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High-quality reference genomes are once again in vogue with the publication of the telomere-to-

telomere human genome and several challenging plant and animal genomes. Recent efforts in 

genome assembly have coalesced around two key technologies – ultra-long reads and genome 

chromatin conformation capture (Hi-C). Here, we used both to complete the protist genomes of 

Leishmania donovani, Leishmania tarentolae, Crithidia fasciculata, and Euglena gracilis, 

shedding light on their genomic organization and evolutionary history. To navigate the many Hi-

C genome scaffolding methods, we benchmarked the most popular methods against a set of high-

quality reference genomes. We found that while most can operate well under ideal 

circumstances, many struggle with using modern high-quality assemblies which contain near 

chromosome length contigs. Finally, we attempted to overcome these limitations using a 

machine learning approach by leveraging the recent bounty of genomes that have been published 



 

 

with Hi-C. Using an innovative convolutional neural network, we demonstrated a proof of 

concept for a data-driven approach to scaffolding genomes. 
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Chapter 1. INTRODUCTION  

 
The genetic material of a cell contains the vast majority of information needed to 

orchestrate its functions. In addition to containing the sequences of all RNA and protein 

molecules, the genome contains a myriad of genetic elements including regulatory sequences, 

mobile genetic regions, and repetitive sequences, which affect the operation of a cell. To 

decipher these complex phenomena using modern methods, researchers commonly use genome-

wide interrogation assays. Such experiments fundamentally rely on mapping sequencing data 

back to a reference genome. Consequently, understanding the genetic sequence of a species is 

key to uncovering how it operates on a cellular level. The process of genome assembly aims to 

create accurate base-level representations of genomes using sequencing information.  

 

1.1 GENOME ASSEMBLY 

 

Experimental methods of genome assembly have dramatically changed in the last three 

decades. After Sanger sequencing was streamlined, the genomes of several key organisms were 

sequenced, including Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens1. These 

sequencing efforts relied heavily on a divide and conquer approach, where the genome was split 

into a vast library of bacterial artificial chromosomes (BACs), which could be reliably grown 

and independently sequenced. In this approach, fragments of a genome generated from a 

restriction digest are cloned into plasmids which can be transfected and replicated in bacterial 

strains. The Human Genome Project made extensive use of this method, and over the course of 



 

 

2 

13 years and $3 billion, about 60,000 BACs were sequenced across multiple institutions2. This 

initial period of genome assembly was marked by high cost and high-quality genomes for a few 

species.  

 In 2006, Solexa released a commercial sequencer which utilized the sequencing by 

synthesis approach and ushered in the “second generation” of sequencing3. This breakthrough 

massively increased the throughput of sequencing and dramatically reduced the costs involved. 

As a result, individual labs could bypass the time-consuming BAC centered approaches and 

sequence the entire genome at one time. One critical limitation was the sequence length 

generated by these technologies. Compared to Sanger sequencing, which could produce close to 

1,000 bp reads, second-generation sequencers initially produced reads as short as 35 bp, and later 

up to 150bp. With such short reads and assembly required beyond the purview of a given BAC, 

the computational task of genome assembly became considerably more challenging. 

Consequently, genome assemblers produced shorter contigs, which in turn led to draft assemblies 

of species with far more sequence gaps than the previous generation of reference genomes.  

In 2011, third generation sequencing finally debuted with the release of PacBio’s RS 

instrument4. Noticeably different were the incredibly long reads these instruments produced, on 

the order of 10kb. Later, Oxford Nanopore released their MinION sequencer in 2014 which 

relied on directly detecting bases through ionic changes as DNA passed through a channel, and 

produced read lengths of around 15kb5. The primary drawback of third generation sequencing, at 

least initially, was the comparably poorer sequence quality. The number of errors per base was 

dramatically higher, and in addition to having substitution errors, third generation sequencing 

often included indels. These limitations have gradually been overcome, with the latest iteration 

from PacBio known as HiFi, specializing in high fidelity long reads and producing accurate 10-
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25kb reads6. In the last few years, Oxford Nanopore (ONT) has optimized their protocols to 

produce average read lengths upwards of 100kb, though they are perhaps the most error prone of 

the third-generation sequencing technologies7. These enormous leaps in sequencing length and 

accuracy have led to a new set of low cost, high-quality genomes.  

