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Abstract 
 

The Problem of Time: Addressing challenges in spatio-temporal data integration 
 

Nicholas Robison 
 

Chair of the Supervisory Committee: 
Neil F. Abernethy 

Department of Biomedical Informatics and Medical Education 
 
Across scientific disciplines, an ever-growing proportion of data can be effectively described in 
spatial terms. As researchers have become comfortable with techniques for dealing with spatial 
data, the next progression is to not only model the data itself, but also the complexities of the 
dynamic environment it represents. This has led to the rise of spatio-temporal modeling and the 
development of robust statistical methods for effectively modeling and understanding 
interactions between complex and dynamic systems. Unfortunately, many of these techniques are 
an extension to existing spatial analysis methods and struggle to account for the data complexity 
introduced by the added temporal dimension; this has limited many researchers to developing 
statistical and visual models that assume either a static state of the world, or one modeled by a 
set of specific temporal snapshots. 
 
This challenge is especially acute in the world of public health where researchers attempting to 
visualize historical, spatial data, often find themselves forced to ignore shifting geographic 
features because both the tooling and the existing data sources are insufficient. Consider, as an 
example, a model of vaccine coverage for the administrative regions of Sudan over the past 30 
years. In wake of civil war, Sudan was partitioned into two countries, with South Sudan 
emerging as an independent nation in 2011. This has an immediate impact on both the visual 
accuracy as well as the quantitative usefulness of any data generated from aggregate spatial 
statistics. Or, consider epidemiological case reports that are issued from local medical facilities, 
how does one account for the fact that their locations may change, or that new facilities may 
spring up or close down as time progresses. These are real-world problems that existing GIS 
platforms struggle to account for. 
 
While there have been prior attempts to develop data models and applications for managing 
spatio-temporal data, the growing depth and complexity of scientific research has left room for 
improved systems which can take advantage of the highly interconnected datasets and spatial 
objects, which are common in this type of research. To that end, we have developed the Trestle 
data model and application, which leverage graph-based techniques for efficiently storing and 
querying complex spatio-temporal data. This system simple interface to allow users to perform 
query operations over time-varying spatial data and return logically valid information based on 
specific spatial and temporal constraints. This system is applicable to a number of GIS related 
projects, specifically those attempting to visualize historical public health indicators such as 
vaccination rates, or develop complex spatio-temporal models, such as malaria risk maps. 
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Chapter 1. INTRODUCTION  

In the beginning was the map. From the earliest points in recorded history, even before devising 
systems of language and numbering, humans have created methods of understanding the world 
around them and of placing themselves within the larger framework of existence [3]. As artifacts, 
maps tell us two major things about the world around us. How do we get where we mean to go, 
and what is our place in the world? 
 
The fields of geography and Geographic Information Science (GIScience) have always been in 
tension with these two competing questions. The first question is about understanding the spatial 
dimensions of the world around us, and the second is about extracting some meaning and insight 
about ourselves and our relationships with others in the world around us. The first question is 
focused on data and its collection, integration, manipulation and presentation. This is the domain 
of technical geography and has crossed into other fields such as mathematics, computer science 
and ontology. Here, geographies are lines, points, and pixels, where geographic relationships are 
expressed in terms of computational topologies and categories [4]. The second is focused on people 
and narratives; not merely concerned with the data itself but with taking a higher-level view 
towards understanding the value and lessons from information to help further our understandings 
of social dynamics and environmental pressures. Here, geographies take on a more expansive, and 
at times, elusive, meaning, and serve as a lens by which human activity and interaction can be 
understood [5]. 
 
These two narratives, though at times standing in tension with one another [6], have contributed 
towards expanding the capacity and necessity of GIScience and related fields. As each new 
technical advance brings with it more available information and enables a deeper level of 
theoretical analysis; so too does the state of the theoretical geography advance further and ask 
questions that look beyond what is currently possible. In recent years, GIScience has turned its 
attention towards more fully integrating temporal information as a first-class citizen in information 
systems and data models in order to enable deeper insight into how communities, populations and 
environments change in the light of different environmental and social pressures. This desire is 
acutely manifest in the fields of public health and global epidemiology, where the emphasis on 
long term studies and complex interactions of health effects drives both theory and technology to 
the limits. But this new lens for viewing the world has brought with it a host of new challenges 
related to our ability to organize and understand time-varying spatial data. A challenge which 
existing GIScience applications struggle to account for. 
 
The dawn of the computer age has served to fundamentally alter the field of technical geography 
and dramatically expand our ability to map and model the world. Beginning with the Canada 
Geographic Information System developed by a team lead by Roger Tomlinson the 1960s [7] 
cartography has largely shifted into the digital realm and brought with it paradigm altering ways 
of creating spatial products [8], [9]. In general, three major developments have occurred which 
have contributed to this shift. The first is the dramatic increase in both the types and quantity of 
available data. Traditionally, map generation has been the domain of governments and specialist 
organizations. Large observation teams have been assigned to manually survey and catalogue an 
area and then bring their findings to be analyzed and integrated at a later date. Limited in their 
production and level of detail, users have been forced to work with the available sets of maps 
created based on the experiences and observations of the survey teams. 
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Whereas available information was once made up of data observed second-hand by the map 
creators, new spatial datasets have been developed which gather information not merely from the 
one-time observers, but from the participants and residents in the areas themselves. Large projects 
such as OpenStreetMap1 are built on the input and contributions of volunteer curators and are 
designed to be dynamic representations of the current state of the world, as observed and 
experienced by its participants. 
 
Beyond improvements in map generation, new Location Aware Technologies (LAT) such as GPS 
transmitters and localizable radio signals have resulted in new types of available data that can be 
actively gathered from individuals in a near real-time manner [10]. Indeed, an irreducible facet of 
traditional cartography is that it is built on data that has been observed and collected prior to being 
loaded into digital systems; these new LATs allow for new methods of data collection that is 
accessible to users as soon as the information is generated [11]. This fundamentally represents a 
new way of observing and modeling the physical world and has helped drive towards new methods 
of environmental research termed Geographic Information Observatories [12]. 
 
The second major development is the increased level of availability of Geographic Information 
Systems (GIS). Massive advances in computing power and data storage has resulted in access to 
spatial data that no longer requires specialized computing hardware or expertise in software 
development in order to integrate a spatial lens into traditional scientific research. Likewise, open-
source geospatial systems such as QGIS2 and GRASS3 have reduced the effective cost of entry to 
near zero, while efforts such as R-Spatial4 and PySAL5 have moved spatial analysis out of specialty 
applications directly into the scientific computing environments used by domain researchers.  
 
The last major development is in data sharing and exchange. Developed in the age of the internet 
and ubiquitous data connectivity, technology projects such as MapServer6 and commercial 
ventures like Mapbox7 have developed easy and cost-effective methods of disseminating map 
products and datasets. This has helped accelerate by groups near the center of the spatial research 
community, the data curators. Organizations such as the Florida Spatial Data Library have 
introduced new data curation and sharing processes which has both enabled easier access to their 
datasets as well as facilitated faster updating and maintenance of their existing datasets in order to 
account for information changes [13]. 
 
These developments have put a tremendous amount of strain on traditional GIS applications and 
infrastructure. The volume, type, and diversity of data available for spatial researchers is, at best, 
an uneasy fit for traditional spatial applications. This is due, in part, to the fact that all of these new 
types of data and interactions are inherently temporal, whereas most GIS applications have been 
designed in light of the static map paradigm in which a single view of the world, at a single point 
in time, is augmented with additional layers of information. This has limited many researchers to 
developing statistical and visual models that assume either a static state of the world, or one 

                                                
1 https://www.openstreetmap.org/ 
2 https://qgis.org/en/site/ 
3 https://grass.osgeo.org 
4 http://r-spatial.org 
5 http://pysal.org/ 
6 http://mapserver.org 
7 https://www.mapbox.com 
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modeled by a set of specific temporal snapshots [14]. This intersection of space and time represents 
the cutting edge of technical GIScience research and will be the focus of this dissertation going 
forward.  

1.1 SPACE AND TIME REPRESENTATIONS IN GISCIENCE 

After the initial effort of conceptualizing the visible world, comes the desire and necessity to ensure 
this information remains current and useful. With our deepening understanding of the 
connectedness of the world and our ever-increasing access to information, traditional methods of 
drawing and distributing maps soon become insufficient. This is due either to the limited amount 
of information that can be disseminated in a single image (which will be discussed further in 
Chapter 3), or due to the speed at which these maps can be updated to reflect to the state of the 
world around them. One dramatic example of this later challenge is recorded by the historian Marc 
Bloch during his experience in the French army at the outbreak of World War II. The glacial pace 
of information exchange between the various military units, combined with the rapid onslaught of 
the German army, which was far in excess of the speed of movement from previous conflicts, 
rendered their maps, spatial awareness and methods of information dissemination nearly obsolete 
and so contributed to the rapid collapse of the Grand Army [15]. 
 
An additional argument for the importance of integrating time and space, is that social geography 
has largely focused on uncovering the dynamics and influences of the human environment, which 
inherently requires understanding the immediate context of the point of observation, an inherently 
temporal problem. As is often the case, theoretical geography has been a driving force behind 
technical change [12]; in this case the integration of space and time within the field of GIScience 
finds itself rooted in the theory of time-geography. Initially described by Hägerstrand in his 
seminal essay The Two Vistas, our deepening understanding of the universe and its prevailing laws 
has resulted in a picture of the universe framed as a serious of detached observations and loosely 
coupled connections between physical processes, but with little to no grounded framework for 
understanding the dynamic nature of the Universe [16]. 
 
This creates a challenge when trying to understand the deeper dynamics that drive processes and 
interactions and can dramatically cripple the usefulness of spatial analysis when applied to areas 
of policymaking or evaluation [17]. Thus, time geography aims to develop a general foundation 
for theory building in a spatial context through recognizing the crucial importance of time-based 
analysis [18], [19]. From this theoretical outlook originates domain-specific distillations; each 
scientific domain attempts to apply this geographic framework to its own field of inquiry, 
reckoning with the ideas that place and nearness matter and that the impacts of these concepts 
changes over time with dramatic impacts on the question being answered [18]. 
 
Despite how glaring the gap in philosophical methods appears, and regardless of the depth of desire 
to bridge the space between observations; until recently, it has remained beyond the reach of the 
general research community. Now however, time geography, and its applied descendant spatio-
temporal analysis, have come to the forefront of the geographic research agenda and work is 
actively being done to develop both the theories and implementation models for effectively 
working with large volumes of time varying spatial data, in a number of scientific domains. 
 
While spatio-temporal analysis is a general problem with implications across multiple scientific 
and policy domains, for the remainder of this dissertation we will focus on one domain in particular 
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which represents a number of opportunities for designing, testing and implementing time 
geographic techniques, Public Health. 

1.2 THE RELEVANCE OF GISCIENCE IN PUBLIC HEALTH 

From its earliest days, the field of public health has been acutely aware of its spatial dimensions. 
In 1905, the US Supreme Court decided what is considered to be the foundational legal precedent 
for public health law. Jacobson vs Massachusetts [20] involved a personal objection to recently 
passed law enacting compulsory vaccination against Small Pox. While the US has a strong 
tradition of prohibiting intrusion into the private domain of the individual8 both the law and the 
resulting judicial holding enshrined the idea that living in proximity to other individuals carries 
with it both the risk of infection and a duty to prevent harm that can be enacted by the state, even 
at the expense of other personal privacy protects [21]. In a phrase space trumps self. But this 
consideration of environment is not merely limited to legal proceedings. The field of epidemiology 
contains its own founding narrative where John Snow (considered the father of modern 
epidemiology) traced the epicenter of the 1854 cholera epidemic in the city of London to a 
community water pump on Broad Street. The evidence for this discovery (which resulted in the 
infamous removal of the handle of the pump [22]) was based on in-home visits of every cholera 
death in South London and supported the assertion that not only was cholera water born, but that 
the spatial layout of the deaths showed the use of a common water source [23], [24].  
 

 
Figure 1: John Snow’s map of the London Cholera Epidemic [Public Domain Image]. 

 

                                                
8 Restatement (Second) of Torts § 652D (1977) cited in [191]. 
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More broadly, public health has carried an understanding of the significance of place and 
environment, with the idea that an individual’s external environment strongly influences their 
susceptibility to disease [25]. Encoding this additional context is challenging, but of the utmost 
importance for public health. As opposed to other medical disciplines, the unique nature of public 
health is that its broad view of health and society includes a concern for the factors and events that 
occurred in an individual’s past, due to the long-tail impacts of environmental and sociological 
factors [26]. It is then no surprise that a large amount of attention has been paid to improving the 
use of, and access to, robust spatial datasets that give researchers and policy makers deep insight 
into the context and behaviors of the populations under their stewardship [27]. 
 
But that is not the only concern. An additional uniqueness of Public Health is that it is largely a 
function of governments and administrative entities. Given this lens, it becomes difficult to divorce 
the scientific side of public health from the policy and administrative component. Indeed, it is these 
two pieces together that have led to a focus on evidence-based policy making [28], [29]. Given 
this policy bent, public health science has often carried an interest in monitoring and evaluating 
the effectiveness of health policies and implementations over time. These policies and 
interventions are often focused around administrative districts that are subject to delineating forces 
outside of the health domain [30]. Understanding the shifts in these human delineations is critical 
if we are to accurately evaluate and understand the policy implications and outcomes of various 
health interventions.  
 
Consider, as an example, a model of vaccine coverage for the administrative regions of Sudan over 
the past 30 years, a research frame common in public health analysis. In attempting to develop this 
model a researcher is confronted with the issue that in the midst of violence civil war, Sudan is 
partitioned into two new countries. The northern part retains the name Sudan, while the southern 
part becomes South Sudan. This leads to the question as to how to map and aggregate data from 
this region, which has a corollary impact on both the visual accuracy (is a user supposed to trust 
the validity of a model that shows incorrect geography?) as well as the quantitative usefulness of 
any data generated from aggregate spatial statistics. 
 
Additionally, consider epidemiological case reports that are issued from local medical facilities, 
how does one account for the fact that their locations may change, new facilities may spring up or 
close down, or that populations may dramatically shift as time progresses. These are common 
research problems that cut to the core of the issue at hand. Robust policy evaluation and health 
research requires multiple years’ worth of information. Within that time frame, human institutions 
and organizations can undergo tremendous amounts of change which may dramatically affect the 
environmental and policy context of the individuals. In order to gain actionable insights, 
researchers must find ways to understand and account for this temporal variation. 

1.3 DISSERTATION GOALS 

This project aims to improve upon this area of study by developing a unified system for storing, 
integrating, and querying complex geospatial data, specifically focused on international 
administrative boundaries. The goal of this system is to develop a data model and management 
application which will allow users to perform a specific set of query operations over a historically 
integrated set of global administrative boundaries and return logically valid data based on specific 
spatial and temporal constraints. This system will be applicable to a number of GIS applications, 
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specifically applications attempting to visualize historical public health indicators such as 
vaccination rates, or develop complex spatio-temporal models, such as malaria risk maps [31]. 

1.4 OUTLINE AND CONTRIBUTIONS 

This dissertation will approach the outlined problem in three major phases. First, a we review an 
evaluation of existing spatio-temporal data modeling efforts in this field. Next, we describe the 
design and implementation of the Trestle data storage and query application which serves as a 
reference implementation for the proposed data model. Finally, we perform series of evaluations 
to demonstrate both the usability of the underlying data model, as well as the ability to design 
domain specific applications on top of the generic data model. These three phases serve to fulfill 
the research aims of this dissertation: 
 

• Aim 1: Design and implement a unified method for automatically building and 
managing spatial objects from complex spatio-temporal data. 

• Aim 2: Develop a graph-based approach for integrating spatial objects from 
historical records using a global dataset. 

• Aim 3:  Demonstrate using the query interface for solving a common challenge of 
generating custom research geographies for public health research. 
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The outlines of the individual chapters are given here (excluding Chapter 1, which serves as the 
overall introduction): 
 
Chapter 2 provides an introduction into some specific challenges related to spatio-temporal 
research within the field of global health, specifically, issues related to the spatial and temporal 
context of the geographic area being studied. We also introduce a set of desiderata for any proposed 
spatio-temporal data model or GIS application. 
 
Chapter 3 introduces existing spatio-temporal data models and provides a technical evaluation 
framework for determining both the strengths of the existing methods, as well as potential areas 
for improvement. In addition, each data model is evaluated using the framework outlined in 
Chapter 2. 
 
Chapter 4 details Trestle, the graph-based spatio-temporal data model and management application 
at the core of this dissertation project. This chapter details the spatio-temporal ontology and 
semantic reasoner approach that was chosen in order to address some of the limitations of existing 
data models. In addition, we evaluate the proposed data model using the framework outlined in 
Chapter 3. Finally, we describe a prototype data management application which enables usage of 
the data model. This chapter fulfills Aim 1. 
 
Chapter 5 begins the evaluation component of the dissertation by focusing on the first of two 
evaluation processes. The first is to validate the ability of the data model and management 
application to effectively represent relationships between spatial objects with a focus on their 
change over time. This will be accomplished through the design and implementation of a prototype 
algorithm to automatically identify spatial changes in a global administrative unit database. A 
challenging issue in public health research. This chapter fulfills Aim 2. 
 
Chapter 6 concludes the evaluation phase of the dissertation by testing the ability of the data model 
to effectively represent the internal state of time-varying spatial objects as required in order to 
address common challenges in public health research. This is achieved by describing several 
common algorithms for generating custom research geographies, which require valid data at the 
point in time that the geographies are generated. This chapter describes how these types of 
algorithms can be effectively implemented within the data model, as well as detailing algorithm 
improvements that are enabled by access to the types of data contained in the spatial data model. 
This chapter fulfills Aim 3. 
 
Chapter 7 provides the dissertation conclusion and describes a summary of the results and 
contributions, as well as potential next steps for the research work. 
 
Overall, this project has several scientific contributions: 

• A spatio-temporal data model designed to leverage graph data layout and storage systems 
to represent complex temporal changes in objects in a unified framework. 

• A data management and query application which abstracts the complexities of underlying 
temporal logic to present a unified method of data interaction for the end user. This 
application is designed to support real-world research projects within existing data 
workflows. 

• A graph-based algorithm for analyzing spatial and temporal interactions between 
administrative districts. 
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• A temporally integrated dataset of a subset of county level districts in sub-Saharan Africa 
• Description of potential methods for improving existing algorithms designed to aid 

researchers in developing custom geographies for specific research outcomes. 

1.5 AUDIENCE 

The primary audience for this dissertation are designers and implementers of geographic 
information systems looking to more fully integrate a temporal component either into existing 
spatial data management applications or new systems designed from the ground up to support time 
as a first-class citizen. In addition, the use cases and final aim deliverables are applicable to global 
health researchers, specifically those involved in longitudinal studies of public health interventions 
or large-scale spatial epidemiology. 
 



 20 

Chapter 2. TEMPORAL CHALLENGES IN GIS 

In the previous chapter, we outlined broad currents pertaining to the integration of time within 
spatial and health research. In this chapter, we will take a deeper look at existing challenges facing 
public health researchers in their day to day work. Specifically, we will look through the lens of 
public health research in both domestic and global contexts.  
 
Section 2.1 will discuss a major methodological challenge related to integrating time in spatial 
analysis, namely the uncertain geographic context problem, which traditional GIS applications 
struggle to effectively account for. Section 2.2 will introduce an extension to this problem, which 
we have termed the uncertain temporal context problem. This will be illustrated through two major 
motivating use cases, epidemiological disease surveillance, and population movement patterns in 
natural disasters. Section 2.3 will conclude the chapter by summarizing these challenges into a set 
of concrete desiderata for new GIS applications aiming to improve upon the state of the art, which 
will form the foundation for the remainder of the work in this dissertation. 
 
While the core of this dissertation is focused on global epidemiology and its related challenges, 
this chapter has a significant focus on the types of data common in domestic (United States) and 
behavioral public health. The reason for this is that the amount of data available in a domestic 
setting is both broad (large amounts of data available for numerous indicators) and deep (available 
at multiple spatial granularities, down to city block and below). This enables us to illustrate 
methodology challenges that are both common in domestic public health, as well as emerging 
within the global space. There is nothing here that is unique to domestic public health but the types 
of studies being performed may not always be possible in a global context, due to a lack of 
necessary data. As more and more information is available on a global scale the issues described 
here will become more apparent in non-domestic contexts. 

2.1 UNCERTAIN GEOGRAPHIC CONTEXT 

Advances in spatial analysis within public health research have further understanding of the causal 
factors contributing to various health conditions [27]. Beyond simply detailing observations and 
extrapolating trends, researchers are interested in understanding what contributes to various health 
states and outcomes, and how these contributions differ across populations. 
 
In 2012, Kwan was the first to detail a subtle, but profound, methodological challenge related to 
achieving these research goals and labeled it The Uncertain Geographic Context Problem 
(UGCoP) [32]. The question is simple, what defines an individual’s environment? But the answer 
is remarkably difficult. A 2011 systematic review of environmental studies of cardio-metabolic 
risk factors found that nearly 90% of them defined environment as exclusively the residential 
neighborhood of the individual [33], that is, where their home address was. But while researchers 
have developed fairly robust theoretical support for using neighborhoods as the focal point of 
health research [34], other work has suggested that delineating by neighborhoods or other 
administrative districts (such as zip codes or census blocks) is not the ideal method for determining 
exposure risks [35]–[37]9. 
 

                                                
9 This challenge identifying appropriate geographic delineations for research purposes will be discussed further in 
Chapter 6. 
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One reason for this is that individuals exhibit a high degree of spatial freedom; they tend to frequent 
not just their homes and but also their schools, work environments, coffee shops, church and parks. 
While some of these locations may be within the home neighborhood, others may be a significant 
distance away. A 2008 study of movement patterns in adolescents found that over 20% of their 
time was spent more than 1km away from home [38]. Likewise, Basta, Richmond, and Wiebe 
found that the majority of study participants defined their neighborhood as being more expansive 
than what would normally be delineated using the census tract of their primary residence. 
Correspondingly individuals spent nearly 92% of their time outside those traditional boundaries 
[39]. But while researchers have been able to determine the limits of existing methodologies, 
proposing alternatives has proven to be more difficult and requires significantly different 
approaches and data requirements than previous approaches. 
 
Within this same vein, researchers have developed new methods for measuring an individual’s 
environment exposure  by using their actual movement patterns to construct an exposure map [33], 
[40]. In short, an individual’s environment is defined as where they are, for a specific duration of 
time; environment has thus become an inherently fluid concept and requires researchers to account 
for not only a single individual, but any other individuals and entities that they may have come in 
contact with during the duration of the study. In light of this, the concept of environment shifts 
from a point-exposure problem to one of network analysis, in which an individual is represented 
as a node in a continually evolving relational graph of interactions and influences that changes 
over time.  
 
While network analysis has shown tremendous promise in fields such as epidemiology [41]–[43], 
when applied to other health domains it requires both new conceptual models [44] as well as new 
methods for integrating different types of data into GIS applications [45]. These new methods 
require applications which have the ability, at each time interval, to answer the questions; what 
exposures exist at these locations? And, what other individuals might be in contact with me? In 
addition, these new methods are affected by traditional statistical challenges, such as the 
modifiable areal unit problem (which will be covered in Section 0), and limited data resolution. 
These challenges will be discussed in more detail later on but, at this point, suffice it to say that all 
of these issues make time series analysis an un-easy fit for existing GIS applications which are not 
only limited in their ability to manage large amounts of temporal data, but also in modeling 
changes in an individual’s state over time. 

2.2 UNCERTAIN TEMPORAL CONTEXT 

While UGCoP includes a temporal component when considering the effects of exposure and 
location, what is missing is the temporal variation of other entities within the window of analysis. 
That is, not only where in the world an individual finds themselves, but also what state the world 
is in when they find it. In this section, we will look at two research efforts which acutely illustrate 
both the challenge itself and various efforts to mitigate its effects. 

2.2.1 Disease Surveillance 

While Section 2.1 focused on the necessity of developing a detailed understanding of the specific 
environment of a single population, there are many situations in which such an analysis is not 
possible. For environments in which researchers have limited access to fine grained location 
observations or survey data, they are often forced to resort to high level groups and aggregations; 
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in the global health context, it is common to utilize administrative districts as the unit of analysis. 
One reason for this, is that the previously mentioned lack of data may prohibit analysis at any finer 
resolution. When attempting to study long-term trends in public health indicators, researchers are 
often limited to national surveys undertaken at multi-year intervals, which have a minimum level 
of spatial resolution. As examples, for their 2009 study of improvements in bed net distribution in 
Africa, Noor, et. al used province and state level districts, which was the lowest level enabled by 
the sampling methods of the survey instruments being utilized [46]. Likewise, a 2011 study by van 
Eijk, et. al, regarding changes in malaria protection in pregnant women, utilized the same level of 
administrative delineation for the majority of the study, except for three countries (Nigeria, 
Tanzania, and Madagascar) in which they were able to use county level district [47]. Two other 
studies reviewed made direct mention of preferring the lowest-level (most granular) data available, 
but largely settled for higher level aggregations (such as at the state level) due to the dearth of sub-
national sources [48], [49]. One challenge with this approach, is that it runs headlong into a 
statistical complication known as the Change of support problem (CoSP).  
 

2.2.1.1 The Change of Support Problem 

The CoSP is a general statistical problem related to the gathering and interpretation of multiple 
data sources, which may have been collected, and then analyzed, at different spatial or temporal 
resolutions [50]. This describes the phenomenon that when the spatial or temporal frame (scope) 
of a given research project increases (e.g. to cover a larger geographic space or a longer span of 
time) the support associated with each data value decreases. This term support refers to the size or 
volume associated with each data value, in relation to the research frame as a whole [51]. For 
example, consider an air quality monitoring station that records data at hourly intervals. Each value 
may have a high degree of support as representing the true air quality for that point in space and 
time, and perhaps for the immediately surrounding area; but when considering both the larger 
geographic area (such as a city or county) and broader temporal scope (such a monthly or annual 
values) the level of support that each value represents the true value of the air quality diminishes 
as each value effectively describes less and less of the total spatial and temporal frame. Within 
spatial research, this issue manifests itself in three major ways: when combining data with differing 
spatial and temporal resolutions, when collecting data in one spatial format (e.g. points, lines, 
images) and analyzing it in another format, and finally when aggregating data from one level of 
resolution into another. 
 
The first way in which the CoSP manifests itself is when multiple datasets, collected a different 
spatial and temporal scales, are combined together to produce a final result. This is extremely 
common in public health which is often concerned with complex interactions between biological 
and environmental factors. An excellent example discussed further in Section 2.2.1.2, comes from 
the field of epidemiology specifically in attempting to develop maps of malaria risk through sub-
Saharan Africa. In order to do so, multiple climate, wildlife, and topographic datasets are combined 
together to produce the final output. One challenge with this approach is that since the data is 
gathered at different spatial and temporal resolutions, each dataset provides a differing level of 
support for its data values. This means that the datasets cannot be accurately combined without 
some mechanism for accounting for these different data scales and levels of support [50]. 
 
The second way in which the CoSP comes into effect is when data is collected in one spatial format 
(e.g. as points, areas, or images) and then analyzed in a different format. In the air quality example, 
given above, each recorded value describes that specific point in space and time; however, 
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researchers often desire to (or are required to) perform analysis over a geographic area. For 
example, a researcher attempting to determine a correlation between area quality and health 
outcomes may attempt to do so using data collected at the city neighborhood level which may 
encompass one or more air quality measurement stations (or none at all). Given that these two 
datasets encompass different spatial and temporal scales they cannot be directly combined together 
without making a decision as to how to compensate for the differing levels of support. This issue 
is particularly acute in public health research due to the fact that disease is specific to an individual, 
but environment varies over a continuum [50]; meaning that the CoSP will be a factor in nearly all 
geospatial public health research. Table 1 gives a list of common geospatial research goals which 
require mixing data collection and analysis formats. 
 

Spatial format of data collection Spatial format of data analysis Examples 
Point Point Point kriging; prediction of under sampled 

variables 
Area Point Ecological inference; quadrat counts 
Point Line Contouring 
Point Area Use of areal centroids; spatial smoothing; 

block kriging 
Area Area The MAUP; areal interpretation; 

incompatible/misaligned zones. 
Point Surface Trend surface analysis; environmental 

monitoring; exposure assessment 
Area Surface Remote sensing; multiresolution images; 

image analysis 

Table 1: Examples geospatial research requiring use of different spatial data formats. 
 
This table lists examples of Change of Support Problems (CoSPs) encountered when analyzing spatial data. The 
first column corresponds to the spatial format of the data values being collected, while the second column 
shows the spatial format of the data analysis, which may be different from collection formation. The third 
column gives examples of geospatial research which necessitates mixing collection and analysis formats. 
(Reproduced from [50]). 

 
The final way in which the CoSP occur is when data that is collected in the same spatial format is 
aggregated, potentially with other data sources, to produce a new dataset which may cover a larger 
spatial or temporal frame, but at a lower level of granularity. This is known as the Modifiable Areal 
Unit Problem (MAUP) and relates to the fact that the sensitivity of analytical results is directly 
related to the spatial scale and layout in which data the data is collected and analyzed [52] 10. While 
this issue is additionally present in other statistical fields [53], from a geographic perspective, it 
manifests in two primary ways [54]: 
 

1. Scale effect –variation in numerical results resulting strictly from the number of areal units 
used in the analysis of a given area. 

2. Zonation effect –changes in numerical results resulting strictly from the manner in which a 
larger number of smaller areal units are grouped into a smaller number of larger areal units. 

 
These two effects are illustrated in Figure 2 and will be described in the remainder of this 
subsection. The zonation effect refers to the fact that when multiple geographic units are 
aggregated together, variability in the data tends to be masked. This results from that idea that for 
many phenomena there is a natural scale at which the effects are observed and increasing or 
                                                
10 The converse of this effect, where is often referred to as the ecological fallacy and is common when data collected 
about a group of individuals (or a geographic area) is used to infer patterns in individuals (or a smaller geographic 
area) [50]. 
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decreasing that scale obscures the effect either by sampling at too granular a level, and thus not 
observing the phenomena; or aggregating these observations into larger units and obscuring its 
true effects. This is a common challenge in public health research in that health effects of locality 
(such as proximity to quality produce, interactions of air pollution and neighborhood activity level) 
may only be observable at a neighborhood level and when aggregated to a city or state level, the 
interactions may no longer be apparent. This challenge will become more and more critical as 
researchers gain the ability to generate data at the neighborhood and individual level but are 
required to report and analysis data at the level of the city or the county. 
 
The second effect, the scale effect, manifests when utilizing various methods for aggregating data 
into larger units and integrating data collected at different scales which can result in changing 
conclusions based on different combinations of aggregations [52], [54], [55]. While this issue is 
germane to multiple geographic research domains, it is particularly acute when the methods of 
data collection and aggregation are unrelated to each other; such as is the case with census data 
which may be gathered via a number of different sampling methods (such as vital record reports 
or door-to-door sampling) but then aggregated based on political delineations such a census tracts 
or administrative districts [56], [57]. This is often experienced when performing longitudinal 
studies of public health indicators, or when data is not available at a fined-grained level, requiring 
the researcher to choose existing aggregations with may not be suitable for the task at hand. The 
solution to this problem is manual integration and normalization by the researcher and is 
challenging to address in an effective manner. This discrepancy between collection and analysis 
will be discussed further in Chapter 6. 
 

 
Figure 2: The effects of zonation on analysis results (Reproduced from [55]). 
This figure illustrates the scale effect (figures a-c) where based on the number of regions being aggregated the 
variance (𝛿") of the result changes, whereas the mean value (�̅�) remains the same. The zonation effect is illustrated 
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However, some general patterns have arisen. 
In univariate statistics, when the MAUP is 
present the mean does not change and the
variance declines with increasing aggregation 
(Gehlke and Biehl, 1934; Openshaw, 1984; 
Fotheringham and Wong, 1991). Essentially, 
there is a loss of information associated with 
a smoothing effect that occurs upon aggre-
gation. This phenomenon has been recognized 
by most researchers (Gehlke and Biehl, 1934; 
Openshaw 1984; Fotheringham and Wong, 
1991; Jelinski and Wu, 1996). Zoning effects 
have less predictable results for the mean 
and variance. Jelinski and Wu (1996) demon-
strate the contrived affects of both scale and 
zonation in Figures 1 (a-c). In these fi gures the 
mean value does not change with aggregation, 
but the variance declines. In Figures 1 (d-f ) 
the units have been aggregated into zones 
with varying orientations of the cardinal direc-
tions. For d and e there is no change in the 
mean, but the variance changes substantially. 
By comparing d-f one can see that even when 
the number of zones is held constant the mean 
and the variance are affected (Jelinski and 
Wu, 1996).

In the natural sciences, research has focused 
on the issue of scale and not aggregation. 
One of the major contributions in the field 
of natural sciences was to acknowledge the 
existence of natural scales at which ecological 
processes and physical characteristics occur 
within the landscape. This was revealed by 
a series of studies oriented toward the choice 
of an appropriate sampling unit size for an-
alysing ecological phenomena, particularly to 
detect spatial patterns in plant communities 
(Kershaw, 1957; Mead, 1974; O’Neill et al., 
1986). Research suggested that because the 
scale of the study determines the range of 
patterns and processes that can be detected, 
an appropriate level of resolution for study of 
these processes should be identifi ed. Because 
ecological and physical processes operate at 
different spatial scales, the need for appropriate 
scaling laws has been emphasized in current 
research in order to relate information across 
a wide range of scales.

A

Wiens (1989) and Levin (1993) both argue 
that a variety of statistical and mathematical 
tools, such as correlation and extrapolation, can 
be used for scaling. However, they concluded 
that these techniques are appropriate only 
when applied for short-term or small-scale pre-
dictions or, in other words, within the relevant 
domain of scale for the phenomenon under 
investigation. Extension across scale thresholds 
may be hazardous due to the instability of the 
dynamics of the transition zone between two 
domains of scale.

While studies relating to the issue of scale 
continue to be prolifi c in biogeography and 
other sub-disciplines within physical geography, 
there has been little concern about the issue of 
aggregation. With the increased use of satellite 
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Figures 1 (a-c) In these fi gures the 
mean value does not change with 
aggregation, but the variance declines.  
In Figures 1 (d-f ) the units have been 
aggregated into zones with varying 
orientations of the cardinal directions. 
For d and e there is no change in 
the mean, but the variance changes 
substantially. By comparing d-f one 
can see that even when the number 
of zones is held constant the mean 
and the variance are affected 
(Jelinski and Wu, 1996)
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in figures d-f, where different orientations are used to aggregate the regions resulting in both the mean and the 
variance changing for each orientation. 

 
 
One common method for managing the MAUP issues, is to utilize a surveillance system focused 
around stable sentinel sites located within specific geographic regions. These sites can then 
undergo periodic sampling in order to develop a longitudinal view of the population. This is the 
approach taken by the DHS program11 from the US Agency for International Development. In 
brief, the DHS program routinely executes a series of surveys at various sentinel sites across the 
globe and compiles the collected results, which are then made available on their public website. 
These surveillance sites provide sets of historical observations that can easily be normalized in the 
face of any changes in population dynamics or administrative redistricting, since the survey is 
focused on a single population catchment area and can normalize for any changes in population 
size or composition. The DHS program is a common way to gain detailed survey information about 
populations and provides reliable sentinel sites for evaluating different public health interventions. 
Its data has been used by several research projects [58]–[60]; however, one challenge with this 
approach is that it may suffer from limited generalizability [60]. The environments of the 
individual sentinel sites may be so unique, even within a relatively constrained geographic scope 
such as an administrative province, that any resulting data may not be applicable outside that 
context. 
 
Given these challenges, many research projects continue be focused on analyzing data sampled 
from administrative districts, and not only for data quality reasons. As was briefly mentioned in 
Chapter 1, administrative districts serve a number of functions, not just for the purposes of census 
or population delineation, but also as centers of governance, policy, and resource allocation. 
Political systems must make decisions on the basis of some type of delineation and this delineation 
is most commonly some type of district resembling a county or state. These districts can then serve 
as natural experiments for different policy implementations or evaluations. 
  
But this introduces a new set of challenges, what happens when districts are changed during the 
course of research study? This is the central, motivating use case for the Trestle system, which was 
born out of the Scalable Data Integration for Disease Surveillance (SDIDS) project [61]. A joint 
effort between the University of Washington and McGill University, SDIDS was a project which 
aimed to integrate disparate health related data sources for decision making around malaria 
modeling. One major challenge for the SDIDS project was the fact that over time, administrative 
districts were changed, renamed, created, dissolved and otherwise modified. This presented a 
unique challenge when trying to integrate historical data from different sources. This issue is 
clearly illustrated in Figure 3. Here, we have two views of the Demographic Republic of Congo 
(DRC) as delineated by the UN Global Administrative Units Layers dataset12 [62], one for the year 
2009 and one for the year 2014. In 2009 there were 48 administrative districts at the 2nd 
administrative level13, while in 2014 that number had grown to 89. How should a researcher 
compensate for these changes? How many of these changes represent simple boundary movements, 
how many from county dividing into multiple new ones, and how many changes were more 
complex, with one county being split apart into pieces of other counties? And perhaps most 

                                                
11 https://dhsprogram.com 
12 Details on this specific dataset are given in Chapter 5. 
13 This level corresponds to the county or parish unit in the United States. 
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pressingly, how to make temporally valid inferences about health indicator changes for a spatial 
area? 
 

 
Figure 3: DRC districts in 1990 vs 2014. 
This illustrates the amount of district reorganization that can occur within a single country over a period of time. 

 

2.2.1.2 Rasterization in disease surveillance 

 
One approach for addressing this issue is rasterization. In this process, a polygon representing the 
affected area of a given indicator (e.g. population count, vaccinate rates, income distribution, etc.) 
is divided into a number of gridded cells and each cell is assigned a portion of the total indicator 
value. As an example, imagine an administrative district as perfect square of 3 km x 3 km, with a 
population count of 90,000 people and that the desired output is a rasterized population map with 
a resolution of 1 km x 1 km. The simplest approach is to divide the district into 9 squares and 
distribute the total population count evenly amongst each square. With this approach, we can 
generate a rasterized population image in which each cell represents 10,000 people. This 
methodology has been used by projects such as the Gridded Population of the World [63] and 
variations of the same approach, using different value distribution methods, has been used by other 
efforts such as the Global Burden of Disease [64], LandScan [65], WorldPop [66], and the Malaria 
Atlas Project [67]. 
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Figure 4: Rasterized view of malaria risk for Africa in 2015. Generated from data provided 

by [31]. 
 
