MODS showed more suitable characteristics as a screening tool; it 

showed a comparably higher F1 score with a higher recall in the MODS setting. Specifically, 

61% of patients discharged with ALI had a respiratory MODS greater than or equal to 3 although 

only 891 patient-days (20.14% from patients discharged with ALI; 5.79% from all test patients) 

were called out during the MODS-based ALI screening. 

Second, the HMM might make a positive prediction for patients at a high risk of developing ALI 

even though they did not develop the disease during their ICU stays. Among the 1,715 patients 

classified as true-negative patient-level ALI predictions in the MODS setting, 446 patients were 

classified as false-positive in the HMM. From those 446 false-positive patients, we observed at 

least one of the following diseases that are potentially relevant in ALI from 309 patients 

(69.28%) on their discharge diagnoses: unspecified congestive heart failure, unspecified essential 

hypertension, and unspecified kidney failure. We believe the decreased precision due to newly 

identified false-positive patients with the above discharge diagnoses might indicate that the 

HMM identified patients at a high risk of ALI as positive [90], even though they did not develop 

ALI during their ICU stays. 

3.4.2. Coverage of Missed Patients from the MODS-based Screening 

For the current study, we did not have gold standard information about the time of the target 

AOF onsets, but each patient’s terminal outcomes were available from the discharge diagnoses in 

the EHR. Therefore, we evaluated instance-level predictions from the HMM, statetî , by focusing 

on the HMM’s prediction from patients discharged with the target AOF under the following 
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conditions: 1) when 0 MODS was imputed due to the missing observation and 2) when their 

MODSs were lower than the threshold (< 3) throughout their ICU stays. 

First, for instances (a patient-day) when the HMM made a positive prediction while 0 MODS 

was imputed for the target organ system, we examined how the next-day MODS of the target 

organ system was changed. To accomplish this, we analyzed instances where 1) a 0 MODS was 

imputed for the target organ system, 2) a positive prediction was made by the HMM on the 

corresponding AOF onset, and 3) the MODS for the target organ was calculated the day after 

with all the required variables available (Figure 3.2). For instances that met the aforementioned 

conditions, the next-day MODS on 33.32% of such instances were above the MODS-based 

screening threshold, ≥ 3 (Table 3.6). This indicates that the HMM identified these high-risk 

patients earlier than the MODS setting by using the MODS history of other organ systems even 

though the MODS of the target organ system was unavailable. Compared to other organ systems, 

the renal MODS showed that the majority of the next-day MODSs were lower than the threshold 

(< 3). Literature review revealed that the clinical community defines AKI onset by the relative 

increase in creatinine levels compared to the baseline level instead of the absolute level [68], 

which may reflect a different next-day MODS distribution from that in other organ systems. 

Moreover, the patient-level prediction results on AKI in Table 3.5 indicated the most improved 

recall as compared to other AOFs in the HMM setting while showing a higher F1 score when 

compared to the MODS baseline. Therefore, we suspect that renal MODS is sensitive, but not 

specific, for AKI screening. 

  

Figure 3.2. The imputed current-day and calculated next-day cardiovascular MODSs with the 

positive HMM prediction on AHF. 

Calculated MODS AHF ALI AKI ALF 

0 34 111 417 1 

1 67 110 183 136 

2 74 172 54 357 

3 126 238 19 134 

4 124 96 36 81 

Table 3.6. Calculated next-day MODSs after the positive prediction by the HMM. 

We also examined how well the HMM detects patients who were discharged with the target AOF 

but did not meet the MODS-based screening criteria during their ICU stays. The test set included 

621 patients discharged with at least one of the four target AOFs with the maximum MODS 

below the threshold for the target organ system, thereby classifying them as false negatives in the 

MODS setting. Among these patients, the HMM correctly classified 379 patients as positives. To 
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compare the proportion of patients missed by the MODS baseline with the proportion of patients 

missed by the HMM, we calculated the false omission rate (FOR) by calculating the proportion 

of false-negative patients from all the negatively predicted patients. Table 3.7 shows that, 

overall, the FOR was lower in the HMM when compared to the MODS-based screening, while 

the ALF prediction did not show noticeable changes. As predictions from the HMM showed 

lower FORs with a higher micro-F1 score, we believe predictions from the HMM are more 

suitable as a high-risk patient screening tool compared to the MODS-based screening. 

 

 AHF ALI AKI ALF 

# of patients  

(predicted negative in the MODS) 
1,974 1,879 2,552 1,926 

# of patients discharged with the AOF 66 164 452 8 

FOR on the MODS 0.0334 0.0873 0.1771 0.0042 

FOR on the HMM 0.0204 0.0676 0.0843 0.0042 

Table 3.7. FOR for patients with the maximum MODS < 3. 

3.5. Discussion 

We interpreted MODS as estimates of the probability of AOF onsets. We employed an HMM to 

describe patients’ risk trajectories for the four AOFs using a probabilistic framework, and 

showed a higher micro-F1 score in detecting patients discharged with the four AOFs when 

compared to the MODS-based screening. Moreover, the probabilistic components trained in the 

HMM allowed us to further analyze how the model described the prognoses of the four AOFs. 

The learned αs value for each state 𝑠 quantifies to what extent each state’s likelihood estimation 

relies on trajectory information when compared with the latest evidence. During the model 

implementation, we designed αs ∈ [0,1] to be higher (≈ 1) when it fully relies on trajectory 

information. As presented in Table 3.8, the states with only one positive AOF onset showed a 

lower dependency on trajectory information (αs = 0.3315 ± 0.3861) when compared with 

other states with two or more AOF onsets (αs = 0.7893 ±  0.3280). Moreover, the 

ZeroState—the state without any AOF onsets—showed that the model relies on the latest 

evidence and trajectory information with similar weights. This illustrates that the risk estimation 

of more severe AOF states should take trajectory information into account more than the risk 

estimation of less severe AOF states. 

𝑆𝑡𝑎𝑡𝑒 <0,0,0,0> <1,0,0,0> <0,1,0,0> <0,0,1,0> <0,0,0,1> 
 

𝛼𝑠𝑡𝑎𝑡𝑒 0.5308 0.0741 0.8863 0.3024 0.0632 
 

𝑆𝑡𝑎𝑡𝑒 <1,0,0,1> <1,0,1,0> <0,1,0,1> <1,1,0,0> <0,1,1,0> <0,0,1,1> 

𝛼𝑠𝑡𝑎𝑡𝑒 0.9877 0.9993 0.0003 0.9984 0.9463 0.9778 

𝑆𝑡𝑎𝑡𝑒 <1,1,1,0> <1,1,0,1> <1,0,1,1> <0,1,1,1> <1,1,1,1> 
 

𝛼𝑠𝑡𝑎𝑡𝑒 0.9654 0.8371 0.9754 0.6195 0.3727 
 

Table 3.8. αstate on each state likelihood estimation; State: <AHF,ALI,AKI,ALF>. 

The estimated transition probabilities between states, TM, allowed us to evaluate the overall 

cascading patterns of AOFs during patients’ ICU stays in terms of the number of positively 
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predicted AOFs (Table 3.9). The objective of the trained HMM was to describe patients’ AOF 

prognoses observed from ICUs. Therefore, it tended to predict more AOF onsets if no AOF was 

predicted on the previous day. This is because patients with comparably better prognoses are 

often transferred from an ICU to a stepdown unit that manages less severe patients because the 

overall management cost is expensive in ICUs [91]. Moreover, when all four AOF onsets were 

predicted as positive, the patient’s recovery on the following day would be limited because the 

probability of transitioning to states with two or more AOF onsets was estimated as 0.7052. 

Previous\Next 0 1 2 3 4 

0 0.0103 0.4320 0.3967 0.1169 0.0442 

1 0.0120 0.4537 0.2083 0.2959 0.0301 

2 0.0088 0.5119 0.1358 0.2523 0.0912 

3 0.0485 0.4226 0.2630 0.1102 0.1557 

4 0.0054 0.2894 0.4430 0.2544 0.0078 

Table 3.9. Transition trends regarding the number of predicted AOFs (Prev: Number of 

positively predicted AOFs at time 𝑡𝑖; Next: Number of positively predicted AOFs at time 𝑡𝑖+1). 

Finally, there is medical consensus on the notion that patients’ in-hospital mortality have a 

positive correlation with the number of organ failures developed during their ICU stay [92]. By 

comparing the in-hospital mortality with the number of positively predicted AOF onsets 

throughout the ICU stay, 𝐷𝑖𝑠𝑐ℎ𝑆𝑡𝑎𝑡𝑒𝑝𝑡𝑠, we verified that the HMM predictions agreed with the 

consensus in showing increasing in-hospital mortality rate when more AOFs were predicted 

throughout a patient’s ICU stay (Table 3.10a). We observed a similar trend between in-hospital 

mortality rate and the number of developed AOFs that were documented in discharge diagnoses 

(Table 3.10b).  
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(a) In-hospital mortality vs. number of predicted AOF throughout the ICU stay. 

# of predicted AOF during 

ICU stay 

# of 

patients 

# of expired 

patients 

In-hospital 

mortality 

0 1,593 123 0.0772 

1 57 4 0.0702 

2 619 92 0.1486 

3 446 121 0.2713 

4 57 19 0.3333 

(b) In-hospital mortality vs. number of documented AOF from discharge diagnoses. 

# of documented AOF 
# of 

patients 

# of expired 

patients 

In-hospital 

mortality 

0 1,914 126 0.0658 

1 622 136 0.2186 

2 202 84 0.4158 

3 33 13 0.3939 

4 1 0 0.0000 

Table 3.10. In-hospital mortality rate based on the number of (a) predicted AOF throughout the 

ICU stay, and (b) developed AOF from discharge diagnoses. 

3.6. Case Study – Trajectory Model Training with Risk Estimates 

from AOFI Models 

The analyses presented above showed that considering trajectory information improved the 

micro-F1 score of AOF prediction tasks compared to the baseline method—a threshold-based 

prediction using the MODS subscore for the target organ system. The performance improvement 

observed in the micro-recall was mainly attributed to improved micro-F1 score with similar 

micro-precision. This indicates that the model was able to identify cases that were missed in the 

baseline method while not significantly increasing the number of false-positive predictions. 

Therefore, the additional experiment was conducted to verify whether this trend could also be 

seen when estimates from AOFI models were considered as emitted evidence from latent states. 

For the experiment, the definition of the latent state and the terminal outcome were unchanged 

compared to the MODS experiment settings in previous sections. 

3.6.1. Prediction Problem 

The HMM aims to predict the risk of target acute organ failure onset during [𝑡𝑖, 𝑡𝑖+1] by 

considering the predicted risks from four AOFI models—AHF, ALI, AKI, and ALF AOFI 

models—as evidence emitted from latent states. The HMM used predicted risks from the day 

after the ICU admission, 𝑟𝑖𝑠𝑘𝑡𝑎𝑑𝑚+1, to time 𝑡𝑖+1, 𝑟𝑖𝑠𝑘𝑡𝑖, as evidence (i.e., the estimated 

probability of j-th AOF onset 𝑟𝑖𝑠𝑘𝑗,𝑡𝑖 is now equal to ppts,[ti,𝑡𝑖+1)
𝐴𝑂𝐹[𝑗]

= 𝑓𝐴𝑂𝐹[𝑗](𝑥𝑝𝑡𝑠,[𝑡𝑖−1,𝑡𝑖)), where 

𝐴𝑂𝐹[𝑗] indicates the j-th AOF of the interest). Similar to the MODS experiment setting, four 

different acute organ failures (AHF, ALI, AKI, and ALF) were considered as the terminal 

outcome, which yielded 16 different latent state 𝑠𝑡𝑎𝑡𝑒𝑡𝑖 for each time window [𝑡𝑖 , 𝑡𝑖+1]. 
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Without modifying the HMM structure described in Section 3.3.5, we also examined whether 

changes in the likelihood estimator 𝑓𝜓 would improve prediction performance. First, more 

complex neural networks were examined to evaluate whether the model could learn more 

patterns for the state likelihood estimation if additional hidden layers are trained. Second, we 

examined whether keeping the orders learned from the AOFI models would improve prediction 

performance or not. AOFI models, similar to the MODS, rely on myopic physiological evidence, 

which is patient physiology measured up to 24 hours before the time of prediction, when 

predicting the target AOF onset. We hypothesized that if a higher likelihood of target events (i.e., 

proxy events which receive relevant clinical interventions and being discharged with the target 

AOF) would indicate a higher risk of the target AOF onset, constraining the predictions of the 

HMM to follow the orders of the AOFI model estimates would improve prediction performance. 

For example, if one instance had higher risk levels from the AHF AOFI model than another 

instance, the former instance should also provide a higher or equal likelihood of states with AHF 

onset, regardless of the status of other AOFs. To implement this condition, submodularity, on the 

proposed modeling framework, only non-negative values were used as weights on the neural 

network. 

3.6.2. Results 

To directly compare performance between the baseline model, risk estimates from the four AOFI 

models, and the HMM, we used the same training, validation, and testing patients as Aim 1. 

During the Aim 1 experiment, we excluded groups of patients in the training dataset who were 

discharged with the target AOF but did not receive any of the relevant interventions. Therefore, 

there was no estimated probability of instances from these patients, and we only considered 

instances from patients who had estimated probabilities from all four AOFI models, thereby 

yielding fewer training instances compared to the Aim 1 experiment (15,855 hospital admissions 

to 5,611 from MIMIC-3;10,445 hospital admissions to 7,793 from UW-CDR). 

The best model was selected when the model achieved the highest micro-F1 score on the 

validation set based on patient-level predictions, and the model trained by the single hidden layer 

with submodularity constraint was selected. This indicates that the HMM showed the best 

performance when assuming higher risk estimates from the AOFI model present a higher 

likelihood of latent states with the target AOF onset, while increased complexity was not able to 

learn additional information for the likelihood estimation. As Table 3.11 shows, the HMM 

presented higher micro-recall compared to the AOFI models for patient-level predictions with 

lower micro-precision in both datasets. For individual AOF prediction task, higher recalls and 

lower precisions were also observed in both datasets compared to the predictions from AOFI 

models.  
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(a) 

 Original AOFI HMM w/ AOFI  

MIMIC-3 Prec Rec F1 Prec Rec F1 

AHF 0.3780 0.2211 0.2791 0.2608 0.5324 0.2608 

ALI 0.6552 0.6080 0.6307 0.4717 0.8000 0.4717 

AKI 0.7302 0.3644 0.4861 0.4928 0.6152 0.4928 

ALF 0.2745 0.3111 0.2917 0.1702 0.3556 0.1702 

Micro 0.6093 0.4151 0.4938 0.4114 0.6502 0.5039 

(b) 

 Original AOFI HMM w/ AOFI  

UW-CDR Prec Rec F1 Prec Rec F1 

AHF 0.3600 0.1765 0.2369 0.2778 0.1961 0.2299 

ALI 0.5434 0.5529 0.5481 0.4435 0.6236 0.5184 

AKI 0.5313 0.5152 0.5231 0.3821 0.5697 0.4574 

ALF 0.2000 0.3000 0.2400 0.1028 0.3667 0.1606 

Micro 0.4889 0.4736 0.4811 0.3519 0.5313 0.4234 

Table 3.11. Performance comparison of patient-level predictions between AOFI models and 

HMM; (a) MIMIC-3 and (b) UW-CDR. 

To examine whether these changes were due to the changes in distribution, or in the decision 

boundary, we adjusted the threshold used in the AOFI patient-level predictions to match the 

recall achieved by the HMM models, then compared the precision after the adjustment. 

Moreover, in order to quantify the disagreement of the patient-level predictions for each patient, 

we calculated a kappa score for each target AOF. After the adjustment, the HMM trained with 

the MIMIC-3 dataset showed a similar precision level compared to the AOFI models, while the 

model trained with UW-CDR dataset still showed a lower precision level (Table 3.12). 

Moreover, we observed higher kappa score from AOFs with higher performance in the AOFI 

model (ALI and AKI) compared to the AOFs with lower performance (AHF and ALF), which 

indicates more disagreement were observed in AOFs that showed lower performance from AOFI 

models, thereby indicating more changes were made for AHF and ALF prediction from the 

HMM compared to the ALI and AKI predictions. In addition, patient-level predictions tend to 

agree more in patients discharged with the target AOF, except for AKI from the MIMIC-3 

dataset. Lastly, the HMM made fewer positive instance-level predictions in all AOFs but it also 

achieved higher recalls in patient-level predictions in all AOFs from both datasets.  
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(a) MIMIC-3 

 Adjusted AOFI HMM w/ AOFI  Kappa score # pos 

predicted 

instances; 

AOFI vs. 

