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Abstract 
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Paul T. Edlefsen 

           School of Public Health 

In the past 30 years, HIV vaccine studies on traditional CD8+ T cell-targeted HIV vaccines were 

frustrated by the ineffectiveness of mediating immediate vaccinal interception upon infection 

acquisition prior to the explosive viral amplification. As the most important lesson of past HIV 

vaccine researches, the first hours to days immediately after viral infection might be the only 

vulnerable time period for immunologic interceptions.[1, 2] With this regard, immunologists 

started a novel research on employing Cytomegelovirus (CMV) as vaccine vector in early 2000s, 

to exploit CMV vectors’ unique ability on eliciting and maintaining abundant functional T cell 

responses at all potential HIV infection sites.[3-6] Recent CMV-based vaccine research, 

demonstrated by Louis Picker and colleagues, with statistical support by Dr. Edlefsen, manifests 

a remarkable infection control and clearance on ~50% of HIV-acquired rhesus macaques (RM) 

vaccinated by Simian immunodeficiency virus (SIV) inserted rhesus cytomegalovirus (CMV) 

vaccine.[7, 8] This promising protection pattern motivates further immunologic correlates 

analysis on vaccine efficacy to investigate potential immunological mechanisms of the partial 



protection. As part of vaccine efficacy analysis, this project was conducted to inspect the relation 

between CD4+, CD8+ T cell responses elicited by vaccine and the unique protection outcome 

via interpretability attached machine learning techniques. Interpretability has been regarded as 

the driven feature of this immunologic correlates machine learning process. After stringent data 

screening and statistical modeling along with strategic informatics interpretation, I preliminarily 

identified two immunologic features which correlates with the protection pattern by potentially 

corresponding to formation of germinal centers that act as HIV virus’s shelters.  

Keywords: CMV-based SIV Vaccine, T Cell Immune Responses, Vaccine Efficacy, 

Immunologic Correlates Analysis, Machine Learning, Informatics Interpretation 
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Introduction 

Backgrounds 

HIV/AIDS Interventions 

Acquired Immune Deficiency Syndrome (hereafter referred to as AIDS) which challenges 

immune system has been regarded as incurable infectious disease even under the strongest 

anti-retroviral therapies (ART). [2, 9-11] Since the first official reporting of the AIDS 

epidemic in 1981, 77.3 million people have been diagnosed with AIDS, and 35.4 million died 

of this disease. Although the remarkable decline in new HIV infections and AIDS related 

deaths from 2010 with development of preventive interventions and ART, the mortality rate 

remains high. In 2017, 1.8 million people have been diagnosed with AIDS and about a 

million people died from AIDS-related illnesses. [12] Despite the intensive researches in last 

30 years, established AIDS with the human and simian immunodeficiency viruses (HIV, 

SIV) infection is thought to be only controllable but not reversible. If only standing by 

current traditional ART and preventive interventions, our fight against this virus is far from 

over. [9, 10] With this regard, a new research field employing the cytomegalovirus (CMV) 

for HIV vaccine development, becomes the focus of the Picker Lab at the Vaccine and Gene 

Therapy Institute (VTGI) at Oregon Health and Science University (OHSU) for the recent 

decade. [13-15] As recent researches indicated, implementations of current non-vaccine 

interventions are unsustainable in the long term on a global basis. Although the scope of 

epidemic can be further reduced in a while, non-vaccine interventions are insufficient to 

terminate HIV epidemic by themselves in the next 50 years. [16, 17] However, a moderately 

effective vaccine can greatly enhance HIV prevention. Epidemiologic analysis indicates that, 

after introducing an HIV/AIDS vaccine with 70% efficacy in 2027, we can decrease new 
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HIV infections by over 16 million which is 78% of the annual incidence of new HIV 

infection under best implemented non-vaccine interventions alone.[16] 

Vaccine Design 

The simian immunodeficiency virus (SIV) inserted rhesus cytomegalovirus (CMV) vaccine 

(hereafter referred to as RhCMV/SIV) is being developed by Louis Picker’s group. As 

retroviruses originally infecting African non-human primates, SIV is believed to be the 

original source of HIV-1 and HIV-2, the two human immunodeficiency viruses, by zoonotic 

transmission across the species barrier. [18] The homology between HIV and SIV reduces 

the difficulty of transforming to human version vaccine. Rigorous Simian immunodeficiency 

virus (SIV) vaccine trials on non-human primates provide the most instructive animal models 

to HIV vaccine development. [19] 

From previous researches on HIV infection process, we learned that 1) once the infection 

been established with explosive systemic replication and diversification, the virus is capable 

to escape from the most effective immune mechanisms; [2, 10] 2) once host’s self-immune 

responses been elicited after HIV infection, the HIV sanctuary, such as germinal centers, will 

serve as shelter for HIV virus and sustain the viral infection.[20] Therefore, in-time immune 

interception immediately upon infection acquisition is critical to the vaccine efficacy. 

However, the time window prior to the resilient viral reservoir establishment could be the 

first few hours to days after infection acquisition.[4, 8, 21, 22] This floating time window 

strengthened the requirement of the immediate interception by vaccine. To address this, 

Picker et al started a novel exploration of employing a persistent virus like CMV as vaccine 

vector to elicit immune effector responses in the early 2000s. [2] The CMV vector is able to 

elicit high frequency T cell responses specially to SIV virus entry while it has unique early-
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spread capability which ensures immediate interception on newly infected cells. In the last 10 

years, researches on RhCMV vaccine vectors, which is a rhesus version CMV, achieved 

tremendous progress, including breakthroughs on the unique pattern of RhCMV/SIV and 

RhCMV/TB efficacy in SIV and TB challenge models. Over previous studies on RhCMV-

based vaccine, this group, demonstrated an overview that, 1) the immunogenicity and 

protective capacity of RhCMV-based vaccine is sustainable for many years without 

decrement; 2) the spread of RhCMV virus can be suppressed in vivo by some modifications 

without loss of immunogenicity or efficacy;[23] 3) human CMV (HCMV) vector 

homologues of the spread-deficient RhCMV maintain similar spread inhibition in humanized 

mice and monkeys and are capable to elicit durable effector responses in such cross-species 

administration; 4) large parts of the RhCMV genome can be discarded to include at most 6kb 

of exogenous antigen inserts in 3 different sites; 5) modified RhCMV vectors with multiple 

inserts can maintain equivalent immunogenicity function by using endogenous promoters; 6) 

RhCMV vaccine will take effect on all immunological environment no matter the present of 

immune memory from previous CMV infection. This ubiquitous pathogenic feature ensures 

effective revaccination with HIV-inserted CMV vector. [8, 21, 24, 25] 

Study Innovation 

From Picker et al previous study on immune clearance of highly pathogenic SIV infection, 

they have reported that about 50% (60 out of 113) rhesus macaques (hereafter referred as 

RM) vaccinated with SIVmac239 inserted strain 68-1 RhCMV vectors manifested durable 

control and progressive clearance of the highly pathogenic SIVmac239 infection.[7, 8] After 

50-70 weeks post infection acquisition, no significant virologic and immunologic distinctions 

can be distinguished by stringent comparison between protected monkeys and the monkeys 
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that have never been exposed to SIV. Even the ultrasensitive RT-PCR and PCR analysis did 

not detect singular SIV RNA or DNA in necropsied protected-RM tissues from week 69 to 

week 172. In addition, no replication-capable SIV was detected in extensive co-culture 

analysis or adoptive transfer of 60 million hematolymphoid cells to healthy RM. With these 

promising data, this study made a remarkable conclusion that the pathogenic SIV infection 

has been functionally cured in RhCMV/SIV vaccine-protected RMs. [8, 24] For the ~50% 

protected RMs, RhCMV/SIV vaccine provides the first immune-mediated functional cure of 

a lentivirus leading to AIDS. If this vaccine efficacy were translated to a homogenous HIV 

inserted human version CMV vaccine, the “control and clear” protection pattern could 

dramatically enhance HIV prevention. Based on this, a Phase I clinical trial for safety and 

immunogenicity tests on a prototype spread-deficient (Dpp71) Human (H) CMV/HIVgag 

vector has been started in early 2017.[23] 

To achieve the clinical translation, we need to develop both immunogenicity-optimized and 

efficacy-optimized HIV vaccine. The blindness of the immunologic basis of protection vs. 

non-protection in RM seriously hampers the CMV vector platform optimization. In order to 

strategically modify the translated 2nd generation CMV vector, a better understanding of 

qualitative and/or quantitative immune correlation of protection, which maps out the 

immunologic mechanisms corresponding to virus clearance process, is demanded to guide 

clinical development. According to the biological evidences from previous RhCMV/SIV 

studies, the ~50% protection outcome is related to the high frequency of differentiated T cell 

responses at early infection sites.[4, 21, 26-29] Besides, in 2017, Louis Picker et al. 

demonstrated that the protection outcome is associated to unconventional SIV specific CD8+ 