This approach has the benefit of being able to directly compare indicator changes over time and 
normalize temporal changes amongst geographic features such as rivers and census tracts. Through 
various automated and semi-automated techniques, the accuracy of these approaches can be very 
high [68]. While the resulting spatial products can be of tremendous utility, they suffer from two 
primary drawbacks which are of particular interest when viewed through the lens of a temporal 
GIS.  
 
The first drawback to rasterization is that generating these products is a complex and time-
consuming process that requires the integration of a number of distinct raster and vector data 
sources which must be manually collected and integrated. An initial review of 11 papers focused 
on malaria risk mapping revealed the use of 28 distinct data sources (details given in Table 2). 
These data sources can be broadly categorized into 6 major groups: climate (rainfall, cloud cover, 
mean temperature, etc.), malaria prevalence, map features (roads, rivers, cities, etc.), population, 
geography (land cover, elevation, etc.), and wildlife (biodiversity estimates). While each of the 
papers cited a different combination of sources, they were all drawn from these major categories. 
Within these categories, each dataset features a unique combination of temporal and spatial 
resolution. These differing resolutions often require the research to make a judgement call as to 
how to aggregate the various data sources into a common spatial and temporal extant and to apply 
some additional type of adjustment to compensate for the differences in information resolution. 
This decision may vary greatly between researchers and projects. 
 
For example, consider a malaria model attempting to utilize the datasets listed in Table 2; the 
USGS Digital Elevation Model (DEM) [69] provides global elevation coverage at a spatial 
resolution of 1km2, but with a varying temporal validity based on the orbital patterns of the 
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collecting satellites (which can be on the order of weeks or months). In contrast, the Famine Early 
Warning System [70] monitors daily rainfall numbers, but on a coarser 8km2 scale. Integrating 
these data sources requires deciding on a common temporal and spatial resolution to perform the 
analysis (for example, aggregating the DEM information into an 8-km grid, and the Famine data 
into monthly units). 
 
While the relative ease of access to these and other datasets has led to a huge growth in GIS 
modeling for disease risk, it has placed a tremendous burden on the individual researcher to cope 
with the varying temporal/spatial scales, and each model, while perhaps sharing some common 
datasets, is largely an individual data curation effort and even something as simple as updating the 
model for a new time period requires significant background work to source new datasets that 
cover the new temporal interval. This approach has been shown to be quite effective but precludes 
any automated risk mapping or even easy cross-validation of other modeling approaches.  
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Data source14 Type Temporal 
Resolution 

Spatial 
Resolution 

Used by: 

Topographic and Climate Data Base for Africa[71] Climate Monthly 0.05-degree grid [72]–[75] 
Normalized Difference Vegetation Index[76] Climate Monthly 0.25 * 0.25 km2 [72], [74], [75], 

[77]–[81] 
MARA/ARMA Prevalence Annual Varies [72], [78] 
MODIS Landcover[82] Climate - 1 * 1 km2 [72], [75], [77] 
African Data Sampler[83] Features - - [72], [74], [75], 

[78] 
African Population Database[84] Population - 3.7 * 4.8 km2 [72], [73] 
Land Surface Temperature Climate 8 days 1 * 1 km2 [77]–[81] 
Famine Early Warning System Network, Daily 
Rainfall[70] 

Climate Daily 8 * 8 km2 [77], [79]–[81] 

Digital Elevation Model[69] Geography Static 1 * 1 km2 [77]–[81] 
Landscan[85] Population Static 0.5 * 0.5 km2 [77], [86] 

HealthMapper Geographic Features[87] Features  - [77], [79]–[81] 

Malaria Season Length[72] Composite Model - - [74], [75] 

Global Resource Information Database[88] Features - Varies [78] 

Cold Cloud Duration[89] Climate 10 day 8 * 8 km2 [78] 

Africover[90] Geography Static 1 * 1 km2 [78] 

Malaria Atlas Project[31] Prevalence   [86] 

Walter Reed Biosystematic Unit[91] Wildlife Static - [86] 

Global Biodiversity Information Facility[92] Wildlife Static - [86] 

Table 2: Summary of datasets utilized in Malaria Risk Assessment studies. 
This table lists the various datasets used by the malaria studies reviewed for this dissertation. Each dataset is 
listed along with the type of the dataset as determined by our classification. Likewise, the spatial and temporal 
resolution is given for each dataset, as well as the reference to the study it is utilized in. 

  
The second drawback to rasterization is that building raster products still requires accounting for 
the temporal variation of the spatial entities. Consider, as an example, an attempt to utilize a 
population estimate for determining vaccine coverage rates for a given district. This estimate may 
have been collected 5 years ago and simply noted as collected in District A, how is a researcher to 
know if what we call District A today, is identical to what was called District A 5 years ago. The 
previous example of the DRC (Figure 3) shows that even 5 years can be a long period of time in 
the world of political redistricting. So, while the end product of rasterization may help researchers 
compensative for the tremendous amounts of temporal variability in spatial datasets, building these 
products requires addressing the problem head on. 
 

2.2.2 Population Movements During Disasters 

In 2010 a massive earthquake devastated the country of Haiti and left nearly 1.8 million people 
homeless [93]. In the immediate aftermath of the disaster, aid agencies struggled to account for 
the tremendous upheaval of the population and identify new clusters of individuals which 
congregated around functioning resource centers, as the situation on the ground evolved [94]. After 

                                                
14 Several of the papers utilized their own survey instruments to determine the prevalence information which is not 
cited in this table. Only references to external surveys or datasets are listed here. 
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the initial response, a number of white papers and research projects sprang up which proposed 
using cellphone call records to model population movements and extract actionable insights for 
relief workers [95], [96]. One project, undertaken in 2011 as a collaborative effort between the 
Karolinska Institute, Columbia University and Digicel Haiti collected cell phone records for 2.8 
million individuals from 6 weeks leading up to the earthquake to 5 months after [93]. Their goal 
was to determine if pre-disaster movement patterns could be used to predict population movements 
in the immediate aftermath of a large-scale natural disaster. For their study, each call record (of 
which nearly 280 million were recorded) was linked to the geographic location of the cell tower 
servicing the connection. From there, the researchers compared the predictability of an individual’s 
movement pattern before and after the earthquake. They found that movement patterns remained 
fairly predictable and were highly correlated with patterns observed before the disaster [97]. Thus 
they concluded that call record data could have tremendous utility in improving the efficiency of 
aid agencies responding to a natural disaster. 
 
While the usefulness of this analysis should not be underestimated, the limitations of the 
underlying dataset present some issues with attempting to generalize the findings. In the study, the 
researchers used a map of cell towers, supplied by the telecom provider, in order to geolocate the 
call records. This immediately raises the questions, were all towers functioning in the immediate 
aftermath of the earthquake? Did any reach the point of network saturation and offload calls to 
another tower? Where any disabled due to physical damage or loss of power? These are critical 
to answer, especially when using a coarse grain spatial unit such as cell tower coverage area, which 
the study authors state can range from less than 100 meters in urban areas, to greater than 10 
kilometers in more rural regions [97]. In order to robustly fulfill the stated research goal, what is 
needed is an accurate dataset which describes the state of the cell network at each time interval, 
without this, researchers are left to speculate as to the true state of the world, beyond what their 
single, static snapshot described. 

2.2.2.1 Defining the Uncertain Temporal Context 

Both of the use cases described in this section illustrate a methodological problem that goes beyond 
what has been described in the UGCoP literature; which is the problem of modeling the state of 
multiple spatial entities, which may undergo significant amounts of change over the course of a 
research study. We refer to this problem as the uncertain temporal context problem (UTCoP); 
which describes the uncertainty that develops when utilizing snapshot datasets (such as a fixed 
map of cellphone towers, or a single list of administrative districts) to perform spatio-temporal 
analysis. Like the contextual challenges mentioned in the preceding section, UTCoP has the 
potential for dramatically influencing any spatial analysis that occurs over an appreciable length 
of time. As will be further discussed in Chapter 5, the GAUL dataset recorded that nearly 71% of 
county level districts in Nigeria were re-organized at some point between 1990 and 2014. 
 
In the future, this challenge will only grow more acute. The explosion of available data, such a 
geo-located social media posts [98], [99] and the relative ease of analysis means that researchers 
are continually finding new ways of integrating disparate datasets in order to provide a more 
comprehensive view of the world and its inhabitants. Unless these datasets are built and curated 
with a specific view towards historical accuracy, such as carefully versioning any changes or 
creating mappings between old and new identifiers, researchers will have to bear the full burden 
of fully accounting for these changes and normalizing any discrepancies or intrinsic biases. 
 



 31 

Because of these limitations, researchers are often forced to either ignore these temporal shifts 
[100], or manually reconcile the data to the best of their abilities. This manual reconciliation not 
only raises the specter of errors introduced in the process, but also presents a challenge around 
reproducibility. If each dataset is manually constructed, corrected, and integrated, that process 
becomes a part of the scientific record and any omissions to the record threatens to reduce the 
ability to validate results using other methodologies, or update the study using data sources that 
may only be available at a later date. 
 
One final point on this issue relates not merely to changes in the spatial context that have occurred 
in the past, but also changes that occur due to our ability to continually generate more and more 
accurate spatial maps [101]. Tremendous advances in spatial measurement and imaging 
technologies means that any retrospective study (or attempt at reproducing prior work) has to 
account for the fact that new spatial datasets may differ considerably from previous products 
merely due to improvements in technology. Thus, the question of determining the appropriate 
spatial and temporal context is not limited to merely asking what was the state of the world on 
June 9th, 2011? but also what was known about June 9th, 2011 on May 16th, 2017?  

2.3 DESIDERATA OF A TEMPORAL GIS 

Given these challenges and research agendas, we can begin to construct a series of desiderata for 
any potential temporal GIS (TGIS) that would be of use to existing spatial research projects. Based 
on the issues outlined above and building on work by Richardson and Goodchild [11], [102] we 
have identified 4 major requirements for any proposed work within this area. 

2.3.1 Enable spatio-temporal object modeling 

While traditional GIS applications have provided robust support for managing data in the form of 
records, or observations, the added temporal dimension presents an added interaction challenge in 
that users often desire to interact with a single identified object at a given temporal state. An 
example would be the object King County, Washington, while it is true that King County has 
undergone a significant amount of spatial change since its original formation, a user may simply 
be interested in interacting not with the individual boundaries, but with the object itself, asking 
questions such as what is the difference in total area of King County in 1997 vs 2003? Or at a more 
complex level, what was the population density of King County in 2000? This last question 
requires gathering at least two different properties of the given spatial entity and performing some 
computation with them. While this is possible in a traditional GIS application there is a mismatch 
between the user interaction (on the level of asking questions about the given state of an object) 
and the data storage model which is largely focused on data records. This problem is magnified as 
the complexity of the queries increases and as more and more spatial objects are included. As any 
potential TGIS would treat time as a first-class citizen, the ability to gather individual records into 
unified temporal objects is of great importance. 

2.3.2 Support spatial and temporal relationships between spatio-temporal objects 

After constructing spatial objects, it is often desirable to express relationships between these 
various entities.  These relationships can take a number of different forms. Spatial, such as 
contained in, touches, overlaps with, etc. Temporal, begins, comes after, occurs during. Or 
semantic, such as member of, related to, etc. While spatial and temporal relationships are simple 
to express from a computational perspective, the power of object modeling comes from being able 
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to express higher-level associations and connections between objects. An example might be a map 
of hospital catchment areas, which may include multiple administrative districts, or portions 
thereof. Aggregating these individual objects into larger set relationships is difficult to manage in 
traditional applications but a potential TGIS should support modeling these types of relationships 
between spatial objects. 

2.3.3 Annotate events that occur in an object’s lifetime 

In addition to relationships, objects can also experience events during and around their lifetimes. 
These events may be as simple as created or destroyed, which mark the beginning or end points 
of an object, or they might be more complex and denote domain specific knowledge attached to 
the individual objects. As an example, consider an object which contains a series of GPS points 
marking the track of a survey team performing door-to-door questionnaires. Not every home will 
be able to participate in the survey process and so the teams might annotate various GPS points 
with survey_administered events. These events can then be used to not only rapidly identify which 
homes were given surveys, but also by other research teams which might use these events to 
determine the optimal time for administering surveys in the future, in order to maximize 
participation. 

2.3.4 Support multiple time states 

While most temporal queries are concerned with time in the real world, some are also interested 
in viewing the world from the perspective of the database at a given point in time.  A TGIS should 
support reasoning over both real-world time, and database time. Modern applications need to 
account for the fact that information gathering is a continually evolving process. Improvements in 
measurement, error correction, and access mean that data gathered five years ago, or even last 
week, exists today in a different information context. This has critical implications for issues such 
as a scientific reproducibility and retrospective analysis. 

2.4 CONCLUSION 

In this chapter, we have looked at some common challenges limiting the use of robust spatio-
temporal analysis within the field of public health. We have outlined some mechanisms for dealing 
with these challenges, and the various ways in which traditional GIS applications are either 
insufficient or struggle to adequately support these new techniques. In the final section, we 
outlined some desiderata for a TGIS which both can address these existing challenges, as well as 
support new models of research. In the next chapter, we will look at prior theoretical models for 
managing spatio-temporal data, as well as evaluate some existing approaches which provide the 
building blocks for the work in this dissertation. 
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Chapter 3. PRIOR DATA MODELING APPROACHES 

The previous chapters have outlined some existing challenges in spatio-temporal analysis as well 
as a set of desiderata for a future temporal GIS design that aims to address these issues. This 
chapter will shift directions and attempt to describe some previous data models and 
implementations that have been developed. In addition to providing historical context, these prior 
efforts have laid the foundation for the approach taken in this dissertation, which will be outlined 
further in the following chapters. 
 
In this chapter, Section 3.1 will describe some basic concepts and terminology that will be used 
for the remainder of dissertation. Section 3.2 will outline four major approaches to modeling 
spatio-temporal data, Time slicing, ST-Composite, ST-Object and 3-Domain, and evaluate each 
of them against a set of criteria derived from the desiderata in Section 2.3. Section 3.3 look at 
alternative database systems that extend the traditional relational model, which will be used further 
in the Trestle system. Finally, Section 3.4 concludes with a brief description of software 
implementations that build upon the modelling approaches described here. 

3.1 TERMINOLOGY 

An important component of any interdisciplinary project is effective communication of ideas and 
concepts between the various stakeholder groups. This challenge becomes especially acute when 
dealing with concepts which have divergent meanings between disciplines. In order to be clear and 
consistent with the terminology used within this dissertation, this section will clarify some of these 
terms and detail their usage and meaning going forward. 
 

3.1.1 Objects and Records 

Within the field of Computer Science, an object refers to a value in memory which maintains some 
knowledge about its own internal state and responds to operations from other objects and functions 
[103]. Objects form the basis of Object-Oriented Programming Languages (such Java15) and 
nearly every piece of information or data value is modeled as some type of object. Thus, the use 
of the term object from a computer science perspective refers not only to named entities which are 
interacted with by users, but also internal program representations of various datum which may be 
invisible to the end user. 
 
This is markedly different from the way the term object is used in other fields which may utilize a 
looser definition, such as the one proposed by May Yuan in 1996. Here, an object is a semantic 
concept which describes a collection of properties that hold true for a particular entity [104]. The 
key distinction being that objects refer to named entities (such as King County, or Harborview 
Hospital) which have some spatial component in the physical world. 
 

                                                
15 https://java.com/en/ 
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Individuals interact with objects on a continual basis. The coffee table holding my personal laptop 
and phone are all identifiers that describe discreet objects that contain intrinsic properties about 
themselves; such as my phone has a screen, and temporal properties, such as my laptop is currently 
in this coffee shop. Individuals interact with, and reason about, the world around them at the object 
level. Questions such as where is my phone? or is my laptop currently charging? ask questions 
about the spatial and temporal states of an object at a given point in time. While this is an intuitive 
concept, the challenge comes in mapping between these objects and the values of their associated 
properties, for a given temporal instant. 
 
Perhaps the most common method for representing large amounts of structured information is the 
tabular layout found in relational databases and structured text files, in which data is oriented as 
rows and columns. As an example, consider a selection of data for the American Community Survey 
(ACS) dataset (which will be detailed further in Chapter 6). Table 3 lays out various properties for 
King County, Washington in a traditional data layout. Each row represents a year in which data is 
available, and each column the value of that data property for the given year. In this dissertation, 
we refer to each column as a data property and each row as a record. Each cell (the value of a 
given data property for a specific record) is referred to as a fact. A fact is simply the value 
associated with a data property for a given time point (or range). In Table 3 the individual cells 
for the total population estimate, male population estimate, and female population estimate 
columns are the facts for the given county with the temporal range being derived from the year 
column. The year column itself is not modeled as a fact itself, it merely provides the temporal 
context to distinguish between the different value states of the data properties. Objects are 
collections of facts associated for a given entity (such as a county, cell phone subscriber, survey 
team, etc.) that hold true for a specific temporal period (e.g. the location of a cell phone subscriber 
last Wednesday, or the population count of a given county two years ago). These objects are also 
assigned unique identifiers (which will be discussed in 3.1.2) which are generally derived from a 
column in the tabular data. In this example, the id column provides the unique identifier for the 
individual objects, with only one row of value needing to be used as the identifier. 
 

ID Geography Total 
population 
estimate 

Male 
population 
estimate 

Female 
population 
estimate 

Year 

0500000US53033 King County, WA 2117125 1057544 1059581 2015 

0500000US53033  King County, WA 2079967  1039852  1040115  2014 

0500000US53033  King County, WA 2044449  1020603  1023846  2013 

Table 3: 2013-2015 ACS data for King County, Washington. 
This table shows a selection of demographic indicators for three years of ACS data. The ID column corresponds 
to the ACS identifier for King County. The Year column represents the ACS year for which that row applies. The 
Year field is not found in the original dataset but is commonly generated by users when combining multiple years’ 
worth of data into a single file. 

 
This still leaves some ambiguity in distinguishing between objects as collections of facts (such as 
named spatial entities used within Geography), and objects as described separately in computer 
science in Object-Oriented Programming. Since our definition of facts inherently includes a 
temporal component, we can refer to these types of objects as temporal-objects. For this 
dissertation, we assume that all temporal-objects also contain a spatial component and will thus 
refer to these types of objects (objects representing a collection of facts for a given entity) as spatio-
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temporal objects (ST-Objects). Any use of the term object (with the spatial or temporal modifier) 
will refer to the computer science definition and understanding of objects. 

3.1.2 Object Identity 

Given that we now have a consistent definition for what constitutes an ST-Object, the next question 
becomes how to construct these entities and consistently refer them as they change over time. 
While there are numerous methods for developing a system of referring to named entities [105], 
in the end, the appropriate solution is largely dependent on the domain use of that object. For 
example, the boundaries of an administrative district might change due to political restructuring, 
or they might change due to improvements in measurement technology or manual refinement of 
previously overlapping boundaries with other districts. The question then becomes, if a district 
boundary is changed due to measurement errors, does it still describe the same object? What if a 
district is divided into two districts, with one district retaining the original name (such as when 
King County was split into Kitsap County and King County in 1857)? Solving this issue is beyond 
the scope of a temporal GIS, in that it requires domain knowledge to be able to make decisions on 
how to delineate ST-Objects; instead, a TGIS should endeavor to provide the necessary tools for 
collecting facts into ST-Objects based on the criteria required by the domain application. 
 

3.2 PREVIOUS MODELING APPROACHES 

At the core of any data management system, is the underlying data model which describes the 
organization of information and its relationship to other members in the database. At its simplest 
level, a data model provides 3 major functions [106]: 

1. A set of object types which define a set of basic building blocks. 
2. A set of operations which provide a means for manipulating objects types in a database 
3. A set of integrity rules which constrain the valid states of the database and ensure they 

conform to the data model. 
 
This section will focus on discussing several prominent spatio-temporal modeling approaches that 
provide background efforts for the implementation developed for this dissertation. While there are 
numerous approaches to choose from (see [107], [108] for a more expansive discussion), the four 
listed here are unique due to both their technical innovation as well as their impact on the field as 
a whole: 

Approach 1: Time slicing 
Approach 2: Space-Time Composite 
Approach 3: Space-Time Object 
Approach 4: 3-Domain 

 
The importance of the core data model cannot be overstressed; a poorly designed modeling 
approach represents a view of the world which can severely hamper the ability of the user to 
effectively achieve their end goals [109]. An example of this, which will be revisited later in the 
chapter, is the ability for a given data model to describe the temporal bounds of an ST-Object. 
Meaning, that the data model can represent spatial entities which may have existed for a period of 
time in which no information about the entity is known to the database. Without the ability to 
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represent the temporal boundaries of ST-Objects, the data model may not be able to correctly 
answer queries which rely on the before/after state of the given entity. 
 
In order to effectively evaluate the utility of these data models in supporting spatio-temporal public 
health research, we have developed an evaluation approach, which will be applied to each of the 
four data models discussed in this dissertation. This approach closely follows the one utilized by 
May Yuan in her 1999 paper describing the 3-Domain model [110]. 

3.2.1 Evaluation Approach and Criteria 

3.2.1.1 Evaluation Overview 

The evaluation for each data model will consist of three major components. 
1. An overview of the data model design and implementation. 
2. A description of the model’s fulfillment of the desiderata listed in Section 2.3, as well as 

the design and performance requirements described later in this section. 
3. A summary of the ability of the data model to support the evaluation queries outlined in 

Section 3.2.1.3. 
 
At the conclusion of this section (page 57), Table 9 will provide a summary of each data model’s 
fulfillment of the various desiderata. In addition, Table 10 will summarize support for the 
evaluation queries. 
 

3.2.1.2 Technical details for desiderata outlined in Section 2.3 

 
While the desiderata have been outlined previously in Section 2.3, they will be restated here, with 
more technical details to follow.  
 

D1.  Enable spatio-temporal (ST-Object) modeling 
D2.  Support spatial and temporal relationships between ST-Objects 
D3.  Annotate object events 
D4.  Support multiple time states 

 
 
D1: Enable Spatio-Temporal Object (ST-Object) modeling 
 
While there are many types of ST-Objects, this dissertation focuses on real-world objects which 
are in common use in public health research and practice. That means objects which have occurred 
in and around the modern era (BCE time points are not supported, nor are dates beyond the year 
3000), on or near the earth’s surface and which have human reasonable temporal granularity. This 
excludes modeling objects such as protein structures or solar entities, as well as attempting to 
distinguish between events which have occurred with sub-nanosecond granularity. In addition, 
these models only support a linear view of time (e.g. no temporal branches). While there are 
valuable reasons to exceed all of these restrictions, they are beyond the scope of the type of 
problems being addressed here. 
 
D2: Support spatial and temporal relationships between ST-Objects 



 37 

 
The most trivial function of a GIS is to support querying for relationships between spatial entities. 
These relationships have been outlined in the literature by Egenhofer [111] and Clementini [112] 
and define binary relationship between two spatial vector entities (polygons, lines, etc.) such as 
intersects, contains, and overlaps. Temporal relationships are those defined by Allen [113] and 
represent the same types of binary relationships, only in the temporal domain (e.g. during, before, 
begins, etc). These basic relationship types generally have robust support within existing data 
management applications; but the technical challenge comes from combining these two types into 
unified spatio-temporal queries. Any proposed data model should not preclude supporting these 
simple relational types. 
 
The important thing to note about these types of relationships is that they refer to directly 
computable knowledge about basic spatial and temporal types. While many spatial problems can 
be answered in this fashion, such as Find all the health facilities contained within the given 
bounding box, there are two primary restrictions that are excluded from this evaluation. The first, 
is answering queries such as, find all the households near a given health facility, which require 
more complex capabilities to answer, such as fuzzy logic systems [114], [115]. The second is any 
type of compensation for uncertainty due to issue such as measurement error or other types of 
spatial ambiguity [116]. Although these types of queries may be supported in the future, they are 
beyond the scope of this dissertation and will not be used in the evaluation criteria. 
 
D3: Annotate object events 
 
This desideratum was adequately described in the previous chapter. 
 
D4: Support multiple time states 
 
The simplest, and perhaps most common, concept of time is one that places some information at a 
specific temporal location. For example, Population counts for US counties between 1990 and 
1995. This is known as event time or valid time and is the most basic form of temporal information. 
But one challenge with building integrated data repositories is that over time new information is 
added to the database and old information is either amended or removed. This means that asking 
the above query actually introduces a large amount of uncertainty in that it is possible for the 
database to return two different results if the query were executed in 1996 vs 2016. This additional 
piece of temporal context is known as database time or transaction time, which denotes when that 
piece of information was known to the database. There are many ways of supporting this type of 
information and more detail is given in [117], [118]. For the remainder of this dissertation, these 
types of systems will be referred to as bi-temporal databases, and conversely referring to both 
temporal types (valid and database) together will use the term bi-temporal. 
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Design and performance requirements 
 
In addition to the desiderata listed above, I address two additional criteria that are less focused 
around the theoretical merits of the data model and more related to practical implementation 
concerns. 
 

1. Scale efficiently to support large volumes of data. 
As spatial data continues to enter the realm of Big Data, it will encounter more and more 
of the four Vs: volume, velocity, variety, and veracity [119]. Any proposed data model 
should scale to support querying larger and larger spatial datasets, as well as enable 
performant updating. Likewise, spatial data takes a variety of forms not only in terms of 
vector or raster information, but also in terms of the additional pieces of information that 
are spatially and temporally associated with the ST-Objects. 

2. Integrate with existing database implementations and software development paradigms 
While the limitations of existing spatial data systems have been detailed in previous 
chapters it should also be mentioned that the more a proposed data model can take 
advantage of existing tooling and technologies the greater its ability to leverage advances 
in these technologies to its own benefit. Likewise, using database systems and methods of 
interacting with data that are familiar to software developers can help accelerate both initial 
adoption as well as future expansion to support additional data modeling uses outside the 
original intent. 
 

3.2.1.3 Evaluation queries 

 
In order to evaluate how well each data model fulfills the given desiderata, we will refer to 10 
example queries common to this type of research. Table 4 lists the queries in both a generic form 
(referring merely to abstract objects, time points, and properties) and a more specific form, using 
real world data and properties. Finally, the table also lists which desiderata the query fulfills. One 
thing to note is that some the generic queries are duplicated; for example, Query 1 and Query 7 
have the same generic query type, but a different specific query. The reason for this is that each of 
the approaches in this chapter treat spatial information as a unique data type and thus Query 7 
serves to illustrate the ability of each model to represent spatial changes over time. On the other 
hand, Query 1 demonstrates each model’s ability to manage more generic data properties (such as 
population counts and region names). This distinction will be made clearer in the remainder of this 
chapter. 
 
One final note, this list of example queries serves to illustrate the data modal function and 
suitability for the types of queries common in public health research. While the queries cover a 
large scope of potential spatio-temporal queries, its intention is not to be exhaustive, but sufficient 
for the purposes of this evaluation. Additional examples of spatio-temporal queries, suitable for a 
wide range of scientific domains, can be found in [104], [120]. 
 
 
  



 39 

 Generic Query Specific Query Desiderata 
Q1 What are the values of {P1, P2, Pn…} for O TV? Find the values of all data properties for King County, WA 

valid in June, 1991. 
D1, D2 

Q2 What was the change in the value of P for O 
between TV1 and TV2? 

How did the population count of King County, WA change 
from 1990 to 2015? 

D1, D2 

Q3 Which ST-Objects have the spatial relationship RS 
with O at TV? 

Which hospitals where contained in Juba, South Sudan in 
May 2015? 

D1, D2 

Q4 Which ST-Objects have the temporal relationship 
RT with O? 

Which ST-Objects came temporally before Cidade de 
Maputo, Mozambique? 

D1, D2 

Q5 What was the value of P for O at TV and TQ? What value did the database maintain for population 
count of King County, WA in June 1991 at the query time 
March 2016? 

D1, D2, D4 

Q6 Which ST-Object has Rs with G at valid time TV? Which ST-Object contains the point representing the 
University of Washington Medical Center in March 2017? 

D1, D2 

Q7 What was the change in the value of P for ST-
Object O between TV1 and TV2? 

How did the spatial boundary of King County, WA change 
over the past 10 years? 

D1 

Q8 Is ST-Object O1 with value V1 of P1 equivalent to 
ST-Object O2 with value V2 of P2? 

Is the ST-Object identified by name Manhica, 
Mozambique in 1990 the same as the spatial object, 
identified by name Manhica, in 2011? 

D1 

Q9 For each period Td in temporal interval TI what 
was the value of P for ST-Object O1 vs ST-Object 
O2? 

How many mosquito bed nets were distributed each day 
during 2014 in Cidade de Maputo, Mozambique vs 
Manhica, Mozambique 

D1, D2 

Q10 How many events of type E occurred during 
temporal interval TI for ST-Object O? 

How many survey_administered events did Contact 
Tracing Team 1 have in March 1991? 

D1, D3 

Table 4: Example queries for desiderata fulfillment. 
This table lists the 10 example queries used to determine how well a data modeling approach fulfills the given 
desiderata. Each query is listed in both a generic form, using symbolic representation, as well as in a more 
specific form which gives concrete examples of how each query might be used in a real-world public health use 
case. In addition, each query is linked to the appropriate desideratum evaluates. O represents an ST-Object, 
while P represents a data property associated with that object and V is the value of a given P. Tv represents valid 
time or the time that the property is true in the real world. Tq represents database time, or the time that the 
property was true within the database. Ti is a temporal interval while Tp refers to a temporal period within a 
given interval. Rs and Rt represent spatial and temporal relationships, respectively. G is a spatial entity, such as a 
point, polygon, or line, and E is an event entity. 

 
Given the desiderata and example queries, the next question becomes, from which potential 
viewpoint should we evaluate the system? With that in mind, we will be evaluating these 
approaches from two distinct perspectives. The first is from that of the end user, the researcher 
attempting to utilize these data models to answer a domain specific research question. The second 
is that of a database administrator building and managing a repository of spatio-temporal data. 
While the first user perspective is understandable given the discussion of the previous chapters. 
The second perspective is perhaps more unusual, but no less important. One limitation to existing 
spatio-temporal research is that the required information is often scattered across a number of 
disparate data repositories and stored in a myriad of formats. Integrating this information into a 
representation usable for a given project is a tremendous cost paid by each researcher on each 
project. There is a tremendous amount of utility to be gained by developing a centralized data 
warehouse either for an individual research center or for a larger government entity [13]. The 
utility of a given data model lies not merely in its technical merits or theoretical simplicity, but in 
its ability to effectively enable the integration and management of large amounts of disparate 
information without requiring herculean efforts on the part of the data curators. 

3.2.2 Previous Approach 1: Time slicing 

Perhaps the simplest method for publishing data that may be recorded or updated on a periodic 
basis, is known as the time slicing approach. Here, a new copy of the data is published for each 
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new release of information, which represents the current state of the dataset at that point in time. 
For instance, each year of the GAUL dataset is published as a separate Shapefile16 and it is left to 
the user to determine how to integrate each new version with prior records. The same approach is 
taken by ACS, which releases updated information every year which simply supersedes any 
previously published data, an example of which is shown in Figure 5. Figure 6 illustrates laying 
out the data as individual (timestamped) files on the disk, versus loading into a relational database 
as timestamped tables. 
  

                                                
16 ESRI Shapefile is a common data format for storing and transmitting spatial information [192]. 
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Figure 5: ACS data for Washington State counties, from 2015 going back to 2013. 
This shows a common time-slicing layout, where each new year of data is added as a separate table or file. 

  
 
 

 
Figure 6: Filesystem versus database data layouts for GAUL data. 
The image on the left shows the years of GAUL data laid out with separate folders for each year. Selecting the 
necessary data requires identifying the appropriate folder and manually loading required file. The image on the 
right shows the same data (only years 2009-2014) loaded into a relational database. Again, the data selection 
process requires identifying the appropriate table and retrieving the necessary information. 
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One benefit of this approach is that it is easily implemented in existing relational database systems 
and thus can take advantage of the tremendous research and development efforts that have gone 
into making these types of systems robust, scalable, and secure. Likewise, developing software 
against these implementations presents the developer with a technology that is well-known and 
reasonably understood, which allows them to focus on developing tools to solve the research 
problem at hand, and not on mastering the intricacies of a new research data model. 
 

3.2.2.1 Fulfillment of Desiderata 

 
D1: Enable Spatio-Temporal Object (ST-Object) modeling 

 
Time slicing provides limited support for ST-Objects, in that it allows adding data properties which 
can be linked to a single entity by use of a consistent identifier. This enables the approach to answer 
Query 1; however, it is focused on modeling data properties and not objects, which means that 
each object has its properties scattered amongst various data tables and not aggregated into unified 
objects. This requires additional effort on the part of the user, or system implementer, to manually 
gather the required information and present it accordingly. 
 
Likewise, separating the data into multiple years makes it difficult to reason about changes in ST-
Object states over time. For example, answering Query 2, requires merging data from multiple 
files or database tables, which can create performance issues as query complexity grows. In 
addition, this approach provides no ability to identify missing data. If no data has been loaded for 
2011, the query will simply return and silently omit the missing data point, leaving it up to the user 
to manually verify that all the required information is present before utilizing the query results. 
Relatedly, this approach assumes that data is updated at the same temporal frequency. Managing 
data properties which might be updated more or less frequently (e.g. a population count might be 
updated once a year, but population migration estimates might be updated once per quarter) 
requires further splitting of the data into tables which represent a common temporal interval. This 
further compounds the query complexity as data scale increases. 
 

D2: Support spatial and temporal relationships between ST-Objects 
 
This approach makes it trivial to implement support for most types of spatial relationships, due to 
the robust support for these types of relationships within existing applications such a relational 
databases or GIS applications such as ArcGIS17. As each spatial property is available in each 
temporal layer, answering Query 3 simply requires selecting the table with the properties for the 
given year, performing the appropriate spatial intersection and returning the identifiers for the 
matched entities. 
 
While spatial relationships are trivial to support, calculating temporal relationships is more 
difficult. Consider Query 4, determining a temporal ordering of objects requires computing two 
pieces of information. 1.) The temporal interval for which each object exists 2.) the relationship 
between these temporal intervals. Since the time stamping model does not natively contain a 
concept of an object, determining existence requires computing the temporal range between the 
oldest and newest fact attributed to that individual. This presents a number of potential challenges. 
                                                
17 https://www.arcgis.com/index.html 
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One is that it is possible for an object to exist for a greater temporal duration than the facts 
associated with it. For example, Zadar, Croatia has a recorded history going back to the 9th century 
BCE but may only have census records going back to the 1800s [121]. Thus, determining the 
temporal duration for which Zadar exists may not be possible given the information available to 
the data model. 
 
It should be mentioned that it is possible to partially overcome the issue of object existence by 
embedding that information into the data itself. This is the approach taken by the GAUL dataset, 
which contains fields which denote how long the administrative unit has been in existence. This 
solution though ends up being implementation dependent and not intrinsic in the modeling 
approach, thus presenting a situation where Query 4 is easily answerable for some datasets and 
impossible to answer correctly in others. 
 

D3: Annotate object events 
 
Time slicing has no direct support for modeling events but could be implemented by creating an 
additional set of tables which either denote events at specific time points or directly reference fact 
rows in the tables. Again, this is an implementation specific approach and not inherent to the data 
model. 
 

D4: Support multiple time states 
 
Simple support for validity intervals is supported by this modeling approach, both because it can 
be made explicit in the data itself (e.g. each layer can contain valid from/to fields) and implicitly 
in that the data in each table is tied to the temporal range of that table. For example, data contained 
in the table titled 1990 can reasonably be assumed to have two meanings. First, that the data in that 
table is valid for the year 1990. Second, that the data in that table is valid from the beginning of 
the year 1990, until the next data snapshot. Disambiguating these two meanings is not supported 
by the snapshot data model and requires this information to be encoded either in the 
implementation, and enforced by tooling, or via cultural knowledge and enforced by error. 
 
Returning to the example queries, satisfying Query 1 simply requires selecting the appropriate 
snapshot, either the snapshot directly correlated to the temporal point, or the one closest to the 
temporal point (e.g. if querying for data points in 1993, the system may gather data from either the 
1993 snapshot, or the 1992 snapshot, if no data exists for 1993); from there it is merely a matter 
of filtering the results for the appropriate object identifier and required data properties. 
 
Answering Query 2 is a more difficult proposition in that not only must the application perform a 
join of all the required data snapshots and filter for the desired properties, but it must also have 
some additional ability to determine if all the required data is present in order to fulfill the query. 
This again is a problem to be resolved by the implementation. 
 
Regarding database temporal intervals, the snapshot model does not explicitly support this 
additional dimension but can be extended by either duplicating the snapshots or the individual data 
rows, as new information becomes available.  
 

Design and performance requirements 
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A significant benefit of this approach is that it makes no distinction between spatial and non-spatial 
data properties. Each data property is stored as a column in the required table and the underlying 
storage engine is relied upon to manage the various data types appropriately. This means that users 
and administrators can manage both spatial and non-spatial data properties via the same sets of 
tooling. Likewise, building on well-known data storage engines (such as relational databases) 
allows data repositories to take advantage of the tremendous amount of engineering effort and 
technical improvements that have gone into make these systems scale to vast amounts of 
information. 
 
But while the implementation simplicity is appealing, there are some additional challenges that 
should be mentioned further. The first is related to potential duplication of information. Creating 
a new copy of the data for each new temporal interval can result in significant duplication of 
information if those properties are not changed at each update interval. As an example, consider 
Figure 7; here we have a selection of demographic indicators for King County, Texas and King 
County, Washington from 2011 to 2016. For the Washington county, we can see that the 
demographic indicators changed for each year, but for the Texas county, the number of deaths 
were the same from 2014 to 2016, while the domestic migration rate was stable from 2013 to 2016. 
As the time slicing approach simply appends additional data as another table or layer, this can 
result in significant duplication of data, even if the majority of the indicators remain static. While 
this may not be an issue for smaller datasets, as both the scale of data and the complexity of the 
queries increases, so does the storage and computational requirements. 
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Figure 7: Comparison of ACS data properties for the years 2011-2016 for King County, Texas 

and King County, Washington. 
This figure illustrates the amount of data property change for two Us counties over the span of 5 years.  
For the Texas county (on the left) the value of many properties, such as deaths and births is the same for 
multiple years; whereas for the Washington county (on the right) the values of nearly every property change 
each year. For both counties, the county and division properties undergo no change over this temporal span; 
however, the time-slicing approach requires duplicating data for each year, regardless of whether or not the 
property value is the same for preceding years. 