HMM* 

MIMIC-3 Prec Rec F1 Prec Rec F1 All Discharged 

w/ AOF 

Not 

Discharged 

w/ AOF 

 

AHF 0.2342 0.5324 0.2342 0.2608 0.5324 0.2608 0.55 0.52 0.52 971 vs. 719 

ALI 0.4769 0.8000 0.4769 0.4717 0.8000 0.4717 0.89 0.92 0.83 2,661 vs. 

2,933 

AKI 0.4752 0.6152 0.4752 0.4928 0.6152 0.4928 0.68 0.59 0.63 1,548 vs. 

1,278 

ALF 0.2353 0.3556 0.2353 0.1702 0.3556 0.1702 0.44 0.61 0.37 334 vs. 131 

Micro 0.4023 0.6502 0.4971 0.4114 0.6502 0.5039 N/A 5,514 vs. 

5,063 

(b) UW-CDR 
 

Adjusted AOFI HMM w/ AOFI Kappa score # pos 

predicted 

instances; 

AOFI vs. 

HMM** 

UW-

CDR 

Prec Rec F1 Prec Rec F1 All Discharged 

w/ AOF 

Not 

Discharged 

w/ AOF 

 

AHF 0.3226 0.1961 0.2439 0.2778 0.1961 0.2299 0.65 0.88 0.55 207 vs. 132 

ALI 0.4818 0.6235 0.5436 0.4435 0.6236 0.5184 0.67 0.72 0.53 1,344 vs. 

1,024 

AKI 0.4772 0.5697 0.5194 0.3821 0.5697 0.4574 0.70 0.75 0.60 1,175 vs. 

1,070 

ALF 0.1964 0.3667 0.2558 0.1028 0.3667 0.1606 0.50 0.56 0.47 196 vs. 144 

Micro 0.4385 0.5313 0.4805 0.3519 0.5313 0.4234 N/A 2,922 vs. 

2,370 

Table 3.12. Performance comparison between the HMM predictions and threshold-adjusted 

AOFI predictions on patient-level; (a) MIMIC-3 dataset, (b) UW-CDR dataset. *The number of 

positively predicted instance-level predictions before the threshold adjustment. 

To conduct clinical validation on instance-level predictions, we compared the summary statistics 

of lab tests frequently used to confirm the AOF onset for positive and negative instance-level 

predictions by using the framework introduced in Section 2.3.3.1 (See Figure 2.3). As expected, 

Table 3.13 showed worse prognoses when the HMM made a positive instance-level prediction 

on the target AOF in both datasets, except for the pCO2 level on ALI in the UW-CDR dataset 

(average pCO2 level was slightly higher in the patients predicted negative).  
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(a) MIMIC-3 

MIMIC Instance-level 

Prediction 

HMM AOFI Target 

AOF Lab Test Average Std. Dev # Obs Average Std. Dev # Obs 

NTproBNP 0 8424.59 11702.90 55 7402.82 11027.56 52 AHF 

NTproBNP 1 9897.00 5666.75 3 19435.60 11783.58 6 AHF 

pCO2 0 41.27 10.92 3612 41.20 10.71 3927 ALI 

pCO2 1 41.96 9.98 5815 42.05 10.07 5500 ALI 

pO2 0 117.16 63.77 3614 116.87 63.29 3929 ALI 

pO2 1 111.73 46.55 5815 111.63 45.84 5500 ALI 

Urea Nitrogen 0 29.82 25.37 8905 27.32 22.80 8143 AKI 

Urea Nitrogen 1 45.25 29.31 1691 48.75 31.43 2453 AKI 

Total 

Bilirubin 
0 3.80 6.77 2479 3.29 6.21 2301 ALF 

Total 

Bilirubin 
1 10.92 14.90 84 10.55 11.59 262 ALF 

(b) UW-CDR 

UW-CDR Instance-level 

Prediction 

HMM AOFI 
Target AOF 

Lab Test Average Std. Dev # Obs Average Std. Dev # Obs 

NTproBNP 0 1199.59 1931.84 91 1219.14 1961.77 88 AHF 

NTproBNP 1 1497.57 806.87 7 1236.20 784.50 10 AHF 

pCO2 0 40.30 10.74 3281 40.16 10.78 2654 ALI 

pCO2 1 40.08 10.74 1188 40.36 10.68 1815 ALI 

pO2 0 113.77 61.93 3281 118.74 67.61 2651 ALI 

pO2 1 111.34 59.97 1188 104.93 49.94 1818 ALI 

Urea Nitrogen 0 24.68 21.45 5136 24.81 22.53 4970 AKI 

Urea Nitrogen 1 45.20 29.70 1781 43.12 27.75 1947 AKI 

Total Bilirubin 0 4.63 8.57 1398 4.41 8.01 1353 ALF 

Total Bilirubin 1 8.66 9.73 83 9.58 13.12 128 ALF 

Table 3.13. Comparison between gold-standard lab tests and instance-level predictions from the 

HMM; (a) MIMIC-3 and (b) UW-CDR. 

The transition matrix learned from the HMM showed similar patterns to those we observed in the 

MODS experiment (Table 3.14). First, the estimated probability of developing one or more 

AOFs on the next day when the patient was predicted to have no AOF was unignorable (0.7074 

from the MIMIC-3; 0.3686 from the UW-CDR). Second, when all AOFs were predicted positive 

for the previous day, patients’ recovery on the following day is limited as the transition 

probability to two or more AOFs is higher than the probability of the other states (0.7710 vs. 

0.2290 in the MIMIC-3; 0.5871 vs. 0.4129 in the UW-CDR dataset). We also observed increased 

in-hospital mortality when more AOFs were predicted during a patient’s hospital stay (Table 

3.15), similar to the pattern observed in the MODS experiment.  
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MIMIC-3  UW-CDR 

From\To 0 1 2 3 4  From\To 0 1 2 3 4 

0 0.2926 0.2047 0.3188 0.1832 0.0007  0 0.6314 0.1757 0.1742 0.0177 0.0010 

1 0.0828 0.0216 0.3304 0.5579 0.0073  1 0.3781 0.1063 0.3855 0.1119 0.0182 

2 0.1155 0.2059 0.3453 0.3300 0.0033  2 0.3992 0.1712 0.2612 0.1195 0.0489 

3 0.6979 0.0162 0.0398 0.2361 0.0100  3 0.1927 0.1625 0.4819 0.1288 0.0341 

4 0.0199 0.2091 0.5746 0.1956 0.0008  4 0.3042 0.1087 0.4258 0.1563 0.0050 

Table 3.14. Transition probability based on the number of predicted AOFs from the previous day 

to the next day. 

(a) In-hospital mortality by number of predicted AOFs. 

# of predicted AOF 
MIMIC-3 UW-CDR 

Total Expired Proportion Total Expired Proportion 

0 1000 26 0.0260 1045 140 0.1340 

1 762 101 0.1325 53 15 0.2830 

2 263 41 0.1559 176 89 0.5057 

3 142 37 0.2606 61 43 0.7049 

4 20 6 0.3000 10 8 0.8000 

(b) In-hospital mortality by number of documented AOF discharge diagnoses. 

# of diagnosed AOF 
MIMIC-3 UW-CDR 

Total Expired Proportion Total Expired Proportion 

0 1386 76 0.0548 1082 162 0.1497 

1 523 64 0.1224 151 62 0.4106 

2 224 54 0.2411 78 45 0.5769 

3 52 17 0.3269 27 20 0.7407 

4 2 0 0.0000 7 6 0.8571 

Table 3.15. (a) Number of predicted AOFs during patients' hospital stay vs. in-hospital 

mortality; (b) Number of diagnosed AOFs vs. in-hospital mortality. 

Through aforementioned analyses, we verified the instance-level predictions generally agreed 

with the clinical consensus regarding patients’ AOF onset. Moreover, as the HMM achieved 

higher recall in the patient-level predictions with fewer instance-level positive predictions 

compared to the AOFI models, we conclude considering the trajectory information has the 

potential to refine estimated risks based on myopic evidence. If we take the labor required to 

verify positive instance-level prediction into account when the proposed risk prediction models 

are deployed, the predictions from the HMM might be more suitable as a high-risk AOF patient 

screening tool compared to those from the AOFI models. 

3.6.3. Potential Measures to Improve Performance Using Expert Knowledge 

The proposed HMM framework was able to show a higher micro-F1 score when MODS were 

used as evidence for patients’ AOF onsets. Although the model trained with risk estimates from 

AOFI was not able to show higher micro-F1 scores, the results from both datasets indicate that 

the trajectory consideration improved the recall for the patient-level predictions while generating 

fewer positive instance-level predictions. Therefore, we believe the HMM was able to refine the 
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instance-level predictions regarding patients’ risk of AOF onset by using risk estimates based on 

myopic evidence. 

Since the HMM describes the model’s behavior based on interpretable components, including a 

transition matrix between latent states, prior probabilities for each state, and the dependency of 

the latest evidence compared to the trajectory information, the prediction performance could be 

further improved with expert knowledge by providing additional constraints during the training. 

First, 𝛼𝑠𝑡𝑎𝑡𝑒 was designed to quantify the level of dependency on the trajectory information 

compared to the latest evidence; a higher 𝛼𝑠𝑡𝑎𝑡𝑒(≅ 1) indicates a higher dependency on 

likelihood estimates based on the trajectory information, while a lower 𝛼𝑠𝑡𝑎𝑡𝑒(≅ 0) indicates 

more reliance on the latest evidence. To incorporate expert knowledge, we could specify the 

condition that these estimates should follow, focusing either more or less on the trajectory 

information (Figure 3.3). This constraint could be implemented in the loss function as follows: 

𝑙𝑜𝑠𝑠′ = 𝑙𝑜𝑠𝑠(𝜆, 𝜓) + 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝛼𝑠𝑡𝑎𝑡𝑒 , 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒) 

where 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 ∈ {0,1}2
𝑘
 consists of 0 if the states should put more weight on the latest 

evidence, while 1 indicates the states should focus more on the trajectory. For states where such 

a constraint is not available, it can be removed from the loss calculation. 

 

Figure 3.3. Examples of 𝛼𝑠𝑡𝑎𝑡𝑒 adjustment. 

Second, the prior probabilities of each state were also estimated directly from the dataset. If 

experts could identify groups of states that are clinically invalid, such prior probabilities could 

be clamped to 0 by modifying the prior probabilities as follows: 

𝑝(𝑠𝑡𝑎𝑡𝑒)′ = 𝑝(𝑠𝑡𝑎𝑡𝑒)⨀𝑚𝑎𝑠𝑘𝑝𝑟𝑖𝑜𝑟 

where ⨀ indicates element-wise production, and 𝑚𝑎𝑠𝑘𝑝𝑟𝑖𝑜𝑟 ∈ 𝑅
2𝑘 consists of 0 when the state 

is clinically invalid, and 1 otherwise (Figure 3.4a). 

Lastly, the transition probabilities between states could also be masked similarly to the 

estimated prior probability mentioned above (Figure 3.4b). For example, when experts could 

identify per-day transitions that are clinically invalid in ICUs, the transition matrix 𝑇𝑀 =
(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑟𝑎𝑤𝑇𝑀)) could also be changed as follows: 
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𝑇𝑀′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑟𝑎𝑤𝑇𝑀⨀𝑚𝑎𝑠𝑘𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛) 

where 𝑚𝑎𝑠𝑘𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ∈ 𝑅
2𝑘×2𝑘 consists of 0 when the state transition is clinically invalid, and 1 

otherwise. 

(a) Example of masking the prior probability. 

 

(b) Example of masking the transition probability. 

 

Figure 3.4. Examples of adding constraints on probabilistic estimates from the HMM. 

3.7. Conclusion 

We have showed that the performance of EWS-based screening could be improved by 

integrating EWS trajectories on relevant clinical events into a unifying probabilistic framework. 

Moreover, the probabilistic formulation of AOF prognoses provided interpretable components, 

which allowed us to conduct a clinical evaluation on the estimates. In the experiment conducted 

with risk estimates from AOFI models, we also found a potential of the proposed approach for 

refining AOF risk predictions based on estimates derived from myopic evidence. The evaluation 

showed that the parameters estimated by the HMM generally agreed with the medical consensus. 

Lastly, the proposed framework showed the potential of HMM training with temporal risk 

estimates of acute-onset diseases and terminal outcomes when gold standard information about 

the exact time of event onsets is unavailable. When expert-driven EWS are deployed for high-

risk patient screenings, the proposed HMM framework will enable physicians to review the trend 

of risk state transitions and calibrate the parameters to improve the screening performance.  
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Chapter 4. Counterfactual Analysis of Organ Toxicity of 

Clinical Interventions 

4.1. Introduction 

Hospitalized patients receive a wide array of clinical interventions during their hospital stay. 

Although the aim of such clinical intervention is to treat physiological abnormalities in patients, 

the prevalence of adverse events due to planned clinical interventions is not insignificant. When 

administered medications are focused on, the Smith et al. study suggested that the incidence of 

adverse drug reaction (ADR) could be as high as 14.7% of all patient cases from United 

Kingdom national hospital system wards, and half of such events were either definitely or 

possibly avoidable [93].  

Although there are many measures evaluating the potential toxicity of medications, including 

preapproval clinical trials from manufactures or randomized clinical trials after the product is 

released [94], they are cost-intensive, which makes them more difficult to apply in all suspected 

cases. Moreover, although there are some reactive measures to warn about suspected high-risk 

medications—through adverse drug experience reports to manufactures [95], post-marketing 

observational studies [96], or market withdrawal orders from governing agencies (e.g., Food and 

Drug Administration)—most of them are conducted after a sufficient number of formally 

reported ADR incidents; the earlier study insisted that the gap between the first ADR event to the 

market withdrawal could be as long as six years [97]. 

In practice settings, foreseeing ADRs due to clinical intervention is challenging because the risk 

varies by patient and considering relevant risk factors is solely dependent on the expertise of 

each caregiver; this may result in variations in the quality of care. Although many dosing 

guidelines regarding controversial medication administration have been implemented by expert 

groups to decrease such variances, they are mostly focused on medications that are widely used 

in practice. For medications that are either recently released or less utilized, however, such 

information is not readily available. Therefore, if a clinical decision support system can provide 

information about the potential risks of candidate clinical interventions for each patient, which 

might be too complex to be analyzed in time-critical settings, such as ICUs, it would allow 

caregivers to either avoid clinical interventions with high potential risk of ADR when 

alternatives are available, or prepare for the onset of ADR events if there is no alternative for 

patient management. 

There are two possible directions for implementing clinical decision support on clinical 

intervention choices: 1) providing a list of applicable interventions based on the patient’s status, 

or 2) providing the quantified risk of ADRs for queried interventions. The former was the focus 

of expert systems in the mid-1970s, and most of them were implemented as a rule-based system. 

Shortliffle et al. aimed to provide a list of applicable antibiotics based on a patient’s symptoms 

entered by caregivers [98]. However, such a system was not successfully integrated into the 

clinical workflow because the benefits of having the list of system-generated antibiotics 

suggestion were not clear. As the system encoded the general rules of antibiotic selection criteria, 

it tended to provide either choices that were too obvious for physicians or not applicable in cases 

that were not considered during the model implementation. Moreover, as the legal boundary has 

not been clearly drawn regarding the responsibility of such model-aided clinical practice [99]–
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[101], model-generated suggestions on applicable interventions might have some limitations as a 

clinical decision support even in the current practice setting. 

In contrast, a system that could provide a quantified risk of potential ADR on queried 

interventions would be more applicable clinical decision support tools, especially where 

intervention selections tend to rely more on the empirical aspects of individual experts. Such a 

system could be also helpful when potential side effects of interventions are either too complex 

to be evaluated for individual patients in time-critical care settings or the current understanding 

of the clinical intervention and the patient’s physiological disturbance is still limited. For 

instance, antibiotic administration is a core part of treating patients with infectious diseases, and 

the treatment choices are often empirically made due to the success rate of identifying 

responsible pathogens and the delay between the presentation of symptoms and the identification 

process [102]. 

