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My work connects two types of data in Alzheimer’s Disease (AD): structural MRI data 

from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and cognition data in the form of AD 

subgroups. The subgroups (AD-Executive, AD-Language, AD-Memory and AD-Visuospatial), 

defined by Crane et al. (2017), are based on cognitive test scores from the time of AD diagnosis, 

and each subgroup is characterized by marked impairment in the specified cognitive domain 

relative to the other domains. My dissertation’s focus is on data science and mathematical 

methods to understand how volumes of 70 brain regions of interest (ROIs) might differ across 

pairs of AD subgroups in cross-sectional data in time, specifically data from the time of AD 

diagnosis (Aim 1) and in longitudinal data (Aim 2). My work demonstrates a careful assessment 

and implementation of methods to best utilize the data available that is currently small in sample 

size, with imbalanced AD subgroup sizes and noisy in nature. In both aims, the following pairs 

of AD subgroups were compared: a.) AD-Language vs. AD-Memory, b.) AD-Memory vs. AD-



Visuospatial and c.) AD-Language vs. AD-Visuospatial. The AD-Executive group was excluded 

from the current analyses due to its small sample size. 

In Aim 1, I explored supervised machine learning classification methods that provide 

insight into variable importance for identifying the most important brain ROIs for distinguishing 

between pairs of AD subgroups. I determined random forest to be the most appropriate method 

for this task, given the characteristics of the data. Prior to building classification models, I 

addressed specific challenges in cross-sectional data: potential noise due to non-ROI variables 

and imbalanced AD subgroup sizes. A challenge in using classification models in the domain of 

AD subgroups is that there is no gold standard for knowing how separable the AD subgroups are 

based on ROI volumes. The work presented here may be the first to establish a starting 

benchmark for classification accuracies for distinguishing between pairs of AD subgroups based 

on ROI volumes, although these models are not intended to be used for prediction in a clinical 

setting but rather to understand which brain regions are most important to distinguish the AD 

subgroups.  

In Aim 2, I used linear mixed effects (LME) modeling on longitudinal data to determine 

which of the 70 ROIs’ volume trajectories differ the most across pairs of AD subgroups in terms 

of longitudinal volume and rate of change of volume with respect to time. First, I laid out criteria 

for using data from specific MRI scans in an effort to reduce noise in data, instead of using the 

default longitudinal dataset. Given the small sample size of the AD subgroups and irregular data, 

I implemented LME modeling for each ROI on the original dataset consisting of all time points 

and also on a series of subsets of data that were obtained by restricting each AD subgroup’s data 

to time points with a specific minimum number of subjects available.  



An important finding of my work is that there was some overlap in the top ROIs that 

were determined to be important based on cross-sectional and longitudinal data analyses, for 

distinguishing between pairs of AD subgroups. Results from my Ph.D. work have potential 

implications for decisions about which brain regions may be relevant for future 

neuropathological studies in studying AD subgroups. 
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Chapter 1: Overview, Significance, Impact & Background 

Alzheimer’s disease (AD) is a neurodegenerative condition that leads to cognitive decline and is 

the most common cause of dementia(“2021 Alzheimer’s Disease Facts and Figures” 2021). AD 

affects many cognitive functions including memory, language skills, visual perception, problem 

solving, self-management, the ability to focus and pay attention and in some cases even emotion 

regulation(“What Is Dementia? Symptoms, Types, and Diagnosis” n.d.). Pathologically, AD is 

characterized by the deposition of the protein fragment beta-amyloid plaques outside neurons 

and the formation of neurofibrillary tangles inside neurons that are an accumulation of an 

abnormal form of the tau protein; both are believed to lead to neuronal cell damage and cell 

death. Over time, the above processes lead to a loss of connections between networks of neurons 

in the brain, leading to substantial loss of brain volume by the final stages of the disease (“What 

Happens to the Brain in Alzheimer’s Disease?” n.d.). Worldwide, there were over 55 million 

people living with AD in 2021 and the number is estimated to be 78 million by 2030 (World 

Alzheimer Report 2021). As of 2021, an estimated 6.2 million Americans aged 65 years and 

older had AD dementia. AD is the sixth leading cause of death in the United States and the fifth 

leading cause of death for individuals ≥ 65 years of age (World Alzheimer Report 2021).  

Recent work by Crane et al. has binned individuals with Alzheimer’s disease (AD) into 

cognitively defined subgroups based on cognitive data from the earliest time point following the 

diagnosis of clinical AD dementia(Crane et al. 2017). These subgroups include AD-Executive, 

AD-Language, AD-Memory and AD-Visuospatial. Each group is characterized by marked 

impairment in in the specified cognitive domain relative to other domains. This idea challenges 

the current nosology of AD and research and drug development strategies that implicitly assume 
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homogeneity in AD. Subgrouping AD into phenotypically distinct categories such as the above 

subgroups can be the basis of future targeted drug design and specific treatment options for the 

different disease variants. 

My dissertation combined two types of AD data: (1) cognitively defined subgroups by Crane et 

al. representing different behavioral phenotypes within AD and (2) brain structural MRI data 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to understand which brain 

regions may be important in understanding AD subgroup differences; see figure 1. Specifically, I 

took a data science approach involving machine learning and other mathematical methods to 

connect the two knowledge domains (cognitive and imaging data) in AD, with the goal of 

shedding light on the underlying physiological differences in the brain across the different AD 

subgroups. If the cognitively defined AD subgroups also show biological differences in the 

brain, then these differences would be worth investigating in future precision medicine 

approaches in treating AD. One of the first steps in this investigation may be neuropathological 

studies. Through my work, I’ve hoped to provide insight into which brain regions to focus on for 

understanding AD subgroup differences in future neuropathological studies.  
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Figure 1: A graphical schematic of the overall goal of my dissertation. 

There are two types of structural MRI data that I analyzed in my dissertation. The first is called 

cross-sectional data which refers to data at a single time point; in the context of the ADNI study, 

this translates to data from a single clinical MRI visit in the study. (See section 1.2.c for an 

overview of the ADNI study.) The second is longitudinal data which is data collected over a 

period of time. This corresponds to data from two or more clinical MRI visits for an individual 

during the study. Hence, my work is divided into two parts: first, an analysis of cross-sectional 

data, specifically data from the earliest time point following the diagnosis of clinical AD 

dementia, which I refer to as t0 (Aim 1; Chapters 2-4 ) and second, an analysis of longitudinal 

data including t0 (Aim 2; Chapters 6 and 7). In both cases, the AD subgroup assignments were 

based on cognitive data from t0. The common goal in both aims was to understand the 

differences across AD subgroups based on structural MRI data, specifically focusing on volumes 

of 70 brain regions of interest (ROI) that are discussed in 1.2.b. I compared the following AD 

subgroups: AD-Language, AD-Memory and AD-Visuospatial. The AD-Executive group was 
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excluded from the analysis due to its very small sample size; the details of sample sizes for all 

AD subgroups are discussed in 1.2.c.  

My Ph.D. work focuses on applications of existing data science methods in a new domain 

(comparison of AD subgroups) and emphasizes a careful selection of methods to deal with the 

limitations and challenges of biomedical data from an ongoing clinical study. These limitations 

in the data made the task of looking for differences in the AD subgroups a challenging one. 

Although ADNI is a large study and perhaps one of the biggest studies in terms of MRI 

collection and following individuals with AD over time, the sample sizes of the AD subgroups 

are still small from the perspective of machine learning and statistical methods. This is one of the 

biggest challenges of the current cross-sectional and longitudinal data that I analyzed. ADNI 

consists of cognitively normal, Mild Cognitive Impairment (MCI) and AD subjects. The division 

of the AD subjects into subgroups results in a relatively small sample size for each AD subgroup 

of interest. The small sample size is not something that can be resolved quickly or easily. 

Although acquiring additional data for analysis can be challenging in any field, it is especially 

hard for MRI data and for a demographic of individuals who are older with physical and 

cognitive limitations. First, participants must be recruited into a study. Second, the cost of even a 

single MRI is substantial – both monetary costs and participant and staffing cost. Other common 

challenges of cross-sectional and longitudinal datasets were imbalance in AD subgroup sizes and 

several extraneous variables such as changing scanner properties over time and different testing 

sites, individuals’ age, sex, etc. contributing to variation in ROI volumes observed across 

individuals, possibly diluting the signal (differences in brain regions) associated with AD 

subgroup differences. Additionally, in the current data, there is evidence of non-constant and 

unpredictable variation in the reported volumes for a given ROI from multiple MRI scans from 
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the same clinical visit for any given individual. This could be due to MRI measurement error as 

well as errors accumulated in the pre-processing pipeline for obtaining the volumes of ROIs from 

the MRI images. Together, these aspects of data made the problem of detecting differences in 

brain regions across AD subgroups a challenging one. While acknowledging the challenges and 

limitations of the current cross-sectional and longitudinal datasets, the goal of my Ph.D. work 

was to make the best of the current data at hand. A consistent theme of my Ph.D. work has been 

carefully selecting methods that are best suited for the characteristics of the data and methods 

that allow one to discover meaningful relationships in data despite the limitations of the data. 

Below, I briefly describe the scientific questions, analysis methods and findings of the two parts 

(Aim 1 and Aim 2) of my work. These questions rest upon the assumption that the AD subgroups 

defined by Crate et al. are indeed distinct enough groups. 

In cross-sectional data analysis (Aim 1), I compared pairs of AD subgroups by constructing binary 

classification models using structural MRI data for the following: a.) AD-Language vs. AD-

Memory, b.) AD-Memory vs. AD-Visuospatial and c.) AD-Language vs. AD-Visuospatial. The 

intent in developing classification models was to use the models to understand which brain ROI 

volume variables are important for distinguishing between the subgroups rather than using the 

models in a clinical setting to make classification decisions. To accomplish this, I explored two 

machine learning methods (logistic regression with elastic net penalty and random forest) that 

qualified as good candidates for providing some insight into variable importance. I determined 

random forest models to be a better fit for the data of interest due to theoretical reasons as well as 

data driven reasons which are discussed in Chapter 4. Using random forest, I obtained, for each 

classification, the topmost regions that have the greatest contribution in reducing the classification 

error. Though this analysis, I provided a ranking of brain regions that are most important in two 
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specific subgroup comparisons: a) AD-Language vs. AD-Memory: right entorhinal cortex, right 

hippocampus, right lingual gyrus and left hippocampus and b) AD-Memory vs. AD-

Visuospatial: left entorhinal cortex, right entorhinal cortex, right supramarginal gyrus and 

left postcentral gyrus. I then determined the directionality of association between AD subgroup 

and each identified candidate brain region of interest by visually comparing distributions (violin 

plots) of the AD subgroups of interest. Results from the third comparison, AD-Language vs. AD-

Visuospatial were not as informative; I discuss this further in Chapter 4. Overall, Aim 1 work 

demonstrates a careful selection of a machine learning method to best suit the characteristics of 

the data at hand; it is an application of random forest in a new domain: understanding AD subgroup 

differences. Since classification models have not been used to understand AD subgroup differences 

before, it is important to note there is no existing gold standard for how good the classification 

accuracies must be for distinguishing between pairs of AD subgroups.  

The driving question for longitudinal data analysis (Aim 2) in my dissertation was to see whether 

the AD subgroups defined at t0, differ in their brain ROI volume trajectories over time, and if so, 

which ROIs show the most salient differences. In preliminary work for this analysis, I first 

simulated longitudinal data for two hypothetical groups based on average annual rates of change 

of volume of ROIs in AD obtained from literature, allowing tweaking of sample size and the 

factor by which two groups differ in ROI volumes. I intended the simulated data to serve as a test 

bed for analysis methods and applied linear mixed effects (LME) modeling on the data to 

determine the sample sizes and difference factors needed to detect engineered differences. For 

real longitudinal data, before applying LME modeling, I set criteria of working with data from 

specific MRI scans to reduce the effects of noise in data due to a.) moving MRI scanner 

technologies over time and b.) unaccountable MRI measurement error and ROI segmentation 
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error. Details of these criteria are discussed in Chapter 5. Using this data, I modeled each of the 

70 ROI volumes over time using LME modeling to determine which (if any) ROIs’ volume 

trajectories across two AD subgroups differ in overall volumes over time and the rates of change 

over time.  I carried out this analysis on a series of subsets of data where each subset was 

generated by restricting each AD subgroup’s data to time points with a specific minimum 

number of subjects available. I let this number range from 1 to 5, resulting in five different 

subsets of data for each AD subgroup. This was important to do since the longitudinal data is not 

only imbalanced in AD subgroup sizes but it is also irregular, i.e. not all individuals have data at 

all time points. Simply using all the data available at each timepoint for each AD subgroup may 

lead to biased results if the number of data points for an AD subgroup from a given time point is 

not large enough. For each dataset analyzed, I obtained two lists of top five ROIs, one based on 

the magnitude of difference in rates of change of ROI volume between the two AD subgroups 

being compared and the other based on the magnitude of difference in longitudinal volumes 

between the AD subgroups. All differences were normalized by ROI size for ranking ROIs for 

importance. Detailed results can be found in Chapter 6. A high-level result from this analysis is 

that for each of the three binary comparisons (AD-Language vs. AD-Memory, AD-Memory vs. 

AD-Visuospatial and AD-Language vs. AD-Visuospatial), there is some overlap between the 

lists of ROIs based on rates of change of ROI volume between the two groups being compared 

and average differences in ROI volumes between the groups at t=0. Additionally, some ROIs 

from these lists were also determined to be important for distinguishing between pairs of AD 

subgroups in the cross-sectional data analysis using random forest. These ROIs are: right 

entorhinal cortex (important in rate of change differences between groups and ROI volume 

differences between groups at t=0 from longitudinal data analysis) and right hippocampus 
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(important in ROI volume differences between groups at t=0 from longitudinal data analysis) for 

AD-Language vs. AD-Memory. For AD-Memory vs. AD-Visuospatial, the ROIs are left 

entorhinal cortex, right entorhinal cortex and left parahippocampal gyrus, all three of which 

are important in terms of rate of change differences between the groups as well as the ROI 

volume differences at t=0 for the two groups in longitudinal data. These findings preliminarily 

suggest that at least some of the ROIs that differ between AD subgroups at the time of diagnosis 

(or the first visit for AD individuals in the study) continue to show differences longitudinally.  

The biomedical informatics contribution of my work is in dealing with the challenges and 

intricacies of real biological data, specifically structural MRI data collected in the ongoing ADNI 

study, for a meaningful analysis in the comparison of AD subgroups. As mentioned above, the 

biggest challenge of both cross-sectional and longitudinal data was the small sample sizes of the 

AD subgroups of interest (see Table 1 under 1.2.c), making it harder to find distinguishing 

features between subgroups. Accepting the limitation of small samples sizes, I focused my 

attention on addressing other challenges of the data that might help improve how well the 

subgroups can be distinguished from each other: imbalanced class sizes, accounting for 

correlation among brain ROI volume variables and potential noise in volume data due to 

variables other than ROI volumes. In addition to these challenges in cross-sectional data, in 

analyzing longitudinal data, I faced additional challenges of irregularly spaced and sparse data 

and changing technologies over time such as scanner MRI field strength. MRI volumes over time 

measured with even the same field strength were noisy, with large fluctuations in volume 

trajectories for individuals for many ROIs, instead of showing a steady decrease or mild 

fluctuations. In a scenario where the sample size is large enough, the noise in the ROI volume 

trajectories should not be of huge concern in LME modeling. Similarly, when the sample sizes 
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are large enough, the LME models should not be sensitive to which time points should or should 

not be included in the analysis for each AD subgroup. However, given the small sample sizes of 

the longitudinal data at hand, my analysis carefully took the above two points in consideration, 

rather than a direct application of LME models to the default dataset. Instead of an off-the-shelf 

and black box application of data science methods, my dissertation work demonstrated careful 

assessment of the chosen methods to suit the needs of the cross-sectional and longitudinal 

datasets.  

My Ph.D. work is an application of existing methods (machine learning classification models 

and linear mixed effects modeling) in a new research domain: AD subgroups. From an AD 

researcher’s perspective, results from my work may serve as a guide for which brain regions 

should be examined closely in future neuropathological studies for learning more about 

differences in the brains of individuals from different AD subgroups. In the case of classification 

models used for cross-sectional data, my work may be one of the first in establishing a 

documentation of classification accuracies for distinguishing between pairs of AD subgroups. 

Currently, there is no known gold standard or standards to be surpassed based on previous work 

for these classification accuracies. 

Previous work focused on voxel-by-voxel comparison of AD subgroups based on cross-sectional 

structural MRI data (Crane and Group 2020). My Ph.D. work added to this line of research in a 

novel way, looking at a different entity of brain volume: brain regions of interest (ROI). I 

focused on 70 brain ROIs: 68 cortical regions defined by the Desikan-Killiany atlas (Desikan et 

al. 2006) and bilateral hippocampi. In addition, the methods I used for analysis are different from 

what has been done in previous analysis of cross-sectional data for comparing AD subgroups. I 

focused on variable importance through a carefully selected machine learning method (random 
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forest) and provided sets of ROIs that best distinguish a.) AD-Language vs. AD-Memory and b.) 

AD-Memory vs. AD-Visuospatial. In addition to extending previous work of analyzing structural 

MRI differences across AD subgroups to atlas defined brain ROIs, my analysis of cross-sectional 

data allowed for the possibility of non-linear relationships between ROIs and AD subgroups, and 

interactions between the ROI volumes, which is novel work in AD subgroups comparison 

research.  

1.1 Background: Cognitive subgroups, brain regions and ADNI 

To provide context for the analyses described in subsequent chapters, I begin with background 

information about AD subgroups, the brain regions of interest I chose to study, and the ADNI 

study which is the source of the data I used and an overview of the cross-sectional and 

longitudinal structural MRI data.  

1.1.1. Clinical heterogeneity and AD Subgroups 

Many diseases have been studied by focusing on subtypes within the disease, leading to more 

effective treatments for the subtypes. A successful example is breast cancer where molecular 

subtypes of breast cancer are used for predicting prognosis and planning treatments (Yang 2019). 

Other benefits of disease subtyping include being able to provide more precise estimates of the 

expected costs of care for different subtypes as well as better planning of clinical trials so that the 

subtypes can be represented in equal proportions through targeted recruitment (Saria and 

Goldenberg 2015). These serve as motivating factors for assessing the clinical variation within 

AD and defining subtypes.  

Clinical heterogeneity observed in AD has suggested that AD is not a single uniform disease and 

that there are distinct variants within AD (Lam et al. 2013). Researchers have taken several 

approaches (Vardy et al. 2013), (Scheltens et al. 2016) and (Ferreira et al. 2017) to sub-
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categorize people with AD. Other researchers have recognized three clinical variants of atypical 

AD, i.e. AD with relative preservation of memory but impairments in other cognitive functions: 

1. posterior cortical atrophy (PCA) which presents with a predominant impairment in visual 

identification or in visuospatial function, 2. primary progressive aphasia (PPA) which is 

characterized by language impairment, semantic, syntactic and motor speech abilities, and 3. a 

behavioral variant of frontotemporal dementia characterized by progressive apathy, behavioral 

disinhibition or predominant executive dysfunction (Dubois et al. 2014). In other work, 

Dickerson & Wolk (Dickerson and Wolk 2011) focused on memory and executive functioning 

and characterized the primary impairments in individuals with AD by looking at the difference 

between memory and executive functioning in an individual based on neuropsychological tests. 

A recent development in this line of work has been the cognitively defined AD subgroups by 

Crane et al (Crane et al. 2017) which are the subgroups I used in my dissertation work. Crane et 

al. extended Dickerson and Wolk’s idea of looking at contrasts between two domains to a 

difference-based approach for four domains (Executive & Attention, Language, Memory and 

Visuospatial) and in doing so, Crane et al. also did more extensive work in assessing the 

cognitive test items that would best define each domain. 

In Crane et al.’s methodology, an expert panel of neuropsychologists assigned specific items 

from the Cognitive Abilities Screening Instrument (CASI) (Teng et al. 1994) and a 

neuropsychological batteryi to one of the following cognitive domains: Executive & Attention, 

Language, Memory, and Visuospatial. Based on this assignment, scores for each domain were 

calculated for each individual. Then for each domain, raw scores for all subjects with incident 

 
i The neuropsychological battery consisted of “clock drawing, verbal fluency, Mattis Dementia Rating Scale, Boston 
naming, verbal paired association and recall, logical memory and recall, Word List memory, Constructional Praxis 
and recall, Trails A and B, and Information and Comprehension subtest items.(McCarty et al. 2011)”  
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AD who had scores for all four domains (n=825) were scaled to have mean 0 and standard 

deviation (SD) 1. For each individual, if the difference between the average score of all four 

domains and the domain specific score was below or equal to an empirically selected threshold 

value (-0.75), then that domain was assigned to be the primary impairment domain for that 

individual. These procedures resulted in six AD subgroups: AD-Executive, AD-Language, AD-

Memory, AD-Visuospatial, AD-No Domains, and AD-Multiple Domains. My dissertation 

focused on individuals in the first four single domain groups. Since the AD subgroup assignment 

is based on comparing each cognitive domain’s score for an individual with the individual’s 

average score, Crane et al.’s method controls for individual effects such as overall cognitive 

functionality in an individual and level of disease progression. 

1.1.2. Brain regions of interest 

The smallest unit of brain that can be analyzed using structural MRI corresponds to a voxel 

which is the smallest unit of measurement in a 3-D image. A typical voxel size for structural 

MRI is 1 mm3 (“Preliminaries — Introduction to MRI” n.d.) and it represents roughly 105 

neurons (“Lecture_2_-_mri_as_a_black_box.Pdf” n.d.). In looking for structural differences in 

the brains of individuals from different AD subgroups, one can analyze data ranging from the 

level of single voxels to brain regions comprised of one or more voxel. Previous work by Crane 

& Risacher (Crane and Group 2020) has shown some brain level differences across pairs of AD 

subgroups using voxel level analysis. To provide a different perspective on the question of brain 

regional differences in pairs of AD subgroups, I chose to use brain regions instead of individual 

voxels as the feature of interest for my analysis.  

There are at least 46 known human brain atlases (Lawrence et al. 2021) that are region based, 

with varying numbers of brain regions ranging from 2 (in the Hemispheric atlas) to 1105 (in the 
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Talairach atlas).  For my dissertation, I focused the analysis on cortical regions for ease of 

interpretation and also the hippocampus which is a subcortical structure known to be important 

in Alzheimer’s disease due to its role in memory function (Parkin 1996). I also wanted to ensure 

that the number of regions (input features p) I use in my analysis are not too large, given the 

small sample size (n), as that combination could lead to model overfitting [cite]. In selecting a 

brain atlas for my analysis, I needed to make sure that cortical regions were included and that the 

number of regions was not too large. With the goal of presenting results that are reproducible in a 

software that is easily accessible as well as trusted in the neuroimaging analysis community, I 

chose to obtain atlas- based data from structural MRI scans using FreeSurfer (“FreeSurfer” n.d.). 

FreeSurfer is a widely used open source software in the field of neuroimaging analysis, and it is 

the structural MRI analysis software of choice for the Human Connectome Project 

(“Connectome Programs | Blueprint” n.d.), an initiative to map the anatomical and functional 

networks in the human brain. Among the cortical atlases, the FreeSurfer pipeline comes with 

three atlases: the Desikan Killiany (DK) atlas (68 regions), the Desikan-Killiany-Tourville 

(DKT) atlas (62 cortical regions) and the Destrieux atlas  (148 cortical regions) (Destrieux et al. 

2010). The Desikan-Killiany atlas seemed to be a more attractive choice because it provided a 

good balance of having enough regions of interest but not too many (so that potential problems 

in model building from the p >= n case could be avoided). I relied on expertise of Dr. Shannon 

Risacher at Indiana University for the processing of structural MRI data from ADNI using 

FreeSurfer to obtain data in the form of volume, surface area and thickness for brain regions 

based on an atlas. This processing in FreeSurfer consists of parcellation and segmentation which 

yields cortical and subcortical regions. The final dataset that I used in my dissertation consisted 

of 70 brain regions discussed next, courtesy of the FreeSurfer processed data from Dr. Risacher 
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using the Desikan-Killiany atlas and subcortical regions. In both cross-sectional and longitudinal 

data analysis, I focused on volumes of these selected 70 brain regions (68 cortical regions and 

two regions corresponding to the left and right hippocampus). In the next subsection (1.2.c), I 

describe the source of this data and the processing done by collaborators (Dr. Risacher) to 

prepare the data. Here, I discuss the 70 brain ROIs, including the Desikan-Killiany atlas.  

The FreeSurfer processed MRI data from Dr. Risacher consisted of 120 volume, 68 cortical 

thickness and 70 surface area variables for each individual. This included cortical ROIs from the 

Desikan-Killiany atlas and subcortical ROIs. Volume, thickness and surface area are correlated 

measures, and although each measure captures slightly different aspects of the data, I chose to 

work with only volume variables to avoid multiple representations of the same region in the data 

for my analysis; I obtained the 70 volume variables corresponding to the 70 ROIs described in 

the previous paragraph. I excluded the remaining 50 volume variables in FreeSurfer data 

including the whole brain level or hemisphere level volumes, ventricular volumes and white 

matter variables. Since the goal is to understand regional brain differences across the AD 

subgroups, global volume measures at the whole brain or hemisphere level would not be useful. 

Ventricles are a series of interconnected cavities in the brain filled with cerebrospinal fluid 

(CSF), located in the core of the forebrain and the brainstem (Purves et al. 2001). There is no 

known unique function of ventricles. Ventricular volumes do not add much to the information 

that is already being provided by the surrounding brain regions. They represent “negative” 

spaces in the brain which are harder to interpret. White matter lies deep in the brain, beneath the 

grey matter cortex. It consists of millions of bundles of axons that connect neurons in different 

regions of the brain (Fields 2010). The white matter variables present in the FreeSurfer processed 

data provide a measure of white matter in left and right cerebellum, left and right cerebral cortex 
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and hypointensities. These global measures that are comprised of volumes of individual white 

matter tracts, are difficult to interpret and not useful for the analysis of looking at brain region 

differences across the AD subgroups. Hence, these variables were excluded and the final list of 

ROIs that I included in my analysis for both Aims 1 and 2 were volumes of the 68 cortical 

regions from the Desikan-Killiany atals and the left and right hippocampus from the subcortical 

regions. 

The Desikan-Killiany atlas is a human brain atlas of 34 cortical regions per hemisphere. It 

subdivides the human cerebral cortex on MRI into gyral based ROIs. The regions are organized 

into six lobes. Figure 2 provides a spatial context of the 68 cortical regions defined in the 

Desikan-Killiany atlas. The left and right hippocampi are shown on a different map (Figure 3) 

representing subcortical regions.  
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Figure 2: Labeled regions of the Desikan-Killiany atlas, in the lateral and medial views for both 
hemispheres of the brain. The different colors used for the region names represent different lobes. Base 
image created using the ggseg (Mowinckel and Vidal-Piñeiro 2020) package in R.  

 

 

Figure 3: Subcortical regions shown in an axial view of the brain. The left and right hippocampi are 
among the 70 ROIs that were used in the analysis in my dissertation work. Base image created using the 
ggseg (Mowinckel and Vidal-Piñeiro 2020) package in R. 

Right Left 

Hippocampus 
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1.1.3. ADNI and FreeSurfer data 

ADNI is a longitudinal multicenter study started in 2004 by Dr. Michael W. Weiner through 

funding from 20 companiesii, the National Institute of Aging (NIA), with the objective of 

developing clinical, imaging, genetic, and biochemical biomarkers for early detection and 

tracking of AD. The study has continued in different phases over the last 18 years. Figure 4 

illustrates the intended subject additions in each phase and how they were carried through the 

study. ADNI-1 (2004-2009), the earliest phase of ADNI, consisted of 200 elderly controls 

(cognitively normal), 400 Mild Cognitive Impairment (MCI) and 200 AD individuals. The next 

phase, ADNI-Grand Opportunities, also known as ADNI-GO (2009-2011) comprised of all non-

deceased individuals from ADNI-1 and an additional 200 individuals with early Mild Cognitive 

Impairment (MCI). ADNI-2 (2011-2016) continued to follow with existing ADNI-1 and ADNI-

GO individuals and included new individuals: 150 individuals with normal cognition 

(cognitively normal controls), 100 individuals with early MCI, 150 individuals with late MCI 

and 150 individuals with AD. The latest phase of the study ADNI-3 (2016-2021) consists of all 

individuals from ADNI-1, ADNI-GO, ADNI-2 and new individuals: 133 controls, 151 MCI and 

87 ADError! Bookmark not defined.. Protocols used in the ADNI-1 phase and the other phases 

were not identical due to technological advances over time. For example, ADNI-1 subjects’ 

brains were scanned in MRI machines with a magnetic field strength of 1.5 Tesla (T) but in the 

subsequent phases of ADNI, the subjects were scanned in 3 T MRI machines. Additionally, the 

scanner type (manufacturer and model) varied across the different ADNI sites, but all the scanner 

types used were pre-approved by the ADNI study requirements. This variation in the ADNI 

 
ii https://adni.loni.usc.edu/about/#fund-container 
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protocol across subjects and over time is an important point to note and one challenge of the 

ADNI data that I addressed in my data analysis. 

 

Figure 4: A chronological visualization of the phases in the ADNI study, and each phase’s 

subject make-up. A total of 437 (and counting) AD subjects have been initiated into the study 

over the course of the various phases of the study. The timeline portions of this figure have been 

borrowed from the ADNI website.  

The data available in the ADNI database includes raw MRI scans to FreeSurferiii processed MRI 

data in the form of volume, thickness and surface area values for brain regions defined by 

specific brain atlases used by FreeSurfer. The ADNI database has files corresponding to the 

FreeSurfer processed ROI data which includes volumes of 70 brain ROIs that I was interested in 

analyzing for individuals that have been assigned into AD subgroups by Crane et al. However, 

 
iii FreeSurfer is “an open source software suite for processing and analyzing (human) brain MRI images.” 
[https://surfer.nmr.mgh.harvard.edu/]  software that uses brain segmentation and parcellation according to the 
Desikan-Killiany (DK) atlas and calculates volumes and cortical thickness of the DK atlas brain regions. 
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the data for these individuals in the ADNI database is found under different files corresponding 

to different phases of the study (ADNI1, 2, GO, 3) which were processed using different 

FreeSurfer versions. In general, it is not recommended that data from different FreeSurfer 

versions be combined. Due to these standardization and interoperability issues in directly using 

FreeSurfer processed data from the ADNI database, Dr. Risacher at Indiana University processed 

all ADNI MRI scans using a single version and the latest versions of FreeSurfer at the time of 

analysis, version 6.0 (v6.0). I am grateful to Dr. Shannon Risacher at Indiana University who 

provided the FreeSurfer processed, and Quality Control (QC) checked data for my dissertation 

work.  

In addition to imaging data, ADNI also contains clinical data for each individual. This includes 

the cognitive test scores that were used by Crane et al. to assign AD subgroups to individuals. 

Additionally, for each individual, many other variables are available including the following that 

I used in my analysis: “ptgender” (patient sex), “pteduc” (patient education), “MRI_Age” (age at 

the time of the MRI visit), “apoe4” (APOE genotype characterized as ≧1 ε4 alleles vs. 0 ε4 

alleles), “ICV” (intracranial volume), “Field_Strength” (field strength of the MRI scanner) and 

“Scanner.Model.” Another variable of importance that I used in my analysis derived from ADNI 

data, involves w-scores,iv which were calculated by Dr. Rik Ossenkopele and Dr. Collin Groot at 

VU Amsertadam, using structural MRI data for each individual (Ossenkoppele et al. 2015). The 

w-score, for each voxel in an individual, represents a measure of the level of atrophy relative to 

cognitively normal controls. Ossenkopele et al. used “a neuroimaging approach that sums the 

 
iv “W-scores (mean = 0, SD=1 in the control group, similar to z-scores) show, at each voxel, where a [participant’s] 

patient’s gray matter probability would fall on the normal distribution of gray matter probabilities in healthy controls, 

after taking nuisance factors into account [Jack et al., 1997; La Joie et al., 2012]. Our last steps were to binarize the W-

score map for each [participant] patient at W < -1.5, and to sum the total number of suprathreshold voxels for every 

patient.(Ossenkoppele et al. 2015)”  
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number of brain voxels showing significantly lower gray matter volume than cognitively normal 

controls.” This approach of counting voxels below a w-score threshold gives a measure of the 

level of overall atrophy in the brain; Ossenkopele & Groot specified this threshold to be -1.5. 

The w-score voxel count can be thought of as an indicator of disease severity. All of the above 

variables could be potential contributors of variation in ROI volumes across individuals, and 

needed to be accounted for, while comparing AD subgroups; this is addressed in Chapter 2 for 

cross-sectional data and in Chapter 6 for longitudinal data. These variables are referred to as 

“non-ROI variables” in the rest of the document.  

Although ADNI is a relatively large study with large sample sizes, the intersection of individuals 

in ADNI and those that have been assigned into cognitively defined AD subgroups is only a 

modest size from the perspective of machine learning and statistical analyses. Table 1 shows the 

final sample sizes after FreeSurfer QC (by Dr. Risacher) and additional data cleaning steps in 

which I removed individuals with missing w-scores. Given the small sample sizes, it was 

necessary to use data from both field strengths in the analysis. As detailed in subsequent 

chapters, for both cross-sectional and longitudinal data, my analysis accounted for the effects of 

field strength on volume measurements. For longitudinal data analysis, although I used data from 

both field strengths, for any given individual, I only used data from a single field strength over 

time.  

The focus of my dissertation is on the four AD subgroups introduced earlier. There are two 

additional subgroups, AD-Multiple domains and AD-No domain, whose data I used in addition 

to the fours groups’ in a preliminary data analysis step in Aim 1 work. For cross-sectional data, 

the data available (including both magnetic field strengths) in the six AD subgroups have the 

following sample sizes: AD-Executive (n=12), AD-Language (n=42), AD-Visuospatial (n=61), 
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AD-Memory (n=177), AD-Multiple domains (n=12) and AD-No domain (n=147). For 

longitudinal data, individuals who had data at t0 and at least one other time point from the same 

field strength had the following sample sizes: AD-Executive (n=19), AD-Language (n=42), AD-

Visuospatial (n=64), AD-Memory (n = 190), AD-Multiple domains (n=20) and AD-No domain 

(n=235). Of these, over the span of the first four single domain subgroups, there were 13 

individuals who had data for both 1.5T and 3T scans while in the AD-No domain group, there 

was 14 such individuals. For these individuals, I used data from the field strength that had data 

for more time points. If the number of time points were the same for the two field strengths for 

an individual, then I chose the 3T data. I used data from all six AD subgroups for cross-sectional 

and longitudinal data in a preliminary step for accounting for the effects of non-ROI variables on 

the volume data. For the main question of my dissertation, which is to understand how the single 

domain AD subgroups differ, I only analyzed differences across the following subgroups: AD-

Language, AD-Memory and AD-Visuospatial, excluding AD-Executive due to its small sample 

size. 