T cell responses which recognize unique epitope restricted by Major Histocompatibility 
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Complex (MHC)-II or MHC-E molecules.[6, 30-34] According to these immunological 

evidences, T cell responses profiling is potential to illustrate the immunological basis of 

protection mechanisms. Therefore, one initial task of vaccine efficacy optimization is to trace 

the cellular T cell immune responses and identify some immunologic correlates 

corresponding to high/low efficacy outcome. Statistical modeling combined with informatics 

interpretation can efficiently exploit high dimensional immune responses data and provide 

immune correlates candidates to assist wet laboratory efficacy analysis. With this regard, my 

study was designed to assist vaccine efficacy optimization by producing interpretable 

machine learning conclusion on the immune responses dataset. The primary goal of this 

project is to address whether the frequency of CD4+ and CD8+ T cell responses specifically 

elicited by RhCMV/SIV vectors at different time periods, are likely to have specific 

functionality and correlate with protection outcome. With an immune response dataset 

recording the frequency magnitudes of T cell CD4+ and CD8+ responses which are 

specifically elicited by four SIV genes at three time periods, the rationale for the study design 

is to statistically model the immune response features to the protection outcome and 

determine whether we can identify significant immunological features predicting protection 

outcome. The results from this study will strongly help to demonstrate whether the unique 

protection pattern is mediated by these CD4 and CD8 T cell responses or by other vaccine-

associated parameters which we have not identified and measures. Additionally, the potential 

identification of immunologic correlates will provide immunogenicity target for human 

vaccine design. In order to provide interpretable model illustrations to immunologists 

collaborators, the information interpretability has been regarded as an important and driving 

feature of the machine learning approaches design in this study. 
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Methods 

Data Collection Methods 

Flow Cytometric Intracellular Cytokine Analysis 

The immune response data used in this project was collected by cytometric intracellular cytokine 

staining analysis (ICS), as described by Hansen SG, et al. [8, 21], on SIV-specific CD4+ and 

CD8+ T cell responses measured in blood. The ICS analysis, which marks target cells by 

intracellularly staining the cytokines of the target cells using anticytokine antibodies, is the most 

common version of the cytokine flow cytometry (CFC).[35] The method produces incidence 

percentages of specific T cell responses to each of the 4 SIV genes (GAG, RTN, POL, ENV) as 

ICS magnitudes. These ICS measurements were taken over a time course beginning prior to 

vaccination and continuing through two vaccine administrations (prime and boost) and through 

the day of challenge and beyond. Here, Picker Lab provided the data that were pre-summarized 

into the three time periods of interest: highest immune response magnitudes post-1st  vaccination 

and prior to the boost; the highest response after the boost and before challenge; and the average 

of three baseline responses at the moment just prior to challenge. As shown in table 1, the Picker 

lab also provided some additional monkey covariates including sex, as well some additional 

combinations of the 24 basic summary measures. 
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Immune Correlates Data Components 

Immunologic Response Parameters 
(62 features) 
Key Components:  

4 genes:  
GAG, RTN, POL, ENV;  
3 time periods:  
prime, boost, pre-challenge;  
2 T cell types:  
CD4+, CD8+ 

1. Actual Responses: (24 features)  
Four genes * three time periods * two T cell types.  

2. Largest Peak Set: (8 features)  
Largest values over 3 time periods for four genes in two 
T cell types.  

3. Ratio Set: (8 features) 
Two ratios (CD4/CD8, CD8/CD4) for four genes.  

4. Addition Set: (22 features) 
Additive responses over 4 genes of 3 time periods.  

Meta-parameters study: factor variable of 6 study IDs;  

RM: factor variable showing 113 Rhesus Macaque IDs;  

sex: binary factor variable of monkey sex (male & female);  

Vector(s): factor variable of vaccine versions;  

Insert(s): factor variable of extra vaccine modifications. 

Table 1. Immunologic Parameters Matrix. 

Unsupervised Screening Methods 

Principle Component Analysis 

With development of wet laboratory technologies in immunology, we can collect data on more 

features easily and economically. Although in this project, the 24 features on immunological 

response are not as much as, for example, genetics data which has over thousands features, this 

immune correlates database can be regarded as high dimensional data. Abundant features enable 

comprehensive immunological response modeling. However, the high dimensional data 

challenges statistical power in modeling analyses. Therefore,  identification of an effective way 

to construct the 24 features to best reveal the structure that explains the variance in the data is 

demanded.  

Principle component analysis (hereafter referred to as PCA) which identifies the variability basis 

of the data, is the best match corresponding to this data processing motif. [36] The PCA process 

contains 2 major steps: 1). Standardizing initial data by mean centering and computing Z-scores 

of the population (or t-statistics of sample observations) to obtain zero empirical mean average 
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and Var(X)=1 of each variable. 2). Eigenvalue decomposition of data correlation (EVD) or 

singular value decomposition of a data matrix (SVD) by orthogonal transformation to obtain 

distinct principal components which are linearly uncorrelated.[36, 37] In this project, I 

performed PCA process simply by using prcomp and princomp built-in functions from R 

package stats.[38, 39] Both prcomp and princomp functions performs PCA by singular 

value decomposition. Whereas, princomp operates R-mode PCA which handle the data with 

at least as many observations as features. While the Q-mode PCA by prcomp relaxes the 

requirement on observation size, which offers an option for analyses on small sample size. [39, 

40] Although the immune correlates data is in R-mode with 24 features of 113 monkeys, 

considering the moderate observation size, I applied both prcomp and princomp to ensure 

valid PCA.   

ICS Magnitudes Linear Regression 

The goal of this linear regression analysis on all ICS magnitudes is to determine whether the 2 

variables/variants, time period and T cell types, can explain  the variation in log10 ICS 

magnitudes of the original ICS magnitudes. Achievement of this goal will provide evidence to 

affirm the importance of time period and T cell type which were primarily reflected by the first 2 

PCs as described in main text of results.  

As a start, the original data matrix was reconstructed to a new data frame of all ICS magnitude 

with several ICS variants as labels in column. After data reconstruction, for the whole ICS data, 

there are 6 ICS variants which are time period (prime, boost and pre-challenge), T cell type 

(CD4+ or CD8), genes (GAG, POL, RTN and ENV), sex (male and female), study (6 study 

cohorts) and RM (monkey IDs). Five models are generated from linear regressions on different 

ICS variant combinations. Then, the model evaluation results of the 5 models could reveal that 
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whether the linear regression model with only time period and T cell response variants could 

describe the original feature matrix better than the other models.  

Hierarchical Cluster Analysis (HCA) 

Hierarchical cluster analysis (HCA) is an unsupervised clustering process to group observations 

according to the internal hierarchy by a certain measure of dissimilarity. [41] In general, HCA 

has 2 branches: agglomerative HCA and divisive HCA. The first one starts from separate 

features and converge feature-pairs by hierarchical similarity until all features merged in one 

cluster. The second one produces a dendrogram starting from one cluster with all features and 

divisively split until reaching every single feature. In this study, I performed agglomerative HCA 

by hclust function in R package stats. [38, 39] In terms of dissimilarity measurements 

selection, I followed Ward’s minimum variance method to avoid resulting in dendrogram with 

reversals which are hard to interpret. [42] The Ward’s minimum variance method can be 

conducted in hclust function by selecting ward.D2 as method. [39] In this study, HCA is 

served as a complementary visualization tool to previous PCA results. After acquisition of 

dendrogram, in order to check the consistency between PCs and hierarchical clusters, I labeled 

all leaves in dendrogram by time period (prime, boost or pre-challenge), T cell type (CD4+ or 

CD8) and genes (GAG, POL, RTN or ENV) and inspected whether the upper hierarchy of leaves 

corresponding with certain labels. 

Logistic Regression 

Multiple generalized linear regression analysis, with the goal to predict a single binary outcome 

by multiple independent variables, is commonly used for infectious disease modeling.[43] The 

greatest challenge of statistical modeling on this comes from that, the binary or categorical 

outcome do not carry intuitive numerical meanings in themselves. Logistic regression models 
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binary outcomes as odds which are numerical from 0 to 1.[44] In short, logistic modeling on 

binary outcome is to predict the probability of a random object having or not having the outcome 

in condition of other independent variables.[44] In this project, I applied glm function in R 

package stats to build logistic regression models.[38]  

LASSO  

LASSO is regarded as the major feature selection methods for statistical modeling 

preparation.[45] Unlike unsupervised feature selection methods by inspecting on features 

directly, like PCA and clustering, LASSO is a penalized regression which accomplishes feature 

selection by identifying best model with a penalty term for the number of independent variables 

with non-zero coefficients. It might be more intuitive to regard LASSO as a model evaluation 

process which results in feature selection.  

Intuitively speaking, when we try to describe an object, using more features will give a more 

comprehensive description of the object. However, this is not fairly tenable for statistical 

modeling practice with moderate sample size. In order to hold certain statistical power, larger 

sample size with sufficient observations is required as a recompense of taking in more 

independent variables. With this regard, the goal of model evaluation process can be concluded 

as identifying certain amount of correlated features which can describe outcome 

comprehensively and concisely. LASSO is a model fitting evaluation tool by penalizing extra 

features in the model. There are two most commonly used methods called Elastic Net 

regularization and least-angle regression (LARS), which overcome shortcomings from original 

LASSO’s stiff penalty.[46, 47] To increase prediction accuracy on samples with small 

observations, Zou and Hastie introduced elastic net regularization which modifies original 

penalty by adding an additional ridge regression like penalty in 2005.[48] Another method, 
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LARS, adds least-angle regression like penalty to make LASSO performance more stable.[47] In 

this project, both LASSO methods have been applied in modeling analyses through glmnet and 

lars R packages.[49, 50] 

Model Evaluation/Selection Methods 

Analysis of Variance (ANOVA) 

The role of analysis of variance (hereafter referred to as ANOVA) is to evaluate the statistical 

significance of additional variables added to a statistical model.[51] In detail, with several 

models with different sets of variables, ANOVA can be used to select the best model through the 

judgment of whether adding in an extra variable results in significant alteration of variance 

described by the model. In this project, I conducted ANOVA on linear regression model 

selection and logistic modeling selection by using anova function with likelihood ratio test (LR 

test) in R package stats.[38] In the one-way ANOVA table computed by this anova function, 

the P values of additional variables added to the null hypothesized model can be used to 

determine the significance of the variable, hence whether the variable should be included.  