Through the evolution of genome sequencing, the computational methods used to 

assemble reads have largely relied on the same theoretical framework: assembly graphs8. The 

crux of the method is to treat reads as nodes in a graph and the overlaps between them as the 

edges connecting nodes. This mathematical formulation allows us to keep track of all possible 

sequences a given set of reads could produce. Progress in assembly software has included 

developing more efficient data structures, better heuristics to find paths through the graph, and 

filtering or correcting low confidence reads. Despite improvements through the years, 

researchers have found limitations in the quality of assemblies produced by shorter reads. Such 

assemblies are invariably fragmented, contain collapsed repeats, and are unable to phase alleles 

properly9.  

 

1.2 GENOME SCAFFOLDING 

 

With the surge of third generation sequencing, we are overcoming many of these 

challenges. Long reads can span complex sequencing regions with confidence, and as a result, 

assemblies are able to produce longer and fewer contigs. And yet, the ultimate goal of genome 

sequencing—to produce chromosome length sequences—remains out of reach. Even with the 

latest sequencing technology, assemblies for large genomes are likely to produce thousands of 

pieces10. To bridge the gap between contig and chromosomes, a scaffolding approach is required, 
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whereby contigs are grouped into their parent chromosomes, and then ordered and oriented 

correctly. There are five categories of scaffolding technologies: restriction mapping, linked 

reads, sequencing reads, reference-guided alignment, and chromosome conformation11 (Figure 

1.1).   

 

 

 

Figure 1.1: An overview of genome scaffolding methods11. There are five different categories of 

scaffolding technologies: paired end reads, linked reads, optical maps, long reads, Hi-C reads, 

and syntenic alignments. All methods attempt to bridge between contigs by using sequencing 

information.  

 

Originally, the most common method to scaffold genomes was using restriction maps, 

where restriction digestion would reliably create patterns of fragments which could then be used 

to “fingerprint” segments of DNA and elucidate overlaps. This tended to be laborious, though 
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recent advances in automating the process have been significant12. Nevertheless, the method 

relies heavily on accurate representation of restriction sites in contigs, as well as access to 

specialized machines to perform optimal mapping. For several years, 10x Genomics offered 

another scaffolding approach, linked-read technology, which generated short reads from 

barcoded DNA molecules, offering the ability to trace back reads to contiguous sequences. With 

this information, contigs that were within 100kb of one another could be spanned, though the 

remaining ones still could not be placed 13. Another approach was to simply reuse regular 

sequencing data, whether short reads, long reads, or mate pairs, to scaffold contigs. Rather than 

focusing on the underlying sequence, scaffolders would only attempt to organize contigs using 

sequence overlap information. Though they can create larger scaffolds from contigs in 

assemblies, these methods generally do not provide enough information to completely scaffold 

genomes and are always limited by the length of the molecules being sequenced. Reference-

guided approaches to scaffolding use the high-quality genome of a closely related species to 

scaffold contigs based on their alignment to chromosomes. Though powerful, the fundamental 

assumption of this method is that the chromosomal organization of two species is exactly the 

same, which does not always hold true. Indeed. However, countless examples in evolutionary 

genomics point to even close relatives undergoing some level of genetic rearrangement. 

One of the most promising scaffolding methods in the last decade uses genome-wide 

chromosome conformation methods, particularly Hi-C. In this approach, information about 

proximal regions of the genome is used to scaffold contigs, and distances between every pair of 

regions of the genome can be determined. Hi-C has widely overtaken other scaffolding 

approaches and has become a standard procedure in many genome sequencing initiatives14. The 

T2T initiative recently published the complete sequence of the human genome without any gaps, 
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and they used Hi-C as part of their validation process (though not part of the scaffolding step)15. 

The Vertebrate Genome Project (VGP) has a dedicated pipeline that scaffolds genomes with Hi-

C16, and the 10KP plant sequencing initiative incorporates many of these processes as well17. 

Currently, the sequencing formula for producing the highest quality genomes possible involves 

three pillars: HiFi PacBio reads, ultra-long Nanopore reads, and Hi-C reads18.  