 
Fulfillment of example queries 
 

Query Supported Notes 
Q1 P  
Q2 P  
Q3 P  
Q4 O Implementation specific solution required 
Q5 O Implementation specific solution required 
Q6 P  
Q7 P  
Q8 O Limited object support impedes query 

fulfillment 
Q9 P  
Q10 O  

Table 5: Time slicing example query fulfillment. 
The time-slicing approach is able to fulfill 6 of the 10 evaluation queries; though some of the unfulfilled queries 
could be supported through implementation specific solutions. 

 

3.2.3 Previous Approach 2: ST-Composite 

First proposed by Langran and Chrisman in 1988 [122], the ST-Composite method improves upon 
the time slicing approach by attempting to reduce both the amount of duplicate data being stored, 
as well as improve the performance of spatial queries. This model beings with the most common 
spatial visualization method, the map, and as new information is added, at each time point, changed 
information is merged into the map by adding an additional layer.  As an example, consider Figure 
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8. Here we have two views of Cidade de Maputo, Mozambique. One in 1990 and the other in 2014. 
It is easy to see that the inner counties, which make up the city (Aeroporto, Distrito Municipal 1, 
etc.), are merged into a new county. But around the city, nothing has changed. In the ST-Composite 
model, only the changed information is added to the new map, so all of the surrounding counties, 
which underwent no spatial reorganization are left as is. This reduces the amount of storage space 
required to maintain the spatial history of a specific location and presents an intuitive interaction 
model in which users are presented with a map of the state of the world at a given point in time. 
 

 
Figure 8: Cidade de Maputo, Mozambique in 1990 vs 2013. 
Showing two temporal states of the capital city of Maputo, which are of interest to public health researchers and 
need to be compared with ease and stored efficiently. 

 
This approach has been expanded by other researchers to incorporate techniques used in version 
control schemes employed by tools such as git18 [123], which manage changes in documents by 
only storing the differences between file versions, rather than the entirety of the file itself. This 
reduces the amount of duplicate data being stored and provides a simple method for reasoning 
about changes in the dataset, in that each change clearly records what information was modified 
at each time point. Reconstructing the state of a file at a specific time point involves starting with 
the initial state of the file and applying each file difference up to the time period requested. This 
approach has been shown to scale well, even to very large datasets and the idea of replaying 
transformations on data, instead of simply updating the data at each time point, is the foundation 
for the distributed nature of computation frameworks such as Apache Spark [124]. 
 

3.2.3.1 Fulfillment of Desiderata 

 
D1: Enable Spatio-Temporal Object (ST-Object) modeling 

 
The ST-Composite model does not support object modeling. At its core, this approach is about 
managing changes in spatial polygons. Each changed polygon, representing a new spatial 
boundary for a given object, is merged into the current map state. This means that the actual 
boundary is discarded and what is committed to the repository is the spatial difference between 
the new polygon and the previous map state, thus removing any direct link between the versioned 
object states. Overcoming this limitation requires implementation specific solutions which link 
various polygon fragments back to their corresponding ST-Objects. As an example, this model 
                                                
18 https://git-scm.com 
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cannot answer Query 6 because it only retains the ability to compare spatial layouts between time 
periods. This means that it has no ability to associate spatial boundaries with a Manhica ST-Object 
and determine which of those boundaries are valid for a given timepoint. 
 
In addition, as this data model only has a concept of a static map, it can only present a single data 
property at any given point in time and any other data types are required to be managed by a 
different modeling paradigm and must be manually mapped back to the ST-Composite data store. 
At its simplest level, this model cannot answer Query 1 and answering Query 2 means it would be 
unable to answer the same query, but for a different data property, without constructing an entirely 
different map. 
 
Another challenge with this approach, is that it has limited ability to effectively manage different 
types of spatial data. Consider the example detailed in Section 2.1, tracing movement patterns of 
disaster affected individuals, how would this model effectively manage large amounts of point 
data? In effect, it would devolve into the time slicing approach, in which each new point is merged 
with the previous point data, albeit with no duplication of existing points. Likewise, this model 
does not support representing overlapping spatial entities; if two objects claim to cover the same 
spatial area the ST-Composite model has no way to effectively represent this spatial collision. 
 

D2: Support spatial and temporal relationships between ST-Objects 
 
The ST-Composite model does provide robust support for spatial relationships, answering Query 
3 (provided the implementation supports some object linking ability) simply requires selecting the 
appropriate map state and performing the necessary spatial calculation. From there, the resulting 
spatial fragments can be linked back to their parent objects and the results returned. Query 6 can 
be answered through similar means as well. 
 
Temporal relations are more difficult for the ST-Composite model to directly express. Tracking 
historical changes to object boundaries, such as when answering Query 7, can be done by 
reconstructing the original object boundaries from the current fragments, but more complex 
temporal relationships, such as Query 4, are not supported by this model because it has no ability 
to track ST-Objects over time. 
 

D3: Annotate object events 
 
This model provides no support for object events. 
 

D4: Support multiple time states 
 
As previously mentioned, this modeling approach has a limited notion of space and time, 
constrained to what is representable on a static map. As such, it has no ability to represent database 
time, except through manual methods such as creating multiple versions of maps, which represent 
specific database time periods. 
 

Design and performance requirements 
 
One significant benefit of implementing this approach, is that it leverages the most basic spatial 
data representation (the map) and presents it to the user as a view into the world at a specific point 
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in time. This allows intuitive reasoning about temporal changes such as boundary reorganization. 
Likewise, the implementation is fairly straightforward in that tooling exists for easily generating 
high-quality maps, provided the data can be simplified into a single temporal point. 
 
That being said, one challenge with this approach, is that it splits spatial and non-spatial data into 
their own management paradigms, while the spatial boundaries are stored as intersection layers on 
the base map, the non-spatial data is retained through traditional storage methodologies. This 
requires each query to the data store to perform two operations. First, identify the temporal overlay 
of the ST-Object being queried, then look up the correct set of data properties valid at the given 
time point. For an ST-Object which undergoes a tremendous amount of spatial variation, there 
may only be a single set of data properties for a given spatial state, but for objects which remain 
fairly static over time (such as the national boundaries of the US) there may be a large set of data 
properties that need to be filtered. This asymmetry presents a challenge not only for database 
designers but end users as well. 
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Fulfillment of example queries 
 

Query Supported Notes 
Q1 O  
Q2 P Only for a single data property 
Q3 P  
Q4 O  
Q5 O  
Q6 O  
Q7 O  
Q8 O  
Q9 P Only for a single data property 
Q10 O  

Table 6: ST-Composite example query fulfillment. 
The ST-Composite model is only able to fulfil 3 of the 10 evaluation queries. For Queries 9 and 2 it is only able 
to fulfill them for a single data property at a time, supporting multiple data properties requires redrawing the 
map with the new data. 
 
 

3.2.4 Previous Approach 3: Spatio-temporal Object Model 

Thus far, the approaches we have listed have featured one prominent limitation, they have no 
native concept of semantic objects. Aiming to address this, Michael Worboys developed and 
proposed the ST-Object object model in 1992 and expanded it a few years later [14], [125]. At the 
core of this approach is the ST-Atom, which represents the spatial value of a given entity for a 
specific temporal interval. These ST-Atoms are then collected into larger ST-Objects which 
contain an ST-Atom for each change in the spatial value. 
 
Given this base representation, Worboys also proposed a method for representing the spatial and 
temporal relationships between the various objects. Based on a simple 3D graph, each ST-Atom is 
represented as an ST-Simplex, which creates a right prism in the 2D plane, in which the spatial 
component of the atom forms the base, and the prism is then extended in the Z-axis for the entirety 
of the temporal period. This layout is illustrated in Figure 9. From there, ST-Simplex objects are 
collected in ST-Complex objects, which represent the spatial and temporal relationships between 
multiple ST-Atoms. 
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Figure 9: ST-Object data model components. 
This figure illustrates the relationships between the various data model components as developed by Worboys 
[125]. On the left is the ST-Complex which contains multiple ST-Objects (S, T and U). Each ST-Object is 
composed of multiple ST-Atoms. Time is shown on the Z-axis and each time an ST-Object undergoes spatial 
change (t1, t2 and t3), all ST-Objects are updated to account for the new change and a new ST-Atom is created 
for each object (which is illustrated on the right side of the image). 

 
 
The benefit of this approach is that both the spatial and temporal properties of objects are 
represented simultaneously on a unified coordinate plane, this means that answering Query 6 can 
be done in a single pass through the data, since all three coordinates (latitude, longitude, and time) 
are represented in a single 3D model. 
 

3.2.4.1 Fulfillment of Desiderata 

 
D1: Enable Spatio-Temporal Object (ST-Object) modeling 

 
This approach is explicitly designed to support complex spatio-temporal queries over ST-Object 
states and features robust support for answering these types of queries. In this model, both spatial 
and temporal information are represented in the same coordinate plane and can be computed using 
a single intersection operation. Thus, this model can easily fulfill Queries 3, 4, 6, and 7. 
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D2: Support spatial and temporal relationships between ST-Objects 

 
The ST-Object model fully supports both spatial and temporal relationships, using the same query 
types. This is in contrast to other approaches, such as time slicing, which requires two query steps 
in order to identify all the spatial properties valid at a specific temporal instant and finally to 
perform the spatial intersection on the filtered properties to fulfill the actual query. Since ST-
Simplexes have both their spatial and temporal values represented on the same 3D coordinate 
plane, answering Query 6 only requires a single range query which selects the ST-Simplex which 
contains the 3D point created by projecting Point A into the temporal space at time T. This process 
becomes more complicated when considering bi-temporal elements, which will be discussed 
below. 
 

D3: Annotate object events 
 
This model has no direct support for object events. 
 

D4: Support multiple time states 
 
While the original model did not feature bi-temporal support, Worboys later proposed an extension 
which included explicit support for multiple temporal types [14]. This is implemented by creating 
multiple sets of ST-Complexes, which can then unioned together at the point of temporal 
intersection in order to determine the valid ST-Simplexes to perform the actual query with. 
 

Design and performance requirements 
 
One significant limitation of this model is that it has a reduced ability to represent both non-spatial 
data properties and data properties which are updated without a corresponding change in the spatial 
boundaries. As an example, this data model may not be able answer Query 2, without an additional 
data storage layer. This is especially true if the spatial boundary for King County did not change 
during those 15 years, which would not trigger a new ST-Simplex to be added to the model.  
 
An additional challenge with this approach is that is that it requires a fairly unique data storage 
method. Rather than relying on traditional storage and indexing methods, such as R-Trees [126], 
or QuadTrees [127]; this approach re-projects the spatial and temporal information into a single 
coordinate space, which may require modifying the data at load time. This results in a data layout 
which is not well optimized in most storage engines and may require significant effort on the part 
of the implementer; however, this limitation can be significantly reduced by improvements in data 
storage engines to support multi-dimensional indexing and query methods, such as TV-Trees [128] 
or space-filling curves [129]. Another point of concern, as new spatial information is added, older 
ST-Simplexes need to be modified to support the new information. This is due to a restriction in 
the data model in which ST-Simplexes cannot overlap and thus old representations need to be 
modified to consider the new information, this can have a dramatic effect on the ability of the 
system to quickly load new information as it becomes available. 
 
Fulfillment of example queries 
 

Query Supported Notes 
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Q1 P  
Q2 P  
Q3 P  
Q4 P  
Q5 P  
Q6 P  
Q7 P  
Q8 P  
Q9 P  
Q10 O  

Table 7: ST-Object example query fulfillment. 
The ST-Object model is able to fulfill 9 of the 10 evaluation queries. The only unsupported query is due to 
missing event support. 

 

3.2.5 Previous Approach 4: 3-domain Model 

One limitation that has been identified with the previous approaches is the bifurcation of spatial 
and non-spatial information. Both the ST-Composite and ST-Object models focus on managing 
and reasoning about changes in spatial information, leaving non-spatial information to be dealt 
with through external data management solutions. In 1996, May Yuan proposed a new solution to 
this problem that focused on the fact that fundamentally, there are three types of data related to 
spatio-temporal research. Spatial, temporal, and semantical [104].  While the first two datatypes 
have been described earlier, the semantical data type refers to thematic properties and 
classifications which are associated to a given ST-Object. These semantic types generally refer to 
data properties and are necessary for effectively answering a broad range of spatio-temporal 
queries. Failing to fully account for them in a given data system significantly limits both its utility, 
as well as its potential adoption. Thus, she proposed the 3-domain model which aims to not only 
address limitations in prior approaches (specifically the three mentioned previously in this 
chapter), but also to integrate the three fundamental data types into a unified model. 
 
A significant innovation of this approach is the realization that information can be modeled in such 
a way that there can be a one-to-one mapping from semantical and temporal objects to spatial 
objects, and from spatial and temporal objects to semantical objects, as illustrated in Figure 10. 
This means that an appropriate data model can effectively represent all three types of data and 
efficiently link between them as the query requires. This is accomplished by modeling each data 
domain separately and creating lookup mechanisms for linking in either direction. 
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Figure 10: Linking between spatial, temporal, and semantic information (Reproduced from 

[110]). 
 
 
Yuan points out that this model can be implemented either via a traditional relational database 
layout, or through more complex object modeling approach. Here, we will describe the relational 
model, as it is conceptually simpler and easier to implement in existing data storage systems. 
 
In the relational approach, this model defines 3 primary tables (illustrated in Figure 11): 

• Semantics Table: Which maintains the stable object identifiers and any additional semantic 
information that is associated with the ST-Object (e.g. population estimate, hospital bed 
count, etc.). 

• Time Table: Maintains a list of temporal events which are known to the database. Each 
change to a piece of information (e.g. adding a new object, changing a boundary, updating 
a data property) results in a new row added to the table denoting when the event occurred, 
in real-world time. 

• Domain-Link Table: This final table links object identifiers and temporal events to a list of 
spatial identifiers which are valid for that object at the given temporal instant. 

 
In addition to these tables, the 3-domain model also maintains a spatial graph, which tracks 
changes in spatial values over time. This is required because one of its supported performance 
enhancements is that it only stores the most recent set of spatial information, rather than the entire 
history of past values. We refer to these pieces of information as spatial fragments. The spatial 
graph is a powerful optimization and is constructed in such a way that the spatial value of an object 
at any given point in time can be re-computed using both the graph and the Domain-Link Table, 
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which determines the fragments associated with the ST-Object at the given time point (see Figure 
12). This is similar to the approach taken by the ST-Composite model but extended to include an 
additional table which tracks the spatial fragments contributing to the ST-Object at any point in 
time.  
 
 

 
 

 
Figure 12: Graph layout of the space 

table shown in Figure 10 (Reproduced 

from [110]). 
 
 

 
 
To illustrate the data model, consider Query 7; in order to calculate an answer, the model selects 
all the time elements for Object A that are within the query window (e.g. 10 years from the current 
date). Next, for each time element it looks up the list of spatial fragments valid for that object at 
the given time element. For each fragment is missing from the spatial graph, it traverses the graph 
to select all the child fragments that are currently valid, and then aggregates them into two objects, 
representing the initial spatial state and the final spatial state, which can then be compared. 
 

3.2.5.1 Fulfillment of Desiderata 

 
D1: Enable Spatio-Temporal Object (ST-Object) modeling 

 
This data model provides robust support for maintaining consistent identifiers for ST-Objects as 
they undergo state changes over time; however, one limitation is that the ST-Objects, by default, 
derive their existence from the presence (or absence) of data properties. This means that this model 
is limited in its ability to answer Query 4, because it would only be able to determine the existence 

Figure 11: 3-domain table layout (Reproduced 

from [110]). 
The shows the three primary tables required for linking 
between all three types of data. The space table is the table 
representation of the spatial graph described above. 
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duration by what information is has in the database. Adding this information would require 
additional information to be added to the Semantics Table. 
 

D2: Support spatial and temporal relationships between ST-Objects 
 
This model provides full support for reasoning about spatial relationships between objects. In 
addition to simple binary relationships, this model provides the ability to answer Query 6, since it 
maintains a list of which spatial entities contribute to an ST-Object over time. One limitation of 
this approach is that since only the latest spatial states are stored in the model, performing historical 
relation queries requires traversing the spatial graph and re-computing the original spatial state, 
which may be challenging as the number of states increases. 
 
Likewise, for temporal relationships, aside from the afore mentioned limitation of being unable to 
fully express object existence, this model provides robust support for temporal relationships that 
can be derived from the temporal range of the object facts. 
 

D3: Annotate object events 
 
By default, this model provides no support for object events, but could be adapted to do so by two 
approaches. First, events could be modeled as additional pieces of semantic data and stored in the 
appropriate table. Second, additional information could be added to the time table to mark temporal 
events as having some additional identifiers which can be queried separately. While both of these 
approaches are feasible, they require implementation specific solutions as the data model provides 
no native concept of object events. 
 

D4: Support multiple time states 
 
This model provides no native concept of multiple temporal types but could be added by simply 
extending the Time Table to include additional database temporal columns. This, of course, would 
be left to the implementers to ensure. 
 

Design and performance requirements 
 
One benefit of this approach is that it is directly amenable to implementation within existing data 
modeling paradigms, such as relational databases. Each domain type (spatial, temporal, semantic) 
can be represented as tables in a relational model, with key lookups supported between the tables. 
 
One limitation is that all semantic information (which includes both object identifiers as well as 
data properties) is constrained to the Semantics Table. This means that each new object type added 
to the database requires a new Semantics Table to be added, in order to include the properties for 
the new object. This significantly improves the complexity of answering spatio-temporal queries 
that require information from multiple types of ST-Objects. For example. Query 1, might require 
referencing information from multiple datasets, which could present an issue as a data sizes grow. 
 



 56 

Fulfillment of example queries 
 

Query Supported Notes 
Q1 P  
Q2 P  
Q3 P  
Q4 O Implementation specific solution required 
Q5 O Implementation specific solution required 
Q6 P  
Q7 P  
Q8 P  
Q9 P  
Q10 O  

Table 8: 3-Domain example query fulfillment. 
The 3-domain approach is able to fulfill 7 of the 10 evaluation queries. Queries 4 and 5 both require 
implementation specific solutions, due to the model’s limited support for object existence and bi-temporal 
queries. 

 

3.2.6 Evaluation Summary 

In concluding the data model evaluation, we can see that the four models described thus far present 
unique and innovative methods for managing spatio-temporal data. Taken as a whole, several 
major themes have emerged. The first, is that spatial relationships are essentially par for the course, 
these models, especially when implemented within traditional data backends, provide robust 
support for different types of spatial relationships between object states, with little to no additional 
effort required. The second theme, is that the models provide varying degrees of support for 
temporal relationships, but largely struggle when dealing with the temporal boundaries of object 
existence, especially object existence which extends beyond the amount of time for which an 
object has record facts. 
 
The third theme is only the ST-Object model directly supports bi-temporal implementations, 
though it may be possible for other approaches to be modified to support these types of data 
properties, but only for specific implementations. Fourth, it remains an open question as to how 
these models scale to the types of datasets common in public health data. Namely, multiple 
datasets, linked together, to form a final analytical model (as described in Section 2.2.1.2). This 
challenge is especially acute for ST-Objects such as US counties, which have a large number of 
data properties, spread across multiple datasets. This is further compounded by the fact that the 
spatial area of these regions may have little to no spatial change, but which have other data 
properties which change every year. This magnifies the requirement for being able to manage the 
internal states of ST-Objects. 
 
The final theme, is that none of the above models provide a native concept of events, but some 
may allow them to be implemented as an additional data property type. Going forward, there 
remains space for a new data model that leverages the advances of the previous models, such as 
support for all fundamental types of spatio-temporal information, maintaining a consistent object 
identifier, and presenting an intuitive interaction model to the end user; but improves upon the 
state of the art to support events, large-scale interlinked datasets, and true object existence.  
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Approach Object Modeling Object 
Relationships 

Events Time States Development 

Time slicing Not directly, only if 
implemented by the 
database 
administrator 

Full support for spatial 
relationships, limited 
support for temporal 
relationships 

No event support Supports bi-
temporal time 

Simple to 
implement, 
inefficient with 
large datasets 

ST-Composite No support for ST-
Objects 

Limited support for 
spatial relationships, 
no support for 
temporal relationship 

No event support No direct support 
for database time 

Requires custom 
data backend and 
relies on unique 
indexing 
techniques 

ST-Object Full support for ST-
Objects 

Full support for both 
spatial and temporal 
relationships 

No event support Supports bi-
temporal time 

Requires custom 
data backend and 
relies on unique 
indexing 
techniques 

3-domain  Full support for ST-
Objects 

Full support for both 
spatial and temporal 
relationships 

Some support for 
events 

No direct support 
for database time 

Builds on existing 
relational database 
technologies, along 
with custom spatial 
support 

Table 9: Summary of data modal desiderata fulfillment. 
This table compares the various modeling approaches in their ability to satisify both the evaluation desiderata 
and the design and performance requirements. The main themes are limited to no support for bi-temporal 
queries, events or object existence. 

 
 

Query Time slicing ST-Composite ST-Object 3-Domain Total 
Q1 P O P P 3 
Q2 P P P P 4 
Q3 P P P P 4 
Q4 O O P O 1 
Q5 O O P O 1 
Q6 P O P P 3 
Q7 P O P P 3 
Q8 O O P P 3 
Q9 P P P P 4 
Q10 O O O O 0 
Total 6 3 9 7  

Table 10: Summary of data model example query fulfillment. 
The final counting of the evaluation query fulfillment for the various approaches. The columns and rows are 
aggregated to give a view both the number of queries fulfilled by a given approach, as well as how well 
supported a given query is. 

 
 

3.3 ALTERNATIVE DATA STORAGE APPROACHES 

For the most part, all of the previously described approaches have been designed with an eye 
towards the traditional relational data storage model; in part, due to its ubiquity, but also because 
the relational table model provides an intuitive means for interacting with basic data types. But 
new advances in computer science have opened the door towards more unique methods for 
organizing the underlying data. 
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Recently, there has emerged a new trend in database engineering that aims to move beyond the 
traditional relational database model towards new methods for storing and interacting with data. 
Termed NoSQL, which stands for Not only SQL, the development of which has been driven by a 
need to solve inherent limitations in relational databases at web-scale (scale in which user count is 
measured in the millions and billions), but has also understood that a one-size fits all approach to 
data storage is not only sub-optimal for many domains, but may in fact be a limiting factor against 
developing richer and more interactive applications. 
 
While the relational database model has traditionally held the row as the base unit of interaction 
(meaning query operations are oriented around filtering out unneeded rows in relational tables), 
new databases have been developed that support new interaction models. Some such as 
MongoDB19 utilize documents as their basic data model, which are collections of semi-structured 
properties on a single object; this has the benefits of improved storage performance and enables 
flexible data integration because the documents themselves can have an arbitrary arrangement of 
properties, with the schema being enforced by the application and not by the database. Its 
shortcomings are that it forces the application developers to carry the burden of data management 
and integrity in their application as the data store itself provides no mechanisms for supporting 
semantic integration. Similar approaches have been taken with more traditional object databases 
such as Caché20. 
 
Likewise, databases such as Neo4J21 and Blazegraph22 have implemented graph-based layouts 
where data is modeled not as documents or rows, but as nodes on a relational graph. This provides 
the flexibility of schema-less databases, as well as additional support for modeling additional types 
of relationships beyond associating an object to its data properties. Given these recent advances, it 
is worth considering whether the existing data models can be modified to support these new storage 
paradigms or whether new data models can be developed to further utilize these advances. This 
will be addressed in the following chapter. 
 

3.4 APPLICATION-SPECIFIC IMPLEMENTATIONS 

The data models discussed in the preceding sections have been largely limited to theoretical 
discussions and have seen little to no development or implementation efforts. However, prior 
research efforts have led to the development of several temporal GIS applications. Projects such 
as STARS, STIS, and BoundarySeer have resulted in domain specific applications which aim to 
provide tools for working with spatio-temporal data to solve specific research challenges (such as 
reconciling boundary changes over time) [130]–[132]. 
 
TGRASS and EDGIS are more general-purpose temporal GIS applications. TGRASS builds upon 
the well-known Grass GIS environment23 and leverages components of the data models described 
in this chapter. While it does provide some Application Programming Interface (API) support for 
interacting with other research environments (such as the R statistical programming 

                                                
19 https://www.mongodb.com 
20 https://www.intersystems.com/products/cache/ 
21 https://neo4j.com 
22 http://blazegraph.com 
23 https://grass.osgeo.org 
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environment24), it is largely focused on enabling temporal support for existing Grass application 
modules [133]. EDGIS is a new type of temporal GIS which implements Worboys ST-Object 
model and enables rich interaction with spatio-temporal data [134]. 
 
What all these projects have in common is that they represent new systems specifically designed 
for working with spatio-temporal data (with the exception of TGRASS which leverages the existing 
API framework of Grass). This means that researchers are required to move their existing research 
workflows into these custom systems. While that does allow for optimizing a software 
environment for the specific task at hand, it not only limits the utility, but also presents a potential 
limitation as the size and scope of the datasets grow. Coupled with the proven value of large-scale 
spatial data warehouses, there exists a desire to develop a data management platform that is 
removed from a specific application environment that allows users to access the necessary spatio-
temporal data within the existing software tools already in use by domain researchers. 
 

3.5 CONCLUSION 

In conclusion, this chapter evaluated four common spatio-temporal data modeling approaches, 
Time slicing, ST-Composite, ST-Object, and 3-domain. Each data model provided a unique 
perspective by which to model and interact with spatial data, but with several limitations that 
may impact their utility in public health research. Likewise, we have seen that there have been 
limited attempts at integrating temporal data support into existing spatial applications, and even 
early work in designing new types of GIS applications that treat time as a first-class citizen. 
However, there remains room for expanding upon existing modeling approach, as well as 
developing an open data storage environment which can be accessed by multiple researchers in 
the software environments of their choice. In the next chapter, we will outline our data modeling 
approach which aims to address these issues and utilize fundamentally new types of data storage 
approaches in order to improve upon the state of the art. 
  

                                                
24 https://www.r-project.org/ 
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Chapter 4. DESIGN AND ARCHITECTURE OF TRESTLE 

In the previous chapter, we outlined a number of prior data modeling approaches that have aimed 
to improve support for temporal data within GIScience applications. In this chapter, we will 
introduce the Trestle system and data model which takes a novel approach for managing spatio-
temporal data through a graph-based approach. In brief, our approach extends existing efforts 
(specifically the 3-Domain model) and aims to not only improve upon limitations, but also 
introduce new methods for integrating disparate datasets. Section 4.1 introduces the idea of data 
integration and curation as a key component of spatio-temporal data modeling. Section 4.2 
describes the design goals for the Trestle system as well as the overall project architecture. Section 
4.2.1 gives a brief introduction to knowledge representation approaches for spatio-temporal data 
management. Section 4.2.2 outlines the Trestle data model and representation. Section 4.2.3 
describes the implementation of the Trestle data management application through an example of 
loading data from the GAUL dataset. Section 4.3 evaluates the Trestle system against the 
desiderata described in Section 3.2. 
 

4.1 DATA INTEGRATION AND DATA CURATION 

The approaches described in Chapter 3 all have a number of distinct strengths, as well as some 
limitations; but beyond the nuances of the various approaches one additional limitation remains. 
Each approach, only addresses one of the challenges faced by public health researchers, namely 
accessing historical data of a given dataset. Consider the example given in Section 2.2.1; when 
building a map of disease risk, researches find themselves needing to leverage multiple datasets 
that each contain a piece of information necessary in constructing their map of the world. 
Integrating these multiple datasets is not something directly taken into consideration by the 
approaches described in the previous chapter and is largely left as an exercise for the user.  
 
While it is possible to merely extend the spatial objects with new data properties gathered from 
multiple sources, this approach struggles as the sheer volume of information increases. Indeed, for 
the ST-Composite and ST-Object approaches, if the number of data properties for a given object 
is significantly greater than the amount of spatial change of the object they are effectively required 
to implement an entirely separate data storage solution, in order to account for the non-spatial data 
properties. Given these two challenges, the sheer volume of data and the multiplicity of datasets 
required for a given research problem, it is desirable to have a more flexible method for managing 
complex data relationships within and between ST-Objects. Indeed, it becomes clear that it is 
impossible to separate the challenges faced in object modeling from those faced in spatial data 
curation and an effective modeling solution should aim to address both sets of challenges. 
 
While data curation encompasses a number of distinct issues; including, but not limited to, data 
provenance, discovery, context metadata, etc. [135]; one in particular is of significant relevance to 
this domain, which is the challenge of data heterogeneity. Most curation efforts face 3 major types 
of data heterogeneity [136]: 

• Syntactic heterogeneity: Where data is stored in a number of different formats (e.g. 
Shapefiles, GeoJSON, database tables, object databases). 
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• Structural heterogeneity: Where the data is structured in different formats with common 
data properties annotated or stored in different ways (e.g. the boundary of a county may be 
referred to as geom, or boundary, in different datasets). 

• Semantic heterogeneity: Where the meaning of terms and properties varies between the 
datasets (e.g. a population count indicator might be computed using multiple methods in 
different collection contexts).  
  

When considering modeling data as ST-Objects, we can extend this typology to add an additional 
classification, which we term object heterogeneity. This is the idea that as both the temporal scale 
of object lifetimes and the amount of available information increases, so does the complexity of 
managing the internal states of ST-Objects. Meaning, which data properties are valid at time given 
time point for a specific ST-Object. What is needed is a flexible approach for defining a minimal 
set of concepts that allow mapping spatial object states and relationships into an internal 
representation that can easily be extended as more concepts and data repositories become 
available.  

4.2 TRESTLE 

With this in mind, we now introduce the technical design and implementation of the Trestle 
system, a high-level overview of which is given in Figure 14. The key innovation of Trestle is 
similar to the one developed in May Yuan’s 3-Domain model and described in Section 3.2.5. In 
her model, Yuan was able to effectively categorize data into three major groups, temporal, spatial, 
and semantic and architected her data model towards cleanly representing these three data types. 
For Trestle, the key categorization, pertains not to data types, but relationship types. Here, we can 
classify relationships into two major categories. External relationships between two ST-Objects 
(such as contains, before, after, etc.) and internal relationships between an ST-Object and its 
associated data properties. While this second relationship type may not be immediately apparent, 
its importance increases as the temporal scope of ST-Objects increases. Meaning, as more data 
properties become associated with an ST-Object these internal relationships become more critical 
in reasoning about the internal state of the given object. Likewise, as more datasets are linked 
together, the relational graph layout becomes more natural and intuitive as individual ST-Objects 
can link between various associated properties from disparate datasets. 
 
Modeling data properties as individual entities linked to a larger object is similar to the approach 
developed by IBM’s Clio system [137], and further solidified in various incarnations of graph 
databases. The benefit is performance, ease of implementation, and flexibility in extending the 
system with more complex relationships and concepts as they become available. Taking this 
approach, however, introduces two major challenges. The first is in translating between the data 
formats and layouts common geospatial research (such as ESRI shapefiles) and the underlying 
graph layout. Graph systems require unique interaction models and are not necessarily intuitive to 
users familiar with traditional data layouts and formats. In order to address this, the Trestle project 
contains a Java based management application which performs the data translation and 
management, presenting the user with a simple and unified interface for accessing the necessary 
data and performing complex spatio-temporal queries. The management application and its 
functions will be described in Section 4.2.3. An example of this data translation is given in Figure 
13 which shows a selection of time-series data for the ACS dataset translated into the graph-layout 
utilized by Trestle. The example graph shows only a single ST-Object, rather than the entire 
example dataset. 
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Figure 13: Translating between table and graph data layout. 
This figure shows one of the primary utilities of the Trestle application, translating between traditional data 
formats and the graph-based layout that underpins the system. This ability to smoothly transition between the 
two formats is transparent to the user enables both Trestle’s flexibility and ease of use. 

 
 
The second challenge pertains to classifying the various relationships and maintaining the 
necessary context of the individual data properties. Each dataset contains unique context and 
metadata which influences the use and integration of the dataset members; this additional context 
often contains the necessary information for interpreting the data property and utilizing it correctly. 
What is needed is a flexible way of linking datasets together, which may contain their own meaning 
and terminology for the various data indicators. To address this challenge, we have taken an 
approach which builds off of ideas developed for the semantic web; namely, data sharing 
ontologies. The design of the Trestle ontology will be given in Section 4.2.2 but before doing so, 
Section 4.2.1 will give a brief overview of how ontologies have been used to organize data in both 
spatio-temporal data modeling as well as other semantic domains. 
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Figure 14: Trestle application design and architecture. 
 
In this architecture diagram, the green components represent data sources that are loaded into Trestle. The blue 
component is the third-party database used by Trestle, coupled with the custom ontology (in orange). The red 
components are the Trestle management application and query interface. 

 

4.2.1 Organizing data with ontologies 

One approach to effectively integrate and manage the disparate information sources, made use of 
in Trestle, is found in the field of ontologies. Originating within the philosophy and mathematics 
disciplines an ontology defines, in a philosophical sense, an explicit, but partial, account of a 
certain conceptualization [138]. In short, an ontology attempts to make explicit a certain way of 
viewing and reasoning about a given knowledge domain. With the advent of modern information 
systems and the rise of the Internet, ontologies have taken on a new meaning within information 
science. Beyond just a specific conceptualization, what constitutes an ontology cannot be divorced 
from the idea of sharable knowledge [139]. Indeed, as Smith and Mark have made clear, much of 
the value derived from modern ontologies is from their ability to facilitate the reusability of data 
and their enablement of interconnected systems based on agreed upon conceptualizations [140]. 
 
It is this data sharing feature that has so intrigued computer scientists and data curators. Ontologies 
provide the ability to share not only raw pieces of information, but also the necessary meaning and 
context to make use of that information within different applications. Ontologies have been 
successfully used to manage and integrate disparate data sources across a significant number of 
scientific domains. Ranging from history [141], biology [142], public health[143], [144], and 
computer security [145], [146], researchers and practitioners have successfully developed 
knowledge representation systems that enable domain knowledge to be encoded in a computable 
format and structured in such a way as to be easily stored and integrated between multiple, discrete 
data sources. 
 
It is important to mention that this dissertation is not an ontology research project. The innovation 
of this endeavor is not in developing a particularly novel knowledge representation that more 
accurately models the geophysical world; instead, this project utilizes a simple spatio-temporal 
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ontology to help surface integration points between heterogeneous datasets and to model the 
relationship between user defined entities and the various properties and relationships that make 
up those objects. Think of it as less of a rigid structuring of the world, and more of a loose typology 
that defines points of interaction between datasets that aids in surfacing latent semantic concepts 
within the user defined data classes. In the end, the underlying ontology used by Trestle is an 
artifact of the design goals, not a goal in and of itself. It is through this feature that Trestle is able 
to effectively organization information and convey both data and context to the user, something 
existing approaches are unable to do. In the end it will be hidden from the user, which will interact 
with the system through a defined query interface, provided by the management application, but 
without being forced to deal with the vagaries of categories, ologs, or existential questions about 
the true nature of rivers.  
 
When attempting to model these shared conceptualizations of domain knowledge (such as 
geography or disease surveillance), there are a number of different approaches to take. Frank 
(2003) has identified five levels of ontology development ranging from the modeling of physical 
reality to understanding cognitive agents [147]. At each ascending layer, the level of abstraction 
increases, as does the utility towards modeling domain specific problems. For this project, our 
ontology lives firmly in Frank’s 3rd tier, in that it attempts to construct spatial concepts from sets 
of underlying properties and objects. This means that it provides a layer of abstraction above 
traditional geospatial ontologies that attempt to define things such as geometries or geographic 
features; the goal is that the ontology can be expanded to support existing spatial datasets and 
definitions by providing a simple set of geographic and temporal relations that provide the building 
blocks for constructing unified spatial objects from underlying facts and attributes, either by direct 
assertion or via logical inference. 
 
An example of the potential for ontologies for data integration is the SDIDS project, previously 
described in Section 0, and designed to support the integration of malaria surveillance data into a 
structured and normalized format [61]. This ontology provides an expansive conceptualization of 
entities related to disease control and surveillance; such as different health facility types, census 
measurement methods, biological tests, etc. These information sources can be combined to provide 
a robust spatio-temporal platform for supporting disease surveillance modeling, with the Trestle 
ontology providing the spatio-temporal primitives and the SDIDS ontology providing the 
contextual information for the underlying data properties. The project described in this dissertation 
was originally conceived as an extension to the SDIDS platform to handle the various mapping 
tasks required. 
 
Within the field of geography there has been a significant amount of preceding work in the area of 
spatio-temporal ontologies; however, these efforts have largely been focused on either the 
temporal, or spatial side of the equation [148], [149]. In general, most of the data science field has 
focused on developing temporal data models, while GIS researchers have held spatial data as their 
primary domain [110]. In part because of this cultural divide, only a few concerted efforts have 
been undertaken to integrate both dimensions into a unified ontology [110], [150]–[152]. 
 
While often conflated together, it is important to make a distinction between ontologies, as a 
categorical and knowledge representation topic, and ontologies as they are commonly found in 
semantic web projects. The semantic web is a collection of technologies that were developed to 
improve the interoperability of internet-based data repositories. In this conception, each piece of 
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information contains a Universal Resource Identifier (URI)25 which references the web accessible 
location that maintains both the data point, as well as the necessary context for interpreting that 
piece of information. 
 
To illustrate this through a spatial example consider that a county in the Topologically Integrated 
Geographic Encoding and Referencing (TIGER) dataset, the boundary data provided by the US 
Census Bureau26, would contain an area data property and might also contain an average 
population count data property which includes a URI that indicates the information came the ACS 
dataset. This means that the TIGER dataset does not need to maintain information about the 
population count measure (such as how it was collected or what the base units are), even though 
that information is critical when using the measure in spatio-temporal research. When a user 
performs a query such as Find the 10 largest US counties which have the highest population 
density, the system contains all the required information about the area property, but not the 
population count, so at query time, it fetches the additional context from the ACS system (which 
maintains the knowledge about the population count measure) and incorporates that into the logic 
required to answer the query. This means, that instead of requiring each repository to maintain the 
required information for all related datasets, it allows each repository to maintain the information 
for its respective datasets and communicate that knowledge, as needed, to external users. 
 
Beyond the remote data linking capabilities, the semantic web also includes a data representation 
format that expresses information as sets of triples. A triple is a data tuple of three properties: 
Subject, Property, Object. Which indicates the value of a given property attributed to specific 
entity. An example of a triple assertion is:  <gaul:Manhica,gaul:administrativeLevel,gaul:Level2>. This 
triple is a uniform way of stating that the entity Manhica (a county in Mozambique) is a Level 2 
administrative unit27. Or more precisely, the subject Manhica is known to have an attributed 
property administrativeLevel which has the value Level2, as described by the GAUL dataset. The 
identifiers are given in short-form notation, in which rather than writing down the entire URI, only 
a short prefix is used, and the implementation maintains a mapping from prefixes to full URIs.  
 