Akaike Information Criterion (AIC) 

Besides ANOVA, Akaike information criterion is a specialized indicator of model quality from 

information representation aspect. When estimating model quality, AIC considers the model 

simplicity and information lost rate at the same time. With AIC score of each model, we can 

determine the relative information lost rate for model A by calculating exp(AICmin-AICA)/2).[52] 

In this project, AIC was conducted on linear regression model selection and logistic modeling 

selection by using AIC function in R package stats.[38] 
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Results 

1. Data Preparation 

1.1 Data Separation 

From laboratory RhCMV/SIV challenge studies, Louis Picker and his colleges have created 

an immune correlates matrix which served as the database for statistical analysis in this 

project. By flow cytometric intracellular cytokine staining analysis (hereafter referred as 

ICS), the CD4+/CD8+ immune responses were measured at 3 time periods on 4 SIV-specific 

antigens, GAG, RTN, POL and ENV.  In detail, the 3 time periods are prime (upon first 

immunization), boost (upon second immunization) and pre-challenge (right before week 59 

after post-initial vaccination). Interpretation of the ICS magnitudes collected in data is the 

incidence percentage of specific CD4+/CD8+ immune responses. Typically, the ICS 

magnitudes of prime and boost time periods are the monkey specific peak response by 4 

antigens. The ICS magnitudes of pre-challenge are the monkey specific average response by 

4 antigens. In total, the data recorded 62 immunologic response parameters, 5 meta-

parameters and challenge outcome data of 113 monkey samples (Table 1.). 
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Immune Correlates Data Components 

Immunologic Response Parameters 
(62 features) 
Key Components:  

4 genes:  
GAG, RTN, POL, ENV;  
3 time periods:  
prime, boost, pre-challenge;  
2 T cell types:  
CD4+, CD8+ 

5. Actual Responses: (24 features)  
Four genes * three time periods * two T cell types.  

6. Largest Peak Set: (8 features)  
Largest values over 3 time periods for four genes in two 
T cell types.  

7. Ratio Set: (8 features) 
Two ratios (CD4/CD8, CD8/CD4) for four genes.  

8. Addition Set: (22 features) 
Additive responses over 4 genes of 3 time periods.  

Meta-parameters study: factor variable of 6 study IDs;  

RM: factor variable showing 113 Rhesus Macaque IDs;  

sex: binary factor variable of monkey sex (male & female);  

Vector(s): factor variable of vaccine versions;  

Insert(s): factor variable of extra vaccine modifications. 

Table 1. Immunologic Parameters Matrix.  

The immunologic correlates response matrix originally has 62 immunologic response 

features. However, only the first 24 features are actual T cell responses which contains CD4+ 

and CD8+ responses of 4 genes at 3 time periods. The rest features are computed features 

from the first 24 actual T cell response features. The data providers clarified that, the last 3 

sets which record some combinations of the actual responses, are some alternative forms of 

immunologic responses for their tentative analyses. According to definitions of the last 3 

computed sets in Table 1, the addition set and the largest peak set are sum and maximum of 

the actual response set respectively. The computed features in the last 3 sets are perfectly 

multi-collinear to the actual response features. Features with these collinearities are statistical 

covariates which will potentially break statistical rules if including them together in later 

machine learning tools. Given this, correlates analyses should be conducted only on one set 

at a time to secure not breaking any statistic rules. 

For this study, as a preliminary modeling analysis on these immunologic responses, later 

machine learning would start on the 24 actual response features to check whether these basic 
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response values can reveal statistical significant correlates to the unique protection outcome. 

Table 3 summarized all features used for later immune correlates analysis in this study. From 

this standpoint, intuitive collinearities from definitions in raw data have been cleaned by data 

separation.  

Study Data Components 

 
24 Immunologic Response 

Features 
Dimension: 

Four genes *  
three time periods *  

two T cell types. 

GAG_Prime_CD4+, RTN_Prime_CD4+, POL_Prime_CD4+, 
ENV_Prime_CD4+ 
GAG_Prime_CD8+, RTN_Prime_CD8+, POL_Prime_CD8+, 

ENV_Prime_CD8+ 

GAG_Boost_CD4+, RTN_Boost_CD4+, POL_Boost_CD4+, 
ENV_Boost_CD4+ 
GAG_Boost_CD8+, RTN_Boost_CD8+, POL_Boost_CD8+, 

ENV_Boost_CD8+ 

GAG_PreC_CD4+, RTN_PreC_CD4+, POL_PreC_CD4+, 
ENV_PreC_CD4+ 
GAG_PreC_CD8+, RTN_PreC_CD8+, POL_PreC_CD8+, 
ENV_PreC_CD8+ 
(PreC: pre-challenge time period) 

 

Meta-parameters 

study: factor variable of 6 study IDs;  

RM: factor variable showing 113 Rhesus Macaque IDs;  

sex: binary factor variable of monkey sex (male & female);  

Vector(s): factor variable of vaccine versions;  

Insert(s): factor variable of extra vaccine modifications. 

Table 3. Study Data Summary 

1.2 Balanced Data Partition 

In preparation for later machine learning and according to relatively small sample size, the 

immune correlates matrix was split to training and test sets in 80% and 20% divisions. 

Although impacts from the 4 meta-parameters (sex, study IDs, vaccine insert and challenge 

route) are not clear, statistical modeling in this study was designed to target on the 

quantitative immunologic response parameters and determine whether they are likely to 

specifically correlated with protection. Thus, to ensure consistency of training and test sets, I 
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balanced the 5 meta-parameters by conducting stratified random sampling in R. As a result, 

training and test datasets have consistent distribution as original data; hence, have balanced 

the 5 meta-parameters and protection outcome. After this step, the test set data was reserved 

and all statistical analyses were conducted on training data set until model validation.  

1.3 Data Quality Check 

Data quality considerations originate from the nature of sampling and go beyond data 

cleaning and transformation.[53] In regard of this, I looked back to check on biological 

laboratory settings which determined the nature of data sampling and screened the 

immunologic correlates matrix to check whether the outcome condition and observation 

distribution are good for later statistical tools to produce qualified results.  

When looking at the ~50% protection outcome condition, correlates identification on this 

database would attain the greatest statistical power because of the ideal balance between 

protected and non-protected outcomes. In terms of some separated analysis on extreme study 

cases in which vaccination was perfectly, or nearly, efficacious (like study 179), the 

statistical power will diminish but potentially stay high to recognize correlates under the 

hypothesis that there is a measured immunologic response value that differentiate protected 

monkeys from non-protected monkeys. 

In terms of data distribution, many statistical tools prefer data normally distributed. First, I 

checked the original distribution of each feature across all observations. Since pre-challenge 

data does not have the same ICS range as prime and boost, I plot pre-challenge data 

separately. (Figure 1,2) In general, the original distribution is left skewed and has a long right 

tail. I determined to transform the data to log10 scale. After log10 transformation, the data 

produced normal distributions. (Figure 3,4) 
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Figure 1. Original Distribution on Prime and Boost Features across All Observations.  

On this plot, I overlapped 12 histograms for 6 prime features and 6 boost features. Each histogram 

shows distribution of the 113 observed ICS values of one feature.  

 

Figure 2. Original Distribution on Pre-challenge Features across All Observations 

On this plot, I overlapped 6 histograms for 6 pre-challenge features. Each histogram shows 

distribution of the 113 observed ICS values of one feature. 
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Figure 3. Log10 Transformed Distribution on Prime and Boost Features across All Observations 

On this plot, I overlapped 12 histograms for 6 prime features and 6 boost features. Each histogram 

shows distribution of the 113 observed log10 transformed ICS values of one feature. 

 

Figure 4. Log10 Transformed Distribution on Pre-challenge Features across All Observations 

On this plot, I overlapped 6 histograms for 6 pre-challenge features. Each histogram shows 

distribution of the 113 observed log10 transformed ICS values of one feature. 
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1.4 Pairwise Correlation Visualization 

In this visualization process, I traced the correlations between each pair of the 24 features by 

calculating pairwise Pearson correlation coefficients, and visualizing linear/non-linear 

correlation type in pairwise scatterplots.  

After calculating Pearson scores for each feature pair, I visualized correlations by correlation 

heat map. (Figure 5.) The heat map intuitively suggested 2 correlated regions: features in 

right up corners and features in left down region. These 2 regions actually corresponding to 

CD4+ and CD8+ segregation. With this suggestion, I plot Trellis plots for these 2 regions to 

further visualize the correlation scores and linear/non-linear correlation types. (Figure 6,7)  

First, inspection on Pearson correlation scores could serve as a further collinearity check 

inside the 24 features. In result, correlation scores in right upper panel suggested that feature 

pairs with high correlation scores should not be included in one model for later modeling 

analyses. In general, considering the inevitable biological relationship among these T cell 

immunologic responses, although some feature pairs’ Pearson correlation scores are 

relatively high, it is tolerable to try transformation and later linear modeling coefficients 

interpretation on the 24 features.  

Second, I used the scatter plots in left down panel to inspect the linear/non-linear correlation 

types which could suggest whether this data need other transformations. As a comparison, I 

also plot same trellis plots for original data without log10 transformation. (Figure 8,9) In 

result, pairwise correlations are linear in general. Given this result, this data does not need 

other transformations. Starting from this point, the data with 24 immunologic response 

features is statistically ready for actual correlates analysis. 
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Figure 5. Correlation Heat Map for 24 Features.  