 

1.3 GENOME-WIDE CHROMATIN CONFORMATION CAPTURE 

 

 Though we have grown familiar with reference genomes as a linear sequence of 

characters, we know that in fact they reside in the cells as three-dimensional structures. In 1879 

Walter Fleming described mitosis, perhaps the first account of chromosomal organization of 

genetic information19. Since then, our understanding of the organization of DNA has continued 

to improve, with new discoveries being made every few years and new technologies developed 

to interrogate the three-dimensional structure. One of the most recent innovations in the field was 

the development of genome-wide chromosome conformation capture (Hi-C)20. The method relies 

on chemically cross linking the cell such that its DNA is frozen in space (Figure 1.2). The 

genome is then digested, exposing breaks near regions where two pieces of DNA are proximal in 

3D space. These breaks are ligated, and through a clever series of steps, a library is generated to 

produce reads where each half of the read is from a neighboring region in 3D space.  
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Figure 1.2: The steps involved in conducting Hi-C20. The cell is first chemically frozen in space 

using a crosslinking agent. Then, DNA is digested with a restriction enzyme and dangling ends 

are repaired with biotinylated nucleotides. Next, proximal DNA fragments which have been 

crosslinked are ligated. Finally, DNA is sheared and purified by streptavidin beads to isolated 

junctions, yielding a classic next-generation sequencing library.  

 

One of early insights derived from Hi-C was that cells maintain structure in their 

chromosomes by co-locating regions of the genome that linearly neighbor each other. In other 

words, the one-dimensional positioning of a sequence is strongly related to its three-dimensional 

positioning.  This key finding, known as the genomic distance effect, allows us to utilize Hi-C 

data to scaffold genomes. Since 2013, with the release of Lachesis21, a number of Hi-C 

scaffolding methods have been published. They largely rely on creating a graph where contigs 

are the nodes and edges are weighted by the number of Hi-C reads spanning contigs. Each 

method is distinguished by a slightly different set of heuristics and what parameters they require, 

as well as the algorithmic approach to generate scaffolds from the graph. Given the proliferation 

of Hi-C scaffolding methods, and their importance in creating reference genomes, the Hi-C 

scaffolding process and the many software tools warrant further study.  
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In the course of this thesis work, we explored the Hi-C scaffolding process by completing 

the genomes of several neglected tropical parasites and organisms - Leishmania tarentolae, 

Leishmania donovani, and Crithidia fasciculata. Our work with Euglena gracilis explores the 

limits of the genome assembly process and some of the experimental hurdles when it comes to 

preparing Hi-C libraries. We then conducted a literature search to identify the most widely used 

Hi-C scaffolders. Using the five most popular methods, we devised a comprehensive set of tests 

to benchmark scaffolding accuracy. Surprisingly, we found that several methods performed 

worse with higher quality input assemblies, suggesting they are not compatible with the most 

recent generation of ultra-long read assemblies. Finally, we developed a machine learning 

approach to scaffolding genomes with Hi-C, leveraging the increasing number of genomes that 

are being published after manually curated corrections. This supervised approach shows 

promising results in learning correct scaffoldings from solved reference genomes and 

transferring them to new genome assemblies. We hope this body of work can guide those who 

aim to scaffold new genomes, and those who are building new scaffolding methods.  
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Chapter 2. SCAFFOLDING GENOMES WITH HI-C 

 

2.1 INTRODUCTION  

 
The Trypanosomatidae family contains a diverse set of single-celled parasites that can 

infect a wide range of hosts, including humans, domestic animals, lizards, insects, and even 

plants. After malaria, leishmaniasis causes the second-most number of deaths for parasitic 

organisms22, with several forms of the disease also resulting in non-lethal, but debilitating, 

symptoms. Consequently, trypanosomes have been studied for several decades, not only for their 

disease burden, but also for their unique molecular biology. In 2005, the first Leishmania 

genome was completely sequenced23, though subsequent genomes came at a slow pace. With the 

widespread adoption of third generation sequencing, renewed efforts have resulted in a number 

of recent genome publications, including the gap-free genome sequences for two strains of 

Leishmania donovani24,25 and a phased assembly of Trypanosoma brucei26. Here, we present 

completed genomes of L. donovani 1S, L. tarentolae Parrot, and Crithidia fasciculata C1, as well 

as a near-complete genome of Euglena gracilis.  