When treating patients with suspected infections, wide-spectrum antibiotics are often 

administered as the first response before transitioning to narrow-spectrum antibiotics once 

causative pathogens are identified. Moreover, it is widely accepted that some antibiotics (e.g., 

aminoglycosides or vancomycin) are responsible for drug-induced nephrotoxicity. At the same 

time, balancing the trade-off between the efficacy of infection treatment and the risk of potential 

nephrotoxicity relies heavily on a physician’s specialty and experience [103]. Therefore, many 

clinical guidelines have been implemented to provide antibiotic dosing information on patients 

with renal impairment to reduce inter-practitioner variance with regards to antibiotic-induced 

nephrotoxicity. In addition, the nephrotoxicity of antibiotics is an active research area, which 

could indicate that the current understanding remains limited [104], [105]. If data-driven clinical 

decision support can provide quantified risks of potential nephrotoxicity on candidate antibiotics 

at the time of decision-making in time-critical settings, it would serve as an additional safety 

measure preventing antibiotic-induced renal impairment. 

Using observed serum creatinine level (SCr) measurements from EHRs, we propose a 

counterfactual modeling framework that can explain the observed kidney function trajectory 

based on different antibiotic choices by jointly learning about 1) the baseline kidney trajectory, 

and 2) the renal impairment due to administered antibiotics. To achieve this, we trained the 

effect-free model and the response model jointly; the effect-free model focuses on illustrating a 

patient’s baseline kidney trajectory without the influence of planned antibiotic administration, 

while the response model focuses on describing the nephrotoxicity of the planned administration 

of antibiotics through potential SCr increments. With the estimated nephrotoxicity of each 

antibiotic administration from the trained model, we conducted quantitative analyses to evaluate 

the clinical validity of such estimates using literature review. 

4.2. Related Works 

For administered medications, their efficacies are often quantified through drug half-life, the 

time required to decrease the concentration of the medication half in the body. The drug half-life 

mostly depends on total body clearance [106], and this is defined as the sum of the renal and 

non-renal clearance. When a patient’s renal clearance is impaired and the administered drugs are 

known to be excreted through the kidney, the resulting drug accumulation often causes various 

renal complications [107]. Therefore, most clinical institutions have internal renal dosing 

guidelines to prevent drug-induced renal impairment. Among the different nephrotoxins 
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currently used in the clinical workflows, the nephrotoxicity of antibiotics is widely known and 

there exist many ongoing studies evaluating the magnitude of renal impairment caused by 

potentially nephrotoxic antibiotics [104], [105]. 

During patient management, patients with suspected infection are often first treated with wide-

spectrum antibiotics, then are moved to narrow-spectrum antibiotics once the responsible 

pathogens are identified through microbiology cultures, which often takes 24 to 48 hours to 

confirm the pathogens [108]. Therefore, there exists a time gap between a patient’s initial 

symptom presentation and the confirmation of the pathogens, and physicians often need to 

initiate antibiotic therapy based on institutional antibiotic dosing guidelines and experience alone 

until the microbiology culture successfully identifies the pathogens. Patients’ symptoms serve as 

evidence for physicians to estimate the potential spectrum of infection they need to cover, and 

there often exists a number of candidate antibiotic choices for the suspected spectrum. Even after 

the infected pathogens and a list of susceptible antibiotics were identified from the microbiology 

study, there is no tool to quantify the potential nephrotoxicity of the candidate antibiotics based 

on a patient’s status quo. Therefore, it would be challenging for physicians to objectively 

compare the trade-offs between controlling the infection and the nephrotoxic effects due to 

administered antibiotics. In the proposed study, we aimed to quantify the nephrotoxic effect of 

different antibiotic administration plans by estimating the resultant SCr increment so that it could 

serve as clinical decision support, thereby allowing physicians to quantitatively compare such 

trade-offs. 

Counterfactual analysis stems from causal inference, which aims to extract a potential causal 

relationship between the outcome and the variables presented in the dataset [109]. Recently, 

Schulam et al. [110] presented promising prediction accuracy of future SCr trajectory prediction 

based on SCr history and the timing of renal support therapies. They described the SCr trajectory 

using two separate submodels: one describing baseline kidney trajectory, and another predicting 

the effect of renal support therapy on the baseline kidney trajectory. Similarly, our work 

hypothesized that the nephrotoxic effect of antibiotics and baseline kidney function could also be 

separated from the observed SCr measurements by training two submodels that each explain the 

baseline kidney functions without the influence of the planned antibiotics administration (the 

effect-free trajectory model) and the nephrotoxic effect caused by the antibiotics (the response 

model). Compared to their modeling framework, we assumed the physiological disturbance of 

each antibiotic administration would vary by the patient’s baseline physiology, so we allowed 

predictions from the effect-free trajectory model to contribute to the nephrotoxicity estimation on 

the planned administration of antibiotics from the response model. Moreover, there exists a 

domain consensus regarding antibiotics administrations: higher doses of nephrotoxic antibiotics 

tend to worsen patient’s kidney function. Therefore, we considered such constraints during the 

model implementation by not letting the response model predict lower nephrotoxicity on higher-

dose antibiotics administration. We assumed that this constraint would facilitate clinical 

interpretation of the model behavior by avoiding counterintuitive results, such as possessing 

clinically known risk factors (e.g., asthma) being identified as a benevolent feature on the risk of 

the target outcome (e.g., pneumonia) [111]. 

4.3. Methods 

This study focused on implementing the model predicting the future SCr trajectory of patients 

admitted to ICUs based on previously measured SCr levels and antibiotics that were 
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administered during their ICU stays. To do so, we trained a model to explain the factual SCr 

levels, SCr measurements documented in the EHR, by estimating the SCr level without the 

influence of planned antibiotic administration (the effect-free trajectory, #1 in Figure 4.1) and the 

SCr increment due to the planned antibiotic administrations (nephrotoxic response to the planned 

antibiotic administration, #2 in Figure 4.1). During the model training, we trained two submodels 

jointly, each estimating the effect-free trajectory and the nephrotoxic response to the planned 

antibiotic administration. In the following sections, we refer to the antibiotic administrations 

observed in the dataset as factual antibiotic administrations and to all other potential 

administration patterns that were not observed in the dataset as counterfactual antibiotic 

administrations on each patient. 

 

Figure 4.1. Decomposing observed for SCr levels with the effect-free trajectory (#1) and the 

nephrotoxic response to antibiotics (#2). 

By separating the influence of planned antibiotic administration from the observed SCr 

trajectory, we aimed to quantitatively estimate the nephrotoxic effect of different antibiotics from 

the factual administration. Therefore, two trained submodels were assumed to facilitate the 

counterfactual analysis, such as comparing the nephrotoxic response with and without the target 

antibiotic. The details are discussed in the following sections. 

4.3.1. Input 

Serum creatinine (SCr) measurements documented in the EHR were used as a physiological 

input, while the time stamp and dosing information of administered antibiotics documented in 

the EHR were used as an intervention input for the study. Both physiological inputs and 

intervention inputs were summarized as a daily level during preprocessing. For the day 𝑑𝑖, 
𝑥𝑆𝐶𝑟,𝑑𝑖 represented the distribution of observed SCr, and 𝑥𝑎𝑏𝑥,𝑑𝑖 represented the administered 

antibiotics during the day. The daily SCr distribution 𝑥𝑆𝐶𝑟,𝑑𝑖 ∈ 𝑅
4 was described with min, max, 

average, and standard deviation based on the SCr measured during the day. For the daily 

antibiotic administration 𝑥𝑎𝑏𝑥,𝑑𝑖, we described the vector with the total amount administered for 

each antibiotic, similar to renal antibiotic dosing guidelines (e.g., two administrations of 50 mg 

and 100 mg vancomycin during the day 𝑑𝑖 were represented as 150 mg cumulative vancomycin 

administration in 𝑥𝑎𝑏𝑥,𝑑𝑖), where 𝑥𝑎𝑏𝑥,𝑑𝑖 ∈ 𝑅
|𝐴𝐵𝑋| and |𝐴𝐵𝑋| was the number of different kinds 

of antibiotics considered for the study. 
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4.3.2. Modeling 

For the study, we aimed to decompose the patient’s SCr trajectory into the baseline SCr 

trajectory without the influence of antibiotics and the resultant SCr increment due to the 

antibiotics administered. By separating the influence of antibiotics from the observed SCr 

trajectory, we hypothesized that 1) the nephrotoxic effect of different antibiotic administrations 

could be learned, and 2) the baseline SCr level when no antibiotics are planned to be 

administered could be estimated. 

To describe the baseline SCr trajectory without the influence of planned antibiotic administration 

and the nephrotoxicity due to the planned administration of antibiotics separately, we trained two 

submodels jointly: 1) the effect-free trajectory model 𝑓𝐸𝐹𝑇,𝜃, and 2) the response model 𝑔𝑅𝐸𝑆,𝜙. 

The 𝑓𝐸𝐹𝑇,𝜃 aimed to predict the patient’s next-day SCr distribution with the assumption that no 

antibiotics would be administered on the target date. The submodel was implemented using a 

recurrent neural network (RNN) with a gated recurrent unit (GRU) in addition to a residual 

connection to the previous-day SCr distribution, 𝑥𝑆𝐶𝑟,𝑑𝑖−1. Using the predicted latent vector ℎ𝑑𝑖  

from the GRU cell for the day 𝑑𝑖, ℎ𝑑𝑖 = 𝐺𝑅𝑈(< 𝑥𝑆𝐶𝑟,𝑑𝑖−1 , ℎ𝑑𝑖−1 >), where ℎ𝑑𝑖−1 is the cell state 

forwarded from the previous date, we estimated the effect-free SCr distribution for the next day 

𝑁(𝑎𝑣𝑔𝑑𝑖̂ ,𝑠𝑡𝑑𝑑𝑖
̂) using the feed-forward layer as follows: 

< 𝑎𝑣𝑔𝑑𝑖̂ ,𝑠𝑡𝑑𝑑𝑖
̂ >= 𝑓𝐸𝐹𝑇,𝜃(< 𝑥𝑆𝐶𝑟,𝑑𝑖−1 , ℎ𝑑𝑖 >) 

The response model 𝑔𝑅𝐸𝑆,𝜙 aimed to estimate the nephrotoxicity due to the planned 

administration of antibiotics 𝑥𝑎𝑏𝑥,𝑑𝑖 by predicting the resultant SCr increment. Differently from 

𝑓𝐸𝐹𝑇,𝜃, we implemented 𝑔𝑅𝐸𝑆,𝜙 not to use previous antibiotics administration information, 

thereby making the model rely solely on the predicted latent state ℎ𝑑𝑖  and the planned 

administration of antibiotics 𝑥𝑎𝑏𝑥,𝑑𝑖 with a residual connection to 𝑥𝑆𝐶𝑟,𝑑𝑖−1 to predict the average 

increment of SCr on the next day, 𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̂ : 

𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̂ ={

max (0, 𝑔𝑅𝐸𝑆,𝜙(< 𝑥𝑎𝑏𝑥,𝑑𝑖 , ℎ𝑑𝑖 , 𝑥𝑆𝐶𝑟,𝑑𝑖−1 >))  𝑤ℎ𝑒𝑛 ||𝑥𝑎𝑏𝑥,𝑑𝑖||2
≠ 0

0 𝑤ℎ𝑒𝑛 ||𝑥𝑎𝑏𝑥,𝑑𝑖||2
= 0

  

Although it is possible that previously administered antibiotics had a long-term effect on a 

patient’s renal function, we assumed this information should be conveyed through the latent 

variable describing the effect-free creatinine trajectory, ℎ𝑑𝑖. For example, aminoglycoside is a 

class of antibiotics—including tobramycin, gentamicin, and amikacin—with known 

nephrotoxicity [112], and they are known to be effective when treating gram-negative infections. 

At the same time, it is also known that some gram-negative pathogens, such as Staphylococcus, 

also cause renal impairment when the kidneys are infected. Therefore, if previous antibiotic 

administration information was directly provided for the nephrotoxicity estimation, we assumed 

that the previous administration of antibiotics frequently used to control pathogens potentially 

damaging the kidneys would confound the true nephrotoxicity estimation of the planned 

antibiotics 𝑥𝑎𝑏𝑥,𝑑𝑖. 

During the literature review, we found that most of the clinical guidelines for presumed 

nephrotoxic antibiotics suggest lower doses for patients with renal impairment. Moreover, the 
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risk of presenting nephrotoxicity tends to increase when antibiotics from different classes were 

concurrently administered because drug-induced side effects might cause direct or indirect 

kidney damage [113]. Therefore, we assumed that the nephrotoxic response would increase or 

stay the same when either the total dose of a single antibiotic was increased, or different types of 

antibiotics were additionally administered. Therefore, we implemented 𝑔𝑅𝐸𝑆,𝜙 as a submodular 

function to satisfy the following property: 

𝑔𝑅𝐸𝑆,𝜙(< 𝑥𝑎𝑏𝑥,𝑑𝑖 , ℎ𝑑𝑖 , 𝑥𝑆𝐶𝑟,𝑑𝑖−1 >) ≤ 𝑔𝑅𝐸𝑆,𝜙(< 𝑥𝑎𝑏𝑥,𝑑𝑖′, ℎ𝑑𝑖 , 𝑥𝑆𝐶𝑟,𝑑𝑖−1 >), 

where ||𝑥𝑎𝑏𝑥,𝑑𝑖||2
≤ ||𝑥𝑎𝑏𝑥,𝑑𝑖

′ ||
2
 due to a higher dose of antibiotics that had been administered or 

additional administration of different antibiotics. To implement this, we first transformed the 

concatenated vector of the hidden state ℎ𝑑𝑖  and 𝑥𝑆𝐶𝑟,𝑑𝑖−1 using a feed-forward layer with 

Rectified Linear Units (ReLU) activation in order to generate the positive-value embedding 

vector describing the patient’s kidney function trajectory, 𝑒𝑚𝑏𝑑𝑖
+ . Then, 𝑒𝑚𝑏𝑑𝑖

+  was concatenated 

with 𝑥𝑎𝑏𝑥,𝑑𝑖, and fed into another feed-forward layer with non-negative weights to allow 

interactions among features and to conserve the monotonicity. The final SCr increment due to 

the planned antibiotic administration 𝑥𝑎𝑏𝑥,𝑑𝑖 was estimated using the additional feed-forward 

layer with non-negative weights after the transformation with the scaling function. For the 

scaling function, we compared the performance with logarithmic function 𝑦 = log(𝑥 + 1), 
exponential function 𝑦 = exp(𝑥) − 1, and linear function 𝑦 = 𝑥. The architecture of 𝑔𝑅𝐸𝑆,𝜙 is 

presented in Figure 4.2. 

 

Figure 4.2. The response model architecture; ⨁ indicates vector concatenation. 

In clinical trial setting, most of studies defined the target antibiotic as nephrotoxic when the drug 

was responsible for 0.5 mg/dL increment of the patient’s SCr increment. Accordingly, by using 

the predicted 𝑎𝑣𝑔𝑑𝑖̂  and 𝑠𝑡𝑑𝑑𝑖
̂  from 𝑓𝐸𝐹𝑇,𝜃 and 𝑚𝑜𝑑𝑖𝑓𝑑𝑖

̂  from 𝑔𝑅𝐸𝑆,𝜙, we predicted the next-day 

SCr distribution under the planned administration of antibiotics as 𝑁(𝑎𝑣𝑔𝑑𝑖̂ +𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̂ ,𝑠𝑡𝑑𝑑𝑖

̂).  