This figure shows pairwise correlation of 24 features according to Pearson correlation scores. The 24 

features were reordered by correlation hierarchy. This heat map intuitively suggested 2 correlated 

regions: right up corner and left down corner. (note: abbreviation prec refers to pre-challenge time 

period.) 
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Figure 6. Trellis Plot for Log10 Transformed CD4+ Features 

This trellis plot gives names of Cd4+ feature in diagonal, along with histogram of each feature. The 

right upper panel of this plot shows pairwise Pearson correlation scores. The increase of score’s font 

size indicates increase of correlation strength. Pairwise scatter plots with LOESS lines in red were 

plotted in left down panel, which show linear/non-linear correlation types. 

 



 21 

 

Figure 7. Trellis Plot for Log10 Transformed CD8+ Features 

This trellis plot gives names of Cd8+ feature in diagonal, along with histogram of each feature. The 

right upper panel of this plot shows pairwise Pearson correlation scores. The increase of score’s font 

size indicates increase of correlation strength. Pairwise scatter plots with LOESS lines in red were 

plotted in left down panel, which show linear/non-linear correlation types. 
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Figure 8. Trellis Plot for CD4+ Features (no transformation) 

This trellis plot gives names of Cd4+ feature in diagonal, along with histogram of each feature. The 

right upper panel of this plot shows pairwise Pearson correlation scores. The increase of score’s font 

size indicates increase of correlation strength. Pairwise scatter plots with LOESS lines in red were 

plotted in left down panel, which show linear/non-linear correlation types. 

 

Figure 9. Trellis Plot for CD8+ Features (no transformation) 
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This trellis plot gives names of Cd8+ feature in diagonal, along with histogram of each feature. The 

right upper panel of this plot shows pairwise Pearson correlation scores. The increase of score’s font 

size indicates increase of correlation strength. Pairwise scatter plots with LOESS lines in red were 

plotted in left down panel, which show linear/non-linear correlation types. 

2. Unsupervised Feature Selection and Feature Reconstruction 

2.1 Unsupervised Screening Overview 

With the known RhCMV vector anti-viral mechanisms from previous studies by Louis Picker 

et al [7], T cell responses magnitudes collected in the data used in this project might not be 

sufficient or symptomatic to identify correlates to the outcome. With regard of the potential 

hardship of statistically identify immunologic correlates from this database, a better 

understanding of the features in data is demanded to help decrease noises, detect useful 

hidden information, exclude potential factors to cause models to fail and thus, increase the 

possibility of identifying correlates by later modeling. Such an understanding was expected 

to achieve four-fold goals: 1) to determine latent structures inside these features; 2) to check 

whether there are redundant features which can be deducted to reduce dimension; 3) to check 

whether there are new forms of these features to better reflect the biological meaning of the 

known RhCMV vector anti-viral mechanisms; 4) in the whole process, to prevent introducing 

subjective errors by including outcomes.  

Given these expected goals, a thorough unsupervised data screening on features matrix 

would be the best match with following considerations. First, unsupervised learning allows 

objective analysis purely on features without influences of the outcome, hence accomplishes 

the fourth goal. Besides, from its exploratory nature, unsupervised learning usually does not 

have specific single goal, which fits the expectation to understand the feature matrix broadly. 

I conducted data variability basis check by principle component analysis followed by 
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principle components interpretation. The intuition of doing principle components 

interpretation is to identify the original features in the first few principle components and 

conduct feature pre-selection on original features scale. Although using the first few principle 

components is another way to pre-select features, using original features to conduct a PCA-

guided dimension deduction is a better way to attach biological meaning to the statistical 

results.   

2.2 Principle Component Analysis 

After performing principle component analysis (hereafter referred as PCA) on the original 

strata by princomp function in R, the 24 original immunologic features were converted 

into 24 linearly uncorrelated principle components (hereafter referred to as PCs) by 

orthogonal transformation algorism.[54] The PCs, sorted by large to small proportion of 

variance explained by reach PC, were generated by an orthogonal basis set which is a linear 

combination of original features across all monkey sample (Figure 10.). It was promising that 

more than 59.1% of the data’s variability came from the first 2 PCs.  

 

Figure 10. Statistics of Principle Components 
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This figure is the R output using princomp function. PC refers to principle component here 

which are sorted by large to small proportion of variability explained. The cumulative 

proportion shows cumulative proportion of variance explained by previous PCs.  

Moreover, according to the bi-plot of PC1 and PC2 (Figure 11.), two groups of eigenvectors 

segregated by T cell types (CD4+ and CD8+) are almost orthogonal to each other, which 

indicates that T cell type acts as a major impact from the original 24 features on the first 2 

PCs. Besides, as the black boxes circled in Figure 11, eigenvectors of one time period gather 

together for CD4+ features. This result suggests that most variability of the 24 features is 

from T cell type and time period. With this suggestion, I attempted to confirm this 

association by following PC interpretation analysis.    
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Figure 11. PC1, PC2 Biplot 
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This bi-plot displayed all 113 observations as black dots with eigenvectors of the 24 features as blue 

arrows, on PC1 and PC2 scale. The eigenvectors are gathered in two main directions, which segregate 

eigenvectors of 2 T cell types. The arrows pointing down left corner are all CD8+ eigenvectors and 

the arrows pointing up left corner are all CD4+eigenvectors. Moreover, circled by 3 black round 

boxes, CD4+ eigenvectors are segregated according to the 3 time points.  

2.3 Principle Components Interpretation 

With the suggestion from PCA, I determined to further inspect whether the 3 time periods 

and 2 T cell types are corresponding to the first 2 principle components, thereby are able to 

act as new features which deduct genes in the original features. Inspection on this is 

worthwhile since, once determined such correspondence, the data would not only reduce 

dimension largely and likely to gain more power on later statistical modeling analysis with 

less features, but also would reserve the same interpretability as original features. One way to 

transcribe this inspection to statistical language is to determine whether the time period and T 

cell type as 2 factor variables, can estimate the whole variability of the original ICS 

magnitudes with certain statistical power. The statistical method I selected here to check the 

ability of estimation is to linear regress all ICS magnitudes which contain all original 

variance, to 1). the two 2 factor variables (time period and T cell type); 2). the two factor 

variables plus factor variable of genes; 3). the two factor variables, factor variable of genes 

plus other meta-features which might contribute to ICS variance. Then, by model selection 

process based on fitting precision, this method would check whether the linear regression 

model with only time period and T cell type could describe the original feature matrix better 

than the other models including other variants like genes (GAG, POL, RTN and ENV), sex 

(male and female), study variable (6 study cohorts) and RM variable (113 monkey IDs). 

Similar to that PCs are principle eigenvalues of the whole data, the features included in the 
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best model are the principle features which best describes ICS magnitudes variability. 

However, these principle variables nominated by linear regression are on original feature’s 

scale but not on orthogonal transformed scale. In brief, the new principle component analysis 

on original feature’s scale by linear regression is a good attempt to enable interpretations.  

The dataset used in this analysis unfolds all log10 transformed ICS magnitudes (2713 rows) 

of 7 factor variables (7 columns). (Table 4) This dataset was reshaped from the original 24 

features data in order to extract factor variables of time period, T cell type and genes. 

Considering that both study (factor variable referring 6 different studies) and RM (monkey 

IDs) express the individual specificity, they are perfectly collinear which would break the 

linear regression algorism. Since the effect from studies is more problematic than monkey 

effect, I included only study but excluded RM in later linear regression process. I built 5 

linear models after linear regressed the ICS magnitudes on different combinations of 

variables. Then, I conducted model selection by AIC assessment and ANOVA F-test 

evaluation.  

During this process, I noticed that there is a trend in log10 ICS values across 6 studies (study 

variable). However, from the laboratory standpoint, there should not be any trend across 

studies since all studies are expected on the same scale. This suggested that the trend in 

primate cohort need to be normalized by some normalization methods. Since this 

normalization is not expected in the study mainline, I discussed and attempted study trend 

normalization in discussion part of this paper. Due to this uncertainty in study variable, for 

following linear regression analysis, I decided to exclude the Model 5 which involves study 

variable.  
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Table 4. Linear Regression Data Matrix 

Descriptions on columns: Log10(ICS) is a continues quantitative variable including all log10 

transformed ICS magnitudes (2713 rows); Time Period is a factor variable with 3 levels (prime, boost 

and pre-challenge); T cell type is a factor variable with 2 levels (CD4+ and CD8+); Genes is a factor 

variable with 4 levels (GAG, RTN, POL, ENV); Sex is a factor variable with 2 levels (male, female); 

study is a factor variable referring to different studies with 6 levels (6 studies); RM is a factor variable 

referring monkey IDs with 113 levels (113 monkeys). 

First, from the AIC score in Table 5, excluding model 5, the model 4 with minimum AIC is 

the best model to minimize the information loss. Besides direct inspection on AIC scores, I 

assessed the information loss minimization ability of the models by calculating their AIC 

statistics using formula exp((AICmin-AICi)/2).[52] All of AIC results were recorded in Table 

5. From AIC statistics which suggest the probability that model X can minimize information 

loss as well as the best model, none of the other four models are close to the best model.[52] 

However, the big AIC jumps occurred at adding the first 3 variants which are time period, T 

cell type and genes, indicated by a line chart of AIC distinction between the models pairs. 