Given this representation of triples, the next challenge comes with transferring these triples 
between repositories, over the web. For that, the semantic web introduces a structured data format, 
based largely on XML (Extensible Markup Language)28, which allows for interoperability between 
systems. These representations vary in their verbosity and level of expressivity. The simplest is 
Resource Description Framework (RDF) which defines the base triple format, as well as a limited 
set of specific data relationships relationships. RDF allows arbitrary extension of relationships that 
can be defined by the various repositories, such as gaul:administrativeLevel, which is a 
relationship specific to the GAUL dataset. At the other end of the expressivity spectrum is OWL 
(Web Ontology Language). OWL builds on RDF and adds a number of additional relationships 
(such as sameAs, which specifies that two identifiers, though distinct, describe the same entity) 
and restrictions (such as someValuesFrom, which specifies that the objects of a given property, 
must also be members of a specific class). 
                                                
25 A URI refers to a globally accessible, and unique, identifier which can be used to reference a unique piece of 
information, or location across the global internet. An example of a URI would be: 
http://www.w3.org/XML/1998/namespace. Which refers to the web page found at the w3.org website. 
26 https://www.census.gov/geo/maps-data/data/tiger.html 
27 The GAUL dataset defines country boundaries as Level 0, state (or province) boundaries as Level 1, and county 
(or district or parish) boundaries as Level 2. 
28 There are additional formats such as Turtle, JSON-LD and N-Triples, which are more succinct ways of 
representing RDF triples, but these are largely derivatives of the base RDF-XML and OWL-XML formats. 
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One powerful feature of OWL that is missing in RDF, is inference. Inference is the ability to build 
additional knowledge from an initial dataset, based on a specified set of rules. OWL supports a 
number of different inference profiles [153], [154] each of which provides different sets of rules 
that cover the spectrum between maximum logical expressivity and inference performance. An 
example of an OWL rule is owl:transitiveProperty29. This rule specifies that a given object 
relationship is transitive for all members in that chain. An example in the spatial domain would be 
the spatial relationship contains. The definition of contains derives from Egenhofer [111] and 
specifies that for Object A to be fully contained within Object B, no part of Object A can fall 
outside of Object B. 
 
This means, we can specify the relationship as transitive and apply the inference engine (also 
referred to as the reasoner) to build additional relationships. This means, that for the TIGER 
dataset, we can specify that King County is contained within Washington State, and that 
Washington State is contained with the United States and allow the reasoner to discover that King 
County is contained within the United States. While this is a trivial example, it shows the flexibility 
of applying an inference engine to extract larger sets of relationships from smaller, partially 
specified input datasets. An example of specifying these relationships in OWL-XML is given in 
Code 1. More details on the semantic web and inference engines can be found in [155]. 
 

 
Code 1: Example of OWL-XML for Cidade de Maputo from the GAUL dataset. 

 
                                                
29 https://www.w3.org/TR/owl-ref/#TransitiveProperty-def 

<Ontology xmlns="http://www.w3.org/2002/07/owl#" 
     xml:base="http://nickrobison.com/dissertation/trestle.owl" 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
     xmlns:xml="http://www.w3.org/XML/1998/namespace" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
     ontologyIRI="http://nickrobison.com/dissertation/trestle.owl" 
     versionIRI="http://nickrobison.com/dissertation/trestle.owl/0.9.5"> 
    <Prefix name="" IRI="http://nickrobison.com/dissertation/trestle.owl"/> 
    <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/> 
    <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> 
    <Prefix name="xml" IRI="http://www.w3.org/XML/1998/namespace"/> 
    <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/> 
    <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/> 
    <Import>http://www.opengis.net/ont/geosparql</Import> 
   <ClassAssertion> 
      <Class IRI="#GAUL"/> 
      <NamedIndividual IRI="#aeroporto:1990:2013"/> 
   </ClassAssertion> 
  <ObjectPropertyAssertion> 
    <ObjectProperty IRI="#has_component"/> 
    <NamedIndividual IRI="#ManhicaUnion"/> 
    <NamedIndividual IRI="#manhica1:2009:2013"/> 
  </ObjectPropertyAssertion> 
  <ObjectPropertyAssertion> 
    <ObjectProperty IRI="#has_component"/> 
    <NamedIndividual IRI="#ManhicaUnion"/> 
    <NamedIndividual IRI="#manhica2:2009:2013"/> 
  </ObjectPropertyAssertion> 
</Ontology> 
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4.2.2 Trestle ontology design 

Given the previous introduction to ontologies and knowledge representation, this section details 
the design of the Trestle ontology. The ontology itself is implemented using the Protégé editor and 
framework [156] and defines a small set of basic classes and primitive relationships, which can be 
augmented in domain specific applications. A visual overview is given in Figure 15 and will be 
described further in this section. 
 

 
Figure 15: Trestle ontology layout.  
 
This figure shows the layout of the Trestle ontology and how the various classes interact with each other. 

 

4.2.2.1 Trestle_Object 

 
At the core of the ontology is the Trestle_Object class, which provides the central mechanism for 
defining spatio-temporal objects and their associated properties and relationships. A 
Trestle_Object roughly corresponds to an ST-Object in the Worboys model [125], or a semantic 
object in Yuan’s [110]. A Trestle_Object contains two data properties, exists_from and exists_to, 
which defines the temporal bounds for which that object exists. This is required by the ontology 
and management application avoids the ambiguous existence problem described in Chapter 3 in 
which prior data models have no native concept of object lifetimes. While a Trestle_Object can 
have an unbounded existence (and thus no exists_to) property, it must have an exists_from 
property. It should be noted that all temporal intervals in Trestle are represented as open-closed 
intervals, which means that the start of the interval is inclusive of the initial timepoint, but exclusive 
of the ending timepoint. So, a Trestle_Object which exists only for the year 2013, would be 
represented with the exists_temporal of [01-01-2013, 01-01-2014), which includes January 1st, 
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2013, up to the last day of the of 2013 (or the last instant of the year 2013 supported by the temporal 
data type). 
 
A Trestle_Object also contains zero or more has_fact relationships, which point to the Trestle_Fact 
entities associated with the object. A Trestle_Fact represents the value of specific data property at 
a given temporal intersection30. Modeling spatial objects as collections of related facts is one of 
the key innovations of Trestle and a core component of its flexible data layout model. Whereas it 
is intuitive to model relationships between objects as a graph layout (e.g. Object A is contained 
within Object B); in reality, the primary relationship type associated with a Trestle_Object is 
between the object and its data properties, especially as the amount of available information for a 
given object increases. By capitalizing on this relational nature, we can utilize the same 
computational primitives to model relationships between objects as within objects. In short, from 
the perspective of the underlying datastore, there should be no distinction between a spatial 
relationship (such as contains) and an intra-object relationship such as has_fact, even though one 
describes a relationship between two ST_Objects and the other describes a relationship between 
an object and its data properties. They are both represented as edges between nodes, in a relational 
graph, that only differ in their logical categorization by the reasoner. 
 
A Trestle_Fact entity contains three pieces of information: a valid temporal, a database temporal, 
and a dataproperty. The valid temporal represents the real-world temporal range of the given fact. 
It can be represented as either a point (e.g. valid only on March 1st, 2001) or an interval (e.g. valid 
from March 1st, 2001 to March 1st, 2002). The databse temporal is the mechanism by which Trestle 
achieves bi-temporal support. This defines the range of time (from the perspective of the datastore) 
which the fact is the most recent value of that data property. While valid temporals may be 
represented as either a point or an interval, database temporals must be represented as intervals 
(following the same rules as the exists temporal). 
 
Beyond storing temporal data, facts also serve the function of conveying data values as well. But 
this is where the dynamism and flexibility of the data model comes into play.  The facts do not 
have fact values, instead they have data properties that are named for the actual data properties, 
and values that match. This is illustrated in Figure 16, which shows the data property assertions 
for a fact entity, associated with Aeroporto, Mozambique and conveying the ADM2_Code data 
property. Here we can see the three temporal assertions (valid_from, valid_to, database_from) as 
well as the ADM2_Code assertion which contains the actual fact value (65253). 
 
This is an important technical point because of what it enables. Namely, it means users can directly 
query for the data properties they are interested in, and not indirectly for fact nodes which may or 
may not contain the correct data property. This allows the Trestle_Facts to be implemented in a 
generic fashion and relies on the underlying datastore to disambiguate which Trestle_Fact contains 
the necessary piece of information.  This means that queries such as What was the population count 
of King County, Washington in 2015, can be directly mapped to the underlying graph nodes, 
without any intermediate translation. This also means that answering queries such as Which US 
counties had the largest populations in 2015, can be quickly answered by the application, as it 

                                                
30 As our ontology natively supports Bi-temporal time, we will use the term temporal intersection to denote the 
combination of valid time and database time when applied to a specific fact. As an example, consider the phrase 
“The population count of King County for the year 2000 is 2 million, as recorded in the database on March 1st, 
2001”, the temporal intersection of this fact would be:  valid time: [1/1/2000-1/1/2001) database time: [3/1/2001,). 
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maintains the ability to directly query for fact nodes with the given data property name and from 
there, filter down to only the facts valid at the given temporal point. 
 
 

 
Figure 16: Data property assertions for a single fact entity in Protégé editor. 
The five data property assertions, for this entity from the GAUL dataset, in this figure that this fact represents 
the value of 65254 for the property ADM2_Code. The valid interval for this fact is from 1990 to the last date of 
2012. This is the most recent version of this fact value, since there is a database_from assertion, but no 
database_to which indicates this is an open-ended database temporal interval. 

 
 
 
An additional feature of each data property is that it contains a unique datatype. This type has two 
properties. This first is that it corresponds to a concrete type representable by most computing 
environments (e.g. integer, string, floating point number, etc.). The second is that it also contains 
a unique URI which further specifies both the application dependent type (e.g. that this datatype 
corresponds to a population count) and the repository which contains additional context about that 
specific piece of information. One example is the representation of spatial information. By 
convention, spatial data is stored in the Well-Known Text (WKT) format, which defines a specified 
layout of point information pertaining to a spatial representation. Some examples of data in WKT 
format are given in Table 11. In our data model, WKT values are stored as strings, but identified 
with the datatype URI http://www.opengis.net/ont/geosparql#wktLiteral. This differentiates them 
from other types of string values, such as place names, and allows the application to make decisions 
about how it handles the data. In the case of WKT values, this additional context allows the 
underlying datastore to optimize for the spatial values and apply the appropriating indexing 
mechanisms required for performant spatial queries. 
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Table 11: Examples of WKT representations of various US geographic entities. 
 
This is an important component of the Trestle system. The data model makes no effort to 
understand what type of information is being stored, beyond the concrete type which it needs in 
order to represent that data (e.g. that the given value is represented as a floating point, a string, or 
an integer). The semantic meaning of the information is pushed up in the user application level. 
This means, that the data model requires no special knowledge in order to expand to support 
multiple types of data. If a user application requires a distinction between two population counts, 
which may have different sampling methods, both can be stored in the database, but with different 
URIs. This capacity is leveraged to enable additional data types, such as multi-language support 
where a data property, such as name, might have multiple representations in different languages. 
The data model supports representing and disambiguating these datatypes, a unique feature of the 
Trestle system. 
 

4.2.2.2 Relationships Types in Trestle 

 
At its core, Trestle is an ontology of relationships. The basic primitive, relating a Trestle_Object 
to its associated facts, is a type of relationship, albeit one that is contained within the semantic 
boundaries of the object itself. In addition to these types of relationships, Trestle also contains the 
notion of spatial and temporal relationships, based on the well-known relations described in the 
literature [111], [113], and a selection of domain specific relationships that describe the 
relationship of a given object before and after its existence. A summary of the relationships 
supported by Trestle is given in Table 12 on page 72. 
 

Spatial and Temporal Relationships 
 
The basic spatial and temporal relationships supported by Trestle largely mirror those found in 
traditional spatial databases but differ in two specific ways. First, these relationships are not 
automatically computed, but must be either manually asserted, by the user, or logically inferred, 
by the reasoner. Determining spatial and temporal relationships at query time is supported by a 
combination of the underlying data store and the management application. This means the 
application fully supports queries such as Find all the households that fall within a given hospital 
catchment area; likewise, the management application allows persisting these relationships into 
the ontology, which can then be used to support query answering, rather than requiring relation 
computations for each individual query.  
 
Second, many of these relationships have additional logical properties which are not often reflected 
in traditional data store. The first of these properties is transitivity, which indicates that a given 
logical relationship expressed between two entities (A and B) is also true for a third entity (C) if 
the original relationships is held between B and C. For example, Seattle is inside King County, 
which is inside Washington State. Thus, through transitivity we can infer that Seattle is inside 
Washington State. This holds for temporal relationships as well; if breakfast comes before lunch 

Location WKT Representation 
Authors’ Academic Office Seattle, WA POINT(-122.3402250, 47.6241320) 
Yosemite National Park (Boundary Box) POLYGON((-119.885 38.0832, -119.2172 38.0832, -119.2172 37.6234, -119.885 37.6234, -119.885 

38.0832)) 
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and lunch comes before dinner, then we know that breakfast comes before dinner. The second 
logical extension is symmetry (and its logical converse asymmetry). This specifies that a 
relationship expressed in a specific direction (e.g. A to B) also holds true in the inverse direction 
(B to A). For example, consider the statement King County, WA is spatially disjoint from King 
County, TX. By the nature of the symmetric property, we can also infer that King County, TX is 
disjoint from King County, WA, without being required to compute any type of spatial calculation. 
 
The final logical extension is inverse, this allows specifying that a relationship expressed in a 
specific direction (A to B) has a corresponding relationship that holds true in the opposite direction 
(B to A). An example is the previous illustration of Seattle being inside King County. The inverse 
logical property implies that King County contains Seattle. Since the contains relationship is also 
expressed as transitive, we can automatically infer that Washington State contains Seattle. A list 
of spatial and temporal relationships known to Trestle is given in Table 12, along with their 
corresponding well-known counterparts and any additional logical properties maintained by 
Trestle. 
 
The power of these additional logical assertions becomes apparent as both the data size and query 
complexity scales beyond trivial use cases. Consider an example dataset of household survey data 
that was collected in the field and annotated without a direct spatial location, merely names of 
cities where the households were located. The question then becomes, how to answer the query 
Find all the household survey responses for a given province? The traditional answer would be to 
assign some location information to each entry, in order to place it within the given city; but Trestle 
allows for a different approach. Each entry in the data can be marked with an inside relationship 
to the city mentioned in the entry. If the cities themselves have location data associated with them 
(from a different dataset such as GAUL), then Trestle can automatically infer that each survey 
response is inside (and conversely contained_by) the province the city is located in. These 
relationships are directly expressed in the database and are not required to be computed at query 
time. 
 

Additional relationship types 
 
Beyond spatial and temporal relationships, Trestle also supports two additional relationship types. 
The first, is event relationships. These relationships define temporal points which correspond to 
semantic events. Meaning, something occurred in the lifetime of the object which from the 
perspective of the domain use case, is worth marking. While the management application allows 
for marking arbitrary object events, the ontology natively supports three event types: created, 
destroyed, and split/merge. 
 
The first two are fairly straight forward and define the bounds of the temporal scope for which a 
Trestle_Obiect exists. Split/Merge events are specific to geographic boundaries and denote the 
spatial history of a given object over time. These events contain some additional semantic content 
which stipulates that a split/merge event only occurs in two specific cases. First, when a given 
boundary splits into multiple new boundaries, such that all the area of the original object is 
accounted for, with no additional area included or left out. Second, when multiple boundaries are 
merged into a single, new boundary such that all of the area of the original boundaries are 
accounted for, with no additional area included or left out. This means that when a split/merge 
event is present, the spatial area covered by the input object(s) before the event, exactly 
corresponds to the spatial area of the output object(s) merely in a different configuration. This 
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allows for answering queries such as What administrative boundaries were merged into Cidade de 
Maputo in 2014? This will be discussed further in Chapter 5. 
 
The final relationship type supported by Trestle is object relationships, while this largely falls 
under the category of collections (which is described in the following sub-section) at this point it 
should be mentioned that the type of object relationships supported by the ontology are true object 
relationships, in that a Trestle_Object inherently contains the temporal period for which the object 
exists. Thus, Trestle can accurately answer the question Which objects came before Cidade de 
Maputo because Cidade de Maputo is temporally bounded. This is possible even if no facts exist 
for the object over the entirety of its lifetime. This means that Trestle can answer queries such as 
For what percentage of years is census data missing for Zadar, Croatia? This has powerful 
implications for research tasks such as data quality assurance or identifying possible scopes of 
projects given the amount of available data and is something existing data models struggle to 
account for. 
 

Trestle Relationship Type Corresponding 
Relationship 

Transitive Symmetric Inverse Reference 

Covers Spatial Covers No No Covered_by [111] 
Contains Spatial Contains Yes No Inside [111] 
Disjoint Spatial Disjoint No Yes  [111] 
Inside Spatial Inside Yes No Contains [111] 
Covered_by Spatial CoveredBy No No Covers [111] 
Spatial_Equals Spatial Equals Yes Yes  [111] 
Spatial_Meets Spatial Meet No Yes  [111] 
Spatial_Overlaps Spatial Overlap No   [111] 
After Temporal After Yes No Before [113] 
Before Temporal Before Yes No After [113] 
During Temporal During Yes Yes  [113] 
Finishes Temporal Finishes No No Finished_by [113] 
Starts Temporal Starts No No Started_by [113] 
Started_by Temporal Started-by No No Starts [113] 
Finished_by Temporal Finished-by No No Finishes [113] 
Temporal_Meets Temporal Meets No Yes  [113] 
Temporal_Overlaps Temporal Overlaps No No  [113] 
Created Event Created No No  [157] 
Destroyed Event Destroyed No No  [157] 
Merged Event  No No Merged_of  
Merged_from Event  No No Merged_into  
Merged_into Event  No No Merged_from  
Split Event  No No Split_of  
Split_of Event  No No Split  
Split_from Event  No No Split_of  

Table 12: Summary of Trestle relationships and their well-defined counterparts 
This table lists the fundamental relationships support natively by the Trestle ontology. The Corresponding 
Relationship column maps between the name of the relationship in Trestle and the name of the relationship in 
the original research paper which the relationship is based on. In addition, this table lists any additional logical 
properties intrinsic to the relationship, as well as the corresponding inverse relationship. The split/merge 
relationships do not have a related research paper as they are unique to the Trestle system. 

 
 

4.2.2.3 Collections: Sets of spatio-temporal objects in Trestle 

 
The previous sub-section gave a brief introduction to object relationships in Trestle and provided 
some additional information as to their flexibility in supporting spatial and temporal relationships 
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between objects. An additional use of these object relationships is in supporting groupings of 
Trestle_Objects known as Trestle_Collections. A Trestle_Collection is a grouping of 
Trestle_Objects, which contain some type of association, either temporal, spatial, or semantic. It 
can be thought of as a sub-graph of related Trestle_Objects within the larger relational graph of 
the database. These collections can be added to or subtracted from on-demand and can thus support 
a fluid concept of associativity, which is necessary for supporting spatial algorithms which require 
some type of stateful computation (such as the algorithms described in Chapter 5 and Chapter 6). 
 
An example of a Trestle_Collection might be a custom base map created by an organization for 
use by their research teams. In order to obtain global map coverage, organizations often use 
datasets such as GAUL or the Database of Global Administrative Areas (GADM)31 which feature 
extensive global coverage but may not be as current or detailed as what is publicly available from 
individual countries. For instance, the GAUL dataset maintains county level data across the globe, 
and sub-county data for 45 countries. In some case it is desirable, even necessary, to utilize more 
granular data such as the TIGER data; however, integrating this information with other datasets is 
challenging to manage and often requires duplicating the data to create custom datasets. This data 
fragmentation is difficult to maintain and necessitates manual updating if the underlying 
information changes (such as new measurements or boundary changes). In contrast, 
Trestle_Collections do not require this type of duplication since the relational nature of the data 
model means that the collection associations are always pointing to the original data fact, including 
both the most recent version and historical versions as well. This significantly reduces the amount 
of data duplication and administrative burden for updating and maintaining datasets.  Likewise, an 
individual Trestle_Object can be a member of multiple collections and can be added to or removed 
from membership as necessary. This means, that if Cidade de Maputo has an updated spatial 
boundary, this change would be reflected across all collections it is a member of. 
 
Collections also support a strength parameter, which allows representing object associations which 
may have an association with varying degrees of strength or certainty. This allows, at query time, 
for users to specify a restriction to only return objects with a relationships strength above a certain 
threshold. The benefit of this is that different applications will require differing levels of data 
certainty and in some cases, such as a data verification task, returning even the most ancillary piece 
of information is desirable, as it allows errors to be corrected and evaluated. One example of the 
importance of this capability is that automated methods for spatial matching objects inherently 
result in probabilistic matches; having the ability to support this uncertainty and present the 
information to the user, in order to make the final decision, is an important strength of the Trestle 
ontology. It should be noted, that the ontology itself provides no mechanisms for reconciling this 
uncertainty, nor does it infer or compute any probabilistic matches, it merely supports the ability 
to convey the uncertainty context to the user application where the appropriate decisions can be 
made. This collection relationship is a unique feature of Trestle that is not present in other data 
models; use of this feature will be illustrated in greater detail in Chapter 5. 

4.2.3 Trestle Application implementation 

 
Trestle is implemented as a Java application, building on top of a number of open-source 
components to create a management application that removes the need for individual users to 
directly interact with the ontology or the underlying graph database. Instead, interaction with the 
                                                
31 https://gadm.org 
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application occurs through either a set of Application Programming Interfaces (APIs) or a 
prototype web interface. 
 
As illustrated in Figure 14, the management application is built on top of an existing triple-store, 
which is a special type of graph database [158] optimized for storing RDF triples and performing 
automated inference. Trestle is designed to support multiple triple-stores, but requires that they 
feature the following capabilities: 
 

1. Support for the OWL 2 inference profile [153], specifically, the 
owl:PropertyChainingAxiom rule32. This rule is largely relegated to use in 
Trestle_Collections and is thus not critical to the core operation of Trestle, but the support 
greatly simplifies the implementation of more complex inference and association 
capabilities. 

2. GeoSPARQL semantics [159], which provides spatial query support for RDF data; or, a 
comparable implementation which allows for performing at least a basic set of spatial 
operations, which can be augmented by additional code in the management application. 

 
We evaluated a number of different triple-stores over the course of this project and implemented 
a selection of those systems as backends for Trestle. A summary is provided in Table 13, but in 
the end we utilized the GraphDB engine developed by Ontotext33, which was originally known as 
the OWLIM project. All results reported in this dissertation are utilizing the GraphDB backend. 
  

                                                
32 https://www.w3.org/TR/owl2-primer/#Property_Chains 
33 https://ontotext.com/products/graphdb/ 
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Table 13: Summary of triple stores evaluated for Trestle implementation. 
This table lists the various triple-stores that were evaluated for the Trestle project. Some of the triple-stores 
were only evaluated based on reviewing the feature sets and documentation, while others were actually 
developed in code and evaluating using both synthetic and real-world data. The primary finding of this table is 
that combining spatial features and advanced inference capabilities is difficult to find in existing projects. 

 
 
In order to illustrate the operation of the application, we will use as an example, loading and 
integrating the GAUL dataset of Administrative Level 2 (county level) boundaries. To refresh, the 
GAUL dataset contains information of the administrative districts of global countries, at varying 
levels of granularity, from 1990 to 2015, delivered as a set of individual shapefiles, one for each 
year. Each district in the dataset is assigned a unique identifier, which remains constant for its 
lifetime. If a district is reorganized, such as merged with another district, or dramatically resized, 
it is given a new identifier, which breaks the link between the old district and the new one. An 
example of the GAUL data is given in Table 14.  
  

Database Open source OWL2 GeoSPARQL Implemented 
Oracle Spatial No Yes Yes Yes 
Virtuoso Yes Noa Customb Yes 
GraphDB Noc Yes Yes Yes 
Jena TDB Yes No Nod Yes 
Stardog Noc Yes Partiale No 
Blazegraph Yes Extensiblef No No 
Marklogic No Extensiblef Customb No 

 
                                                 
a Virtuoso 7.0 (which is not open source) provides the ability to specify custom inference rules. 
b Provides a custom spatial functionality which closely mirrors the GeoSPARQL specification. 
c Provides a free license with some limitations. 
d Provides support for simple spatial distance and intersection calculations. 
e Partial support for GeoSPARQL specification. 
f Supports custom rulesets. 
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Table 14:  Sample of GAUL dataset properties for the year 1990. 
A small subset of data from the GAUL dataset, showing a selection of available data properties, their names and 
values. 

 
 
One major challenge with working with type of information is transforming the dataset from its 
original time-slice layout, into the unified Trestle_Objects supported by Trestle. In order to 
accomplish this, data is loaded one year at a time, starting with the earliest year (1990) and 
continuing to the most recent (2015). This means that the Trestle_Objects will be built 
progressively as each new year of data is added; Trestle provides various strategies for reconciling 
changes when adding new data. 
 
Before loading the data, the decision must be made as to how to model the input datasets as 
Trestle_Objects. These objects represent the changing state of a semantically unified object as it 
evolves over time. Trestle largely delegates the object modeling decision to the domain application 
and instead focuses on providing the basic primitives for managing and querying these objects. 
That being said, these primitives require each Trestle_Object to fulfill the following constraints: 
 

1.Objects must have a spatial component. 
At this time, Trestle does not support non-spatial objects. Any information which does not 
describe a spatial extant, must be modeled as a Fact on a given Trestle_Object. This spatial 
value may change over the lifetime of the object, but each object must have at least spatial 
component for the duration of its lifetime. This is a temporary limitation of the management 
application is not an intrinsic limitation of the underlying data model. 

2.Objects must exist for a temporal interval, not a single temporal point. 
While individual facts may be valid only for a specific temporal instant, objects must exist 
for a temporal interval, regardless of how short that interval actually is. 

3.Facts cannot temporally overlap 
Trestle does not support multiple values of the same fact at the same temporal point. This 
avoids the need for the application to disambiguate the correct values for a given user 
queries. Modeling similar facts (such as reporting population counts via multiple sampling 
methods) can be accomplished by the use of unique URIs for each data property. 

ADM2_CODE ADM2_NAME STR2_YEAR EXP2_YEAR ADM1_CODE ADM1_NAME Shape_Area
21833 Ancuabe 1000 3000 2112 Cabo Delgado 0.410015209
21834 Balama 1000 3000 2112 Cabo Delgado 0.458942968
21835 Chiure 1000 3000 2112 Cabo Delgado 0.448413205
21836 Ibo 1000 3000 2112 Cabo Delgado 0.004094203
21837 Macomia 1000 3000 2112 Cabo Delgado 0.347784036
21838 Mecufi 1000 3000 2112 Cabo Delgado 0.102196557
65253 Aeroporto 1000 2012 2117 Maputo (city) 0.000599673
65254 Distrito Municipal 1 1000 2012 2117 Maputo (city) 0.016289081
65255 Distrito Municipal 2 1000 2012 2117 Maputo (city) 0.000867482
65256 Distrito Municipal 3 1000 2012 2117 Maputo (city) 0.001105562
65257 Distrito Municipal 4 1000 2012 2117 Maputo (city) 0.007309559
65258 Distrito Municipal 5 1000 2012 2117 Maputo (city) 0.005263048
21884 Manhica 1000 2012 2116 Maputo 0.212204864
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These constraints not only allow Trestle to effectively manage and query the underlying data, but 
also serve to provide a conceptual framework for thinking about how to transform data from 
traditional table layouts into more complex ST-Objects. In this example, the individual 
administrative districts are represented as Trestle_Objects with each new year of data being 
merged into the object as its loaded (the merging process will be described below). 
 
Trestle provides a set of tools to easily define the mapping of input data in the form of tables, into 
unified Trestle_Objects. These mappings are referred to as data definitions and specify multiple 
properties of the Trestle_Objects including specifying stable object identifiers, listing data 
properties, determining relationships and constraining object existence. 
 
An example of the data definition used for the GAUL dataset is given in Code 2. Currently, these 
definitions are constructed using the Java programming language, utilizing specific language 
features such as annotations. This is merely an artifact of the current prototype implementation 
and additional methods for creating these definitions can be implemented using data interchange 
formats such as Cap’n Proto34, or through additional user tooling. 
 
These data definitions play a crucial role in enabling support for both missing data and for 
retrieving subsets of available information. Multiple data definitions can be created for a single 
dataset, each of which is specialized for a given research project. An example would be ACS data 
linked to a given TIGER county; while ACS provides a multitude of data properties, only a few 
may be necessary for a given research problem. With Trestle, a user could create a data definition 
which only specifies the data properties required for their specific question thus reducing both the 
complexity of user interaction, as well as improving performance by only requiring the 
management application to deal with a reduced subset of the available information. 
 
Likewise, methods for dealing with missing data become more focused on the individual objects, 
rather than the dataset as a whole. This means that while a given dataset may be specified to have 
a population count fact, Trestle does not enforce that constrain at load time. Instead, it allows the 
data to be added and then at query time, will raise an error if the user attempts to query for a fact 
that is not valid for that Trestle_Object at the given time point. The basic principle is that data 
completeness is as much a function of the domain application as is semantic interpretation of the 
individual data points. This means that the underlying Trestle datastore is not required to ensure 
that individual data properties are present and in the expected data format, instead, that decision is 
left to the management application and enforced by the constraints specified in the data definitions. 
If data is missing or incorrect for certain Trestle_Objects that issues should only affect the user if 
they actually need those specific properties. 
  

                                                
34 https://capnproto.org 
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@DatasetClass(name = "GAUL") 
public class GAULObject { 
    private final String objectID; 
    private final long gaulCode; 
    private final String objectName; 
    private final byte[] validRange; 
    private final Polygon shapePolygon; 
    private final long adm1Code; 
    private final String adm1Name; 
    private final String status; 
    private final boolean dispArea; 
    private final long adm0Code; 
    private final String adm0Name; 
 
    public GAULObject(String id, long adm2_code, String adm2_name, 
LocalDate startDate, LocalDate endDate, String wkt, long adm1_code, 
String adm1_name, String status, boolean disp_area, long adm0_code, 
String adm0_name) { 
        this.objectID = id; 
        this.gaulCode = adm2_code; 
        this.objectName = adm2_name; 
        this.validRange = DateFieldUtils.writeDateField(startDate, 
endDate); 
        this.shapePolygon = (Polygon) GeometryEngine.geometryFromWkt(wkt, 
0, Geometry.Type.Polygon); 
        this.adm0Code = adm0_code; 
        this.adm0Name = adm0_name; 
        this.adm1Code = adm1_code; 
        this.adm1Name = adm1_name; 
        this.status = status; 
        this.dispArea = disp_area; 
    } 
 
    @Fact(name = "id") 
    public String getObjectIDAsString() { 
        return this.objectID; 
    } 
 
    @IndividualIdentifier 
    @Ignore 
    public String getID() { 
        return String.format("%s-%s-%s-%s", this.gaulCode, 
this.objectName.replace(' ', '_'), this.getStartDate().getYear(), 
this.getEndDate().getYear()); 
    } 
 
    @Fact(name = "adm2_name") 
    public String getObjectName() { 
        return objectName; 
    } 
 
    @Ignore 
    public Polygon getShapePolygon() { 
        return shapePolygon; 
    } 
 
    @Fact(name = "adm2_code") 
    public long getGaulCode() { 
        return gaulCode; 
    } 
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    @Spatial(name = "wkt") 
    public String getPolygonAsWKT() { 
        return GeometryEngine.geometryToWkt(shapePolygon, 0); 
    } 
 
    @StartTemporal 
    public LocalDate getStartDate() { 
        return DateFieldUtils.readStartDate(this.validRange); 
    } 
 
    @EndTemporal 
    public LocalDate getEndDate() { 
        return DateFieldUtils.readExpirationDate(this.validRange); 
    } 
 
    @Fact(name = "adm1_code") 
    public long getAdm1Code() { 
        return adm1Code; 
    } 
 
    @Fact(name = "adm1_name") 
    public String getAdm1Name() { 
        return adm1Name; 
    } 
 
    @Fact(name = "status") 
    public String getStatus() { 
        return status; 
    } 
 
    @Fact(name = "disp_area") 
    public boolean getDispArea() { 
        return dispArea; 
    } 
 
    @Fact(name = "adm0_code") 
    public long getAdm0Code() { 
        return adm0Code; 
    } 
 
    @Fact(name = "adm0_name") 
    public String getAdm0Name() { 
        return adm0Name; 
    } 
} 

 
Code 2: GAUL dataset definition in Trestle 
 
This is the dataset definition used for the GAUL dataset utilized in Chapter 5. It consists of a single Java class 
which contains the required dataset component annotations. An @IndividualIdentifier which specifies how to 
uniquely identify this Trestle_Object. An @DatasetClass annotation which indicates which dataset this object is 
a member of, and a pair of @StartTemporal and @EndTemporal annotations which denote the existence 
interval of the object. Finally, the @Spatial and @Fact annotations specify the various data properties that are 
associated with this object. 

 
 
 
Once the Trestle_Objects have been identified and their dataset definitions created, each object 
must next be assigned a temporal existence interval before it can be loaded into the datastore. This 
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existence can be specified one of two ways. Manually, or automatically based on updated object 
facts. The automatic method will be covered in a later sub-section, but the manual method will be 
described here. 
 
When loading an object into Trestle, the data definition requires specifying the temporal extant 
(either an interval or point) of the data being loaded. This is implicitly translated into both the valid 
temporal of the facts as well as the existence interval for the given object. While this presents a 
conflation between the two concepts of validity and existence, it is an artifact of the prototype 
implementation and will be addressed in the future. It also speaks to the difficulty in mapping 
being row-based and graph-based data layouts in that each new piece of information being added 
to an object may or may not have an impact on the temporal bounds of the object itself. 
 
For each year of data added to Trestle, originally stored in a single shapefile, the following actions 
need to be taken: 
 

1. Transform each record in the shapefile from the standard row-based layout into the graph 
database format. 

2. Determine whether to add the record to a new object or merge it with an existing object 
and reconcile any data conflicts that may occur. 

3. Optionally, compute spatial and temporal relationships for each new object and all others 
that might interact with it. 

 
Each of these steps will be detailed in the remainder of this section. 
 

4.2.3.1 Transform the data 

 
Each record is transformed from the table layout to the graph layout, which models the data as a 
set of nodes in the graph database with edges between the nodes that the reasoner uses to both 
classify the nodes, based on the rules in the ontology, as well as to determine the relationship types 
between the various facts and objects. This is illustrated in Figure 17, which shows an example 
transformation of the GAUL record for Cidade de Maputo, Mozambique for the year 2013. Here, 
the object identifier and existence temporals are stored in the object header node, which is shown 
in blue, with the associated Trestle_Facts shown in yellow. The facts are linked to the object header 
via has_fact relationships. 
 
Each graph node contains a number of data property assertions35, the purpose of which is to denote 
the temporal scope of the given fact or object. The object header contains an exists_temporal 
assertion, while the fact nodes, contain both a valid_temporal, as well as a database_temporal, 
which provides the bi-temporal support for each fact. By default, the database_temporal is created 
as an open-ended interval that begins when the data is first loaded into Trestle and continues into 
the future; but this can be manually specified by the user. 
 

                                                
35 These data property assertions are different from the data properties described by the dataset being loaded (e.g. 
population count, name, etc.) and are an RDF term which describes information triples attributed to a given entity. 
These two types of properties will be disambiguated by always referring to RDF data properties as assertions. 
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In addition to the temporal assertions, each fact node also contains a data property assertion of the 
value of the data property being modeled. By using the name of the data property as the name of 
the data property assertion, this allows individual fact nodes to be addressed by their property 
name, without requiring the database or the management application to maintain a list of which 
fact nodes are associated with which data property. This also means that enforcing the information 
schema and datatypes is the domain of the management application, which handles returning the 
correct data as required by the data definition used in the query. 
 

 
Figure 17: GAUL record transformation 

 
This figure illustrates transforming a single record in the GAUL dataset, corresponding to a single region for a 
single year, in the Trestle graph layout. The blue circle represents the object header node, which contains the 
identifier and the exists temporal information. The yellow circles are the associated fact nodes, with their data 
properties shown in the red circles. 
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4.2.3.2 Reconcile data conflicts 

 
As each year of data is added to Trestle, the management application looks at the object identifiers 
and decides to either create new a Trestle_Object or merge the updated information into an existing 
object. Currently, Trestle supports three strategies for reconciling any conflicts that may occur 
between facts currently associated with a Trestle_Object and facts associated with the new data 
being loaded. It is important to note that these merge strategies do not change the values of the 
data being stored (e.g. they do not attempt to re-compute data properties such as average 
population growth based on new data) they only attempt to reconcile the temporal ranges of 
existing facts with the new ones being added. 
 
Merging occurs on fact-by-fact basis, and for each fact Trestle asks two questions, 1) does this 
new fact fall within the temporal existence of the given Trestle_Object? 2) is there an existing fact 
that is valid for at least a portion of the temporal period described by this new fact? 
 
Question 1: Does this new fact fall within the temporal existence of the given Trestle_Object? 
 
In order to answer the first question, Trestle first considers the existence interval of the object and 
provides three methods for determining how and when to update facts. 
 

1. Ignore –Trestle ignores the existence interval of the object and proceeds to merge the facts 
using the strategy described below. In this mode, it is possible for Trestle to result in a 
logically inconsistent state in which an object exists for a smaller temporal interval than 
the validity interval of is facts. For example, Object A might exist for the temporal interval 
[1990,2013), but have a population count fact valid for [1991,2015). The benefit of this 
mode is that it improves data loading performance in cases when object existence is either 
unnecessary to the domain use case, or when it is known that the object existence always 
exceeds the validity period of the object facts (e.g. when an object has an open-ended 
existence interval). 

2. During – Trestle will only merge facts which occur entirely within the existence interval 
of the object. Attempting to load data which falls outside of this range will result in an error 
being raised. 

3. Extend –Trestle will extend an object’s existence interval if it encounters facts that fall 
outside this given range. For example, Object A, described earlier exists for the interval 
[1990,2013), when attempting to add a population count fact with the validity interval 
[1992,2015), Trestle would automatically extend the existence interval of Object A to 
encompass the new information. Thus, after loading the new fact, the existence of Object 
A would be [1990,2015). 
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Question 2: Is there an existing fact that is valid for at least a portion of the temporal period 
described by this new fact? 
 