The Leishmania genus contains a number of clinically important species known to cause 

several forms of leishmaniasis. L. tropica, L. major, and L. aethiopica primarily cause cutaneous 

leishmaniasis, the most common form of the disease. The Viannia subgenus is responsible for 

mucosal leishmaniasis, most often by L. braziliensis and L. panamensis. Finally, L. donovani and 

L. infantum cause the most severe form of disease, known as visceral leishmaniasis, which has a 

fatality rate of over 95% if left untreated27. Historically, L. tarentolae, a species isolated from 
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reptiles has been used as a model organism given its strong ability to grow in vitro. Additionally, 

since L. tarentolae has evolved to infect geckos, its non-pathogenicity towards humans makes it 

especially easy to work with in most laboratory conditions.  

The genus Crithidia contains species that exclusively infect insects, with several 

(including C. bombi and C. mellificae) being associated with bee colony losses28, and 

C. fasciculata infecting mosquitoes. Similar to L. tarentolae, C. fasciculata has also been used 

extensively to study the biochemistry and unique transcriptional control of trypanosomes. 

Perhaps the two most identifying molecular features of trypanosomes are their extensive use of 

polytranscriptional units (PTUs) and presence of interlocking circular mitochondrial DNA 

(kDNA)29. Several key findings regarding RNA editing, trans-splicing, and kDNA replication 

were worked out in L. tarentolae and C. fasiculata. 

 Euglena gracilis, is a free living single-celled flagellate in the same phylum (Euglenozoa) 

as the trypanosomatids. Though this species is quite divergent from the trypanosomes, since it 

containing chloroplasts and lacks any pathogenicity, it still contains a base modification unique 

to this section of the tree of life. Base J is a glycosylated thymine that is thought to be 

responsible for transcriptional termination and silencing30. E. gracilis has been shown to have 

potential utility in biofuel production, environmental remediation, and biomolecule synthesis. 

Despite the international interest the species has garnered, its genome remains in an abysmal 

state, and basic facts about its genetic organization remain unknown. In addition to an unknown 

chromosome count, its ploidy has also not been established, and estimates on genome size vary 

widely, from as low as 332mb31 to as high as 9gb32.  

 Using long read sequencing and genome-wide chromatin conformation capture (Hi-C), 

strides have been made towards producing chromosome length reference genomes. Combining 
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these technologies with traditional short read sequencing, we can correct the frameshift errors 

that are commonly present in long read sequencing. With Hi-C sequencing, we are able to 

confirm the chromosome organization of L. donovani and L. tarentolae, which were originally 

accomplished using an alignment map. In addition, we make several corrections to the 

previously proposed chromosomes of C. fasciculata using the Hi-C data. Finally, we 

encountered experimental challenges while using Hi-C with E. gracilis, and although we are 

unable to complete its chromosomes, we present high-quality draft assembly with approximately 

1000x less fragmentation than the preexisting draft assembly.  

 

2.2 METHODS 

 

2.2.1 Culturing and DNA Extraction 

The L. tarentolae Parrot-TarII wild-type and L. donovani 1S strains were grown in SDM-

79 medium supplemented with 10% fetal bovine serum. E. gracilis samples were obtained from 

Mark Field’s lab at the University of Dundee, and C. fasciculata C1 samples were obtained from 

Steve Beverley’s group at the University of Washington St. Louis. Cells were resuspended in a 

breaking buffer (2% Triton X-100, 1% SDS, 100mM NaCl, 10mM Tris, 5mM EDTA) with 

proteinase K and incubated at 37 C for 2 hours. DNA was extracted in phenol, chloroform, 

isoamyl alcohol (PCIA) and precipitated in ethanol. DNA was treated with RNase A, extracted 

with PCIA, extracted again with chloroform and isoamyl alcohol, precipitated with ethanol, and 

resuspended in Tris EDTA buffer pH 8.5. 
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2.2.2 Library Preparation and Sequencing 

For standard Illumina libraries, DNA was sheared to 400 bp using the Covaris S2. 