(Figure 12.) In result, indicated by AIC assessment, 1). the best model should keep all 4 

variables in sake of less ICS information loss; 2). among the 6 variants, the time period, T 

cell types and genes bring in most variances. In other words, from AIC assessment, not only 

time period and T cell type, but also genes, stand out from the original features, which is 

inconsistent with PCA analysis where genes were not condensed by eigenvectors.  
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 Model 1 Model 2 Model 3 Model 4 Model 5 

Features 
Included 

+time period 
  

Model 1  
+ T cell Type  

Model 2 
+ gene 

Model 3 
+sex 

Model 4  
+study 

*AIC score 1774.0 1654.0 1608.8 1604.5 --- 

**AIC statistic 

(Comparing all 

models) 

2.44e-74 3.18e-22 1.36e-2 1 --- 

** pair-wise  

AIC statistic 

distinction 

7.67e-53   

            --- 
 

2.34e-20  

 1.36e-2 

Table 5. Test Models Descriptions and AIC Summary 

Note: The Model 5 has been excluded from this analysis since the normalization issue in study variable.  

This table collected AIC score and computed AIC statistics. The model with minimum AIC score is the 

best model with least information lost under penalty of the amount of variables included in the model. AIC 

statistics suggest the probability that model X can minimize information loss as well as the best model. The 

pair-wise AIC statistics showed the degree of changes between model pairs.  

 

Figure 12. AIC Trend 
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This plot intuitively shows big AIC drops happens at adding time period variable, adding T cell type 

variable and adding gene variable.  

Second, according to ANOVA table (Figure 10.), adding of all the 4 variables can significantly 

optimize the model, although sex showed relative modest significance. This result indicates that 

all of 4 variables represent important ICS variability. 

 Zero Model Model 1 Model 2 Model 3 Model 4 

Features 
Included + constant Zero Model 

+ time period 
Model 1 

+ T cell Type  
Model 2 
+ gene  

Model 3  
+ sex  

Degree of 
Freedom (Df) 2711 2709 2708 2705 2704 

Degree of 
Freedom Loss 

2   
  1  

  3 
   1 

F values 

578.69   
  127.09  

  17.21 
   6.31 

P values 

<2e-16***   
  <2e-16***  

  4.546e-11*** 
   0.012* 

Table 6. ANOVA Table. 

This ANOVA table records results of sequential ANOVA F tests on Model 1 to Model 4. The NULL 

model for each ANOVA F test is the previous model in sequence. The P values shows the probability 

of seeing current model is not better than previous model.  

Overall, the linear regression analysis pointed out that to best describe variability in ICS 

magnitudes, all of the 3 time period, 2 T cell type and 4 genes which are actually all 24 

features, should be included into the model. Nonetheless, time period and T cell type are the 

two features strongly suggested by the first 2 PCs. Although this linear regression analysis 
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introduced genes as another significant feature, the result of this linear regression validate 

again that time period and T cell types are important. In purpose of feature pre-selection for 

later modeling, I will try both including all 24 features to model and including only time 

period/T cell types to model. 

3. Statistical Modeling  

3.1 Modeling Description 

I involved in protection outcome for later analyses start from this point. The overall goal of 

statistical modeling is to determine whether the quantitative immune response parameters, 

pre-selected by preceding unsupervised analysis, are likely to specifically correlate with 

protection outcome, and if possible, to interpret the correlation to help biologists determine 

the kinetics of CMV/SIV vector-mediated protection and validate the sequential attenuate 

vaccine design. To accomplish this goal, I conducted 2 modeling analyses on different 

variable sets. The first modeling analysis includes all 24 features, as indicated from previous 

ICS magnitudes linear regression analysis. The second modeling analysis was conducted on 

less redundant variables to better detect hidden correlates. With the suggestion on time period 

and T cell type from PCA, this second modeling analysis excluded genes but only included 6 

response features on 2 T cell types across 3 time periods . After determined the candidate 

model, preliminary model inspection and model validation were conducted. At the stage of 

model inspection, biological meanings were attached to each correlate to evoke further 

discussion on interaction analysis and model interpretation.  
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3.2 First  Modeling Analysis 

3.2.1 Feature Selection  

Regarding to that our ICS data has binary protection outcome and multi-independent 

variables, logistic regression is the first modeling option. The traditional logistic regression 

method has a widely recognized limitation on sample size, which is called the “one in ten 

rule”.[55] This rule demonstrates that a minimum of 10 events per explanatory variable 

(EPV) is required to stabilize prediction accuracy of logistic regression models. The one in 

ten rule is the primary limitation to avoid risk of overfitting in logistic modeling, which can 

be upgraded to “one in 20 rule” or “one in 50 rules” under stricter statistical power 

restriction.[55] Although recent studies attempt to prove relaxing this primary rule, 

breakaway from it will bring in more limitations on research questions. For our 1st modeling 

trial, with 24 explanatory variables under 50% protection proportion, logistic regression 

requires at least 10*24/0.5=480 observations to limit over-fitting risks in the sense of one in 

ten rule while we only have 91 monkeys in training data. With this regard, prior to logistic 

regression, I conducted least absolute shrinkage and selection operator (LASSO) on the 

original 24 features for feature deduction with the aim to select at most 3 features. In terms of 

LASSO methods selection, both least-angle regression (LARS) and Elastic-Net method 

(glmnet package in R) are capable to our data since the variables do not need specialized 

LASSO penalty. Moreover, this modeling analysis incorporates semi-supervised clustering as 

a complementary visualizing procedure to validate logistic regression modeling result.  

3.2.2 Model Fitting Results 

To conduct LASSO analysis, I first used lars package in R to perform least-angle regression 

function with internal cross validation (hereafter referred to as CV-LARS). For each step 
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adding in one variable, the LARS function provides a corresponding Mallows’s Cp statistic. 

The smaller Mallows’s Cp indicates relatively the more precise model. From CV-LARS Cp 

plot (Figure 13.), Cp value increases from the beginning. In other words, the smallest Cp is 

obtained at adding in the first variable. This extreme trend of Cp values indicates that none of 

the 24 features are necessary for a good prediction of the outcome under LARS function. As 

a complementary attempt, I conducted LASSO again by Elastic-Net method using R’s 

glmnet package. Similar to LARS, the glmnet plot (Figure 14.) suggested to include 0 feature 

into the model. Drawn from these results, it can be concluded that none of variables are 

worth to logistic regression modeling. There are two potential reasons behind this LASSO 

result: first, there is no actual relations between outcome and time period/T cell type/genes; 

second, there is actual relations but the relations could not be detected due to unknown 

internal structure pitfalls such as confounding, of the original 24 features. Detecting the 

internal structure of the original 24 features is hard without sufficient biological evidences. 

Therefore, to validate the second potential reason, using simplified features could be a good 

attempt, and if possible, constructing the features in a better shape. Based on this, the 

proposed second modeling analysis on time period and T cell type, deducting genes, will be a 

good subsequent attempt.  
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Figure 13. Mallows’s Cp plot from CV-LARS LASSO analysis for the first modeling analysis.  

Each red dot in this plot represents the Mallows’s Cp value for adding in each of the 24 features. 

Basically, the best model should include all features before the step (inclusive) with the least 

Mallow’s Cp value. Based on this, this plot suggested 0 feature should be included.  

 

Figure 14. Elastic-Net LASSO (glmnet) summary plot for the first modeling analysis 

This summary plot gives a dash line which indicates the amount of features that should be included in 

modeling analysis, suggested by Elastic-Net LASSO model.  
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3.2.3 Semi-Supervised Clustering Visualization 

This semi-supervised clustering analysis added protection outcome as labels to the 

unsupervised hierarchical clustering. Though this clustering analysis included outcome 

variable, the clustering process is still unsupervised and restricted to feature variables. The 

outcome variable was simply added to the unsupervised clusters, hence the name semi-

supervised clustering. 

Although this semi-supervised clustering visualization was originally designed to assist 

logistic regression modeling, it could also be a qualitative test to the extreme negative 

LASSO result at current stage. Unlike LASSO which is based on complex mathematical 

calculus, semi-supervised clustering directly uses the initial data to visualize the relation 

between protection and the 24 features. The goal of this semi-supervised clustering analysis 

is to validate LASSO result by another crude method. The consistency between clustering 

result and LASSO result will provide convincing evidence to prove that the 24 original 

features are not competent to model the protection outcome. From the visualization of semi-

supervised hierarchical clustering (Figure 15.), the outcome values are dispersedly distributed 

in hierarchical tree. To sum up, result of semi-supervised clustering visualization validated 

LASSO result that there is no significant relation between the 24 original features and 

protection outcome.  
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Figure 15. Fan Hierarchical Dendrogram Labeled by Protection Outcome 

This plot intuitively shows the protection outcomes distribution in the log10 ICS hierarchy. In 

general, there are no significant protection segregation in log10 ICS hierarchy.  

3.3 Second  Modeling Analysis 

3.3.1. Data Preparation  

The second modeling analysis picked only time period and T cell type as independent 

variables to model the protection outcome, directed by the first modeling analysis results and 

along with the strong suggestion on time period and T cell type from PCA. Revisiting Table 

3., the data we used for the first modeling analysis has 24 features with the structure of 4 

genes * 2 T cell types * 3 time periods. To deduct genes dimension from this original strata, 

red: Protected 
black: Unprotected 
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the most concise approach is to average ICS magnitude of the 4 genes. At this point, the 

sequence of averaging and log10 transformation should be considered. From mathematical 

view, averaging the log10 transformed ICS data do not hold the same biological meaning as 

to averaging the raw ICS data. In sake of reserving the original interpretation ability of the 

data, I decided to average the raw ICS magnitude first then do log10 transformation. The 

prepared data has 6 features as Table 7 recorded.  