After considering object existence, if no errors are raised, Trestle proceeds to load the new facts 
using one of three merge strategies: 
 

1. NoMerge – If Trestle sees that a newly added fact temporally overlaps with an existing fact 
an error is raised and the data is not loaded. 

2. ContinuingFacts – When merging a fact, Trestle looks at the validity interval of the existing 
fact and only merges if the existing fact is continuing, meaning it does not have a specified 
ending temporal. If the existing fact is not continuing, an error is raised, and the data is not 
loaded. 

3. ExistingFacts –Trestle will always merge new facts which overlap with existing facts. 
 
It should be noted that this process only occurs if Trestle determines that the user is attempting to 
add a new fact which temporally conflicts with an existing fact. If no conflicts occur, the new 
information is simply added to the Trestle_Object without any updates to the temporal values of 
the previously loaded facts. 
 
To illustrate the merging process, consider an existing GAUL object, Cidade de Maputo, which 
has been first loaded as part of the 2013 GAUL year36. This means, that the Trestle_Object has an 
existence interval of [2013, 2014) and the ADM2_Name fact has a value of Cidade de Maputo for 
the continuing validity interval of [2013, ). In 2014, assume that the value of the ADM2_Name fact 
changed to Cidade de Newputo. In this case, Trestle performs the following actions: 
 

1. Updates the Trestle_Object existence interval to encompass the new fact (e.g. from [2013, 
2014) to [2013, 2015)). 

2. Updates the database temporal of the existing fact to extend up to the temporal point at 
which the new data is being added (e.g. the current system timestamp). 

3. Creates a new fact for the ADM2_Name property with the existing fact value (Cidade de 
Maputo), with a continuing database temporal starting at the temporal point at which the 
new data is being added (e.g. the current system timestamp). The valid temporal written to 
the new fact is a new interval created from the start point of the original fact temporal, but 
with a new ending point at the start temporal of the valid temporal of the new fact. (e.g. 
from [2013, ) to [2013, 2014)). 

4. Creates a new fact for the ADM2_Name property with the new fact value (Cidade de 
Newputo), with a continuing database temporal starting at the temporal point at which the 
new data is being added (e.g. the current system timestamp). The valid temporal that is 
written to the new fact is a new continuing interval with the correct start point of the new 
fact (e.g. [2014, )). 

 
This process is repeated for each new fact being merged and is illustrated in Figure 18, which 
shows the fact relationships for the object before and after merging the new data. This process of 
versioning the fact nodes is the method by which Trestle achieves bi-temporal support and 
                                                
36 To simplify the example, we will only be showing the merging process for the ADM2_Name data property and 
assume that the existence interval of the Trestle_Object is determined based on the validity interval of the loaded 
facts. Likewise, we will assume that the validity interval of the fact is continuing, in order to identify the most 
complex merge case. 
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leverages the strengths of the underlying graph database to, at query time, filter nodes which fall 
outside the temporal range of the query. At no point is information removed from the database; 
the only modification that occurs to existing data is to update the database temporals of the original 
facts to indicate a more recent version now exists. It should also be noted that the existence interval 
of Trestle_Objects is not versioned; once updated, it is impossible to determine what the existence 
of the object was in previous database state. 
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Figure 18: Data layout for GAUL object before (A) and after (B) a new record is merged. 
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4.2.3.3 Compute spatial and temporal relationships 

 
The final, optional, step when loading data into Trestle is to compute spatial and temporal 
properties for the various objects. While Trestle provides robust support for arbitrary spatial and 
temporal queries, which can be dynamically retrieved at query time, it also provides a framework 
for pre-computing these relationships. These two approaches differ in several ways. The first, is 
that performing runtime queries is more flexible, in that it allows users to arbitrarily determine the 
relationships between various Trestle_Objects at the point in which they need the actual 
information. This is the same approach taken by traditional spatial databases but without the ability 
to leverage the additional logical properties of the relationships supported by the Trestle_Ontology, 
which is a unique feature of the Trestle system. Pre-computing the object relationships at load 
time, improves individual query performance, but at the cost of additional time required to load 
the datasets in the first place. The benefit of this later approach is that the pre-computed 
relationships can take advantage of the additional logical inference in the Trestle ontology. This is 
a feature optimized for data warehousing and read-heavy tasks, where data is loaded infrequently 
but queried and accessed often. These two approaches can be used in tandem to optimize for 
different patterns of data usage and storage.  
 
Whereas previous steps in the data loading process were accomplished automatically by Trestle, 
this final step is done manually in order to avoid a performance penalty when ingesting large 
amounts of data. Instead of performing the computation at data load Trestle provides the basic 
primitives to compute these various relationships and provides a simple API for automatically 
generating a complete list of spatial and temporal relationships for any set of Trestle_Objects given 
as inputs, which can then be persisted in the database. The process for computing these 
relationships will be detailed further in Chapter 5. 
 

4.3 FULFILLMENT OF DESIDERATA AND COMPARISON WITH PREVIOUS METHODS 

Before concluding this chapter, we will discuss how Trestle fulfills the desiderata outlined in 
Section 2.3 and compares to the modeling approaches described in Chapter 3. 
 

4.3.1 Fulfillment of Desiderata 

 
D1: Enable Spatio-Temporal Object (ST-Object) modeling 
 
Trestle provides robust support for building and managing complex ST-Objects by both enabling 
consistent identifiers for objects as they change over time, but also by explicitly supporting 
lifetimes of ST-Objects, regardless of the temporal interval of the underlying data properties. 
 
 
 
 
 

D2: Support spatial and temporal relationships between ST-Objects 
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Trestle provides full support for reasoning about relationships between objects. In addition, it 
supports querying about relationships between various object states over time (such as which facts 
are valid for a given temporal range). An added benefit of using a reasoner, is that it allows 
additional logical information to be included in the relational algebra, which extends the ability of 
existing binary relationships to automatically encompass new information as it is added to the 
database. 
 

D3: Annotate object events 
 
Trestle supports object events including those explicitly defined by the ontology and arbitrary 
events that are specific to individual domain applications. 
 

D4: Support multiple time states 
 
Bi-temporal support is accomplished by maintaining both valid and database temporal intervals 
for individual facts and requiring queries to account for both temporal dimensions. 
 

Design and Performance Requirements 
 
In Chapter 3, we discussed the importance of a proposed data model being able to leverage existing 
programming and data storage paradigms so as to both reduce the difficulty of working with the 
data model, as well as being able to take advantage of ongoing engineering work and 
improvements. With that in mind, the focus of the Trestle development work has been on 
abstracting away the underlying ontology and triple-store so as not to introduce a completely 
different data paradigm that most users are unfamiliar with and to present data, to the user, in 
formats compatible with existing research environments. This is similar to the approach taken by 
object-relational mapping (ORM) tools such as Hibernate37 for the Java language but optimized 
for interacting with ontologies and graph data. These tools allow the users to work with traditional 
programming language objects and concepts, and handling mapping to and from the underlying 
relational database. Translating between these two data layouts is non-trivial and has required a 
significant amount of development effort in order to achieve these goals. 
 
The end result of this process is two primary methods for interacting with the management 
application that closely match existing programming and interaction paradigms. The first method 
of interaction is through the core API which allows users to integrate Trestle into their existing 
research environments and utilize the API to directly add and retrieve the data they need. These 
APIs are exposed both within the Java programming environment, as well as remotely as standard 
web accessible Representational State Transfer (REST) APIs. The REST implementation is what 
enables Trestle to interact with other non-Java programming environments as well as interoperate 
with other data analysis environments that can support data exported in traditional formats such as 
ESRI Shapefiles or JavaScript Object Notation (JSON) files. 
 
The second method of interaction is through the prototype web application, which builds on top 
of the REST APIs to demonstrate the flexibility of the Trestle data retrieval environment. Figure 
19 shows the dataset viewer prototype, which allows the user to select a geographic area of interest 

                                                
37 http://hibernate.org/orm/ 
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and visualize the spatial change in the data over time. The data for a specific timepoint can then 
be exported in a number of different formats for user in existing spatial analysis tooling. This 
enables the use of Trestle as a spatio-temporal data warehouse which can support existing data 
analysis workflows where in users simply retrieve the temporally correct data from Trestle and 
then input that data into their existing tooling.  
 

 
Figure 19: Dataset viewer from Trestle’s prototype web application. 
This figure shows the main page of the prototype web application developed for this dissertation. While more 
details will be given in Appendix A, this gives the user the ability to select a specific dataset and perform simple 
temporal queries against it. Specifically, the ability to move between various time points and visualize the 
change in the spatial area. Once the desired spatial and temporal scope is selected, the results can be exported to 
a common spatial data format. 

 
 
Once data has been persisted to the triple-sore, from the management application, we rely heavily 
on the built-in query engine and spatial functionality to support the more complex operations in 
Trestle. Overall, the functionality and performance of the triple-stores have been quite good, but 
some time has been spent attempting to address two major performance limitations. 
 
The first limitation revolves around inference. Since the core of the application includes an 
ontology, each piece of information added to the application as to go through the logical inference 
engine (also known as the reasoner). Most triple-stores are optimized for query performance and 
because of this, each time a triple is added to the repository, the reasoner needs to execute and 
update the inference profile (the triples in the datastore that are logically inferred rather than 
directly asserted) for all potentially affected triples. This set of potentially affected triples is 
referred to as the transitive closure and grows progressively based on both the size of the database 
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(the number of triples being stored) and the number of rules in the inference profile38. This can 
present a performance bottleneck for write heavy workloads, where most of the operations in the 
database involve adding new data rather than querying existing data. In addition, this inference 
step is additional work that is not required for traditional graph or relational databases and while 
it enables added functionality not found in other systems (such as transitive spatial relationships), 
it does present a performance limitation when directly comparing against existing systems. While 
there has been some progress in improving the performance of semantic reasoning, through 
methods such as parallel computation [160], [161], it remains an ongoing area of research.  
 
The second major performance limitation revolves around data caching, which a key performance 
optimization for databases. Traditional caching and indexing methods, such as B-Trees [162] 
struggle to effectively manage ST-Objects due to their temporal nature. To illustrate, consider two 
user queries to retrieve data for Cidade de Maputo on August 1st, 2014 and again on August 12th, 
2014. Since the GAUL dataset is only updated on an annual basis, those two queries should return 
identical objects, but how is the database to understand that no properties of Cidade de Maputo 
changed between those two temporal instants? In order to work around this limitation, and 
significantly improve query performance, we implemented a novel temporal indexing method 
known as a TD-Tree [163] which allows us to cache an object and specify the temporal bounds for 
which that object is valid. Using this method, the Trestle management application can correctly 
fulfill these two queries with only a single read from the database. 
 
These types of performance optimizations and usability tweaks are critical to the operation of 
Trestle and have enabled the application to support a wide range of user queries and integrations, 
but at the cost of significant development work in order to reach this point.  
 

4.3.2 Comparison with Previous Methods 

When compared to the previous approaches outlined in Chapter 3, Trestle provides a number of 
distinct advantages and unique features not found in other data models. A summary of the 
comparison between Trestle and prior data models is given in Table 15, which includes the same 
information in Table 9, but with the addition of the Trestle system. While all of these features 
and details have been outlined previously in this chapter, this subsection will briefly summarize 
all the following major features of Trestle: 
  

                                                
38 By default, the Oracle database only updates the inference profile when manually instructed to. This improves 
data loading performance at the cost of not computing the inferred relationships until a later point in time. This 
means that the transitive property of the spatial contains relationships would not be compute (or updated) when new 
data is loaded. It should be mentioned that Oracle does support an optional mode of performing the inference when 
completing each database transaction.  
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1. Direct access to fact values: 

Because each fact is modeled as a node in a relational graph, each fact can be directly 
accessed by either the user or the application at any point in time. This allows Trestle to 
efficiently support fact first data queries. For example, queries such as Find all the US 
counties which had a population count greater than 10,000 in 2013, can be optimized by 
the underlying graph-database and be made extremely performant. This is difficult to 
achieve with traditional object-modeling approaches as all the data properties are stored 
within the object record which can inhibit performance as object complexity increases. 

 
2. Support for referencing data between datasets: 

Given that the has_fact relationship is merely an edge between two nodes (one of which 
is an object header and the other is a fact node) this dramatically increases Trestle’s 
ability to link across different datasets. There is no technical requirement that all of an 
object’s facts be owned by a given Trestle_Objects (meaning that the facts are only linked 
to the given object in a single dataset). Instead, these objects can have has_fact 
relationships to facts associated with other dataset members. This means that a given data 
repository could have two datasets, TIGER and ACS, with the members of the TIGER 
dataset referencing the facts in the ACS dataset. Thus, whenever the ACS dataset is 
updated, the TIGER objects will immediately see the most up-to-date values, but with 
access to any previous versions. This not only simplifies data management and curation, 
but also increases performance and reduces data sizes as a single fact value is only stored 
in the database once but referenced multiple times by the objects which need it. The 
ability to link between datasets is not feature directly supported by existing modeling 
approaches. 

 
3. Manages all datatypes through the same mechanisms: 

One challenge with previous approaches is that they make a technical distinction between 
spatial and no-spatial data properties and manage these two categories through entirely 
different paradigms (e.g. the spatial graph in the 3-Domain model). This presents a 
challenge as data scale increases, especially due to the fact that a large amount of 
available information is intrinsically non-spatial, such as population counts or census 
data, and is instead merely linked to a spatially referenced entity. By contrast, Trestle 
maintains no distinction between spatial and non-spatial data, instead relying on the 
underlying datastore to optimize and manage the various data properties. This not only 
simplifies implementation and interaction, but also allows Trestle to take advantage of 
performance and query improvements as the datastores are further developed. 

 
4. Maintains data context: 

Through the use of datatype URIs, Trestle maintains a distinction between the concrete 
type of a data property (e.g. string, floating point number, etc.) and its user-defined type 
(such as differentiating between population count sampling methods). While Trestle 
remains agnostic as to the user-defined data type, this additional information can provide 
the necessary context to the user in order to correctly interpret the data value. This data 
context is a unique feature of Trestle, derived from the underlying semantic web 
technologies, and is not found in other modeling approaches. 

 
5. Supports pre-computed and logical extensions to spatial and temporal relationships: 
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Through the use of the reasoner supported by the ontology and the underlying graph-
database, Trestle supports additional logical extensions to the common spatial and 
temporal relationships supported by other modeling approaches. These extensions (such 
as symmetry and transitivity) may not be immediately useful for smaller projects, but for 
larger data warehouses, this can provide a powerful foundation for deeper linking 
between datasets in that it allows relationships, expressed within a single dataset, to be 
logically extended to encompass previously disparate datasets as well.  

 
6. Extensible to support additional event and data types: 

While Trestle defines a small subset of datatypes and supported events, applications can 
easily extend the Trestle ontology to add additional concepts necessary to their specific 
use case. As an example, the SDIDS project can create its own ontology which includes 
application specific concepts (such as biological indicators or health facility type) and 
import the Trestle ontology to take advantage of the underlying spatial features. 
 

7. Supports custom collections of related objects: 
Trestle provides the ability to create groupings of related objects into custom collections. 
This further illustrates Trestle’s ability to not only manage objects, but datasets as well. 
Collections can feature objects from multiple datasets and thus serve to improve data 
management and curation by grouping together the data necessary for a given research 
study. Previous modeling approaches are limited to managing ST-Objects and are not 
designed to support higher-level aggregations and associations. 

 
8. Provides a platform for data access and curation: 

Through the use of open APIs and standard web technologies, the Trestle application 
provides a data platform that can enable researchers to access the required information 
within their existing research environments. Rather than requiring users to adapt to a 
custom workflow, Trestle interoperates with existing applications and handles the 
translation between the underlying data model and the common spatial data formats in 
use by researchers. 
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Approach Object Modeling Object 
Relationships 

Events Time States Development 

Time slicing Not directly, only if 
implemented by the 
database 
administrator 

Full support for spatial 
relationships, limited 
support for temporal 
relationships 

No event support Supports bi-
temporal time 

Simple to 
implement, 
inefficient with 
large datasets 

ST-Composite No support for ST-
Objects 

Limited support for 
spatial relationships, 
no support for 
temporal relationship 

No event support No direct support 
for database time 

Requires custom 
data backend and 
relies on unique 
indexing 
techniques 

ST-Object Full support for ST-
Objects 

Full support for both 
spatial and temporal 
relationships 

No event support Supports bi-
temporal time 

Requires custom 
data backend and 
relies on unique 
indexing 
techniques 

3-domain  Full support for ST-
Objects 

Full support for both 
spatial and temporal 
relationships 

Some support for 
events 

No direct support 
for database time 

Builds on existing 
relational database 
technologies, along 
with custom spatial 
support 

Trestle Full support for ST-
Objects 

Full support for both 
spatial and temporal 
relationships, 
including logical 
extensions 

Supports built-in 
and user defined 
events 

Supports bi-
temporal time 

Leverages semantic 
web and graph-
database 
technologies for 
custom data model 

Table 15: Updated summary of data modal desiderata fulfillment, including Trestle. 
This is an update to the data originally presented in Table 9, but with the addition of the Trestle system. Here 
we can see that Trestle fulfills of the desiderata outlined in Section 2.3. 

 
 

Query Time slicing ST-Composite ST-Object 3-Domain Trestle Total 
Q1 P O P P P 4 
Q2 P P P P P 5 
Q3 P P P P P 5 
Q4 O O P O P 2 
Q5 O O P O P 2 
Q6 P O P P P 4 
Q7 P O P P P 4 
Q8 O O P P P 4 
Q9 P P P P P 5 
Q10 O O O O P 1 
Total 6 3 9 7 10  

Table 16: Updated summary of data model example query fulfillment, including Trestle. 
This is an update to the data originally presented in Table 10, but with the addition of the Trestle system. Here 
we can see that Trestle supports all of the example queries described in Section 3.2.1.3. 

 

4.4 CONCLUSION 

In conclusion, the data model and management application encompassed in the Trestle project 
provides a robust foundation for managing complex spatio-temporal data and integrating disparate 
datasets into a unified repository. The following chapters will serve to evaluate the utility and 
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correctness of Trestle by applying the application towards addressing a series of common 
challenges facing public health researchers. 
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Chapter 5. EVALUTION 1: DATASET INTEGRATION 

5.1 INTRODUCTION 

The previous chapter introduced the Trestle data model and management application, which 
provides a foundation for integrating and reasoning about time-varying spatial datasets. This 
chapter begins the evaluation process of the Trestle system. 
 
As previously discussed, a significant innovation of Trestle is in extending the relational model 
from solely focusing on relationships between objects (such as contains, before, etc.) to also 
including relationships within objects (e.g. has_fact). By utilizing the same primitives and data 
layouts for each relationship type, Trestle is able to scale to support not only complex object 
relationships, but to also effectively manage the internal data state of ST-Objects even as the 
amount of information within in each object increases. This means that evaluating the Trestle 
project involves two distinct phases: 
 

1. Determining Trestle’s ability to create and query spatial and temporal relationships 
between ST-Objects. 

2. Evaluating its ability to effectively represent internal ST-Object states as relationships of 
an ST-Object to its associated facts. 

 
This chapter explores the first phase of the evaluation process, while the second phase will be the 
focus of Chapter 6. In order to evaluate Trestle’s object-relationship abilities, we will attempt to 
utilize Trestle to address a common challenge in longitudinal public health research, namely the 
difficulty in maintaining a consistent view of the spatial state of the world for the duration of the 
study period. By implementing an algorithm, on top of Trestle, to automatically detect split/merge 
events within the GAUL dataset, we will leverage the flexibility of both Trestle and the underlying 
graph data layout and clearly demonstrate its object-relationship capabilities. 
 
Section 5.2 describes the public health problem that will be used as the motivating example for the 
evaluation of the Trestle system. Section 5.3 details the split/merge algorithm design and 
implementation, built on top of Trestle, which aims to address the motivating described in Section 
5.2 and produce a spatially and temporally integrated dataset that allows users to determine the 
sequence of events which occurred before or after the lifetime of a Trestle_Object. Section 5.4 
analyzes the algorithm results to determine whether or not the split/merge paradigm is an 
appropriate method for describing spatial change in administrative boundaries. Section 5.5 details 
some limitations of the split/merge algorithm, and some additional algorithm designs are outlined 
in Section 5.6. Finally, Section 5.7 evaluates Trestle’s ability to effectively model spatio-temporal 
relationships between Trestle_Objects as seen through its ability to implement the split/merge 
algorithm in order to address the motivating public health problem. 
 

5.2 TRACKING CHANGES IN ADMINISTRATIVE BOUNDARIES 

To begin, we will describe a common challenge in public health research and the difficulty in 
addressing this issue with existing spatial tooling. As outlined in Chapter 2, public health 
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researchers often find themselves initiating long-term longitudinal research projects in order to 
develop an effective understanding of complex health phenomena. But as the scope of these studies 
increase, both in terms of geographic scale and temporal length, researchers are forced to reckon 
with the fact that the spatial environment at the beginning of the study may be drastically different 
from the spatial state of the study environment at the end of the research period. As an example, 
between the 1971 and 1981 Censuses in the United Kingdom, only 44% of administrative 
boundaries remained the same. That number then shrunk to 32% between the 1981 and 1991 
censuses [164]. While much work has been done to develop methods for accounting for this type 
of change [165], researchers are still left with the need to understand the degree of change in the 
spatial environment and how those changes relate to the new state of the map. Answers to the 
questions of what came before, what came after, and how things are related, are something that 
traditional GIS applications struggle to account for, due to their lack of support for ST-Objects, 
which leaves researchers manually searching for the before/after state of a given region. But 
answers to these types of questions are of critical importance in ensuring the accuracy of the studies 
being performed. 
 
As a concrete example of this challenge, consider two examples from the GAUL dataset at the 
county (ADM2) level. Figure 20 shows a view of the capital city of Mozambique, Cidade de 
Maputo, as it looked in 2014. Figure 21 goes back in time to 1990 and reveals that between these 
two map states, something happens which changes the spatial conformation of Cidade de Maputo. 
To a researcher attempting to analyze changes in public health indicators, realizing that their 
current view of the world does not hold true throughout the study duration immediately begs the 
question. What came before Cidade de Maputo? And further, what is the relationship between 
what is now Cidade de Maputo and what was there previously? 
  



 96 

 
 

 
Figure 20: The city of Cidade de Maputo, in 2014. 

 

 
Figure 21: The same spatial area in 1990. 
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Another concrete example is given in Figure 22 and Figure 23, which show two views of Manhica 
(also in Mozambique) at the same time points. Two things differentiate these maps from the 
previous example. The first, is that instead of multiple counties apparently merging into a new 
entity, we have the reverse, a single county is apparently split into two new counties; however, 
with one additional complication. Both the initial county and the two resulting counties share the 
same name, Manhica. In order to disambiguate these entities, the GAUL dataset assigns each 
region a unique identifier which is never duplicated and only valid for the lifetime of the given 
region. However, data collected in the field is often coded not with a stable and unique identifier, 
but with the name of the region it is collected in, at the time it was originally recorded. Thus, 
begging the question, is Manhica, as it is known in 1990, the same Manhica that exists in 2014? 
The answer to this is an emphatic no, but without a system like Trestle, determining this requires 
a manual inspection of the administrative boundaries. 
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Figure 22: Two Manhica counties in Mozambique, in 2014. 

 

 
Figure 23: The same spatial area in 1990. 
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At this point, a new question arises: But what about counties which do not undergo a clean split 
or merge? For example, counties that undergo changes such as observed in Figure 24 and Figure 
25, where area from a single region in one temporal state is distributed to two or more regions in 
the other state. Here, we can see that the same spatial area is covered by three counties in 2014, 
but two different counties in 1990. This uneven distribution of area means that spatial analysis of 
the two temporal states is not as straightforward as in the previous examples and that researchers 
must manually determine how to reconcile the differences. However, knowing this requirement 
allows us to account for this scenario in developing and evaluating the split/merge algorithm. 
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Figure 24: Three counties in Congo, 2014. 

 

 
Figure 25: The same spatial area in 1990. 
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To address these challenges, we introduce the idea of a spatial split/merge event as a foundational 
method for describing spatial change in administrative districts and for tracking those changes over 
time. A split occurs when a spatial region is divided into two or more regions, which cover exactly 
the same spatial area, no more, no less (such as is the case with Manhica in Figure 22 and Figure 
23). A merge is the inverse, where two or more spatial regions are unified into a single region, 
which covers exactly the spatial area, no more, no less (such as is the case with Maputo in Figure 
20 and Figure 21). The final possibility (as in the case with the counties in the Congo in Figure 24 
and Figure 25) is that a spatial reorganization may include a different spatial area than the 
before/after state. In this example, the spatial area covered by either of the counties in 1990 is not 
directly equivalent to any combination of the resulting 3 counties in 2014. 
 
This illustrates a potential limitation of our algorithm design in that it only attempts to identify 
spatially equivalent split/merge events, not more complex changes that affect a portion of existing 
counties. The reason for this limitation is twofold. First, it allows a determination of the amount 
of global spatial change than can effectively be described through the split/merge approach. 
Second, it provides researchers with the assurance that the before and after state of a given spatial 
region accounts for identical spatial area, which simplifies any data indicator normalization that 
may need to be performed at a later date. Finally, the resulting output of the algorithm also includes 
collections of Trestle_Objects that have some spatial and temporal relationship, even if it falls 
short of direct spatial equivalency. This allows researchers to determine on a case-by-case basis 
how to handle more complex spatial changes, such as those described in Figure 24 and Figure 25. 
This is very similar to the current approach taken by researchers when working with historical 
datasets. 
 
To summarize, this public health challenge provides an ideal problem space for performing the 
first part of the Trestle evaluation process. Specifically, this approach provides three major 
outcomes: 
 

1. Evaluate the ability of Trestle to effectively represent relationships between spatio-
temporal objects. 
One strength of Trestle is that it provides a number of primitives for implementing spatio-
temporal algorithms that build and operate on ST-Objects. This prototype algorithm 
utilizes these primitives (such as collections, relationships, etc.) to answer the underlying 
research question as well as demonstrate the usability of the system for other types of 
algorithms that might attempt to achieve the same result. In addition, it provides a 
demonstration of the object-relationship capabilities of the Trestle system. 

2. Determine the percentage of boundary reorganizations in the GAUL dataset that can be 
directly associated with a split/merge event. 
From a research perspective, it is desirable for each spatial object to cleanly split or merge 
into one or more spatial objects, with no overall change in the area being described. Of 
course, this is not always possible, but it remains to be seen how much spatial change can 
be clearly described by the split/merge approach. One goal of this implementation is to 
determine the feasibility of delineating splits/merges in historical datasets and quantify the 
amount of change that can be directly traced back to the initial spatial state. 

3. Produce a spatially and temporally integrated dataset, suitable for supporting longitudinal 
public health research. 
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The final output of this algorithm is a spatially and temporally integrated dataset that 
represents all the information available in the GAUL dataset, for all the years in which 
information is available, but unified into Trestle_Objects and linked together through time. 
We believe this dataset to be useful to longitudinal public health researchers, across the 
globe. 
 

The next section will describe the design and implementation of the split/merge algorithm, which 
will be followed by an evaluation of its utility when executed against the GAUL dataset. 

5.3 SPLIT/MERGE ALGORITHM DESIGN AND IMPLEMENTATION 

5.3.1 Algorithm Design 

Our algorithm design takes a spatially exhaustive approach, which attempts to answer the question, 
for the time point immediately preceding (or following) the lifetime of a given spatial object, can 
I account for all the spatial area described by the object? This approach is common not only in 
the geographic space, but also in other fields such as medical image segmentation [166] where 
multiple spatial and temporal slices of data are integrated together to build a unified image of a 
medical process. We build upon these existing techniques to both develop the algorithm, as well 
as perform an evaluation of its utility. The benefit of this approach is that it is simple to implement 
and easy to clearly evaluate success and failure cases. The overall goal is accomplished by 
progressively building up collections of spatial objects that overlap each other, at some point in 
time, and determining if any combination of objects, at a different time point, form a spatial union. 
A spatial union is defined as an equivalency between an initial object and a spatial aggregation of 
a given set of additional objects. To illustrate this, consider the above example of Maputo (Figure 
20 and Figure 21). A visual inspection39 of the two images shows that Cidade de Maputo is 
equivalent to the spatial union of Distrito Municipal 1, Distrito Municipal 2, Distrito Municipal 3, 
Distrito Municipal 4, Distrito Municipal 5, and Aeroporto. Likewise, we can see that the Manhica 
in 1990, is spatially equivalent to the two Manhica regions in 2014 (Figure 22 and Figure 23). For 
Figure 24 and Figure 25 there is no spatial equivalency because no individual region from 1990 
can be fully accounted for by any combination of regions from 2014. 
 
One challenge with this approach, is that there might be some percentage of area that is not 
accounted for between the two spatial states, either due to rounding affects in the data processing 
or small measurement errors in the GAUL dataset. These errors primarily arise due to the 
conversions between spatial data formats. The GAUL dataset is distributed as a set of ESRI 
shapefiles, but the Trestle data store requires converting the data in the WKT format. When 
performing the spatial computations, the data is converted in the Java JTS format40. These 
conversions are common in other spatial databases and not unique to the Trestle system. This issue 
is further compounded by the fact that spatial coordinates can often have a very large mantissa 
(the value of a floating-point number after the decimal point). The Java language makes use of the 
IEEE-754 numerical representation, which can result in some ambiguity for operations with very 
precise numbers [167]. 
 
To account for this, we implemented a cutoff value which defines the percent spatial similarity 
between both sides of the spatial union. We set this value to be 95% in our experiments, but this 
                                                
39 This visual inspection is also confirmed numerically. 
40 https://locationtech.github.io/jts/. 
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value is configurable both at data loading time, as well as query time. This means that a dataset 
can be generated using a low similarity value (and thus potentially increase the number of false 
positives) but queried to return only values with a high degree of spatial similarity, which may be 
more approach for the specific task at hand. 
 
These unions are progressively built over time as each new region is evaluated by the algorithm. 
In order to accomplish this, we need some mechanism for storing some state associated with each 
region: namely, which regions might potentially contribute to a spatial union of the given region. 
This state management is accomplished, in Trestle, through the use of the Trestle_Collections 
feature. These collections allow us to create links between regions that have spatial relationship 
between one another, in this case a spatial overlap. As each new Trestle_Object is evaluated by 
the algorithm, it is associated with any collections in which a member spatially overlaps with the 
new object. Each of these collections are then evaluated to determine if any combination of their 
members (and the new object) form a spatial union. Since these collections are independent of 
each other, a given Trestle_Object might be associated with more than one collection. The details 
of the actual order of operations for the algorithm is given in Section 5.3.3. 
 

5.3.2 GAUL Data selection 

While the GAUL dataset features global coverage, for this experiment we limited the input space 
to 7 African countries, which have experienced varying levels of change in administrative 
boundaries over the past several years, largely due to internal political pressures [168]. In addition, 
we included the countries of Mozambique and Uganda, which were a focus of the SDIDS project 
that originally funded this work. 
 
Table 17 gives an overview of the amount of spatial change experienced by the various countries 
over time. This was generated after loading the GAUL data into Trestle and combining the various 
years of data into unified Trestle_Objects. The amount of variation ranged from 0% (Benin and 
Uganda had no spatial change), to a high of nearly 71% of objects in Nigeria which were modified 
during the past 24 years. Figure 26, Figure 27, Figure 28 and Figure 29 show the spatial state of 
Congo and Nigeria at the earliest (1990) and latest (2014) years of the GAUL dataset. 
 

 
Table 17: Distribution of reorganized regions for each evaluated country. 

Country Number of Objects Unchanged Objects Changed Objects

Benin 77 77 0

Central African Republic 72 69 3

Congo 119 18 101

Democratic Republic of the Congo 52 46 6

Mozambique 152 142 10

Nigeria 1017 296 721

South Sudan 46 46 0

Sudan 87 84 3

Uganda 170 170 0
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This table shows the amount of county-level reorganization experienced by each of the evaluated countries 
from 1990-2014. The term object refers to the Trestle_Object which contains all the records for that given 
region. This shows that some countries underwent little to no reorganization, whereas Congo and Nigeria 
underwent a significant amount of spatial change. 
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Figure 26: County-level district organization for Congo, in 1990. 

 
Figure 27: County-level district organization for Congo, in 2014. 
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Figure 28: County-level district organization for Nigeria, in 1990 

 
Figure 29: County-level district organization for Nigeria, in 2014 
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Given that the algorithm attempts to match objects based on their area, the spatial dynamics of the 
dataset are important and may have an impact on the overall utility of the algorithm. For example, 
if the regions are very large, a 95% similarity match may leave a significant amount of area 
unaccounted for. Conversely, small, tightly packed regions may present a challenge to the 
algorithm as there might be multiple combinations of regions that could contribute area to a larger 
aggregation. Figure 30 shows the logarithmic distribution of region area. Here we can see that the 
regions are clustered towards the smaller end of the distribution with 90% of the regions being less 
than 8,000 km2 in size. Likewise, Figure 31 shows a log-log plot of the size of the region versus 
the number of points in the exterior boundary. It shows that there is no direct correlation between 
the size of the object and the complexity of its boundary; however, there are two distinct clusters 
within the dataset which warrant future exploration as to their internal dynamics and relationships. 
 

 
Figure 30: Distribution of region areas. 
This figure presents a histogram of the spatial area (in km2) encompassed by each region (totals shown in the 
left Y-axis). The red line is the cumulative probability distribution (total shown on the right Y-axis) which 
illustrates that the majority of the region areas are cluster towards the smaller end of the range. It should be 
noted that there are some very long-tail outliers which are several orders of magnitude larger than the smallest 
regions. 

 
 



 108 

 
Figure 31: Region size vs. number of boundary points. 
This figure illustrates the relationship between region size and complexity of the exterior boundary. Each region 
is plotted in logarithmic space with the total number of geographic points contained in the boundary on the X-
axis, and the spatial area (in km2) on the Y-axis. The red line shows that there is no correlation between the 
complexity of the boundary and its spatial area. 

 
 
Figure 32 gives some additional context as to the temporal dynamics of the initial dataset. Figure 
32(a) shows the number of regions existing for each year, which indicates major redistricting 
occurs in 1999 and 2011. Figure 32(b) shows the distribution of the number of years for which the 
regions exist, with clusters at 3 years, 9 years, 15 years, and 24 years (the latter indicating the 
region did not change during the course of the study).  
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Figure 32: Temporal properties of selected countries from GAUL dataset. 
These two graphs illustrate some of the temporal dynamics of the countries being evaluated. (a) plots the 
number of regions over time, showing two major reorganizations between the years 1998-1999 and 2010-2011. 
(b) Shows the lifetime of a given region, the number of years for which it existed. This shows clusters at 3 years, 
9 years, 15 years, and 24 years (which is the entire length of the study period). 

 
 

5.3.3 Algorithm Implementation 

 
The implementation of the split/merge algorithm is achieved through the use of the Hadoop 
computing framework41, which allows us to parallelize the computation across a number of 
separate computing nodes. For this experiment, we utilized the Hortonworks HDP 2.6.4 
installation, which bundles Hadoop 2.7.3, along with a number of additional configuration utilities. 
The experiment was run on a small cluster of Dell Optiplex Desktop computers, each with 2 cores 
and 4 GB of RAM, running Ubuntu 16.04. 
 

                                                
41 http://hadoop.apache.org 
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Hadoop is a map/reduce framework in which data is loaded in parallel and mapped into key/value 
sets, with a single key containing zero or more associated records. These sets are then sorted and 
sent to the reducers where the bulk of the computation is performed, and results reported. In 
general, Hadoop is best suited for computational problems where the input set is reduced into a 
single result that is reported for each input key (the canonical example is counting the occurrence 
of words in a set of documents or computing the average flight time for airline routes over the past 
year) in a stateless manner. Meaning, that each individual key/value set does not rely on the result 
of any other key/value set. While this creates some friction between the computing framework and 
the algorithm implementation, which requires some way to maintain the state of the computation 
(e.g. which Trestle_Objects have already been evaluated and associated together), it provides 
several strengths that were leveraged in the implementation. 
 
At startup, Hadoop, in parallel, loads a set of input files from a shared location, which are then 
distributed to each of the cluster nodes. In this case, the input files are the ESRI Shapefiles 
distributed by the United Nations Food and Agriculture Organization. Next, the mapper phase 
processes the input files and emits a series of key/value pairs, which correspond to an application 
specific key which uniquely identifies each GAUL region within each year of the dataset. In this 
application, we opted to create our own keys which combine the GAUL code and the name of the 
region to create a unique key. While the invariants of the GAUL dataset state that each region is 
assigned a unique ADM2 Code, we found instances of codes being reused between several regions 
(an example is Nassarawa and Nassarawa Egon, two distinct regions in Nigeria which share the 
same GAUL code, 23049) and thus opted to add an additional piece of information to enforce 
uniqueness. 
 
The output of the mapper is the unique key for each region, and a set of values that correspond the 
entry of that region for each year it appears in the GAUL dataset. An example is given in Table 
18. This simplifies the algorithm implementation in that all the years of a given region are 
processed at once, rather than individually for each year. 
 
Key Value Value Value Value Value Value 
Bilene 1990 1991 1992 1993 … 2014 
Cidade de 
Maputo 

2013 2014 2015    

Aeroporto 1990 1991 1992 1993 … 2012 

Table 18: Key/value layout of GAUL records in the Hadoop framework. 
 

This illustrates the key/value layout of the year data in the Hadoop framework. Each key contains the total 
number of records linked to the given region in the GAUL dataset.  

 
 
Once the key/value sets have been generated, the data is partitioned between the nodes with all the 
regions for a single country sent to the same node. While this is not the most efficient 
parallelization approach (since some countries may contain far more regions than others while 
other countries may have a higher degree of spatial variance) it has the benefit of being fairly trivial 
to implement in Hadoop and ensures that regions for a single country are not distributed across the 
nodes, which improves performance and reduces the need to synchronize operations between the 
nodes. 
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Once the data mapping has been completed, the key value sets are passed to the reduce phase, 
which performs the bulk of the computation. The reducer first inspects in individual key/value set 
and determines whether or not the given key contains all possible records for the input space. 
Meaning, does a record exist for each year of the GAUL dataset? It is possible to do this because, 
as mentioned earlier, all the records for a given region are present in the same key/value set and 
can be processed in a single operation. If this query holds true, we know that the given region did 
not undergo any spatial change and can be loaded directly into Trestle. This is accomplished via 
the merge logic described in Section 4.2.3. 
 