Sample size Cross-Sectional Longitudinal 

AD Subgroup 1.5 T 3 T Total 1.5 T 3T  Total 

AD-Executive 7 5 12 7 12 19 

AD-Language 26 16 42 21 21 42 

AD-Visuospatial 35 26 61 26 38 64 

AD-Memory 115 62 177 97 93 190 

AD-Multiple 
domains 

12 10 22 10 10 20 

AD-No domain 147 82 229 113 122 235 

Total 342 201 543 274 296 570 
 

Table 1: Sample sizes of AD subgroups. The first four subgroups were the focus of my dissertation work, 
although AD-Executive was excluded from comparison of AD subgroups due to the small sample size. 
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The data processed by Dr. Risacher that I used in my analysis originates from ADNI1, ADNI2 

and ADNIGO for cross-sectional data and from all phases for longitudinal data. Raw MRI scans 

for these data can be accessed via the ADNI database with approval from the ADNI committee. 

All variables available for cross-sectional data are also available for each clinical visit in 

longitudinal data. Figure 5 shows the intended frequency of MRI visits for each phase of the 

ADNI study. Since I set the time axis relative to the time of AD diagnosis and analyzed data 

across all phases of ADNI in longitudinal data, the longitudinal dataset is irregular, i.e. not all 

individuals have data at all time points which is a common challenge of real world longitudinal 

datasets. Additionally, many individuals may have missing data because of missed visits. 

 

Figure 5: An overview of the MRI data collected throughout the ADNI study. Source: 
http://adni.loni.usc.edu/data-samples/data-types/ AD= Alzheimer’s disease, MCI = Mild Cognitive 
Impairment, EMCI = Early Mild Cognitive Impairment and LMCI = Late Mild Cognitive Impairment. A 
description of the superscripts on CN, MCI and EMCI could not be found at the source of this figure.  

 

1.2 Organization of the dissertation work 

The chapters of this dissertation are organized as follows: Chapters 2, 3 and 4 are about Aim 1: 

cross-sectional data analysis; Chapters 5 and 6 are about Aim 2: longitudinal data analysis, 

finally, Chapter 7 presents concluding thoughts, limitations and future research ideas. In Chapter 

2, I describe the question tackled in Aim 1 (Cross-sectional data analysis), an overview of the 

http://adni.loni.usc.edu/data-samples/data-types/
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methodology and set up the mathematical problem of interest. I also provide a descriptive 

analysis of cross-sectional data in Chapter 2, including plots comparing some ROI volumes for 

pairs of AD subgroups. Descriptive plots for all cross-sectional ROI volumes can be found in the 

supplementary files (all files starting with “violin_BoxPlots” in their names). Chapters 3 and 4 

are focused on the details of the analysis of cross-sectional data: determining ROI importance 

using classification models for distinguishing between pairs of AD subgroups using penalized 

logistic regression (Chapter 3) and random forest (Chapter 4). In Chapter 5, I provide an 

overview of longitudinal data, define the question of interest and discuss the characteristics and 

challenges of the current longitudinal data. In Chapter 6, I present an LME modeling analysis 

comparing rates of change and ROI volumes at t=0 in pairs of AD subgroups in longitudinal data 

originating from ADNI that were processed by Dr. Risacher using FreeSurfer. Through a series 

of LME models for each ROI for different subsets of data determined by excluding specific time 

points, Chapter 6 also attempts to check the robustness of LME models keeping some of the 

challenges of longitudinal data in mind such as irregularly spaced data over time and small 

sample sizes. Lastly, Chapter 7 concludes the dissertation with a summary of main findings, 

limitations of the current work and ideas for future work. 
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Aim 1: Cross-sectional Data Analysis 

 

 

Machine Learning based approaches to identify brain regions from cross-sectional MRI 

data that are most important for distinguishing between AD-subgroups 

 

 

Machine Learning classification models
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Chapter 2: Aim 1 approach rationale, data and setting up the classification problem 

 

The scientific goal of Aim 1 was to understand which brain regions are most important in 

distinguishing between pairs of AD subgroups, using FreeSurfer processed volumes of the 70 

brain regions described in 1.2.b. from t0, the first MRI visit at or after AD diagnosis. In search of 

a method that would allow me to gain maximum insight into the differences across the AD 

subgroups, I explored two supervised machine learning based classification methods. My main 

criteria for choosing the machine learning methods were that they must be able to provide some 

insight into variable importance, and they must have ways of preventing overfitting the data. 

Based on these criteria, I implemented logistic regression with regularization (using the ridge, 

lasso and elastic net penalties) and random forest, the details of which are provided in the next 

two chapters. Although both of these models are interpretable for variable importance, logistic 

regression models are more interpretable than random forest. To aim for a highly interpretable 

model, I started the analysis of cross-sectional data using the logistic regression with 

regularization approach. Eventually, I selected random forest as the better method for the given 

data and question of interest (as discussed in Chapter 4) and used it to conclude which regions 

are important for distinguishing between pairs of AD subgroups. 

Going into Aim 1 work, I hypothesized that there would be some differences across AD 

subgroups at the level of brain regions. I based this hypothesis on previous work (Crane and 

Group 2020) that had identified differences in grey matter density at the voxel level (in structural 

MRI data) for pairwise comparisons of AD subgroups, using independent models predicting a 

single voxel’s volume as a function of AD-subgroup and confounding variables. A voxel 

represents the smallest unit of volume in an MRI. Each of the 70 regions considered in my 



32 
 

analysis consists of multiple voxels. As preliminary work of Aim 1, when I looked at 

independent models predicting each brain ROI’s volume as a function of AD subgroup type 

(considering two subgroups at a time), I found the coefficient of the AD subgroup variable in the 

model to be statistically significant (different than 0) for some brain regions. This finding is 

consistent with my hypothesis that there are some differences across AD subgroups at the level 

of brain regions, when each brain region is analyzed separately.  

However, for the chosen machine learning approaches, penalized logistic regression and random 

forest, which are both joint models of ROIs, I noted that there was no guarantee that these 

models would be able to separate the data sufficiently well into AD-subgroups just because the 

preliminary results had shown strong univariable (ROI) associations with AD subgroup 

membership. A univariable model provides information about marginal association of a single 

ROI variable with AD subgroup whereas a model based on multiple ROIs provides information 

about the relationship of a ROI variable with the AD-subgroup, given other ROI variables in the 

model. Whereas previous work in studying cognitively defined subgroups has shown marginal 

associations of voxels and ROIs with the AD subgroup type, the novel contribution through my 

Aim 1 work is that I present ensembles of brain regions for distinguishing between the different 

pairs of AD subgroups based on joint models that account for ROIs’ relationships with one 

another. 
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2.1 Why I used machine learning methods and why I chose the ones I did? 

A multivariable or a joint model of ROIs can be fit to the data to predict AD subgroup 

membership without using machine learning based methods specifically. There are specific 

reasons why I chose to use machine learning methods to do so. Before I explain the reasons, I 

first clarify the usage of the term “machine learning” in the context of my dissertation. 

It is important to note that the term “machine learning” is not defined in a strict way across 

disciplines, and there is more than one interpretation of what may qualify as a machine learning 

method. For example, one of the methods that I implemented, logistic regression with 

regularization, is a method that has existed in the statistics field before the term “machine 

learning” came into wide use. In my dissertation work, I refer to it as a machine learning method 

because of how I implemented this method. The implementation is aligned with one of the 

standard problems in machine learning (classification) and some of the rule-of-thumb practices 

in the field: model building/learning and cross-validation on a subset of the data (training set) to 

choose optimal parameters and reporting test error by assessing model performance on unseen 

data (test set). Although having a training and a test set and using cross-validation are not unique 

to the field of machine learning, they are not necessarily a standard practice in traditional 

implementation of statistics methods. Hence, for my dissertation, I have used the term “machine 

learning” for any methods (including statistical methods) that have all three of the following 

criteria: methods that a.) are based on learning from a training dataset, b.) make the distinction 

between a training set and a test set, while making sure the test data is not used during the model 

building process and c.) follow the protocol of performing cross-validation on the training data in 

order to pick more reliable parameters for the model being constructed.  
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Note, that the test set to be used for the validation of the final model can be an unseen future 

dataset and it doesn’t have to be a subset of the current dataset that we have. In my dissertation, I 

took this route because of the small sample sizes of the AD subgroups, and in order to build a 

reliable model, I wanted to maximize the training dataset size. Additionally, given the small 

sample size of the current dataset, if I split the data into training and test sets, the test set might 

not have enough samples to reliably test a model and report the associated test error. So, I chose 

to use all of the current dataset as the training data. In this approach, I note that the validation of 

the model using an independent dataset remains to be done in future work and I reported cross-

validated training set errors as rough estimates of the test errors for the model. 

Now that I have laid out a clear definition of what is included in the term “machine learning” in 

the context of my dissertation work, next, I explain why I used machine learning methods to 

understand the differences across AD subgroups. Firstly, there are techniques in some machine 

learning methods that allow one to minimize overfitting of the model. As noted in the opening 

paragraph of this chapter, this is one of the criteria I used to decide which machine learning 

methods I wanted to implement. Minimizing overfitting is important to obtain a reliable model 

that is more generalizable and more robust to changes in data. Generally, the more overfit or 

complex a model is, it will have a lower biasv. Having a low bias is a good attribute of a model. 

However, highly overfit models generally have a high variancevi. To avoid having a high 

variance, less overfit and less complex models are usually preferred over more complex ones, 

even if that comes at the expense at a slight increase of bias. Hence, machine learning methods 

 
v “…Bias refers to the error that is introduced by approximating a real-life problem, which may be extremely 
complicated, by a much simpler model.” Pg. 34, Introduction to Statistical Learning (James et al. 2013)  
vi “Variance refers to the amount by which f_hat (estimate of true model) would change if we estimated it using a 
different training data.” Pg. 34, Introduction to Statistical Learning (James et al. 2013) 
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that allow one to minimize overfitting are useful in providing more robust classification models 

with low variance. The bias-variance trade-off is, however, important and having a high bias is 

also not good. I kept this point in mind while working with the machine learning methods that I 

chose; this is discussed later. 

Probably one of the most attractive reasons for using machine learning methods for Aim 1 work 

is that for some methods, depending on the criteria used for controlling overfitting, the criteria 

can also be used as a way of feature selection (a selection of a subset of the variables to go into 

the model), which can be used to identify the important ROIs for distinguishing between pairs of 

AD subgroups. As noted earlier, feature selection is also one of the criteria I used to select which 

machine learning methods to implement. Feature selection can also be performed using 

techniques traditionally labeled as statistical methods, and as discussed above, there is an overlap 

of methods in statistics and machine learning. 

Lastly, another advantage of using machine learning is that as a standard rule of practice in the 

machine learning field, tuning parameters of the machine learning methods are chosen through 

cross-validation of the training data. This procedure also contributes to the robustness of the final 

chosen model as the tuning parameters are selected based on an average measure over k subsets 

of the data instead of a single set of data. This makes the machine learning methods a better 

choice than traditional implementation of statistical methods where cross-validation may not be 

performed. Choosing tuning parameters based on cross-validation should theoretically result in a 

model with a low variance. 

The key in statistical learning models is the bias-variance trade-off where both the bias and 

variance should be kept as low as possible. A model that minimizes the expected test error on 

unseen data simultaneously achieves low variance and low bias (James et al. 2013, 35). Model 
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complexity depends on attributes like the type of machine learning method chosen (example, 

linear vs. non-linear), the number of features represented in the model and the magnitudes of 

weights for the features in the model. For example, logistic regression is a more complex model 

than logistic regression with regularization since logistic regression without regularization has 

higher coefficients and/or a greater number of non-zero coefficients. Random Forest, a non-

linear method, is more complex than any kind of logistic regression which is a linear method. 

Often, in practice, there is a gain of some bias at the expense of keeping the variance small, as 

the complexity of the models decreases. In choosing the machine learning methods that I decided 

to work with, I took the bias-variance tradeoff into account at a conceptual level, by choosing to 

opt for the implementation of the less complex machine learning models before trying the more 

complex ones. 

Generally, model complexity also has an inverse relationship with model interpretability, which 

is something I also kept in mind while choosing the methods since being able to interpret the 

chosen classification model is very important for the scientific question of Aim 1. Given the 

small size of our data, I also decided not to work with machine learning methods (for example: 

neural networks) that generally only work well for large sample sizes. 

2.2 Data for model building and the general classification problem in Aim 1 

The term “cross-sectional” refers to data at a single time point; this translates to data from a 

single clinical MRI visit in the ADNI study. In Aim 1, the data used for each individual was 

cross-sectional data at the earliest clinical visit after AD diagnosis, referred as t0 in this 

document. As discussed in Chapter 1, the cognitively defined subgroup assignment for each 

individual is also from t0. Mathematically, the problem of Aim 1 can be visualized as shown in 

Figure 6, where the goal is to build a classification model for predicting AD subgroup labels to 
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understand which brain ROIs are important in doing so, using data from the volumes of 70 brain 

regions for individuals from two given AD subgroups (shown as matrix X) and known AD 

subgroup labels for those individuals (shown as vector y).  

Figure 6: A visualization of the classification problem in Aim 1 

The additional variables considered during model building are each individual’s age, sex, years 

of education, intracranial volume, w-scorevii and apoE4 allele status (present or not). Intracranial 

volume provides an estimate of maximum premorbid brain size. Jenkins et al. (Jenkins et al. 

2000)  showed that unlike cerebral volume, intracranial volume is unaffected by atrophy due to 

neurodegeneration or ageing, and hence can be used as a parameter that allows one to account 

for variation in overall (pre-morbid) brain sizes when working with ROI data from different 

individuals. We considered allof the aforementioned variables as potential confounding 

 
vii See Chapter 1 for a definition of w-score. 
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variables. In penalized logistic regression’s implementation in R, it is possible to specify these 

variables as “fixed variables” which means they will not be subjected to penalties for overfitting, 

and they will be included in the model as potential confounding variables to account for any 

potential association of these variables with the outcome (AD subgroup type) and with the ROI 

variables. In the other machine learning method that I used, random forest, it is harder to pre-

include variables before tree building. Additionally, there are other variables in the dataset, 

nuisance variables such as scanner model type and the magnetic field strength of MRI scanners 

(1.5 T or 3 T); these potentially introduce noise in volume/thickness/surface area measurements 

in the dataset, but in theory, they should not have any association with the outcome to be 

predicted (AD subgroup type). I reasoned it would be incorrect to include these variables as 

covariates in the classification models. However, they still needed to be accounted for as 

contributors of potential noise in ROI  volumes. As a consistent method to account for all non-

ROI variables mentioned above, I regressed out the effects of these variables from each ROI 

volume using linear regression. This is discussed further in section 2.6. 

In the current cross-sectional dataset analyzed in Aim 1, there are 177 individuals in the AD-

Memory group, 61 individuals in the AD-Visuospatial group, 42 in AD-Language and 12 in AD-

Executive. Given the small sample size of the AD-Executive group, I excluded it from the 

current analysis. Hence, I worked on the following classification problems: AD-Language vs. 

AD-Memory, AD-Language v. AD-Visuospatial, and AD-Memory vs. AD-Visuospatial.  

2.3 Cross-sectional data acquisition, pre-processing and cleaning  

I obtained the data for Aim 1 work from Dr. Shannon Risacher at Indiana University – Perdue 

University Indianapolis in the form of volumes, thickness and surface area values for brain 

regions defined by the Desikan-Killiany (DK) Atlas in FreeSurfer, along with several Quality 
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Control (QC) and meta-information variables. The volume, thickness and surface area values for 

the brain ROIs were obtained using FreeSurfer version 6.0. Dr. Risacher performed the necessary 

QC steps on the cross-sectional data that was originally collected across several institutions as 

part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The QC’d dataset consisted of 

the above quantities for individuals without AD (controls) and individuals who have been 

classified by Paul Crane into the six subgroups of AD based on a method that uses results from 

cognitive tests described in Chapter 1.   

Of the 790 individuals in the starting dataset that I received from Dr. Risacher, I dropped 

individuals whose FreeSurferQC value was listed as “FAILED” and individuals who were either 

controls (n=118) or did not have an AD subgroup classification available (n=0) from Crane et 

al.’s work. I also removed one individual (SubjID = 023_S_0604) because of discrepancy in QC 

from Voxel based morphometry (VBM) and FreeSurfer, as asked to do so by Dr. Risacher. 

Following the above steps, I checked for additional missingness in the data; all of the 624 

subjects remaining had complete data for all FreeSurfer based volume, surface area and thickness 

variables. The sample sizes for the different groups were as follows: AD-Executive: 14, AD-

Language: 46, AD-Memory: 189, AD-Visuospatial: 85, Multiple domains: 23 and No domain: 

267. There were individuals in the dataset whose age was reported as “>89” (greater than 89); I 

changed these categorical values to a fixed numeric value of 90 as all other values for the age 

variable in the dataset are numeric values. Further, all individuals less than 65 years old were 

filtered out (n=68). As a last step of filtering data, I aligned the remaining individuals in this 

dataset with a dataset containing w-scores for individuals; I also acquired the w-score data file 

from Dr. Risacher. The w-score file only contains data for individuals who are 65 years or older 

and non-reverters.  After dropping individuals from our dataset who didn’t have w-score data, I 
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was left with the final cleaned dataset which is used in Aim 1 analysis, with sample sizes as 

follows: AD-Executive (n=12), AD-Language (n=42), AD-Memory (n=177), AD-Visuospatial 

(n=61), AD-No domain (n=229) and AD-Multiple domains (n=22).  

Since the volume, thickness and surface area values for the different brain regions are derived 

from the MRI scans, it is important to take note of the source of the MRI data. Of the 624 

individuals, the MRI data for 378 individuals came from scanners with a field strength of 1.5 

Tesla (T) and 276 individuals’ data came from 3 T MRI scanners. This divergence in the dataset 

is due to different phases of the ADNI study being represented here and the moving 

technological advancements over time. Additionally, the scanner type (manufacturer and model) 

varied across the different ADNI sites, but all the scanner types used were pre-approved by the 

ADNI study requirements.  

FreeSurfer processed data contains 68 thickness variables, 70 surface area variables and 120 

volume variables. As a starting point of Aim 1 analysis, we decided to work with volume 

variables as our variables of interest to find brain regions that are the most important for 

distinguishing between AD-subgroups. Although thickness, surface area and volume are 

correlated measures, each measure is still unique as it captures a different aspect of an ROI’s 

geometry, and each of these measures may offer different insight into how the AD subgroups 

might differ from each other. Future work could include exploring thickness and surface area 

variables in separate classification problems. Furthermore, building classification models that 

take advantage of combining information from volume, thickness and surface area variables in a 

single model while taking correlation of the variables into account, is a very interesting and 

useful problem to be solved, and I propose that as future work beyond this dissertation. 
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Finally, I prepared a dataset extracting the following specific variables from the above pre-

processed data: “rid” (unique subject ID), “sub_0_80” (AD subgroup label), ROI variables 

(volume, thickness and surface area variables from FreeSurfer), potential confounding variables: 

“ptgender” (sex), “pteduc” (patient education), “MRI_Age” (age at the time of the MRI), 

“apoe4” (apoE4 allele present or not), “wscore_wb” (whole brain average of w-score), 

“wscore_voxelcount_-1.5” (number of voxels below a w-score of -1.5), “ICV” (estimated total 

intracranial volume) and nuisance variables “Field_Strength” (field strength of the MRI scanner) 

and “Scanner.Model” (scanner model). Since wscore_wb and wscore_voxelcount_-1.5 are 

correlated, we chose to keep only one of these variables when we implemented the machine 

learning methods. I chose to keep the wscore_voxelcount_-1.5 variable.      

Before diving into the analysis of cross-sectional data and building classification models for 

predicting AD subgroup, I carried out a descriptive analysis and visualization of the data to get a 

better sense of the overall data structure and to find any general patterns that might emerge. 

These include violin plots showing the distribution of volumes for each ROI for each AD 

subgroup; these plots can be found in the supplemental files provided with this document.  

2.4 Training and Test data 

After the necessary extraction and organization of data, the next step is to allocate training and 

test sets. When comparing multiple classification methods’ performance, it is best to have the 

same training and test sets across different methods, for consistency. I’ve described this step in 

this chapter as it is a common step for all machine learning methods of Aim 1. In section 4.2, I 

briefly talked about the general practice in the field of machine learning of having separate 

datasets for developing or training a model and for assessing the performance of the model. In 
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this section, I discuss the importance of doing so and I also provide reasons for why I used the 

entire sample size of the current cross-sectional data for training purposes.  

The data used to develop the model is called the training set, and additional unseen data used to 

assess the performance of the model is called the test set. Testing the model on a dataset that was 

not used in the training process is important in order to provide a fair assessment of the model. If 

the model is tested on the same dataset that was used to develop the model, then the performance 

of the model would be spuriously biased towards being a good performance. In other words, 

training error (the error of the model based on the training data) is generally expected to be better 

than test error (the error of the model based on the test data), especially when the training set is 

small and when there is enough variation in the population. The test error allows one to know 

how generalizable the model is to new, unseen data. In an ideal situation where the sample size 

of the dataset is sufficiently large, splitting the data into training and test sets allows for each set 

to have enough samples for good training of the model and for reporting a reliable test error.  

However, in dealing with a smaller sample size as is the case in the dataset available to me for 

cross-sectional analysis in Aim 1, I had to make the careful choice of choosing not to split the 

data into training and test sets, and to use all of the data as the training set. I made this decision 

in order to maximize the data available for training purposes and also because I realized that 

making a 80-20 split (80% data as training set and 20% as test set) would result in a test set with 

very small sample sizes which would not give a reliable test error anyway. The way to overcome 

the small sample size of the test set would be to reduce the amount of training data, which would 

come at a cost of a poorer classification model. Keeping this trade-off in mind, for all supervised 

machine learning methods used to develop classification models in Aim 1 work, I have chosen to 

use the entire current cross-sectional data as the training set. Regarding the test set, I envision it 
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to be a future dataset involving the same AD subgroup types, and hence, in my analysis for Aim 

1, I do not report any test errors and leave this assessment of the models as future work as more 

data becomes available in the future.  

For all methods used in Aim 1 work, I will report cross-validated training errors for each model 

while noting that these can be only interpreted as gross estimates of test errors but they are not 

the actual test errors for the models. Given the small sample size of the current dataset, working 

with the entire dataset as the training set seemed the most sensible choice for better model 

building.  

2.5 Transformation of volume variables: Regressing out the effects of extraneous variables 

A challenging aspect of the data is the variation across individuals in the volume of any given 

brain region that could be attributed to non-ROI variables. It is possible that some of these 

variables may be contributing to noise in volume ROI data and/or may be confounding variables 

that are associated with both the AD-subgroup and volume(s) of brain ROI(s). I allowed for the 

possibility of the following variable to be contributing to variation in volumes of brain regions 

across individuals: scanner field strength, scanner model, sex, age, years of education, APOE 

genotype, w-score and total intracranial volume (ICV). In Appendix A, I discuss some of these 

non-ROI variables in detail. To my knowledge and based on literature search, there isn’t any data 

driven evidence or a theory that suggests that any of these non-ROI variables could be causally 

affecting the probability of being in a particular AD subgroup. Hence, although I acknowledge 

the possibility of sex, age, years of education, APOE genotype, w-score and total intracranial 

volume (ICV) being associated with AD subgroups, I do not model this potential phenomenon in 

our analysis.  
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To account for the effects of above-mentioned non-ROI variables, we transformed each of the 70 

brain ROI volumes to a new variable space. We refer to this transformed variable as “residual 

volume” and it is defined in the following way. Using data of the 543 individuals in the cross-

sectional dataset representing all individuals with AD (all six AD subgroups), I first modeled the 

volume of each brain region i as a linear function of the non-ROI variables, as in equation (1). I 

recoded some variables before using them in the model in (1). Specifically, I recoded the 

variable “Scanner.Model” representing 22 scanner models as 21 categorical variables (with 

values 0 or 1), “Field_Strength” as a categorical indicator variable for field strength of 3T and 

APOE genotype as a categorical indicator variable (1 for presence of the apoε4 allele and 0 for 

absence). 

𝑚𝑜𝑑𝑒𝑙_𝑣𝑜𝑙𝑖

= 𝛽0 +  𝛽1 ∗ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑡𝑟𝑎𝐶𝑟𝑎𝑛𝑖𝑎𝑙𝑉𝑜𝑙 +  𝛽2 ∗ 𝐹𝑖𝑒𝑙𝑑_𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ + 𝛽3

∗ 𝑊𝑠𝑐𝑜𝑟𝑒_𝑣𝑜𝑥𝑒𝑙𝑐𝑜𝑢𝑛𝑡_ − 1.5 +  𝛽4 ∗ 𝑀𝑅𝐼_𝐴𝑔𝑒 +  𝛽5 ∗ 𝐶𝑆𝐹 +  𝛽6 ∗ 𝑝𝑡𝑔𝑒𝑛𝑑𝑒𝑟 +  𝛽7

∗ 𝑝𝑡𝑒𝑑𝑢𝑐𝑎𝑡 +  𝛽8 ∗ 𝑎𝑝𝑜𝑒4 + 𝛽9 ∗ 𝑆𝑐𝑎𝑛𝑛𝑒𝑟. 𝑀𝑜𝑑𝑒𝑙1 + . . .  𝛽29

∗ 𝑆𝑐𝑎𝑛𝑛𝑒𝑟. 𝑀𝑜𝑑𝑒𝑙21                                                                                                                 (1)  

Using the glm function under the Stats package in R (“R Core Team (2019). R: A Language and 

Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 

URL Https://Www.R-Project.Org/.,” n.d.), I fit the above model and obtained a residual volume, 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙_𝑣𝑜𝑙𝑖𝑘, for each ROI i and individual k by subtracting the observed volume from 

predicted volume given by (1). Hence, from each brain ROI volume for an individual, I regressed 

out the effects of the non-ROI variables using a linear model. This procedure accomplishes two 

objectives: a.) removes the effects of non-ROI variables from ROI volumes and b.) allows one to 

only work with volume variables for feature selection (in step 4). 

To have a large sample size and a more reliable model for regressing out the effects of 

extraneous variables, I used data from all six AD subgroups for the above procedure. For the 
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purposes of the scientific question of Aim 1, which is to understand which brain regions are most 

important in distinguishing pairs of AD subgroups, I focused only on the single domain specific 

subgroups. Since the AD-Multiple domains group consists of individuals who are roughly 

equally impaired in more than one cognitive domain, it would be difficult to discover differences 

between the AD-Multiple domains group and other single domain groups. Additionally, 

interpreting these differences is not straightforward or meaningful. For the comparison of the 

AD-No domain group (which can be thought of as a “generic” type of AD) with the single 

domain groups, one may not see as stark differences as comparing each of the single domain 

groups with one another. Hence, to focus efforts on an analysis which is more likely to reveal 

differences across the AD-subgroups, my dissertation is focused on the single domain AD 

subgroups. Further, my analysis had to be limited to the three single-domain subgroups with 

sufficient sample sizes (omitting AD-Executive). 

2.6 SMOTE oversampling to balance AD-subgroup sample sizes 

Another challenging aspect of our dataset, especially in the context of applying machine learning 

models for classifying individuals into AD subgroups, is the small and imbalanced sample sizes 

of the AD subgroups being compared: a.) AD-Language (42) vs. AD-Memory (177), b.) AD-

Memory (177) vs. AD-Visuospatial (61) and c.) AD-Language (42) vs. AD-Visuospatial (61). 

Imbalanced class sizes can be problematic for many machine learning methods as the algorithm 

obtains a better overall classification accuracy by simply classifying most individuals into the 

majority class, regardless of the characteristics of the data. This results in a biased model with a 

good classification accuracy for the majority class but a poor classification accuracy for the 

minority class. I addressed the class imbalance by oversampling the minority class using 

SMOTE (Synthetic Minority Over-sampling Technique)(Chawla et al. 2002), using the SMOTE 
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package (Siriseriwan 2019) in R, to generate datasets that have roughly balanced class sizes for 

each of our three binary classification problems. The sample sizes after SMOTE oversampling 

for the three binary classification problems being considered: a.) AD-Language (n=168) vs. AD-

Memory (n=177), b.) AD-Memory (n=177) vs. AD-Visuospatial (n=183) and c.) AD-Language 

(n=84) vs. AD-Visuospatial (n=61). Violin plots and boxplots for residual volume distributions 

for all 70 ROIs for each AD subgroup after SMOTE oversampling are provided in 

supplementary files.  

In the upcoming chapters, I present details of the specific machine learning methods that I 

implemented to solve the classification problems defined in this chapter. 
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Chapter 3: Determining ROI importance in cross-sectional data using penalized logistic 

regression [Aim 1]  

 

The first supervised machine learning method that I used for solving the classification problem 

outlined in Chapter 2, is logistic regression with regularization. In this chapter, I provide a brief 

mathematical overview of the method, followed by details of implementation, what I learned 

about separability of AD subgroups based on the 70 brain ROIs’ volume data as well as a note on 

some limitations of the method.  

3.1 Why logistic regression based models as the first analysis method? 

A linear regression model is the simplest type of model one could use to model a supervised 

classification problem. It is also the easiest to interpret. Logistic regression models are slightly 

more complex and although not as easy to interpret as linear regression, they still rank well in 

model interpretability. Why would one want to use logistic regression over linear regression 

when linear regression is even simpler to interpret? The answer lies in the better suitability of 

logistic regression models for classification problems. The mathematical details of logistic 

regression are described in the next section, which will make the following points clear. Unlike a 

linear model, a logistic regression function has a range that is bounded [0,1] and suitable for 

predicting probabilities of a given class. By the mathematical definition of a logistic function, its 

output values are guaranteed to be between 0 and 1. Additionally, a logistic regression based 

model can be extended to a multi-class classification problem in an interpretable way, unlike a 

linear model which would falsely introduce a ranking of classes if more than two classes are to 

be included in the output variable.  
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Keeping model interpretability in mind, I started the analysis in Aim 1 with a supervised 

machine learning method that is the least complex and a suitable method for classification. 

Additionally, keeping the bias-variance trade-offviii in mind, working with a method that has a 

lower variance relative to other methods, seemed favorable. Depending on the true unknown 

decision boundary in the data for separating the AD subgroups, logistic regression may or may 

not have a higher bias than more complex supervised machine learning methods. It is generally 

better to explain the variation in the data with a simpler model before trying a more complex 

model because of lower variance and better model interpretability in a simpler model. Hence, I 

chose a logistic regression classification method as the first method for building a classification 

model for AD subgroups, for the purposes of understanding the relative importance of the brain 

ROIs in distinguishing between pairs of AD subgroups. 

3.2 An introduction to logistic regression with regularization 

In this section, I provide a mathematical overview of logistic regression with regularization. 

Logistic regression with regularization is a well-established technique (Zou and Hastie 2005) and 

this section may be skipped by readers who are familiar with the mathematical details of the 

method. The information laid in this section is important to understand the rationale behind some 

of the steps I carried out in the model building process (section 3.3) as well as the results (section 

3.4).  

Logistic regression with regularization is an extension of logistic regression. Regularization 

refers to constraints placed in the model fitting process. One reason to perform regularization is 

to control overfitting which is accomplished by imposing a penalty for large coefficients in the 

 
viii Bias-variance trade-off was first introduced and explained in Chapter 2. 
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model. This results in shrinkage of coefficients, and has the effect of reducing variance (James et 

al. 2013, Pg. 204). Below, I first briefly explain how a binomial classification problem can be 

modeled using logistic regression without regularization, the criteria used to find the coefficients. 

I then extend the discussion to how the criteria for model fitting changes when regularization is 

added.  

Consider a response variable with two dummy values: Y = 0 and Y=1, representing two classes. 

A classification model can be built by predicting the probability vector 𝒑(𝑿) = 𝑷𝒓(𝑌 = 1 | 𝑿), 

where Y=1 is the class of interest and 𝑿 = [𝑿𝟏, 𝑿𝟐, ⋯ , 𝑿𝒑] is the input data matrix for p 

variables. Each vector in X is N-dimensional (for example, 𝑿𝟏  =  (𝑥11,𝑥12,. . . , 𝑥1𝑁  )
𝑻
  where N 

is the number of measurements or samples. In the context of Aim 1, each measurement or sample 

corresponds to an individual denoted by 𝑥𝑘  =  (𝑥1𝑘, 𝑥2𝑘, . . . , 𝑥𝑝𝑘), for the kth individual. Hence, 

for a classification problem where there are N total individuals and p variables, 𝑿 is of size N x 

p. For logistic regression based classification, the probability vector 𝒑(𝑿) is represented by the 

following logistic function: 

𝒑(𝑿) = 𝑷𝒓(𝑌 = 1 | 𝑿) =
ⅇ𝛽0+𝜷𝑻𝑿

1+ⅇ𝛽0+𝜷𝑻𝑿
         (2) 

Here, 𝛽0, the intercept and the vector 𝜷 = [𝛽1, 𝛽2, ⋯ , 𝛽𝑃] containing the coefficients for the p 

variables in the model, are estimated using the training data by maximizing the likelihood 

function, which is defined as follows: 

ℓ( 𝛽0, 𝜷 )  =  ∏ 𝑝(𝑥𝑖)     ∏ (1 −  𝑝(𝑥𝑖′)𝑖′:𝑦𝑖′=0𝑖:𝑦𝑖=1 )      (3) 

Note that the likelihood function ℓ( 𝛽0, 𝜷 )  is a product of the probabilities of observations being 

in the correct class. Intuitively, one can think of the likelihood function as a measure of how 
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close the model is to predicting the correct class labels. For a model that is able to predict class 

labels really well, we would expect that all 𝑝(𝑥𝑖)s or  𝑷𝒓(𝑌 = 1 | 𝑥𝑖))s  would be close to 1 and 

𝑝(𝑥𝑖′)s or  𝑷𝒓(𝑌 = 0 | 𝑥𝑖′))s  would be close to 0. Hence, in equation 3, having a better 

predicting model translates to having all 𝑝(𝑥𝑖) terms being closer to 1 and all 1 −  𝑝(𝑥𝑖′) terms 

to be close to 1 also. Since all probabilities must lie in the interval [0,1], the best case scenario 

model should have ∏ 𝑝(𝑥𝑖)  =  1𝑖:𝑦𝑖=1  and ∏ (1 −  𝑝(𝑥𝑖′)𝑖′:𝑦𝑖′=0  =  1 , which would mean 

ℓ( 𝛽0, 𝜷 )  =  1  for a perfectly predicting model. Note, the maximum value ℓ( 𝛽0, 𝜷 ) can take is 

1. Hence, to have the best performing model, the mathematical problem becomes of maximizing 

the likelihood function. With a few mathematical manipulations, one can show that maximizing 

the likelihood function is the same as minimizing the negative binomial log-likelihood function: 

𝑚𝑖𝑛
(𝛽0,𝜷)∈ℝ𝑝+1

[
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

(𝛽0 + 𝒙𝒊
𝑻𝜷) − 𝑙𝑜𝑔 (1 + 𝑒(𝛽0+𝒙𝒊

𝑻𝜷))]                                                                           (4) 

 

where N is the number of observations, 𝒙𝒊 = [𝑥𝑖1, 𝑥𝑖2, ⋯ 𝑥𝑖𝑃
] is the input data for the ith 

observation and 𝑦𝑖 is the known output value (class label) for that sample. In the context of Aim 

1, each sample 𝒙𝒊 corresponds to an individual. The criteria presented in Equation 4 is used to 

find  𝛽0 and 𝜷 for logistic regression without any regularization.  