 

Table 7. Second Modeling Analysis Data Matrix 

This table displays the first 10 observations of the 6 features included in second modeling analysis, 

with their binary protection outcomes. The protected and unprotected monkeys are indicated by 1s 

and 0s respectively.  

3.3.2. Model Fitting Results 

In consideration of one in ten rule[55], to conduct logistic regression without risks of over-

fitting, the second modeling analysis on 6 features with 50% protection rate needs at least 

10*6/0.5=120 observations. Given that there are only 91 observations in the training data set, 

feature selection by LASSO was performed previous to logistic regression. Similar to the 

LASSO analysis for the first modeling analysis, two LASSO methods, LARS and Elastic-
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Net, have been performed on the 6 features data matrix. From LARS Cp plot (Figure 16.), Cp 

value has a remarkable drop when adding the 3rd feature. However, this drop did not diminish 

the Cp value to the minimum Cp. Although the Cp value of adding the 3rd feature is very 

close to the minimum Cp, the minimum Cp is held by the first step, which indicates adding 0 

features into model. Due to the hardship of assessing this special tie of minimum Cp, it 

would be better to refer to LASSO results by Elastic-Net. As the summary plot showing 

(Figure 17.), the model suggests to select 3 features. As a result, by looking up the 

coefficients, the 3 features are prime CD4+, boost CD4+ and pre-challenge CD4+. Referring 

back to one of ten rule, our data with 91 observations satisfied the rule that, 3 features with 

50% protection rate needs at least 10*3/0.5=60 observations.  

 

Figure 16. Mallows’s Cp plot from CV-LARS LASSO analysis for the second modeling analyses 

The spread of red dots in this plot shows the Mallows’s Cp value for adding in each of the 6 features. 

Basically, the best model should include all features before the step (inclusive) with the least 

Mallow’s Cp value. Based on this, the least Cp value is held by step 0 which suggests to include 0 

feature. However, the big drop at the 4th dot invokes further inspections using Elastic-Net LASSO.  
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Figure 17. Elastic-Net LASSO Summary Plot for the Second Modeling Analysis 

This summary plot gives a dash line which indicates the amount of features that should be included in 

modeling analysis, suggested by Elastic-Net LASSO model. The Elastic-Net LASSO model clearly 

suggested to include 3 features into modeling analysis.  

At this point, feature dimension was deducted to 3 which satisfied one in ten rule for logistic 

regression. Hence, I conducted logistic regression on the protection outcome and the three 

features, prime CD4+/boost CD4+/pre-challenge CD4+. As result, with P<0.05 as threshold, 

both prime CD4+ (P=0.063) and pre-challenge CD4+ (P=0.029) are significant to be 

included in the model to describe the protection outcome. The boost CD4+ with P value 

0.661 is not significant enough to be included in the model. (Figure 18) According to this 

result, I excluded boost CD4+ and conduct modeling on prime CD4+ and pre-challenge 

CD4+. This two-features model performed well in regard of significant P values for both 

features. (Figure 19) 
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Figure 18. Model Summary of the Logistic Model with 3 Features  

In this figure, prime4 refers to prime CD4+, boost4 refers to boost CD4+ and preC4 refers to pre-

challenge CD4+. 

 

 

Figure 19. Model Summary of the Logistic Model with prime CD4+ and pre-challenge CD4+ 

In this figure, prime4 refers to prime CD4+ and preC4 refers to pre-challenge CD4+.  

To further check the estimating stability of prime CD4+ and pre-challenge CD4+, I recorded 

model coefficients and calculated their confidence intervals (hereafter referred as CIs) by 

confint function in R package stats.[38] This confint function based on likelihood-

ratio statistic by likelihood profiling is more accurate than traditional Wald method.[38] The 

95% CI of the correlation provides estimate of where the estimated correlation, between pre-

challenge CD4+, prime CD4+, interaction and outcome, could lie, in 95% of replicate 
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experiments, if the true correlation were the estimated correlation. In order to interpret 

logistic model’s coefficients and CIs, which are not as straightforward as those from linear 

model, I recorded both original and exponential coefficients and CIs in Table 8. According to 

the logit setting of logistic model, 1). Given another feature fixed, one feature’s correlation 

direction can be indicated by the sign of original coefficient, 2). Given another feature fixed, 

one feature’s correlation strength can be interpreted by the odd ratio of the feature which 

equals to the exponential coefficient of the feature.[43] Therefore, the results in Table 8 give 

the following 2 suggestions. First, indicated by the opposite signs of coefficients, given each 

other feature fixed, the pre-challenge CD4+ has negative effect on protection outcome and 

prime CD4+ has positive impact on protection outcome. Second, in terms of two features’ 

odds ratios, the odds of being a protected animal would be 16.705 times (95% CI: 1.588 to 

233.334) as likely to occur with one unit log10 ICS magnitude increase in prime CD4+. One 

unit log10 ICS magnitude increase in pre-challenge CD4+ would make the odds of being a 

protected animal 21.739 (95% CI: (1.548,333.333) times less likely to occur.  

Model: outcome ~ prime CD4+ + pre-challenge CD4+ 

 Coefficients 
 

95% CIs of  
Coefficients 

Odds Ratios 95% CIs of 
Odds Ratios 

Prime CD4+ 2.816 (0.462, 5.452) 16.705 (1.588, 233.334) 

Pre-challenge 

CD4+ 

-3.080 (-5.979, -0.438) 21.739 (1.548,333.333) 

Table 8. Model Summary on Coefficients/CIs 

To sum up, the second modeling analysis manifested that the 2 immunologic responses, 

prime CD4+ and pre-challenge CD4+, might correlate with the protection outcome, hence, 

they might be capable to describe the protection outcome in a logistic model. The logistic 

model performs well under wide CI ranges and the correlation between prime CD4+, pre-

challenge CD4+ and outcome is significant with qualified p-values. Besides checking on p-
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values and CIs, further assessments on the model quality and feature interactions were 

conducted in the model inspection section below. 

3.3.3. Model Inspection 

To inspect the quality of the logistic model, I adopted model evaluation tools to compare 

correlation significances of the logistic model on training data set. The two linear model 

evaluation methods, ANOVA and AIC, used in 2.3 are capable for logistic models evaluation 

as well. To begin with, I performed AIC on the 5 test models, in which Model 3 is the 

previous logistic model. Similar to the model selection process in 2.3, I constructed 5 test 

models to assess the 3 candidate features and recorded AIC summary in Table 9. The AIC 

scores indicates that test model 3 is the best model to minimize the information loss. Same as 

previous AIC assessment on log10 ICS magnitudes linear regression in section 2.3, AIC 

statistic is calculated by exp((AICmin-AICi)/2) and recorded in Table 9. From the AIC 

statistics which show the probability that model X can minimize information loss as well as 

the best model, none of the other four models are close to the best model. As the result, the 

best model with least information lost under penalty of features amount, is Model 3. AIC 

confirmed good performance of the logistic model by model comparison.  

 Model 1 Model 2 Model 3 Model 4 Model 5 

Features 

Included 

pre-challenge 

CD4+ 
prime CD4+ 

pre-challenge CD4+ 

and prime CD4+ 

pre-challenge CD4+, 

prime CD4+ and 

boost CD4+ 

Constant 

 (no feature 

included) 

*AIC score 128.8 128.5 125.3 127.1 127.9 

**AIC statistic 

(Comparing all 

models) 

0.03 0.04 
1  

(minimum AIC) 
0.17 0.07 

Table 9. Five Test Models Descriptions and AIC Summary 
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This table collected AIC score and computed AIC statistics. The model with minimum AIC score is 

the best model with least information lost under penalty of the amount of variables included in the 

model. AIC statistics suggest the probability that model X can minimize information loss as well as 

the best model. 

Besides AIC, I conducted ANOVA to check the significance of 1). including both two 

features in the logistic model; 2). including pre-challenge CD4+ in the logistic model; 2). 

including pre-challenge CD4+ in the logistic model. The preliminary logistic model with the 

2 features was regarded as the NULL hypothesis model for all comparisons. ANOVA results 

of these comparisons were recorded in Table 10. First, I compared the NULL model  which 

only includes a constant, to the two-features logistic model. The p value (0.0364) from this 

comparison suggested that the preliminary logistic model, is significant better than the NULL 

model. Second, I compared the NULL model, which include only Prime CD4+, to the two-

features logistic model. The p value (0.0218) suggested that the two-features logistic model 

including one more feature, pre-challenge CD4+, is significant better than NULL model with 

only prime CD4+. Third, similarly, I compare the NULL model which include only pre-

challenge CD4+, to the two-features logistic model. The p value (0.0181) suggested that the 

two-features logistic model including one more feature, prime CD4+, is significant better 

than NULL model with only pre-challenge CD4+. To sum up, both prime CD4+ and pre-

challenge CD4+ in the preliminary logistic model are significant to describe the protection 

outcome. This preliminary logistic model is worth being analyzed by further model 

validation process. 