As the presented study used the dataset extracted from the EHR, we did not have gold-standard 

information to evaluate the predicted 𝑎𝑣𝑔𝑑𝑖̂ , 𝑠𝑡𝑑𝑑𝑖
̂ , and 𝑚𝑜𝑑𝑖𝑓𝑑𝑖

̂  separately. Instead, we used the 

Kullback–Leibler (KL) divergence for evaluating the predicted distribution  𝑥𝑆𝐶𝑟,𝑑𝑖̂ ~𝑁(𝑎𝑣𝑔𝑑𝑖̂ +

𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̂ ,𝑠𝑡𝑑𝑑𝑖

̂) given the observed next-day SCr level distribution 𝑥𝑆𝐶𝑟,𝑑𝑖~𝑁(𝑎𝑣𝑔𝑑𝑖 , 𝑠𝑡𝑑𝑑𝑖) to 

calculate the training loss, 𝑙𝑜𝑠𝑠(𝜃, 𝜙), for the optimization: 
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𝑙𝑜𝑠𝑠(𝜃, 𝜙) =∑∑𝐾𝐿(𝑥𝑆𝐶𝑟,𝑑𝑖̂ ||𝑥𝑆𝐶𝑟,𝑑𝑖)

𝑖𝑝𝑡𝑠

 

=∑∑[log
𝑠𝑡𝑑𝑑𝑖
̂

𝑠𝑡𝑑𝑑𝑖
+
𝑠𝑡𝑑𝑑𝑖

2 + (𝑎𝑣𝑔𝑑𝑖̂ +𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̂ −𝑎𝑣𝑔𝑑𝑖)

2

2𝑠𝑡𝑑𝑑𝑖
̂

−
1

2
]

𝑖𝑝𝑡𝑠

 

For the regularization, we used dropout on feed-forward layers. The overall architecture of the 

model is presented in Figure 4.3. 

 

 

Figure 4.3. The overall model architecture. 

4.3.3. Evaluation 

From the models trained with different hyperparameters, we selected the model that achieved the 

smallest KL divergence on the validation set from the factual antibiotic administration. During 

the analysis, however, we used the mean absolute error of the predicted mean and the observed 

mean SCr as an accuracy measure to describe the selected model because it is a more 

straightforward performance metric for showing the accuracy of predicted SCr in the clinical 

setting. In order to compare the effect of having an additional model explaining the response of 

antibiotic administrations, we trained a baseline model that predicts the next-day SCr distribution 

only with 𝑓𝐸𝐹𝑇,𝜃 without the factual antibiotic administrations 𝑥𝑎𝑏𝑥,𝑑𝑖 using the following loss 

function: 

𝑙𝑜𝑠𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝜃, 𝜙) =∑∑[log
𝑠𝑡𝑑𝑑𝑖
̂

𝑠𝑡𝑑𝑑𝑖
+
𝑠𝑡𝑑𝑑𝑖

2 + (𝑎𝑣𝑔𝑑𝑖̂ −𝑎𝑣𝑔𝑑𝑖)
2

2𝑠𝑡𝑑𝑑𝑖
̂

−
1

2
]

𝑖𝑝𝑡𝑠

 

For patients with infectious diseases in ICU settings, it is common to observe more than two 

antibiotics administered on the same date to cover the suspected spectrum of infecting pathogens 

[102]. Therefore, the predicted nephrotoxicity of the factual antibiotic administration from 

𝑔𝑅𝐸𝑆,𝜙 could not be directly used to evaluate the nephrotoxicity of an individual antibiotic 

because it entailed a patient’s baseline kidney function and the influence of different antibiotics 

administered at the same time. In order to measure the contribution of each antibiotic on 

predicted nephrotoxicity from the response model 𝑔𝑅𝐸𝑆,𝜙, we borrowed the feature occlusion 
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method used earlier in Zeiler et al’s work [114]. In this study, they trained a computer-vision 

model to visualize what part of the input image contributes when predicting whether the target 

object is present or not by providing attention weights from the input image. During their 

analysis, they conducted a feature occlusion to evaluate how the prediction accuracy changes 

when the region of high attention was masked to see whether the model was making the 

prediction based on the object or the background information presented in the image. This 

evaluation scheme was also used in a clinical informatics study when evaluating the feature 

contributions of the trained RNN model [24]. Therefore, we also adopted the feature occlusion 

method to quantify the contribution of each antibiotic to the predicted nephrotoxicity. For all 

patient-days with the target antibiotic med administration, we compared the predicted risk 

increment based on the factual antibiotics administration, 𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̂ , with the counterfactual 

antibiotics administration without the target antibiotic, 𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̃ : 𝑒𝑓𝑓𝑒𝑐𝑡𝑚𝑒𝑑 =

(𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̂ ,𝑚𝑜𝑑𝑖𝑓𝑑𝑖,𝑚𝑒𝑑

̃ ), where 𝑚𝑜𝑑𝑖𝑓𝑑𝑖,𝑚𝑒𝑑
̃ =max(0, 𝑔𝑅𝐸𝑆,𝜙(< 𝑥𝑎𝑏𝑥,𝑑𝑖,𝑚𝑒𝑑̃ ,ℎ𝑑𝑖 , 𝑥𝑆𝐶𝑟,𝑑𝑖−1 >)), 

𝑥𝑎𝑏𝑥,𝑑𝑖,𝑚𝑒𝑑̃ = 𝑥𝑎𝑏𝑥,𝑑𝑖\{𝑚𝑒𝑑}, and 𝑚𝑒𝑑 ∈ 𝐴𝐵𝑋. For all measured 𝑒𝑓𝑓𝑒𝑐𝑡𝑚𝑒𝑑 pairs on each 

factual antibiotic administration, we conducted a paired t-test to evaluate whether the estimated 

nephrotoxicity distribution of the factual administration 𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̂  was statistically significantly 

higher than the counterfactual administration 𝑚𝑜𝑑𝑖𝑓𝑑𝑖,𝑚𝑒𝑑
̃ . 

4.4. Results 

For the study, we extracted hospital admissions from the MIMIC-3 dataset [65] to train and 

evaluate the model, which consist of physiological measurements and information about clinical 

intervention administrations performed on patients who stayed in ICUs at Beth-Israel Hospital in 

Boston, MA. By including adult patients who had SCr measured at least once during their ICU 

stay, a total of 16,332 hospital admissions were used for the study; we further divided hospital 

admissions into a 7:2:1 ratio for training, validation, and testing set, respectively. For antibiotics, 

we considered 47 different antibiotics that were observed from the training set as an intervention 

input. The demographics of the patients are provided in Table 4.1. 

Hospital admissions 16,332 

Patient-day 144,417 

# of Creatinine level measurement 95,762 

Creatinine level distribution 1.5470±1.5231 mg/dL 

Admission Type ELECTIVE – 2605 

EMERGENCY – 14,227 

URGENT – 224 

Gender Female – 7,563 

Male – 9,493 

Age 64.07±16.89 

Table 4.1. Demographics of the MIMIC-3 dataset used for the study. 
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The trained model aimed to predict SCr distribution by adding two different trajectory estimates: 

the effect-free trajectory and the response to the planned antibiotics on day 𝑑𝑖. The effect-free 

trajectory was estimated using observed SCr until {𝑥𝑆𝐶𝑟,𝑑0 , … , 𝑥𝑆𝐶𝑟,𝑑𝑖−1}, where 𝑑0 indicates the 

date of ICU admission, while the renal response to administered antibiotics was estimated based 

on the antibiotics administration plan on day 𝑑𝑖, 𝑥𝑎𝑏𝑥,𝑑𝑖, along with the latent variables 

describing the effect-free trajectory. When comparing the predicted mean SCr, 𝑎𝑣𝑔𝑑𝑖̂ +

𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̂ , and the observed mean SCr, 𝑎𝑣𝑔𝑑𝑖, from the test set, the model showed a mean 

absolute error of 0.2092 in a total of 10,751 patient-days. The mean absolute error from the 

baseline model, only considering SCr trajectory without factual antibiotic administrations, was 

0.2135 in the same dataset. As the earlier study reported the error range of the SCr measurement 

from the patient sample was around 0.2 [115], we believe the process of decomposing the 

influence of antibiotics with the separate response model did not degrade the performance of the 

SCr trajectory prediction tasks. 

The response model 𝑔𝑅𝐸𝑆,𝜙 aimed to predict the SCr increment due to the planned antibiotic 

administrations 𝑥𝑎𝑏𝑥,𝑑𝑖, and the contribution of each antibiotic to the estimated increment was 

evaluated using feature occlusion. In the test set, we observed at least one antibiotic 

administration on 4,173 patient-days (38.81%), and more than two different kinds of antibiotics 

were co-administered on 2,429 patient-days. To analyze the influence of individual antibiotic on 

the predicted SCr increments, we made two nephrotoxicity estimates, SCr increments with and 

without the target antibiotic, and conducted a paired t-test to evaluate whether the target 

antibiotic was responsible for increased SCr with statistical significance. 

Using the dosing information in the factual antibiotic administration, the feature occlusion 

analysis showed an average 0.0427 mg/dL SCr increment with the standard deviation of 0.1420 

from 8,134 individual antibiotic administration events in the test set. From the paired t-test, we 

identified 43 out of 47 antibiotics that showed a statistically significant increase in SCr under the 

significance level 𝛼 = 0.05 and the power 1 − 𝛽 = 0.8. However, as both intervention inputs 

and physiological inputs were extracted from patients under the ongoing clinical management, 

no antibiotic showed their 95% confidence interval upper bound (95% CI UB) higher than the 

clinical nephrotoxicity threshold used in other studies, 0.5 mg/dL SCr increment, due to the 

administered antibiotic [116], [117].  

Table 4.2 shows the top-10 frequently administered antibiotics from the test set and their average 

SCr increments evaluated through feature occlusions. Although the majority of the antibiotics are 

known nephrotoxins, which require the dosing adjustments for patients with renal impairments, 

we believe the institutional dosing guideline might prevent us to observe nephrotoxicity on the 

drugs in the lists. Therefore, the response model was not able to learn the corresponding SCr 

increments for antibiotics administrations documented in terms of standard dosing units.  
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Average SCr 

increment 

# of 

administrations 

Documented 

Units 

Antibiotics p-

value 

Std. 

Dev. 

0.0071 2074 dose Vancomycin  <0.001 0.0471 

0.0457 755 dose Piperacillin/ 

Tazobactam (Zosyn) 

<0.001 0.1894 

0.0301 710 dose Cefepime                        <0.001 0.1217 

0.0386 656 dose Metronidazole* <0.001 0.0469 

0.0536 608 dose Meropenem                       <0.001 0.1007 

0.0239 465 dose Ciprofloxacin                   <0.001 0.0986 

0.0280 389 dose Cefazolin                       <0.001 0.1399 

0.0460 332 dose Ceftriaxone*  <0.001 0.1531 

0.0145 221 dose Acyclovir                       0.067 0.1177 

0.0815 220 dose Piperacillin                    <0.001 0.2330 

Table 4.2. Average SCr increments predicted from the response model and p-values from paired 

t-test on factual and counterfactual ABX administration; * indicates that the antibiotic did not 

require dosing adjustment according to the drug labels. 

In addition to vancomycin, aminoglycosides are also known to be nephrotoxic, however, the 

response model was not able to learn about their nephrotoxicity from the datasets, except for 

Gentamicin (Table 4.3). From the training dataset, Gentamicin showed various dosing 

information in different underlying kidney functions compared to Tobramycin and Amikacin 

(Figure 4.4). Moreover, as the nephrotoxicity of aminoglycosides is already known in practice, 

the SCr levels on the previous day of antibiotics administration are comparably lower than for 

the administration of other antibiotics (average previous-day SCr level accompanied by non-

aminoglycosides administration was 1.4121±1.4272 and 1.1683±1.8986 on aminoglycoside 

administration), which indicates it is not common to observe cases where nephrotoxic antibiotics 

are administered to patients with renal dysfunction. Therefore, we suspect that the availability of 

the aforementioned cases might limit the model to learn the nephrotoxic effects of the other two 

aminoglycosides through the counterfactual analysis.  

AVG SCr 

increment 

CNT Documented 

Units 

LABEL p-val STD 95% 

UB 

0.2762 50 dose  Gentamicin                      <0.001 0.2476 0.3349 

0.0046 72 dose  Tobramycin                      <0.001 0.0052 0.0056 

0.0012 25 dose  Amikacin                        <0.001 0.0010 0.0015 

Table 4.3. Predicted SCr increments from the response model on aminoglycosides. 
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Figure 4.4. Dosing variability presented in the training and test set. 

The top five antibiotics with statistical significance in paired t-tests were presented in Table 4.2 

in descending order of the 95% CI UB. From renal dosing guidelines from three different 

institutions, including Stanford Medicine3, Nebraska Medical Center4, and University of 

Washington/Harborview Medical Center5, we found lower dosing suggestions for Penicillin G 

Potassium, Ceftazidime, and Ambisome. For Ceftrazidime, although the administrations based 

on standard dosing were not identified as nephrotoxic (average SCr increments were 

0.0468±0.0550 on 67 Ceftrazidime administrations documented with standard dosing), the 

antibiotic administered with gram-based dosings were identified as nephrotoxic. From the test 

sets, instances with the gram-based dosing documentation was accompanied by standard dosing-

based documentation for the same day. Therefore, we suspect that the gram-based dosing 

documentation might be used to document additional Ceftrazidime administration along with the 

standard dosing; among instances with gram-based Ceftrazidime dosing information, 26.31% 

(5/19) of instances also had the standard dose-based administration in the training set, and 40% 

(2/5) of instances had the information in the test set. Therefore, although the standard-dosing 

based administration was not responsible for the patient’s nephrotoxicity, we believe the dosing 

practice that exceeds the institutional standard might accounts for the patient’s presented 

nephrotoxicity with Ceftrazidime.  

 
3 http://med.stanford.edu/bugsanddrugs/dosing-protocols/_jcr_content/main/panel_builder/panel_0/download/file.res 

/SHC%20ABX%20Dosing%20Guide%202019-02-01.pdf 
4  https://www.nebraskamed.com/sites/default/files/documents/for-providers/asp/antimicrobial-renal-dosing-guidelin 

es.pdf 
5 https://depts.washington.edu/idhmc/wp-content/uploads/2015/11/Antibiotic-dosing.pdf 
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AVG 

increments 

CNT Documented 

Units 

LABEL p-val STD 95% CI UB 

0.3091 12 dose  Penicillin G 

potassium          

<0.001 

0.1218 0.3722 

0.3431 112 dose  Linezolid* <0.001 0.1671 0.3693 

0.2091 4 grams Ceftazidime  0.040 0.1197 0.3499 

0.2762 50 dose  Gentamicin  <0.001 0.2476 0.3349 

0.2068 53 dose  Ambisome  <0.001 0.1914 0.2508 

Table 4.4. Top five statistically significant antibiotics based on 95% CI UB; * no dosing 

adjustment specified from drug labels. 

During the analysis, there were 122 individual antibiotic administrations where the response 

model predicted SCr increments higher than 0.5mg/dL (Table 4.5). The average SCr levels the 

day before antibiotic administration were 5.9613 mg/dL with a standard deviation of 2.5424, 

which was higher than cases with predicted SCr increments less than 0.5mg/dL (the average of 

1.3382 mg/dL with standard deviation 1.2961). As the majority of the estimated nephrotoxins in 

Table 4.2 only includes a few of the following, this might indicate that patients’ baseline SCr 

levels have implications on the presented nephrotoxicity, which agrees with the consensus that 

dose-adjustment should be based on a patient’s creatinine clearance. 

Antibiotic # of  

occurrence 

Antibiotic # of 

occurrence 

Piperacillin/Tazobactam (Zosyn) 27 Ciprofloxacin                   4 

Cefepime                        14 Ampicillin/Sulbactam 

(Unasyn)   

3 

Ceftriaxone 12 Gentamicin                      3 

Piperacillin 9 Acyclovir                       1 

Ampicillin  8 Imipenem/Cilastatin             1 

Linezolid* 8 Gancyclovir                     1 

Cefazolin 8 Penicillin G potassium          1 

Nafcillin  7 Ambisome                        1 

Meropenem 7 Metronidazole*                  1 

Vancomycin 6   

Table 4.5. Antibiotics responsible for SCr increment higher than 0.5mg/dL; * no dosing 

adjustment suggested from drug labels. 

Linezolid was identified as potential nephrotoxin in the population and was responsible for 

clinical nephrotoxicity in eight instances (patient-days) in the test dataset. Linezolid is often 

administered as an alternative antibiotic when patients receiving Vancomycin show 

nephrotoxicity as they cover a similar spectrum. However, after the literature review, we found 

some studies insisting that the nephrotoxicity profile did not show statistical significance 

compared to the Vancomycin and the drug label did not provide any dosing adjustment 

suggestions for patients with renal impairment. Because one of the metabolites in the linezolid is 

cleared by the kidney, the result warrants further analysis on Linezolid’s nephrotoxicity. 
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4.5. Discussion 

As shown in the results, the proposed model was able to show promising accuracy in predicting 

the next-day SCr distribution based on the factual antibiotics administration. Moreover, the 

estimated nephrotoxicity of administered antibiotics tends to agree with the medical consensus 

regarding known nephrotoxicity. By assuming the model generated clinically sound estimates of 

both the effect-free SCr trajectory and the estimated nephrotoxicity due to the planned 

administration of antibiotics, we further analyzed how patients progressed when the response 

model predicted comparatively higher nephrotoxicity from the factual antibiotic administrations. 