If the input key does not contain a record for each year of the GAUL dataset (e.g. Aeroporto only 
has records from 1990 to 2012), the application then proceeds through the algorithm logic 
described below. For each input key (labeled as the base individual in the process below), the 
algorithm performs the following actions: 
 

1. Intersect the base individual with any other Trestle_Collections in the database to 
determine if this individual could potentially be related to any previously seen objects. 

2. If no collections intersect, create a new Trestle_Collection for the base individual and load 
it, along with all its associated records, into the database. Repeat the process for the next 
individual. 

3. If any collections do intersect, for each collection: 
a. Get the spatial value for the base individual 
b. As the spatial value may be a multi-geometry (e.g. MultiLineString, MultiPolygon, 

etc.), for each geometry in the spatial value, get the exterior ring as a polygon and 
add to an array. 

c. Create a geometry union from the array of exterior polygons and union them 
together. 

d. Get all the members of the matching collection. 
e. For each member in the collection: 

i. Get the spatial value for the member individual. 
ii. As the spatial value may be a multi geometry (e.g. MultiLineString, 

MultiPolygon, etc.) for each geometry in the spatial value, get the exterior 
ring as a polygon and add to an array. 

iii. Create a geometry union from the array of exterior polygons and union them 
together. 

iv. Add the resulting union to an array of the exterior ring polygons of all the 
concept members. 

f. Create a union of the array of exterior ring polygons of all concept members. 
g. Calculate the areas of both the concept union and the individual union. 
h. Compute the intersection of the concept union and the individual union and 

calculate the resulting area. 
i. If the area of the intersection, divided by the larger of the area of either the concept 

union or the individual union, is greater than 0 add all the concept members to a 
collection of potentially matching objects. 

4. If 1 or more objects are potentially matching: 
a. Search for a spatial union using the Spatial Union Algorithm (described below) 

between any of the matching objects and the base individual. If a spatial union 
exists, create a union between the objects in the database. 



 112 

b. For each matching object, determine any spatial or temporal relationships between 
the matching object and the input individual and write them into the database. 

5. If no objects match the base individual, write the individual into the database and create a 
new collection containing only the base individual. 

 
This algorithm is performed for each key/value set in the GAUL dataset. Trestle handles 
deduplication of data, so if a key has already been associated with a spatial union, no additional 
data is stored in the database, even though the spatial union algorithm may be executed multiple 
times. 
 
Spatial Union Algorithm: 
 
The spatial union determination is accomplished through the following algorithm, which assumes 
as a starting point, an input set of the objects to evaluate for a spatial union. The following actions 
are performed: 
  

1. Divide the objects into a set of early and late objects through the following process: 
a. Sort the input set using the Temporal Comparison algorithm (described below) 
b. For each object in the sorted set: 

i. Get the start and end temporals for the object. 
ii. If the current end date is null, set the current end date equal to the end date 

of the object. 
iii. Else, if the current end date is not after the end date of the object, add the 

object to the set of early objects. 
iv. Else, if the object start date is after the current end date or the object start 

date is equal to the current end date, add the object to the set of late objects. 
v. Return a new object with the sets of early/late objects. 

c. If there are no early or late polygons, then there cannot be a spatial union, return an 
empty value. 

d. Extract the geometry value from each object, keeping the geometries for the 
early/late objects in separate sets. 

e. Determine match direction (e.g. whether we are looking for a SPLIT or a MERGE) 
by the following algorithm: 

i. If we have more early objects than late objects, return SPLIT. 
ii. If we have more late objects than early objects, return MERGE. 

iii. If we have an equal number of early/late objects, return UNKNOWN. 
f. Given the match direction, do the following: 

i. If MERGE: 
1. Create a new queue the size of the number of late objects, sorted by 

the strength of the Union Calculation Algorithm result (described 
below), in descending order. 

2. Perform the Union Calculate Algorithm for each late polygon, and 
the set of early polygons, if the algorithm returns a value, add it to 
the queue. 

ii. If SPLIT: 
1. Create a new queue the size of the number of early objects, sorted 

by the strength of the Union Calculation Algorithm result, in 
descending order. 
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2. Perform the Union Calculate Algorithm for each early polygon, and 
the set of late polygons, if the algorithm returns a value, add it to the 
queue. 

iii. If UNKNOWN: 
1. Perform both the SPLIT and MERGE steps of the algorithm using a 

combined queue the size of the total number of early/late objects. 
g. Return the first result (spatial union with the highest strength) from the queue. If 

the queue is empty, return an empty value, indicating no union exists. 
 
Temporal Comparison Algorithm 
 
This algorithm sorts Trestle_Objects to determine which object is before or after the other. One 
key distinction is that for an object to be considered before or after another object, it must be 
entirely before or after. Any temporal overlap between two objects results in a during relationship. 
This is illustrated in Figure 33.  
 
 

 
Figure 33: Examples of temporal relationships in Trestle. 

 
This figure illustrates how Trestle handles before/after temporal relationships. In order for Object A to be 
before Object B, it must be entirely before having no temporal overlap with Object B. The same holds true for 
the after relationship, it must come entirely after Object B. Any amount temporal overlap results in a during 
relationship. 

 
  
 
Determining these relationships is accomplished through the following algorithm: 
 

1. Given two objects (Object A and Object B), compare the start temporal of Object A with 
the ending temporal of Object B. 

 
 

Object A 

Object B 

Object A 

Object B 

Object A 

Object B 

Object A is before Object B 

Object B is before Object A 

Object A is during Object B 
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a. If Object B has an ending temporal, and ending temporal comes before the start 
temporal of Object A, then Object A comes after object B, return after. 

b. If Object B does not have an ending temporal, then Object A cannot come after, 
but may be during or before. 

i. If the start temporal of Object B is after the ending temporal of Object A, 
then Object A occurs before Object B, return before. 

ii. If the previous conditions are not met Object A must occur during Object 
B, return during. 

2. If Object B has an ending temporal and the ending temporal does not come before Object 
A, then Object A might be before or during Object B. Compare the start temporal of Object 
A, with the start Temporal of Object B: 

a. If the start temporal of Object B occurs after the start temporal of Object A: 
i. If the start temporal of Object B occurs at or after the ending temporal of 

Object A, then Object A occurs before Object B. 
ii. Else, Object A occurs during Object B. 

b. Else, Object A occurs during Object B. 
3. If Object A does not have an ending temporal, then Object A occurs during Object B. 

 
Union Calculation Algorithm 
 
The actual determination of whether or not a spatial union exists between a given set of input 
polygons and a set of match polygons is handled by the following algorithm. At its simplest level, 
it attempts to determine if there exists a spatial equivalency between one of the input objects, and 
any other combination of potentially matching objects that exceeds a given cutoff threshold. This 
threshold sets the limit for the amount of difference (in terms of percentage of spatial area) allowed 
between the input object the potential union of matching objects. 
 

1. Split into input polygons into input polygon powerset using the Powerset algorithm 
(described below). 

2. For each input set in the power set: 
a. Perform a spatial union for all members of the input set. 
b. Create a powerset of the match polygons 
c. For each set in the match polygon powerset: 

i. Perform a spatial union for all member of the match input set. 
ii. Calculate the Percent Similarity (described below) between the spatial 

union of the match input set and the spatial union of the input set. 
iii. If the percent similarity exceeds the cutoff threshold, return the potential 

match set. 
d. If a match is returned for a set in the match polygon powerset, return that value. 

3. If no match is found for any input set return an empty value. 
 
Powerset calculation 
 
The powerset, for a given set S, is the set of all subsets of S, including the empty set and S itself. 
This allows the algorithm to try each possible combination of input polygons. It is accomplished 
through the following steps: 
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1. Create a sorted output set of sets of polygons, which sorts those sets based on the number 
of polygons they contain. 

2. Create a new queue of the all the input polygons. 
3. If the queue is empty, return the sorted output set of polygons. 
4. If the queue is not empty, get the first polygon in the queue. 
5. Create a new set with all the remaining polygons in the queue. 
6. Compute the powerset for the remaining polygons 
7. For each set in the newly computed powerset of remaining polygons: 

a. Create a new set and add the first polygon from the queue. 
b. Add all the polygons from the powerset set to the newly created set. 
c. Add the newly created set to the sorted output set. 

8. Return the output set. 
 
Percent similarity calculation 
 
Calculating the percent spatial equality between two polygons (inputPolygon and matchPolygon) 
is accomplished through the following process: 

1. Determine the largest spatial area between the two polygons. 
2. Compute the spatial intersection between the inputPolygon and the matchPolygon. 
3. Return the area of the spatial intersection divided by the largest spatial area of the two 

polygons. 
 

5.4 ANALYZING THE ALGORITHM RESULTS 

Once the integrated dataset was built, the algorithm results were compared to determine the overall 
utility of this split/merge approach to describing spatial change. For the evaluation, we randomly 
select 100 regions from the integrated dataset and manually compared them against a gold standard 
to determine which of the following categories each random region belongs to: 
 
True negative – The algorithm correctly identified the region as not a part of a spatial split/merge. 
False negative – The algorithm incorrectly identified the region as not a part of a spatial 
split/merge. 
False positive – The algorithm incorrectly identified the region as a part of a spatial split/merge. 
True positive – The algorithm correctly identified the region as a part of a spatial split/merge. 
 
The gold standard comparison was done through the use of custom tooling developed using Trestle 
and the prototype web application, which is shown in Figure 34. More details will be given in 
Appendix A, but will be briefly described here. The map at the top of the image allows for loading 
the Trestle dataset in three dimensions, with the various regions laid out on the Z-axis based on 
their temporal existence. The map can then be rotated, zoomed, and the various regions can be 
moved up and down in the Z-axis to better understand the spatial interaction of the various regions. 
A given region (target region) can then be spatially intersected with other regions and any 
overlapping areas are added to the map and their percent contribution to the target region is shown 
on the screen. In this example, we can see a comparison for the Ankpa region (in blue) alongside 
Omala (dark red) and Ankpa (light red), each of which contributes a portion of the area for the 
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target region. This clearly shows that the target region (Ankpa) splits apart into Omala and 
Ankpa42. 
 
Once the gold standard values were generated, they were compared against the algorithm results. 
This experiment was run using spatial cutoff values of 90%, 95%, 97.5% and 99%. The full 
results are given in   

                                                
42 The temporal existence of the GAUL regions is encoded in their unique identifiers. In this case, 22901-Ankpa-
1000-1999 indicates that the Ankpa region (GAUL code 22901) exists from the year 1000 to the year 1999. This 
region is drawn on top of Ankpa (1999) and Omala due to manual map changes by the user. By default, Ankpa 
would be drawn underneath the two later regions. 



 117 

Appendix B, but the major findings are summarized here. Given the results in Table 19, two things 
are immediately apparent. First, the algorithm was able to correctly identify whether or not a spatial 
union exists in 98% of the test cases. Given the random sampling, the algorithm only had a single 
false negative (incorrectly ignoring a spatial union that should exist) and zero false positives 
(incorrectly identifying a spatial union where one should not be). Second, there is no difference in 
algorithm performance between the various cutoff values in the sample analyzed. This seems to 
indicate that the majority of potential spatial unions were nearly perfect matches and the algorithm 
was able to clearly determine whether or not a split/merge event exists. 
 
Given these findings, the next question that arises is how much spatial change, from the input 
dataset, the algorithm was able to associate with split/merge events. In total, 46.82% of regions 
(839 out of 1792) underwent some type of spatial change during the study period; of these, the 
algorithm was able to match 609 regions with a split/merge event, which accounts for 72.59% of 
the changed regions in the study. 
 

 90% cutoff 95% cutoff 97.5% cutoff 99% cutoff 
True Positive 69 69 69 69 
True Negative 30 30 30 30 
False Positive 0 0 0 0 
False Negative 1 1 1 1 
False Positive Rate 0 0 0 0 
True Positive Rate .9857 .9857 .9857 .9857 

Table 19: Algorithm evaluation results. 
This table presents the results of the algorithm evaluation for the four cutoff values used in this experiment. 
True negative indicates that the algorithm correctly identified the region as not a part of a spatial split/merge. 
False negative indicates that he algorithm incorrectly identified the region as not a part of a spatial split/merge. 
False positive refers to the algorithm incorrectly identifying the region as a part of a spatial split/merge. True 
positive describes the algorithm correctly identifying the region as a part of a spatial split/merge. This table also 
shows both that the algorithm has a high degree of accuracy and that there is no difference between the 
algorithm performance for the given cutoff values. 
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Figure 34: Comparison tool for detecting split/merge events through 3D map visualizations. 

This comparison tool, from the prototype web application, will be discussed in more detail in   
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Appendix B. 
 
  



 120 

Through the evaluation process we were able to continually refine the algorithm to increase its 
match percentage. One example is shown in Figure 35 and Figure 36. This was discovered when 
evaluating the results from Congo. Here, Ouesso county is resized to a fraction of its original area 
and Mokeko is organized around it. This was originally not caught by the algorithm, which 
performed the spatial computations on the boundaries of the objects which meant that when 
evaluating Mokeko for potential matches, it was not matching against Ouesso due to the hole in 
the interior of the boundary which perfectly encompasses Ouesso. To account for this, we added a 
cleanup process which removed holes from the spatial boundaries, when performing the initial 
spatial intersection, which increased the number of candidate counties which the algorithm could 
then evaluate. The actual spatial union computation was not changed and used the true boundaries 
of the Trestle_Object. 
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Figure 35: Ouesso, Congo in 1990. 
This map shows Ouesso county (purple as a large region touching Sembe (green) and Epena (orange). 

 
 

 
Figure 36:Ouesso, Congo in 2014. 
This map shows Ouesso county (green and circled) resized to a fraction of its original area and perfectly 
encompassed by the newly created Mokeko county (in light purple). 
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5.5 ALGORITHM LIMITATIONS AND ALTERNATIVE ANALYSIS APPROACHES 

5.5.1 Algorithm Limitations 

While the results of this split/merge algorithm are promising, there are some limitations. The first, 
is that some spatial changes cannot be reconciled by simple split/merge logic. Thus, leaving some 
percentage of spatial change un-accounted for by Trestle and back into the hands of the domain 
researchers to resolve, which is the current status quo for this type of process. Some of this un-
accounted for change could be addressed by adding an additional level of reasoning to the 
algorithm. Whereas currently, the algorithm only attempts to match a single object in the initial 
temporal state against a set of objects in the second temporal state (e.g. matching Cidade de Maputo 
with earlier regions), it is possible to expand the algorithm to look for spatial unions between 
multiple objects in both temporal states. For example, in the original Congo counties example 
(Figure 26 and Figure 27), it could be expressed that the initial two counties are a spatial union of 
the later three counties. This would dramatically increase the computational complexity of the 
algorithm but may improve its ability to account for additional combinations of spatial change. 
 
The second limitation is that spatial similarity may not always be the most appropriate metric for 
associating administrative regions. There may be situations in which a researcher wishes to 
associate areas based on a different attribute such as population count, instead of purely geographic 
congruence; which will be briefly touched on in the following section. The final limitation is that 
utilizing the ability to associate regions over time for use in research, relies upon an underlying 
assumption that non-spatial invariants hold true between the two spatial states. This means, that 
when comparing an indicator between an initial region and the regions it splits into, simply because 
the two temporal states cover the same spatial area, does not necessarily imply that other factors 
have not changed drastically between the before and after state of the spatial change. The 
researcher is still required to ensure that their model assumptions hold true for all spatial and 
temporal states of the study. 
 

5.5.2 Alternative Analysis Approaches 

While there are a number of different ways to analyze the algorithm results, we selected our 
approach due to its simplicity of implementation and well-documented support in the literature 
[166]. That being said, there are multiple ways in which the evaluation could be improved and 
expanded on. The simplest approach is to expand the number cutoff values used in the analysis 
(e.g. setting the value to 60%, 80%, 99%, etc.), in an attempt to increase or decrease the number 
of false positives or negatives found by the algorithm. Likewise, a future analysis could expand 
the number of randomly sampled regions in order to increase the probability of encountering a 
potential false positive or negative. Beyond these simple means of extending and improving the 
initial analysis, this sub-section will also briefly describe two alternative analysis methods that 
could be of use. 
 
The first alternative approach is to rather than perform a random sampling of candidate regions, 
instead sample from a set of potential outlier regions; meaning those regions which have some 
unique spatial property that falls outside the standard deviation of property values for that 
dataset. Since this algorithm is focused on computing spatial overlaps between regions, these 
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outliers could be regions that are extremely large or extremely small in terms of spatial area 
(shown in Figure 30) which would help determine the algorithm’s sensitivity to the area of the 
regions being matched. In addition, regions could be selected that have either a high degree of 
spatial complexity (e.g. the number geographic points in the region’s boundary) or a high ratio of 
complexity to spatial area. This would help validate the algorithm’s ability to handle very 
complex geographies in an accurate manner. The final method for determining potential outliers 
is to compute the spatial complexity for a given region as well as the complexity for each 
adjacent object. The result of this computation would be a spatial adjacency graph in which each 
region is a node on the graph and links to all other adjacent regions (nodes). The size of the 
nodes corresponds to the complexity metric utilized with more complex nodes having a larger 
value. From there, the nodes with the highest total complexity (e.g. the sum of the complexity of 
a given region along with the complexity of all adjacent regions) could be selected to use as the 
inputs for the analysis. This graph-based approach is a natural fit for Trestle and the types of 
algorithms that can natively interact with the underlying graph layout in the triple-store. More 
details on these types of complex graph algorithms will be given in Section 6.3.1. 
 
The second alternative approach is slightly different from the ones discussed so far in that rather 
than strictly analyzing the algorithm’s results at a given cutoff value, it instead looks to see at 
which cutoff value the algorithm no longer returns accurate results. The could be done by 
picking a high initial cutoff value (e.g. starting with 99%), executing the algorithm and then both 
counting the number of split/merge events found by the algorithm as well as computing the true 
positive and true negative rates for the initial random sample. From there, the algorithm would 
be repeatedly run using lower and lower cutoff values, based on a given step interval (e.g. 95%, 
90%, 85%, 80%, etc.); at each interval, the number of split/merge events is counted and plotted 
on a graph. Once the results have been gathered and plotted, for each interval in which the total 
number of split/merge events increases (signally a potentially higher rate of false positives) 
above a given threshold the initial analysis (described in Section 5.4) is performed and the true 
positive and true negative rates are reported. Once the true positive rate drops below a given 
point (e.g. 80%) then that is point at which the algorithm no longer returns accurate and only the 
higher cutoff values should be used for determining split/merge events. This approach can be 
redone for each new dataset (or geographic area) being studied and the results used to set an 
appropriate cutoff value for returning data to the users. 
 

5.6 FUTURE WORK: ALTERNATIVE ALGORITHM DESIGNS 

While the algorithm described in this chapter has been shown to be effective for reconciling 
changes in administrative boundaries, there are alternative algorithm designs that could be 
effectively implemented on top of Trestle. Two of these approaches will be briefly detailed in this 
section but there are numerous other approaches that could be considered as well. Both focus on 
the idea that spatial area may not be the most descriptive method for associating regions. 
 
The first alternative approach is to utilize methods common in the generation of cartograms. A 
cartogram is a mapping technique in which the initial spatial layout is rescaled (or distorted) to 
present not merely geographic information, but the relative proportions of some value within the 
geographic space. One use of cartograms is to redraw US states in the same relative position as 
they appear on map, but resized to their proportion of the total population or tax revenue, as is 
shown in Figure 37 (though any other indicator could be used to scale the map as well). While 
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there is some analytical critique as to the accuracy and interpretability of cartograms [169], they 
could have some utility in addressing the region matching problem. For example, many public 
health indicators are calculated based on normalized population numbers. This means that for some 
research problems matching a region based on total spatial area is of less value than matching a 
region based on total population. For example, a potential split/merge event may not spatially 
match because a small amount of additional area is included from another region; however, if this 
small extra area contains only a small number of people (or none at all) it may be sufficient (and 
perhaps more useful) to identify a split/merge based on the fact that all of the population from the 
initial region is accounted for in the candidate regions. This approach is further motivated by the 
fact that there is often a strong inverse/correlation between population size and region area. Thus 
a small, heavily populated region could have an outsized effect on the statistical outcomes and 
contributions of a given region. 
 

 
Figure 37: A cartogram of the US showing the size of each State (in 2004) on the basis of 

Federal Tax contribution [170]. 
 
 
A second alternative approach, proposed by Martin in 2003, termed Automated Zone Matching 
(AZM) [164], was originally designed as a way to match spatial regions which were generated from 
different datasets (e.g. census tracts vs zip codes) and though they account for different spatial 
area, could potentially be used in the same research project. The key component of AZM is that it 
computes a stress factor based in differences in various data properties, such as a proportion of the 
population count. This approach straddles the line between directly linking changed boundaries 
based on a given similarity and creating new regions for analysis (as will be described further in 
the following chapter). This proves to be a natural extension of the algorithm described in this 
chapter in that it follows the same type of search procedure (e.g. identifying candidate geographies 
based on spatial overlap) but adds an additional step in determining similarity between potential 
aggregations based on statistically significant differences in the various data properties. The 
downside of this approach is that not only is it more computationally expensive, but it requires 
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manual intervention on the part of the researcher in order to determine which properties should be 
considered in the stress metric and how to appropriately weight the various measures. Likewise, 
use of this approach makes it difficult to determine if the optimal zoning match has been reached, 
as there are numerous methods for scaling and weighting the data property values. The benefit of 
this approach is that it allows for matching regions which may not be exactly identical in terms of 
their spatial area, but similar enough in terms of population measures as to support more direct 
statistical comparisons between the two temporal states. 

5.7 EVALUATION OF TRESTLE’S OBJECT RELATIONSHIP SUPPORT 

As the first phase of the two-phase evaluation outlined at the beginning of this chapter, one goal 
of the algorithm implementation is to determine whether or not the Trestle data model and 
management application has the ability to effectively represent different types of relationships 
between the various Trestle_Objects. After executing the algorithm over the GAUL dataset, the 
resulting dataset includes four distinct types of relationships: 

1. Spatial relationships: Each Trestle_Object is spatially related to all other Trestle_Objects 
that contain some spatial interaction between the two (e.g. touches, overlaps, etc). This 
means that the newly generated dataset can directly answer spatial queries involving binary 
spatial relationships (as described in [111]) without requiring those relationships to be 
computed at query time. In addition, these spatial relationships include the logical 
extensions described in Table 12. 

2. Temporal relationships: In the same manner as the spatial relationships described above, 
this dataset also contains the full set of temporal relationships as described in [113] and 
Table 12. It should be noted that the temporal relationship expressed in this dataset are only 
computed for Trestle_Objects that are either spatially related to each other, or logically 
inferred by the reasoner. This means that Cidade de Maputo is specified to be after the 
counties it is spatially equivalent to (see Figure 20 and Figure 21), but has no temporal 
relationships expressed with counties in Nigeria. This is not a limitation of the Trestle 
application, but merely a performance optimization in order to avoid dramatically 
increasing computational complexity. In addition, it was deemed sufficient to provide 
temporal relationship at the same level of detail as the corresponding spatial relationships. 

3. Spatial unions: For each spatial union determined by the algorithm, Trestle maintains a 
split/merge relationship between each of the objects  

4. Trestle collections: In addition to the direct relationships (spatial, temporal, split/merge), 
the resulting dataset also includes collections of related objects that share some type of 
association (spatial or temporal), which allows researchers to quickly gather spatially 
related objects that may not have a corresponding spatial equivalency (such as the counties 
described in Figure 24 and Figure 25). 

 
Through these four relationships, it is clearly demonstrated that Trestle has the ability to effectively 
describe a large number of object relationships in a way that provides direct utility to existing 
public health research. 
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5.8 CONCLUSIONS 

To summarize, this chapter outlined a common challenge in longitudinal public health research 
and detailed a novel approach for utilizing Trestle to design and implement an algorithm for 
spatially and temporally integrating a commonly used spatial dataset. We then validated the idea 
that a split/merge paradigm can be a useful method for accounting for spatial change over time; 
especially in a spatially exhaustive dataset such as GAUL. Finally, through the design and 
implementation of the split/merge algorithm we evaluated the ability of the Trestle system to 
effectively represent complex relationships between ST-Objects. The following chapter will 
conclude the evaluation phase by focusing on Trestle’s ability to manage and query the internal 
state of ST-Objects. 
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Chapter 6. EVALUATION 2: REGIONALIZATION 

In the previous chapter, we outlined the two-phase evaluation process for the Trestle data model 
and management application. Chapter 5 evaluated Trestle’s ability to answer research questions 
which rely upon complex relationships between ST-Objects. What remains left do be done, is to 
determine whether or not Trestle can provide a similar level of support for answering research 
questions which require valid sets of information at specific time points, for a given ST-Object. It 
is this component that will be the focus of this evaluation chapter. 
 
While there are multiple potential methods for evaluating Trestle’s performance in this area, this 
chapter will follow the approach described in Chapter 5 (solving a public health research challenge, 
in order to demonstrate system function) and attempt to address an additional challenge in public 
health research, namely, determining the appropriate spatial and temporal scope for a given 
research project. On significant difference is that while Chapter 5 developed its own algorithm to 
solve the given challenge, this chapter will focus on integrating existing approaches and building 
them on top of the Trestle system. To help contextualize this issue, consider two existing research 
challenges: 
 
1.        US census data is a common source of information used by public health researchers due 
to its high level of detail and availability at multiple levels of spatial resolution ranging from the 
state level down to granular census blocks. While researchers often wish to use the most granular 
data possible, there are privacy restrictions that prohibit publication of findings if there is a 
potential for identifying individuals in the study area. 
2.        When attempting to determine the appropriate length of time to perform a longitudinal 
study, researchers are often forced to consider whether or not any of the spatial regions being 
studied have been changed during the study period. Another way of looking at this problem is 
trying to determine the longest period of time for which a certain amount of the spatial area remains 
consistent.  
 
One solution to both of these issues is a technique called regionalization, which is the process of 
creating new aggregations of existing spatial objects that are specifically designed to address a 
given research question. These spatial aggregations can be designed to solve either of the two 
challenges mentioned above. This process is well defined in the geospatial literature, but requires 
access to both the underlying spatial objects, and their associated values, as well as the spatial 
relationships between them. Gathering this required information is a manual process and one that 
is repeated for each unique invocation of the regionalization algorithm. This artisanal approach to 
region design becomes difficult to sustain as the both the size and complexity of the input data 
increases. We propose that Trestle provides unique capabilities that simplify the design and 
implementation of these types of algorithms. Primarily through its ability to quickly retrieve the 
temporally correct data properties for the initial spatial objects, as well as its support for higher-
level aggregations which can be used to store and retrieve the results of the regionalization process. 
We also propose that these types of algorithms provide an excellent platform for fulfilling the 
second part of the two-phase evaluation proposed in Chapter 5.  
 
Section 6.1 gives a brief introduction into the background of the regionalization problem. Section 
6.2 describes three major approaches (AZP, SKATER, and REDCAP) which have been developed 
to address this issue. Section 6.3 describes how the REDCAP algorithm might be integrated with 
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Trestle via both a direct translation, as well as by modifying the algorithm to better take advantage 
of the unique features of Trestle. Section 6.4 outlines some future work for both extending the 
Trestle application to better support these types of research algorithms, as well as for more fully 
integrating the temporal dimension into regionalization. 
 

6.1 INTRODUCTION TO REGIONALIZATION 

Within public health research, it is extremely common to perform studies using existing spatial 
definitions delivered by a national or regional body. Some of these datasets have been described 
previously in this dissertation, including GAUL, and the US TIGER dataset, often combined with 
ACS data properties. These datasets provide the spatial foundation for a large proportion of 
existing research efforts. 
 
One primary benefit of this approach is that this data is easily accessible, well understood, and 
often directly comparable with previous studies and research projects. In addition, as has been 
described in Section 1.2, public health has an inherent political and administrative context and is 
often required to provide evidence for policies and interventions within a specific political and 
administrative frame. Phrased another way, if policy occurs in counties, then the data should be 
reported as such. 
 
But a major downside of this approach is that these base spatial units (BSUs) were originally 
designed to optimize for situations other than spatial research. For example, ZIP code areas are 
optimized for delivering letters and thus gave rise to ZIP Code Tabulation Areas (ZCTAs) that 
modified the boundaries to better serve census data gathering [171]. Likewise, the design of other 
types of BSUs, such as county borders or census blocks are often based on convenience and not 
necessarily on the most optimum spatial layout [172]. 
 
The layout of these spatial regions (also referred to as the zoning system) is of critical importance 
to the researcher both through its enablement of their ability to observe a given phenomenon, as 
well as its effects on the underlying accuracy of the observations [173]. Thus, it is often desirable 
to have the ability to redistribute the spatial layout of a given study area, in order to create analysis 
units which more closely match the goals and requirements of a given study [174]. As the 
granularity of available spatial data increases, so does our ability to design custom geographies, 
optimized to the research task at hand, without sacrificing spatial quality. 
 
This process of custom geography creation is known as regionalization and has been progressively 
developed and refined for most of the history of computerized geography [175], [176]. While there 
are numerous methods for constructing new geographic regions, as well as multiple variations on 
these methods, three primary approaches will be the focus of this chapter: AZP, SKATER, and 
REDCAP. Each of these approaches progressively builds upon each other (both conceptually as 
well directly referencing the other implementations) and aims to solve existing limitations as well 
as propose novel approaches to region design. The next section will describe each of the three 
algorithms, in detail.  
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6.2 OVERVIEW OF EXISTING METHODS 

6.2.1 AZP 

First described by Openshaw in 1977 [177] and refined further over the next several years [172], 
[173], the Automated Zoning Procedure (AZP) is one of the earliest regionalization approaches in 
geography. It is been successfully used to generate new layouts of the UK Census [172], [178], as 
well as reconcile datasets collected in different zoning layouts (e.g. counties vs census tracts) 
[164], [174]. 
 
Algorithm Design 
In brief, the goal of the algorithm is to find the optimum redistribution of a set of BSUs (e.g. census 
block groups) into a set of larger regions (e.g. regions with a spatial resolution roughly equivalent 
to U.S. zip code areas). In order to appropriately generate the regions, AZP requires an objective 
function that can compute the quality of a given region. This function is entirely left up to the user, 
but some guidance for selecting an appropriate function is given in [173]. In addition, in their 1995 
paper, Openshaw and Rao describe the optimization function they used to create new zones from 
the 1991 UK census which contain roughly the same numbers of older adults. 
 

Equation 1: AZP optimization function 
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Equation 1 determines the quality of a potential optimization solution (e.g. a proposed distribution 
of BSUs into larger regions). Here, 𝛿/0 is set to 1 if BSU i is a member of Region j, otherwise it is 
set to 0. 𝑃/ is the number of older adults in BSU i and 𝑇0 is the target population of older adults in 
region j, which is specified by the user before executing the algorithm. This optimization function 
could be modified to support a broad range of data properties and statistical functions; such as 
setting a min/max population count or optimizing for the smallest amount of variance between a 
given set of data properties (as described in more detail in Section 6.2.2). 
 
Once the objective function has been determined, the algorithm proceeds through the following 
steps: 
 

1. Randomly partition the BSUs into a set of M spatially contiguous output regions. 
2. Calculate the value of the objective function for all the initial regions. 
3. Randomly select a region K from the list of M regions. 
4. Find all BSUs that border region K. 
5. Randomly select a BSU from the list in Step 4, recompute the objective function with the 

BSU assigned to region K, instead of its original region. If the optimization function 
improves, move the BSU from its original region into K and update the optimization 
function value for both K and the region which originally contained the BSU. Repeat Step 
4 for the newly updated region K. If the optimization function decreases or does not change, 
leave the BSU in its original region and repeat Step 5 with another BSU from the list 
generated in Step 4. 
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6. When all adjacent BSUs have been evaluated, return to Step 3 and repeat steps 4-6. 
7. Repeat steps until no other optimizing moves can be made. 

 
The end result is a set of regions that optimally fit the user specified objective function; however, 
the output of the function is not deterministic given the initial randomized starting point of the 
algorithm. The algorithm is also susceptible to converging on a local maximum, due to the fact 
that it only evaluates whether or not moving a single BSU would increase the value of the objective 
function. Openshaw and Rao did propose improving the algorithm through the use of techniques 
such as simulated annealing [179] and tabu searches [180], but at the cost of tremendously 
increased computational complexity [172].  

6.2.2 SKATER 

The Spatial ‘K’luster Analysis by Tree Edge Removal (SKATER) algorithm, was originally 
proposed in 2006 as an improvement on the AZP method, which not only aimed to reduce 
computational complexity, but also to avoid situations in which AZP was susceptible to 
converging on a local maximum [181]. 
 
Algorithm Design 
 
SKATER distinguishes itself from AZP in that rather than taking a purely geographic approach, it 
instead brings in ideas and concepts from the field of graph theory. Whereas AZP begins by 
randomly assigning all input regions into larger aggregations, and then progressively refining the 
aggregations, SKATER redefines the problem in terms of traversing a graph of spatially related 
objects. Given this different approach, SKATER introduces a number of new terms, common in 
graph theory, but less often used in geography. A tree is a graph of nodes (elements in the graph, 
such as census blocks) in which no two nodes are connected by more than one edge (a relationship 
between two nodes). A spanning tree is a tree containing all input regions where all the nodes are 
connected by unique paths. A minimum spanning tree (MST) is a spanning tree in which all the 
edges represent the least cost path between any two nodes in the tree. The cost of a given edge is 
computed based on the dissimilarity between the data properties of two regions. The design of the 
cost function is left up to the end user but requires two specific components. First, which data 
properties will be considered in the cost. An individual region may have numerous properties 
associated with it, but only a subset may be required in order to determine similarity (or 
dissimilarity) with other regions, thus the user must specify which properties to include in the 
given attribute vector. The second component is how to perform the actual comparison between 
the attribute vectors of the various regions. The paper authors recommend a standard square of the 
Euclidian distance metric for most types of data with comparable scales; however, researchers 
may wish to utilize their own metrics or apply a weighting function to the different attributes. 
 
Once the cost function has been determined, the actual evaluation of the regions is performed in 
two distinct phases. 1) Build an MST of all connected regions. 2) partition the MST into distinct 
sub-trees that minimize the given cost function. 
 
Phase 1: Generate MST 
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The algorithm first begins with the spatially contiguous graph of the input regions where each 
region represents a node on the graph and each node contains a number of edges linking to their 
spatially contiguous neighbors. It then randomly selects a region to begin with. 
 
Starting with an MST that contains only the initial region (node) and no spatially contiguous links 
(edges); the algorithm proceeds through the following steps for each region in the spatial graph: 
 

1. Find all the nodes that are spatially contiguous with the given node. 
2. For each node, compute the cost of each edge which links to a node that is not a member 

of the MST. 
3. For the lowest cost edge, add the node and the edge to the MST. 
4. Proceed until no new nodes can be added to the MST (e.g. that there are no more vertices 

that can be added because they all point to members that have already been added to the 
MST). 

 
This process is illustrated in Figure 38, where T1 represents the MST, beginning with only the 
initial node. For each iteration, the new node is evaluated, and the lowest cost node/edge pair is 
added to the MST. 
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Figure 38: Construction of the MST for phase 1 of SKATER (Reproduced from [181]). 
This image illustrates the process by which SKATER constructs the MST from the initial spatial adjacency 
graph. It first computes the cost of each edge and then starting with the lowest cost edge it progressively 
expands the initial tree by only select the lowest cost nodes, which connect a node that is not already associated 
with the tree. T represents the MST which consists of a set of nodes (V) and edges (L), starting with the initial 
node V1. 
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Phase 2: Partition MST 
 
Once the MST has been created, it needs to be partitioned into separate trees of spatially 
contiguous clusters that maximize the quality of the given clusters. This quality measure is 
calculated by a sum of squared deviation (SSD) metric which optimizes for dispersing the values 
of a given attribute vector across the newly created clusters. As an example, if the attribute vector 
used to compare regions includes population count and average income. The partitioning algorithm 
would attempt to create clusters that have the smallest amount of income and population variance 
across the clusters. Computing the SSD is achieved by the following equations: 
 

Equation 2: SKATER optimization function 
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Equation 3: SSD calculation 
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Once the algorithm has built the initial MST, it then proceeds through the following algorithm: 
 

1. Identify the edge in the tree which has the highest objective function as determined by 
Equation 2. This is calculated for each edge by assuming that if the given edge were 
removed from the tree, the result would be two separate trees that would each have their 
SSD calculated by Equation 3. 

2. For the edge with the highest result from Equation 2, remove it, which partitions the MST 
into two subtrees. 

3. For all of the resulting trees, select the one with the highest result from Equation 3 and 
repeat the previous steps until the desired stop state is reached. 

 
The stop state could be achieved by either setting a desired number of output regions (e.g. create 
3 aggregated objects from the given input regions) or by creating a different objective function 
that stops partitioning the trees further, such as by setting a minimum or maximum population 
count for the given regions. This phase is illustrated in Figure 39, which begins with the MST from 
the previous phase and progressively partitions the trees until the desired output state is reached. 
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Figure 39: Partitioning the MST for phase 2 of SKATER (Reproduced from [181]). 
One the MST has been produced from phase 1 of SKATER (shown in Figure 38), partitioning the MST is 
shown in this figure. This process recursively divides the initial tree into a number of sub-trees until either the 
desired number of trees (which correspond to regions) has been produced, or some other stop state is reached. 

 
 
This partitioning process is NP-hard as it leads to a combinatorial explosion of potential values as 
the input size grows. To compensate for this, the authors propose a number of optimization 
heuristics, which significantly reduce the solution search space. The details of these optimizations 
are beyond the scope of this dissertation, but can be found in [SKATER, 2002]. The key piece of 
information is that these optimizations reduce the computational load without effecting the 
algorithm accuracy, or significantly altering the flow of execution. 
 
Compared to AZP, SKATER has shown to be both quicker, as well as to generate clusters of 
roughly the same level of quality (see [181] for more details on the comparison). It also has the 
added benefit of being increasingly parallelizable. Each subtree, created in Phase 2, is independent 
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of any other tree (as are the children of those trees) and thus can be processed in parallel. This 
means, that the parallelizability of the algorithm increases, as it approaches the optimum solution. 
 