 

 

 



 45 

Comparision 1:  

Checking on both features 

 NULL  

Hypothesis Model 
model 

Features Included ~ 1 ~ PrimeCD4+ + Pre-
ChallengeCD4+ 

Degree of Freedom (Df) 90 88 

Degree of Freedom Change 2 

P value 0.0364* 

Comparision 2 

Checking on PrimeCD4+ 

 NULL  

Hypothesis Model 
model 

Features Included ~ PrimeCD4+ ~PrimeCD4+ + Pre-
ChallengeCD4+ 

Degree of Freedom (Df) 89 88 

Degree of Freedom Change 1 

P value 0.0218* 

Comparision 3 

Checking on PrimeCD4+  

 NULL  

Hypothesis Model 
model 

Features Included ~ Pre-challengeCD4+ ~ PrimeCD4+ + Pre-
ChallengeCD4+ 

Degree of Freedom (Df) 89 88 

Degree of Freedom Change 1 

P value 0.0181* 

Table 10. Three Comparisons ANOVA Table (by LR) 

This table recorded results from 3 ANOVA likelihood ratio tests comparing 1). the significance of 

including both two features in the logistic model; 2). the significance of including pre-challenge 

CD4+ in the logistic model; 2). the significance of including pre-challenge CD4+ in the logistic 

model. The P values show the probability of seeing pre-challengeCD4+ (or primeCD4+, or both pre-

challengeCD4+ and primeCD4+) is not important in the logistic model. 
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3.3.4 Features Interaction Analysis  

During ANOVA comparison, I noticed that models including either prime CD4+ or pre-challenge 

CD4+ is not significant better comparing to the zero model. (Table 11) In other words, the single 

feature by its own cannot describe the protection outcome. However, the two features together can 

describe the protection outcome on some levels. This result motivated further analysis on the 

interaction between prime CD4+ and pre-challenge CD4+.  

Comparation 1:  
 zero model 

(NULL Hypotesis Model) 
single feature model 1 

Features Included ~ 1 ~ PrimeCD4+ 

Degree of Freedom (Df) 90 89 

Degree of Freedom Change 1 

P value 0.2437 

Comparation 2:  
 zero model 

(NULL Hypotesis Model) 
Single feature model 2 

Features Included ~ 1 ~ Pre-ChallengeCD4+ 

Degree of Freedom (Df) 90 89 

Degree of Freedom Change 1 

P value 0.3063 

Table 11. ANOVA table for Single Feature Exploration. 

This table recorded results of 2 ANOVA comparison on 2 single feature model. In result, neither prime 

CD4+ or pre-challenge CD4+ is not significant comparing to the zero model. 

Based on the single feature model exploration result, I inspected the interaction between pre-

challenge CD4+ and prime CD4+ by interaction-involved logistic regression. After adding in 

interaction, p-values of the model suggest a stronger significance on pre-challenge CD4+ and 

rejects prime CD4+. The interaction between the two features is considered as closing to 

significant. (Figure 20.)  
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To further validate this interaction pattern, ANOVA likelihood ratio tests were conducted to 

accomplish 2 comparisons. First, I compared the 2-features model with the interaction-

involved 2-features model. This comparison was designed to validate the significance of the 

interaction. As a result, p value (0.0524) confirmed weak significance of the interaction. 

(Figure 21) Second, considering that the strong significance of pre-challenge CD4+ in the 

interaction-involved two-features model, indicated by p value (0.0054) in Figure 20, the 

second comparison was conducted to validate that whether pre-challenge CD4+ itself is 

sufficient and even better than including interaction and both prime CD4+ and pre-challenge 

CD4+. I compared the model with only pre-challenge CD4+ to the interaction-involved 2-

features model. In result, the model with both features and interaction works much better 

than the model only with pre-challenge CD4+. (Figure 22.)  

In Figure 19-21, prime4 refers to prime CD4+ and preC4 refers to pre-challenge CD4+. The 

term prime4:preC4 refers to interaction between prime CD4+ and pre-challenge CD4+.  

 

Figure 20. Interaction-involved Logistic Model Summary  

After adding in interaction, the model has a stronger significance on pre-challenge CD4+ but rejects 

prime CD4+. The interaction pattern in this model is very weak and closing to significant.  



 48 

 

Figure 21. LR ANOVA Summary for comparison between interaction-involved model and the 

original two-features model. The original two-features model (Model 1 on the top of this figure) acted 

as the NULL hypothesis model in this ANOVA comparison. This comparison confirmed that 

interaction pattern is weak.  

 

Figure 22. LR ANOVA Summary for comparison between the model with only pre-challenge CD4+ 

and the interaction-involved model. Model 1 on the top of this figure acted as the NULL hypothesis 

model in this ANOVA comparison. This comparison manifested that although pre-challenge CD4+ is 

significant in interaction involved logistic model, having both features and interaction is significant 

better than just having pre-challenge CD4+.  

In short, the interaction results indicate that 1). the significance patterns of the two features 

were altered by adding-in interaction which weakly support the prediction model; 2). Pre-

challenge CD4+ with smaller p-values is more significant after adding in interaction; 3). 

although the strong significance on pre-challenge CD4+, it is not sufficient to only include 

pre-challenge CD4+ for the prediction model. To sum up, the interaction has certain effect on 

the original patterns of the two features. Inspection on the interaction mechanism requires 

advanced interaction analyses which could be conducted as another project in the future. For 
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this project, I decided to continue model validation on the original logistic model without 

interaction. These indications elicit further advanced exploration on the interaction 

decomposition to identify the certain impact from the weakly supported interaction on the 

two features.  

3.4. Final Model Validation 

At this stage of model development, I have identified 2 potential immunologic correlates, 

pre-challenge CD4+, prime CD4+, and a logistic model to describe their relations to the 

protection outcome. To further explore this model, I conducted preliminary model validation 

test to check the model performance on test data set.  

The model predictability test exploited the logistic model fit on the test data set by plotting 

receiver operating characteristic curves (hereafter referred as ROC curve). In machine 

learning process, ROC curve is widely used to provide the model predictability by 

comparison of the true positive rate (TPR) against the false positive rate (FPR) as the 

discrimination changes.[56] The ROC curve which locates at up-left corner indicates better 

model prediction. With this regard, the area under the ROC curve (hereafter referred as 

AUC) can be used as a reference that if the AUC value is larger than 0.7, then the model has 

a good prediction rate. [57]  

After fitting the logistic model to the test data set, I used roc function in R package pROC to 

plot the ROC curve with AUC value and max AUC polygon.[58] From Figure 23, this 

logistic model did not give good predictions on the test data set.   
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Figure 23. ROC curve of the logistic model: outcome ~ pre-challenge CD4+ + prime CD4+ 

This figure shows the overall AUC value (0.483) in blue and the maximum AUC angle in black. The 

predictions for the first several observations are very bad. 

As an attempt to explain the poor performance, I plotted the model’s ROC curve on training 

data set. (Figure 24.) From Figure 24, although the model gave a better ROC curve on 

training data set, the predictive ability of the model is weak indicated by the AUC with value 

0.645. Looking back to the logistic model summary in Figure 19, I identified a potential 

reason of this modest predictive performance. Although the p-values satisfied the p<0.05 

threshold, the significances are relatively weak. The modest predictive performance of the 

model might be attribute to the modest significance level of the two features from the logistic 

model summary.  



 51 

 

Figure 24. ROC curve of the interaction-involved logistic model 

This figure shows the overall AUC value (0.645) in the middle and the maximum AUC angle. In general, 

the ROC curve is slightly above the right down triangle.  

With the negative results from ROC curves, I attempted to further confirm the model 

predictability by directly visualize the model. The primary aim of this visualization process is 

to intuitively identify the protection outcome differentiation with/without the two features.  

To begin with, I visualized the central distributions of the conditional outcomes by plotting a 

boxplot of outcome labeled pre-challenge CD4+ and prime CD4+ (Figure 25.). Indicated by 

the median ICS distributions (the black lines inside the boxes), the sample medians are 

slightly differentiated across protection outcomes for pre-challenge CD4+. However, for 

prime CD4+, sample medians are almost the same for both outcomes. Moreover, the median 

itself is insensitive to observations in the tails. If the important correlation patterns were 

latent in the tails, the boxplot by median distribution would not be capable to capture and 

visualize the correlation. With this regard, I compared mean values of log10 ICS for each 

group. In result, the means are even closer across outcomes than the medians. To sum up, the 
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central distributions, such as mean and median, of the two features are incapable to 

distinguish the protection outcome. This central distribution pattern corresponds to the 

model’s poor predictive performance. Same as the ROC curves, this central distribution 

pattern might be attributed to the weak correlation significance of the two features.  

 

Figure 25. Boxplot of Outcome Labeled Features 

Black lines inside each box are the medians of log10 ICS magnitudes for each group. The edge of box 

indicates 1st ~ 3rd quartile range of log10 ICS magnitudes for each group. The black bar outside of the 

box indicates the maximum and minimum log10 ICS magnitudes for each group.  

In addition to visualize the distribution, I visualized the correlated distribution of pre-

challenge CD4+ and prime CD4+ colored by protection outcomes. First, the two features are 

collective in one direction which can be summarized by both linear regression and LOESS 

non-linear regression. (Figure 26.) However, if separately inspect the two outcome groups, 

the non-linear LOESS captured more data trends than the linear regression. (Figure 27.) This 

result might suggest that there could be some non-linear components inside the correlation 

between outcome and the two immunologic features. Further suggested by this, another 
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trigger of the poor model predictability could be that the linear logistic model cannot capture 

the non-linear relations latent in the immunological mechanism.  

 

Figure 26. Correlated Distribution of the 2 Features with Linear and Non-linear Regression Lines 

 

Figure 27. Linear vs. LOESS Non-linear Regression Lines for Each Outcome 

The LOESS lines in left plot better describe cytomegalovirus dots trend than linear regression lines 

in right plot.  