During the analysis, we evaluated patient prognoses regarding cumulated nephrotoxicity 

estimates ∑ 𝑚𝑜𝑑𝑖𝑓𝑑𝑖
̂

𝑖  throughout their ICU stay. Higher cumulated SCr increment due to 

administered antibiotics was expected to present adverse renal prognoses compared to patients 

with less cumulated SCr increments, and the difference was assumed to be observed through 

their discharge diagnoses. The average cumulated SCr increment was 0.4192 mg/dL with the 

standard deviation of 1.4094 from the 1,057 hospital admissions accompanied with at least one 

antibiotic administration during the patient’s ICU stay in the test set. 

We examined whether patients discharged with kidney-related diseases would show higher 

cumulated SCr increments due to the planned administration of antibiotics compared to the 

population. By conducting a one-tailed t-test under the significance level 𝛼 = 0.05 and the 

power 1 − 𝛽 = 0.8, acute kidney failure with tubular necrosis and hypertensive chronic kidney 

disease showed statistical significance (Table 4.6). For patients discharged with acute kidney 

injury with tubular necrosis, the earlier study showed that the majority of drug-induced renal 

impairment is presented as either acute interstitial nephritis (AIN) or acute tubular necrosis 

(ATN) [107], where the etiology of AIN tends to be allergic reactions due to the choice of 

medication, while ATN is more dose-dependent [118]. Therefore, we suspect that dose-related 

renal impairment might be the more prevalent cause of antibiotic-induced nephrotoxicity in the 

dataset. For patients discharged with hypotensive chronic kidney diseases (CKD), it could be 

possible that a patient’s existing renal impairment might be worsened during antibiotic therapies. 

Moreover, as CKD patients receive dialysis regularly, an earlier study [119] reported that they 

found a higher prevalence of gram-negative infections compared to the population due to 1) a 

higher frequency of cefazolin use [120], 2) clustering in hemodialysis units, and 3) the presence 

of in-dwelling catheters [121], thereby having higher propensity for gram-negative infections and 

receiving the antibiotics targeted to the pathogen.   
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ICD-9 CODE Avg. 

Cumulated 

Risk 

Std. Dev. # of 

admission 

Diagnosis p-value 

Population 0.4192 1.4094 1057 

584.5 1.6811 2.2758 78 

Acute kidney failure with 

lesion of tubular necrosis                                                                                                    <0.001 

403.91 1.2212 1.8788 38 

Hypertensive chronic 

kidney disease, 

unspecified, with chronic 

kidney disease stage V or 

end-stage renal disease                                        <0.001 

584.9 0.5877 1.6943 177 

Acute kidney failure, 

unspecified                                                                                                                       <0.001 

403.9 0.4737 1.0035 96 

Hypertensive chronic 

kidney disease, 

unspecified, with chronic 

kidney disease stage I 

through stage IV, or 

unspecified                                  <0.001 

Table 4.6. Kidney-related ICD-9 codes with statistically significant cumulated SCr increments.  

4.6. Case study – Applying design to identify organ-toxic 

interventions using risk estimates from AOFI models 

In the sections above, the proposed framework was able to demonstrate the potential of 

decomposing the effect of selected clinical interventions (i.e., antibiotics) from the physiological 

observations (i.e., serum creatinine level). Moreover, the comparative analysis on models trained 

with and without the consideration of antibiotics therapy showed similar mean absolute error 

when predicting next-day SCr level, which indicates the training of the response model did not 

degrade the overall prediction performance. Lastly, the predictions from the response model tend 

to agree with the medical consensus regarding the nephrotoxicity of antibiotics. 

By extending the idea, we examined whether the framework could also decompose the potential 

adverse effect of frequently administered clinical interventions from the risk estimated by AOFI 

models. The trajectory modeling approach discussed in Chapter 3 showed the potential for 

improving the performance of FTR event prediction when risks driven from myopic evidence are 

used as an input. Therefore, we also aimed to evaluate whether a more complex trajectory 

modeling architecture based on the attention-based, single-headed transformer [122] could 

improve the performance of predicting AOF onset. In the experiment, we aimed to quantify the 

potential toxicity of clinical interventions frequently documented for patients admitted to ICUs. 

To compare the performance with other modeling approaches presented in the earlier chapters, 

we used the same training, validation, and test dataset as Chapter 2 from the MIMIC-3 dataset. 
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To implement the framework to take the risk estimates from AOFI models as an input, it 

required modification of the design proposed in Section 4.3.2. First, risk estimates from the 

AOFI models are probabilistic quantities while the physiological inputs (i.e., SCr levels) were 

used during the nephrotoxicity analysis. Therefore, the predicted risks from both the effect-free 

model and the response model should also be bounded within [0,1] range in the experiment. 

Moreover, to simplify the current experiment, we only estimated potential adverse effects of 

clinical intervention administrations without considering the dosing-dependent response. 

Therefore, intervention inputs were represented as a vector of binary variables. Accordingly, 

outputs of both the effect-free and the response model should be merged probabilistically 

compared to the simple addition we used in the nephrotoxicity analysis. The details of the 

modification are discussed in the following sections. 

4.6.1. Method 

4.6.1.1. Input 

In the experiment, patient risk estimated from AOFI models on the day 𝑑𝑖 was noted as 𝑥𝐴𝑂𝐹,𝑑𝑖 ∈

[0,1]4. For the intervention input, we considered the 100 most commonly documented clinical 

interventions from patients admitted to the ICUs, and noted them as 𝑥𝑖𝑛𝑡𝑣,𝑑𝑖 ∈ {0,1}
100 by 

representing whether each clinical intervention was administered to the patient on the day 𝑑𝑖 or 

not. As mentioned above, we did not consider the dosing-dependent response of each clinical 

intervention. 

4.6.1.2. Changes in the likelihood of AOF onset with and without clinical interventions 

Due to the changes in both physiologic and intervention inputs, estimates from the effect-free 

and the response model should be represented as a probability. First, outputs of the effect-free 

model, 𝑓𝐸𝐹𝑇,𝜃′
𝐴𝑂𝐹𝐼 , should be bounded within [0,1]. Therefore, we used the sigmoid activation 

function on the output nodes for the implementation. The probability of developing each of the 

four AOFs without any clinical intervention, 𝑃𝐴𝑂𝐹,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑑𝑖, could be written as follows: 

𝑃𝐴𝑂𝐹,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑑𝑖 = 𝑓𝐸𝐹𝑇,𝜃′
𝐴𝑂𝐹𝐼 (< 𝑥𝐴𝑂𝐹,𝑑𝑖−1 , ℎ𝑑𝑖 >) ∈ [0,1]

4 

In addition, as the estimates from the response model should be represented as a probability as 

well, the output of the response model, 𝑔𝑅𝐸𝑆,𝜙′
𝐴𝑂𝐹𝐼 , should also be bounded within [0,1]. Therefore, 

the sigmoid activation function on the output nodes was used for the implementation as well. 

With the submodularity constraint mentioned in Section 4.3.2, the probability of developing each 

AOF due to the clinical intervention 𝑥𝑖𝑛𝑡𝑣,𝑑𝑖, 𝑃𝐴𝑂𝐹,𝑖𝑛𝑡𝑣,𝑑𝑖, can be written as follows: 

𝑃𝐴𝑂𝐹,𝑖𝑛𝑡𝑣,𝑑𝑖 = {
𝑔𝑅𝐸𝑆,𝜙′
𝐴𝑂𝐹𝐼 (< 𝑥𝑖𝑛𝑡𝑣,𝑑𝑖 , ℎ𝑑𝑖 , 𝑥𝐴𝑂𝐹,𝑑𝑖−1 >) ∈ [0,1]

4 𝑤ℎ𝑒𝑛 ||𝑥𝑖𝑛𝑡𝑣,𝑑𝑖||2
≠ 0

0 𝑤ℎ𝑒𝑛 ||𝑥𝑖𝑛𝑡𝑣,𝑑𝑖||2
= 0

  

4.6.1.3. Merging two risk estimates—baseline AOF risks and risk increments due to clinical 

interventions 

In the nephrotoxicity experiment, we assumed that the nephrotoxicity incurred by the antibiotics 

could be represented as an additive effect on the baseline estimates. Therefore, estimates from 

the effect-free model and the response model were added to estimate of the next-day SCr 

distribution. Since the current experiment has two probabilistic estimates to calculate the risk of 
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AOF onsets on the next day, 𝑃𝐴𝑂𝐹,𝑖𝑛𝑡𝑣,𝑑𝑖 and 𝑃𝐴𝑂𝐹,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑑𝑖, they should be merged within the 

probabilistic framework to calculate the final probability 𝑃𝐴𝑂𝐹,𝑓𝑖𝑛𝑎𝑙,𝑑𝑖. 

To estimate 𝑃𝐴𝑂𝐹,𝑓𝑖𝑛𝑎𝑙,𝑑𝑖, we assumed there exists a prior probability of the target AOF caused by 

clinical interventions, and estimated 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣 ∈ [0,1]
4 during the training. Then, we also 

hypothesized that the patient’s AOF onset could be either explained through the baseline 

estimates, (1 − 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣) ∗ 𝑃𝐴𝑂𝐹,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑑𝑖, or by the clinical interventions scheduled to be 

administered, 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣 ∗ 𝑃𝐴𝑂𝐹,𝑖𝑛𝑡𝑣,𝑑𝑖 . By merging two estimates as a complement event, the 

𝑃𝐴𝑂𝐹,𝑓𝑖𝑛𝑎𝑙,𝑑𝑖 was defined as follows: 

𝑃𝐴𝑂𝐹,𝑓𝑖𝑛𝑎𝑙,𝑑𝑖 =
1 − (1 − 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣 ∗ 𝑃𝐴𝑂𝐹,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑑𝑖)(1 − (1 − 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣) ∗ 𝑃𝐴𝑂𝐹,𝑖𝑛𝑡𝑣,𝑑𝑖)

(1 − 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣 ∗ (1 − 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣))
 

4.6.1.4. Loss function 

In the nephrotoxicity analysis, the loss was calculated based on the observed next-day SCr 

distribution with KL-divergence. However, there was no gold standard information to evaluate 

the instance-level prediction 𝑃𝐴𝑂𝐹,𝑓𝑖𝑛𝑎𝑙,𝑑𝑖 in the current experiment. Therefore, as we presented in 

Section 2.2.5, we used discharge diagnoses as a gold standard instead and defined the loss to 

compare the aggregated probability using instance-level risk estimates 𝑃𝐴𝑂𝐹,𝑓𝑖𝑛𝑎𝑙,𝑑𝑖 and the 

discharge diagnoses. The aggregated probability 𝑃𝐴𝑂𝐹,𝑎𝑔𝑔,𝑖𝑛𝑡𝑣+𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represented the 

probability of a patient developing the target AOF at least once during their ICU stay with the 

consideration of the adverse effect of clinical interventions, and was represented as follows: 

𝑃𝐴𝑂𝐹,𝑎𝑔𝑔,𝑖𝑛𝑡𝑣+𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 1 −∏(1 − 𝑃𝐴𝑂𝐹,𝑓𝑖𝑛𝑎𝑙,𝑑𝑖)

𝑖

∈ [0,1]4 

Moreover, we also designed the estimated instance-level probabilities from the effect-free model, 

𝑃𝐴𝑂𝐹,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑑𝑖, to follow the gold-standard information as well with the assumption that the 

intervention-induced AOF is comparably less than the AOF induced by a patient’s baseline 

physiology. Therefore, the aggregated probability only using the effect-free estimates 

𝑃𝐴𝑂𝐹,𝑎𝑔𝑔,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 was also defined and considered into the loss function: 

𝑃𝐴𝑂𝐹,𝑎𝑔𝑔,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 1 −∏(1 − 𝑃𝐴𝑂𝐹,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑑𝑖)

𝑖

∈ [0,1]4 

Finally, the loss function was defined as follows: 

𝑙𝑜𝑠𝑠(𝜃′, 𝜙′, 𝜆, 𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑖𝑛𝑎𝑙 , 𝑤𝑒𝑖𝑔ℎ𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

=∑[𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦𝑝𝑡𝑠, 𝑃𝐴𝑂𝐹,𝑎𝑔𝑔,𝑖𝑛𝑡𝑣+𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , 𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑖𝑛𝑎𝑙)

𝑝𝑡𝑠

+𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦𝑝𝑡𝑠, 𝑃𝐴𝑂𝐹,𝑎𝑔𝑔,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑤𝑒𝑖𝑔ℎ𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)]

+ 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟(𝜆) 

where 𝑦𝑝𝑡𝑠 ∈ {0,1}
4 represents the discharge diagnoses that we used as gold-standard 

information, 𝑤𝑒𝑖𝑔ℎ𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑖𝑛𝑎𝑙 quantify to what extent the model should 



76 

 

emphasize learning 𝑃𝐴𝑂𝐹,𝑎𝑔𝑔,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 𝑃𝐴𝑂𝐹,𝑎𝑔𝑔,𝑖𝑛𝑡𝑣+𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, respectively, and 𝜃′ and 𝜙′ are 

parameters of the effect-free model 𝑓𝐸𝐹𝑇
𝐴𝑂𝐹𝐼 and the response model 𝑔𝑅𝐸𝑆

𝐴𝑂𝐹𝐼, respectively. Dropout 

on the 𝑓𝐸𝐹𝑇
𝐴𝑂𝐹𝐼 and 𝑔𝑅𝐸𝑆

𝐴𝑂𝐹𝐼 was used as a regularizer for the training. 

4.6.1.5. Evaluation 

We assumed that the adverse influence of each clinical intervention could be quantified for each 

instance using the later component of the 𝑃𝐴𝑂𝐹,𝑓𝑖𝑛𝑎𝑙,𝑑𝑖 calculation, 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣 ∗ 𝑃𝐴𝑂𝐹,𝑖𝑛𝑡𝑣,𝑑𝑖. In 

cases where the intervention was responsible for the target AOF onset, we assumed that the risk 

estimated for the factual clinical intervention 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣 ∗ 𝑃𝐴𝑂𝐹,𝑖𝑛𝑡𝑣,𝑑𝑖 would be significantly 

higher than the risk estimated without the target intervention 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣 ∗ 𝑃𝐴𝑂𝐹,𝑖𝑛𝑡𝑣′,𝑑𝑖, where 

𝑖𝑛𝑡𝑣′ = 𝑖𝑛𝑡𝑣/{𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛}. To quantify the potential harm caused by the target 

intervention for each instance, the probability of the patient developing AOF due to the target 

clinical intervention was estimated as the product event of 1) the probability of the patient 

developing the target AOF based on the factual clinical intervention, and 2) the probability of the 

patient not developing the target AOF when the target intervention is not administered. 

Therefore, we defined the aforementioned quantity as a risk score, 

𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒𝑑𝑖,𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛, written as follows: 

𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒𝑑𝑖,𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 = (𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣 ∗ 𝑃𝐴𝑂𝐹,𝑖𝑛𝑡𝑣,𝑑𝑖) ∗ (1 − 𝑃𝐴𝑂𝐹,𝑏𝑦𝐼𝑛𝑡𝑣 ∗ 𝑃𝐴𝑂𝐹,𝑖𝑛𝑡𝑣′,𝑑𝑖) 

During the analysis, we first analyzed the overall risk trends of each 𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 

estimated in 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒𝑑𝑖,𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 from the population level through summary 

statistics. Then, we demonstrated how 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒𝑑𝑖,𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 estimated on each instance 

and intervention could be used to identify cases where the administered clinical interventions can 

explain the increased risk of the target AOF onset. 