Libraries were prepared using the NEBNext Ultra II library prep kit (NEB, E7645S) following 

the manufacturers protocol with indexed adaptors ordered from IDT and annealed by incubating 

at 95°C in annealing buffer (10mM Tris, 1mM EDTA, 50mM NaCl) for 5 minutes and slowly 

cooling to room temperature. Long-read libraries were generated using PacBio’s DNA Template 

Prep Kit and sequenced on RSII P5/C3 instruments. For Hi-C libraries, strains were grown until 

108 cells, then crosslinked with 1% freshly prepared methanol-free formaldehyde at room 

temperature for 20 minutes, and then quenched with 125mM glycine. Cells were washed in PBS 

and used with the Phase Genomics ProxiMeta kit to generate libraries. Both standard Illumina 

and Hi-C libraries were sequenced on HiSeq instruments to generate 75bp paired end reads. We 

also incorporated several libraries prepared by other groups including publicly available Roche 

454 libraries from C. fasciculata generated by Steve Beverley’s group at University of 

Washington St. Louis. For E. gracilis, we used the published libraries generated by Thankgod 

Ebenezer from Cambridge University containing several standard and mate pair Illumina 

libraries, as well as PacBio libraries generated from Purificación Lopez at the University of 

Paris-Sud, and Nanopore libraries from Pierre Cardol at the University of Liege. For scaffolding 

E. gracilis, we incorporated 10x link-read libraries generated from Neil Hall’s group at the 

Earlham Institute, and all available RNA-seq libraries from the SRA database.  

  

2.2.3 Genome Properties and Assembly 

 To estimate genome size, ploidy, levels of heterozygosity, and repeat content, we used 

GenomeScope2 and Smudgeplot33. Using short read data, k-mer counts were computed to 
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estimate various genome properties. For genome assembly, we first error-corrected long reads 

with short read data using FMLRC234, and in the case of E. gracilis, the long reads included 

nanopore data generated by Pierre Cardol’s group at the University of Liege. Error-corrected 

long reads were passed to Canu using default parameters35. We removed haplotypes from the 

resulting assemblies using purge_dups36. Finally, assemblies were scaffolded using Hi-C by 

following the Juicer and 3d-dna pipelines, and then corrected via manual curation37. For E. 

gracilis, due to the challenges in assembling a genome, we aggregated all publicly available 

genome sequencing which included mate pair libraries (Table 2.1). To utilize these in a genome 

assembler, we additionally ran Masurca38, which took as input two standard Illumina libraries, a 

mate pair Illumina library, a PacBio library, and a nanopore library. To scaffold E. gracilis, we 

first used long read data using LongStitch39, then with RNA-seq data using p_rna_scaffolder40, 

and finally with 10x genomics data using Arcs13.  
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Species Type Location Reads Base Pairs 
L. tarentolae PacBio Seattle 1,360,815 7,198,339,498 
L. tarentolae Illumina Seattle 144,238,646 21,635,796,900 
L. tarentolae Hi-C Seattle 59,964,841 9,594,374,560 
L. donovani PacBio Seattle 838,529 6,574,356,845 
L. donovani Illumina Seattle 355,821,859 53,373,278,850 
L. donovani Hi-C Seattle 78,641,799 11,815,666,800 

C. fasciculata PacBio Seattle 412,577 3,126,269,594 
C. fasciculata Illumina St. Louis 41,508,521 21,922,416,870 
C. fasciculata 454 St. Louis 9,816,376 3,641,141,835 
C. fasciculata Hi-C Seattle 87,425,815 13,113,872,250 

E. gracilis PacBio Seattle 3,533,322 31,793,245,156 
E. gracilis PacBio Paris 403,289 3,540,114,295 
E. gracilis Nanopore Liege 410,593 1,870,759,526 
E. gracilis Illumina Seattle 64,526,539 9,678,980,850 
E. gracilis Illumina Cambridge 183,462,358 29,233,357,879 
E. gracilis Matepair Cambridge 36,182,723 3,618,272,300 
E. gracilis 10x Norwich 270,669,346 64,825,308,367 
E. gracilis Hi-C Seattle 451,398,791 67,709,818,650 
E. gracilis RNA-seq Tokyo 681,091,367 127,112,768,228 
E. gracilis RNA-seq Cambridge 44,229,922 8,576,704,580 
E. gracilis RNA-seq Norwich 191,708,318 38,341,663,600 
E. gracilis RNA-seq Ceske Budejovice 20,879,285 3,929,902,443 
E. gracilis RNA-seq Liege 951,113,100 190,222,620,000 

 
Table 2.1: A summary of all the sequencing data used for genome assembly and scaffolding of L. 

tarentolae, L. donovani, C. fasciculata, and E. gracilis. Though we generated most of the data 

for the trypanosomes, the complexity of E. gracilis led us to collate all publicly available 

genomic and transcriptomic data for the species, in addition to several unreleased datasets from 

collaborators.  