One limitation of this approach is that, for some cost functions, it is possible for two edges to have 
the same cost value, and thus arrive at a non-unique MST. Though the authors specify that given 
the types of data commonly dealt with (socio-economic data from census records) this is unlikely 
to happen. If this does occur, it is possible to select a different starting point and arrive at different 
(and unique solution) or expand the attribute vector to account for more input data properties. But 
this is something that may be a surprise to the user, especially if they are working with a small 
attribute vector in which the values of the data properties are likely to be the same (e.g. birth rates 
or net migration estimates for sparsely populated counties). 

6.2.3 REDCAP 

Rather than defining a single algorithm, as is the case for AZP and SKATER, REDCAP is actually 
a suite of different clustering techniques that aim to overcome the limitations with the SKATER 
approach. The first is that when SKATER constructs the spatial contiguity graph, is assumes a 
static state of the world. Meaning, that it cannot account for objects that may become adjacent to 
each other if they later belong to two adjacent clusters. The second, is that SKATER cannot 
guarantee that the data property values of the BSUs within a given region are similar to each other. 
Instead, it calculates the similarity of a given region to other regions in the proposed solution, 
which means that some BSUs within a given region may have significantly different values from 
other region members, even if their combined values are similar to other proposed regions. This is 
referred to as a chaining problem and is a well-known limitation of minimum spanning trees [182]. 
 
Algorithm Design 
 
In order to address these limitations, the REDCAP family of algorithms was developed [183]. This 
family is a collection of three clustering methods and two different contiguity constraints, resulting 
in six different methods for regionalizing a given input dataset. Each of these combinations 
provides a different way of computing the similarity of two proposed regions. By comparing a 
subset of the members of each proposed region through a user provided dissimilarity function that 
can be used to determine the determine how similar two BSUs are to each other, in the same 
manner as the cost function used by SKATER. 
 
Before computing the dissimilarity, REDCAP has to determine which BSUs in each region should 
be used in the calculation. The simplest approach is known as first-order linkage which means that 
only regions that are spatially adjacent to each other are used in the dissimilarity calculation. The 
more complex approach is known as full-order linkage which calculates the dissimilarity between 
a given BSU and all other BSUs, not including BSUs in the same region. 
 
These two approaches are illustrated in Figure 40; for the first-order linkage, the dissimilarity 
function would be used to calculate the differences between spatially adjacent BSUs only. 
Meaning, comparing B -> H and E -> {H, F}. For the full-order linking, all edges are used, 
meaning A -> {H, G, F}, C -> {H, G, F}, D -> {H, G, F}, E -> {H, G, F}, B -> {H, G, F}.  
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Figure 40: REDCAP linkages between two clusters (Reproduced from [183]). 
This figure shows the two different linking methods supported by REDCAP. For first-order linking (shown via 
the solid lines), only immediately adjunct regions are linked together. Meaning, comparing B -> H and E -> {H, 
F}. For the full-order linking (shown via the dashed lines), all edges are linked together, meaning A -> {H, G, 
F}, C -> {H, G, F}, D -> {H, G, F}, E -> {H, G, F}, B -> {H, G, F}. 

 
For either of the two linkage approaches described above, REDCAP defines 3 clustering methods 
that determine how the edge lengths are computed. The first clustering method is single linkage 
clustering (SLK) which computes the dissimilarity of two regions based on the closest pair of data 
points from each region. This is illustrated in Equation 4 and is conceptually identical to the 
SKATER algorithm. L and M represent two regions being compared, while du and dv represent the 
data point between compared between the two regions. 
 

Equation 4: SLK algorithm 

𝑑GHI(𝐿,𝑀) = 𝑚𝑖𝑛P∈H,R∈S(𝑑PR) 
 
The second clustering approach, known as average linkage clustering (ALK) (shown in Equation 
5), defines dissimilarity as the average distance between region data points. 
 

Equation 5: ALK algorithm 

𝑑THI(𝐿,𝑀) =
1

|𝐿||𝑀|**(
R∈SP∈H

𝑑PR) 
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The final clustering method (shown in Equation 6) is known as complete linkage clustering (CLK) 
which is similar to the ALK approach but uses the maximum distance between the data points of 
two BSUs to compute the dissimilarity. 
 
 

Equation 6: CLK algorithm 

𝑑WHI(𝐿,𝑀) = 𝑚𝑎𝑥P∈H,R∈S(𝑑PR) 
 
While there are differences between the various clustering methods, they are conceptually similar 
enough that it is only necessary to describe one of the approaches, in order to understand how the 
entire REDCAP family functions. For the remainder of this section, we will describe the Full-
Order-ALK approach, as it has been shown to produce the highest quality regions (along with Full-
Order-CLK) and provides the most complete implementation illustration. 
 
Like SKATER, this algorithm features two distinct phases, building the initial spatially contiguous 
tree, and partitioning the tree to achieve the desired number of output regions. 
 
Phase 1: Build the spatially contiguous tree 
 
The algorithm begins with the spatially contiguous graph, similar to the process described by 
SKATER. In this graph, each BSU begins as a member of its own region and is represented as the 
nodes of the graph. The edges are the links between spatially adjacent objects and it is these edges 
that are of interest to the algorithm. Each edge is assigned a specific length which corresponds to 
the closeness of attribute vectors between the two BSUs as determined by the chosen clustering 
method. 
 
Beginning with this graph, it first computes the length of each edge (meaning how similar two 
spatially adjacent BSUs are to each other, in terms of the data properties being used in the 
comparison) for the entirety of the graph and sorts the edges into a list in ascending order (E)43. 
List (T) maintains the final output list of all the necessary edges. 
 
It then proceeds through the following algorithm, until all the BSUs have been assigned to the tree 
starting with the shortest (most similar) edge between two objects. 
 

1. Determine if the two objects linked by the current edge meet the following criteria: 
a. Both are members of two different clusters (m and l). 
b. The two clusters are spatially adjacent. 
c. The length of the edge is greater than or equal to the current average edge length 

between clusters m and l. 
2. If any of the above conditions are not met, repeat Step 1 with the next shortest edge in list 

E. 
3. Otherwise, find the shortest edge in E which connects m and l. 
4. Add the edge to T and merge cluster m into l. 
5. For each current cluster c (except the two clusters in this step) update the average distance 

between c and the new cluster ml, using the following algorithm: 
                                                
43 As a performance optimization, E is actually implemented as a binary search and sorting tree but is described here 
as a list for simplicity.  
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𝑎𝑣𝑔𝐷𝑖𝑠𝑡(𝑐,𝑚𝑙)

=
[𝑎𝑣𝑔𝐷𝑖𝑠𝑡(𝑐, 𝑙) ∗ 𝑛𝑢𝑚𝐸𝑑𝑔𝑒𝑠(𝑐, 𝑙) + 𝑎𝑣𝑔𝐷𝑖𝑠𝑡(𝑐,𝑚) ∗ 𝑛𝑢𝑚𝐸𝑑𝑔𝑒𝑠(𝑐,𝑚)]

[𝑛𝑢𝑚𝐸𝑑𝑔𝑒𝑠(𝑐, 𝑙) + 𝑛𝑢𝑚𝐸𝑑𝑔𝑒𝑠(𝑐,𝑚)]  

 
6. Remove any edges that link cluster c with m or l from list E. 
7. Add a new edge that links cluster c with ml into E with the updated average distance 

computed in Step 5. 
8. Repeat Step 1 with the next shortest edge in list E. 

 
The output of Phase 1 is a spatially contiguous tree of clustered BSUs, with each member linked 
to the adjacent object most similar to itself (based on the average distance of the attribute vector). 
Once generated, the next step is to partition the tree into optimal clusters. 
 
Phase 2: Partition the spatially contiguous tree 
 
The partitioning phase proceeds in largely the same manner as the SKATER algorithm. Starting 
with the initial tree, it recursively partitions the tree into a given number of output regions which 
exhibit the most homogenous distribution of a given set of data properties between the various 
regions. This is determined by Equation 7, in which H(R) is determined by the SSD given in 
Equation 3 
 

Equation 7: Calculating the change in heterogeneity between two given sub-trees 

ℎd∗ = max	(𝐻(𝑅) − 𝐻(𝑅=) − 𝐻(𝑅?)) 
 

Equation 8: Overall heterogeneity of a proposed regionalization solution 

𝐻@ =*𝐻(𝑅0)
@

0E8

 

Beginning with the single cluster produced in Phase 1, the partitioning algorithm proceeds through 
the following steps to determine how to partition a given tree.  
 

1. For the given tree T, compute the heterogeneity of all its members using Equation 3. 
2. Create a map M of edges in tree T with an associated change in heterogeneity. 
3. For each edge E in M do the following: 

a. Temporarily remove E from T thus creating two sub-trees Ta and Tb. 
b. Compute the heterogeneity for Ta and Tb. 
c. Determine the amount of decrease in heterogeneity between T and Ta and Tb using 

Equation 7. Associate this value with E in M. 
4. Determine the optimum split of T into Ta and Tb by removing edge E which has the largest 

decrease in heterogeneity, as selected from M. 
5. Continue until the desired number of regions has been reached. 

 
The output of REDCAP is a set of optimal regions, which have the highest degree of homogeneity 
of the attribute vector, both between the regions, as well as between the members of a given region. 
When compared to SKATER, REDCAP provides improved performance and spatial accuracy, due 
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to the ability to recompute the spatial contiguity graph as the trees change over time. It should be 
noted that a modification to REDCAP was published in 2011, which provided additional 
improvements to account for potential unevenness of data distribution for smaller spatial areas 
[184]. The original REDCAP algorithm is described here due to its implementation simplicity over 
the improved method, as well as the fact that the updated algorithm only differs in the metric used 
to compute the edge weights in Phase 1. 

6.3 INTEGRATING REDCAP WITH TRESTLE 

Given that we have now described three major approaches to addressing the regionalization 
challenge, it is time to evaluate how these algorithms might make use of the Trestle data model 
and management application. 
 
In general, there are two major strategies for integration. The first, is to use Trestle simply to 
retrieve the necessary input data, such as the input BSUs for AZP, or the spatial adjacency graph 
for SKATER and REDCAP. The second, is to modify the existing algorithms to take advantage of 
the additional features in Trestle to simplify the algorithm design and implementation. The first 
part of this section will detail how Trestle can be used to support gathering the initial dataset, while 
the second part will describe strategies for improving existing algorithms through extended use of 
Trestle. 
 

6.3.1 Gathering the initial data 

 
Each of the algorithms are designed to be executed on an initial dataset, which can be gathered via 
a single retrieval from the underlying datastore. For AZP, this involves gathering the BSU 
boundaries and randomly generating initial regions to then partition. For SKATER and REDCAP, 
both start with a spatial adjacency graph, which is then processed by the respective algorithms. 
 
It is this initial dataset that Trestle can help optimize, in two major ways. The first is in gathering 
the correct information for the temporal period being aggregated. Each algorithm assumes a static 
map state which requires valid data for a specific point in time. For Trestle, this can be achieved 
through the use of Trestle_Objects, which allows data from multiple time points to be combined 
into unified spatial objects (such as US counties which may have data for multiple years). This 
means, Trestle supports performing regionalization at multiple time points, without requiring 
manually changing input datasets. The second optimization is through easily generating the spatial 
adjacency graph. Since Trestle provides the ability to denote relationships between 
Trestle_Objects (such as the fact that two counties are spatially adjacent) it can perform an initial 
analysis to build the spatial object graph and on subsequent queries return the graph, without 
requiring expensive spatial computations at query time. In addition, Trestle already maintains its 
data in a native graph layout, which means it optimally supports graph-based algorithms without 
any special modifications and in a performant manner. These types of approaches are an excellent 
fit for Trestle given that way that the underlying triple-store is optimized to traverse relationships 
between various nodes, without requiring extensive translation between table and graph data 
layouts. Existing modeling approaches are not optimized for these types of queries, which can 
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difficult to perform in traditional relational databases, especially as data size increases. Trestle 
does not suffer from this limitation.  
 
To illustrate how these algorithms might make use of Trestle, we will show an example of 
performing the regionalization of a subset of US counties in the state of Washington, using data 
from August, 201344. This initial starting dataset is shown in Figure 41. As a first step, we 
combined county data from the US Tiger Dataset into unified Trestle_Objects by joining the spatial 
boundaries with their corresponding ACS data properties for the years 2011 through 2016. This 
was accomplished through a custom merge process which combined the data on a year-by-year 
basis, with each year of data merged together by the Trestle management application. The source 
code for this process is shown in Appendix C. The output of the data loading process is a set of 
unified Trestle_Objects which contain the various data properties of a single county, for each year 
of data. This is illustrated in Figure 42 and the corresponding data definition, used by the Trestle 
application, is given in Code 3. More details on the data loading and merging process are given in 
Section 4.2.3. 
 
 

 
Figure 41: Selection of Washington counties in 2013 used for REDCAP integration example. 
This map shows the initial counties used for the REDCAP/Trestle integration example. These counties are all 
found in Washington State, using the US TIGER dataset.  

 
 

                                                
44 Census estimates are updated at the mid-point of each year, meaning that a given population estimate is valid from 
July 1st of a given to year, to June 30th of the following year.  



 141 

 
Figure 42: Data properties for King County, Washington, as they appear over time. 
This figure shows the various data properties and values associated with King County, Washington from 2011 to 
2016. The Y-axis shows the properties found in the ACS dataset, while the values of the properties are laid out 
on the X-axis, for the time interval for which they are valid. 
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@DatasetClass(name = "TigerCountyCensus") 
public class TigerCountyObject { 
 
    private final String geom; 
    private final String geoid; 
    private final String region; 
    private final String division; 
    private final String state; 
    private final String county; 
    private final int pop_estimate; 
    private final int births; 
    private final int deaths; 
    private final int natural_increase; 
    private final int international_migration; 
    private final int domestic_migration; 
    private final float rate_birth; 
    private final float rate_death; 
    private final float rate_natural_increase; 
    private final LocalDate record_start_date; 
 
    public TigerCountyObject(String geoid, String geom, String region, String 
division, 
                             String state, String county, int pop_estimate, int 
births, 
                             int deaths, int natural_increase, int 
international_migration, 
                             int domestic_migration, float rate_birth, float 
rate_death, 
                             float rate_natural_increase, LocalDate start_date) 
{ 
        this.geoid = geoid; 
        this.geom = geom; 
        this.region = region; 
        this.division = division; 
        this.state = state; 
        this.county = county; 
        this.pop_estimate = pop_estimate; 
        this.births = births; 
        this.deaths = deaths; 
        this.natural_increase = natural_increase; 
        this.international_migration = international_migration; 
        this.domestic_migration = domestic_migration; 
        this.rate_birth = rate_birth; 
        this.rate_death = rate_death; 
        this.rate_natural_increase = rate_natural_increase; 
        this.record_start_date = start_date; 
    } 
 
    @Spatial(projection = 4269) 
    public String getGeom() { 
        return geom; 
    } 
 
    @IndividualIdentifier 
    public String getGeoid() { return geoid; } 
 
    public String getRegion() { 
        return region; 
    } 
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    public String getDivision() { 
        return division; 
    } 
 
    public String getState() { 
        return state; 
    } 
 
    public String getCounty() { 
        return county; 
    } 
 
    public int getPop_estimate() { 
        return pop_estimate; 
    } 
 
    public int getBirths() { 
        return births; 
    } 
 
    public int getDeaths() { 
        return deaths; 
    } 
 
    public int getNatural_increase() { 
        return natural_increase; 
    } 
 
    public int getInternational_migration() { 
        return international_migration; 
    } 
 
    public int getDomestic_migration() { 
        return domestic_migration; 
    } 
 
    public float getRate_birth() { 
        return rate_birth; 
    } 
 
    public float getRate_death() { 
        return rate_death; 
    } 
 
    public float getRate_natural_increase() { 
        return rate_natural_increase; 
    } 
 
    @StartTemporal(name = "start_date") 
    public LocalDate getRecord_start_date() { 
        return record_start_date; 
    } 
} 
 

 
Code 3: Tiger County dataset definition. 
This code sample displays the data definition required by Trestle in order to the TIGER and ACS datasets. It 
follows the pattern shown in Code 2, but customized for this use case. 
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Once the data has been loaded, the next step is to build the spatial adjacency graph which will be 
the input for the appropriate algorithm. This can be accomplished via a single method in the Trestle 
API, which is shown in Code 4 along with the annotated parameters. Parameter 1 defines the type 
of object being returned from the management application. This is standard for all Trestle API 
calls and tells the management application how to map the data properties from the underlying 
graph layout, into a usable object format. One benefit of this approach is that all data returned by 
Trestle is in a standard Java object format which is immediately usable by other applications and 
algorithms45, as shown in Code 3. The second parameter specifies which object to begin which 
when building the adjacency graph. The next two parameters define the shape of the graph itself;  
parameter 3 defines which metric to use when computing the weight of the various edges (also 
called the cost in SKATER and length in REDCAP), this function is defined by the user and may 
contain any number of data properties or stateful computations. The key point is that the entire 
Trestle_Object for the given county is available to be used in the computation, not just a single 
data property. This is shown in the CountyCompute class in Code 4. Parameter 4, the CountyFilter 
class, specifies a user defined function for determining which objects should be included in the 
spatial graph. In this example, we restrict the output to include only the subset of counties shown 
in Figure 41. Parameters 5 and 6 specify the temporal restriction for when to execute the adjacency 
calculation. This is part of Trestle’s bi-temporal support and specifies the valid time and database 
time to use for graph construction. In this example, we are running the computation for data valid 
on August 1st, 2013, and the most recent version of the facts known to the database (as denoted by 
the null value for parameter 6). What is important to note about this specific API method, is that it 
is possible to recompute the adjacency graph for any specific point in time, simply by changing 
the value of Parameter 5. 
  

                                                
45 It is also possible to extend Trestle to support object models in other programming languages. Currently, Trestle 
also supports returning data in the standard JSON format for use in web applications. 
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counties = new HashMap<>(); 
counties.put("Douglas County", 53017); 
counties.put("Chelan County", 53007); 
counties.put("Okanogan County", 53047); 
counties.put("Kittitas County", 53037); 
counties.put("Grant County", 53025); 
counties.put("Whatcom County", 53073); 
counties.put("Skagit County", 53057); 
counties.put("Snohomish County", 53061); 
counties.put("King County", 53033); 
counties.put("Pierce County", 53053); 
counties.put("Yakima County", 53077); 
counties.put("Benton County", 53005); 
counties.put("Franklin County", 53021); 
counties.put("Adams County", 53001); 
counties.put("Lincoln County", 53043); 
counties.put("Ferry County", 53019); 
 
 
        final AggregationEngine.AdjacencyGraph<TigerCountyObject, Integer> county_graph = 
                reasoner.buildSpatialGraph( 
//                        1. Type of the data to return from Trestle 
                        TigerCountyObject.class, 
//                        2. Initial starting point for Graph generation 
                        counties.get("Douglas County").toString(), 
//                        3. User defined class to compute the edge lengths. 
                        new CountyCompute(), 
//                        4. User defined class to determine which counties to      
include in the graph generation 
                        new CountyFilter(counties), 
//                        5. Valid time to perform graph generation 
                        VALID_AT, 
//                        6. Database to perform graph generation 
                        null); 
 
    public static class CountyCompute implements Computable<TigerCountyObject, 
TigerCountyObject, Integer> { 
 
        @Override 
        public Integer compute(TigerCountyObject nodeA, TigerCountyObject nodeB) { 
//           5. Calculate the edge length based on the absolute difference in population 
count between the two counties. 
     return FastMath.abs(nodeA.getPop_estimate() -  nodeB.getPop_estimate()); 
        } 
    } 
 
    public static class CountyFilter implements Filterable<TigerCountyObject> { 
 
        private final Map<String, Integer> counties; 
 
        CountyFilter(Map<String, Integer> counties) { 
//           5. Only include a specific subset of counties in the spatial graph 
            this.counties = counties; 
        } 
 
        @Override 
        public boolean filter(TigerCountyObject nodeA) { 
            return this.counties.containsKey(nodeA.getCounty()); 
        } 
    } 

Code 4: Java code to generate spatial adjacency graph for regionalization using Trestle APIs. 
This example shows the required code to generate the spatial adjacency graph using the Trestle APIs. More 
detail in given in the paragraph on page 144; but the required parameters are described in the code example 
itself. 
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The output of this API method is given in Table 20, which corresponds to the edges between all 
the nodes (counties) in the spatial graph, sorted by their difference in population count (the output 
of the CountyCompute class) with duplicate edges removed. The table also shows the same output 
for the years 2014 and 2015. Even in this small dataset, it is possible to observe differences in the 
graph output, not only in terms of the actual change in population count between the counties, but 
also in the order of which the counties are sorted (differences in sort order are highlighted in 
yellow). Specifically, between 2013 and 2014, the edge between Douglas County and Kittitas 
County changes position with Ferry County and Lincoln County. Likewise, for 2014, the edge 
between Okanogan County and Chelan County, changes places with Okanogan County and Ferry 
County. While trivial, these changes have the potential to dramatically effect the regionalization 
output and help illustrate the importance of having the ability to explicitly control the temporal 
space in which algorithm executes. Once the initial graph has been generated, it can be passed to 
the appropriate regionalization algorithm for further use. 
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Table 20: Population difference between counties for the years 2013 through 2015 
This table gives the output of the spatial graph computation (shown in Code 4). The ordering of the counties is 
shown based on the graph generation using data 2013. The graph generation was then performed for years 2014 
and 2015, which clearly shows two instances (highlighted and boxes) where the ordering of the output would 
change based on the year of data used. It should be noted that this change is visible even in a small dataset, such 
as the one used in this example. 

 
 

County A County B 2013 2014 2015

Douglas County Okanogan County 1,688 1,525 1,525

Douglas County Kittitas County 2,412 2,839 2,735

Ferry County Lincoln County 2,641 2,602 2,739

Grant County Franklin County 5,332 5,016 4,452

Lincoln County Adams County 8,833 8,941 8,933

Okanogan County Lincoln County 30,887 31,094 31,195

Kittitas County Chelan County 32,169 31,937 32,375

Okanogan County Chelan County 32,893 33,251 34,128

Okanogan County Ferry County 33,528 33,696 33,934

Douglas County Chelan County 34,581 34,776 35,110

Chelan County Skagit County 44,684 45,727 46,202

Kittitas County Grant County 50,014 50,177 49,990

Okanogan County Grant County 50,738 51,491 51,743

Douglas County Grant County 52,426 53,016 52,725

Yakima County Benton County 62,758 61,051 58,521

Franklin County Adams County 67,460 68,628 69,553

Grant County Adams County 72,792 73,644 74,005

Okanogan County Skagit County 77,577 78,978 80,330

Grant County Lincoln County 81,625 82,585 82,938

Whatcom County Skagit County 87,604 88,166 90,438

Grant County Benton County 92,678 93,809 97,050

Benton County Franklin County 98,010 98,825 101,502

Grant County Yakima County 155,436 154,860 155,571

Okanogan County Whatcom County 165,181 167,144 170,768

Kittitas County Yakima County 205,450 205,037 205,561

Pierce County Yakima County 571,994 583,463 595,124

Skagit County Snohomish County 627,263 639,092 650,655

Chelan County Snohomish County 671,947 684,819 696,857

Kittitas County Pierce County 777,444 788,500 800,685

Pierce County King County 1,228,282 1,251,127 1,273,171

King County Snohomish County 1,301,610 1,322,871 1,344,624

King County Yakima County 1,800,276 1,834,590 1,868,295

Chelan County King County 1,973,557 2,007,690 2,041,481

Kittitas County King County 2,005,726 2,039,627 2,073,856
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6.3.2 Refactoring existing algorithms 

Beyond the initial support for retrieving the initial dataset, Trestle also provides some additional 
functionality which can be of use when developing stateful spatial algorithms. Meaning, those 
types of algorithms which need to progressively modify, and recall, the spatial state of the world 
during execution. 
 
Both SKATER and REDCAP are designed to maintain their own internal state during execution. 
They do so by maintaining lists and indexes which track which BSUs are associated with which 
clusters, at specific points in time. While this works effectively, and means the algorithms only 
need to make a single request to the database, it also means that implementers and algorithm 
developers carry an extra burden of bookkeeping and state management in order to design and 
implement more complex spatial algorithms. 
 
To help reduce this burden, Trestle provides some additional features that could be leveraged, the 
most useful of which, is the Trestle_Collections functionality. Described in Section 4.2.2.3, 
Trestle_Collections are associations of Trestle_Objects which have some expressed relationship 
(spatial, temporal, and semantic). In this example, collections can be used in Step 2 of REDCAP 
to simplify the tracking of adjacent objects and building up temporary clusters of objects, which 
can be used to generate the final regions. An example of modifying REDCAP to utilize the 
collections feature is given in Code 5, which represents a refactoring of Step 2 of the REDCAP 
algorithm. This example method would be called for each edge in the spatial graph. What is 
important to note is that the refactored design makes continual use of Trestle to build, update, and 
remove objects from collections as the algorithm runs. The benefit of this is that REDCAP itself 
is no longer required to track which objects are in which temporary clusters and is relieved of the 
burden of maintaining and updating the spatial adjacency graph. It should be noted that REDCAP 
still maintains its own internal data structure, which tracks the edges that link the various nodes. 
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Code 5: REDCAP phase 2, translated to use Trestle_Collections. 
This code example shows how phase 2 of the REDCAP algorithm (given on page 138) might be rewritten to 
take advantage of the Collections feature in Trestle. The major components of this code example are given as 
comments within the code itself (denoted by the // at the start of the line). 

 
 

    public void compareClusters(Edge edge) { 
//        1.For each node associated with the edge, retrieve its matching collection. 
        String collectionA = getFirstCollection(trestle.getRelatedCollections(edge.Aid, 
null, 0.1)); 
        String collectionB = getFirstCollection(trestle.getRelatedCollections(edge.Bid, 
null, 0.1)); 
 
        if (!collectionA.equals(collectionB)) { 
            if (trestle.collectionsAreAdjacent(collectionA, collectionB, 0.1)) { 
                if (edge.value >= getClusterAvgDistance(collectionA, collectionB)) { 
 
                    addShortestEdgeToCluster(collectionA, collectionB); 
 
//                    2.Retrieve all the objects that are members of the two collections 
                    final List<TigerCountyObject> collectionAObjects = 
getCollectionObjects(collectionA); 
                    final List<TigerCountyObject> collectionBObjects = 
getCollectionObjects(collectionB); 
 
//                    3. Retrieve all the collections in the database 
                    final List<String> otherCollections = trestle.getCollections() 
                            .stream() 
                            .filter(collection -> !(collection.equals(collectionA) || 
collection.equals(collectionB))) 
                            .collect(Collectors.toList()); 
 
                    for (String collection : otherCollections) { 
                        final List<TigerCountyObject> collectionObjects = 
getCollectionObjects(collection); 
                        final int avgDistance = 
(computeClusterAvgDistance(collectionObjects, collectionAObjects) * 
computeNumEdges(collectionObjects, collectionAObjects) + 
                                computeClusterAvgDistance(collectionObjects, 
collectionBObjects) * computeNumEdges(collectionObjects, collectionBObjects)) / 
                                (computeNumEdges(collectionObjects, collectionAObjects) + 
computeNumEdges(collectionObjects, collectionBObjects)); 
                        setClusterAvgDistance(collection, collectionA, avgDistance); 
 
                        removeEdges(collection, collectionB); 
                        removeEdges(collection, collectionA); 
                        addEdge(collection, collectionA, avgDistance); 
                    } 
 
                    for (TigerCountyObject bCounty : collectionBObjects) { 
//                        4.Merge the two collections by moving the objects from one 
collection to the other 
                        trestle.removeObjectFromCollection(collectionB, bCounty, true); 
                        trestle.addObjectToCollection(collectionA, bCounty, 
CollectionRelationType.SEMANTIC, 1.0); 
                    } 
                } 
            } 
        } 
    } 
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6.4 FUTURE WORK 

While the previous sections described the process for integrating Trestle with existing 
regionalization algorithms, and the two primary ways of doing so, there are still a number of ways 
by which integration could be further improved. Not only to rely more heavily on the capabilities 
of Trestle, and thus reduce the complexity of the algorithm designs, but also to add the ability to 
perform even more complex analyses which are either extremely difficult to perform with existing 
GIS applications, or simply impossible. Both of these improvements will be the focus of this 
section. 
 

6.4.1 Improving Collections 

As demonstrated in Section 6.3.2, Trestle’s collections feature can greatly reduce the complexity 
of spatio-temporal algorithms by provided a consistent way of managing groupings of related ST-
Objects, even in a temporary fashion. In Chapter 5, Trestle_Collections were used to group 
spatially overlapping boundaries, before they were evaluated by the spatial union algorithm. In 
this chapter, we have shown that both the SKATER and REDCAP algorithms can make use of 
collections either during the tree building, or partitioning phase. Unfortunately, REDCAP is unable 
to fully take advantage of the collections feature due to some current limitations. As shown in 
Figure 43, Trestle_Collections are currently designed to link a given Trestle_Object to a 
Trestle_Collection through a Trestle_Relation object. This allows each object to be associated a 
collection along with some additional context. Unfortunately, this reduces its utility when 
associations need to be tracked between Trestle_Objects, such as how REDCAP needs to maintain 
the various edge lengths between nodes, in order to build the initial tree. In other words, REDCAP 
needs the ability to create temporary sub-graphs of related objects, which it can then traverse to 
determine the correct order of merging the various nodes. This is not currently possible in Trestle 
and is part of the reason why the example refactoring shown in Code 5 still requires some amount 
of internal state to be managed by the algorithm itself. A potential solution to this problem is shown 
in Figure 44 in which the Trestle_Relation object is modified to link two Trestle_Objects through 
some relationship (temporal, spatial or semantic) along with the required metadata (e.g. amount of 
spatial overlap, length of edge, etc.). This would allow Trestle_Collections to truly function as 
sub-graphs of related objects in which each Trestle_Object is a node on the graph and each 
Trestle_Relation serves as the edge between two nodes; greatly improving the flexibility and utility 
of the collections feature and further reducing the implementation complexity of their spatio-
temporal algorithms. These improvements will be integrated in future versions of the Trestle 
application. 
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Figure 43: Current design of Trestle_Collections. 
This figure shows the current design of the Collection feature, which only supports associating Trestle_Objects 
(blue circles) with a collection (green rectangle) through a specific member_of relationship (yellow diamonds). 
While useful, this limits Trestle’s ability to support more complex associations that need to create collections 
from directly related objects. 

 
 

 
Figure 44: Future design of Trestle_Collections. 
This figure shows the propsed future design of the Collection feature, which supports associating 
Trestle_Objects (blue circles) with a collection (green triangle) through a specific spatial, temporal, or semantic 
relationship (yellow diamond) between the two objects. This significantly improves Trestle’s ability to support 
associations of related objects which through their relationships, need to be associated to a collection. 



 152 

 
 

6.4.2 Improve access to the SPARQL query language 

In the preceding section, we showed how Trestle can support the regionalization algorithms, 
through existing API methods, without requiring special code or data transformations. While this 
is tremendously useful, there are still situations in which users may wish to gain direct access to 
the underlying object graph and perform more complex queries which are difficult to encode in 
API specifications. Fortunately, Trestle supports a graph-oriented query language, the SPARQL 
Protocol and RDF Query Language (SPARQL), which can help address this need. Designed to 
support the types of queries common in semantic web applications, this language is oriented 
around graph traversal and querying in the same way that the Structured Query Language (SQL) 
is designed to query relational database tables. One drawback of SPARQL is that it features an 
entirely different query structure and interaction paradigm from traditional data query languages. 
This can present a significant burden to the end user in order to effectively utilize the graph data 
layout. In order to address this, Trestle provides a robust set of API features which largely removes 
the requirement of the user to make use of the graph features; however, internally, Trestle makes 
heavy use of SPARQL in order to implement some of its more complex features. That said it only 
provides limited support for exposing the raw query capabilities to the end user, due in part to the 
complexity in translating between the graph layout and the object layout found in programming 
languages such as Java. Indeed, a significant proportion of the code in the management application 
is devoted entirely to translating between these two data layouts. That being said, there are still 
situations in which directly leveraging the query facilities would significantly improve the design 
and implementation of spatio-temporal algorithms on top of Trestle.  
 
As an example, Code 6 shows a simple implementation of the cost computation from Section 6.3.1 
but done entirely in SPARQL and thus performed in the database itself, rather than the 
management application, as is the case with the API method. The downside of this approach is the 
added complexity foisted on the algorithm implementer, as they are required to manage the data 
translation from the underlying graph layout. The output of the SPARQL query in Code 6 is given 
in Table 21, which shows that a significant amount of work is required to retrieve usable ST-
Objects from the raw graph results, such as removing duplicate edges. Future work in Trestle can 
provide additional functionality for improving the ease of use of the underlying query capabilities 
which may significantly benefit future researchers wishing to take full advantage of the underlying 
object graph. 
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BASE <http://nickrobison.com/dissertation/trestle.owl#> 
PREFIX : <http://trestle.nickrobison.com/demonstration/> 
PREFIX trestle: <http://nickrobison.com/dissertation/trestle.owl#> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
PREFIX ogc: <http://www.opengis.net/ont/geosparql#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX orageo: <http://xmlns.oracle.com/rdf/geo/> 
PREFIX ogcf: <http://www.opengis.net/def/function/geosparql/> 
PREFIX geosparql: <http://www.opengis.net/ont/geosparql#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX xml: <http://www.w3.org/XML/1998/namespace> 
PREFIX spatial: <http://www.jena.apache.org/spatial#> 
SELECT distinct (?c as ?county1) (?mc as ?county2) (ABS(?o-?mo) as ?cost) WHERE { 
    ?m rdf:type trestle:Trestle_Object . 
    ?m trestle:has_fact ?f . 
    ?f trestle:valid_from ?vf . 
    ?f trestle:valid_to ?vt . 
    ?f :pop_estimate ?o . 
    ?m trestle:has_fact ?fc . 
    ?fc :county ?c . 
    ?m trestle:spatial_meets ?mt. 
    ?mt trestle:has_fact ?mfc . 
    ?mft :county ?mc . 
    ?mt trestle:has_fact ?mf . 
    ?mf trestle:valid_from ?vf . 
    ?mf trestle:valid_to ?vt . 
    ?mf :pop_estimate ?mo . 
    FILTER(?vf>="2013-07-01T00:00:00Z"^^xsd:dateTime && ?vt<="2014-07-
01T00:00:00Z"^^xsd:dateTime) . 
} ORDER BY (?cost) LIMIT 20 

 
Code 6: SPARQL query for computing the spatial adjacency graph for phase 1 of REDCAP. 
This code sample illustrates the spatial adjacency graph computation (originally shown in Code 4) using the raw 
SPARQL query functionality, rather than the Java APIs. This illustrates the uniqueness of the SPARQL query 
language and the difficulty in translating between the graph and table paradigms. The output of this query is 
given in Table 21. More details on SPARQL can be found in [155]. 
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Table 21: Results of SPARQL query from Code 6, using data from 2014. 

 

6.4.3 Extending regionalization to support indicator changes over time 

All three of the algorithms described in this chapter focus on re-organizing spatial objects based 
on their data properties at a static point in time. However, there exists much interest in 
regionalizing a dataset based on the change in indicators over time. For example, partitioning data 
based on the amount of change in population count over the past five years. While these types of 
analyses may be difficult to achieve in traditional GIS applications, for all the reasons described 
in the dissertation thus far, Trestle provides some unique facilities for evaluating how temporal 
queries might be included in existing regionalization algorithms. 
 
Trestle already provides the ability to retrieve facts (the value of a given data property at a specific 
point in time) for a Trestle_Object at multiple time points. With that available data, it would be 
trivial to modify the cost function from REDCAP to consider data from multiple time points. 
However, introducing a temporal component requires that several invariants hold true for the data 
being utilized. 
 

• No unobserved events: The analytical assumption is that two indicators at different time 
points reasonably describe the time period between those two events. Meaning, that if a 
region has a population count for 1990 and 1991, then it is assumed that at no temporal 

County 1 County 2 Cost

Douglas County Okanogan County 1688

Okanogan County Douglas County 1688

Columbia County Garfield County 1771

Garfield County Columbia County 1771

Hood River County Klickitat County 1847

Klickitat County Hood River County 1847

Boundary County Pend Oreille County 2031

Pend Oreille County Boundary County 2031

Douglas County Kittitas County 2412

Kittitas County Douglas County 2412

Ferry County Lincoln County 2641

Lincoln County Ferry County 2641

Columbia County Wallowa County 2782

Wallowa County Columbia County 2782

Grays Harbor County Lewis County 4129

Lewis County Grays Harbor County 4129

Garfield County Wallowa County 4553

Wallowa County Garfield County 4553

Klickitat County Wasco County 4609

Wasco County Klickitat County 4609
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instant between those points did an event occur which dramatically changed the indicator 
value (e.g. the population count did not go to zero on June 9th, 1990). The same 
requirements must also hold true for the spatial area of a given region. 

• Spatially exclusivity: Each spatial region describes an area that is not accounted for by any 
other region at the same time point. 

 
Provided these assumptions are met, it is possible to use Trestle to compute optimization functions 
that are responsive to temporal change in values and potentially open up new avenues for 
generating regions which enable even richer and more complex spatio-temporal research than can 
currently be achieved with temporally static algorithms.  

6.5 CONCLUSION 

In conclusion, this chapter focused on the final component of the two-part evaluation outlined in 
Chapter 5. Through a focus on the needs of common algorithms designed to solve challenges 
within the field of regionalization, we successfully demonstrated the ability of Trestle to support 
complex spatio-temporal research through two major facilities. First, the ability of Trestle to create 
unified ST-Objects and retrieve temporally correct data for creating new regionalizations. Second, 
through Trestle’s flexible object graph which enables creating new groupings of related objects, 
which reduces the necessity of algorithms to manage their own internal and temporary state. 
Finally, we outlined some future work within the Trestle project that can both improve existing 
algorithms, as well as enable new types of research that are currently limited by existing systems 
and processes. 
  



 156 

Chapter 7. CONCLUSION 

In this concluding chapter of the dissertation, we briefly summarize the major scientific 
contributions of the Trestle project, as well as some future directions for both novel research and 
engineering improvements. 

7.1 SUMMARY AND CONTRIBUTIONS 

This section provides a summary of each chapter (excluding Chapter 1, which served as the 
introduction) as well as the overall scientific contributions. Each of these chapters served to help 
fulfill the research aims of this dissertation, which are: 

 
• Aim 1: Design and implement a unified method for automatically building and 

managing spatial objects from complex spatio-temporal data. 
• Aim 2: Develop a graph-based approach for integrating spatial objects from 

historical records using a global dataset. 
• Aim 3:  Demonstrate using the query interface for solving a common challenge of 

generating custom research geographies for public health research. 
 