4.6.2. Results 

To evaluate the performance changes with and without the decomposition, we also trained 

another prediction model solely based on the risk estimates from AOFI models without 

considering the effect of interventions. In order to train only the effect-free model 𝑓𝐸𝐹𝑇,𝜃¬𝑖𝑛𝑡𝑣
𝐴𝑂𝐹𝐼 , we 

used the following loss function: 

𝑙𝑜𝑠𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝜃¬𝑖𝑛𝑡𝑣, 𝜆
′) =∑[𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦𝑝𝑡𝑠, 𝑃𝐴𝑂𝐹,𝑎𝑔𝑔,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)] + 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟(𝜆

′)

𝑝𝑡𝑠

 

The best model on the proposed framework and the best 𝑓𝐸𝐹𝑇,𝜃¬𝑖𝑛𝑡𝑣
𝐴𝑂𝐹𝐼  model were selected where 

they achieved the highest micro-F1 score in the validation set. The performance of predicting the 

AOF onsets based on patient-level predictions from each model is presented in Table 4.7.  
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(a) Patient-level predictions from different trajectory modeling settings 

 𝑓𝐸𝐹𝑇
𝐴𝑂𝐹𝐼 

𝑓𝐸𝐹𝑇
𝐴𝑂𝐹𝐼 and 𝑔𝑅𝐸𝑆

𝐴𝑂𝐹𝐼 

(proposed) 

𝑓𝐸𝐹𝑇,𝜃¬𝑖𝑛𝑡𝑣
𝐴𝑂𝐹𝐼  

(baseline) 
 PREC REC F1 PREC REC F1 PREC REC F1 

AHF 0.3697 0.2919 0.3262 0.4161 0.3206 0.3622 0.3694 0.2775 0.3169 

ALI 0.6311 0.6525 0.6417 0.6657 0.6808 0.6732 0.6543 0.6469 0.6506 

AKI 0.6171 0.4746 0.5365 0.5724 0.5360 0.5536 0.6286 0.5021 0.5583 

ALF 0.3182 0.1707 0.2222 0.3200 0.1951 0.2424 0.2571 0.2195 0.2368 

Micro 0.5710 0.4861 0.5251 0.5747 0.5288 0.5508 0.5780 0.4954 0.5343 

(b) Patient-level prediction performance on modeling approaches presented in the earlier 

sections 

 Original AOFI HMM w/ AOFI Adjusted AOFI 
 Prec Rec F1 Prec Rec F1 Prec Rec F1 

AHF 0.3780 0.2211 0.2791 0.2608 0.5324 0.2608 0.2342 0.5324 0.2342 

ALI 0.6552 0.6080 0.6307 0.4717 0.8000 0.4717 0.4769 0.8000 0.4769 

AKI 0.7302 0.3644 0.4861 0.4928 0.6152 0.4928 0.4752 0.6152 0.4752 

ALF 0.2745 0.3111 0.2917 0.1702 0.3556 0.1702 0.2353 0.3556 0.2353 

Micro 0.6093 0.4151 0.4938 0.4114 0.6502 0.5039 0.4023 0.6502 0.4971 

Table 4.7. Patient-level performance comparison between (a) the proposed model and 

𝑓𝐸𝐹𝑇,𝜃¬𝑖𝑛𝑡𝑣
𝐴𝑂𝐹𝐼 , (b) the HMM and the AOFI models. 

As the result shows, the model with consideration of the clinical intervention (considering both 

𝑓𝐸𝐹𝑇
𝐴𝑂𝐹𝐼 and 𝑔𝑅𝐸𝑆

𝐴𝑂𝐹𝐼 to predict the likelihood of AOF onsets) showed a higher micro-F1 score 

compared to the model only based on the risk estimates from AOFI models (𝑓𝐸𝐹𝑇,𝜃¬𝑖𝑛𝑡𝑣
𝐴𝑂𝐹𝐼 ).  

The trained model estimated prior probabilities of developing AOF due to the clinical 

interventions for each AOF as following: 0.5723 for AHF, 0.5831 for ALI, 0.5133 for AKI and 

0.0151 for ALF. Accordingly, the model relied on the baseline physiology and the estimates 

from both physiology and the clinical interventions with similar weights when predicting the 

target AOF onsets while putting more weight on the latter, except in the case of ALF. 

4.6.3. Discussion 

We first calculated 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒𝑑𝑖,𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 on each instance to quantify how much risk 

increment does each intervention could explain. Table 4.8 shows five intervention-AOF pairs 

that showed the highest risk scores in descending order.  
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AOF Average 𝑹𝒊𝒔𝒌𝑺𝒄𝒐𝒓𝒆 Std. Dev. 𝑹𝒊𝒔𝒌𝑺𝒄𝒐𝒓𝒆 Clinical intervention 

AKI  0.3315 0.1186 Heparin Sodium (Prophylaxis) 

ALI 0.1528 0.1349 Heparin Sodium (Prophylaxis) 

ALI  0.1327 0.1270 5% Dextrose 0.45% Normal Saline 

ALI  0.1326 0.1269 Ranitidine (Prophylaxis) 

ALI  0.0888 0.1093 Pantoprazole (Protonix) 

Table 4.8. The list of clinical intervention-AOF pairs with higher average risk score from the test 

set 

Compared to the nephrotoxicity analysis presented in earlier sections, we cannot strictly assume 

that the intervention with a higher risk score directly implies its potential organ toxicity. Instead, 

we can consider that these interventions could explain the risk increment that cannot be 

explained via physiologic evidence by one of the following: 1) the intervention exerted a 

deleterious effect regarding the target AOF onset, 2) the intervention was administered to the 

comorbidity of the target AOF that develops acutely, or 3) the intervention was relevant to non-

physiological events (e.g., initiation or maintenance procedures). For example, the model 

estimated a high average risk score on prophylactic heparin sodium administration for AKI and 

ALI. After the literature review, we found that there should be special caution on patients with 

renal impairment during anticoagulation therapy because the therapy can increase the bleeding 

risk [123]. In contrast, for the patients with high risk of ALI, prior studies insist that prophylactic 

heparin sodium administered to them with in nebulized form improved the outcomes [124]. If 

this is the case, the intervention administration might indicate that physicians are already aware 

of the patient’s high risk of ALI. For isotonic 5% dextrose and 0.45% normal saline, although it 

is often used as a maintenance fluid for patients admitted to ICUs, the recent study suggests that 

patients with a high risk of ALI showed a better prognosis when hypertonic fluid was used 

compared to fluids with other osmolality, including isotonic and hypotonic fluids [125]. 

Therefore, the risk increment due to the choice of maintenance fluid on patients with high risk of 

ALI could be reviewed to verify whether the osmolality could be the risk factor for the increased 

risk of ALI. Lastly, ranitidine and pantoprazole are frequently administered to prevent stress 

ulcer in the ICU setting. Although stress ulcer prophylaxis is recommended in high-risk patients 

to prevent stress-related mucosal disease [126], those interventions could also alter the stomach 

pH of patients, and the disturbed gut flora due to the change of acidity level might be related to 

the increased risk of infections [127]. Therefore, it might be worth reviewing intervention-AOF 

pairs with high average risk scores. 

The risk score estimated for each intervention and each patient could be used to identify 

instances for additional reviews. Similar to the analysis conducted in the population level, 

instance-intervention pairs with higher risk score could be manually reviewed to clarify the 

causal relationship between them. Table 4.9 shows 20 intervention-instance pairs that showed the 

highest risk score for the corresponding AOF. Similar to the population-level analysis, the risk 

estimated for the clinical interventions can be evaluated with the assumption of 1) actual risk 

incurred by the clinical intervention administration (e.g., ALI and pantoprazole administration), 

2) risk incurred by other clinical events that necessitates the identified clinical interventions (e.g., 

16-gauge needle insertion for either transfusion or bolus therapy, nasal swab for the suspected 

infections, or fentanyl for relieving a patient’s ongoing severe pain), or 3) non-physiological 

interventions potentially indicating the patient’s sudden and severe deterioration of the target 

AOF (e.g., family updates by the RN and OR received). 



79 

 

Counterfactual 

risk estimates 

Factual 

risk estimates 
𝑅𝑖𝑠𝑘𝑠𝑐𝑜𝑟𝑒 AOF Intervention 

0.0023 0.5819 0.5805 ALI Family updated by RN 

0.0081 0.5831 0.5783 ALI Nasal Swab 

0.0107 0.5826 0.5764 ALI OR Received 

0.0076 0.5742 0.5698 ALI Family updated by RN 

0.0153 0.5783 0.5695 ALI Family updated by RN 

0.0219 0.5820 0.5693 ALI Fentanyl 

0.0070 0.5731 0.5691 ALI Urine Culture 

0.0174 0.5786 0.5685 ALI 16 Gauge 

0.0074 0.5714 0.5672 ALI Family updated by RN 

0.0237 0.5803 0.5665 ALI Fentanyl 

0.0023 0.5651 0.5638 ALI Family updated by RN 

0.0118 0.5699 0.5632 ALI Family updated by RN 

0.0264 0.5781 0.5628 ALI Magnesium Sulfate 

0.0217 0.5724 0.5600 ALI Fentanyl 

0.0320 0.5756 0.5572 ALI Fentanyl 

0.0310 0.5750 0.5571 ALI Magnesium Sulfate 

0.0102 0.5610 0.5552 ALI Family updated by RN 

0.0079 0.5572 0.5528 ALI Nasal Swab 

0.0042 0.5545 0.5522 ALI Family updated by RN 

0.0346 0.5715 0.5517 ALI Pantoprazole (Protonix) 

Table 4.9. Top-20 instance-intervention pairs with high predicted risks. 

4.6.4. Potential measures to improve performance with expert knowledge 

The proposed modeling framework showed improved prediction performance of patient-level 

AOF onsets, and the model was able to identify a few clinical interventions that could explain 

the additional risk increment which could not be explained through AOFI models. Similar to the 

suggestions provided in Section 3.6.3, we believe the model’s performance can be improved 

through manual review from experts, and the predictions from the proposed framework would 

facilitate the reviewing process. 

First, the summary statistics of the risk scores for each clinical intervention can be used as a 

screener identifying intervention-AOF pairs for further analysis. For example, if the review 

reveals that prophylactic treatments with higher risk scores, such as heparin sodium or ranitidine, 

are not relevant to the target AOF onset, physicians could re-train the model after excluding 

these interventions from the candidate intervention list. In case the specific physiological states 

that require such clinical interventions can be defined, additional indicator variable could be 

added during expert annotation process. In the prediction time, such information could be 

provided to the model as background information so that the model could adjust the risk 

estimated by myopic evidence to derive a refined estimation. 

Second, as the framework was able to derive the quantitative estimates of the potential adverse 

effect of each intervention on each instance, physicians could focus on reviewing instances with 

higher risk score from the target clinical intervention. If the manual review could differentiate 

two possible explanations of the predicted high risk, either from the patient’s baseline physiology 
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or from the combined effect of the administered clinical interventions and the patient’s baseline 

physiology, the corresponding annotation can be integrated into the loss function as follows: 

𝑙𝑜𝑠𝑠′ = 𝑙𝑜𝑠𝑠(𝜃′, 𝜙′, 𝜆, 𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑖𝑛𝑎𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) 

+ ∑ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , 𝑃𝐴𝑂𝐹,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑑𝑖)

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

 

+ ∑ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,𝑖𝑛𝑡𝑣+𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , 𝑃𝐴𝑂𝐹,𝑓𝑖𝑛𝑎𝑙,𝑑𝑖)

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

 

, where 𝑦𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represents gold-standard information for the target AOF onset based on 

baseline physiology, and 𝑦𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒,𝑖𝑛𝑡𝑣+𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is an indicator variable representing whether the 

AOF was incurred due to the clinical interventions and/or the baseline physiology.  

4.7. Limitations 

The study did not have gold-standard information regarding the nephrotoxicity of individual 

antibiotic from factual administrations. Therefore, we instead maximized the likelihood of 

predicted SCr distribution with the factual antibiotic administrations given the observed next-day 

SCr distribution. Although we validated the trends of predicted SCr increments from potentially 

nephrotoxic antibiotics through literature review, the prediction accuracy of the factual SCr 

trajectory and the corresponding nephrotoxicity estimates could be improved with gold-standard 

information on the nephrotoxicity of the factual antibiotic administration. By adding additional 

penalty terms comparing predicted nephrotoxicity from 𝑔𝑟𝑒𝑠,𝜙 with the gold-standard 

information, it might be possible to improve the accuracy of estimates on both effect-free 

estimates and outputs from the response model. 

4.8. Conclusion 

In this study, we showed that the nephrotoxic effect of antibiotics and the baseline renal function 

trajectory could be decomposed by jointly training two submodels explaining the effect-free 

trajectory and the response of the intervention. The model showed promising accuracy for 

predicting the next-day SCr distribution based on the factual antibiotic administration plans and 

patients’ previous SCr level measurements. Moreover, the response model was able to provide 

the list of antibiotics that are potentially nephrotoxic with quantitative estimate from the dataset. 

We also verified that the pattern learned from the model agrees with medical consensus; the 

trained model predicted higher cumulated nephrotoxicity in patients with chronic renal 

impairment or patients who developed acute tubular necrosis during their hospital stay. Although 

there could be cases where controlling a patient’s infection outweighs managing a patient’s renal 

prognosis within intensive care settings, we believe risk estimates on antibiotic-induced 

nephrotoxicity in the context of a patient’s current renal function trajectory will allow physicians 

to quantitatively compare candidate antibiotic treatment options.  
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Chapter 5. Conclusion 

In the previous chapters, I presented the framework for deriving a risk estimation model for 

acute-onset diseases by only specifying the corresponding discharge diagnoses, the framework 

that can improve risk estimates based on myopic evidence by considering trajectory on relevant 

FTR events altogether, and the framework that can quantify the potential adverse effect of 

clinical interventions administered to patients. Although the results presented in each chapter 

showed the potential of the proposed frameworks, the findings still emphasize the importance of 

expert knowledge in order to derive a more mature risk estimation model. Still, risks estimated 

from the proposed frameworks were able to demonstrate that they followed clinical consensus on 

the risk of target acute-onset diseases. Therefore, in case physicians are involved in manually 

reviewing the predictions for clinical validation, those predictions could be utilized as building 

blocks for implementing risk prediction models with better accuracy. In the following, I will 

summarize the findings from each aim and how the proposed framework could be used in 

today’s clinical practice and clinical research. 

5.1. Summary of the research findings 

Aim 1: In Chapter 2, I provided a framework that can derive the risk estimates by only 

specifying the groups of discharge diagnoses that are relevant to the target acute-onset disease. 

The framework first identified relevant clinical interventions. By using the timing of clinical 

interventions and the discharge diagnoses as a proxy event of the target disease onset, we trained 

a model to predict the proxy events in a supervised setting. Analyses of the risks estimated by the 

AOFI models showed that the likelihood of receiving relevant clinical intervention within the 

next 24 hours and being discharged with the target disease could be used as a risk estimate for 

the disease. 

Aim 2: In Chapter 3, I presented the modeling approach that can integrate risk trajectories of 

potentially relevant clinical outcomes, which were estimated based on myopic evidence, to the 

target acute-onset disease. The results showed that the screening performance of existing EWSs 

could be improved by considering temporal trends of risk estimates of the relevant clinical 

outcomes. Moreover, although the approach was not able to show improved micro-F1 scores 

when risk estimates from the AOFI model were considered as an EWS, it still showed the 

potential to improve the prediction performance of high-risk AOF patients with improved 

patient-level recall and less positive prediction on instance-level. The clinical validation showed 

that the estimated risks agreed with the clinical consensus by showing a worse prognosis when 

the model made a positive instance-level prediction compared to the other instances based on 

biomarkers used to diagnose the target AOFs. 

Aim 3: In Chapter 4, I demonstrated that both physiologic variables and risk estimates from 

patients could be decomposed into the baseline physiology, a patient’s physiologic state without 

any clinical interventions, and the adverse effect due to the clinical interventions. Moreover, the 

adverse effect estimated by the model was able to show not only the trend of risk exerted from 

each clinical intervention in the population level but also the potential of identifying cases that 

might develop the AOFs due to the clinical intervention. 
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5.2. Potential measures to improve the accuracy of the trained 

model 

From all risk estimates driven by models discussed in this dissertation, results indicate that 

expert knowledge should be integrated in order to generate more clinically sound risk 

estimations. As each of the proposed frameworks has a different modeling architecture, there 

could be different avenues through which such knowledge could be incorporated. 