  



 

 

15 

2.3 RESULTS 

 

2.3.1 Genome Properties 

We generated several libraries of Illumina sequencing, which is known to provide short 

but accurate sequencing information. We utilized these short reads using reference free k-mer 

analysis methods, which can characterize the genome without using a genome assembly, and 

establish genome size, ploidy, repeat content and allelic variation (Table 2.2, Figure A.4 - Figure 

A.11). We confirmed that all the trypanosomes were diploid and had haploid lengths of close to 

36mb. We found that E. gracilis likely contains three copies of each chromosome and has a 

haploid genome length of 616mb. These results represent a significant advance as neither the 

ploidy nor genome size have been historically established for E. gracilis. The repeat content in 

Euglena has long been suspected to be fairly high, and we confirm that 46% of the genome is 

repetitive. Additionally, E. gracilis has a very high heterozygosity rate of almost 5%, which in 

combination with the high degree of repetitiveness, could account for previous challenges in 

assembling this genome.  

 

Species Size (bp) Chromosomes Ploidy Repeat Heterozygosity 

Leishmania donovani 34,640,000 36 2 25% 0.1% 

Leishmania tarentolae 36,790,000 36 2 31% 0.2% 

Crithidia fasciculata 37,080,000 29 2 29% 2.4% 

Euglena gracilis 616,060,000 Unknown 3 46% 4.9% 

 

Table 2.2: The genome properties of each species. We first determined ploidy using Smudgeplot, 

and then used that ploidy in Genomescope to estimate genome size, heterozygosity, and repeat 



 

 

16 

content. The repeat column refers to what percent of 21-mers have been repeated elsewhere in 

the genome. The chromosome count was derived from the scaffolded Hi-C maps.  

 

2.3.2 Genome Assembly 

 We relied heavily on long read technologies to improve the contiguity of our assemblies. 

By running Canu with the error-corrected long reads, we generated assemblies for each species. 

At this stage, L. tarentolae had 341 contigs, L. donovani had 221 contigs, C. fasciculata had 451 

contigs, and E. gracilis had 37,085 contigs. The N50 of a genome assembly is the size at which 

contigs of equal or greater length cover half the assembly. After using purge_dups to remove 

haplotigs, L. tarentolae had 77 contigs with an N50 of 694kb, L. donovani had 62 contigs with 

an N50 of 702kb, and C. fasciculata had 95 contigs with an N50 of 613kb. Using 3d-dna, we 

scaffolded each genome into chromosomes, and after manual correction of the results, we found 

that L. tarentolae had 15 gap-free chromosomes and a genome size of 31,943,030bp, L. donovani 

had 13 gap-free chromosomes and a genome size of 33,075,856bp, and C. fasciculata had 4 gap-

free chromosomes and a genome size of 33,579,047bp. We also generated Masurca assemblies 

for these species, but we found the assemblies to aggressively collapse repeat regions compared 

to Canu. 

We generated several draft assemblies for E. gracilis, the most promising versions were 

the Canu assembly with 9,689 contigs and a 152kb N50, and the Masurca assembly which had 

2,791 contigs and a 669kb N50 (Table A.1). These results represent a quantum leap in genome 

quality, as the currently published draft assembly of E. gracilis contains 2,066,288 contigs and 

has a 955bp N5031. Unfortunately, we found that our Hi-C library contained too many PCR 

duplicates to provide informative scaffolding information. Instead of scaffolding with Hi-C, we 
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used a combination of strategies for E. gracilis. Using the long-read data, the RNA-seq 

transcriptome data, and 10x genomics linked read data, we made three successive rounds of 

scaffolding (Table A.2).  

To explore the quality of these genome assemblies using an orthogonal method, we 

employed BUSCO to determine gene content41. BUSCOs are representations of conserved genes 

across eukaryotes and are expected to be found in every genome. For the three trypanosomes, we 

found that the published genomes had very similar BUSCO scores to our assemblies, indicating 

that existing assemblies already had fairly good base level representations of the genomes. 

However, we found a dramatic increase in BUSCO scores for E. gracilis, going from 4 complete 

BUSCOs to 53 for the Canu assembly, and 49 for the Masurca assembly (Table A.3, Table A.4). 