Using equation 3 as the criteria to find the coefficients of the model may result in coefficients 

that have been highly overfit to the data. This corresponds to coefficients being too large. Such a 

model fits the training data really well but it is expected to be not robust to data changes. To 

avoid this issue of overfitting which tends to be a problem when the sample size is small and 

when the number of variables p is close to N, additional constraints are added to the above 
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function (in equation 4) for finding the coefficients, controlled by two parameters, 𝜆 and 𝛼. The 

following equation is used to determine the coefficients for logistic regression with 

regularization: 

𝑚𝑖𝑛
(𝛽0,𝜷)∈ℝ𝑝+1

[
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 (𝛽0 + 𝒙𝒊

𝑻𝜷) − 𝑙𝑜𝑔 (1 + 𝑒(𝛽0+𝒙𝒊
𝑻𝜷))] + 𝜆 [

1

2
(1 − 𝛼)‖𝜷‖2

2 + 𝛼‖𝜷‖1]                    (5)   

The first term in equation 5 is the same as the negative binomial log-likelihood from equation 4. 

The second term in the equation 5 contains the additional constraint of regularization: the 

penalties (determined by values of 𝜆 and 𝛼)  to be imposed during model fitting that allow one to 

control the level of overfitting of coefficients in the model. 𝜆 can take on any positive real value, 

while 𝛼 can take any value in the interval [0,1]. Intuitively, 𝛼 controls the number of non-zero 

coefficients in the model while 𝜆 determines how much one wants to penalize having large 

coefficients in the model. Dissecting the different parts of the second term in equation 5 can help 

us understand these specific roles of 𝜆 and 𝛼. ‖𝜷‖2  is the L-2 norm or the Euclidean distance, 

defined as √𝛽1
2 + 𝛽2

2+. . . + 𝛽𝑝
2. ‖𝜷‖1 is the L1 norm, defined as ∑ |𝛽𝑖|

𝑝
𝑖=1 , also known as the 

Taxicab norm or Manhattan norm, which refers to “the distance a taxi has to drive in a 

rectangular grid to get from the origin to the point”ix 𝜷.  

When α = 0, the logistic regression model is said to have a ridge penalty; note that the 

regularization penalty term in Equation 5 becomes 
𝜆

2
‖𝜷‖2

2 when α = 0. In the ridge penalty, there 

is no constraint imposed on the number of non-zero coefficients in the model. A model with a 

ridge penalty has the maximum number of non-zero coefficients possible in the model, hence 

there are p non-zero coefficients in a model with α = 0. The only penalty in a ridge model comes 

 
ix Cite source for definition. Currently, I used Wikipedia. 
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from the tuning parameter 𝜆 which is represented in the 
𝜆

2
‖𝜷‖2

2 term. 𝜆 and ‖𝜷‖2
2 are inversely 

related. As 𝜆 increases, ‖𝜷‖2  (and hence 𝛽1 , 𝛽2 , . . . 𝛽𝑝  ) must decrease in order to keep the 

𝜆

2
‖𝜷‖2

2 term small enough. Thus, the larger the value of 𝜆, the greater the penalization on large 

coefficients.  

When α = 1, the logistic regression model is said to have a lasso (Least Absolute Shrinkage and 

Selection Operator) penalty. In the case of the lasso penalty, the regularization penalty term in 

equation 5 simplifies to 𝜆‖𝜷‖1 and now 𝜆 controls how much one wants to penalize having a 

large ‖𝜷‖1. Given that ‖𝜷‖1 =  ∑ |𝛽𝑖|
𝑝
𝑖=1 , one can see that a higher value of 𝜆 places a higher 

penalty on the coefficients 𝛽1 , 𝛽2 , . . . 𝛽𝑝  being large. A less obvious fact of the lasso penalty is 

that it results in some coefficients being exactly 0. To illustrate this phenomenon of the lasso 

penalty, consider a simple case where 𝜷 = [𝛽1, 𝛽2]. In the case of the lasso penalty, the negative 

log likelihood minimization problem is subjected to the constraint of  𝜆‖𝜷‖1 ≤ 𝑚, where m is a 

constant. The constraint is equivalent to ‖𝜷‖1 ≤ 𝑠 where 𝑠 =
𝑚

𝜆
  is another constant. ‖𝜷‖1 ≤ 𝑠 

which is the same as |𝛽1| + |𝛽2| ≤ 𝑠 can be visualized in the (𝛽1 , 𝛽2 ) coordinate system; this 

inequality is shown as the green region in Figure 3.1a. �̂� in figure 3.1a represents the solution of 

the minimization of the negative log-likelihood problem. The ellipses around �̂� represent regions 

of constant negative log-likelihood. The first point at which an ellipse intersects with the 

constrain region (the green region) is the solution to the logistic regression with the lasso penalty. 

Since the region given by |𝛽1| + |𝛽2|  ≤ 𝑠 has sharp edges, the intersection of a constant 

negative log-likelihood ellipse and this region often occurs at one of the corners of the region, 

which corresponds to either 𝛽1 or 𝛽2 being 0. The property of sharp edges of the constraint 
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region of the lasso penalty, also extends to higher dimensions where 𝜷 = [𝛽1, 𝛽2, ⋯ , 𝛽𝑃] , 

resulting in some of the coefficients becoming exactly 0. 

 

Figure 3.1: A visualization of contours of the error and constraint functions for the lasso (left; 

3.1a) and ridge regression (right; 3.1b). Image source: Figure 6.7, Introduction to Statistical 

Learning, Pg. 222 

Figure 3.1b illustrates why the ridge penalty, unlike lasso, does not result in some coefficients 

becoming exactly 0. In the case of the ridge penalty, the constraint region show in green is 

‖𝜷‖2
2 ≤ 𝑠, which in the case of a two dimensions is 𝛽1

2 + 𝛽2
2 ≤ 𝑠 which is a circle. Due to the 

concavity of this region, the intersection with an ellipse and the region are less likely to happen 

at the points on the circle that are on the axes than all other points collectively on the circle. So, 

in the case of the ridge penalty, more often, the solution will include non-zero values for both 

coefficients 𝛽1  and 𝛽2 than the case of one of the coefficients being 0. In higher dimensions, the 

constraint region is not a circle but a hyper surface that still has the same properties that make the 
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intersection of the ellipses with non-zero set of values for 𝛽1 , 𝛽2 , . . . 𝛽𝑝  more likely than some 

of them being exactly 0. Thus, the ridge penalty for logistic regression results in non-zero 

coefficients that are subjected to be small based on the value of 𝜆, whereas the lasso penalty 

results in complete zeroing of some coefficients and some non-zero coefficients that are 

subjected to be small based on the value of 𝜆.  

Above, I explained the details of two special cases of the value of α: 𝛼 =  0 (Ridge) and 𝛼 =  1 

(Lasso), When 0 < 𝛼 <  1 , the penalty is known as the elastic net penalty and the behavior of 

the models lies in between the extreme cases of the ridge penalty (all coefficients are non-zero) 

and the lasso penalty (the least number of non-zero coefficients possible are in the model). In 

summary, the parameter α controls the number of non-zero coefficients in the model while the 

parameter 𝜆 controls how much one wants to penalize the non-zero coefficients for being large. 

Both the number of non-zero coefficients and the magnitudes of non-zero coefficients play a role 

in overfitting. For every combination of α and 𝜆, there is a set of coefficients 𝜷 = [𝛽1, 𝛽2, ⋯ , 𝛽𝑃] 

that will satisfy equation 5. Together, combinations of α and 𝜆 give different models representing 

different levels of overfitting of coefficients. Using logistic regression with regularization for 

Aim 1 work as a first method is appealing not only for its ease of model interpretability and 

controlling overfitting but also because it allows for varying levels of zeroing of coefficients 

depending on the value of α chosen, which results in varying levels of feature selection. As 

discussed in Chapter 2, feature selection is one of the criteria I kept in mind while choosing my 

method of analyses for Aim 1 work, as the scientific goal is to understand which brain ROI 

variables together are important for distinguishing between AD subgroups. So, a classification 

model such as logistic regression with regularization that has feature selection built into it, is 

useful for answering the question of Aim 1.  



55 
 

In section 3.3.2, I discuss how I chose values for α and 𝜆 while constructing the binary 

classification models for distinguishing between AD subgroups.  

3.3 Model building 

3.3.1 Training and Test data 

As discussed in Chapter 2, due to the small sample size of the current cross-sectional dataset, I 

used the entirety of the current data sample as the training data and did not allocate a subset of 

the data as the test set. I assessed the performance of my models based on cross-validation error 

for the training data. I anticipate the test set based analyses to be future work as new data 

becomes available to form a reliable sized test dataset. 

After SMOTE oversampling (see Section 2.8), below were the sample sizes of the training data 

for the different binary classification problems tackled using models based on logistic regression 

with regularization:  

AD-Language (n=168) vs. AD-Memory (n=177) 

AD-Memory (n=177) vs. AD-Visuospatial (n=183) 

AD-Language (n=84) vs. AD-Visuospatial (n=61) 

3.3.2 Cross-validation on training data to select tuning parameters α and 𝜆 

For each binary classification problem, I performed 5-fold cross-validation on the training set to 

find the tuning parameters 𝛼 and 𝜆 that correspond to models with the smallest average deviance 

over the five folds. Deviancex is defined as 

 𝐷 =  2 (𝑙𝑜𝑔(ℓ(𝑠𝑎𝑡))  −  𝑙𝑜𝑔(ℓ( 𝛽0, 𝜷 ))        (6) 

 
x https://www.rdocumentation.org/packages/glmnet/versions/4.0-2/topics/deviance.glmnet 
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where 𝑙𝑜𝑔(ℓ(𝑠𝑎𝑡)) is the log-likelihood for the saturated model (a model with a free parameter 

per observation) and 𝑙𝑜𝑔(ℓ( 𝛽0, 𝜷)) is the log-likelihood of the model fit to the data. The 

deviance can be thought of as an indicator of how much of an improvement is the model of 

interest compared to the saturated model. ℓ( 𝛽0, 𝜷) was defined in equation 3 and the expression 

for −𝑙𝑜𝑔(ℓ( 𝛽0, 𝜷)) was shown in equation 5 for logistic regression with elastic net penalty. 

Since 𝑙𝑜𝑔(ℓ(𝑠𝑎𝑡)) is a constant term for the saturated model fit to the given data, minimizing 

deviance is related to the problem of minimizing the negative log-likelihood from equation 5. 

For determining the optimal set of values for α and 𝜆 for model fitting, I selected values that 

minimized average deviance calculated during 5-fold cross-validation. 

For cross-validation, I divided the training data into five folds. Although SMOTE oversampling 

of the minority classes in each binary classification brought the ratio of the two classes close to 

1, the ratio was not exactly equal to 1 due to limitations in the SMOTE package in R. Keeping 

the slight class imbalances in mind, I generated the folds so that the ratio of the two class sizes 

(after SMOTE oversampling) was maintained in each fold to ensure it reflects the ratio of the 

class sizes in the entire training data. Manually generating the folds for cross-validation instead 

of having an analysis package randomly assign individuals into folds also ensured reproducibility 

in analysis. Additionally, for model fitting, I specified weights for the penalty for misclassifying 

observations from the majority and minority classes as follows: 𝑤 =  [𝑤𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 , 𝑤𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦], 

where 𝑤𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦  =  𝑟 ∗  𝑤𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦, and 𝑟 is the ratio of the sample size of the majority class to 

the sample size of the minority class in the training set; 𝑟 =  
𝑛𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦

𝑛𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦
  . For each fold, models 

were fit using data from the other four folds using α values in the interval [0,1] in increments of 

0.05, and for each value of α, 800 values of 𝜆 ranging from 10^-4 to 10^4 were used to construct 

800 different models. The idea in choosing these specifics for the 𝜆  values were to cover a wide 
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range of lambda values and to test a large enough number of lambda values over the range. 

Figures 3.2a and 3.2b provide a visualization of the 𝜆 values considered for model building 

during cross-validation. For α, testing 20 equally spaced values between 0 and 1 seemed 

sufficient as the minimum average deviance values differed gradually between consecutive α 

values; this point will be more clear in Figures 3.3-3.5 that are discussed later. I used the 

cv.glmnet function in R to implement the above specifics. 
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A. 𝜆 values tested during 5-fold cross-validation 

 

B. Powers of 10 in 𝜆 values tested during 5-fold cross-validation 

Figure 3.2: Both A and B show the 𝜆 values tested during cross-validation, but in different ways. The two 
figures highlight some important features of the set of 𝜆 values tested during cross-validation. A. 800 
exponentially spaced values between 10^-4 and 10^4 were tested during cross-validation. B. When 
expressed as powers of 10, the values in the exponent of the 𝜆 values are equally spaced between -4 and 
4; there are 800 of these base 10 exponent values.  
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The vector of 800 𝜆 values used is on an exponential scale; the intervals between consecutive 

values of 𝜆 increase for larger values of 𝜆. Such a scale is used to cover a wide range of 𝜆 values 

that can be tested during cross-validation, without linearly increasing the number of 𝜆 values. I 

picked the 𝜆 range from 10^-4 to 10^4 as it allowed me to cover the range of 𝜆 values over which 

the average cross-validated deviance curve reaches a minimum, as seen in the Results section. 

The range of 𝜆 values is often adjusted depending on whether the range is able to cover values 

over which the cross-validated deviance curve reaches a “valley” part of a curve. Figures 3.3, 3.5 

and 3.7 show that the chosen 𝜆 range was sufficient to identify the minimum value from each 

average deviance curve from 5-fold CV for all 20 α values, for all three classification problems 

being considered. 

 

Figure 3.3 Average deviance from 5-fold CV as a function of log10(lambda) for each alpha value tested 
during CV, for AD-Language vs. AD-Memory regularized logistic regression classification models. 
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So, in each kth fold, for each value of α, there were 800 different models that were constructed 

using data from the other folds and validated using data from the current (kth) fold. In the 

validation procedure in each fold, the deviance measure defined in Equation 6 was used to assess 

the performance of each model corresponding to a given set of α and 𝜆 values. Deviances 

calculated through each fold of model validation were averaged over the five folds to obtain a 

cross-validated average deviance for each model corresponding to a particular α and 𝜆 set (see 

figures 3.3, 3.5 and 3.7). I used the cv.glmnet function in R to perform this for each α, using the 

“deviance” option for the type.measure parameter. For each α value, I obtained a 𝜆 value that 

corresponds to models with the lowest average deviance. Then from these twenty sets of α and 𝜆 

values, I chose the set that corresponds to a model with the lowest average cross-validated 

deviance. In total, the above process involved 5-fold cross-validation of a total of 800 * 20 = 

16,000 models (corresponding to unique combinations of α and 𝜆 values) for each binary 

classification problem of the AD-subgroups. Figures 3.4, 3.6 and 3.8 below summarize the 

findings from the above process of cross-validation for finding the best suited set of α and 𝜆 

values for model fitting for the three binary classifications problems. 

For AD-Language vs. AD-Memory, α = 0 and 𝜆 = 0.0247 resulted in the lowest average 

deviance during cross-validation. This corresponds to the ridge penalty, which means all 70 brain 

ROI volume variables got included in the model. Figure 3.4 shows the number of non-zero 

coefficients in the model corresponding to lowest average deviance at each α value.   
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Figure 3.4 Lowest average deviance form 5-fold CV for models for AD-Language vs. AD-Memory for 
each alpha value and number of non-zero coefficients in the corresponding model. 

 

For AD-Memory vs. AD-Visuospatial, the lowest average deviance from 5-fold cross-validation 

corresponded to the models with α = 0.25 and 𝜆 = 0.0430 (See Figure 3.6). This resulted in 46 

non-zero coefficients in the chosen model for AD-Memory vs. AD-Visuospatial. 
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Figure 3.5 Average deviance from 5-fold CV as a function of log10(lambda) for each alpha value tested 
during CV, for AD-Memory vs. AD-Visuospatial regularized logistic regression classification models. 

 

 

Figure 3.6 Lowest average deviance form 5-fold CV for models for AD-Memory vs. AD-Visuospatial for 
each alpha value and number of non-zero coefficients in the corresponding model. 
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Lastly, for AD-Language vs. AD-Visuospatial, models corresponding to α = 0 and 𝜆 = 0.2596 

yielded the lowest average deviance during 5-fold cross-validation (see Figure 3.8).  

 

Figure 3.7 Average deviance from 5-fold CV as a function of log10(lambda) for each alpha value tested 
during CV, for AD-Language vs. AD-Visuospatial regularized logistic regression classification models. 
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Figure 3.8 Lowest average deviance form 5-fold CV for models for AD-Language vs. AD-Visuospatial 
for each alpha value and number of non-zero coefficients in the corresponding model.  

 

3.4 Model coefficients and model accuracy 

Using the tuning parameters determined during cross-validation (in section 3.3), I fit a model to 

the entire training data for each of the following: AD-Language vs. AD-Memory, AD-Memory 

vs. AD-Visuospatial and AD-Language vs. AD-Visuospatial, to obtain the corresponding 

coefficients for each model. Since I did not have an allocated test data set to evaluate model 

performance, I instead, used the average misclassification error from cross-validation 

corresponding to the chosen α and 𝜆 values, as an estimate for the test error for the models. The 

misclassification errors (MCEs) based on 5-fold cross-validation were: 20.64% for AD-

Language vs. AD-Memory, 33.12% for AD-Memory vs. AD-Visuospatial and 30.39% for AD-

Language vs. AD-Visuospatial. The total sample size for the AD-Memory vs. AD-Visuospatial 

classification was slightly larger than AD-Language vs. AD-Memory. The relative average 

MCEs above suggest that simply having a larger sample size is not the reason for better 
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performance in logistic regression based classification. AD-Language vs. AD-Memory may 

actually be more separable than the other two pairwise comparisons. 

Standardized coefficients of the models are provided in Tables 3.1-3.3; the 𝜷 coefficients are 

sorted in increasing order. The magnitude of a given coefficient can be roughly interpreted as 

how important the corresponding variable is in distinguishing between the two AD subgroups, 

given all other ROI variables in the model. To focus on ROI volume variables that had relatively 

higher magnitudes of coefficients, I plotted the magnitudes of the coefficients in each model, as 

shown in figures 3.6-3.8. Below, I discuss the main findings from each model. The threshold of 

coefficient magnitudes to determine the most important variables for a given binary classification 

is subjective and arbitrary. As a stringent strategy, my approach gave a spotlight to variables 

with much higher magnitude coefficients than the rest of the variables in the model.  

3.4.1  AD-Language vs. AD-Memory 

The coefficients of the AD-Language vs. AD-Memory model are presented in Table 3.1. The 

AD-Language vs. AD-Memory classification model (as coded) predicted the probability of being 

in the AD-Memory group. Hence, variables with positive coefficients correspond to variables 

where greater volumes are associated with a higher probability of being in the AD-Memory 

group compared to the AD-Language group. Similarly, variables with negative coefficients 

correspond to variables where smaller volumes (more atrophy in an ROI volume) are associated 

with a higher probability of being in the AD-Memory group. Based on a visual evaluation of the 

plot of coefficient magnitudes in Figure 3.6, I found two variables to have much higher 

magnitude coefficients than the rest. Referring to Table 3.1, one can see that the ROI volumes 

corresponding to these high magnitude coefficients are right entorhinal volume (-0.876) and right 

superiorfrontal volume (-0.810). This indicates that lower volumes in the right entorhinal cortex 
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and the right superiorfrontal gyrus are associated with a higher probability of being in the AD-

Memory group than AD-Language. It is important to note that the importance of ROIs in the 

model is on a continuous scale, and while my analysis of comparing the coefficients of ROIs 

showed that the above two ROIs had much higher magnitude coefficients, it does not mean that 

the variables with coefficients smaller in magnitude than above should be completely 

disregarded when looking for important ROIs.  

Table 3.1: Classification model for  

AD-Language vs. AD-Memory 

Logistic Regression with regularization  

(α = 0 and 𝜆 = 0.0247) 

 

Number of non-zero coefficients in the model: 70 

 
Standardized 

coefficients 

Intercept 0.185304 

rh_entorhinal_volume -0.87568 

rh_superiorfrontal_volume -0.81033 

rh_rostralmiddlefrontal_volume -0.54044 

Right.Hippocampus -0.4731 

lh_posteriorcingulate_volume -0.41306 

lh_entorhinal_volume -0.40187 

lh_frontalpole_volume -0.40057 
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rh_fusiform_volume -0.35457 

lh_lateraloccipital_volume -0.33725 

lh_parstriangularis_volume -0.29299 

Left.Hippocampus -0.28475 

lh_lingual_volume -0.27985 

lh_precentral_volume -0.26351 

rh_postcentral_volume -0.23316 

rh_parsopercularis_volume -0.22724 

rh_superiortemporal_volume -0.20904 

lh_parsorbitalis_volume -0.20726 

lh_pericalcarine_volume -0.19891 

rh_caudalanteriorcingulate_volume -0.19713 

rh_rostralanteriorcingulate_volume -0.17951 

rh_precuneus_volume -0.16016 

lh_caudalanteriorcingulate_volume -0.15852 

lh_paracentral_volume -0.12817 

lh_middletemporal_volume -0.12251 

rh_parsorbitalis_volume -0.10337 

lh_caudalmiddlefrontal_volume -0.07616 

lh_superiorparietal_volume -0.07512 

lh_bankssts_volume -0.06332 

rh_inferiorparietal_volume -0.06278 

lh_temporalpole_volume -0.06081 
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lh_inferiorparietal_volume -0.06014 

lh_isthmuscingulate_volume -0.02592 

rh_lingual_volume -0.02237 

rh_caudalmiddlefrontal_volume -0.01043 

rh_isthmuscingulate_volume -0.00762 

rh_frontalpole_volume 0.00034 

lh_supramarginal_volume 0.024568 

rh_medialorbitofrontal_volume 0.027024 

rh_parahippocampal_volume 0.028052 

rh_transversetemporal_volume 0.028712 

lh_cuneus_volume 0.029381 

rh_middletemporal_volume 0.066253 

rh_bankssts_volume 0.067227 

rh_supramarginal_volume 0.075562 

rh_paracentral_volume 0.079796 

lh_parsopercularis_volume 0.100012 

rh_precentral_volume 0.136992 

rh_posteriorcingulate_volume 0.138819 

lh_precuneus_volume 0.13983 

lh_parahippocampal_volume 0.141146 

rh_insula_volume 0.14311 

lh_insula_volume 0.157009 

lh_fusiform_volume 0.184948 
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lh_rostralanteriorcingulate_volume 0.185198 

rh_superiorparietal_volume 0.194033 

lh_lateralorbitofrontal_volume 0.208654 

rh_inferiortemporal_volume 0.229043 

rh_pericalcarine_volume 0.232077 

rh_lateraloccipital_volume 0.248581 

lh_superiortemporal_volume 0.276005 

lh_postcentral_volume 0.296633 

lh_transversetemporal_volume 0.298224 

lh_medialorbitofrontal_volume 0.312501 

rh_temporalpole_volume 0.396523 

lh_inferiortemporal_volume 0.410534 

rh_parstriangularis_volume 0.419537 

rh_cuneus_volume 0.429712 

lh_superiorfrontal_volume 0.438756 

lh_rostralmiddlefrontal_volume 0.46696 

rh_lateralorbitofrontal_volume 0.503051 
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Figure 3.6 Magnitudes of coefficients in the AD-Language vs. AD-Memory model (Regularized 
logistic regression; α = 0 and 𝜆 = 0.0247).  

 

3.4.2. AD-Memory vs. AD-Visuospatial 

The model with the lowest average deviance from 5-fold cross-validation for AD-Memory vs. 

AD-Visuospatial corresponded to α = 0.25 and 𝜆 = 0.0430. Fitting a model to the entire training 

data with these parameters yielded a model with 46 non-zero coefficients; the model coefficients 

are presented in Table 3.2. Here, AD-Visuospatial is the target class for classification. Positive 

coefficients correspond to ROIs that have greater volume in the AD-Visuospatial group 

compared to the AD-Memory group. Alternatively, greater atrophy in these ROIs in an 

individual corresponds to a higher probability of the individual being in the AD-Memory group. 

Negative coefficients correspond to ROIs with greater atrophy in the AD-Visuospatial group on 

average compared to the AD-Memory group. Visually comparing the magnitudes of coefficients 

(Figure 3.7), I selected ROI volume variables corresponding to the top four magnitudes of 

coefficients as the more important ROIs for distinguishing between the AD-Memory and AD-

Visuospatial groups. Again, this does not mean that any variables with coefficients smaller in 
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magnitude are not important. The top four important ROI volume variables based on coefficient 

magnitudes are left entorhinal cortex (0.434), right entorhinal cortex (0.283), right cuneus (-

0.400) and right supramarginal gyrus (-0.359). Having greater atrophy in left entorhinal cortex 

and right entorhinal cortex is associated with a higher probability of being in the AD-Memory 

group compared to the AD-Visuospatial group. Having greater atrophy in the right cuneus and 

right supramarginal gyrus is associated with a higher probability of being in the AD-Visuospatial 

group.  

Table 3.2: Classification model for  

AD-Memory vs. AD-Visuospatial 

Logistic Regression with regularization  

(α = 0.25 and 𝜆 = 0.0430) 

 

Number of non-zero coefficients in the model: 46 

 
standardized_coeff 

intercept 0.143148 

rh_cuneus_volume -0.39815 

rh_supramarginal_volume -0.35909 

lh_precentral_volume -0.20961 

lh_lateralorbitofrontal_volume -0.17636 

rh_temporalpole_volume -0.15319 

rh_postcentral_volume -0.14691 

rh_inferiortemporal_volume -0.10449 
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lh_medialorbitofrontal_volume -0.0992 

rh_fusiform_volume -0.09731 

rh_superiorparietal_volume -0.0755 

rh_transversetemporal_volume -0.0679 

lh_pericalcarine_volume -0.06635 

rh_precentral_volume -0.06276 

lh_paracentral_volume -0.06157 

lh_bankssts_volume -0.05649 

rh_superiorfrontal_volume -0.05054 

rh_paracentral_volume -0.03942 

rh_inferiorparietal_volume -0.03699 

lh_parstriangularis_volume -0.02837 

rh_frontalpole_volume -0.0057 

lh_caudalmiddlefrontal_volume -0.00456 

lh_supramarginal_volume 0.009289 

lh_parsopercularis_volume 0.013215 

lh_superiortemporal_volume 0.014513 

rh_pericalcarine_volume 0.018212 

rh_precuneus_volume 0.022222 

rh_parstriangularis_volume 0.029038 

rh_lateraloccipital_volume 0.031696 

rh_lingual_volume 0.032447 

rh_medialorbitofrontal_volume 0.034615 
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rh_posteriorcingulate_volume 0.045634 

lh_isthmuscingulate_volume 0.047394 

lh_middletemporal_volume 0.070091 

rh_isthmuscingulate_volume 0.076213 

rh_lateralorbitofrontal_volume 0.105194 

rh_superiortemporal_volume 0.113576 

rh_parsopercularis_volume 0.119713 

rh_caudalmiddlefrontal_volume 0.120178 

lh_transversetemporal_volume 0.157949 

lh_superiorfrontal_volume 0.186396 

lh_lateraloccipital_volume 0.200335 

lh_caudalanteriorcingulate_volume 0.214554 

rh_parahippocampal_volume 0.221048 

rh_parsorbitalis_volume 0.241707 

rh_entorhinal_volume 0.282579 

lh_entorhinal_volume 0.433645 
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Figure 3.7: Magnitudes of coefficients in the AD-Memory vs. AD-Visuospatial model (Regularized 
logistic regression; α = 0.25 and 𝜆 = 0.0430).  

 

3.4.3 AD-Language vs. AD-Visuospatial 

Lowest average deviance from 5-fold CV for AD-Language vs. AD-Visuospatial models was for 

the model corresponding to alpha = 0 (ridge regression) and lambda = 0.2596. The coefficients 

for all 70 ROIs are shown in Table 3.3; the target class for classification was AD-Visuospatial. 

Figure 3.7 shows the spread of the standardized coefficients for the model. Based on a visual 

inspection of this spread, I selected variables corresponding to the largest six coefficient 

magnitudes as the variables of greater importance as they seemed to be in a distinct cluster than 

the rest of the coefficient magnitudes. These coefficients correspond to the following ROI 

volumes: right hippocampus (-0.228), right entorhinal cortex (-0.210), right superior frontal 

gyrus (-0.201), left transverse temporal gyrus (0.172), left inferior temporal gyrus (0.162) and 

left superior temporal gyrus (0.161). The signs of these coefficients reveal that greater atrophy in 

the right hippocampus, right entorhinal cortex and right superior frontal gyrus is associated with 
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a higher probability of an individual being in the AD-Visuospatial group. Greater atrophy in the 

left transverse temporal gyrus, left inferior temporal gyrus and left superior temporal gyrus is 

associated with higher probability of being in the AD-Language group compared to the AD-

Visuospatial group.  

Table 3.3: Classification model for  

AD-Language vs. AD-Visuospatial 

Logistic Regression with regularization  

(α = 0 and 𝜆 = 0.2596) 

 

Number of non-zero coefficients in the model: 70 

 
standardized_coeff 

intercept -0.40902 

Right.Hippocampus -0.22802 

rh_entorhinal_volume -0.21035 

rh_superiorfrontal_volume -0.20074 

rh_supramarginal_volume -0.12458 

rh_postcentral_volume -0.12119 

lh_posteriorcingulate_volume -0.12043 

rh_fusiform_volume -0.11675 

lh_precentral_volume -0.10376 

rh_precentral_volume -0.09943 

rh_cuneus_volume -0.09667 
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lh_frontalpole_volume -0.09513 

lh_paracentral_volume -0.09177 

rh_superiorparietal_volume -0.07976 

rh_caudalanteriorcingulate_volume -0.0703 

lh_superiorparietal_volume -0.06895 

rh_transversetemporal_volume -0.06492 

rh_frontalpole_volume -0.05611 

rh_bankssts_volume -0.05315 

Left.Hippocampus -0.05166 

lh_pericalcarine_volume -0.04433 

rh_paracentral_volume -0.04328 

rh_inferiorparietal_volume -0.04188 

rh_rostralanteriorcingulate_volume -0.04128 

rh_precuneus_volume -0.04067 

lh_lingual_volume -0.03585 

lh_bankssts_volume -0.02498 

rh_rostralmiddlefrontal_volume -0.02121 

rh_temporalpole_volume -0.01881 

lh_caudalmiddlefrontal_volume -0.0154 

lh_cuneus_volume -0.01442 

lh_precuneus_volume -0.01008 

lh_parstriangularis_volume -0.00889 

lh_postcentral_volume -0.00424 
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lh_caudalanteriorcingulate_volume -0.00063 

lh_isthmuscingulate_volume 0.000767 

rh_middletemporal_volume 0.005603 

lh_parsorbitalis_volume 0.007848 

rh_insula_volume 0.012905 

lh_entorhinal_volume 0.020631 

lh_inferiorparietal_volume 0.024853 

rh_superiortemporal_volume 0.026345 

rh_parsopercularis_volume 0.029186 

lh_lateralorbitofrontal_volume 0.032739 

rh_inferiortemporal_volume 0.034878 

lh_medialorbitofrontal_volume 0.034896 

rh_lingual_volume 0.046676 

rh_parstriangularis_volume 0.047961 

rh_parahippocampal_volume 0.048775 

rh_lateraloccipital_volume 0.052137 

rh_caudalmiddlefrontal_volume 0.054147 

rh_parsorbitalis_volume 0.059011 

rh_isthmuscingulate_volume 0.059672 

lh_rostralanteriorcingulate_volume 0.060567 

lh_lateraloccipital_volume 0.063596 

lh_supramarginal_volume 0.067028 

lh_temporalpole_volume 0.068201 
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rh_medialorbitofrontal_volume 0.075228 

lh_fusiform_volume 0.079016 

lh_rostralmiddlefrontal_volume 0.08368 

lh_middletemporal_volume 0.090911 

rh_pericalcarine_volume 0.105969 

lh_superiorfrontal_volume 0.10821 

lh_parsopercularis_volume 0.116273 

lh_parahippocampal_volume 0.119612 

lh_insula_volume 0.123326 

rh_posteriorcingulate_volume 0.123407 

rh_lateralorbitofrontal_volume 0.131016 

lh_superiortemporal_volume 0.160876 

lh_inferiortemporal_volume 0.161968 

lh_transversetemporal_volume 0.172061 
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Figure 3.8: Magnitudes of coefficients in the AD-Language vs. AD-Visuospatial model (Regularized 
logistic regression; α = 0 and 𝜆 = 0.2596).  