Second, as for the outcome differentiation, the outcome cannot be distinguished on the 

overall scale. However, there might be some patterns in two particular regions. One example 

could be that, when looking at the data in right region in Figure 28, the unprotected monkeys 
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tend to have higher pre-challenge CD4+ log10 ICS magnitude when present-percentage of 

prime CD4+ is over -0.20. Besides, it might be worthwhile to inspect those unprotected 

monkeys with low prime CD4+ present-percentage in right region at the down left corner. If 

bring in previous suggestion about non-linear correlation, analysis on a typical region can be 

regarded as a process to extract the linear components from the non-linear correlation.  

 

Figure 28. Two potential regions of interests 

The two regions circled by red and blue round boxes have typical patterns corresponding to protection 

outcome. Observations in the left region with low prime CD4+ log10 ICS magnitude are mainly 

unprotected. In the right region, unprotected monkeys have higher pre-challenge CD4+ log10 ICS 

magnitude than protected monkeys.  

To sum up, the two model visualizations further validated the poor predictive performance of 

the logistic model. Besides, the visualization patterns also gave suggestions on the non-linear 

possibility and data stratification which could potentially provide explanation to current 

model’s poor predictability. Moreover, the non-linear possibility might relate to the special 
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interaction patterns from previous interaction analysis. Non-linear modeling and stratification 

could be potential approaches to decompose and inspect the interaction. Even though the 

model validation provided negative results, these results also initiate valuable future 

researches to optimize the model by interaction inspection and non-linear modeling. Up to 

this point, according to model inspection and model validation results, the current logistic 

model has the potential to describe the protection outcome but is not sufficient to accurately 

predict the outcome.   
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Discussion 

Data Normalization 

In this study, except for a z scale standardization was done for PCA, I did not conduct 

normalization for other analyses in consideration of: 1). features having same unit and similar 

ICS magnitude ranges; 2). limited understanding of the original data structure; 3). potential loss 

of information latent in the distance due to crude normalization scalar; 4). potential interpretation 

lost caused by unit change.  However, without normalization, some meaningless data 

discrepancy introduces bias to statistical analyses.  

When computing the AIC scores for linear model selection in section 2.3, the big AIC score drop 

by adding in study variable indicated a remarkable data discrepancy across the 6 studies. To 

further inspection this discrepancy, I visualized the distributions for the 6 study cohorts (Figure 

29.) As a result, the boxplots showed a remarkable trend of median ICS magnitudes across 

different studies. This discrepant median trend implied the potential inconsistency in wet 

laboratory settings across different studies, which challenged our assumption that all monkeys 

have the same start point. The variance among different study cohorts might disturb statistical 

analysis on the real meaningful variance or even hinder the identification of real correlates.  

With a clear understanding that this variance across study cohorts is not expected and could 

potentially bring in confounding factor with variation unrelated to what we are studying, I shared 

this information with the data providers, Louis Picker’s group, to search for their authentication 

on this trend from immunological standpoint. As a result, since such trend across study cohorts 

have never been seen and managed before, they suggested to keep working on original data 

without normalization. However, from statistics standpoint, normalization on such discrepancy 

which could potentially improve model performance, is still worth trying. Based on these, I 
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regard the data normalization on study cohorts as one potential next step and put some 

preliminary efforts on normalization in the study discussion.   

I tried to identify a good normalization method to accomplish two aims: 1). scale the ICS values 

in different study cohorts to the same level; 2). at the same time prevent loss of other variances 

during normalization process. With the two-folded aims, one normalization method I have 

attempted is to extract residuals of the linear regression model which regressed all ICS 

magnitudes to the 6 study cohorts, and use the residuals as normalized ICS magnitudes. The 

regression residuals, by statistical definition, reflects the rest variance except the variance in 

mean trend. Taking advantage of regression process, I could easily use residuals to exclude the 

mean variance which was isolated and concentrated along the regression line. In result, 

corresponding to the first normalization aim, this normalization process effectively adjusted the 

trend of ICS magnitudes when comparing the 6 studies before and after normalization (Figure 

29.).  

 

Figure 29. Log10 Transformed ICS magnitudes trend before (left) and after (right) normalization. 

Whereas, in terms of the second aim to keep other potentially useful variances unaffected 

thereby, this normalization process left some uncertainties, which is the main reason for not 

including this normalization process into the main line of this study. The accuracy of 

normalizing and only normalizing on study variable depends on the fitness of the linear 
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regression model. In this regard, I checked the linear regression model fitting by QQ-plot. The 

linear regression fitting turned out to be satisfactory. (Figure 30)  

 

Figure30. Normal QQ-plot of Linear Regression on Study Cohorts 

After several attempts on using normalized data to redo modeling analyses, I found some 

inconsistent modeling results that, using normalized data, the second modeling analysis failed to 

produce any significant correlate, when the first modeling analysis gave that prime CD4+ and 

pre-challenge CD8+ are significant (data not shown). Given that even the redundant data in first 

modeling analysis could produce two significant features, the failure in second modeling analysis 

with less redundant data is hard to explain. To be clear, I redo modeling analyses after all 

unsupervised analyses, which ensures this check did not introduce any fishing concerns. After 

tradeoff between the uncertain normalization method and the ICS trend in original data and 

based on the uncertainty in choice of normalization method and the inconsistent results, I 

decided to stick on using the original data to statistical analyses in this study. After this study, 

one potential research direction after this study should be identifying an advanced normalization 
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method and normalizing the ICS trend on study cohorts properly, and hence, optimizing the 

whole statistic modeling. 

Potential Biological Illustration of the Logistic Model 

From the model coefficients direction in Table 8, the logistic model conveyed a remarkable 

information that pre-challenge CD4+ and prime CD4+, given each other, are oppositely 

correlated to the protection outcome. In detail, given fixed pre-challenge CD4+, one-unit log10 

ICS magnitude increase of prime CD4+ will make the odds of being a protected animal 16.705 

times as likely to occur (95% CI: 1.588 to 233.334). However, given fixed prime CD4+, one-unit 

increase of pre-challenge CD4+ percentage will decrease the protection possibility by 21.739 

times (95% CI: 1.548 to 333.333). According to the timeline of immunological response, prime 

CD4+ percentages were recorded at the start period, while pre-challenge CD4+ percentages were 

recorded at the later maturing period. Therefore, the primary interpretation of this opposite 

correlation pattern could be that, 1). the immediate immune response upon first immunization 

will promote later protection; 2). given positive prime CD4+ response, early matured immune 

CD4+ responses in pre-challenge time period will arrest the protection occurrence.  

The second model interpretation corresponds to the B cell follicle sanctuary mechanism, which is 

a SIV viral immune escape mechanism demonstrated by Louis J. Picker and his colleges.[59] 

Louis Picker and his colleges demonstrated that the formation of the B cell follicles, which is 

called germinal centers alternatively, served as sanctuaries for productive SIV infected cells even 

under potent SIV-specific immune responses. Moreover, the formation of the B cell follicles is 

corresponding to the immune response maturing exactly at pre-challenge period. Based on this, 

the higher CD4+ percentage at pre-challenge time period indicates earlier mature of immune 

responses, and potentially brings greater formation of the B cell follicles.[59] This could be one 
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way in which the higher pre-challenge CD4+ percentage negatively influence the protection 

outcome, if this turned out to be supported by subsequent analysis.  

These potential biological illustrations upon prime CD4+ and pre-challenge CD4+ attaches 

further meanings to the logistic model, which might assist future model optimization. Especially, 

viral immune escape mechanisms will help to track the paths of the 2 features in future model 

interaction inspection. At the meantime, the immunologic correlates modeling results from this 

study will assist future biological researches to identify more details in these immunological 

mechanisms.  

Limitation 

Although the overall T cell responses data used in this study provided a comprehensive source 

for preliminary immunologic correlates identification, the study was limited as the data is too 

crude to explore the conventional and unconventional restricted responses and targeted epitopes. 

This limits exploration on unconventional CD8+ responses and further exploration on the non-

linear effects of the two CD4+ significant responses. To address this limitation, a complementary 

data was expected to profile restricted T cell responses for targeted epitopes under more 

continues time periods. Such complimentary data would assist to identify significance in 

unconventional CD8+ responses and to perform advanced interaction inspections on the 

nonlinear relations between the two CD4+ responses.  
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Conclusion 

In conclusion, I identified pre-challenge CD4+ and prime CD4+ as 2 potential immunologic 

correlates of the RhCMV/SIV vaccine efficacy. The 2 immunologic responses have the potential 

to describe the unique ~50% protection pattern. Although these 2 immunological responses 

could not provide satisfactory predictability in a preliminary logistic model, the results of model 

validation provided concrete future research directions on non-linear modeling and interaction 

analysis to better characterize the 2 immunologic responses in the statistical model. The 

identification of pre-challenge CD4+ and its interaction with prime CD4+ will promote some 

related vaccine immunological mechanism researches, such as researches on germinal centers 

formation and HIV immune escape mechanism at pre-challenge time period.  

One success of this study is the interpretability in machine learning process. In this study, the 

high dimensional immunologic response data with 24 features has been properly and carefully 

processed to preserve original interpretability while deducting redundant components. From 

informatics prospective, since this study was established upon the union of immunologists and 

statisticians, the interpretability ensured efficient information sharing. Besides, the 

interpretability in the machine learning process assisted illustration of model inspection on 

coefficients, interactions, predictability and visualizations. Moreover, such interpretability 

contributed to demonstrate interpretable and concrete future research directions. Giving credit to 

the interpretability, this study provided future research directions on interaction mechanisms of 

prime CD4+ and pre-challenge CD4+ and non-linear modeling on immunologic correlates.  
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