Aim 1: The framework only requires discharge diagnoses for the target disease to derive the 

AOFI model. After the training, the training procedure provides the list of clinical interventions 

that were used as proxy events. Therefore, physicians could modify the list of interventions by 

adding new clinical interventions that are commonly administered to patients with the disease or 

by removing the intervention if it is irrelevant to the target disease. Moreover, clinicians may 

review the feature importance learned by the model (e.g., information gain) and remove the 

clinical variables that are either not routinely measured or unintuitive in the current workflow. 

Lastly, the proxy labels on the training dataset could be refined through additional manual 

annotation from experts. Instead of annotating all instance-level observations, experts can focus 

on reviewing instances where the current model showed higher uncertainty [128]. This would 

allow practitioners to have a risk estimation model with higher accuracy and less annotation 

labor compared to the conventional methods. 

Aim 2: As mentioned in Section 3.6.3, the trained HMM delivered quantitative estimates on the 

prior probability, transition probabilities, and the dependency of the trajectory information for 

each FTR event state specified for the training. Therefore, physicians may review such 

quantitative estimates and refine them by adding additional penalty terms for the re-training. This 

would allow models to utilize expert knowledge so that they can train the model with not only 

better performance but also more straightforward to the current medical understanding. 

Aim 3: In the nephrotoxicity study presented in Chapter 4, the trained model estimates the next-

day SCr level without any clinical intervention and the SCr increment due to the administered 

ABXs, then combine the two quantities to estimate the next-day SCr distribution. Moreover, the 

model trained with AOFI risk estimates was aimed at representing the baseline risk of AOFs 

with the potential risk increments resulting from the clinical interventions frequently 

administered in ICU settings. As the model decomposes a patient’s prognosis in terms of the 

baseline physiology and the influence of clinical interventions, experts could focus on validating 

the instances with higher predicted risks from either the response model or the final risk 

estimation. If the expert annotation could clarify the potential FTR incidents caused by the 

clinical interventions, the model’s performance could be improved through iterative training. 

5.3. Potential usage of the model presented in the dissertation 

Aim 1: As the model only requires the discharge diagnoses for the model derivation, it could 

serve as a baseline modeling approach to quickly evaluate the predictability of the target disease 

onsets based on the available dataset, and the resulting model could be improved by with active 

learning methods [128]. Since the proposed approach is able to prioritize patients using estimated 

risks from the model, the framework would be able to provide cases that require additional 

review based on expert knowledge. By using the proposed approach, this would allow 
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practitioners to implement a model with better accuracy and less annotation cost for the event of 

interest compared to the current practice on deriving risk prediction models. 

The simple derivation of risk model from the disease of interest could also be utilized to 

characterize both risk factors and biomarkers for the disease. As the framework only requires the 

group of patients and the disease of interest, researchers could derive a separate AOFI model for 

the target disease on different cohorts, then compare how the risk profile varies in order to 

further their understanding of the difference in the prognosis of each cohort. As the framework 

could provide the feature contribution of the model for the prediction, it can be used as a tool for 

biomarker discovery for the disease of interest. This could also serve as a list of candidate 

physiological variables that experts need to evaluate when determining EWSs for the target 

disease. 

After the analysis of the risks from AOFI models, we found prior studies indicating that the 

quality of the current discharge diagnoses coding practice is sub-optimal. Lo Re et al. reported 

that the accuracy of ALF coding was too low after their manual chart review, where the 

predicted positive value on the disease ranged from 5% to 15% [129]. As the prediction results 

from ALF AOFI models in both datasets showed, the patient-level prediction accuracy is 

significantly lower than the performance observed in other AOFs, while risk estimates from the 

model showed a positive correlation with the gold-standard variable, total bilirubin level. 

Therefore, we believe this could indicate that either the quality of ALF discharge diagnoses 

would limit the model’s optimization process, or the performance of the ALF AOFI model was 

significantly underestimated. Therefore, predictions from the AOFI models could be used in the 

current setting by comparing the discharge diagnoses assigned to patients at the time of discharge 

and the patient’s risk estimated by AOFI models. If the institution could implement additional 

verification procedures for cases that do not agree, it would improve the quality of discharge 

diagnoses, which could lend itself to maximizing the reimbursement rate and maintaining the 

quality of discharge diagnoses that could be used for the further research, such as EHR-based 

cohort analysis. With the better quality of discharge diagnoses, practitioners could also re-train 

the model to achieve better accuracy in the prediction tasks.  

Aim 2: The HMM discussed in Chapter 3 was able to show that the screening performance of the 

existing EWS could be improved by considering trajectory information for relevant FTR events. 

When institutions deploy different, but potentially relevant, EWSs for their own surveillance 

purposes, the proposed HMM model would allow them to improve the performance of screening 

for patients at high-risk. Moreover, as the transition matrix and the prior probability would allow 

them to fine-tune models based on expert knowledge, it would generate a more straightforward 

risk estimation for the practitioners. In cases where the predictions from the HMM cannot be 

directly attributed to regulation issues, the predictions from the HMM can be used along with the 

EWS screening criteria to decrease the chance of FTR events. Moreover, predictions with 

improved performance could be used to automate the lab test orders by adding gold-standard 

tests for the disease for which the model predicted a high risk. By doing so, physicians could 

review the test results when it is necessary and decrease the delay between the onset of the 

disease and the confirmation process. 

Aim 3: The quantitative estimates of the potential adverse effect of clinical interventions would 

serve as a tool for researchers focusing on drug safety to provide a candidate list of interventions 

they could evaluate. If the model predicted higher risk increments for the clinical intervention 
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across the population, the causal relationship between the clinical intervention and the disease 

could be further investigated. Moreover, if higher-risk increments were estimated for clinical 

intervention for the specific cohorts, researchers could further investigate what risk factors would 

be involved for the potential side effect of the intervention and derive a clinical guideline for 

intervention administration, if there were any. If the model could achieve the desired accuracy 

for the clinical practice, it could serve as an alerting tool for physicians so that they can either 

avoid potentially harmful clinical intervention in the patient’s status quo or prepare reactive 

measures for the potential side effects. If such interventions should be applied, physicians could 

document the reasoning for the administration so that it can be reviewed when needed.  



85 

 

References 

[1] J. van den Bos, K. Rustagi, T. Gray, M. Halford, E. Ziemkiewicz, and J. Shreve, “The 

$17.1 billion problem: The annual cost of measurable medical errors,” Health Aff., vol. 

30, no. 4, pp. 596–603, 2011. 

[2] M. A. Makary and M. Daniel, “Medical error-the third leading cause of death in the US,” 

BMJ, vol. 353, 2016. 

[3] I. of M. (US) C. on Q. of H. C. in America, L. T. Kohn, J. M. Corrigan, and M. S. 

Donaldson, To Err is Human. 2000. 

[4] A. B. Haynes et al., “A Surgical Safety Checklist to Reduce Morbidity and Mortality in a 

Global Population,” N. Engl. J. Med., vol. 360, no. 5, pp. 491–499, Jan. 2009. 

[5] “Never Events CMS.” 

[6] F. H. Morriss et al., “Effectiveness of a barcode medication administration system in 

reducing preventable adverse drug events in a neonatal intensive care unit: a prospective 

cohort study.,” J. Pediatr., vol. 154, no. 3, pp. 363–8, 368.e1, Mar. 2009. 

[7] “Effect of Barcode-assisted Medication Administration on Emergency Department 

Medication Errors.” 

[8] “Tragic Errors: Usability and Electronic Health Records.” 

[9] S. K. Aberegg, E. F. Haponik, and P. B. Terry, “Omission Bias and Decision Making in 

Pulmonary and Critical Care Medicine,” Chest, vol. 128, no. 3, pp. 1497–1505, Sep. 2005. 

[10] B. S. Dean, E. L. Allan, N. D. Barber, and K. N. Barker, “Comparison of medication 

errors in an American and a British hospital,” Am. J. Heal. Pharm., vol. 52, no. 22, pp. 

2543–2549, Nov. 1995. 

[11] “Hospital and Patient Characteristics Associated with Death after Surgery: A Study of 

Adverse Occurrence and Failure to Rescue on JSTOR.” [Online]. Available: 

https://www.jstor.org/stable/3765780?seq=1#metadata_info_tab_contents. [Accessed: 19-

Sep-2019]. 

[12] J. H. Silber, P. S. Romano, A. K. Rosen, Y. Wang, O. Even-Shoshan, and K. G. Volpp, 

“Failure-to-rescue: comparing definitions to measure quality of care.,” Med. Care, vol. 45, 

no. 10, pp. 918–25, 2007. 

[13] M. Farquhar, “AHRQ Quality Indicators,” in Patient Safety and Quality: An Evidence-

Based Handbook for Nurses, 2008, p. 1403. 

[14] T. Isaac and A. K. Jha, “Are Patient Safety Indicators Related to Widely Used Measures 

of Hospital Quality?,” J. Gen. Intern. Med., vol. 23, no. 9, pp. 1373–1378, Sep. 2008. 

[15] M. E. Warfield, “A Cost-Effectiveness Analysis of Early Intervention Services in 

Massachusetts: Implications for Policy,” Educ. Eval. Policy Anal., vol. 16, no. 1, pp. 87–

99, Mar. 1994. 

[16] V. a Ferraris, M. Bolanos, J. T. Martin, A. Mahan, and S. P. Saha, “Identification of 

Patients With Postoperative Complications Who Are at Risk for Failure to Rescue,” JAMA 

Surg., vol. 149, no. 11, pp. 1103–1108, 2014. 

[17] M. Yamamoto, S. Ishikawa, and K. Makita, “Medication errors in anesthesia: an 8-year 

retrospective analysis at an urban university hospital,” J. Anesth., vol. 22, no. 3, pp. 248–



86 

 

252, Aug. 2008. 

[18] J. Callen, J. McIntosh, and J. Li, “Accuracy of medication documentation in hospital 

discharge summaries: A retrospective analysis of medication transcription errors in 

manual and electronic discharge summaries,” Int. J. Med. Inform., vol. 79, no. 1, pp. 58–

64, Jan. 2010. 

[19] G. Teasdale and B. Jennett, “ASSESSMENT OF COMA AND IMPAIRED 

CONSCIOUSNESS. A Practical Scale,” Lancet, vol. 304, no. 7872, pp. 81–84, 1974. 

[20] J. E. Zimmerman, A. A. Kramer, D. S. McNair, and F. M. Malila, “Acute Physiology and 

Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today’s 

critically ill patients*,” Crit. Care Med., vol. 34, no. 5, pp. 1297–1310, 2006. 

[21] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, “Deep Patient: An Unsupervised 

Representation to Predict the Future of Patients from the Electronic Health Records,” Sci. 

Rep., vol. 6, no. 1, p. 26094, 2016. 

[22] C. A. Bejan, F. Xia, L. Vanderwende, M. M. Wurfel, and M. Yetisgen-Yildiz, 

“Pneumonia identification using statistical feature selection,” J. Am. Med. Informatics 

Assoc., vol. 19, no. 5, pp. 817–823, Sep. 2012. 

[23] K. E. Henry, D. N. Hager, P. J. Pronovost, and S. Saria, “A targeted real-time early 

warning score (TREWScore) for septic shock,” Sci. Transl. Med., vol. 7, no. 299, pp. 

299ra122-299ra122, Aug. 2015. 

[24] H. Suresh, N. Hunt, A. Johnson, L. A. Celi, P. Szolovits, and M. Ghassemi, “CLINICAL 

EVENT PREDICTION AND UNDERSTANDING USING DEEP NETWORKS Clinical 

Intervention Prediction and Understanding using Deep Networks.” 

[25] J. C. Marshall, D. J. Cook, N. V. Christou, G. R. Bernard, C. L. Sprung, and W. J. 

Sibbald, “Multiple organ dysfunction score: A reliable descriptor of a complex clinical 

outcome,” Critical Care Medicine. 1995. 

[26] J. H. Silber, S. V Williams, H. Krakauer, and J. S. Schwartz, “Hospital and patient 

characteristics associated with death after surgery. A study of adverse occurrence and 

failure to rescue.,” Med. Care, vol. 30, no. 7, pp. 615–29, 1992. 

[27] R. Paterson et al., “Prediction of in-hospital mortality and length of stay using an early 

warning scoring system: Clinical audit,” Clin. Med. J. R. Coll. Physicians London, 2006. 

[28] J.-R. LE GALL et al., “A simplified acute physiology score for ICU patients,” Crit. Care 

Med., vol. 12, no. 11, pp. 975–977, Nov. 1984. 

[29] J. L. Vincent et al., “The SOFA (Sepsis-related Organ Failure Assessment) score to 

describe organ dysfunction/failure,” Intensive Care Med., vol. 22, no. 7, pp. 707–710, 

1996. 

[30] F. Gao, T. Melody, D. F. Daniels, S. Giles, and S. Fox, “The impact of compliance with 6-

hour and 24-hour sepsis bundles on hospital mortality in patients with severe sepsis: a 

prospective observational study.,” Crit. Care, 2005. 

[31] A. Kortgen, P. Niederprüm, and M. Bauer, “Implementation of an evidence-based 

‘standard operating procedure’ and outcome in septic shock,” Crit. Care Med., 2006. 

[32] A. M. Sawyer et al., “Implementation of a real-time computerized sepsis alert in 

nonintensive care unit patients,” Crit. Care Med., 2011. 



87 

 

[33] T. Desautels et al., “Prediction of Sepsis in the Intensive Care Unit With Minimal 

Electronic Health Record Data: A Machine Learning Approach.,” JMIR Med. informatics, 

vol. 4, no. 3, p. e28, 2016. 

[34] M. E. Hock Ong et al., “Prediction of cardiac arrest in critically ill patients presenting to 

the emergency department using a machine learning score incorporating heart rate 

variability compared with the modified early warning score,” Crit. Care, 2012. 

[35] M. Singer et al., “The third international consensus definitions for sepsis and septic shock 

(sepsis-3),” JAMA - Journal of the American Medical Association. 2016. 

[36] C. P. Subbe, R. G. Davies, E. Williams, P. Rutherford, and L. Gemmell, “Effect of 

introducing the Modified Early Warning score on clinical outcomes, cardio-pulmonary 

arrests and intensive care utilisation in acute medical admissions,” Anaesthesia, 2003. 

[37] J. Gardner-Thorpe, N. Love, J. Wrightson, S. Walsh, and N. Keeling, “The value of 

Modified Early Warning Score (MEWS) in surgical in-patients: A prospective 

observational study,” Ann. R. Coll. Surg. Engl., 2006. 

[38] D. S. Char, N. H. Shah, and D. Magnus, “Implementing Machine Learning in Health Care 

— Addressing Ethical Challenges,” N. Engl. J. Med., 2018. 

[39] B. Min, R. Grishman, L. Wan, C. Wang, and D. Gondek, “Distant Supervision for 

Relation Extraction with an Incomplete Knowledge Base,” in Proceedings of the 2013 

Conference of the North American Chapter of the Association for Computational 

Linguistics: Human Language Technologies, 2013. 

[40] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for relation extraction 

without labeled data,” in Proceedings of the Joint Conference of the 47th Annual Meeting 

of the ACL and the 4th International Joint Conference on Natural Language Processing of 

the AFNLP: Volume 2 - ACL-IJCNLP ’09, 2009. 

[41] A. Go, R. Bhayani, and L. Huang, “Twitter Sentiment Classification using Distant 

Supervision,” Processing, 2009. 

[42] M. Aczon et al., “Dynamic Mortality Risk Predictions in Pediatric Critical Care Using 

Recurrent Neural Networks,” 2017. 

[43] M. Ghassemi, T. Naumann, T. Brennan, D. a Clifton, and P. Szolovits, “A Multivariate 

Timeseries Modeling Approach to Severity of Illness Assessment and Forecasting in ICU 

with Sparse , Heterogeneous Clinical Data,” Proc. Twenty-Ninth AAAI Conf. Artif. Intell., 

pp. 446–453, 2015. 

[44] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel, “Learning to Diagnose with LSTM 

Recurrent Neural Networks,” Nov. 2015. 

[45] N. Nori, H. Kashima, K. Yamashita, H. Ikai, and Y. Imanaka, “Simultaneous Modeling of 

Multiple Diseases for Mortality Prediction in Acute Hospital Care,” Proc. 21th ACM 

SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD ’15, pp. 855–864, 2015. 