 

3.5 Limitations of results of variable importance results based on penalized logistic regression  

The goal of using classification models in my Aim 1 work was to interpret the models to shed 

light on which ROIs are most important in separating pairs of AD subgroups. There are a few 

suboptimal points to be noted in the results from classification models based on logistic 

regression with regularization. The first has to do with the classification accuracy of the models. 

The best classification accuracy was obtained for the AD-Language vs. AD-Memory group, with 

an average misclassification error calculated form 5-fold CV to be 20.64%. Since there is no 

known golden standard for the misclassification error for the binary classification models for the 

AD subgroups, it is difficult to assess whether a model with a classification accuracy of 79.36% 

is considered to be a “good model” or not. Nonetheless, intuitively, the greater the classification 

accuracy (alternatively, the smaller the misclassification error) for a model, the more reliable the 

model for interpreting variable importance. The classification accuracy for the other two 
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classifications were:  66.88% for AD-Memory vs. AD-Visuospatial and 69.61% for AD-

Language vs. AD-Visuospatial. The current classification accuracies obtained for the models 

using regularized logistic regression may be considered modest. These accuracies suggested a 

need to turn to another type of classification model to see if that might yield better classification 

accuracies. 

Another suboptimal aspect of regularized logistic regression is that it may not always result in 

feature selection if the goal is to find a model corresponding to smallest average deviance during 

cross-validation, as seen in Section 3.4. Secondly, when this method does result in feature 

selection, there is the possibility of missing out on variables that play a role in classification but 

are collinear with a variable included in the model. Below I discuss these points. 

One of the main reasons for choosing regularized logistic regression as a first method of choice 

for building classification models was its feature selection capabilities when 0 < alpha <=1. 

Instead of arbitrarily choosing an alpha value (in the range 0 <= alpha <=1) that results in 

zeroing of a specific number of coefficients, I chose the alpha value corresponding to the lowest 

average deviance during cross-validation, to obtain a model that would best separate the data 

from two classes. In two of the classifications, AD-Language vs. AD-Memory and AD-

Language vs. AD-Visuospatial, the models with the lowest average deviance corresponded to 

alpha = 0 (ridge regression) which results in all variables to be kept in the model. Hence, for 

these two classifications, having the model with the lowest average deviance meant having no 

feature selection. Although not ideal, this aspect (no feature selection) was not a major hurdle in 

determining variable importance as I used the relative magnitudes of coefficients of the variables 

in each model to determine the most important variables.  
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There is a greater care needed in the interpretation of a regularized logistic regression model, 

however, when the lowest average deviance model corresponds to a model that indeed results in 

feature selection (AD-Memory vs. AD-Visuospatial which had only 46 non-zero coefficients). 

Although feature selection was my original intent in using regularized logistic regression, upon 

reflecting more on the nature of brain ROI data, I realized that using regularized logistic 

regression for feature selection may not be optimal as the alpha based penalty results in zeroing 

of coefficient of a variable if it is correlated with another variable that is included in the model. 

In the case of brain ROI data, correlations among ROIs are expected due to physical proximity of 

ROIs in the brain. Hence, using feature selection based on regularized logistic regression, 

specifically for the case of 0 < 𝛼 ≤  1, may not give a complete picture of which ROIs are 

important in distinguishing between a pair of AD subgroups.  

The above points warranted analyzing the data using another classification method besides 

regularized logistic regression. I was also interested in seeing if the classification accuracies 

might improve if I used a non-linear method for classification. I chose random forest as the 

method to try next, which is the topic of the next chapter. Random forest is nowhere as 

interpretable as logistic regression but it does allow one to assess variable importance, so it 

satisfied the criteria laid in Chapter 2 for the methods I proposed to use for building classification 

models for distinguishing between pairs of AD subgroups.  
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Chapter 4: ROI importance based on Random Forest binary classification models 

distinguishing between pairs of AD subgroups [Aim 1] 

 

In this chapter, I discuss the use of random forest classification models for determining variable 

importance among the 70 brain ROIs for distinguishing between the following pairs of AD 

subgroups: a.) AD-Language vs. AD-Memory, b.) AD-Memory vs. AD-Visuospatial and c.) AD-

Language vs. AD-Visuospatial. As in the case of penalized logistic regression classification 

models discussed in the previous chapter, the random forest classification models here are not 

intended to be used for classification of new data in a clinical setting. Rather, the goal is to learn 

from the models based on current data about important features (volumes of brain regions) that 

best distinguish between pairs of subgroups. Here, I first provide a brief explanation for choosing 

random forest classification models to determine variable importance (Section 4.1), followed by 

details of the implementation of the models (Section 4.2), results (Section 4.3), discussion and 

interpretation of the findings (Section 4.4), some limitations of the current approach (Section 4.5) 

and conclusions and next steps to improve the analysis (Section 4.5). The final results of ROI 

importance for cross-sectional data (Aim 1) were deduced based on the random forest models 

discussed here.  

4.1 Why Random Forest? 

Although penalized logistic regression (PLR) was a good first method to explore for understanding 

variable importance through binary classification models of AD subgroups due to its ease of 

interpretability, the results in the previous chapter pointed at a few non-optimal aspects of the PLR 

classification models for answering the question of interest. Although there is no gold standard for 

classification accuracies for distinguishing between pairs of AD subgroups, PLR models yielded 
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classification accuracies that may be considered modest (66.88%, 69.1% and 79.36%), prompting 

for experimentation with another classification method that may lead to improvement in 

accuracies. Greater classification accuracies would in turn make the variable importance results 

from the models more reliable. Secondly, models with the elastic net penalty or the lasso penalty 

may not provide a complete story of which brain ROIs are important, as these penalties can result 

in zeroing of coefficients of correlated ROIs. In the data being analyzed, it is expected that there 

is some correlation between the ROI volumes due to physical proximity, hence the elastic net or 

the lasso penalty may not be best suited for the purposes of understanding relative ROI importance. 

Random forest qualifies as a good method to implement for the data at hand and for the question 

of interest for a few reasons. Variable importance can be obtained from random forest 

classification models even though the models themselves are not directly interpretable. Unlike 

logistic regression, random forest allows for non-linear decision boundaries for classes as well as 

interaction among variables in a single model. When working with complex biological data, such 

as brain ROI volumes, interactions and non-linear relationships are not uncommon. Additionally, 

random forest may better capture relationships among correlated variables, such as the brain ROIs. 

Random forest achieves these properties by decorrelating regression and decision trees to reduce 

variance and improve generalizability. The decorrelation is achieved by using a random subset of 

variables at each node to build each tree. This gives a fair chance for correlated variables to be 

considered for variable selection at the different nodes across multiple trees.  

4.2 Implementation of Random Forest 

Using SMOTE oversampled data of residual volumes of the 70 ROIs (described in chapter _) as 

input features, I generated models for the three classification problems used the RandomForest 

package(Liaw and Wiener 2002) in R: a.) AD-Language (n=168) vs. AD-Memory (n=177), b.) 
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AD-Memory (n=177) vs. AD-Visuospatial (n=183) and c.) AD-Language (n=84) vs. AD-

Visuospatial (n=61). To ensure that the results are not seed dependent, for each of the three 

classification problems, I used 100 unique seeds to generate 100 different random forest models. 

In each random forest model, the number of trees was specified to be 500 which I reasoned to be 

large number for a dataset with 70 variables. In general, the larger the number of trees, the less 

overfit is the final model. For the number of randomly selected predictors considered at each 

split, I used the recommendation specified by James et. al (James et al. 2013, 319) of m = sqrt(p) 

for classification problems where p=70 is the total number of predictors.  

By design of the Random Forest method, the data used for each tree is a bootstrapped subset of 

all observations (which is on average, two thirds of all observations), and the performance of 

each tree is tested on the remaining one third of the data, also known as the out-of-bag (OOB) 

observations. The class prediction for any observation i is based on averaging the prediction 

from all trees in which that observation was OOB, which yields around B/3 predictions for the 

ith observation (James et al. 2013, 318), where B is the total number of trees. The OOB error for 

the overall model is the misclassification error based on the averaged predictions from B/3 trees 

for each observation in the dataset. Whereas for penalized logistic regression models (discussed 

in Chapter 3), I reported average misclassification errors from cross-validation, in tree methods 

that are based on multiple trees and bootstrapped data, the OOB error is typically used to report 

misclassification error instead of formally carrying out cross-validation. The construct of using a 

bootsrapped subset of data to build a tree and using OOB samples to evaluate the performance of 

the tree is equivalent to cross-validation, though not in the controlled fashion of dividing data 

into folds. I preferred this choice of using the OOB error as a measure of model performance 
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rather than average misclassification error from a formal cross-validation procedure which would 

further reduce the sample size used for building trees during cross-validation after bootstrapping. 

4.3 Variable importance results from Random Forest 

Although a model based on a collection of trees, as in random forest, is more difficult to interpret 

than a single tree, one can obtain a summary of overall importance of the predictors in 

classification trees using  a measure such as the mean decrease in accuracy. The mean decrease 

in accuracy indicates the decrease in accuracy in predictions on the OOB samples when a given 

predictor is excluded from the model (James et al. 2013). From the random forest models for 

each classification problem, I used the mean decrease in accuracy to identify the most important 

brain ROIs for distinguishing between two given AD subgroups. Specifically, for each of the 

three binary classification problems, I averaged the mean decrease in accuracy values from the 

100 random forest models corresponding to the 100 different seeds and used the average values 

for comparing the ROIs for importance. It should be noted that there is no absolute threshold of 

the mean decrease in accuracy value for determining the most important variables. The variable 

importance scale is relative and the actual values of variable importance for the different 

variables have little meaning for interpretation. To provide a spatial context, I created 

visualizations on the brain surface using the ggseg (Mowinckel and Vidal-Piñeiro 2020) package 

in R, showing relative importance of all brain regions based on the averaged mean decrease in 

accuracy (from 100 random forest models) for each classification (See Figures 4.2 and 4.4 under 

Results).  

Random forest variable importance can be used to determine the relative importance of the ROIs 

but it does not provide any information about how an ROI volume might differ across the AD 

subgroups being compared. This relationship is investigated in the next section (4.4). The focus 
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of this section is to bring attention to parts of the brain that seem to have greater importance in 

distinguishing between the pairs of AD subgroups based on the random forest classification 

models.  

Results from all three classification problems are described below. It is not sufficient to simply 

obtain a ranking of importance for the ROI volumes based on the models for a given 

classification. It is important that the models from which the variable importance is deduced 

have a decent classification performance. We do not have a gold standard for what qualifies as a 

good classification performance for the AD subgroups, however, the better the classification 

performance, the more reliably we can state the results from variable importance from the given 

models. I used the OOB error as a measure of classification performance for the random forest 

models. 

The OOB error estimates from the 100 random forest models for each classification were 

averaged to obtain the average OOB error. See Table 4.1 for a summary of the average OOB 

errors for each classification problem. The average OOB errors from random forest models for 

all three classification problems were lower than the average misclassification errors from cross-

validation in the corresponding penalized logistic regression models (See chapter 3). Although 

the average OOB error and the average misclassification error are not the same exact measure, 

both measures represent an estimate of model performance. It seems reasonable to compare these 

measures for a rough and broad understanding of whether random forest models or penalized 

logistic regression models have better performance for the given data. Based on the model 

performance estimated by OOB classification errors, one can say that random forest 

classification models may be better suited for the given data compared to penalized logistic 

regression classification models. The better classification performance of the random forest 
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models consequently allows one to be more confident about reporting the relative importance of 

the ROIs deduced from the models.  

a. AD-Language vs. AD-Memory 

Avg overall OOB error for  

AD-Language vs. AD-Memory 

Avg OOB error for  

AD-Language 

Avg OOB error for  

AD-Memory 

6.4% 5.8% 7.0% 

 

b. AD-Memory vs. AD-Visuospatial 

Avg overall OOB error for  

AD-Memory vs. AD-Visuospatial 

Avg OOB error for  

AD-Memory 

Avg OOB error for  

AD-Visuospatial 

11.7% 14.5% 9.0% 

 

c. AD-Language vs. AD-Visuospatial 

Avg overall OOB error for  

AD-Language vs. AD-Visuospatial 

Avg OOB error for  

AD-Language 

Avg OOB error for  

AD-Visuospatial 

21.1% 10.8% 35.2% 

 

Table 4.1: Averaged Out of Bag (OOB) errors from 100 random forest models corresponding to 

100 seeds for each of the classifications: a. AD-Language vs. AD-Memory, b. AD-Memory vs. 

AD-Visuospatial and c. AD-Language vs. AD-Visuospatial. 
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a. AD-Language vs. AD-Memory 

Of the three classification problems, the distinction between the AD-Language and AD-Memory 

groups was the strongest, with an average OOB classification error estimate of 6.37% ± .06% 

(standard error) over the 100 random forest models. The average OOB error for the AD-

Language group was 5.75% ± 0.10% and 6.70%  ±  0.10% for the AD-Memory group. The 

variable importance plot based on the ‘mean decrease in accuracy’ measure is shown in Figure 

4.1. The topmost regions that stand out in importance (in decreasing order) based on this plot are 

the right entorhinal cortex, right hippocampus, right lingual gyrus and left hippocampus. 

Figure 4.2 provides a visualization of the ROI importance results on the brain surface for all 70 

regions shown on the Desikan-Killiany cortical atlas and the subcortical atlas separately. 

Figure 4.1: Random Forest variable importance from 100 models (100 seeds) for the AD-Language vs. AD-
Memory classification. Each boxplot represents the distribution of the Mean Decrease in Accuracy from 
the 100 models. Top 10 variables are shown based on the Mean Decrease in Accuracy. 
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Figure 4.2: Relative importance of ROIs in the a.) Desikan-Killiany (DK) atlas and b.) the hippocampal 
regions, based on contributions to classification accuracy from the random forest models for AD-
Language vs. AD-Memory. Mean Decrease in Accuracy values for each ROI were averaged over the 100 
random forest models (corresponding to 100 seeds). The top four regions of importance are labeled. 

 

 

 

lingual  

entorhinal 

R. hippocampus  L. hippocampus  
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b. AD-Memory vs. AD-Visuospatial 

The AD-Memory vs. AD-Visuospatial classification had the next best distinction of the AD 

subgroups after the AD-Language vs. AD-Memory classification. The AD-Memory vs. AD-

Visuospatial classification problem had an average OOB classification error estimate of 11.7% ± 

0.08 over the 100 random forest models. The individual class classification error averages were 

14.5% ± 0.14% for the AD-Memory group and 9.0% ± 0.07% for the AD-Visuospatial group. 

Based on the contributions to classification accuracy in Random Forest (average value of mean 

decrease in accuracy for each ROI over the 100 random forest models), following were the top 

four ROIs (in descending order of importance): left entorhinal cortex, right entorhinal cortex, 

right supramarginal gyrus and left postcentral gyrus. As noted earlier, the scale of variable 

importance is continuous and the regions with lower mean decrease in accuracy measures than the 

above should not be completely disregarded when looking for ROI importance. The relative 

variable importance measures for all 70 ROIs and their locations on the brain are shown in Figure 

4.4 based on the average of mean decrease in accuracy values from 100 random forest models.  
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Figure 4.3: Random Forest variable importance from 100 models (100 seeds) for the AD-Memory vs. 
AD-Visuospatial classification. Each boxplot represents the distribution of the Mean Decrease in 
Accuracy from the 100 models. Top 10 variables are shown based on the Mean Decrease in Accuracy. 
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Figure 4.4: Relative importance of ROIs in the a.) Desikan-Killiany (DK) atlas and b.) the hippocampal 
regions, based on contributions to classification accuracy from the random forest models for AD-Memory 
vs. AD-Memory. Mean Decrease in Accuracy values for each ROI were averaged over the 100 random 
forest models (corresponding to 100 seeds). The top four regions of importance are labeled. 
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c. AD-Language vs. AD-Visuospatial 

The AD-Language and AD-Visuospatial groups were the most difficult to separate based on brain 

regions’ volumes; the average OOB classification error from 100 random forest models was 21.1% 

± 0.16% and individual class classification OOB error averages were 10.8% ± 0.14% for AD-

Language and 35.3% ± 0.37% for AD-Visuospatial. Note that the AD-Visuospatial group has a 

much higher average OOB error than the AD-Language group. As demonstrated by the 

disproportionate average OOB errors for the two classes here, the current models based on random 

forest do not separate the data from AD-Language and AD-Visuospatial groups well enough to be 

used for deducing ROI importance from them. For completeness, the variable importance rankings 

based on averaged mean decrease in accuracy values from 100 random forest models for AD-

Language vs. AD-Visuospatial are shown in Figures 4.5 and 4.6 but these results should not be 

used for making remarks about which ROIs are important for distinguishing between the two AD 

subgroups. Future work is needed to understand whether these two groups are actually not that 

separable based on brain ROI volumes or if another method could yield a better and class-balanced 

classification performance. It is also worth probing in detail in the future why there is an imbalance 

in classification accuracies for AD-Language and AD-Visuospatial groups, and the scientific 

interpretation of this imbalance. A preliminary hypothesis could be that members of the AD-

Language group have atrophy patterns that are more ROI specific whereas members of the AD-

Visuospatial have much less regional specific atrophy patterns. Additional work is needed to 

corroborate this hypothesis.  
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Figure 4.5 Random Forest variable importance from 100 models (100 seeds) for the AD-Language vs. AD-
Visuospatial classification. Each boxplot represents the distribution of the Mean Decrease in Accuracy from 
the 100 models. Top 10 variables are shown based on the Mean Decrease in Accuracy. Due to the great 
imbalance in classification accuracies for the two subgroups from the current random forest models for this 
classification problem, the above results should not be used for a reliable reporting of ROI importance.  
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Figure 4.6 Relative importance of ROIs in the a.) Desikan-Killiany (DK) atlas and b.) the hippocampal 
regions, based on contributions to classification accuracy from the random forest models for AD-Language 
vs. AD-Visuospatial. Mean Decrease in Accuracy values for each ROI were averaged over the 100 random 
forest models (corresponding to 100 seeds). The top four regions of importance are labeled. However, the 
class imbalance in classification accuracies of the AD-Language compared to AD-Visuospatial do not make 
the current results reliable to assess ROI importance for distinguishing between these two groups. 
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4.4 Understanding how the ROIs identified as important differ across the AD subgroups 

While random forest classification models can be used to identify the topmost important ROIs for 

distinguishing between the pairs of AD subgroups, they do not provide any information on how 

those ROIs differ across the AD subgroups being compared. To provide insight into this, I 

constructed violin plots for the AD subgroups of interest for the selected ROIs and visually 

compared the distributions and spread of the data in the two AD subgroups to understand which 

AD subgroup has smaller volumes in the selected ROIs. In addition to the violin plots in the 

visualizations in figures 4.7- 4.9, I’ve also shown the individual data points in each distribution as 

stacked points in each bin; a total of 30 bins were used. The relationships of the important ROIs 

with the AD subgroups in each of the binary classifications based on these plots are described 

below. I chose to focus on the top four ROIs for this discussion. The number of top ROIs to focus 

on is a subjective choice and would be best guided by recommendations from neuropathologists 

who may be interested in the results of this work. Violin plots comparison for all 70 ROIs are 

available in the supplementary files: violin_boxPlots_L_M_volResiduals_SMOTE.pdf, 

violin_boxPlots_M_VS_volResiduals_SMOTE.pdf and 

violin_boxPlots_L_VS_volResiduals_SMOTE.pdf. 

a. AD-Language vs. AD-Memory 

Variable importance results from random forest (described in the previous section) pointed at the 

following regions to be most important for distinguishing the AD-Language group from the AD-

Memory group: right entorhinal cortex, right hippocampus, right lingual gyrus, and left 

hippocampus. Figure 4.7 shows violin plots for SMOTE oversampled residual volume data for 

the two subgroups for these selected ROIs. It can be seen from the plots that the AD-Memory 

group has lower volumes for right entorhinal cortex, right hippocampus and left hippocampus 
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than the AD-Language group. For right lingual gyrus, the distributions for the AD-Language and 

AD-Memory groups are very much overlapping, with boxplots centered roughly around the same 

mean value. It is unclear why the right lingual gyrus shows up as a variable with one of the 

higher variable importance values based on random forest classification, yet the distributions of 

the two AD subgroups do not show any visually noticeable differences. One possibility is that 

random forest is able to shed light on differences across the subgroups after taking non-linear 

relationships and interactions among the ROI variables into account, which may be not be 

apparent in simpler isolated comparisons of individual ROI volumes of subgroups. Another 

possibility is that there is bias in random forest variable importance results that is spuriously 

placing a higher importance on the right lingual gyrus volume. This possibility is further 

discussed in the next section (Section 4.5) and a plan is proposed to reduce potential bias in 

random forest variable importance results.  

1. Right entorhinal cortex 
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2. Right hippocampus 

 

                        

3. Right lingual gyrus 
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4. Left hippocampus 

 

                      

Figure 4.7: Violin distribution plots comparing AD-Language and AD-Memory groups for the top four 
brain ROIs identified through random forest variable importance results. The mean value for each 
distribution is shown by the yellow dot. Individual data points in the distribution are shown stacked at the 
corresponding volume bins. Number of bins = 30.  

 

b. AD-Memory vs. AD-Visuospatial  

Comparing the violin distribution plots for AD-Memory and AD-Visuospatial groups for the top 

identified regions of importance (Figure 4.8): left entorhinal cortex, right entorhinal cortex, 

right supramarginal gyrus and left postcentral gyrus, one can see that in general, the 

distributions for the AD-Memory group are more spread out compared to the AD-Visuospatial 

group. This could be because of the smaller starting sample size of the AD-Visuospatial group 

(which may not be enough to represent the true population characteristics), which was then 

oversampled using SMOTE. It is worth noting that the AD-Language group had an even smaller 

sample size than the AD-Visuospatial group but the distribution spreads for AD-Language and 

AD-Memory were not as different in their variance as is seen in the case of AD-Memory vs. AD-
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Visuospatial. Although the means of the distributions may not be that different in the two AD 

subgroups for some of the above noted regions, there are still some noticeable differences in the 

shapes of the distributions for the ROIs shown in Figure 4.8. For left entorhinal cortex, it can be 

seen that the AD-Memory group has a longer left tail than the AD-Language group, indicating a 

shift towards lower volumes for the AD-Memory group compared to the AD-Language group. 

Similarly, the right entorhinal cortex also shows a slight left shift for the AD-Memory group’s 

distribution compared to the AD-Language group. The differences in the distributions across the 

two subgroups for the other two ROI volumes (right supramarginal gyrus and left postcentral 

gyrus) are less pronounced. For right supramarginal gyrus, the AD-Visuospatial group’s 

distribution is slightly shifted to the left compared to the AD-Memory group’s distribution, hence 

indicating a slightly greater proportion of smaller volumes in the AD-Visuospatial group. 

However, it is difficult to make a strong claim about this difference between the two groups. The 

ambiguity in AD subgroup differences in the volume of left postcentral gyrus based on violin plot 

comparisons of the AD-Memory and AD-Visuospatial groups is even greater and adds to the case 

of investigating potential biases in random forest variable importance results.  This is a point of 

discussion in Section 4.5. 
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1. Left entorhinal cortex 

 

                    

2. Right entorhinal cortex 
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3. Right supramarginal gyrus 

 

               

4. Left postcentral gyrus 

 

                 

Figure 4.8: Violin distribution plots comparing AD-Memory and AD-Visuospatial groups for the top four 
brain ROIs identified through random forest variable importance results. The mean value for each 
distribution is shown by the yellow dot. Individual data points in the distribution are shown stacked at the 
corresponding volume bins. Number of bins = 30. 
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c. AD-Language vs. AD-Visuospatial 

Given that the current classification model for AD-Language v. AD-Visuospatial should not be 

used for interpreting which ROIs are most important (due to reasons given in Section 4.3), it is 

currently unknown which ROIs should be examined for violin plot comparisons between the AD-

Language and AD-Visuospatial groups. Hence, currently, the AD-Language vs. AD-Visuospatial 

analysis is not at the stage of comparing violin plots for understanding which of the two subgroups 

has more atrophy in the ROIs of interest.  

4.5 Limitations of the current approach, alternative solutions & next steps 

While majority of the results from variable importance based on random forest classification 

models make sense when violin plots for the AD subgroups of interest are compared for a given 

ROI (i.e. the violin plot distributions look different enough for the two AD subgroups being 

compared), some results need further investigation. As discussed in section 4.3, for the AD-

Language vs. AD-Memory classification, right lingual gyrus is ranked to be the third most 

important brain region based on the mean decrease in accuracy measure. However, when the 

distributions of the AD-Language and AD-Memory groups for this region are compared using 

violin plots, the distributions are very much overlapping and don’t show noticeable visual 

differences (see Figure 4.7 ). A similar ambiguity exists in AD subgroup differences among AD-

Memory and AD-Visuospatial for the volumes of right supramarginal gyrus and left postcentral 

gyrus based on violin plot comparisons, yet these regions are in the top four important regions 

based on random forest models for AD-Memory vs. AD-Visuospatial. These results bring up two 

possibilities. One possibility is that random forest results for variable importance for these ROIs 

are indeed correct and random forest sheds light on differences in AD subgroups by accounting 

for non-linear relationships and interactions among the ROI variables, which may not be apparent 
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in isolated comparisons of individual ROI volume distributions for the subgroups. The other 

possibility is that there are potential biases in variable importance results from random forest which 

could be causing a spurious identification of certain ROIs as important. 

Looking into the possibility of biases in random forest variable importance, I came across a study 

by Strobl et al. (James et al. 2013, 312, 319, 330) that investigated this using simulated data. The 

simulation studies by Strobl et al. illustrated that when variables with different data types are used, 

the variable importance results from random forest can be misleading. This was not the case in the 

data that I analyzed since all variables considered for random forest model building were ROI 

variables representing residual volumes. However, the phenomenon of “different data types” may 

also encompass the case where variables are of the same data type but with very different scales. 

Strobl et al. showed that random forest variable importance may not be reliable in situations where 

the variables being considered for importance vary in their scale of measurement or their number 

of categories.  

In the case of the analysis that I did using random forest, I did not have any categorical variables 

as all variables were ROI volumes, so the issue of having greatly different number of categories 

for variables does not apply to the data that I analyzed. However, within the continuous variables, 

it is possible to have variables that have more “categories” or values than some other variables that 

may have a less continuous set of values. So, while I didn’t have any categorical variables for 

random forest model building, it is possible that the number of unique values (“categories”) in 

each continuous variable affects which variable is more likely to be chosen at a tree node. The idea 

behind this finding is that random forest will tend to favor variables that are more continuous as 

that provides more opportunities to partition the data.  
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Regarding the variation in the scale of measurement, although all variables in my analysis 

represented residual volumes for different ROIs, it is possible that the scales for different ROIs 

were different due to the differences in the original sizes (and hence volumes) of the ROIs, in 

which case this could be a potential point causing bias in random forest variable importance in my 

results. Unlike logistic regression, Random forest does not need a scaling or standardization of 

input variables as the method is not distance based [cite], i.e. the data partitioning at each node 

does not depend on the actual values of the observations for the given variable. Hence, in my 

implementation of random forest models, I had not scaled or standardized the input variables. 

However, Strobe et al.’s work suggests the importance of having input variables on very similar 

scales when it comes to obtaining variable importance without bias.  

The reasons for bias in random forest variable importance, as noted by Strobe et al., are attributed 

to two factors: 1.) biased variable selection in the classification trees due to the points discussed 

above (input variables with different data types or different scales and different number of 

categories), and 2. bias induced by bootstrapping (random sampling with replacement) in random 

forest. Strobe et al. propose an alternative to random forest: a method known as conditional 

inference forest which generates random forests from unbiased classification trees based on a 

conditional inference framework(Strobl et al. 2008). The simulation design used by Strobe et al. 

represented a scenario of a binary variable to be predicted from a set of variables that vary in their 

scale of measurement and number of categories. The first variable X1 was continuous while the 

other variables X2,…X5 were categorical with number of categories ranging from 2 to 20. The 

sample size was set to 120 which is comparable to the sample size of the AD subgroups I used for 

in random forest model building. Although this simulation study considers an extreme scenario of 

the input variables representing different types of data with different scales of measurements and 
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categories which is unlike the ROI residual volume data that I analyzed using random forest, the 

conclusions drawn from the results of this simulation study are still worth paying attention to for 

designing future work for reducing bias in variable importance. Strobe et al.’s simulation studies 

showed that for the randomForest function, all three variable importance measures are unreliable 

for the simulated data: the Gini index, selection frequency and permutation importance; the Gini 

index was the most unreliable. For conditional inference forest, the authors used the cforest 

function in R and found that reliable results of variable importance can be obtained both with the 

selection frequency and the permutation importance if cforest is used with subsampling without 

replacement. The cforest function does not have the option of Gini index as a variable importance 

measure. Using subsampling with replacement in cforest also gives biased results.  

Hence, a solution to address potential bias in random forest variable importance in my current 

work is to use the cforest function in R, with subsampling without replacement. Before this 

implementation, however, a careful understanding of the conditional inference forest method is 

necessary to assess whether it is appropriate for the data at hand. Conditional inference trees like 

random forest trees are based on recursive partitioning. The additional restriction in conditional 

inference forests is that the variable to be used for splitting the data at each node and the split 

points are determined based on statistical significance tests. Mingers (Mingers 1987) notes that a 

recursive partitioning algorithm that chooses the split variable simply based on the contribution to 

the information measure such as the Gini index or contributions to prediction accuracy such as in 

random forest “has no concept of statistical significance, and so cannot distinguish between a 

significant and an insignificant improvement in the information measure.” Conditional inference 

trees are an attempt to provide “a statistical approach [to recursive partitioning] which takes into 

account the distributional properties of measures.” (Hothorn, Hornik, and Zeileis, n.d.)  
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An unrelated limitation based on the current random forest results is that it did not result in a 

satisfactory classification model performance for AD-Language vs. AD-Visuospatial as reflected 

by the disproportionate OOB errors for the two classes. The AD-Visuospatial group had a much 

higher average OOB error than the AD-Language group.  Because of this, the models for this 

classification could not be used to say anything about which ROIs are important for this particular 

comparison of AD subgroups. The classification model from penalized logistic regression had a 

poorer overall classification performance (5-fold CV misclassification error of 30.37%) than the 

average overall from the current random forest models. Hence, current results do not warrant the 

use of either the penalized logistic regression model or the random forest models to reliably 

interpret ROI importance for the classification. For future work, it would be interesting to see if 

using conditional inference forests with subsampling without replacement may yield a better 

classification performance for AD-Language vs. AD-Visuospatial, with balanced OOB errors for 

the two classes. Other methods may also need to be explored to see if these two groups can be 

separated well using ROI volume data or if they are actually not that separable. 

Within the random forest or cforest framework, for future work, parameters such as the number of 

trees, the number of variables to use at the nodes for splitting the data, and the sample size for 

subsampling (portion of the data to be used for each tree building) can be fine-tuned using cross-

validation.  

4.6 Conclusions 

The work described in this chapter is an application of random forest classification models in the 

domain of AD subgroups. This is a novel way of shedding light on which brain ROIs are most 

important to distinguish between pairs of AD subgroups. This approach allows for the accounting 

of potential non-linear relationships between ROIs and AD subgroups and interactions of ROI 
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volumes, which to my knowledge have not been considered in previous model building for 

analyzing AD subgroup differences. By determining variable importance based on contributions 

to classification accuracy based on 100 random forest models (100 seeds) for each binary 

classification (AD-Language vs. AD-Memory, AD-Memory vs. AD-Visuospatial and AD-

Language vs. AD-Visuospatial), I successfully identified some ROIs as candidates that could be 

explored in future neuropathological studies for understanding AD subgroup differences. Current 

results yielded decent classification performance and hence reliable variable importance 

assessment for AD-Language vs. AD-Memory and for AD-Memory vs. AD-Visuospatial. As 

noted in section 4.5, future work will involve developing better models to understand the ROI 

differences between AD-Language vs. AD-Visuospatial as well as implementing condition 

inference forest to address potential biases in random forest variable importance. By averaging the 

variable importance results and classification accuracies over 100 models based on 100 unique 

seed specifications in R, I hoped to have introduced more robustness in the results. Next, by 

making visual comparisons of ROI volume distributions of the subgroups being compared I was 

also able to provide a sense of which AD subgroup is expected to have a greater atrophy in the 

identified ROIs. The brain regions identified through the analysis here may be those that would be 

most fruitful for targeting with subsequent neuropathological evaluations to identify differential 

microscopic pathology underlying these AD subgroup differences in atrophy discernible with MRI 

scans.  
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Appendix for Chapter 4 

1. Violin plots for AD-Language vs. AD-Visuospatial 

1. Right hippocampus 

 

2. Left Rostral anterior cingulate gyrus 
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3. Left lateral orbitofrontal gyrus 

 

4. Left insula 
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Aim 2:   Longitudinal Data Analysis 

 

 

Do cognitively defined AD subgroups from the time of AD diagnosis differ in brain ROI 

volume trajectories over time? If so, in which brain regions? 

 

Methods for a meaningful analysis of noisy, small sample sized, class-imbalanced and 

irregular longitudinal brain ROI volume data for AD subgroups 
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Chapter 5: Overview of Longitudinal data analysis [Aim 2]: the scientific question, data 

challenges and workflow 

 

In Aim 1 of my dissertation, the focus was on understanding which brain regions are most 

important for distinguishing between the AD subgroups, based on ROI volume data from 70 

brain regions from the time of AD diagnosis. A natural extension of this question/investigation is 

to ask whether there are ROIs for which the AD subgroups differ the most in their volume 

trajectories over time. This led to the question for the second part of my dissertation [Aim 2]: Do 

cognitively defined AD subgroups from the time of diagnosis show differences in their ROI 

volume trajectories over time? If so, which ROIs show the most substantial differences between 

pairs of AD subgroups? Specifically, I focused on understanding how two aspects of each ROI’s 

average volume trajectory differ between pairs AD subgroups: rate of change of ROI volume 

over time (slope) and the ROI volume at t=0 (intercept). I used linear mixed effects modeling to 

understand these differences, which is the topic of discussion of Chapter 6. Figure 5.1 provides 

an overarching overview of the problem tacked in longitudinal data analysis, including a 

description of the data, the analysis method used and the expected scientific finding from the 

analysis.  