Chapter 2 provided an introduction into some specific challenges related to spatio-temporal 
research within the field of global health. Specifically, issues related to the spatial and temporal 
context of the geographic area being studied. Finally, we introduced a set of desiderata for any 
proposed spatio-temporal data model or GIS application. 
 
Chapter 3 outlined four existing spatio-temporal data models and provided a technical evaluation 
framework for determining both the strengths of the existing methods, as well as potential areas 
for improvement. In addition, each data model was evaluated against the desiderata outlined in 
Chapter 2. 
 
Chapter 4 described the graph-based spatio-temporal data model at the core of the Trestle system. 
This chapter detailed the spatio-temporal ontology and semantic reasoner approach that was 
chosen in order to address some of the limitations of existing data models. In addition, we 
evaluated the proposed data model against the criteria described in Chapter 3. Finally, we described 
a prototype data management application which enables usage of the data modeling approach. This 
chapter fulfills Aim 1. 
 
Chapter 5 began the evaluation component of the dissertation by focusing on the first of two 
evaluation processes. The first process was to validate the ability of the data model and 
management application to effectively represent relationships between spatial objects. This was 
be accomplished through the design and implementation of a prototype algorithm to automatically 
identify spatial changes in a global administrative unit database through a split/merge event 
paradigm. A challenging issue in public health research. This chapter fulfills Aim 2. 
 
Chapter 6 concluded the evaluation of the dissertation by testing the data model’s ability to 
effectively represent the internal state of time-varying spatial objects. This was achieved by 
describing several common algorithms for generating custom research geographies, which require 
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valid data at the point in time that the geographies are generated. This chapter then described how 
these types of algorithms can be effectively implemented within the data model, as well as detailed 
algorithm improvements that are enabled by access to the types of data contained in the Trestle 
data model. This chapter fulfills Aim 3. 
 
In summary, this project has the following primary scientific contributions: 

• A spatio-temporal data model designed to leverage graph layout and storage systems to 
represent complex temporal changes in spatial objects within a unified data model, that is 
optimized for complex public health research 

• A data management and query application which abstracts the complexities of the 
underlying temporal logic to present a unified method of data interaction for the end user. 

• A graph-based algorithm for analyzing spatial and temporal interactions between 
administrative districts and linking districts through time using a split/merge event 
paradigm. 

• A temporally integrated dataset of a subset of county level districts in sub-Saharan Africa, 
useful for public health research. 

• Demonstrated using Trestle to improve existing algorithms designed to aid researchers in 
developing custom geographies for specific research outcomes. 

 

7.2 FUTURE WORK 

While the data model and management application provide a solid foundation for spatio-temporal 
data management, there are still several avenues of future work that remain unexplored. 

 
• Derived and computed properties: 

Currently, Trestle only supports facts which are directly expressed as members of a given 
dataset, but there are multiple scenarios in which a researcher may have need of a property 
which is not found in the dataset but can be computed from several other available 
properties. For example, a population density metric which relies on know the correct 
population count and spatial area covered at the point in time the metric is needed. Similar 
to the computed column feature found in relational databases, Trestle should have the 
ability to compute derived properties based on related fact values at a given temporal point. 
This would dramatically improve the ability of Trestle to model complex relationships and 
data properties but given the complexity of computing and normalizing various data 
properties, this requires careful research and design. 
 

• Raster data support: 
At the present time, Trestle only supports working with vector (lines, points, polygons) 
datasets. Future work should attempt to provide a unified interaction model for working 
with both vector and raster (image) data. While there has been some work on integrating 
these two data formats [185], [186], it remains an open research problem. One of the major 
issues that prevents effective integration, is that raster images represent a given data 
property (such as elevation) as a continually varying field in which each image pixel 
corresponds to a value at that given point. This is different than how vector data presents a 
single value for a given spatial entity (e.g. only a single population count of a county is 
given). This means that raster data can represent how the population count of a county 
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varies throughout the region, while vector data can only present that single data property. 
This means the interaction paradigm varies between the two formats, both from the user 
perspective and the perspective of the data management application. For example, 
returning the population count of a county, in vector format, simply requires returning a 
single value, whereas the same operation for raster data requires summing up the value of 
each pixel in the image. In order to represent both formats, Trestle would need the ability 
to determine which format each spatial entity (or data indicator) is represented in, and 
which summary calculations need to be performed in order to return the correct value. This 
can be improved through the use of the computed properties feature outlined in the 
preceding bullet point. 
 
An additional challenge in integrating raster data with Trestle is that most triple stores do 
not have native support for working with this type of data, either natively as geospatial data 
or more generically in binary formats46. This requires Trestle to implement additional 
features for manually storing, querying, and updating raster data, which may present a 
significant engineering challenge. Especially since the end goal is to provide truly 
integrated query support for both raster and vector data. 

 
• Multiple language and tool support: 

As previously mentioned, public health researchers make use of a number of different 
programming languages (such as R, Python and Javascript) as well as existing spatial 
analysis tools such as QGIS, ArcMap and GRASS. Future work in Trestle will aim to 
further integrate with these tools and allow researchers to store and manage their research 
data in Trestle, while still performing their analysis within their existing tools and 
workflows. The current support for standard APIs and web protocols is an excellent starting 
point, but there is still much work to be done in order to further reduce the burden of 
implementation with existing tools and programming languages.  

                                                
46 A notable exception is the Oracle database, which provides robust support for most types of spatial data, 
alongside their optimized triple-store implementation. 
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Chapter 9. APPENDICES 

9.1 APPENDIX A 

This first appendix goes into details regarding the prototype web application and visualization 
tools developed for this dissertation. While mentioned briefly in Section 5.4, this section will 
give more details into the design and implementation of the various tools, which are built on top 
of the Trestle system and utilize the core APIs to achieve their desired function. 
 
It should be mentioned that these are prototype tools and visualizations which have not been 
subjected to any type of evaluation or design review. There some rough edges which still need to 
be addressed and features remaining to add, but the overall theory should be apparent and 
throughout this dissertation these tools have proven to be tremendously useful. Future work may 
include some more focused evaluation and design sessions, based on the accepted methodologies 
for evaluating geospatial visualization tools [187]–[190]. 
 
The web application comprises three major visualizations: the dataset viewer, entity visualizer, 
spatial comparison tool. Each of which will be described in the remaining sections of this 
appendix. 

9.1.1 Dataset viewer 

The first visualization built into the web application was the dataset viewer, which was designed 
as a first proof of concept of Trestle’s ability to load and query spatio-temporal data. Figure 45 
shows the viewer with data loaded from the GAUL dataset for the year 2013. The box on the 
right-hand side of the screen shows the available datasets in Trestle, which can be selected and 
added to the map (in this example it contains both GAUL as well as the dataset used in Chapter 
6). The map itself shows the spatial layout of the Trestle_Objects for that period of time, which 
is modified by the yellow slider in the middle of the screen.  Figure 46 shows the same spatial 
area but updated to show the state of the Trestle_Objects for the year 2007. These two images 
clearly show the different regions that comprised Maputo between the years 2007 and 2013. 
 
The final feature of this tool is the ability to export data, currently shown on the map, into 
common, non-temporal spatial formats. Currently the tool supports ESRI Shapefiles and 
GeoJSON files47; however, support for additional formats (such as TopoJSON48 or KML49) can 
be added in the future. This not only improves interoperability with existing research systems but 
also illustrates Trestle’s ability to serve a central data repository, supporting existing research 
projects and workflows. 
 

                                                
47 GeoJSON is a spatial extension to the JSON data format, commonly used for exchanging data between web services. 
48 https://github.com/topojson/topojson 
49 https://developers.google.com/kml/ 
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Figure 45: Dataset viewer showing GAUL data for Maputo in 2013. 

 

 
Figure 46: Dataset viewer showing the same area, but for the year 2007. 

 

9.1.2 Entity Visualizer 

The next visualization is a diagram which shows Trestle_Objects in the graph layout utilized by 
Trestle. Referred to as the entity visualizer, it was originally created to diagnose errors in the 
Trestle management application as new features were being developed. As previously 
mentioned, translating between the table and graph layouts is a challenging issue and existing 
tools are not well designed for showing graph relationships for a given entity, especially in the 
native Trestle graph layout. Thus, we developed our own set of tools for easily viewing both the 
graph layout of a Trestle_Object as well as its associated facts, relationships and values. It should 
be emphasized that this visualization was originally developed as a debugging tool is not 
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intended to be directly used by end users. That being said, there are cases in which this tool could 
be of value to developers and system administrators. 
 
Figure 47 shows the initial view of the entity visualizer. The map on the left shows the current 
spatial layout of the given entity (Trestle_Object). This feature allows mapping of any entity 
even if it does not currently exist in the real-world. For example, visualizing the Aeroporto 
region would show the most recent spatial boundary, even though that entity was merged into 
Cidade de Maputo and no longer exists. The diagram on the right shows the graph layout of 
entity, along with any and all associated facts. The dark-blue circle represents the object header 
of the entity, along with its associated exists temporal (shown with the light-blue circle)50. The 
facts are shown in the orange circles and have the added ability to visualize changing entity 
states over time. For facts that are not currently valid, either because there is a new version of 
that fact or the valid temporal is in the past (from the perspective of when the visualization is 
generated), these nodes are shown in light-orange. This allows the user to disambiguate which 
facts are valid at a given point in time, which is useful as the number of facts for a given entity 
grows over time. Figure 48 shows the same visualization as the previous image, but instead of 
showing entity/fact associations, it shows entity/object relationships; these two views (facts vs 
relationships) can be dynamically switched between or shown simultaneously. This figure also 
illustrates the prototype nature of the visualization in that with all the relationships visible, the 
graph is crowded to the point of being difficult to interpret. This will be addressed in a future 
software release. 
  

                                                
50 The exists temporal is currently labeled as valid temporal in the graph legend. This is an artifact of the prototype 
implementation and will be fixed in a future version.  
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Figure 47: Entity visualizer showing Cidade de Maputo, with its associated facts. 
This image shows the entity visualization for Cidade de Maputo. The map on the left shows the most recent 
spatial layout of the entity (regardless of whether or not the entity currently exists in the real-world). The graph 
diagram on the right shows the object header (dark blue circle), the existence interval of the entity (light-blue 
circle), and the various facts associated with it (orange circles). 

 
 

 
Figure 48: Entity visualizer showing Cidade de Maputo, with its object relationships. 
This figure again shows Cidade de Maputo but instead of visualizing the associated facts it shows the associated 
object relationships with other entities in the triple-store. 
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Figure 49 and Figure 50 show two different views of the data given in the previously described 
figures. Figure 49 shows the facts associated with the entity drawn as a time series. The X-axis 
represents the existence interval of the given entity and the Y-axis shows the various data 
properties associated with it. The individual facts are drawn as rectangles extending for the time 
period which they are valid. This approach is distinct from the one described above in that it 
allows for visualizing changes in facts and values over time. A more complex example, showing 
multiple fact value changes was previously given in Figure 7. 
 
Figure 50 lists the object relationships for the given entity, in a table layout. Each relationship 
specifies the relationship type, such as overlaps (spatial), before (temporal), contains (spatial), 
etc. In addition, each relationship lists the Trestle_Object the entity is related to, along with a 
link (shown in blue) to show that entity in the visualizer. Figure 51 shows a final method for 
viewing fact values. Instead of the graph or time series layout, this gives a tabular view of the 
individual facts along with their associated values, datatypes, and temporal intervals (or points). 
This gives the user the ability to view fact values which may be too complex to be effectively 
shown in the time series view (such as long names or WKT spatial values), as well as the 
concrete datatype used to represent the value in the Trestle management application, which aids 
in developing tooling and support for existing applications and workflows. 
 
 

 
Figure 49: Visualizing the fact history of Cidade de Maputo. 
This figure shows an alternative method of visualizing an entity’s associated facts. Instead of a graph layout, 
facts are shown as rectangle, which extends along the X-axis for as long as that fact is valid. In this example, no 
fact values have changed and thus each property only has a single fact for the entire lifetime of the object. A 
more complex example with multiple fact value changes is shown in Figure 7. 
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Figure 50: Table layout of entity object relationships. 
This figure gives a different view of the object relationships shown, in graph form, in Figure 48. Here, the 
relationships are presented in a table format with links (shown in blue) to the entity related to. Clicking the link 
switches the entity visualization to the linked Trestle_Object. 

 
 

 
Figure 51: Technical view of facts showing values, datatypes and temporals intervals. 
This figure gives a different view of the fact relationships shown, in graph form, in Figure 47. Here, the facts 
are presented in a table layout along with the concrete Java datatype, the value of the fact and the temporal 
interval (or point) for which the fact is valid. 

 
 
 



 175 

9.1.3 Spatial comparison tool 

 
The final visualization tool developed for Trestle is the spatial comparison tool. This was created 
to assist in the analysis of the split/merge algorithm results from Chapter 5. When attempting to 
determine whether or not a split/merge event occurred, a method was needed to view the 
temporal and spatial interactions between a given Trestle_Object and any other objects in the 
area. As there were no readily available mapping tools that would serve this purpose, a custom 
tool was developed. The following images will illustrate the operation of tool and how it is used 
in the Chapter 5 algorithm analysis.  
 
Figure 52 shows the initial view of the comparison tool with Cidade de Maputo loaded as the 
entity to compare against. The screen gives an Intersect option (blue button) which when 
selected will intersect the object’s boundary with any other Trestle_Objects in the same dataset 
and load all the objects onto the map. The results of the intersection are shown in Figure 53. The 
objects are drawn in the same manner as a traditional geographic map layout but instead of 
mapping all the objects flat against the map’s surface, the objects are instead mapped along the 
Z-axis (height axis). Each object is drawn based on its existence interval. The offset of the object 
(its initial height above the map surface) is based on the start temporal of the exists interval. The 
thickness of the object is based on the end temporal of its existence interval. This allows the user 
to quickly determine the temporal dynamics of the objects’ being studied, as well as how long 
each object has existed, in comparison to other objects on the map. 
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Figure 52: Initial view of the spatial comparison tool. 
This shows the initial view of the spatial comparison tool, with Cidade de Maputo loaded as the entity to 
compare against. Clicking the Intersect button (shown in blue) will spatially intersect it with all other 
Trestle_Objects in that dataset. 

 
 

 
Figure 53: Cidade de Maputo with all other spatially interacting Trestle_Objects. 
The results of the spatial intersection for Cidade de Maputo (drawn in purple) is shown along with all other 
Trestle_Objects which spatially overlap with its boundary. Maputo is drawn on top of the other objects because 
it comes temporally after the other objects and is thus higher on the Z-axis. 
 

 
Once the initial intersection is performed, the actual spatial union calculation (described in 
Section 5.3.3) is executed and the results presented on the screen. By default, any non-
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overlapping Trestle_Objects are removed from the comparison and only overlapping results are 
shown. Each Trestle_Object is then shaded on the red color scale based on the amount of spatial 
area contributed to the initial object (Maputo). Figure 54 shows the table layout of the 
comparison results, with each overlapping object listed, along with some additional features to 
either focus on the object (hide all other objects from view) or focus on the actual spatial overlap 
by adding it as a new layer on the map. In addition, each result has the ability to link back to the 
entity visualization tool or restart the comparison with that Trestle_Object. Figure 55 shows the 
results of the calculation, as displayed to the user on the map. 
 

 
Figure 54: Comparison report of Cidade de Maputo and overlapping Trestle_Objects. 
This figure shows the output of the spatial comparison tool for Cidade de Maputo. The results of the tool are 
shown on the right side of the screen listed under each Trestle_Object which overlaps with Maputo. Non-
overlapping objects are removed from the results and the boundary of each object is shaded (in red) based on 
the amount of area contributed to Maputo.  

 
 
 



 178 

 
Figure 55: Cidade de Maputo with only spatially overlapping Trestle_Objects. 
The output of the spatial comparison tool, with each overlapping Trestle_Object shaded in red, based on how 
much spatial area is contributed to Maputo. 
 

Once the results have been computed and added to the map, the user now has some additional tools 
for exploring exactly how the objects spatially and temporally interact, in order to determine 
whether or not a split/merge event exists. As previously mentioned, the 3D nature of the map view 
means that the user can not only zoom in and out and rotate the top-down view (as is possible in 
any 2D map visualization), but they can also adjust the pitch (the view angle between the user and 
the surface of the map) and move the individual Trestle_Objects up and down along the Z-axis to 
get a better view of the interactions. This is shown in Figure 56, the explode slider on the right side 
of the screen allows moving the comparison object (Maputo) higher or lower on the Z-axis, while 
each additional object has a height slider (shown in Figure 54 as a yellow slider within each object 
report) that allows for the same functionality for each object. This tool helps confirm that there is 
indeed a split/merge event between Cidade de Maputo and the 6 regions which previously covered 
the exact same spatial area. 
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Figure 56: 3D view of Cidade de Maputo and spatially overlapping Trestle_Objects. 
This shows Cidade de Maputo and all spatially overlapping objects but rotated across 3 axes to give a clearer 
picture of how Cidade de Maputo interacts with the overlapping objects. In addition, both Cidade de Maputo 
and Distrito Municipal 1 are elevated along the Z-axis in order to give more visual separation between the 
various objects. 
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9.2 APPENDIX B 

This appendix contains the full results for the split/merge algorithm analysis. Column values 
indicate whether or not a split/merge event was present.  
 

Region Gold standard 90% cutoff 95% cutoff 97% cutoff 99% cutoff 

190498-Mouyondzi-2011-3001 TRUE TRUE TRUE TRUE TRUE 

65256-Distrito Municipal 3-1000-2013 TRUE TRUE TRUE TRUE TRUE 

191189-Omala-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191067-Shira-1999-3001 FALSE FALSE FALSE FALSE FALSE 

191365-Emuoha-1999-3001 FALSE FALSE FALSE FALSE FALSE 

22913-Yagba West-1000-1999 FALSE FALSE FALSE FALSE FALSE 

191085-Gulani-1999-3001 TRUE TRUE TRUE TRUE TRUE 

190487-Ignie-2011-3001 TRUE TRUE TRUE TRUE TRUE 

191013-Anka-1999-3001 TRUE TRUE TRUE TRUE TRUE 

23027-Kajola-1000-1999 TRUE TRUE TRUE TRUE TRUE 

191253-Abeokuta South-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191108-Kachia-1999-3001 TRUE TRUE TRUE TRUE TRUE 

23017-Ibadannorth-east-1000-1999 FALSE FALSE FALSE FALSE FALSE 

191415-Kagarko-1999-3001 TRUE TRUE TRUE TRUE TRUE 

22675-Ningi-1000-1999 TRUE TRUE TRUE TRUE TRUE 

191060-Birnin Kudu-1999-3001 TRUE TRUE TRUE TRUE TRUE 

190962-Sokoto North-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191361-Isiala Ngwa South-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191300-Amuwo Odofin-1999-3001 FALSE FALSE FALSE FALSE FALSE 

191128-Pankshin-1999-3001 TRUE TRUE TRUE TRUE TRUE 

22997-Egbedore-1000-1999 FALSE FALSE FALSE FALSE FALSE 

191390-Tai-1999-3001 FALSE FALSE FALSE FALSE FALSE 

190987-Monguno-1999-3001 FALSE FALSE FALSE FALSE FALSE 

191233-Ibadan North-1999-3001 FALSE FALSE FALSE FALSE FALSE 

191014-Mafa-1999-3001 FALSE FALSE FALSE FALSE FALSE 

41374-Cidade de Maputo-2013-3001 TRUE TRUE TRUE TRUE TRUE 

191127-Mokwa-1999-3001 FALSE FALSE FALSE FALSE FALSE 

190461-Mayoko-2011-3001 TRUE TRUE TRUE TRUE TRUE 

22962-Ijebu-Ode-1000-1999 TRUE TRUE TRUE TRUE TRUE 

190994-Birnin-Magaji/Kiyaw-1999-
3001 

TRUE TRUE TRUE TRUE TRUE 

191345-Njaba-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191298-Ojo-1999-3001 FALSE FALSE FALSE FALSE FALSE 

191185-Oyo West-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191396-Ikot Abasi-1999-3001 TRUE TRUE TRUE TRUE TRUE 
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191059-Albasu-1999-3001 FALSE FALSE FALSE FALSE FALSE 

22855-Rano-1000-1999 TRUE TRUE TRUE TRUE TRUE 

22788-Isu-1000-1999 TRUE TRUE TRUE TRUE TRUE 

23020-Ibadansouth-west-1000-1999 FALSE FALSE FALSE FALSE FALSE 

190503-Loumo-2011-3001 TRUE TRUE TRUE TRUE TRUE 

14458-Lekana-1000-2011 FALSE FALSE FALSE FALSE FALSE 

22952-Shiroro-1000-1999 TRUE TRUE TRUE TRUE TRUE 

22710-Monguno-1000-1999 FALSE FALSE FALSE FALSE FALSE 

190986-Charanchi-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191007-Auyo-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191247-Oluyole-1999-3001 FALSE FALSE FALSE FALSE FALSE 

191275-Isi-Uzo-1999-3001 TRUE TRUE TRUE TRUE TRUE 

22744-Warri North-1000-1999 FALSE FALSE FALSE FALSE FALSE 

23037-Akwanga-1000-1999 TRUE TRUE TRUE TRUE TRUE 

23022-Ido-1000-1999 FALSE FALSE FALSE FALSE FALSE 

14466-Ouesso-1000-2011 TRUE TRUE TRUE TRUE TRUE 

191157-Pategi-1999-3001 TRUE FALSE FALSE FALSE FALSE 

22627-Ikot Ekpene-1000-1999 TRUE TRUE TRUE TRUE TRUE 

22672-Katagum-1000-1999 FALSE FALSE FALSE FALSE FALSE 

23016-Ibadannorth-1000-1999 FALSE FALSE FALSE FALSE FALSE 

190980-Guri-1999-3001 TRUE TRUE TRUE TRUE TRUE 

23118-Fika-1999-3001 FALSE FALSE FALSE FALSE FALSE 

191288-Ikeja-1999-3001 FALSE FALSE FALSE FALSE FALSE 

190509-Epena-2011-3001 TRUE TRUE TRUE TRUE TRUE 

191218-Oturkpo-1999-3001 TRUE TRUE TRUE TRUE TRUE 

190970-Dutsi-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191421-Isoko North-1999-3001 FALSE FALSE FALSE FALSE FALSE 

191255-Etsako West-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191086-Yauri-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191319-Njikoka-1999-3001 TRUE TRUE TRUE TRUE TRUE 

23104-Bali-1000-1999 TRUE TRUE TRUE TRUE TRUE 

190482-Ongogni-2011-3001 TRUE TRUE TRUE TRUE TRUE 

23035-Oyo-1000-1999 TRUE TRUE TRUE TRUE TRUE 

22897-Yauri-1000-1999 TRUE TRUE TRUE TRUE TRUE 

191051-Katagum-1999-3001 FALSE FALSE FALSE FALSE FALSE 

190995-Kankia-1999-3001 TRUE TRUE TRUE TRUE TRUE 

23066-Ikwerre-1000-1999 FALSE FALSE FALSE FALSE FALSE 

22885-Argungu-1000-1999 TRUE TRUE TRUE TRUE TRUE 

191019-Gummi-1999-3001 TRUE TRUE TRUE TRUE TRUE 

22636-Oron-1000-1999 FALSE FALSE FALSE FALSE FALSE 
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190990-Kaura Namoda-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191044-Wudil-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191205-Ajaokuta-1999-3001 TRUE TRUE TRUE TRUE TRUE 

22738-Ndokwawe-1000-1999 TRUE TRUE TRUE TRUE TRUE 

191104-Alkaleri-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191156-Kwali-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191055-Garum Mallam-1999-3001 TRUE TRUE TRUE TRUE TRUE 

22856-Rimin Gado-1000-1999 TRUE TRUE TRUE TRUE TRUE 

191124-Chanchaga-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191402-Ibeno-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191018-Ringim-1999-3001 TRUE TRUE TRUE TRUE TRUE 

190468-Makabana-2011-3001 TRUE TRUE TRUE TRUE TRUE 

191111-Song-1999-3001 TRUE TRUE TRUE TRUE TRUE 

190979-Yankwashi-1999-3001 TRUE TRUE TRUE TRUE TRUE 

22682-Apa-1000-1999 TRUE TRUE TRUE TRUE TRUE 

191097-Hawul-1999-3001 TRUE TRUE TRUE TRUE TRUE 

191168-Ilorin West-1999-3001 TRUE TRUE TRUE TRUE TRUE 

22756-Ovia South-West-1000-1999 FALSE FALSE FALSE FALSE FALSE 

22971-Akure-1000-1999 TRUE TRUE TRUE TRUE TRUE 

191228-Ogori/ Magongo-1999-3001 TRUE TRUE TRUE TRUE TRUE 

12888-Bozoum-1000-2003 TRUE TRUE TRUE TRUE TRUE 

22695-Oturkpo-1000-1999 TRUE TRUE TRUE TRUE TRUE 

22709-Mobbar-1000-1999 FALSE FALSE FALSE FALSE FALSE 

191343-Ughelli North-1999-3001 FALSE FALSE FALSE FALSE FALSE 

191093-Bayo-1999-3001 TRUE TRUE TRUE TRUE TRUE 

14459-Boko-1000-2011 TRUE TRUE TRUE TRUE TRUE 

      
True Positive:  69 69 69 69 

True Negative:  30 30 30 30 

False Positive  0 0 0 0 

False Negative  1 1 1 1 

FPR  0 0 0 0 

TPR  0.985714286 0.985714286 0.985714286 0.985714286 
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9.3 APPENDIX C 

This appendix contains a selection of Java code for combining multiple years of TIGER data into 
unified Trestle_Objects. It serves as an example of how Trestle might be integrated with existing 
spatial data stores. 
 
 
package com.nickrobison.trestle.tigerintegrator; 
 
import com.google.common.collect.ImmutableMap; 
import com.nickrobison.trestle.ontology.exceptions.MissingOntologyEntity; 
import com.nickrobison.trestle.reasoner.TrestleBuilder; 
import com.nickrobison.trestle.reasoner.TrestleReasoner; 
import com.nickrobison.trestle.reasoner.exceptions.TrestleClassException; 
import com.nickrobison.trestle.reasoner.annotations.DatasetClass; 
import com.nickrobison.trestle.reasoner.annotations.IndividualIdentifier; 
import com.nickrobison.trestle.reasoner.annotations.Spatial; 
import com.nickrobison.trestle.reasoner.annotations.temporal.StartTemporal; 
import org.apache.commons.lang3.builder.EqualsBuilder; 
import org.apache.commons.lang3.builder.HashCodeBuilder; 
import org.checkerframework.checker.nullness.qual.Nullable; 
import com.typesafe.config.Config; 
import com.typesafe.config.ConfigFactory; 
import org.semanticweb.owlapi.model.IRI; 
import org.slf4j.Logger; 
import org.slf4j.LoggerFactory; 
 
import java.io.File; 
import java.sql.*; 
import java.time.Duration; 
import java.time.Instant; 
import java.time.LocalDate; 
import java.util.ArrayList; 
import java.util.List; 
import java.util.Map; 
import java.util.Set; 
import java.util.stream.Collectors; 
 
/** 
 * Created by detwiler on 2/16/17. 
 */ 
public class TigerLoader { 
    private static final Logger logger = LoggerFactory.getLogger(TigerLoader.class); 
    private static int firstYear = 2011; 
    private static int lastYear = 2015; 
    // supporting data structures 
    /* 
        Regions: 
        1 = Northeast 
        2 = Midwest 
        3 = South 
        4 = West 
     */ 
    public static final Map<Integer,String> regionMap = ImmutableMap.of(1, 
"Northeast", 2, "Midwest", 
            3, "South", 4, "West"); 
 
    /* 
        Divisions: 
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        1 = New England 
        2 = Middle Atlantic 
        3 = East North Central 
        4 = West North Central 
        5 = South Atlantic 
        6 = East South Central 
        7 = West South Central 
        8 = Mountain 
        9 = Pacific 
     */ 
    public static final Map<Integer,String> divisionMap = ImmutableMap.<Integer, 
String>builder() 
            .put(1, "New England") 
            .put(2, "Middle Atlantic") 
            .put(3, "East North Central") 
            .put(4, "West North Central") 
            .put(5, "South Atlantic") 
            .put(6, "East South Central") 
            .put(7, "West South Central") 
            .put(8, "Mountain") 
            .put(9, "Pacific") 
            .build(); 
 
    private Config config; 
    private String connectStr; 
    private String username; 
    private String password; 
    private String reponame; 
    private String ontLocation; 
    private String ontPrefix; 
    private List<TigerCountyObject> tigerObjs; 
 

public class TigerCountyObject { 
    private final String geom; 
    private final String geoid; 
    private final String region; 
    private final String division; 
    private final String state; 
    private final String county; 
    private final int pop_estimate; 
    private final int births; 
    private final int deaths; 
    private final int natural_increase; 
    private final int international_migration; 
    private final int domestic_migration; 
    private final float rate_birth; 
    private final float rate_death; 
    private final float rate_natural_increase; 
    private final LocalDate record_start_date; 
 
    public TigerCountyObject(String geoid, String geom, String region, String 
division, 
                             String state, String county, int pop_estimate, int 
births, 
                             int deaths, int natural_increase, int 
international_migration, 
                             int domestic_migration, float rate_birth, float 
rate_death, 
                             float rate_natural_increase, LocalDate start_date) 
{ 
        this.geoid = geoid; 



 185 

        this.geom = geom; 
        this.region = region; 
        this.division = division; 
        this.state = state; 
        this.county = county; 
        this.pop_estimate = pop_estimate; 
        this.births = births; 
        this.deaths = deaths; 
        this.natural_increase = natural_increase; 
        this.international_migration = international_migration; 
        this.domestic_migration = domestic_migration; 
        this.rate_birth = rate_birth; 
        this.rate_death = rate_death; 
        this.rate_natural_increase = rate_natural_increase; 
        this.record_start_date = start_date; 
    } 
 
    @Spatial(projection = 4269) 
    public String getGeom() { 
        return geom; 
    } 
 
    @IndividualIdentifier 
    public String getGeoid() { return geoid; } 
 
    public String getRegion() { 
        return region; 
    } 
 
    public String getDivision() { 
        return division; 
    } 
 
    public String getState() { 
        return state; 
    } 
 
    public String getCounty() { 
        return county; 
    } 
 
    public int getPop_estimate() { 
        return pop_estimate; 
    } 
 
    public int getBirths() { 
        return births; 
    } 
 
    public int getDeaths() { 
        return deaths; 
    } 
 
    public int getNatural_increase() { 
        return natural_increase; 
    } 
 
    public int getInternational_migration() { 
        return international_migration; 
    } 
 



 186 

    public int getDomestic_migration() { 
        return domestic_migration; 
    } 
 
    public float getRate_birth() { 
        return rate_birth; 
    } 
 
    public float getRate_death() { 
        return rate_death; 
    } 
 
    public float getRate_natural_increase() { 
        return rate_natural_increase; 
    } 
 
    @StartTemporal(name = "start_date") 
    public LocalDate getRecord_start_date() { 
        return record_start_date; 
    } 
} 

 
 
    TigerLoader() throws SQLException 
    { 
 
        config = ConfigFactory.parseResources("tiger-loader.conf"); 
        connectStr = config.getString("trestle.graphdb.connection_string"); 
        username = config.getString("trestle.graphdb.username"); 
        password = config.getString("trestle.graphdb.password"); 
        reponame = config.getString("trestle.graphdb.repo_name"); 
        ontLocation = config.getString("trestle.ontology.location"); 
        ontPrefix = config.getString("trestle.ontology.prefix"); 
        tigerObjs = buildObjects(); 
    } 
 
    public void loadObjects() 
    { 
        TrestleReasoner reasoner = new TrestleBuilder() 
                .withDBConnection(connectStr, username, password) 
                .withName(reponame) 
                .withOntology(IRI.create(ontLocation)) 
                .withPrefix(ontPrefix) 
                .withInputClasses(TigerCountyObject.class) 
                .withoutCaching() 
                .initialize() 
                .build(); 
 
        for(int count=0; count<tigerObjs.size(); count++) 
        { 
            if(count%1000==0) 
                logger.info("Writing trestle object {}", +count); 
 
            TigerCountyObject tigerObj = tigerObjs.get(count); 
            try { 
                final Instant start = Instant.now(); 
                reasoner.writeTrestleObject(tigerObj); 
//                reasoner.writeTrestleObject(tigerObj,startTemporal,null); 
                final Instant end = Instant.now(); 
                logger.info("Writing object {} took {} ms", count, 
Duration.between(start, end).toMillis()); 
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            } catch (TrestleClassException e) { 
                e.printStackTrace(); 
                System.exit(-1); 
            } catch (MissingOntologyEntity e) { 
                e.printStackTrace(); 
                System.exit(-1); 
            } 
        } 
 
        reasoner.getMetricsEngine().exportData(new File("./tiger.csv")); 
 
 
        reasoner.shutdown(); 
    } 
 
    private List<TigerCountyObject> buildObjects() throws SQLException 
    { 
        String connectStr = config.getString("data_db.connection_string"); 
        String queryStr = config.getString("data_db.query"); 
        if(connectStr==null||queryStr==null) 
            return null; // should probably throw an exception here 
 
        List<TigerCountyObject> objects = new ArrayList<>(); 
 
        Statement stmt = null; 
        try { 
            Connection conn = DriverManager.getConnection(connectStr); 
            stmt = conn.createStatement(); 
            for(int year=firstYear; year<=lastYear; year++) 
            { 
                String shapetable = "shp"+year; 
                queryStr = queryStr.replaceAll("<shapetable>",shapetable); 
 
                ResultSet rs = stmt.executeQuery(queryStr); 
                while(rs.next()) { 
 
                    String geom = rs.getString("geotext"); 
                    if(geom==null) 
                        continue; // all entries must have spatial data 
 
                    String geoid = rs.getString("geoid"); 
 
                    // convert region code to region name 
                    int regionCode = rs.getInt("REGION"); 
                    String region = regionMap.get(regionCode); 
 
                    // convert division code to division name 
                    int divisionCode = rs.getInt("DIVISION"); 
                    String division = divisionMap.get(divisionCode); 
 
                    String state = rs.getString("STNAME"); 
 
                    String county = rs.getString("CTYName"); 
 
                    // get population data 
                    int pop_estimate = rs.getInt("POPESTIMATE"+year); 
                    int births = rs.getInt("BIRTHS"+year); 
                    int deaths = rs.getInt("DEATHS"+year); 
                    int natural_increase = rs.getInt("NATURALINC"+year); 
                    int international_migration = rs.getInt("INTERNATIONALMIG"+year); 
                    int domestic_migration = rs.getInt("DOMESTICMIG"+year); 
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                    float rate_birth = rs.getFloat("RBIRTH"+year); 
                    float rate_death = rs.getFloat("RDEATH"+year); 
                    float rate_natural_increase = rs.getFloat("RNATURALINC"+year); 
                    LocalDate record_start_date = LocalDate.of(year,7,1); 
                    //LocalDate record_end_date = LocalDate.of(year+1,7,1); 
 
                    // construct Trestle object 
                    TigerCountyObject tcObj = new 
TigerCountyObject(geoid,geom,region,division,state,county, 
                            
pop_estimate,births,deaths,natural_increase,international_migration,domestic_migration
, 
                            
rate_birth,rate_death,rate_natural_increase,record_start_date); 
                    objects.add(tcObj); 
 
                } 
                rs.close(); 
            } 
        } catch (SQLException e) { 
            e.printStackTrace(); 
        } finally { 
            if(stmt!=null) 
                stmt.close(); 
        } 
 
        return objects; 
    } 
 
    public boolean verifyObjects() throws TrestleClassException, MissingOntologyEntity 
{ 
        TrestleReasoner reasoner = new TrestleBuilder() 
                .withDBConnection(connectStr, username, password) 
                .withName(reponame) 
                .withOntology(IRI.create(ontLocation)) 
                .withPrefix(ontPrefix) 
                .withInputClasses(TigerCountyObject.class) 
                .withoutCaching() 
                .withoutMetrics() 
                .build(); 
 
        boolean allEquivalent = true; 
        for(int count=0; count<tigerObjs.size(); count++) 
        { 
            TigerCountyObject tigerObj = tigerObjs.get(count); 
            String id = tigerObj.getGeoid(); 
            LocalDate startDate = tigerObj.getRecord_start_date().plusMonths(1); 
            TigerCountyObject outObj = 
reasoner.readTrestleObject(TigerCountyObject.class, id, startDate, null); 
 
            if(!tigerObj.equals(outObj)) 
            { 
                logger.error("Error, Trestle input object and output object not 
equivalent; in:"+tigerObj.getGeoid()+", out:"+outObj.getGeoid()); 
                allEquivalent = false; 
            } 
        } 
 
        reasoner.shutdown(); 
 
        return allEquivalent; 
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    } 
 
    public void computeRelations() throws TrestleClassException, MissingOntologyEntity 
{ 
        TrestleReasoner reasoner = new TrestleBuilder() 
                .withDBConnection(connectStr, username, password) 
                .withName(reponame) 
                .withOntology(IRI.create(ontLocation)) 
                .withPrefix(ontPrefix) 
                .withInputClasses(TigerCountyObject.class) 
                .withoutMetrics() 
                .build(); 
 
//        Make a set of unique IDs 
        final Set<String> objectIDs = tigerObjs 
                .stream() 
                .filter(obj -> obj.getState().equals("Washington")) 
                .map(TigerCountyObject::getGeoid) 
                .collect(Collectors.toSet()); 
 
//        Set the computation time 
        final LocalDate validAt = LocalDate.of(2013, 8, 1); 
 
        for (String id : objectIDs) { 
            final Instant computeStart = Instant.now(); 
            logger.info("Computing relationships for {}", id); 
            reasoner.calculateSpatialAndTemporalRelationships(TigerCountyObject.class, 
id, validAt); 
            logger.info("Writing relations for object {} took {} ms", id, 
Duration.between(computeStart, Instant.now()).toMillis()); 
        } 
    } 
 
    public static void main(String[] args) 
    { 
        System.out.println("start time: "+Instant.now()); 
        try { 
            TigerLoader loader = new TigerLoader(); 
            loader.loadObjects(); 
            loader.computeRelations(); 
            loader.verifyObjects(); 
        } catch (SQLException | MissingOntologyEntity | TrestleClassException e) { 
            e.printStackTrace(); 
        } 
        System.out.println("end time: "+Instant.now()); 
    } 
 
 
 
 
 