[46] J. Yoon, A. Alaa, S. Hu, and M. Schaar, “ForecastICU: A Prognostic Decision Support 

System for Timely Prediction of Intensive Care Unit Admission,” Proc. 33rd Int. Conf. 

Mach. Learn., 2016. 

[47] J. Wiens and E. S. Shenoy, “Machine Learning for Healthcare: On the Verge of a Major 

Shift in Healthcare Epidemiology,” Clin. Infect. Dis., vol. 66, no. 1, pp. 149–153, Jan. 



88 

 

2018. 

[48] D. W. Bates, S. Saria, L. Ohno-Machado, A. Shah, and G. Escobar, “Big Data In Health 

Care: Using Analytics To Identify And Manage High-Risk And High-Cost Patients,” 

Health Aff., vol. 33, no. 7, pp. 1123–1131, Jul. 2014. 

[49] J. R. Le Gall et al., “Customized probability models for early severe sepsis in adult 

intensive care patients. Intensive Care Unit Scoring Group.,” JAMA, 1995. 

[50] F. A. Masoudi et al., “Gender, age, and heart failure with preserved left ventricular 

systolic function,” J. Am. Coll. Cardiol., 2003. 

[51] I. Mehmood, N. Ejaz, M. Sajjad, and S. W. Baik, “Prioritization of brain MRI volumes 

using medical image perception model and tumor region segmentation,” Comput. Biol. 

Med., 2013. 

[52] R. S. Olson, W. La Cava, Z. Mustahsan, A. Varik, and J. H. Moore, “Data-driven advice 

for applying machine learning to bioinformatics problems.” 

[53] “Allstate Claims Severity | Kaggle.” [Online]. Available: 

https://www.kaggle.com/c/allstate-claims-severity. [Accessed: 25-Jan-2019]. 

[54] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE Trans. 

Pattern Anal. Mach. Intell., 1998. 

[55] R. E. Schapire, “The Boosting Approach to Machine Learning: An Overview,” Springer, 

New York, NY, 2003, pp. 149–171. 

[56] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?,” in Proceedings of the ACL-02 

conference on Empirical methods in natural language processing  - EMNLP ’02, 2002. 

[57] D. H. Lee and E. Horvitz, “Predicting Mortality of Intensive Care Patients via Learning 

about Hazard,” Proc. 31th Conf. Artif. Intell. (AAAI 2017), pp. 4953–4954, 2017. 

[58] J. McGaughey, F. Alderdice, R. Fowler,  a Kapila,  a Mayhew, and M. Moutray, 

“Outreach and Early Warning Systems (EWS) for the prevention of intensive care 

admission and death of critically ill adult patients on general hospital wards.,” Cochrane 

Database Syst. Rev., no. 3, p. CD005529, 2007. 

[59] C. for D. C. and P. (Cdc), “ICD-9-CM official guidelines for coding and reporting,” 

Atlanta, GA, 2011. 

[60] E. Shantsila and G. Y. H. Lip, “Thrombotic Complications in Heart Failure,” Circulation, 

vol. 130, no. 5, pp. 387–389, Jul. 2014. 

[61] S. M. Hardman and M. R. Cowie, “Fortnightly review: anticoagulation in heart disease.,” 

BMJ, vol. 318, no. 7178, pp. 238–44, Jan. 1999. 

[62] “Heparin Sodium, for intravenous use[package insert], Fresenius Kabi, LakeZurich, IL,” 

2017. 

[63] X. Meng et al., “[seminal] MLlib: Machine Learning in Apache Spark,” J. Mach. Learn. 

Res., vol. 17, pp. 1–7, 2016. 

[64] J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves,” 

in Proceedings of the 23rd international conference on Machine learning  - ICML ’06, 

2006. 

[65] A. E. W. Johnson et al., “MIMIC-III, a freely accessible critical care database,” Sci. Data, 



89 

 

vol. 3, 2016. 

[66] C. W. Yancy et al., “2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA 

Guideline for the Management of Heart Failure,” J. Am. Coll. Cardiol., vol. 70, no. 6, pp. 

776–803, 2017. 

[67] J. Devaquet et al., “Effects of inspiratory pause on CO2 elimination and arterial PCO2 in 

acute lung injury.,” J. Appl. Physiol., 2008. 

[68] J. a Kellum et al., “KDIGO Clinical Practice Guideline for Acute Kidney Injury,” Kidney 

Int. Suppl., 2012. 

[69] “EASL Clinical Practical Guidelines on the management of acute (fulminant) liver 

failure,” J. Hepatol., 2017. 

[70] R. C. Bone et al., “Definitions for sepsis and organ failure and guidelines for the use of 

innovative therapies in sepsis,” in Chest, 1992. 

[71] G. Garcia-Tsao, C. R. Parikh, and A. Viola, “Acute kidney injury in cirrhosis,” 

Hepatology, vol. 48, no. 6, pp. 2064–2077, Dec. 2008. 

[72] S. K. Asrani, D. A. Simonetto, and P. S. Kamath, “Acute-on-Chronic Liver Failure.,” 

Clin. Gastroenterol. Hepatol., vol. 13, no. 12, pp. 2128–39, Nov. 2015. 

[73] L. Christou, G. Pappas, and M. E. Falagas, “Bacterial Infection-Related Morbidity and 

Mortality in Cirrhosis,” Am. J. Gastroenterol., vol. 102, no. 7, pp. 1510–1517, Jul. 2007. 

[74] M. E. Grams and H. Rabb, “The distant organ effects of acute kidney injury,” Kidney Int., 

2012. 

[75] G. M. Chertow, E. Burdick, M. Honour, J. V. Bonventre, and D. W. Bates, “Acute Kidney 

Injury, Mortality, Length of Stay, and Costs in Hospitalized Patients,” J Am Soc Nephrol, 

2005. 

[76] M. Karcz, B. Bankey, D. Schwaiberger, B. Lachmann, and P. J. Papadakos, “Acute 

respiratory failure complicating advanced liver disease,” Semin. Respir. Crit. Care Med., 

2012. 

[77] W. A. Knaus, J. E. Zimmerman, D. P. Wagner, E. A. Draper, and D. E. Lawrence, 

“APACHE-acute physiology and chronic health evaluation: a physiologically based 

classification system.,” Crit. Care Med., vol. 9, no. 8, pp. 591–7, Aug. 1981. 

[78] J. R. Le Gall et al., “A simplified acute physiology score for ICU patients.,” Crit. Care 

Med., 1984. 

[79] J.-L. Vincent et al., “The SOFA (Sepsis-related Organ Failure Assessment) score to 

describe organ dysfunction/failure,” Intensive Care Med., 2002. 

[80] M. Muhlbaier, A. Topalis, and R. Polikar, “Ensemble Confidence Estimates Posterior 

Probability,” 2005. 

[81] L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin, “Decision templates for multiple 

classifier fusion: an experimental comparison,” Pattern Recognit., 2001. 

[82] H. Jung et al., “Development of a Novel Markov Chain Model for the Prediction of Head 

and Neck Squamous Cell Carcinoma Dissemination.,” AMIA ... Annu. Symp. proceedings. 

AMIA Symp., vol. 2016, pp. 1832–1839, 2016. 

[83] H. Uğuz, A. Arslan, and İ. Türkoğlu, “A biomedical system based on hidden Markov 



90 

 

model for diagnosis of the heart valve diseases,” Pattern Recognit. Lett., vol. 28, no. 4, pp. 

395–404, Mar. 2007. 

[84] C. H. Jackson, L. D. Sharples, S. G. Thompson, S. W. Duffy, and E. Couto, “Multistate 

Markov models for disease progression with classification error,” J. R. Stat. Soc. Ser. D 

Stat., 2003. 

[85] R. V Andreao, B. Dorizzi, J. Boudy, and J. Mota, “ST-Segment Analysis Using Hidden 

Markov Model Beat Segmentation: Application to Ischemia Detection,” 2004. 

[86] R. Sukkar, E. Katz, Y. Zhang, D. Raunig, and B. T. Wyman, “Disease progression 

modeling using Hidden Markov Models,” in Proceedings of the Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2012. 

[87] J. D. Freguson, “Variable duration models for speech,” in Proc. Symposium on the 

Application of Hidden Markov Models to Text and Speech, pp. 143–179. 

[88] G. D. Forney, “The viterbi algorithm,” Proc. IEEE, vol. 61, no. 3, pp. 268–278, 1973. 

[89] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning TensorFlow: 

A system for large-scale machine learning,” in 12th USENIX Symposium on Operating 

Systems Design and Implementation (OSDI ’16), 2016, pp. 265–284. 

[90] F. Husain-Syed et al., “Cardio-pulmonary-renal interactions: A multidisciplinary 

approach,” Journal of the American College of Cardiology. 2015. 

[91] J. F. Dasta, T. P. McLaughlin, S. H. Mody, and C. T. Piech, “Daily cost of an intensive 

care unit day: the contribution of mechanical ventilation.,” Crit. Care Med., 2005. 

[92] E. Bilevicius, D. Dragosavac, S. Dragosavac, S. Araújo, A. L. E. Falcão, and R. G. G. 

Terzi, “Multiple organ failure in septic patients,” Brazilian J. Infect. Dis., vol. 5, no. 3, pp. 

103–110, Jun. 2001. 

[93] E. C. Davies, C. F. Green, S. Taylor, P. R. Williamson, and D. R. Mottram, “Adverse 

Drug Reactions in Hospital In-Patients: A Prospective Analysis of 3695 Patient-

Episodes,” PLoS One, vol. 4, no. 2, p. 4439, 2009. 

[94] C. D. Furberg, “Understanding drug safety and how to maximize it for patients.,” JAAPA, 

vol. 24, no. 11, p. 16, Nov. 2011. 

[95] S. J.W., “A pharmaceutical manufacturer’s perspective on reporting adverse drug 

experiences,” Am. J. Hosp. Pharm., 1990. 

[96] G. R. Venning, “Identification of adverse reactions to new drugs. II (continued): How 

were 18 important adverse reactions discovered and with what delays?,” Br. Med. J. (Clin. 

Res. Ed)., vol. 286, no. 6362, pp. 365–8, Jan. 1983. 

[97] I. J. Onakpoya, C. J. Heneghan, and J. K. Aronson, “Post-marketing withdrawal of 462 

medicinal products because of adverse drug reactions: a systematic review of the world 

literature,” 2016. 

[98] E. H. Shortliffe and B. G. Buchanan, “A model of inexact reasoning in medicine,” Math. 

Biosci., 1975. 

[99] J. Fox and R. Thomson, “Clinical decision support systems: a discussion of quality, safety 

and legal liability issues.,” Proceedings. AMIA Symp., 2002. 

[100] D. Bates, “Clinical Decision Support and the Law - The big Picture,” Louis UJ Heal., 

2011. 



91 

 

[101] M. Greenberg and M. S. Ridgely, “Clinical Decision Support and Malpractice Risk,” 

JAMA, vol. 306, no. 1, pp. 90–91, Jul. 2011. 

[102] S. Leekha, C. L. Terrell, and R. S. Edson, “General principles of antimicrobial therapy,” 

in Mayo Clinic Proceedings, 2011. 

[103] L. A. Mandell et al., “Infectious Diseases Society of America/American Thoracic Society 

Consensus Guidelines on the Management of Community-Acquired Pneumonia in 

Adults,” Clin. Infect. Dis., 2007. 

[104] S. L. Goldstein, “Automated/integrated real-time clinical decision support in acute kidney 

injury.,” Curr. Opin. Crit. Care, vol. 21, no. 6, pp. 485–9, Dec. 2015. 

[105] “Solutions For Patient Safety | Children’s Hospitals Working Together to Eliminate 

Harm.” [Online]. Available: https://www.solutionsforpatientsafety.org/. [Accessed: 02-

Jul-2019]. 

[106] T. P. Gibson, “Renal Disease and Drug Metabolism: An Overview,” Am. J. Kidney Dis., 

vol. 8, no. 1, pp. 7–17, Jul. 1986. 

[107] G. S. Markowitz and M. A. Perazella, “Drug-induced renal failure: A focus on 

tubulointerstitial disease,” Clinica Chimica Acta. 2005. 

[108] K. Chapin and P. Murray, “Principles of stains and media,” in Manual of Clinical 

Microbiology, 2007, pp. 258–261. 

[109] J. Splawa-Neyman, D. M. Dabrowska, and T. P. Speed, “On the Application of 

Probability Theory to Agricultural Experiments. Essay on Principles. Section 9,” Stat. 

Sci., 1990. 

[110] P. Schulam and S. Saria, “Reliable Decision Support using Counterfactual Models,” Mar. 

2017. 

[111] R. Ambrosino, B. G. Buchanan, G. F. Cooper, and M. J. Fine, “The use of 

misclassification costs to learn rule-based decision support models for cost-effective 

hospital admission strategies,” Ninet. Annu. Symp. Comput. Appl. Med. Care. Towar. 

Cost-Effective Clin. Comput. Proc., 1995. 

[112] P. M. Tulkens, “Nephrotoxicity of aminoglycoside antibiotics,” Toxicol. Lett., 1989. 

[113] M. J. Rybak and B. J. McGrath, “Combination Antimicrobial Therapy for Bacterial 

Infections,” Drugs, vol. 52, no. 3, pp. 390–405, Sep. 1996. 

[114] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks 

arXiv:1311.2901v3 [cs.CV] 28 Nov 2013,” in Proceedings of European conference on 

computer vision–ECCV 2014, 2014. 

[115] M. Joffe et al., “Variability of creatinine measurements in clinical laboratories: results 

from the CRIC study.,” Am. J. Nephrol., vol. 31, no. 5, pp. 426–34, 2010. 

[116] L. Awdishu and R. L. Mehta, “The 6R’s of drug induced nephrotoxicity,” BMC 

Nephrology. 2017. 

[117] E. Minejima, J. Choi, P. Beringer, M. Lou, E. Tse, and A. Wong-Beringer, “Applying 

New Diagnostic Criteria for Acute Kidney Injury To Facilitate Early Identification of 

Nephrotoxicity in Vancomycin-Treated Patients,” Antimicrob. Agents Chemother., 2011. 

[118] S. Rosen and I. E. Stillman, “Acute Tubular Necrosis Is a Syndrome of Physiologic and 

Pathologic Dissociation,” 2008. 



92 

 

[119] S. J. Berman, E. W. Johnson, C. Nakatsu, M. Alkan, R. Chen, and J. LeDuc, “Burden of 

Infection in Patients with End-Stage Renal Disease Requiring Long-Term Dialysis,” Clin. 

Infect. Dis., 2004. 

[120] M. Finland, “Changing ecology of bacterial infections as related to antibacterial therapy,” 

J. Infect. Dis., 1970. 

[121] D. G. Maki, “Nosocomial bacteremia. An epidemiologic overview,” Am. J. Med., 1981. 

[122] A. Vaswani et al., “Attention is all you need,” in Advances in Neural Information 

Processing Systems, 2017. 

[123] J. Lutz, K. Jurk, and H. Schinzel, “Direct oral anticoagulants in patients with chronic 

kidney disease: Patient selection and special considerations,” International Journal of 

Nephrology and Renovascular Disease. 2017. 

[124] G. J. Glas et al., “Nebulized heparin for patients under mechanical ventilation: an 

individual patient data meta-analysis,” Annals of Intensive Care. 2016. 

[125] A. Roch, C. Guervilly, and L. Papazian, “Fluid management in acute lung injury and 

ards,” Ann. Intensive Care, vol. 1, no. 1, p. 16, Dec. 2011. 

[126] N. Stollman and D. C. Metz, “Pathophysiology and prophylaxis of stress ulcer in intensive 

care unit patients,” Journal of Critical Care. 2005. 

[127] J. L. Vincent et al., “The Prevalence of Nosocomial Infection in Intensive Care Units in 

Europe: Results of the European Prevalence of Infection in Intensive Care (EPIC) Study,” 

JAMA J. Am. Med. Assoc., 1995. 

[128] B. Settles, “Active Learning Literature Survey,” Mach. Learn., 2010. 

[129] V. Lo Re et al., “Validity of diagnostic codes and laboratory tests of liver dysfunction to 

identify acute liver failure events,” Pharmacoepidemiol. Drug Saf., 2015. 

 