The workflow for Aim 2 work has two parts. The first part is focused on pre-processing of the 

data and the second part is the linear mixed effects modeling analysis. The latter is the topic of 

Chapter 6. In this chapter, in the next sections, I provide details of the longitudinal dataset, and 

the characteristics of data that led me to carry out specific pre-processing steps. I conclude the 
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chapter with a schematic of the full workflow for Aim 2 work, which connects the contents of 

this chapter and the next.  

 

Figure 5.1: Overview of Longitudinal data analysis 

5.1  Descriptive analysis of longitudinal MRI ADNI data: challenges of the data 

Before diving into the details of analysis of longitudinal data using linear mixed effects modeling 

(Chapter 6), it is important to understand the characteristics of the current longitudinal dataset. 

Many of the pre-processing steps in the longitudinal data analysis workflow were driven by the 

nature of the current data in an attempt to reduce the effects of noise in the data.  

I obtained the longitudinal dataset from Dr. Risacher at Indiana University, who processed the 

raw structural MRI data from ADNI using the same pipeline that she had used for the cross-

sectional dataset. Note that the cross-sectional dataset that I used in Aim 1 work was not 

obtained by taking a subset of current longitudinal dataset corresponding to the AD diagnosis 

visit. Hence, the individuals in the longitudinal dataset (individuals with data at the time of AD 
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diagnosis visit and at least one other visit) are not simply a subset of the cross-sectional dataset 

(individuals with data at the time of AD diagnosis.) Although there is a large overlap of 

individuals in the cross-sectional and longitudinal datasets that I used, there are some additional 

individuals in the longitudinal dataset that were not present in the cross-sectional dataset, and 

vice versa. The variables in the longitudinal dataset were the same as cross-sectional dataset: 

volumes of 70 ROIs that are the focus of my dissertation work, other volume variables such as 

ICV and total gray volume, and non-ROI variables (magnetic field strength of the scanner, 

gender, age, years of education and APOE genotype status.) W-scores were not available for all 

individuals (about 50 individuals) in the longitudinal dataset. Hence, I used an alternative 

measure derived from the ICV and total gray volume to represent how progressed an individual 

is in terms of volume loss over the entire brain. The details of this measure are discussed in 

Chapter 6 when the linear mixed effects models are described. The longitudinal dataset from Dr. 

Risacher was re-formatted by Phoebe Scollard, a member of Dr. Crane’s research group. In the 

original dataset from Dr. Risacher, data from ROI variables from every visit for an individual 

were in a single row. Phoebe Scollard re-formatted the data so that each row in the dataset 

represents an individual’s data from a single scan from a single visit. This re-formatted dataset is 

what I used in my Aim 2 work.  

By definition, longitudinal data includes data from one or more time points. Here, time points 

refer to visits in the ADNI study for an individual, which are typically every six months. The 

longitudinal dataset is more complex than the cross-sectional dataset due to a few reasons. First, 

due to changing technologies in different phases of the ADNI study over time, a given individual 

may have MRI scans conducted on scanners with different magnetic field strengths across 

different visits in the study. In some cases, an individual may have data from both 1.5T and 3T 
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scanners for a given visit. Further, from a given field strength scanner, most individuals had 

more than one scan per visit. Most likely, these multiple scans per visit exist to make sure there 

was at least one scan of reasonable quality available out of the few that are collected. These 

points present some choices to be made about which scans should be used for a given individual. 

Some of these choices contributed to the pre-processing steps described in Figure 5.4, which are 

discussed in more detail later. Additionally, in the current dataset, not all individuals had data 

available according to the visits’ scheduled timeline of the ADNI study, i.e. the longitudinal 

dataset is irregular. 

As a preliminary step in exploring the dataset, to describe each individual’s disease timeline 

relative to a common point across all individuals, I anchored all individuals’ data in time relative 

to each individual’s time of AD diagnosis. The visit of AD diagnosis was defined to be t=0. All 

other visits were defined relative to the AD diagnosis visit. For example, a visit 6 months before 

the AD diagnosis visit corresponds to t =-6 months while a visit 2 years after the AD diagnosis 

visit corresponds to t=24 months in the transformed dataset. Below, I’ve presented volume 

trajectories for four ROIs using data corresponding to the 1st scan from each visit for individuals 

from all four AD subgroups, as examples, to illustrate some of the characteristics of the data 

(Figures 5.2 and 5.3). Generally, one would expect that ROI volumes decrease over time or more 

or less stay constant in an older sample of individuals such as the one represented in this dataset. 

For the first two ROIs (Figures 5.2a and 5.2b), left entorhinal cortex and right entorhinal cortex, 

one can see that the volumes in many trajectories fluctuate over time, although a general 

downward trend can be seen in most cases. Figures 5.3a and 5.3b show the volume trajectories 

for left frontal pole and right frontal pole. The trajectories for these ROIs seem to fluctuate even 

more compared to trajectories for left entorhinal cortex and right entorhinal cortex, and it is 
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difficult to see a general decreasing trend for a large number of trajectories. Figures 5.2 and 5.3 

demonstrate that there is noise in ROI volume measurements over time in the current 

longitudinal dataset. For some ROIs, there may be more noise than others. The plots also 

demonstrate that the amount of noise is roughly the same for 1.5T and 3T data. Other 

characteristics of the data that can be seen from Figures 5.2 and 5.3 are imbalanced class (AD 

subgroup) sizes, small sample sizes and irregular data.  
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Figure 5.2a: Volume trajectories for left entorhinal cortex and right entorhinal cortex for 

individuals in all four AD subgroups. Data is from 1st scans from all 1.5T visits in the 

longitudinal dataset.  
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Figure 5.2b: Volume trajectories for left entorhinal cortex and right entorhinal cortex for 

individuals in all four AD subgroups. Data is from 1st scans from all 3T visits in the longitudinal 

dataset.  
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Figure 5.3a: Volume trajectories for left frontal pole and right frontal pole for individuals in all 

four AD subgroups. Data is from 1st scans from all 1.5T visits in the longitudinal dataset.  
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Figure 5.3b: Volume trajectories for left frontal pole and right frontal pole for individuals in all 

four AD subgroups. Data is from 1st scans from all 3T visits in the longitudinal dataset.  

In the first part of workflow for longitudinal data analysis (outlined in Figure 5.4 below), some 

of the pre-processing steps that I carried out (Steps 2 and 3) were an attempt to reduce the effects 

of noise in the longitudinal dataset. The first step was a data filtering step where I made sure that 

I was only considering individuals who have data present at the time of AD diagnosis and at least 

one other visit. Next, I used the magnetic field strength from the visit of AD diagnosis for each 

individual as the field strength of choice for all visits for that individual. For individuals who had 

data for both field strengths at the visit of AD diagnosis, I used the field strength that would 

result in a larger number of visits’ data to be used. By restricting to data from only one type of 
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field strength for all visits for an individual, the noise within a trajectory in ROI volumes due to 

different field strengths should be removed. In the last step of pre-processing workflow, I further 

sought to reduce the noise in ROI volume trajectories by choosing a higher quality scan for each 

visit for which multiple scans were available. Specifically, I chose data corresponding to the scan 

with the highest contrast to noise ratio (CNR) from FreeSurfer processing, instead of the first 

scan by default.  

Figure 5.4: Part 1 of Longitudinal data analysis workflow: Data filtering and pre-processing 

 

Figures 5.5a and 5.5b show what the data availability looked like for each time point after steps 1 

and 2 of workflow. The final sample sizes from each AD subgroup are summarized in Table 5.1. 

In the analysis method used for longitudinal data, linear mixed effects modeling, which is the 

topic of next chapter, data from both field strengths were used together.  
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AD Subgroup 1.5 T 3T  Total 

AD-Executive 7 12 19 

AD-Language 21 21 42 

AD-Visuospatial 26 38 64 

AD-Memory 97 93 190 

Table 5.1: Sample sizes for AD subgroups in the longitudinal dataset 
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Figure 5.5a: A visualization of data availability at each time point for individuals with 1.5T scans 

at the time of AD diagnosis. Each row of dots represents an individual’s data over time. Red and 

blue colors are used to distinguish between consecutive individuals. 
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Figure 5.5b: A visualization of data availability at each time point for individuals with 3T scans 

at the time of AD diagnosis. Each row of dots represents an individual’s data over time. Red and 

blue colors are used to distinguish between consecutive individuals. 

 

ROI volume trajectories after the above pre-processing steps are shown below in Figures 5.6 and 

5.7 for the same four ROIs whose trajectories were shown above (Figures 5.2 and 5.3). 

Individuals with 1.5T and 3T scans are shown together in these plots. Although there seems to be 

a very slight reduction in the noise in the trajectories after the pre-processing step of using data 

corresponding to the best CNR score from each visit, there is still considerable amount of 
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fluctuation in most volume trajectories. Using the scans with the highest CNR score per visit was 

an attempt to reduce the noise in the data. However, it did not get rid of noise completely as can 

be seen from the trajectories in Figures 5.6 and 5.7, and noisy data still continue to remain a 

limitation of the current longitudinal dataset.  
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Figure 5.5: Volume trajectories for left entorhinal cortex and right entorhinal cortex for 

individuals in all four AD subgroups. Data is from the scans with the highest CNR score from 

FreeSurfer for all 3T visits in the longitudinal dataset.  
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Figure 5.6 : Volume trajectories for left frontal pole and right frontal pole for individuals in all 

four AD subgroups. Data is from the scans with the highest CNR score from FreeSurfer for all 

3T visits in the longitudinal dataset. 

The characteristics of the longitudinal dataset described above highlight the complexities of the 

data: changing MRI field strength over time, noise in volume data, class imbalance, small sample 

size and irregular data. Through the pre-processing steps, I attempted to reduce some noise in 

data by ensuring each individual’s data over time only consists of one type of field strength and 

by using data from the scan with the highest CNR score for each visit with multiple scans. 

However, trajectories with large fluctuations over time, potentially due to errors in MRI 

measurement and/or segmentation continue to be an issue. These factors make the current 
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longitudinal dataset a challenging one for finding differences in ROI volume trajectories across 

AD subgroups. 

Volume trajectories for all 70 ROIs (based on data from best CNR scans) are provided in a 

supplementary file: Ch5_supplemental_VolTraject_70ROIs_bestCNR.pdf 

5.2  Workflow for analysis of longitudinal data 

I conclude this chapter by providing a complete workflow of the longitudinal data analysis (see 

next page), connecting the work discussed above (Part 1 of the workflow, also shown in Figure 

5.4 above) and the analysis described in the next chapter (Part 2 of the workflow). The data 

exploration and preliminary analysis described in this chapter shed light on the challenges of the 

current dataset, which was crucial in helping me decide on linear mixed effects modeling as an 

appropriate method for analysis for the current longitudinal dataset. Mixed effects models are 

very suitable for dealing with some typical characteristics of longitudinal data such as correlation 

between serial measurements and irregular data. In the next chapter, I describe linear mixed 

effects modeling and its suitability for longitudinal data, details of implementation of the models 

and other steps described in Part 2 of Aim 2 workflow.  
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Longitudinal Data Analysis (Aim 2) Workflow

 

 

Figure 5.7: Workflow for longitudinal data analysis (Aim 2) 
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Chapter 6: Assessing differences in ROI volume trajectories for pairs of AD subgroups 

using Linear Mixed Effects modeling [Aim 2] 

 

Of the commonly used methods for analyzing longitudinal data, two methods are 1. Repeated 

measures analysis of variance (or within-subject ANOVA) (Girden 1992)  and 2. Cross-sectional 

(General Linear Model – GLM based) analysis of summary measurements such as percent 

annual change (Desikan et al. 2011); (Fjell et al. 2009). In my preliminary work for Aim 2, I 

considered the idea of using percent annual change in ROI volume as a single input data value 

for each individual and to analyze this transformed dataset for all ROIs and individuals using a 

machine learning based classification approach as I did for cross-sectional data in Aim 1. An 

issue with this approach is that the number of data points and the time range over which data are 

available for different individuals in the longitudinal dataset are not the same. So, firstly, using a 

summary measure is problematic in this scenario since it is not calculated using the same number 

of data points for different individuals. To address the different time ranges over which the 

summary measure is calculated, one could restrict the analysis to a specific common time period 

for all individuals. However, this would come at the expense of losing valuable information from 

data points that were excluded from the analysis due to the time window restriction. In addition 

to these two issues, a major concern of the approach involving analysis of summary 

measurements is that it does not account for the correlation structure in longitudinal data 

(described in section 6.1). This is also a weakness of the repeated measures analysis of variance 

approach. An approach that does take into account the correlation structure in longitudinal data is 

linear mixed effects (LME) modeling. It is also better suited for data from an ongoing research 

study like ADNI; characteristics of the longitudinal data in the context of such a study are 

highlighted below. 
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6.1 Overview of Linear Mixed Effects modeling 

Linear mixed effects (LME) modeling has been advocated as a powerful statistical framework 

for analyzing longitudinal data (Bernal-Rusiel et al. 2013). Bernall et al. demonstrated the use of 

LME models on data from ADNI in a Matlab implementation they wrote, comparing ROI 

volume for different groups in ADNI: healthy controls (HC), other groups representing 

individuals in different phases between healthy and dementia, and individuals with AD. They 

showed that LME models are better suited for data from longitudinal studies and lead to an 

“improvement in statistical detection” compared to the other benchmark methods mentioned 

above. Although LME models were first introduced in 1950s and applied to a real world problem 

in 1959 (Henderson et al. 1959), and have been used by researchers since then, Bernall et al. 

believe they have been under-utilized in analyzing longitudinal brain data compared to the other 

two methods mentioned above due to two reasons: 1. a lack of software tools that can perform 

such analysis in existing pipelines for neuroimaging analysis such as FreeSurfer and 2. a lack of 

an understanding of the intricacies of longitudinal data in a study like the ADNI.  

Here are some key characteristics of longitudinal data that must be considered for a good 

analysis of the data. Longitudinal data consists of measurements that are ordered in time. An 

important aspect of longitudinal data that needs to be accounted for in the modeling process is 

the correlation among serial measurements. Each individual’s measurements over different time 

points (repeated measures) are positively correlated and repeated measures from time points 

closer to each other are expected to be more correlated. Another characteristic of longitudinal 

data is that the between-subject variance may not be constant over time. Bernal-Rusiel et al.  note 

three potential sources of variability affecting the correlation structure in longitudinal data: 1. 

Between-subject variation, 2. inherent within-subject biological change and 3. measurement 
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error. Lastly, missing data and irregular data are common features of longitudinal studies, i.e. not 

every time point has data available for every individual in the dataset. LME modeling allows for 

the modeling of the mean trajectory of the variable of interest over time while also taking into 

account the correlation structure among serial measurements. Additionally, the LME modeling 

framework  does not require that all subjects in the study have a common set of measurement 

times.  

Mixed effects models allow for two levels of dynamics in data to be described. These models use 

regression to describe the population level dynamics of a variable (the dependent variable of 

interest for my Aim 2 question is ROI volume); these dynamics are known as fixed effects and 

include all variables that we think affect the outcome variable. Individual effects, which are 

deviations from the population level dynamics are captured through specification of random 

effects, also in the form of regression coefficients. This means that certain aspects of a 

population level trajectory are allowed to vary “randomly” due to subject level variation that 

cannot be explained by fixed effects. See equations below. Linear mixed effects modeling uses 

linear regression specifically. Based on the ROI volume trajectories presented in the previous 

chapter, linear models seemed to be an appropriate choice for analyzing the current longitudinal 

data. Also, given the small sample size and noise in the ROI volume trajectories, I did not want 

to overfit the data by using a non-linear model. 

Consider the equation below that describes an LME model 

𝑌𝑖 =  𝑋𝑖𝛽 +  𝑍𝑖𝑏𝑖 +  𝑒𝑖         ( 6.1) 

where 𝑌𝑖 is a vector of n measurements of an ROI volume (from n time points) for an individual 

i. 𝑋𝑖 is a n x p design matrix for fixed effects. This includes data for all independent variables 
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that may have an association with ROI volume including gender, MRI scanner field strength, 

education, age, AD subgroup, APOE genotype and scan time. 𝛽 is a p × 1 vector of unknown 

fixed effects regression coefficients, to be found. Individual effects which may vary across 

individuals such as the intercept of ROI volume and the slope of the ROI volume with respect to 

time are captured through random effects. 𝑍𝑖 is the n x q design matrix for random effects which 

is a subset of 𝑋𝑖. 𝑏𝑖 is a q x 1 vector of q random effects. In the analysis that I carried out, I 

specified two random effects (q=2): a random effect for the intercept captured in the coefficient 

𝑏0i for an individual i and a random effect for the slope with respect to time captured by the 

coefficient 𝑏1i for individual i. 𝑒𝑖 is a n x 1 vector of measurement errors for individual i.  In my 

Aim 2 work, I used this framework to model each of the 70 ROI volumes using 70 independent 

LME models.  

Each individual’s volume trajectory for a given ROI can be described by 

𝑌𝑖𝑗  =  (𝛽0 +  𝑏0i) +  (𝛽1 +  𝑏1i)𝑡𝑖𝑗 + 𝛽2AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 +𝛽3 𝑓𝑖𝑒𝑙𝑑_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ +  𝛽4 𝑔𝑒𝑛𝑑𝑒𝑟 +  𝛽5age +

 𝛽6yrs_Educat + 𝛽7APOEgroup + 𝛽8ICV_t0_Scaled + 𝛽9TotalGrayVol_ICV_ratio_t0 +

𝛽10AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 ∗ 𝑡𝑖𝑗 +  𝑒𝑖𝑗         ( 6.2) 

where 𝑌𝑖𝑗 is the ROI volume for individual i at timepoint j, 𝑡𝑖𝑗 is the scan timepoint j for 

individual i and  𝑒𝑖𝑗 is the measurement error at timepoint j for individual i. ICV_t0_scaled 

represents the intracranial volume (ICV) for each individual at the time of AD diagnosis; I used 

this as a measure to control for overall head size of different individuals. Raw ICV values are 

very large compared to values of any of the other variables being used in the model. This results 

in issues in the LME model fitting process as the matrix to be inverted becomes close to singular. 

This happens because the relatively small values from the other variables in the matrix get 
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zeroed when being compared to the much larger values of the ICV variable. Hence, to avoid this 

issue, ICV values needed to be scaled so they are not on a drastically different scale than the 

other variables. I used the proportion of maximum scaling (POMS) method (Little 2013) to scale 

the ICV values which transforms the values to a 0 to 1 scale: 

POMS = [(observed − minimum)/(maximum − minimum)]     (6.3) 

Specifically, 

ICV_t0_scaled = (ICV_t0 - min(ICV_t0)) / ( max(ICV_t0)- min(ICV_t0) )   (6.4) 

Unlike standardization, this maintains the proportion of distances between the observations. In 

my analysis of longitudinal data, I made a deliberate choice of not standardizing variables in the 

implementation of LME models to keep the interpretation of results as simple as possible and 

also because of the complexities of longitudinal data which makes it hard to standardize 

variables in a sensible way (Moeller 2015). 

For controlling for effects of overall atrophy of the brain, instead of using w-scores as I did in the 

cross-sectional data analysis, here in longitudinal data analysis, I defined and used a measure 

called the TotalGrayVol_ICV_ratio which is defined as Total gray volume at t0 / ICV at t0 as a 

measure of how much gray matter is present in the brain relative to a person’s head size at the 

first visit in the study when an individual is diagnosed with AD. The reason for not using w-

scores in longitudinal data analysis is that w-scores were not available for about 50 individuals in 

the data. Using w-scores in the current analysis would have meant reducing the sample size by 

50 individuals. Given the already small sample size, I opted not to include w-scores in the 

analysis and to use the TotalGrayVol_ICV measure as a way of approximating overall atrophy in 
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the brain. The TotalGrayVol_ICV_ratio does not need to be scaled as the ratio of total gray 

volume to ICV is still on a comparable scale as other variables in the model.  

In the current model, the rate of change of ROI volume is allowed to vary by AD subgroup. 

Other covariates: gender, MRI scanner field strength, education, age, APOE genotype are 

allowed to be associated with ROI volume but these variables have not been modeled to 

contribute to differences in rate of change of ROI volume. MRI scanner field strength is a 

variable that is not related to brain processes, so it should not have an effect on the rate of change 

of ROI volume. The other covariates gender, education level, age and APOE genotype may have 

an impact on how fast brain volume decreases over time but it seems unlikely that these variables 

would affect rates of change of different ROIs in different ways. To start with a simpler model, I 

did not include interaction terms between time and each of the following: gender, education, age 

and APOE genotype. One advantage of this simpler model where the only time dependent terms 

are t and ADSubgroup * t in the model is that an average rate of change can be obtained for all 

individuals in the reference group (ADSubgroup =0), given by the 𝛽1𝑡 term regardless of an 

individual’s gender, education level, age or APOE genotype status. Knowing this average rate of 

change for the reference group is useful for comparing the magnitude of the difference in the 

rates of change between the two AD subgroups.  

For the purpose of my analysis which is understanding how a given ROI differs longitudinally 

across pairs of AD subgroups, the coefficients of interest are 𝛽2, the coefficient for AD subgroup 

and 𝛽10, the coefficient for the interaction between AD subgroup and time. 𝛽2 represents the 

difference in ROI volumes between the AD subgroups at t=0 (time corresponding to the AD 

diagnosis visit) and 𝛽10 represents the difference in the rate of change of volume with respect to 

time for the two AD subgroups. Evaluating the LME model (Equation 6.2) at specific values for 
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AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 and 𝑡 allow one to see these interpretations of 𝛽2 and 𝛽10. Since I was interested 

in understanding how the ROI volumes differ across two given AD subgroups, the AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 

variable was modeled as a binary variable. AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 was defined as 0 for the reference AD 

subgroup and 1 for the target AD subgroup. The choice of which AD subgroup is chosen to be 

the reference group is arbitrary. Evaluating the LME model (Equation 6.2) at t=0 for each of the 

AD subgroups, one can show that the ROI volumes for the two AD subgroups at t=0 differ by 

𝛽2. Evaluating the LME model for AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 = 0, one can see that the rate of change of ROI 

volume is given by 𝛽1, while when AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 = 1, the rate of change of ROI volume is 

given by 𝛽1 + 𝛽10. Hence, the population level difference in rates of change of ROI volume for 

the two groups is given by 𝛽10 based on the model.  

The following assumptions are made in the LME modeling framework for estimating 𝛽 from the 

data. First, the following distributions are assumed: 𝑏𝑖 ~ 𝑁(0, 𝐷) and  𝑒𝑖  ~ 𝑁(0, 𝜎2 𝐼𝑛𝑖
) where 

the notation 𝑁(0, Σ) indicates a zero mean multivariate Gaussian with covariance matrix Σ. 𝐼𝑛𝑖
 is 

a 𝑛𝑖  ×  𝑛𝑖  identity matrix, and all 𝑏1, … , 𝑏𝑚, 𝑒1, … 𝑒𝑚  are independent where m is the number of 

subjects. There is an important distinction between the marginal and conditional means of 𝑌𝑖 in 

LME models. The marginal or population-averaged mean of 𝑌𝑖 is the expected value of equation 

6.1, which yields  

𝐸(𝑌𝑖)  =  𝑋𝑖𝛽                         (6.3) 

The conditional or subject-specific mean of 𝑌𝑖, given 𝑏1 is  

𝐸(𝑌𝑖 |𝑏𝑖) =  𝑋𝑖𝛽 +  𝑍𝑖𝑏𝑖                       (6.4) 

The corresponding marginal and conditional covariances are given below in equations 6.5 and 

6.6 respectively. 
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𝐶𝑜𝑣(𝑌𝑖) = 𝐶𝑜𝑣(𝑍𝑖 𝑏𝑖) + 𝐶𝑜𝑣(𝑒𝑖 ) = 𝑍𝑖 𝐷 𝑍𝑖
𝑇 +  𝜎2𝐼𝑛𝑖

                                   (6.5) 

𝐶𝑜𝑣(𝑌𝑖 |𝑏𝑖) = 𝐶𝑜𝑣(𝑒𝑖) =  𝜎2𝐼𝑛𝑖
                 (6.6) 

Ultimately, fitting an LME model is equivalent to estimating the unknown 𝛽 coefficients and the 

model parameters D and 𝜎. The details of parameter estimation are not discussed here; they are 

clearly laid out in Bernal et al. (2013)’s work. I modeled each ROI volume over time using 

Bernal et al.’s Matlab implementation of univariate LME modeling which uses iterative solvers 

to estimate D and 𝜎, which are then used to estimate 𝛽 coefficients as a closed-form solution. 

Hence, the 𝛽 coefficients in an LME model describe the average population level dynamics, 

while depending on D and 𝜎, which collectively present information about subject level 

deviations from the population average and the correlation structure in data.  

 6.2 Analysis design 

This section describes in detail, the steps outlined in Part 2 of the workflow diagram which was 

presented at the end of Chapter 5. Readers may wish to refer to Figure 5.7 for an overview of the 

workflow. 

Due to the small sample sizes, irregular data and imbalanced class sizes in the current 

longitudinal dataset, some timepoints may have very few data points from a given AD subgroup. 

In such scenarios, it is possible that the LME results (model coefficients) are biased as the small 

number of data points for a given time point may not be a true representation of the overall data 

trends. It was therefore necessary to carry out an analysis that considers the effect of excluding 

different time points for particular AD subgroups from the analysis based on a restriction on the 

minimum number of data points required for the subgroup at a given time point.  
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I generated a series of subsets of data for each AD subgroup based on the following restrictions 

for the minimum number of data points (individuals) required at each time point. Let this number 

be called p_min. In the first case, I allowed all timepoints to be included in the analysis for each 

AD subgroup being considered. This is the entire dataset and for this case, p_min = 0, i.e. each 

time point must have at least 0 data points for each AD subgroup. Next, I generated a subset 

based on p_min = 1. This represents datasets for each AD subgroup where at each time point, the 

given AD subgroup has at least one data point. In this fashion, I obtained additional subsets of 

data for each AD subgroup corresponding to p_min = 2, 3, 4 and 5. Here, a dataset with p_min = 

5 is the most restrictive dataset, where each time point kept in the data for an AD subgroup was 

required to have at least 5 data points for that subgroup. Note, that although the timepoints that 

get included in datasets corresponding to p_min=0 (all time points) and p_min = 1 (all time 

points with at least one data point) may be different, the results from LME modeling are 

expected to be the same for these two cases. This is because in the case of the p_min =0 dataset, 

it is expected that the timepoints with no datapoints will not have any contribution towards the 

model. Essentially, the datasets corresponding to p_min = 0 and p_min =1 are the same, with the 

case of p_min = 0 having no subjects’ data for the extra time points that are part of this dataset. I 

confirmed that the results from LME modeling on the datasets with p_min = 0 and p_min = 1 

were identical. Here, I present the analysis for the cases of p_min = 1, 2, 3, 4 and 5. 

Below is a tabulation of time points that were included in each of the subsets for each AD 

subgroup; all time points are in months since AD diagnosis. The final datasets used in linear 

mixed effects modeling consisted of combined datasets from each AD subgroup for each p_min. 

For example, for the case of comparing AD-Language and AD-Visuospatial corresponding to 

p_min = 5, the dataset used in linear mixed effects modeling for each ROI consisted of data from 
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the timepoints -48, -24, -18, -12, -6, 0, 3, 6, 12, 24  for AD-Language and data from timepoints 

for -60, -48, -42, -36, -30, -24, -21, -18, -12, -6, 0, 3, 6, 12, 24 for  AD-Memory. Tabulations of 

which timepoints got included in the datasets corresponding to different p_min values are shown 

in Figures 6.1a-e. 

 

Figure 6.1a: A tabulation of timepoints that got included in datasets corresponding to p_min = 1, 

i.e. all timepoints with at least one individual’s data for a given AD subgroup. 
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Figure 6.1b: A tabulation of timepoints that got included in datasets corresponding to p_min = 2, 

i.e. all timepoints with at least two individuals’ data for a given AD subgroup. 
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Figure 6.1c: A tabulation of timepoints that got included in datasets corresponding to p_min = 3, 

i.e. all timepoints with at least three individuals’ data for a given AD subgroup. 
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Figure 6.1d: A tabulation of timepoints that got included in datasets corresponding to p_min = 4, 

i.e. all timepoints with at least four individuals’ data for a given AD subgroup. 
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Figure 6.1e: A tabulation of timepoints that got included in datasets corresponding to p_min = 5, 

i.e. all timepoints with at least five individuals’ data for a given AD subgroup. 

 

The goal in carrying out the LME analysis on the different subsets of data based on p_min was to 

get a sense of the robustness of the models. For example, how much do the coefficients of 

interest (𝛽2, difference in ROI volumes at t=0 for the two AD subgroups and  𝛽10, which 

represents the difference in rate of change of ROI volume for the two AD subgroups) change as 

different datasets corresponding to different p_min values are analyzed. On one hand, the greater 

the value of p_min, we expect the LME results to be most reliable. However, increasing the 

value of p_min comes at the expense of losing some data points. Hence, in increasing p_min, 
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there is a trade-off between improving the reliability of LME model results and potentially losing 

valuable information through exclusion of data points. The decision to limit my analyses to an 

upper bound of p_min = 5 is subjective; it is guided by the choice of not wanting to lose too 

many data points. This analysis does not establish which p_min dataset is the most favorable to 

analyze using LME models for the current dataset. Rather, it gives a sense of the sensitivity of 

LME model results for the current longitudinal dataset to the inclusion/exclusion of time points 

with a number of individuals below a threshold. 

The following LME model was implemented for each ROI on each dataset from two given AD 

subgroups corresponding to different p_min values. Individual effects (each individual’s 

deviations from the population dynamics) were represented in the model by specification of the 

intercept and rate of change of ROI volume with respect to time as random effects. In equation 

6.2, 𝛽 coefficients represent the fixed effects aspects of the variables, and they provide 

information about the population level dynamics. The b coefficients represent random effects for 

the chosen variables, based on data from each individual i and timepoint j. 𝑒𝑖𝑗  is the 

measurement error for individual i at time j which for the current data we specified to be 0. To 

make it easier to parse and bring focus to the coefficients of interest, equation 6.2 can be re-

expressed as below where each individual i’s ROI volume at time j, 𝑌𝑖𝑗 , is given by: 

𝑌𝑖𝑗  =  (𝛽0 +  𝑏0𝑖) +  (𝛽1 +  𝑏1𝑖)𝑡𝑖𝑗 + 𝛽2AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 + 𝑜𝑡ℎ𝑒𝑟 𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑡𝑒𝑟𝑚𝑠 +

 𝛽10AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 ∗ 𝑡𝑖𝑗 +  𝑒𝑖𝑗                     (6.7) 

where 𝑜𝑡ℎ𝑒𝑟 𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑡𝑒𝑟𝑚𝑠 = 𝛽3  𝑓𝑖𝑒𝑙𝑑_𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ +  𝛽4 𝑔𝑒𝑛𝑑𝑒𝑟 +  𝛽5age +

 𝛽6yrs_Educat + 𝛽7APOEgroup + 𝛽8ICV_t0_Scaled + 𝛽9TotalGrayVol_ICV_ratio_t0 as discussed in 

the previous section.  
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The population level trajectory for an ROI volume based on the data from two AD subgroups is 

given by  

𝑅𝑂𝐼_𝑣𝑜𝑙(𝑡) = 𝛽0 + 𝛽1𝑡 + 𝛽2AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 + 𝑜𝑡ℎ𝑒𝑟 𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑡𝑒𝑟𝑚𝑠 +  𝛽10AD𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 ∗ 𝑡 

            (6.8) 

For each of the 70 ROIs, data from the following pairs of AD subgroups was considered 

separately: a. AD-Language and AD-Memory, b. AD-Memory and AD-Visuospatial and c. AD-

Language and AD-Visuospatial. Within each of these, five variations of datasets given by 

different p_min values were analyzed separately using an LME model for a given ROI. As noted 

in the previous chapter, the AD-Executive group was excluded from the LME modeling analysis 

due to small sample size. 

Hypothesis testing for the significance of the 𝛽2 and 𝛽10 coefficients for each ROI was 

considered, with the null hypothesis was that the coefficient of interest is 0. If the p-value was 

below a threshold, the null hypothesis could be rejected. Determining this threshold required 

correction for multiple hypotheses testing since there are 70 ROI models for a given pair of AD 

subgroups being compared, and five variations of datasets used for a given comparison, which 

results in a total of 350 models whose p-values are being analyzed. A Holm-Bonferroni 

correction for a family wise error rate of 0.05 yields a threshold of 1.43 X 10-4 for the smallest p-

value which means that the smallest p-value in the results should be less than this threshold for it 

to be significant. The Holm-Bonferroni corrected thresholds for the next four p-values in 

increasing order are 1.43 X 10-4, 1.44 X 10-4, 1.44 X 10-4 and 1.45 X 10-4. Not only are these 

thresholds very restrictive (compared to observed p-values presented in the next section) for 

finding ROIs that might be important in AD subgroup differences, using p-values to assess how 

important an ROI is may not be suitable when some of the datasets might only have a few data 
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points for some time points and when the overall sample sizes of AD subgroups are not that 

large. In such cases, the p-values can differ quite a bit depending on which data points got 

included in the analysis or not.  

In the analysis presented below, I did not focus on the significance of p-values but rather looked 

at the relative magnitudes of coefficients (normalized by ROI size) across the different ROI 

models to obtain a list of ROIs that might be most important to pay attention to for AD subgroup 

differences. The small sample sizes of the AD subgroups, imbalanced class sizes and the 

different number of data points at different time points could lead to p-values that are sensitive to 

individual data points as noted earlier. Hence, given the current dataset, I chose not to focus on 

p-values. Additional data may be needed to carry out a reliable analysis based on p-values, which 

is forecasted as future work. P-values are still presented in results but they are not the focus of 

prioritizing the ROIs for subgroup differences. 

For each pair of AD subgroups analyzed using LME models, I analyzed the coefficient values for 

𝛽2 and  𝛽10 in datasets corresponding to each p_min value. For each of these coefficients, I made 

a list of the top 5 ROIs from the analysis for each p_min dataset based on the magnitude of 

coefficients. It is important to note that the ROIs in different LME models were of different 

sizes. Hence, for the purposes of comparing the coefficients from different ROI LME models, 

instead of directly using the magnitudes of coefficients (𝛽10 units: mm3/year and 𝛽2 units: mm3) 

to rank the ROIs, I normalized the coefficients by a measure that gives a rough sense of ROI size 

so that the coefficients are represented relative to each ROI’s size. As a rough estimate of this 

measure for each ROI, I used the average ROI volume calculated from all four AD subgroups 

from the time of AD diagnosis; I used the cross-sectional dataset for this calculation. Hence, for 

each ROI model, I calculated from 𝛽2 the difference in ROI volume at t=0 for two AD subgroups 
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as a percentage of the average ROI volume (
𝛽2

𝐴𝑣ⅇ𝑟𝑎𝑔ⅇ 𝑅𝑂𝐼 𝑣𝑜𝑙𝑢𝑚ⅇ
∗ 100% ) and from 𝛽10 the 

difference in rate of change of ROI volume between two AD subgroups as a percentage of the 

average ROI volume (
𝛽10

𝐴𝑣ⅇ𝑟𝑎𝑔ⅇ 𝑅𝑂𝐼 𝑣𝑜𝑙𝑢𝑚ⅇ
∗ 100% ). Based on these measures, I obtained two lists 

of ROIs that appear in the top 5 ROIs for different p_min datasets, one based on the normalized 

𝛽2 coefficient (difference in ROI volume at t=0 as % of average ROI volume) and the other 

based on the normalized 𝛽10 coefficient (difference in rates of change of ROI volume as % of 

average ROI volume). I then analyzed how the coefficients for each of these ROIs differ over 

analyses of different subsets of data corresponding to p_min values. To assess whether the 

differences in rate of change of ROI volume for two AD subgroups as given by the normalized 

𝛽10 coefficient are substantial for a given ROI, I compared the differences in rate of change to 

the rate of change of each the two AD subgroups which are given by 
𝛽1

𝐴𝑣ⅇ𝑟𝑎𝑔ⅇ 𝑅𝑂𝐼 𝑣𝑜𝑙𝑢𝑚ⅇ
∗ 100% 

for the reference group and 
𝛽1+ 𝛽10

𝐴𝑣ⅇ𝑟𝑎𝑔ⅇ 𝑅𝑂𝐼 𝑣𝑜𝑙𝑢𝑚ⅇ
∗ 100% for the targe group. This process was 

carried out for each of the three comparisons: AD-Language vs. AD-Memory, AD-Memory vs. 

AD-Visuospatial and AD-Language vs. AD-Visuospatial. The decision to focus on the top 5 

ROIs was subjective and there is no absolute threshold of how many top ROIs should be 

considered. The goal was to obtain a handful of ROIs that show greater differences across pairs 

of AD subgroups compared to other ROIs. The goal of my work is hypothesis generation for 

which ROIs might be important to look at in future neuropathological studies for understanding 

AD subgroup differences. As a starting point, I’ve chosen to focus on five ROIs for each p_min 

dataset and that is the focus of the results presented in my dissertation. However, in future, the 

current analysis can easily be extended to report a greater number of ROIs in the hypothesis 

generation. The appropriate number of ROIs to be reported as important for looking at AD 
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subgroup differences would be best determined by consulting neuropathologists who may be 

using the results from this hypothesis generation work. 

6.3 Results and Discussion 

The majority of the LME models for 70 ROIs across the different p_min datasets converged, i.e. 

a solution could be found for the coefficients in the model based on the Bernal et al. 

implementation in Matlab. A few exceptions were the models for the following ROIs and 

datasets. For models based on data from AD-Language and AD-Memory individuals, the model 

for right caudal anterior cingulate gyrus volume did not converge for the p_min = 5 case. For 

models based on data from the AD-Language and AD-Visuospatial groups, the following models 

did not converge: right insula (for p_min = 0, 1, 2, 3, 4), left insula (for p_min = 2, 5), right 

medial orbitofrontal gyrus (for p_min = 2, 4) and left temporal pole (for p_min =5). Only LME 

models that converged were used for determining the top ROIs that show the most differences 

across pairs of AD subgroups in longitudinal data. 

6.3.1. AD-Language vs. AD-Memory 

For AD-Language vs. AD-Memory, the top 5 ROIs based on the magnitude of differences in 

rates of change of volume between the two AD subgroups, normalized by ROI size, for different 

subsets of data are shown in Table 6.1. Based on these rankings, I focused on the following ROIs 

for subsequent analysis of rate of change differences between the two subgroups: left posterior 

cingulate gyrus, left entorhinal cortex, right entorhinal cortex, left caudal anterior 

cingulate gyrus, right caudal middle frontal gyrus, left parahippocampal gyrus, right 

parahippocampal gyrus, and right frontal pole. Table 6.2 shows the top 5 ROIs from the 

LME analyses of the different p_min datasets based on the magnitude of the differences in ROI 

volumes between the two AD subgroups at t=0, normalized by ROI size. These ROIs were: right 
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entorhinal cortex, left temporal pole gyrus, right hippocampus, left inferior temporal gyrus 

and left middle temporal gyrus. In the LME models for ROI volumes based on AD-Language 

and AD-Memory data, AD-Language was coded as 0 (the reference group) and AD-Memory was 

coded as 1 (the target group). Below, I discuss the results from LME models for the ROIs 

mentioned above, first for the rate of change differences between the subgroups and then for the 

differences in ROI volumes at t=0.  
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ROI rankings for AD-Language vs. AD-Memory based on differences in rate of change 

of volume 

Dataset 

(p_min) 

Top 5 ROIs based on β10 coefficient (normalized by average ROI 

volume in AD) 

1 1. Left posterior cingulate, 2. Left entorhinal, 3. Right entorhinal, 4. Left 

parahippocampal and right caudal middle frontal, 5. Left caudal anterior 

cingulate 

2 1. Left posterior cingulate, 2. Left entorhinal, 3. Left caudal anterior 

cingulate, 4. Right entorhinal, 5. Right caudal middle frontal 

3 1. Left posterior cingulate, 2. Left entorhinal, 3. Right entorhinal, 4. Left 

caudal anterior cingulate, 5. Right caudal middle frontal 

4 1. Left posterior cingulate, 2. Left entorhinal, 3. Right entorhinal, 4. Left 

caudal anterior cingulate, 5. Right caudal middle frontal 

5 1. Left entorhinal, 2. Left posterior cingulate, 3. Left caudal anterior 

cingulate, 4. Right frontal pole, 5. Right parahippocampal 

Table 6.1: Top 5 ROIs based on differences in rates of change of ROI volume (given by β10) 

between AD-Language and AD-Memory groups, from linear mixed effects models on different 

subsets of data. 
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ROI rankings for AD-Language vs. AD-Memory based on differences in longitudinal 

volume 

Dataset 

(p_min) 

Top 5 ROIs based on β2 coefficient (normalized by average ROI volume 

in AD) 

1 1. Right entorhinal, 2. Right hippocampus, 3. Left temporal pole, 4. Left 

inferior temporal, 5. Left middle temporal 

2, 3, 4, 5 1. Right entorhinal, 2. Left temporal pole, 3. Right hippocampus, 4. Left 

inferior temporal, 5. Left middle temporal 

Table 6.2: Top 5 ROIs based on differences in rates of change of ROI volume (given by β2) 

between AD-Language and AD-Memory groups, from linear mixed effects models on different 

subsets of data. 

6.3.1.1 Differences in rates of change of ROI volume 

Although the ranking order of the ROIs based on the normalized 𝛽10 coefficients differed 

slightly for datasets corresponding to different p_min values, there was a substantial overlap in 

the ROIs that appeared in the top five ROIs throughout all p_min datasets’ analyses. For each of 

these regions, I looked at how the normalized  𝛽10 coefficient and corresponding p-values 

differed for different subsets of data corresponding to different values of p_min. As noted earlier, 

the p-values were not used to make any assessments about how important an ROI is for AD 

subgroup differences. They are presented here for completeness and to demonstrate that the p-

values from the current analysis are not in the range of values needed for significance as was 

determined by Holm-Bonferroni correction in the previous section. The results are organized in 

the following way: first, I’ve presented Tables 6.3a-6.3e (one table for each p_min dataset) 

summarizing the differences in rate of change of ROI volume between the two AD subgroups as 
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a percentage of average ROI volume as well as the rate of change of ROI volume for each of the 

subgroups, also as a percentage of average ROI volume. Next, I’ve presented figures that 

summarize the results over all p_min datasets, including plots that show the average differences 

in rates of change of ROI volume across all p_min datasets and the ROIs of importance (Figure 

6.1) as well as how substantial these differences between the AD subgroups are relative to the 

rates of change for each of the two subgroups and which subgroup has the greater rate of decline 

for the ROIs of importance (Figure 6.2). P-values associated with the 𝛽10 coefficient across the 

different p_min datasets for each of the selected ROIs are shown in Figure 6.3. All rates in the 

figures are shown as % of average ROI volume which was calculated from the cross-sectional 

dataset for all 4 AD subgroups. As discussed in section 6.2, the average ROI volume is used as a 

rough estimate for ROI size, and rates were normalized by the average ROI volume for 

comparing values across ROIs of different sizes. 

As per the coding of the AD subgroups in the models, a positive  𝛽10 coefficient corresponds to a 

more positive rate of change in the AD-Memory group or equivalently a slower decline in ROI 

volume in the AD-Memory group compared to the AD-Language group. As can be seen in 

Figure 6.1 and Tables 6.3a-6.3e, the estimate of 𝛽10 from the LME models differs for the 

different p_min datasets, as one may expect. For some ROIs, the variation in 𝛽10 across the five 

p_min datasets is greater than the others. For example, the left entorhinal cortex stands out as 

having a large error bar around the mean difference in rates of change of ROI volume between 

the two AD subgroups, especially since the estimated difference for the p_min =5 dataset is 

substantially different than the estimated values for the other p_min datasets. However, 

qualitatively, it seems that for most ROIs, the 𝛽10 estimates do not differ in a huge way for 

different p_min datasets. A formal quantitative analysis is needed as future work to assess 
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whether the differences observed in the 𝛽10 estimates from models for a given ROI for different 

p_min datasets are small or large and to determine which p_min dataset is most reliable for 

reporting results. For the current analysis, the interpretations I make below for the chosen ROIs 

for AD-Language vs. AD-Memory differences in rates of change of ROI volume are based on 

the mean of the 𝛽10 estimates across the five p_min datasets.  

As can be seen in Figure 6.2, of the ROIs chosen to be most important for rate of change 

differences between AD-Language and AD-Memory groups, left posterior cingulate gyrus, left 

entorhinal cortex, right entorhinal cortex, and left caudal anterior cingulate gyrus have 

greater rates of decline of ROI volume in the AD-Language group, while right caudal 

middle frontal gyrus, left parahippocampal gyrus and right frontal pole have greater rates 

of decline in the AD-Memory group. Figure 6.2 also illustrates the relative difference in rates 

between the groups for the different ROIs. Qualitatively speaking, all ROIs presented in Figure 

6.2 show substantial differences in the rates between the two subgroups when compared to the 

rate for each subgroup. On average, based on the results from different p_min datasets, left 

caudal anterior cingulate gyrus, left posterior cingulate gyrus, right frontal pole and right 

caudal middle frontal gyrus have the most substantial differences relative to the rates of the 

two groups. Note that while the left entorhinal cortex has the fastest declining rates for both 

groups (-6.3% for AD-Language and -4.8% for the AD-Memory group) based on the LME 

models, the greatest difference in rates of change relative to the rates of each of the AD 

subgroups are for the left posterior cingulate gyrus (-2.7% for the AD-Language group and 1.2% 

for the AD-Memory group.) A difference of 1.5% in the rates of the two groups for the left 

posterior cingulate gyrus is more substantial than a difference of 1.5% in the two groups for the 

left entorhinal cortex. 
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Tables 6.3a – 6.3e: The ROIs shown here are a collective list based on the top 5 ROIs for AD-Language 
vs. AD-Memory from the LME analysis of each p_min dataset based on the magnitude of the β10 
coefficient, normalized by average ROI volume (‘Difference in rates as % of Avg ROI volume’ column in 

the table). Individuals with AD* indicated in the second column of each table are individuals from the 4 
single domain groups: AD-Executive, AD-Language, AD-Memory and AD-Visuospatial. Positive 
differences in rates correspond to a greater rate of decline of ROI volume in the AD-Language group 
compared to the AD-Memory group. Negative differences in rates of change correspond to a greater rate 
of decline of ROI volume in the AD-Memory group. 

AD-Language vs. AD-Memory 
p_min = 1 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Difference 
in rates as 
% of Avg 
ROI 
volume 

Rate of 
change 
for the 
AD-
Language 
group, as 
% of Avg 
ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Left posterior cingulate gyrus 2532.1 34.6 1.4 -2.6 -1.2 
Left entorhinal cortex 1521.9 17.7 1.2 -5.9 -4.7 
Right entorhinal cortex 1508.8 17.2 1.1 -5.2 -4.0 
Left caudal anterior cingulate 
gyrus 1491.9 12.1 0.8 -1.4 -0.6 
Right caudal middle frontal gyrus 4886.0 -46.1 -0.9 -0.9 -1.8 
Left parahippocampal gyrus 1677.4 -15.8 -0.9 -1.9 -2.9 
Right parahippocampal gyrus 1596.6 9.4 0.6 -3.1 -2.5 
Right frontal pole 987.4 -6.0 -0.6 -0.6 -1.2 
      

Table 6.3a : Differences in rates of change of ROI volume between AD-Language and AD-Memory 
groups for selected ROIs of importance. ROIs in the top 5 rankings for p_min = 1 are highlighted in blue. 
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AD-Language vs. AD-Memory 
p_min = 2 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Difference 
in rates as 
% of Avg 
ROI 
volume 

Rate of 
change 
for the 
AD-
Language 
group, as 
% of Avg 
ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Left posterior cingulate gyrus 2532.1 39.9 1.6 -2.8 -1.2 
Left entorhinal cortex 1521.9 16.9 1.1 -5.8 -4.7 
Right entorhinal cortex 1508.8 15.9 1.1 -5.1 -4.0 
Left caudal anterior cingulate 
gyrus 1491.9 16.2 1.1 -1.7 -0.6 
Right caudal middle frontal gyrus 4886.0 -47.4 -1.0 -0.9 -1.9 
Left parahippocampal gyrus 1677.4 -12.5 -0.7 -2.1 -2.9 
Right parahippocampal gyrus 1596.6 11.0 0.7 -3.2 -2.5 
Right frontal pole 987.4 -4.3 -0.4 -0.8 -1.2 

Table 6.3b: Differences in rates of change of ROI volume between AD-Language and AD-Memory 
groups for selected ROIs of importance. The top 5 ROIs for p_min = 2 are highlighted in blue.  

 

AD-Language vs. AD-Memory 
p_min = 3 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Difference 
in rates as 
% of Avg 
ROI 
volume 

Rate of 
change 
for the 
AD-
Language 
group, as 
% of Avg 
ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Left posterior cingulate gyrus 2532.1 38.9 1.5 -2.7 -1.2 
Left entorhinal cortex 1521.9 21.4 1.4 -6.2 -4.8 
Right entorhinal cortex 1508.8 17.2 1.1 -5.2 -4.0 
Left caudal anterior cingulate 
gyrus 1491.9 15.3 1.0 -1.6 -0.6 
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Right caudal middle frontal gyrus 4886.0 -42.4 -0.9 -1.0 -1.9 
Left parahippocampal gyrus 1677.4 -12.9 -0.8 -2.2 -2.9 
Right parahippocampal gyrus 1596.6 12.1 0.8 -3.3 -2.5 
Right frontal pole 987.4 -5.7 -0.6 -0.6 -1.2 

Table 6.3c : Differences in rates of change of ROI volume between AD-Language and AD-Memory 
groups for selected ROIs of importance. The top 5 ROIs for p_min = 3 are highlighted in blue.  

 

AD-Language vs. AD-Memory 
p_min = 4 

 
 
 
 
 
 
 
 
 
ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

 
 
 
 
 
 
 
Difference in 
rates 
(mm^3/year) 

 
 
 
 
 
Difference 
in rates as 
% of Avg 
ROI 
volume 

 
Rate of 
change 
for the 
AD-
Language 
group, as 
% of Avg 
ROI 
volume 

 
Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Left posterior cingulate gyrus 2532.1 37.9 1.5 -2.7 -1.2 
Left entorhinal cortex 1521.9 20.5 1.3 -6.1 -4.8 
Right entorhinal cortex 1508.8 16.3 1.1 -5.1 -4.0 
Left caudal anterior cingulate 
gyrus 1491.9 14.7 1.0 -1.6 -0.6 
Right caudal middle frontal 
gyrus 4886.0 -41.6 -0.9 -1.0 -1.9 
Left parahippocampal gyrus 1677.4 -13.8 -0.8 -2.1 -2.9 
Right parahippocampal gyrus 1596.6 11.5 0.7 -3.2 -2.5 
Right frontal pole 987.4 -6.4 -0.6 -0.6 -1.2 

Table 6.3d : Differences in rates of change of ROI volume between AD-Language and AD-Memory 
groups for selected ROIs of importance. The top 5 ROIs for p_min = 4 are highlighted in blue.  
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AD-Language vs. AD-Memory 
p_min = 5 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Difference 
in rates as 
% of Avg 
ROI 
volume 

Rate of 
change 
for the 
AD-
Language 
group, as 
% of Avg 
ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Left posterior cingulate gyrus 2532.1 37.0 1.5 -2.7 -1.2 
Left entorhinal cortex 1521.9 37.3 2.4 -7.3 -4.8 
Right entorhinal cortex 1508.8 13.8 0.9 -4.9 -4.0 

Left caudal anterior cingulate 
gyrus 1491.9 17.9 1.2 -1.7 -0.5 

Right caudal middle frontal 
gyrus 4886.0 -30.9 -0.6 -1.2 -1.8 
Left parahippocampal gyrus 1677.4 -15.5 -0.9 -2.1 -3.0 
Right parahippocampal gyrus 1596.6 8.9 0.6 -3.0 -2.5 
Right frontal pole 987.4 -9.5 -1.0 -0.3 -1.3 

Table 6.3e : Differences in rates of change of ROI volume between AD-Language and AD-Memory 
groups for selected ROIs of importance. The top 5 ROIs for p_min = 5 are highlighted in blue.  
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Figure 6.1: Results from 𝛽10 coefficients in linear mixed effects models for different p_min datasets: Difference in rates of change of 
ROI volume, as a % of average ROI volume. The mean of the differences across the different p_min datasets is shown in black, along 
with error bars (based on standard error of the mean). 

 



163 
 

 

Figure 6.2: A comparison of the rates of change of ROI volume for the AD-Language and AD-Memory groups. The height of the bars 
represents the mean rate of change for a given group from the analyses of the different p_min (1, 2, 3, 4, 5) datasets. Mean values are 
also plotted as points with error bars based on standard error of the mean from the five p_min datasets. A more negative rate indicates 
a faster decline of ROI volume. This figure delivers the following key points: 1. Which AD subgroup has a faster rate of decline for 
the different ROIs, 2. The absolute difference in rates between the groups, indicated by the non-overlapping part of the bars for the 
two subgroups and 3. How much this difference is in proportion to the rate of change of each of the subgroups.  
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Figure 6.3: p-values associated with each estimate of the difference in rates between AD-Language and AD-Memory groups, from 
linear mixed effects modeling analysis of different p_min datasets. 
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6.3.1.2 Differences in average ROI volume at the time of AD diagnosis 

Although the intent in modeling ROI volume using LME modeling on longitudinal data is to 

understand the differences in average dynamics over time for the respective AD subgroups being 

compared, it can also be used to learn about the AD subgroup differences in ROI volume at the 

time of AD diagnosis. As discussed in section 6.2, this information can be interpreted from the β2 

coefficient in each ROI volume model. Note that the although the interpretation of β2 is the 

average difference in ROI volumes at t=0 between the two AD subgroups, it is an estimate based 

on longitudinal data and not just data at t=0 (time of AD diagnosis). This is a difference between 

the results from cross-sectional data where the differences between AD subgroups were based 

strictly on data from the time of AD diagnosis and the longitudinal data analysis results referring 

to t=0.  

Results based on the β2 coefficient are summarized in Tables 6.4a-6.4e for the ROIs that were 

determined to have the largest β2 values relative to ROI size (average ROI volume). Results from 

all p_min datasets were in close agreement in terms of which ROIs show the greatest differences 

in ROI volumes at t=0 between the AD-Language and AD-Memory. The greatest difference as 

estimated by the LME models was for the right entorhinal cortex in all p_min datasets. For the 

case of p_min =1, right hippocampus showed the next greatest difference, while for p_min = 2, 

3, 4 and 5, left temporal pole showed the next greatest difference. For all p_min datasets, left 

inferior temporal gyrus and left middle temporal gyrus were in 4th and 5th rank respectively for 

the differences in ROI volume at t=0 between the two AD subgroups.  

LME models for all p-min datasets showed that right entorhinal cortex and right 

hippocampus have a negative β2 coefficient, hence smaller volume on average in the AD-

Memory group compared to the AD-Language group. Left temporal pole, left inferior 
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temporal gyrus and left middle temporal gyrus had a positive β2 coefficient which indicates 

that these ROIs had a smaller volume on average in the AD-Language group compared to the 

AD-Memory group. It is worth noting that the right entorhinal cortex and the right hippocampus 

also appeared as the top two ROIs in variable importance results from cross-sectional data 

analysis for AD-Language vs. AD-Memory using random forest. Violin plot distributions of 

these two ROIs in cross-sectional data analysis had shown that the AD-Memory group has 

smaller volumes in these ROIs. This is consistent with the finding above based on the 

interpretation of the sign of the β2 coefficients for these ROIs.  

Note that p-values for the differences for the noted ROIs at t=0 are smaller than the p-values seen 

in the case of the analysis of differences in rates of change. But they are still above the threshold 

determined by the Holm-Bonferroni correction for multiple hypotheses testing. The right 

hippocampus, however, has p-values on the order of 10-4 across all p_min datasets, which is on 

the same order as the Holm-Bonferroni corrected threshold for the top-ranking p-values. This 

could suggest that the right hippocampus is indeed a very important ROI to be considered for 

AD-Language vs. AD-Memory differences in ROI volume at the time of AD diagnosis, as it has 

a fairly small p-value associated with the differences even with the current small sample sizes.  

Of the top ROIs for differences between AD-Language and AD-Memory in β2 (this subsection) 

and β10 (section 6.3.1.1), the right entorhinal cortex is the only region that appeared in both lists. 

It is interesting to note that as per the LME models, while the right entorhinal cortex had a faster 

decline over time in the AD-Language group, it had a lower volume in the AD-Memory group at 

t=0.  

The variation in differences of ROI volume at t=0 for the two subgroups across the different 

p_min datasets are summarized in Table 6.5. 
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Tables 6.4a – 6.4e: The ROIs shown here are a collective list based on the top 5 ROIs for AD-
Language vs. AD-Memory from the LME analysis of each p_min dataset based on the 
magnitude of the β2 coefficient, normalized by average ROI volume (‘Difference in rates as % of 
Avg ROI volume’ column in the table). Individuals with AD* indicated in the second column of 
each table are individuals from the 4 single domain groups: AD-Executive, AD-Language, AD-
Memory and AD-Visuospatial ROIs with a positive β2 (greater volume in the AD-Memory group 
at t=0) are shown in pink while ROIs with a negative β2 (smaller volume in the AD-Memory 
group at t=0) are shown in green. 

 

AD-Language vs. AD-Memory 
p_min = 1 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes at 
t=0, as % 
of average 
ROI 
volume  

p-value 
β_2   

Right entorhinal cortex 1508.8 -129.0 -8.5 7.0E-02 
Left temporal pole 2053.0 164.2 8.0 1.5E-02 
Right hippocampus 2982.8 -244.7 -8.2 2.0E-04 
Left inferior temporal gyrus 8517.7 575.5 6.8 7.5E-03 
Left middle temporal gyrus 8130.4 547.0 6.7 3.0E-03 

Table 6.4a: Differences in ROI volume at t=0 between AD-Language and AD-Memory groups for 
selected ROIs of importance, for the dataset with p_min = 1. See note above “Tables 6.4a-e” for color 
coding. 

 

AD-Language vs. AD-Memory 
p_min = 2 

ROI 

Estimated 
average ROI 
volume for 
individuals 
with AD* at 
time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes at 
t=0, as % 
of average 
ROI 
volume  

p-value 
β_2   

Right entorhinal cortex 1508.8 -129.2 -8.6 7.0E-02 
Left temporal pole 2053.0 170.9 8.3 1.1E-02 
Right hippocampus 2982.8 -243.3 -8.2 2.1E-04 
Left inferior temporal gyrus 8517.7 569.6 6.7 8.2E-03 
Left middle temporal gyrus 8130.4 541.8 6.7 3.4E-03 
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Table 6.4b: Differences in ROI volume at t=0 between AD-Language and AD-Memory groups for 
selected ROIs of importance, for the dataset with p_min = 2. See note above “Tables 6.4a-e” for color 

coding. 

 

AD-Language vs. AD-Memory 
p_min = 3 

ROI 

Estimated 
average ROI 
volume for 
individuals 
with AD* at 
time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes at 
t=0, as % of 
average 
ROI 
volume  p-value β_2   

Right entorhinal cortex 1508.8 -130.1 -8.6 6.8E-02 
Left temporal pole 2053.0 169.4 8.3 1.1E-02 
Right hippocampus 2982.8 -241.1 -8.1 2.4E-04 
Left inferior temporal gyrus 8517.7 569.2 6.7 8.2E-03 
Left middle temporal gyrus 8130.4 543.2 6.7 3.3E-03 

Table 6.4c: Differences in ROI volume at t=0 between AD-Language and AD-Memory groups for 
selected ROIs of importance, for the dataset with p_min = 3. See note above “Tables 6.4a-e” for color 

coding. 

 

AD-Language vs. AD-Memory 
p_min = 4 

ROI 

Estimated 
average ROI 
volume for 
individuals 
with AD* at 
time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes at 
t=0, as % of 
average 
ROI 
volume  p-value β_2   

Right entorhinal cortex 1508.8 -129.8 -8.6 6.9E-02 
Left temporal pole 2053.0 169.5 8.3 1.1E-02 
Right hippocampus 2982.8 -240.6 -8.1 2.5E-04 
Left inferior temporal gyrus 8517.7 569.0 6.7 8.3E-03 
Left middle temporal gyrus 8130.4 543.0 6.7 3.2E-03 

Table 6.4d: Differences in ROI volume at t=0 between AD-Language and AD-Memory groups for 
selected ROIs of importance, for the dataset with p_min = 4. See note above “Tables 6.4a-e” for color 

coding. 
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AD-Language vs. AD-Memory 
p_min = 5 

ROI 

Estimated 
average ROI 
volume for 
individuals 
with AD* at 
time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes at 
t=0, as % 
of average 
ROI 
volume  p-value β_2   

Right entorhinal cortex 1508.8 -129.4 -8.6 7.0E-02 
Left temporal pole 2053.0 170.3 8.3 1.1E-02 
Right hippocampus 2982.8 -241.2 -8.1 2.4E-04 
Left inferior temporal gyrus 8517.7 569.0 6.7 8.2E-03 
Left middle temporal gyrus 8130.4 540.9 6.7 3.4E-03 

Table 6.4e: Differences in ROI volume at t=0 between AD-Language and AD-Memory groups for 
selected ROIs of importance, for the dataset with p_min = 5. See note above “Tables 6.4a-e” for color 

coding. 

 

AD-Language vs. AD-Memory  

ROI 

Mean difference in ROI 
vol at t=0 (across 
different p_min 
datasets), as % of 
average ROI volume  Std. Error of mean 

Right entorhinal cortex -8.58 0.01 
Left temporal pole 8.23 0.06 
Right hippocampus -8.12 0.03 
Left inferior temporal gyrus 6.70 0.01 
Left middle temporal gyrus 6.68 0.01 

Table 6.5:  Variation in the difference in ROI volume at t=0 across different p_min datasets for AD-
Language vs. AD-Memory analysis. Mean and standard error of the mean are shown for each ROI.
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The p-values for 𝛽2 seem to differ less across the different p_min datasets’ LME models 

compared to the p-values for 𝛽10 for the ROIs that were determined to be important in each case. 

This may suggest that the 𝛽2 estimates are more stable than the 𝛽10 estimates across different 

p_min cases. Additionally, a larger number of ROIs in the 𝛽2 based ROI importance list have 

smaller p-values compared to the 𝛽10 ROI importance list. Although current sample size is not 

sufficient to make conclusive statements based on p-value comparisons, one may expect that the 

differences in ROI volumes between the AD subgroups at t=0 may be more significant than the 

differences in rates of change of ROI volume between the groups. 

6.3.2 AD-Memory vs. AD-Visuospatial 

In the next comparison considered through LME models, AD-Memory vs. AD-Visuospatial, the 

following ROIs were in the top five ROIs for different p_min datasets for the analysis of rate of 

change difference between the AD subgroups: left temporal pole, right temporal pole, left 

entorhinal cortex, right entorhinal cortex, left rostral anterior cingulate gyrus, left frontal 

pole and left parahippocampal gyrus. These rankings were based on magnitudes of normalized 

𝛽10 coefficients (difference in rate of change of ROI volume as a percentage of average ROI 

volume) from all 70 ROI LME models. The rankings of the ROIs for each of the p_min datasets 

is shown in Table 6.6. The top five ROIs corresponding to the highest magnitudes of 𝛽2 relative 

to the respective average ROI volumes were left entorhinal cortex, right entorhinal cortex, 

left parahippocampal gyrus, left temporal pole and left hippocampus across all p_min 

datasets. The details of the results based on the 𝛽10 and 𝛽2 coefficients are discussed in the next 

two subsections respectively.  
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Dataset (p_min) Top 5 ROIs based on β10 coefficient (normalized by average ROI volume in 
AD) 

1 1. Left temporal pole, 2. Left entorhinal, 3. Right temporal pole, 4. Right 
entorhinal, 5. Left rostral anterior cingulate 

2 1. Left temporal pole, 2. Right temporal pole, 3. Left entorhinal, 4. Right 
entorhinal, 5. Left Rostral anterior cingulate 

3 1. Right temporal pole, 2. Left temporal pole, 3. Left entorhinal, 4. Right 
entorhinal, 5. Left frontal pole 

4 1. Right entorhinal, 2. Left temporal pole, 3. Left entorhinal, 4. Right temporal, 5. 
Left parahippocampal 

5 1. Left temporal, 2. Right entorhinal, 3. Right temporal, 4. Left entorhinal, 5. Left 
parahippocampal 

Table 6.6: Top 5 ROIs based on differences in rates of change of ROI volume (given by β10) between the 
AD-Memory and AD-Visuospatial groups. 

 

ROI rankings for AD-Memory vs. AD-Visuospatial based on differences in longitudinal volumes 
Dataset (p_min) Top 5 ROIs based on β2 coefficient (normalized by average ROI volume in 

AD) 
1, 2, 3, 4, 5 1. Left entorhinal, 2. Right entorhinal, 3. Left parahippocampal, 4. Left temporal 

pole, 5. Left hippocampus 
Table 6.7: Top 5 ROIs based on differences in longitudinal volumes (given by β2) between the AD-
Memory and AD-Visuospatial groups. 

 

6.3.2.1 Differences in rates of change of ROI volume 

The datasets corresponding to p_min = 1, 2 and 3 had the same ROIs in the list of top 5 ROIs 

based on 𝛽10. For datasets corresponding to p_min = 4 and 5, the list of top 5 ROIs was different 

by one ROI compared to the list for p_min =1, 2 and 3. Overall, there was a great overlap in the 

number of ROIs that appeared as the top five ROIs from the analyses based on different datasets 

corresponding to different p_min values. Tables 6.8a-e and Figures 6.4-6.5 show how the 

differences in the rate of change of ROI volume differed across the analyses of the different 

datasets for AD-Memory vs. AD-Visuospatial for the seven chosen ROIs as per the list above. 

The p-values associated with the 𝛽10 coefficients are shown in Figure 6.6.  

In the LME models based on the data from the AD-Memory and AD-Visuospatial groups, the 

ADSubgroup variable was coded as 0 for AD-Memory and 1 for AD-Visuospatial. Hence, a 
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negative β10 coefficient here indicates a more negative rate of change (faster decline) of ROI 

volume in the AD-Visuospatial group compared to the AD-Memory group. Based on this, it can 

be seen from Tables 6.8a-e and Figures 6.5 and 6.6 that individuals in the AD-Visuospatial 

group, on average, decline faster in their volume for the left frontal pole compared to the 

AD-Memory group while for the other ROIs (right temporal pole, left entorhinal cortex, right 

entorhinal cortex, left rostral anterior cingulate gyrus, left frontal pole and left 

parahippocampal gyrus), individuals in the AD-Memory group decline faster on average. 

Figure 6.5 illustrates that left temporal pole, right temporal pole, left rostral anterior 

cingulate and left frontal pole have the most substantial differences in rates between the two 

AD subgroups, relative to the rates of each of the subgroups.  

From Figure 6.6, one can see that the p-values associated with the 𝛽10 coefficient from the LME 

models for a given ROI across the different p_min datasets are not always stable or small 

enough. This behavior of the p-values corroborates the decision to not rely on p-values for 

determining ROIs that show the most differences across the AD subgroups of interest. A more 

enriched dataset both in the number of individuals and the number of time points for each 

individual is needed to extend the current analysis to an inference based analysis using p-values.  
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Tables 6.8a – 6.8e: The ROIs shown here are a collective list based on the top 5 ROIs for AD-Memory vs. 
AD-Visuospatial from the LME analysis of each p_min dataset based on the magnitude of the β10 
coefficient, normalized by average ROI volume (‘Difference in rates as % of Avg ROI volume’ column in 

the table). Individuals with AD* indicated in the second column of each table are individuals from the 4 
single domain groups: AD-Executive, AD-Language, AD-Memory and AD-Visuospatial. Positive 
differences in rates correspond to a greater rate of decline of ROI volume in the AD-Memory group 
compared to the AD-Memory group. Negative differences in rates of change correspond to a greater rate 
of decline of ROI volume in the AD-Visuospatial group. 

 

AD-Memory vs. AD-Visuospatial 
p_min =1 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Difference 
in rates as 
% of Avg 
ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Rate of 
change for 
the AD-
Visuospati
al group, 
as % of 
Avg ROI 
volume 

Left temporal pole 2053.0 32.3 1.6 -2.7 -1.1 
Right temporal pole 2098.4 25.4 1.2 -2.7 -1.5 
Left entorhinal cortex 1521.9 20.0 1.3 -4.5 -3.2 
Right entorhinal cortex 1508.8 14.6 1.0 -4.0 -3.1 
Left rostral anterior cingulate gyrus 2249.1 18.1 0.8 -1.7 -0.9 
Left frontal pole 809.2 -5.2 -0.6 -0.8 -1.4 
Left parahippocampal gyrus 1677.4 12.8 0.8 -3.0 -2.2 

Table 6.8a: Differences in rates of change of ROI volume between AD-Memory and AD-Visuospatial 
groups for selected ROIs of importance.The top 5 ROIs for p_min = 1 are highlighted in blue. 
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AD-Memory vs. AD-Visuospatial 
p_min =2 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Differenc
e in rates 
as % of 
Avg ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Rate of 
change for 
the AD-
Visuospatia
l group, as 
% of Avg 
ROI 
volume 

Left temporal pole 2053.0 32.2 1.6 -2.7 -1.2 
Right temporal pole 2098.4 30.6 1.5 -2.7 -1.3 
Left entorhinal cortex 1521.9 18.9 1.2 -4.5 -3.3 
Right entorhinal cortex 1508.8 15.1 1.0 -4.0 -3.0 
Left rostral anterior cingulate gyrus 2249.1 18.6 0.8 -1.7 -0.8 
Left frontal pole 809.2 -5.2 -0.6 -0.8 -1.4 
Left parahippocampal gyrus 1677.4 11.2 0.7 -3.0 -2.3 

Table 6.8b: Differences in rates of change of ROI volume between AD-Memory and AD-Visuospatial 
groups for selected ROIs of importance. The top 5 ROIs for p_min = 2 are highlighted in blue. 

 

AD-Memory vs. AD-Visuospatial 
p_min =3 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Differenc
e in rates 
as % of 
Avg ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Rate of 
change for 
the AD-
Visuospatia
l group, as 
% of Avg 
ROI 
volume 

Left temporal pole 2053.0 26.2 1.3 -2.7 -1.5 
Right temporal pole 2098.4 29.6 1.4 -2.7 -1.3 
Left entorhinal cortex 1521.9 17.0 1.1 -4.6 -3.5 
Right entorhinal cortex 1508.8 16.4 1.1 -4.1 -3.0 
Left rostral anterior cingulate gyrus 2249.1 16.9 0.8 -1.7 -0.9 
Left frontal pole 809.2 -6.5 -0.8 -0.8 -1.6 
Left parahippocampal gyrus 1677.4 12.6 0.8 -3.0 -2.2 

Table 6.8c: Differences in rates of change of ROI volume between AD-Memory and AD-Visuospatial 
groups for selected ROIs of importance. The top 5 ROIs for p_min = 3 are highlighted in blue. 
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AD-Memory vs. AD-Visuospatial 
p_min = 4 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Differenc
e in rates 
as % of 
Avg ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Rate of 
change for 
the AD-
Visuospatia
l group, as 
% of Avg 
ROI 
volume 

Left temporal pole 2053.0 27.6 1.3 -2.8 -1.4 
Right temporal pole 2098.4 26.0 1.2 -2.7 -1.5 
Left entorhinal cortex 1521.9 19.5 1.3 -4.6 -3.4 
Right entorhinal cortex 1508.8 20.6 1.4 -4.1 -2.7 
Left rostral anterior cingulate gyrus 2249.1 16.5 0.7 -1.7 -0.9 
Left frontal pole 809.2 -6.2 -0.8 -0.8 -1.6 
Left parahippocampal gyrus 1677.4 14.9 0.9 -3.0 -2.1 

Table 6.8d: Differences in rates of change of ROI volume between AD-Memory and AD-Visuospatial 
groups for selected ROIs of importance. The top 5 ROIs for p_min = 4 are highlighted in blue. 

AD-Memory vs. AD-Visuospatial 
p_min = 5 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Differenc
e in rates 
as % of 
Avg ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Rate of 
change for 
the AD-
Visuospatia
l group, as 
% of Avg 
ROI 
volume 

Left temporal pole 2053.0 28.2 1.4 -2.9 -1.5 
Right temporal pole 2098.4 25.7 1.2 -2.7 -1.5 
Left entorhinal cortex 1521.9 18.3 1.2 -4.7 -3.5 
Right entorhinal cortex 1508.8 20.6 1.4 -4.0 -2.7 
Left rostral anterior cingulate gyrus 2249.1 13.1 0.6 -1.5 -0.9 
Left frontal pole 809.2 -5.9 -0.7 -0.9 -1.6 
Left parahippocampal gyrus 1677.4 14.4 0.9 -3.1 -2.2 

Table 6.8e: Differences in rates of change of ROI volume between AD-Memory and AD-Visuospatial 
groups for selected ROIs of importance. The top 5 ROIs for p_min = 5 are highlighted in blue. 
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Figure 6.4:  Results from 𝛽10 coefficients in linear mixed effects models for different p_min datasets: Difference in rates of change of ROI 
volume, as a % of average ROI volume. The mean of the differences across the different p_min datasets is shown in black, along with error bars 
(based on standard error of the mean).
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Figure 6.5: A comparison of the rates of change of ROI volume for the AD-Memory and AD-Visuospatial groups. The height of the bars 
represents the mean rate of change for a given group from the analyses of the different p_min (1, 2, 3, 4, 5) datasets. Mean values are also plotted 
as points with error bars based on standard error of the mean from the five p_min datasets. A more negative rate indicates a faster decline of ROI 
volume. This figure delivers the following key points: 1. Which AD subgroup has a faster rate of decline for the different ROIs, 2. The absolute 
difference in rates between the groups, indicated by the non-overlapping part of the bars for the two subgroups and 3. How much this difference is 
in proportion to the rate of change of each of the subgroups.
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Figure 6.6: P-values associated with each estimate of the difference in rates between AD-Memory and AD-Visuospatial groups, from 

linear mixed effects modeling analysis of different p_min datasets.
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6.3.2.2 Differences in average ROI volume at the time of AD diagnosis 

In terms of the β2 coefficient, which represents the average difference in ROI volumes between 

the two AD subgroups at t=0, the following ROIs appeared in the top 5 ROIs based on the results 

from datasets corresponding to different p_min values for AD-Memory vs. AD-Visuospatial: left 

entorhinal cortex, right entorhinal cortex, left parahippocampal gyrus, left temporal pole 

and left hippocampus. All five p_min datasets had the same order of ranking for these ROIs. 

The β2 coefficients from these ROI models were all positive (See Tables 6.9a-e), which indicates 

that on average, the AD-Visuospatial group had a greater volume in these ROIs at the time of 

diagnosis compared to the AD-Memory group. Equivalently, the LME models suggest that these 

ROIs had a smaller volume  at t= 0 (time of AD diagnosis) for the AD-Memory group 

compared to the AD-Visuospatial group. These results seem to be consistent with the known 

role of the entorhinal cortex, the hippocampus and the parahippocampal gyrus in the memory 

function (Izquierdo and Medina 1993), (Takehara-Nishiuchi 2014), (Parkin 1996) and (Ward et 

al. 2013). As seen in section 6.3.2.1, left entorhinal cortex, right entorhinal cortex, left 

parahippocampal gyrus and left temporal pole are ROIs that were also determined to be 

important based on differences in rate of change of ROI volume between the two AD subgroups. 

In cross-sectional data analysis for AD-Memory vs. AD-Visuospatial, left entorhinal cortex and 

right entorhinal cortex were the top two regions of importance while the left parahippocampal 

gyrus was the seventh most important region. Once again, it is assuring to see some overlap 

between ROIs that were determined to be important in cross-sectional data analysis and 

longitudinal data analysis carried out using independent methods.  

It is worth noting that the p-values associated with β2 for the left hippocampus volume model are 

on the order of 10-4 for all p_min datasets. The Holm-Bonferroni corrected threshold for 
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significance (with a familywise error rate of 0.05) was determined to be in the range of 1.43 X 

10-4 to 1.45 X 10-4 for the smallest five p-values, for a correction of 350 hypotheses tests (see 

section 6.2). While the p-values associated with β2 for the left hippocampus volume model are 

still above the Holm-Bonferroni corrected thresholds, they are close to the threshold. This 

indicates that the left hippocampus differences in ROI volume at t=0 across AD-Memory and 

AD-Visuospatial might be worth paying attention to as the β2 coefficient for this ROI’s model 

for each p_min dataset has a very small p-value despite the current small sample sizes. 

Tables 6.9a – 6.9e: The ROIs shown here are a collective list based on the top 5 ROIs for AD-Memory vs. 
AD-Visuospatial from the LME analysis of each p_min dataset based on the magnitude of the β2 
coefficient, normalized by average ROI volume (‘Difference in rates as % of Avg ROI volume’ column in 

the table). Individuals with AD* indicated in the second column of each table are individuals from the 4 
single domain groups: AD-Executive, AD-Language, AD-Memory and AD-Visuospatial. All ROIs 
shown in the tables had a positive β2 (smaller volume in the AD-Memory group at t=0). 

AD-Memory vs. AD-Visuospatial 
p_min = 1 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes 
at t=0, as 
% of 
average 
ROI 
volume  

p-value 
β_2   

Left entorhinal cortex 1521.9 161.6 10.6 2.4E-03 
Right entorhinal cortex 1508.8 120.3 8.0 3.0E-02 
Left parahippocampal gyrus 1677.4 103.1 6.1 2.0E-02 
Left temporal pole 2053.0 123.7 6.0 2.1E-02 
Left hippocampus 2854.8 163.9 5.7 5.7E-04 

Table 6.9a: Differences in ROI volume at t=0 between AD-Memory and AD-Visuospatial groups for 
selected ROIs of importance, for the dataset with p_min = 1. See note “Tables 6.9a-e” above for 

interpretation of the sign of β2. 
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AD-Memory vs. AD-Visuospatial 
p_min = 2 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes 
at t=0, as 
% of 
average 
ROI 
volume  

p-value 
β_2   

Left entorhinal cortex 1521.9 161.9 10.6 2.4E-03 
Right entorhinal cortex 1508.8 119.5 7.9 3.1E-02 
Left parahippocampal 
gyrus 1677.4 103.3 6.2 1.9E-02 
Left temporal pole 2053.0 124.1 6.0 2.1E-02 
Left hippocampus 2854.8 163.5 5.7 5.8E-04 

Table 6.9b: Differences in ROI volume at t=0 between AD-Memory and AD-Visuospatial groups for 
selected ROIs of importance, for the dataset with p_min = 2. See note “Tables 6.9a-e” above for 

interpretation of the sign of β2. 

 

AD-Memory vs. AD-Visuospatial 
p_min = 3 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes 
at t=0, as 
% of 
average 
ROI 
volume  

p-value 
β_2   

Left entorhinal cortex 1521.9 159.2 10.5 2.6E-03 
Right entorhinal cortex 1508.8 119.4 7.9 3.1E-02 
Left parahippocampal gyrus 1677.4 103.7 6.2 1.9E-02 
Left temporal pole 2053.0 120.1 5.8 2.5E-02 
Left hippocampus 2854.8 162.6 5.7 6.3E-04 

Table 6.9c: Differences in ROI volume at t=0 between AD-Memory and AD-Visuospatial groups for 
selected ROIs of importance, for the dataset with p_min = 3. See note “Tables 6.9a-e” above for 

interpretation of the sign of β2. 
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AD-Memory vs. AD-Visuospatial 
p_min = 4 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes 
at t=0, as 
% of 
average 
ROI 
volume  

p-value 
β_2   

Left entorhinal cortex 1521.9 160.4 10.5 2.5E-03 
Right entorhinal cortex 1508.8 118.8 7.9 3.2E-02 
Left parahippocampal 
gyrus 1677.4 104.5 6.2 1.8E-02 
Left temporal pole 2053.0 122.3 6.0 2.3E-02 
Left hippocampus 2854.8 162.8 5.7 6.1E-04 

Table 6.9d: Differences in ROI volume at t=0 between AD-Memory and AD-Visuospatial groups for 
selected ROIs of importance, for the dataset with p_min = 4. See note “Tables 6.9a-e” above for 

interpretation of the sign of β2. 
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AD-Memory vs. AD-Visuospatial 
p_min = 5 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes 
at t=0, as 
% of 
average 
ROI 
volume  

p-value 
β_2   

Left entorhinal cortex 1521.9 158.9 10.4 2.7E-03 
Right entorhinal cortex 1508.8 119.7 7.9 3.1E-02 
Left parahippocampal 
gyrus 1677.4 103.3 6.2 1.9E-02 
Left temporal pole 2053.0 121.2 5.9 2.4E-02 
Left hippocampus 2854.8 167.3 5.9 4.6E-04 

Table 6.9e: Differences in ROI volume at t=0 between AD-Memory and AD-Visuospatial groups for 
selected ROIs of importance, for the dataset with p_min = 5. See note “Tables 6.9a-e” above for 

interpretation of the sign of β2. 

 

AD-Memory vs. AD-Visuospatial 

ROI 

Mean difference in ROI 
vol at t=0 (across 
different p_min 
datasets), as % of 
average ROI volume  Std. Error of mean 

Left entorhinal cortex 10.54 0.04 
Right entorhinal cortex 7.92 0.02 
Left parahippocampal gyrus 6.17 0.01 
Left temporal pole 5.96 0.04 
Left hippocampus 5.75 0.03 

Table 6.10: Variation in the difference in ROI volume at t=0 across the five p_min datasets for AD-
Language vs. AD-Memory analysis. Mean and standard error of the mean are shown for each ROI. 

 

6.3.3 AD-Language vs. AD-Visuospatial 

The following ROIs were in the top 5 ROIs for the different p_min datasets, based on the 

normalized magnitude of the 𝛽10 coefficient from the LME models: left entorhinal cortex, right 
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entorhinal cortex, left temporal pole, right temporal pole gyrus, left caudal anterior 

cingulate gyrus, right inferior temporal gyrus and left rostral anterior cingulate gyrus. The 

top 5 ROIs in each p_min dataset’s analysis are shown in Table 6.11. Although the order of the 

rankings of ROIs changes slightly and the coefficient values also differ over the different p_min 

datasets, there is a great overlap of ROIs found in the top 5 ROIs across the different datasets, 

which provides more confidence in the collective list of ROIs above. In terms of volume 

differences at t=0 between the two AD subgroups, the following ROIs were determined to be 

important based on the 𝛽2 coefficient: right temporal pole, left entorhinal cortex, left inferior 

temporal gyrus, left middle temporal gyrus, and right inferior parietal lobule. These ROIs 

were the top 5 ROIs from the analyses of all datasets corresponding to the five p_min values; see 

Table 6.12. As it can be seen, the left entorhinal cortex is the common ROI that shows salient 

differences in both the rate of change of ROI volume between the two AD subgroups and ROI 

volume at t=0 across the two groups, according to the LME models. Details of the results based 

on 𝛽10 and 𝛽2 coefficients are discussed in the next two subsection respectively. 

ROI rankings for AD-Language vs. AD-Visuospatial based on differences in rate of change of 
volume 

Dataset (p_min) Top 5 ROIs based on β10 coefficient (normalized by average ROI volume in 
AD) 

1 1. Left entorhinal, 2. Right entorhinal, 3. Left Temporal pole, 4. Left caudal 
anterior cingulate, 5. Right inferior temporal 

2 1. Left entorhinal, 2. Left temporal pole, 3. Right entorhinal, 4. Right temporal, 5. 
Right inferior temporal 

3 1. Left entorhinal, 2. Right entorhinal, 3. Left temporal pole, 4. Right temporal 
pole, 5. Right inferior temporal 

4 1. Right entorhinal, 2. Left entorhinal, 3. Left temporal pole, 4. Right inferior 
temporal, 5. Right temporal pole 

5 1. Left entorhinal, 2. Right entorhinal, 3. Right inferior temporal, 5. Left caudal 
anterior cingulate, 5. Left rostral anterior cingulate 

Table 6.11: Top 5 ROIs based on differences in rates of change of ROI volume (given by β10) between 
the AD-Language and AD-Visuospatial groups. 
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ROI rankings for AD-Language vs. AD-Visuospatial based on differences in longitudinal 
volumes 

Dataset (p_min) Top 5 ROIs based on β2 coefficient (normalized by average ROI volume in 
AD) 

1, 2, 3, 4, 5 1. Right temporal pole, 2. Left entorhinal, 3. Left inferior temporal, 4. Left middle 
temporal, 5. Right inferior parietal 

Table 6.12: Top 5 ROIs based on differences in longitudinal volumes (given by β2) between the AD-
Language and AD-Visuospatial groups. 

 

6.3.3.1 Differences in rates of change of ROI volume 

The coefficient values for 𝛽10 (mm3 /year) and 𝛽10 as a percentage of average ROI volume are 

shown in Tables 6.13a-e for different p_min datasets. Figures 6.7 and 6.8 present this 

information visually.  The associated p-values for the coefficients are shown in Figure 6.9. In 

these models, the AD-Language group was coded as “0” for the ADSubgroup variable and the 

AD-Visuospatial group was coded as “1.” Hence, a positive 𝛽10  value corresponds to a more 

positive rate of change of ROI volume in the AD-Visuospatial group compared to the AD-

Language group, or equivalently, a more negative rate of change of ROI volume in the AD-

Language group compared to the AD-Visuospatial group. In each of the ROIs noted above for 

differences in rate of change of ROI volume between the two AD subgroups (left entorhinal 

cortex, right entorhinal cortex, left temporal pole, right temporal pole gyrus, left caudal 

anterior cingulate gyrus, right inferior temporal gyrus and left rostral anterior cingulate 

gyrus), the 𝛽10  coefficient is positive, which indicates that the AD-Language group had a 

greater rate of decline of ROI volume compared to the AD-Visuospatial group for these 

ROIs. This is visually illustrated in Figure 6.8. Figure 6.8 also shows that the most substantial 

differences in rates of change of ROI volume between the two AD subgroups, relative to the 

rates of each of the subgroups are for left caudal anterior cingulate gyrus, left temporal pole 

and right rostral anterior cingulate. 
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P-values in the AD-Language vs. AD-Visuospatial analysis also seem to be sensitive to which 

dataset was used for LME modeling. As in the case of the AD-Language vs. AD-Memory and 

AD-Memory vs. AD-Visuospatial analyses for differences in rates of change for the subgroups, 

it is worth noting that even the smaller p-values obtained from this analysis are much larger than 

the Holm-Bonferroni corrected thresholds for significance. No major interpretations in the 

current analysis were made using p-values. This is anticipated as future work as more 

longitudinal data becomes available for these AD subgroups.  

Tables 6.13a – 6.13e: The ROIs shown here are a collective list based on the top 5 ROIs for AD-
Language vs. AD-Visuospatial from the LME analysis of each p_min dataset based on the magnitude of 
the β10 coefficient, normalized by average ROI volume (‘Difference in rates as % of Avg ROI volume’ 

column in the table). Individuals with AD* indicated in the second column of each table are individuals 
from the 4 single domain groups: AD-Executive, AD-Language, AD-Memory and AD-Visuospatial. 
Positive differences in rates correspond to a greater rate of decline of ROI volume in the AD-Language 
group compared to the AD-Visuospatial group. Negative differences in rates of change correspond to a 
greater rate of decline of ROI volume in the AD-Visuospatial group. 

AD-Language vs. AD-Visuospatial 
p_min =1 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Differenc
e in rates 
as % of 
Avg ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Rate of 
change for 
the AD-
Visuospatia
l group, as 
% of Avg 
ROI 
volume 

Left entorhinal cortex 1521.9 41.4 2.7 -6.9 -4.2 
Right entorhinal cortex 1508.8 34.3 2.3 -6.0 -3.7 
Left temporal pole 2053.0 31.2 1.5 -2.5 -1.0 
Right temporal pole gyrus 2098.4 22.1 1.1 -3.1 -2.1 
Left caudal anterior cingulate gyrus 1491.9 18.7 1.3 -1.1 0.1 
Right inferior temporal gyrus 8408.3 103.3 1.2 -3.4 -2.2 
Left rostral anterior cingulate gyrus 2249.1 16.0 0.7 -1.6 -0.9 

Table 6.13a: Differences in rates of change of ROI volume between AD-Language and AD-Visuospatial 
groups for selected ROIs of importance. ROIs in the top 5 rankings for p_min = 1 are highlighted in blue. 
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AD-Language vs. AD-Visuospatial 
p_min =2 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Differenc
e in rates 
as % of 
Avg ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Rate of 
change for 
the AD-
Visuospatia
l group, as 
% of Avg 
ROI 
volume 

Left entorhinal cortex 1521.9 38.9 2.6 -6.8 -4.3 
Right entorhinal cortex 1508.8 35.1 2.3 -6.0 -3.7 
Left temporal pole 2053.0 50.5 2.5 -3.3 -0.9 
Right temporal pole gyrus 2098.4 34.9 1.7 -3.5 -1.8 
Left caudal anterior cingulate gyrus 1491.9 19.8 1.3 -1.3 0.0 
Right inferior temporal gyrus 8408.3 121.8 1.4 -3.6 -2.2 
Left rostral anterior cingulate gyrus 2249.1 20.0 0.9 -1.7 -0.9 

Table 6.13b: Differences in rates of change of ROI volume between AD-Language and AD-Visuospatial 
groups for selected ROIs of importance. ROIs in the top 5 rankings for p_min = 2 are highlighted in blue. 

 

AD-Language vs. AD-Visuospatial 
p_min = 3 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Differenc
e in rates 
as % of 
Avg ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Rate of 
change for 
the AD-
Visuospatia
l group, as 
% of Avg 
ROI 
volume 

Left entorhinal cortex 1521.9 40.0 2.6 -6.8 -4.2 
Right entorhinal cortex 1508.8 38.7 2.6 -6.2 -3.7 
Left temporal pole 2053.0 36.7 1.8 -3.0 -1.2 
Right temporal pole gyrus 2098.4 31.0 1.5 -3.3 -1.8 
Left caudal anterior cingulate gyrus 1491.9 18.2 1.2 -1.3 -0.1 
Right inferior temporal gyrus 8408.3 120.5 1.4 -3.6 -2.2 
Left rostral anterior cingulate gyrus 2249.1 20.3 0.9 -1.8 -0.9 

Table 6.13c: Differences in rates of change of ROI volume between AD-Language and AD-Visuospatial 
groups for selected ROIs of importance. ROIs in the top 5 rankings for p_min = 3 are highlighted in blue. 
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AD-Language vs. AD-Visuospatial 
p_min = 4 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Differenc
e in rates 
as % of 
Avg ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Rate of 
change for 
the AD-
Visuospatia
l group, as 
% of Avg 
ROI 
volume 

Left entorhinal cortex 1521.9 41.2 2.7 -6.8 -4.1 
Right entorhinal cortex 1508.8 42.3 2.8 -6.1 -3.3 
Left temporal pole 2053.0 35.3 1.7 -2.9 -1.2 
Right temporal pole gyrus 2098.4 27.0 1.3 -3.3 -2.0 
Left caudal anterior cingulate gyrus 1491.9 17.9 1.2 -1.2 0.0 
Right inferior temporal gyrus 8408.3 114.4 1.4 -3.6 -2.2 
Left rostral anterior cingulate gyrus 2249.1 19.1 0.8 -1.8 -0.9 

Table 6.13d: Differences in rates of change of ROI volume between AD-Language and AD-Visuospatial 
groups for selected ROIs of importance. ROIs in the top 5 rankings for p_min = 4 are highlighted in blue. 

AD-Language vs. AD-Visuospatial 
p_min = 5 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

Difference in 
rates 
(mm^3/year) 

Differenc
e in rates 
as % of 
Avg ROI 
volume 

Rate of 
change 
for the 
AD-
Memory 
group, 
as % of 
Avg 
ROI 
volume 

Rate of 
change for 
the AD-
Visuospatia
l group, as 
% of Avg 
ROI 
volume 

Left entorhinal cortex 1521.9 53.6 3.5 -7.7 -4.1 
Right entorhinal cortex 1508.8 41.2 2.7 -6.1 -3.3 

Left temporal pole 2053.0 
Model did 

not converge NA NA NA 
Right temporal pole gyrus 2098.4 11.8 0.6 -2.6 -2.1 
Left caudal anterior cingulate gyrus 1491.9 20.1 1.4 -1.4 0.0 
Right inferior temporal gyrus 8408.3 122.2 1.5 -3.7 -2.3 
Left rostral anterior cingulate gyrus 2249.1 25.8 1.1 -2.1 -1.0 

Table 6.13e: Differences in rates of change of ROI volume between AD-Language and AD-Visuospatial 
groups for selected ROIs of importance. ROIs in the top 5 rankings for p_min = 5 are highlighted in blue. 
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Figure 6.7: Results from 𝛽10 coefficients in linear mixed effects models for different p_min datasets: Difference in rates of change of ROI volume, 
as a % of average ROI volume. The mean of the differences across the different p_min datasets is shown in black, along with error bars (based on 
standard error of the mean). 
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Figure 6.8: A comparison of the rates of change of ROI volume for the AD-Language and AD-Visuospatial groups. The height of the bars 
represents the mean rate of change for a given group from the analyses of the different p_min (1, 2, 3, 4, 5) datasets. Mean values are also plotted 
as points with error bars based on standard error of the mean from the five p_min datasets. A more negative rate indicates a faster decline of ROI 
volume. This figure delivers the following key points: 1. Which AD subgroup has a faster rate of decline for the different ROIs, 2. The absolute 
difference in rates between the groups, indicated by the non-overlapping part of the bars for the two subgroups and 3. How much this difference is 
in proportion to the rate of change of each of the subgroups. 
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Figure 6.9: P-values associated with each estimate of the difference in rates between AD-Language and AD-Visuospatial groups, from linear 
mixed effects modeling analysis of different p_min datasets. 
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6.3.3.2 Differences in average ROI volume at t=0 

In terms of the analysis of 𝛽2 coefficients, a positive 𝛽2 coefficient from the LME models for the 

AD-Language and AD-Visuospatial data corresponds to a greater average ROI volume at t=0 in 

the AD-Visuospatial group compared to the AD-Language group, while a negative 𝛽2 indicates 

the opposite. It can be seen from Tables 6.13a-e that the right inferior parietal lobule has a 

smaller volume at t=0 for the AD-Language group compared to the AD-Visuospatial group. 

All other ROIs (right temporal pole, left entorhinal cortex, left inferior temporal gyrus and 

left middle temporal gyrus) have smaller volumes at t=0 for the AD-Visuospatial group 

compared to the AD-Language group.  The associated p-values for each of these differences 

(last column in Tables 6.13a-e) are at least an order larger than the threshold needed for 

significance with the Holm-Bonferroni correction with a family wise error rate of 0.05.  

Right temporal pole and left entorhinal cortex are the common ROIs found in the lists of 

importance based on average differences in ROI volumes at t=0 and average differences in rate 

of change of ROI volume between the AD-Language and AD-Visuospatial groups, as predicted 

by the LME models. Since the current cross-sectional data analysis for AD-Language vs. AD-

Visuospatial did not yield a reliable classification model, a comparison of which ROI are 

important across cross-sectional and longitudinal data analysis cannot yet be performed. 
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Tables 6.13a – 6.13e: The ROIs shown here are a collective list based on the top 5 ROIs for AD-
Language vs. AD-Visuospatial from the LME analysis of each p_min dataset based on the magnitude of 
the β2 coefficient, normalized by average ROI volume (‘Difference in rates as % of Avg ROI volume’ 

column in the table). Individuals with AD* indicated in the second column of each table are individuals 
from the 4 single domain groups: AD-Executive, AD-Language, AD-Memory and AD-Visuospatial ROIs 
with a positive β2 (greater volume in the AD-Visuospatial group at t=0) are shown in pink while ROIs 
with a negative β2 (smaller volume in the AD-Visuospatial group at t=0) are shown in green. 

AD-Language vs. AD-Visuospatial 
p_min = 1 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes 
at t=0, as 
% of 
average 
ROI 
volume  

p-value 
β_2   

Right temporal pole 2098.4 248.6 11.8 7.7E-03 
Left entorhinal 1521.9 172.4 11.3 2.8E-02 
Left inferior temporal 8517.7 676.3 7.9 1.2E-02 
Left middle temporal 8130.4 484.5 6.0 3.5E-02 
Right inferior parietal 11043.6 -525.4 -4.8 4.2E-02 

Table 6.13a: Differences in ROI volume at t=0 between AD-Language and AD-Visuospatial groups for 
selected ROIs of importance, for the dataset with p_min = 1. See note “Tables 6.13a-e” above for color 
coding. 

 

 

 

 

 

 

 

 

 

 

 



196 
 

AD-Language vs. AD-Visuospatial 
p_min = 2 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

β_2 

(Differenc
e in ROI 
volumes at 
t=0) 
(mm^3) 

Differenc
e in ROI 
volumes 
at t=0, as 
% of 
average 
ROI 
volume  

p-value 
β_2   

Right temporal pole 2098.4 249.5 11.9 7.2E-03 
Left entorhinal 1521.9 174.0 11.4 2.7E-02 
Left inferior temporal 8517.7 683.0 8.0 1.1E-02 
Left middle temporal 8130.4 483.1 5.9 3.7E-02 
Right inferior parietal 11043.6 -524.8 -4.8 4.2E-02 

Table 6.13b: Differences in ROI volume at t=0 between AD-Language and AD-Visuospatial groups for 
selected ROIs of importance, for the dataset with p_min = 2. See note “Tables 6.13a-e” above for color 

coding. 

AD-Language vs. AD-Visuospatial 
p_min = 3 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

β_2 

(Differenc
e in ROI 
volumes at 
t=0) 
(mm^3) 

Differenc
e in ROI 
volumes 
at t=0, as 
% of 
average 
ROI 
volume  

p-value 
β_2   

Right temporal pole 2098.4 253.1 12.1 6.3E-03 
Left entorhinal 1521.9 174.7 11.5 2.6E-02 
Left inferior temporal 8517.7 689.3 8.1 1.0E-02 
Left middle temporal 8130.4 490.9 6.0 3.5E-02 
Right inferior parietal 11043.6 -524.9 -4.8 4.2E-02 

Table 6.13c: Differences in ROI volume at t=0 between AD-Language and AD-Visuospatial groups for 
selected ROIs of importance, for the dataset with p_min = 3. See note “Tables 6.13a-e” above for color 

coding. 
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AD-Language vs. AD-Visuospatial 
p_min = 4 

ROI 

Estimated 
average 
ROI 
volume 
for 
individual
s with 
AD* at 
time of 
diagnosis 
(mm^3) 

β_2 

(Differenc
e in ROI 
volumes at 
t=0) 
(mm^3) 

Differenc
e in ROI 
volumes 
at t=0, as 
% of 
average 
ROI 
volume  

p-value 
β_2   

Right temporal pole 2098.4 249.8 11.9 7.1E-03 
Left entorhinal 1521.9 176.8 11.6 2.4E-02 
Left inferior temporal 8517.7 689.4 8.1 1.0E-02 
Left middle temporal 8130.4 490.1 6.0 3.5E-02 
Right inferior parietal 11043.6 -529.6 -4.8 4.1E-02 

Table 6.13d: Differences in ROI volume at t=0 between AD-Language and AD-Visuospatial groups for 
selected ROIs of importance, for the dataset with p_min = 4. See note “Tables 6.13a-e” above for color 

coding. 

AD-Language vs. AD-Visuospatial 
p_min = 5 

ROI 

Estimated 
average 
ROI 
volume for 
individuals 
with AD* 
at time of 
diagnosis 
(mm^3) 

β_2 

(Difference 
in ROI 
volumes at 
t=0) 
(mm^3) 

Difference 
in ROI 
volumes 
at t=0, as 
% of 
average 
ROI 
volume  

p-value 
β_2   

Right temporal pole 2098.4 249.7 11.9 7.2E-03 
Left entorhinal 1521.9 176.8 11.6 2.4E-02 
Left inferior temporal 8517.7 702.9 8.3 8.6E-03 
Left middle temporal 8130.4 492.7 6.1 3.6E-02 
Right inferior parietal 11043.6 -532.4 -4.8 4.0E-02 

Table 6.13e: Differences in ROI volume at t=0 between AD-Language and AD-Visuospatial groups for 
selected ROIs of importance, for the dataset with p_min = 5. See note “Tables 6.13a-e” above for color 

coding. 
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AD-Language vs. AD-Visuospatial 

ROI 

Mean difference in 
ROI vol at t=0 
(across different 
p_min datasets), as 
% of average ROI 
volume  Std. Error of mean 

Right temporal pole 11.92 0.04 
Left entorhinal 11.50 0.05 
Left inferior temporal 8.08 0.05 
Left middle temporal 6.01 0.02 
Right inferior parietal -4.78 0.01 

Table 6.14: Variation in the difference in ROI volume at t=0 across the five p_min datasets for AD-
Language vs. AD-Visuospatial analysis. Mean and standard error of the mean are shown for each ROI. 

 

6.4 Concluding remarks about longitudinal data analysis and future work 

Overall, for all three comparisons: a.) AD-Language vs. AD-Memory, b.) AD-Memory vs. AD-

Visuospatial and AD-Language vs. AD-Visuospatial, the top ranking ROIs in each comparison 

showed substantial differences in rates of change of ROI volumes relative to the rates for each of 

the subgroups being compared. Based on the current analysis using LME models of ROI 

volumes from longitudinal data, my work in hypothesis generation of which ROIs are most 

important to investigate for AD subgroup differences in future studies including 

neuropathological studies points at the ROIs listed in Table 6.15. 

Comparison Differences between 
subgroups 

Top ROIs of importance  

AD-Language vs. AD-Memory 

 

Average differences in 
rates of change of ROI 
volume 

Left posterior cingulate, left 
entorhinal cortex, right entorhinal 
cortex, left caudal anterior 
cingulate, right caudal middle 
frontal, left parahippocampal, right 
frontal pole. 

Average differences in ROI 
volumes at t=0 

Right entorhinal, right 
hippocampus, left temporal pole, 
left inferior temporal and left 
middle temporal 
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AD-Memory vs. AD-
Visuospatial 

Average differences in 
rates of change of ROI 
volume 

Right temporal pole, left entorhinal, 
left rostral anterior cingulate, left 
frontal pole, left parahippocampal, 
left frontal pole 

Average differences in ROI 
volumes at t=0 

Left entorhinal cortex, right 
entorhinal cortex, left 
parahippocampal gyrus, left 
temporal pole and left hippocampus 

AD-Language vs. AD-
Visuospatial 

Average differences in 
rates of change of ROI 
volume 

Left entorhinal, right entorhinal, left 
temporal pole, right temporal pole, 
left caudal anterior cingulate, right 
inferior temporal, left rostral 
anterior cingulate 

Average differences in ROI 
volumes at t=0 

Right inferior parietal, right 
temporal pole, left entorhinal 
cortex, left inferior temporal, left 
middle temporal 

Table 6.15: Top ROIs of importance for differences between pairs of AD subgroups at the time of AD 
diagnosis, based on coefficient estimates from linear mixed effects modeling for each ROI volume. Color 
codings for ROIs indicate a greater rate of decline or smaller average volumes in the AD subgroup 
indicated by the color. 

 

The LME models based on longitudinal data also provided insight into the population level 

differences between the AD subgroups at t=0, the time of AD diagnosis. There were some ROIs 

that showed differences between the pairs of AD subgroups based on both ROI volumes at t=0 

and rates of change of volume with respect to time. For example, the right entorhinal cortex was 

an ROI determined to be important for AD-Language vs. AD-Memory differences based on both 

differences in rates of change of ROI volume for the two subgroups and differences in ROI 

volumes at t=0. Additionally, in the AD-Memory vs. AD-Visuospatial analysis, left entorhinal 

cortex, right entorhinal cortex and left parahippocampal gyrus were determined to be important 

based on differences in rates of change of ROI volume as well as differences in ROI volume at 

t=0. Right temporal pole and left entorhinal cortex are the common ROIs found in the lists of 
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importance based on average differences in ROI volumes at t=0 and average differences in rate 

of change of ROI volume between the AD-Language and AD-Visuospatial groups, as predicted 

by the LME models. These results indicates that some ROIs that might be most differentiating 

for the two given AD subgroups at the time of AD diagnosis continue to be important 

longitudinally as well.  

For AD-Language vs. AD-Memory and AD-Memory vs. AD-Visuospatial comparisons, where 

ROI importance was determined successfully in cross-sectional data, there were some ROIs that 

were found in the top ROIs of importance based on both the cross-sectional and longitudinal data 

analysis. Further, among the two given AD subgroups being considered for difference, the 

longitudinal and cross-sectional analysis of these ROIs were consistent in which AD subgroup 

has less volume at t=0.  

LME models are a powerful framework for learning about population level dynamics of an ROI 

volume while allowing for individual level deviations from the population level trajectories and 

account for the correlation structure in longitudinal data. Current analysis included 70 ROI 

models for each of the three binary comparisons of AD subgroups, using all of longitudinal data 

available and using four subsets of data based on a minimum number of data points needed at 

each time point for each AD subgroup. For each binary comparison of AD subgroups, this 

resulted in 70 X 5 = 350 models. As noted in the sections above, a correction for multiple 

hypotheses testing was needed to determine a threshold of significance for the p-values 

associated with the coefficients of interest (𝛽2 and 𝛽10). These thresholds based on a family-wise 

error rate of 0.05 were calculated using the Holm-Bonfernonni correction. According to this 

correction, the thresholds for the top 5 (smallest) p-values are on the 1.43 X 10-4 to 1.45 X 10-4. 

For all three binary comparisons of AD subgroups, the 𝛽10 coefficients had p-values on the order 
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of 10-1 or 10-2. The 𝛽2 coefficients for most ROIs of importance were on the order of 10-2 or 10-3. 

Of all the ROIs analyzed, only two ROIs (right hippocampus in the comparison of AD-Language 

vs. AD-Memory and left hippocampus in the comparison of AD-Memory vs. AD-Visuospatial) 

had p-values associated with the 𝛽2 coefficient in the 10-4 range. Considering that these two 

ROIs are in the much lower p-value range despite the current small sample size, these ROIs may 

be recommended as the most important ROIs to look into for volume differences at t=0.  

Given that the majority of p-values were much above the threshold needed for the chosen level 

of significance, the current analysis did not focus on p-values to determine how important an 

ROI is for AD subgroup differences. The current analysis was based on coefficient magnitudes, 

normalized by ROI size. Given the small sample sizes of the AD subgroups and the sparseness of 

the current longitudinal data, an analysis based on coefficients magnitudes rather than p-values 

seemed more reasonable and reliable. The results from analyses of different subsets of data 

(corresponding to different p_min values) showed that in the current dataset, p-values are 

sensitive to the removal or addition of data points. As more data becomes available in the future, 

it is anticipated that one could move towards an inference analysis based on p-values. Not being 

able to use the p-values for inference in the current analysis does not mean that the current 

results based on magnitudes of coefficients are not valid. However, the analysis can be stronger 

in the future and p-values can add a layer of confidence to the current results. Another point to be 

tackled in future work is a method to assess how good the current LME models are for each ROI 

volume. In the current work, all models converged except for a handful cases mentioned in the 

Results section. Of the models that converged, in the current analysis, there was no established 

method of determining how much a given ROI model can be trusted. Having this assessment in 
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the future can refine the current results and can also provide more confidence about which ROIs 

are most important in longitudinal differences across pairs of AD subgroups.  

The LME model itself can also be improved in future work. In the current model of an ROI 

volume, males and females were modeled to have the same rate of change of volume over time. 

Individuals across different ages, education levels and APOE genotype status were also assumed 

to have the same rate of change of ROI volume. The current model can be made more 

sophisticated in the future by allowing for the rate of change of ROI volume to vary with gender, 

age, education levels and APOE genotype status. Additionally, one can explore non-linear 

relationships of covariates in a mixed effects model for ROI volume in the future. The work can 

also be extended in the future to account for potential correlation among ROIs, which has not 

been taken into account in the current univariate model approach. Given the current small sample 

size and noise in the current data, a simpler model for each ROI volume as currently 

implemented seemed to be a good starting point for the analysis of this dataset.  

The analysis can also be improved in the future by analyzing two subsets of data separately using 

separate LME models: data before the time of AD diagnosis and data after the time of diagnosis. 

The hypothesis for this analysis would be that the rates of change of ROI volume are different 

for these two datasets. Consequently, such an analysis may point at different ROIs as being 

important in the time leading up to AD diagnosis and the time after. 

In the current analysis scheme of longitudinal data with LME models, I explored the sensitivity 

of LME models to removal of timepoints with a number of individuals below a threshold 

(p_min) for a given AD subgroup. Results showed that there is some variability across different 

p_min datasets in both 𝛽10, the estimated average differences in rate of change of ROI volume 

between the AD subgroups being compared and 𝛽2, the estimated average difference in ROI 
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volume between the subgroups at t=0. P-values also vary for a given coefficient for models of a 

given ROI volume based on different p_min datasets. Qualitatively, the variation in 𝛽10 and 𝛽2 

estimates from LME models based on different p_min datasets did not seem large. However, a 

quantitative method is needed as part of future work to assess whether the variation observed in 

coefficient values and variation in p-values across different p_min datasets is small or large. I 

hypothesized that using data corresponding to p_min =5 would be the most robust since each 

time point has at least five individuals’ data for each of the AD subgroups being compared. 

However, the dataset corresponding to p_min = 5 has less data overall compared to the lower 

p_min cases. The current analysis did not answer the question of which p_min dataset would be 

the most appropriate to report results from. For the results reported above, I used average values 

based on all five p_min datasets for differences in rate of change of volume and differences in 

volume at t=0. In future, developing a metric for which p_min dataset results are most reliable 

can be useful.  

 

 

 

 

 

 



204 
 

Chapter 7: Conclusions, Limitations & Future Work 

My dissertation focused on hypothesis generation directed towards which brain ROIs could be 

important for future studies. This includes neuropathological studies for AD subgroup 

differences which may have implications in precision medicine approaches in treating AD. I 

analyzed cross-sectional data from the time of AD diagnosis using machine learning 

classification models (Aim 1) and longitudinal data using linear mixed effects modeling (Aim 2) 

from individuals in the ADNI study to arrive at lists of ROIs that are important in three binary 

comparisons of AD subgroups. My work was an application of data science methods in a new 

domain: AD subgroup analysis. In both cross-sectional and longitudinal data analyses, my focus 

was on a careful assessment and implementation of methods to best make use of the data 

available in its current form, which has small sample sizes, imbalanced AD subgroup sizes and is 

noisy in nature. Recommendations for which ROIs may be important to focus on in future 

neuropathological studies based on my analyses are summarized in Tables 7.1 and 7.2. 

In cross-sectional data analysis, using variable importance measures from a random forest 

analysis, I determined relative importance of all 70 ROIs for distinguishing between pairs of AD 

subgroups (Chapter 4) and presented this information for all ROIs in a color gradient for 

importance on a brain diagram. To focus the discussion of important ROIs to a few ROIs, I 

presented a list of the top 10 ROIs that I determined to be important for each binary comparison 

(see Table 7.1), and focused on the top four ROIs for a more detailed analysis: right entorhinal 

cortex, right hippocampus, right lingual gyrus and left hippocampus (AD-Language vs. AD-

Visuospatial) and left entorhinal cortex, right entorhinal cortex, right supramarginal gyrus 

and left postcentral gyrus (for AD-Memory vs. AD-Visuospatial).  
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Cross-sectional data analysis: Top ROIs of importance for differences between pairs of AD subgroups 

Comparison Top ROIs of importance  

AD-Language vs. AD-Memory Right entorhinal, right hippocampus, right lingual, 
left hippocampus, left rostral anterior cingulate, 
left superior temporal, right cuneus, right 
superior frontal, right pars triangularis, right 
fusiform  

AD-Memory vs. AD-Visuospatial Left entorhinal, right entorhinal, right 
supramarginal, left postcentral, right superior 
parietal, left superior temporal, left 
parahippocampal, right parahippocampal, right 
post central, right cuneus 

AD-Language vs. AD-Visuospatial Additional work is needed for a reliable 
classification model to report the ROIs of 
importance. 

Table 7.1: Cross-sectional data analysis: Top ROIs of importance for distinguishing between pairs of AD 

subgroups at the time of AD diagnosis, based on an importance measure from random forest 

classification models. Color codings for ROIs indicate smaller average volumes in the AD subgroup 
indicated by the color. ROIs without the color coding are the ones for which the current results were 
inconclusive about which AD subgroup has the smaller volumes. 

Violin plot distributions from cross-sectional data for the above ROIs of the respective AD 

subgroups showed that on average, individuals in the AD-Memory group had lower volumes in 

the right entorhinal cortex and right hippocampus compared to the AD-Language group. For the 

next two ROIs of importance for AD-Language vs. AD-Memory, right lingual gyrus and the left 

hippocampus, average differences between the two subgroups were not so distinguishable based 

on the violin plot distribution comparison. For the AD-Memory vs. AD-Visuospatial 

comparison, on average, the AD-Memory group had lower volumes in the left entorhinal cortex 

and right entorhinal cortex. The AD-Visuospatial group had slightly smaller volumes on average 

for the right superiormarginal gyrus compared to the AD-Memory group, although the difference 

was not very pronounced based on the distributions of the two groups. The distributions for the 
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two groups were even harder to spot a pronounced difference for in the left postcentral gyrus. 

This inconsistency in interpretations from the two methods, random forest variable importance 

and violin plot distributions, pointed at two possibilities. One possibility is that random forest 

which allows for interaction of ROI volume variables and non-linear relationships to be 

considered in the tree building process, was able to pick out differences between AD subgroups 

that may not be apparent in a simpler isolated analysis of an ROI. The other possibility is that 

there is potential bias in random forest importance that results in spurious identification of 

certain variables as important. This was one limitation of the current results based on random 

forest for cross-sectional data analysis. In future work, it will be snecessary to resolve this 

ambiguity around specific ROIs from random forest results. One proposed solution is to use 

conditional inference forests (cforest) with subsampling without replacement instead of random 

forests to determine if the same questionable ROIs appear or not in the variable importance 

results from cforest. Cforest with subsampling without replacement has been shown to correctly 

identify the variables of importance in simulation studies, unlike random forest which may favor 

variables with a large number of categories.  

Current cross-sectional data analysis for AD-Language vs. AD-Visuospatial (see row 3 of Table 

7.2) did not yield reasonable models for interpreting ROI importance. In random forest models, 

the classification errors for the two groups were imbalanced (roughly 11% for one AD subgroup 

and 35% for the other AD subgroup). The reason for this imbalance in the classification errors 

needs to explored in future work. The ROIs that were the most important for this classification 

are still listed in Chapter 4 for completeness, along with the relative importance of each of the 70 

ROIs mapped in a color gradient on diagrams of the brain. In future, it would be worth seeing if 

conditional inference forest with subsampling without replacement also results in a similar class 
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imbalance for classification errors. In the current work, the penalized logistic regression model 

had a much higher classification error overall (~30%) for AD-Language vs. AD-Visuospatial, 

which was the reason for not reporting variable importance results from that model. If the class 

imbalance in accuracies in random forest for AD-Language vs. AD-Visuospatial cannot be 

resolved in future work, it may be necessary to resort to the current random forest or penalized 

logistic regression models as a starting point for getting some insight into which ROIs are 

important for differences in these AD subgroups at the time of AD diagnosis.  

There is another approach that could be considered to gain some insight into the AD-Language 

vs. AD-Visuospatial regions of importance at the time of AD diagnosis. This approach is to 

utilize the results from linear mixed effects (LME) modeling of longitudinal data (Aim 2 work), 

focusing on the 𝛽2 coefficient that represents the difference in ROI volumes at t=0 between the 

two subgroups being compared. The LME models pointed at the following ROIs as the most 

important for AD-Language and AD-Visuospatial average group differences at t=0 (See Table 

7.2): right temporal pole, left entorhinal, left inferior temporal, left middle temporal and right 

inferior parietal. A limitation of this proposed approach is that there was not a metric used to 

assess how good the LME models are other than making sure the models converged. So, it is 

difficult to know whether the LME model results for t=0 based on longitudinal data can be 

trusted more than the random forest or penalized logistic regression models based on cross-

sectional data. Additionally, the current LME models for each ROI are separate models which 

don’t allow for correlation among ROIs and conditional probabilities of being in a particular 

group to be taken into account unlike random forest and penalized logistic regression models in 

Aim 1 work that are joint models of ROIs. For cross-sectional data which are more 

straightforward to model than longitudinal data in models involving multiple independent 
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variables together, joint models of ROIs are preferred for a more comprehensive story of the 

relative importance of ROIs. Nonetheless, in the absence of reliable joint models for cross-

sectional data for the AD-Language vs. AD-Visuospatial classification, individual LME models 

for the ROIs from longitudinal data analysis could be a starting point for preliminary hypothesis 

generation for ROIs to be explored in future studies. 

Some of the approaches that I implemented for dealing with the challenges of cross-sectional 

data addressed the issues but it is important to recognize the limitations of these approaches. 

First, oversampling the minority AD subgroups using SMOTE for creating balanced class sizes 

for binary classification models potentially introduced some bias into the data. Although 

SMOTE is considered to be a less biased oversampling technique, it still involves generating 

synthetic data which introduces some bias into the data to be used for downstream analysis. 

Second, using linear regression models to remove the effects of extraneous variables form ROI 

volumes also has its limitations. I made a simplistic assumption about the relationship of these 

extraneous variables with ROI volume to be linear. Preliminary analysis using plots of any given 

ROI volume vs. these extraneous variables did not show strong correlations except for age and 

sex. Using non-linear models for regressing out the effects of any of these extraneous variables 

did not seem to be an appropriate choice given the small sample size and noise in the 

relationships of continuous extraneous variables with ROI volumes. In the current work, the 

residual volumes used in downstream cross-sectional data analysis were obtained by subtracting 

the modeled effects of the extraneous variables from the raw ROI volumes, assuming that the 

effects got modeled as well as they could based on the data. In future work, it may be useful to 

assess how good the models were for removing the effects of the extraneous variables from ROI 

volumes and to fine-tune the models while also keeping the risk of overfitting in mind.  
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Overall, through cross-sectional data analysis (Aim 1), I demonstrated the use of supervised 

machine learning methods focusing on variable importance to understand which ROIs are most 

important for distinguishing between AD subgroups. I showed that random forest models had 

better classification accuracies than penalized logistic regression models for the data at hand. 

Through the use of random forest, the ROI volume variables were allowed to have non-linear 

relationships with AD subgroup as well as interactions among the ROI volume variables, which 

may be a good way to model the unknown complexities of biological data. My work is an 

application of machine learning methods in a new domain: AD subgroups. There is no known 

gold standard for how well the data can be separated into AD subgroups based on classification 

models. To my knowledge, there is currently no documentation of classification accuracies for 

distinguishing pairs of cognitively defined AD subgroups based on machine learning methods. 

Hence, the work I’ve done here may provide a starting benchmark for classification accuracies 

for distinguishing between pairs of AD subgroups based on ROI volumes from the time of AD 

diagnosis. Future models for distinguishing between AD subgroups could aim at improving upon 

these classification accuracies. It is important to note that these models are not intended to be 

used in a clinical setting for making predictions about which AD subgroup an individual belongs 

to. The classification accuracies are a way to assess how good the model is which is to be used 

for determining which ROIs are important for AD subgroup differences.  

The highlights of longitudinal data analysis (Aim 2) from my dissertation work are that for each 

of the three binary comparisons evaluated, there are ROIs whose differences in rates of change of 

ROI volume between the two subgroups are substantial relative to the rates of each of the 

subgroups. The top ROIs of importance are presented in Table 7.2. There are two lists of ROIs 

for each binary comparison of AD subgroups. One is based on average differences in rates of 
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change of ROI volume between two AD subgroups and the other is based average differences in 

ROI volumes at t=0 between the groups. The ROI importance results were based on the 

magnitudes of the coefficients of interest from the LME models, relative to the average ROI 

volume from all single domain subgroups at the time of diagnosis.  
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Top ROIs of importance for differences between pairs of AD subgroups: Longitudinal data analysis 

Comparison Differences between 
subgroups 

Top ROIs of importance  

AD-Language vs. AD-Memory 

 

Average differences in 
rates of change of ROI 
volume 

Left posterior cingulate, left 
entorhinal cortex, right entorhinal 
cortex, left caudal anterior 
cingulate, right caudal middle 
frontal, left parahippocampal, right 
frontal pole. 

Average differences in ROI 
volumes at t=0 

Right entorhinal, right 
hippocampus, left temporal pole, 
left inferior temporal and left 
middle temporal 

AD-Memory vs. AD-Visuospatial Average differences in 
rates of change of ROI 
volume 

Right temporal pole, left 
entorhinal, left rostral anterior 
cingulate, left frontal pole, left 
parahippocampal, left frontal pole 

Average differences in ROI 
volumes at t=0 

Left entorhinal cortex, right 
entorhinal cortex, left 
parahippocampal gyrus, left 
temporal pole and left 
hippocampus 

AD-Language vs. AD-Visuospatial Average differences in 
rates of change of ROI 
volume 

Left entorhinal, right entorhinal, 
left temporal pole, right temporal 
pole, left caudal anterior cingulate, 
right inferior temporal, left rostral 
anterior cingulate 

Average differences in ROI 
volumes at t=0 

Right inferior parietal, right 
temporal pole, left entorhinal 
cortex, left inferior temporal, left 
middle temporal 

Table 7.2: Longitudinal data analysis: Top ROIs of importance for differences between pairs of AD 

subgroups at the time of AD diagnosis, based on coefficient estimates from linear mixed effects 

modeling for each ROI volume. Color codings for ROIs indicate a greater rate of decline or smaller 
average volumes in the AD subgroup indicated by the color. 
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An interesting question to be asked with results from both the cross-sectional and longitudinal 

data analyses is whether the ROIs determined to be important at the time of AD diagnosis 

continue to be important for AD subgroup differences over time. For AD-Language vs. AD-

Visuospatial, such a comparison could not be performed due to the lack of reliable results from 

cross-sectional data analysis for comparing the two groups. However, for both AD-Language vs. 

AD-Memory and AD-Memory vs. AD-Visuospatial, in comparison of cross-sectional and 

longitudinal data analysis results, there were some ROIs that were found to be important for 

distinguishing between the two subgroups based on both cross-sectional data and longitudinal 

data. The details of these common ROIs are described in the next few paragraphs.  

 For AD-Language vs. AD-Memory, the right entorhinal cortex which ranked the highest in 

variable importance in cross-sectional data analysis. This was also one of the top regions that 

showed substantial differences between the two subgroups in longitudinal data analysis, both in 

terms of average difference in rate of change of volume and average difference in ROI volume at 

t=0 (as predicted by the LME models on longitudinal data). The result from longitudinal data 

analysis corresponding to the average difference in ROI volume at t=0 was consistent with which 

AD subgroup had lower volume in cross-sectional data (AD-Memory). The difference in rate of 

change of volume of right entorhinal cortex between the two groups, however, indicated that the 

AD-Language group had a faster decline in volume for this region compared to the AD-Memory 

group. A hypothesis to explain this could be that since the entorhinal cortex is known to play a 

vital role in the memory function, it may be the case that individuals in the AD-Memory group 

have already had a great rate of decline in the right entorhinal cortex compared to the AD-

Language group by the time they get diagnosed with AD. The lower volumes for this ROI in the 

AD-Memory group at the time of AD diagnosis may also be a result of this hypothesized fast 
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decline before AD diagnosis. After AD diagnosis, individuals in the AD-Language group may 

start showing a faster decline in this ROI compared to individuals in the AD-Memory group as 

the fast phase of decline for this ROI in the AD-Memory group has already taken place. This is 

only one hypothesis (and not a conclusion) to explain the greater rate of decline in the right 

entorhinal cortex for the AD-Language group compared to the AD-Memory group.  

Another ROI that was determined to be important for AD-Language vs. AD-Memory in cross-

sectional data analysis and longitudinal data analysis is the right hippocampus. The right 

hippocampus was the second most important ROI for AD-Language vs. AD-Memory based on 

the random forest analysis of the cross-sectional dataset and had lower volumes in the AD-

Memory group. In the longitudinal data analysis, the LME model for the right hippocampus 

volume estimated that at t=0, the AD-memory group has lower ROI volumes than the AD-

Language group. This region was not in the list of ROIs determined to be important for 

differences in rate of change of ROI volume for the two groups.  

For AD-Memory vs. AD-Visuospatial, there were several common ROIs of most importance in 

both cross-sectional data analysis and longitudinal data analysis. Based on differences between 

the AD subgroups in rate of change of ROI volume and differences in ROI volumes at t=0, these 

were left entorhinal cortex, right entorhinal cortex and left parahippocampal gyurs. In cross-

sectional data analysis, left entorhinal cortex and right entorhinal cortex were the top two ROIs 

based on random forest variable importance results and left parahippocampal gyrus which was 

the 7th most important ROI, all three of which had on average lower volumes in the AD-Memory 

group compared to the AD-Language group. In longitudinal data analysis, all three of these ROIs 

were estimated to have a faster rate of decline in the AD-Memory group. The LME models also 

estimated that ROI volume at t=0 was smaller, on average, in the AD-Memory group than in the 
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AD-Visuospatial group, which is consistent with cross-sectional data analysis results. In this 

comparison of cross-sectional and longitudinal data results, all three regions discussed here (left 

entorhinal cortex, right entorhinal cortex and left parahippocampal gyrus) are known to play a 

role in the memory function. It is interesting to note that when the AD-Memory group is 

compared to AD-Language, it has a slower decline in the right entorhinal cortex whereas when 

the AD-Memory group is compared to the AD-Visuospatial group, it has a faster decline in the 

same ROI. 

Hence, results based on cross-sectional data and longitudinal data show some common ROIs that 

are determined to be important for AD subgroup differences. It is important to keep in mind that 

the methods used to determine ROI importance in cross-sectional data and longitudinal data are 

different. To arrive at some overlapping results for which ROIs are most important at the time of 

AD diagnosis based on two different methods is reassuring and adds more confidence to the 

results. Further, it is insightful to know that some ROIs determined to be important at the time of 

AD diagnosis continue to be important in rate of change differences between the subgroups. 

These ROIs may be the most crucial to study further for AD subgroup differences.  

It is equally interesting to note the ROIs that are in the topmost important ROIs for rate of 

change of volume differences between the subgroups but do not show up in the top most 

important ROIs for AD subgroup differences at the time of AD diagnosis. It is possible some of 

these ROIs have different levels or directions of differences between the two subgroups being 

compared in the time periods before and after AD diagnosis. This is an avenue to be explored in 

future work: to study the differences between AD subgroups from two subsets of data, one 

including data from all visits before and including AD diagnosis, and the other including data 

from all visits after and including AD diagnosis. The analysis can also be extended to study data 
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from different time windows around AD diagnosis. A hypothesis for this future analysis is that 

the AD subgroup differences would be the greatest and strongest in the time period leading up to 

AD diagnosis and also in perhaps some smaller time period after AD diagnosis. As AD 

progresses in each individual over time, the differences between AD subgroups may become 

more diluted as all of the brain tissue (hence all ROIs) undergoes atrophy. Hence, studying data 

from different time windows in the longitudinal dataset separately may be an insightful analysis 

in the future. This approach may come at the expense of having a sparser dataset to be modeled 

for a chosen time window, which with the current sample size may not be ideal.  

A topic that needs further discussion is how to choose the number of ROIs that one should report 

as the most important for each binary comparison of AD subgroups. This is relevant to both 

cross-sectional and longitudinal data analyses. This is an important topic to tackle as one heads 

towards future work or one moves in the direction of providing recommendations for ROIs of 

interest to neuropathologists for understanding AD subgroup differences. In my dissertation 

work, I made a subjective call to provide comparisons of the importance measure in cross-

sectional data analysis in plots showing the top 10 ROIs (ranked by the importance measure). I 

then focused on the top four ROIs for comparing distributions for the AD subgroups of interest 

to determine which of the two AD subgroups has smaller volumes for a given ROI. In 

longitudinal data analysis, I focused on the top 5 ROIs for each of the p_min datasets for the two 

AD subgroups being compared, and then used the union of the list of top 5 ROIs corresponding 

to each p_min dataset analysis as the most important ROIs for the given AD subgroups’ 

comparison. At the end, I had two collective list of ROIs for each binary comparison of AD 

subgroups based on all p_min datasets’ analyses: one based on average differences in the rate of 

change of ROI volume between the AD subgroups being compared and the other based on 
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average differences in ROI volumes between the subgroups at t=0. The decision to focus on the 

top 5 ROIs from the analysis of each p_min dataset for a given binary comparison of AD 

subgroups and to report a collective list of ROIs that is the union of the top 5 ROIs across the 

different p_min datasets’ analyses is subjective. As noted in Chapter 6, the answer to the 

question of how many ROIs should be included in the top ROIs of importance can be best 

obtained by consulting neuropathologists who may be interested in using the results from the 

current work for designing neuropathological studies for understanding AD subgroup 

differences. In both cross-sectional and longitudinal data analyses, I applied the chosen ranking 

metrics for importance on all 70 ROIs. Hence, one can easily extend the current analysis to focus 

on a different number of top ROIs in the future, as per the needs of future studies that may be 

interested in the results of my hypothesis generation work for ROIs of importance in AD 

subgroup differences.  

Given the current small sizes of AD subgroups, a p-value based analysis for determining 

statistical significance of the differences between subgroups in longitudinal data was not deemed 

to be appropriate or reliable. When the sample size is small, the p-values can be sensitive to the 

inclusion or exclusion of specific data points. A more enriched dataset both in the number of 

individuals and time points is needed to move towards an inference based analysis using p-

values, which is anticipated as future work as more data becomes available. Although p-values 

were not used to assess ROI importance in the current analysis, I did provide them in the results 

in Chapter 6 for completeness. The majority of the p-values were much larger than the threshold 

for significance determined by the Holm-Bonferroni correction (~ 10-4) for multiple hypotheses 

testing with a family wise error rate of 0.05. Most p-values were on the order of 10-1 and  10-2 for 

differences in rates of change of ROI volume and on the order of 10-3 for differences in ROI 
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volume between the subgroups at t=0. The right hippocampus in the comparison of AD-

Language vs. AD-Memory and left hippocampus in the comparison of AD-Memory vs. AD-

Visuospatial were exceptions for the analysis of average differences in ROI volumes between the 

subgroups; the associated p-values were in the 10-4 range, although still higher than the exact 

threshold given by the Holm-Bonferroni correction.  

Additionally, in my analysis scheme for longitudinal data analysis, I considered whether it was 

appropriate to include timepoints that may have a very small number of individuals from a given 

AD subgroup. Such timepoints may not represent the population dynamics appropriately. I 

carried out an analysis to explore the sensitivity of LME models to removal of timepoints with a 

number of individuals below a threshold (p_min) for a given AD subgroup. For each ROI and for 

each binary comparison of AD subgroups, I carried out five parallel analyses using LME 

modeling on datasets corresponding to p_min values of 1, 2, 3, 4 and 5. As expected, there was 

variation in the coefficients of interest and the associated p-values across the models from  

different p_min datasets. Qualitatively, the variation did not seem to be large, and one could say 

that the LME models’ results are not too sensitive to the exclusion/inclusion of specific 

timepoints in the current longitudinal dataset. However, a quantitative method is needed to assess 

whether this variation is large or small. Further, in future work, it could be useful to develop a 

metric to determine the value of p_min at which the model results (coefficient estimates) begin 

to stabilize, i.e. the difference in results between two consecutive p_min values is sufficiently 

small. The final results of ROI importance that I reported were based on a collective list of top 5 

ROIs from each of the five p_min dataset’s analysis. In the final summarized results for the 

important ROIs for each binary comparison of AD subgroups, I used average values based on all 

five p_min datasets for differences in rate of change of volume between the AD subgroups and 
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differences in volume at t=0. If one wishes to focus on a specific p_min dataset, my analysis also 

provided separate results for each of the p_min datasets for both the differences in AD subgroups 

for rates of change of ROI volume and differences in ROI volume at t=0.  

In future work, the mixed effects models used in the longitudinal data analysis could be 

improved by allowing rates of change of ROI volume to vary between different groups in the 

dataset besides just AD subgroups. This would mean allowing rates of change to vary with 

gender, age, education levels and APOE genotype status. Although linear models seemed to be 

appropriate for the current dataset (which had small sample sizes and noise), non-linear models 

may be considered in the future as more data becomes available and if the data suggests non-

linear relationships between the covariates and ROI volume. In the future, one can also consider 

join models of ROIs in the mixed effects modeling framework to account for potential 

correlations among ROIs. Given the small sample size of the current dataset and the noise in the 

ROI volume trajectories, the current modeling approach of starting with a simpler ROI volume 

model and using a model for each ROI separately seemed to be a good starting point to learn 

about ROI importance from this dataset. I used model convergence as the criteria for using the 

results from the current LME models. However, in future work, it would be useful to have a 

metric to formally assess the goodness of fit for each of the models.  

Overall, my dissertation work aimed to shed light on which brain regions are most important for 

distinguishing between pairs of cognitively defined AD subgroups. The major contribution of 

this work towards AD research is in a preliminary hypothesis generation for which ROIs may be 

important to explore in future neuropathological studies for precision medicine approaches in 

treating AD. The list of ROIs is summarized in Tables 7.1 and 7.2 above. My work is an 

application of data science methods in a new domain: AD subgroups’ differences. The dataset 
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that I worked with was challenging to draw easy conclusions from as it consisted of small 

samples sizes of AD subgroups, imbalanced sizes for the AD subgroups and noise in ROI 

volumes. The biomedical informatics niche of my dissertation work was in implementing 

appropriate mathematical and data science methods to “find the needle in a haystack.” Instead of 

an off the shelf application of data science methods, my work demonstrated a careful assessment 

and implementation of the methods to learn as much as possible from the current data despite the 

challenges of the data, in both cross-sectional and longitudinal datasets. I used different methods 

for analyzing cross-sectional and longitudinal data. In cross-sectional data analysis, I interpreted 

variable importance based on random forest classification models while in longitudinal data 

analysis, I used linear mixed effects modeling of each ROI volume to understand which ROIs 

have the most substantial differences between pairs of AD subgroups. The choices of methods 

were carefully based on the characteristics of data. My work in cross-sectional data analysis may 

be one of the first in documenting classification accuracies for distinguishing between pairs of 

AD subgroups based on ROI volumes from the time of AD diagnosis. These classification 

accuracies could be used as a benchmark in developing better classification models in the future 

for interpreting ROI importance from the models with more confidence. Although there are 

many avenues of improvement in the current work as discussed in the above paragraphs, there is 

a level of confidence in the results I’ve presented. One demonstration of this confidence is that 

my analysis using random forest for cross-sectional data and linear mixed effects modeling for 

longitudinal data pointed at some common ROIs as the most important ROIs for a given 

comparison of AD subgroups at the time of AD diagnosis. My dissertation work is a starting 

point for hypothesis generation of which ROIs may be useful to explore in future 

neuropathological studies for the purposes of understanding AD subgroup differences. I expect 
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the results from this work to get more refined and consolidated as more data may become 

available in the future.  

As a budding scientist who has had the opportunity to work at the intersection of data science 

methods and Alzheimer’s disease data, through my Ph.D. dissertation, I have developed a sense 

of appreciation and excitement for data science and informatics tools to help answer questions in 

AD research. At the same time, I have developed a humble perspective of the limitations of 

many analysis methods in dealing with real-world challenges of biomedical data from an 

ongoing study of individuals with AD. As someone who was provided access to structural MRI 

data and other data from the ADNI study which I used in my dissertation work, I am grateful and 

appreciative of each and every individual who volunteered for their data to be collected in the 

ongoing ADNI study, especially given the cognitive challenges of AD. I am also thankful for the 

many collaborators because of whom I was able to work with the data that I did including 

members of the ADNI project and collaborators at the University of Washington, Indiana 

University and Vrije Universiteit (VU) Amsterdam. I look forward to keeping up with continued 

future work at the intersection of AD subgroups and data science & mathematical methods, and 

hope that my dissertation has served as a good example of this inter-disciplinary work.  
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Appendix A: Supplemental materials (Code and files) 

All code and scripts that I wrote and used in Aim 1 and Aim 2 as well as the supplementary files 

mentioned in this document will be uploaded to the following Github page: https://github.com/sohih 

Supplementary files are also being submitted along with the submission of this document to the 

University of Washington Graduate School. These files include descriptive plots for cross-sectional data 

for all 70 ROIs (Chapter 2), cross-sectional data violin plot distribution comparison plots for pairs of AD 

subgroups for all 70 ROIs(Chapter 3), longitudinal ROI volume trajectories for all 70 ROIs for each of the 

AD subgroups after Part 1 of Aim 2 workflow (Chapter 5).  

Appendix B: Longitudinal data descriptive plots 

Plots showing data availability over time for all six AD subgroups are provided here. 

 

https://github.com/sohih
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