This 10-fold increase in core gene content likely means that there are fewer errors at the base 

level in addition to the increased contig lengths. In addition, we investigated how well the 

existing and independently derived transcriptome aligned to our assemblies using Magic Blast, a 

newer version of Blast streamlined to align RNA (Table A.5). We found that on average, 90% of 

the sequence of a gene was able to align to the genome, compared to just 61% on the previous 

assembly. Finally, as a manual curation step, we aligned the gene for JBP130, and the three 

largest genes in the transcriptome with continuous open reading frames to both of our 

assemblies. In general, we found that both assemblies were able to align well to these genes and 

aligned to each other around these regions. However, on flanking regions, there was far less 

sequence identity, suggesting a more careful look with Hi-C is required.  
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2.3.3 Chromatin Organization 

 After the scaffolding and manual correction was complete, we generated Hi-C maps for 

each species (Figure A.1, Figure A.2, Figure A.3). Immediately, it is striking how the 

trypanosomes lack a classic checkboard pattern indicative of higher-level organization such 

compartments or topologically associated domains (TADs). For the most part, there are no 

organizational compartments in the genome, aside from the usual separation of chromosomal 

arms. Relatedly, the centromeres appear to strongly interact between all the chromosomes, which 

allowed us to annotate the precise location of every centromere for the first time in these species. 

Several repeat structures appear as diagonal lines, indicating that there is a similar but not 

identical sequence for the repeat. Notably, one such instance is the ribosomal RNA locus of 

chromosome 22 on C. fasciculata (Figure 2.1). This chromosome also displays a divergence of 

signal between its arms, as if they were completely separate chromosomes. In the yeast genome, 

a similar phenomenon occurs for Chromosome XII, where the half of the chromosome 

containing ribosomal RNA repeats is segregated in the nucleolus and does not interact with the 

other half of the chromosome42. In the C. fasciculata genome, there are additionally several 

sections of missing sequencing which are apparent from the drop in Hi-C signal. One such 

instance is on chromosome 5, which contains the spliced leader RNA locus, which is likely 

present in a far greater copy number than is currently represented in the genome (Figure 2.2).  
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Figure 2.1: The Hi-C interaction map of Chromosome 22 of C. fasciculata. Around 320kb, the 

ribosomal RNA locus begins and contains several repeats, each indicated by another diagonal 

striation. Interestingly, this region segregates the chromosome into two sections that do not 

interact with each other.  

 



 

 

20 

 

Figure 2.2: The Hi-C interaction map of Chromosome 05 of C. fasciculata. The greyed-out 

section is the splice leader locus which contains the sequence that is required to be trans-spliced 

on to all genes being transcribed in the organism. From the sequence coverage map, there is 

strong evidence that this region is significantly underrepresented, suggesting that this 

chromosome is missing a substantial amount of repetitive sequence in its current state.  

 

2.4 DISCUSSION 

 

 We performed long read, short read, and Hi-C sequencing to produce high-quality 

reference genomes for four euglenozoa species. We succeeded in producing chromosome length 

scaffolds for three of these species (L. tarentolae, L. donovani, and C. fasciculata) and produced 
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a high-quality draft of E. gracilis. Though these are all polyploid species, we sought to produce a 

haploid representation of each genome. We used purge_dups to identify and exclude haplotigs 

and focus on scaffolding the primary contigs. However, several groups have demonstrated the 

ability to phase haplotypes using Hi-C data43, and future work could conceivably transform this 

into a polyploid representation.  

 One of the reasons we were unable to complete the chromosomes of E. gracilis was due 

to the Hi-C library not containing a sufficient diversity of molecules. We found that our Hi-C 

library had a PCR duplication rate of 66%, suggesting a poor DNA extraction step.  We are 

currently collaborating with Pierre Cardol’s group at the University of Liege to repeat the Hi-C 

library preparation and sequencing. Should this replicate succeed, we expect to be able to 

validate the existing assemblies and their contigs, scaffold contigs into chromosomes, and 

definitively determine the number of chromosomes.  

One interesting finding from the Hi-C maps of the three trypanosomes was the general 

lack of topologically associating domains (TADs) and chromatin compartments. These 

organisms are thought to have evolved early in the history of eukaryotes, and we speculate that 

complex chromatin organization had not yet evolved on the tree of life at this point. As such, the 

Hi-C contact maps show only low levels of defined organization, much like those of bacterial 

genomes44. Nevertheless, it has not been studied whether the promastigotes and amastigote forms 

of trypanosomes have significant differences in chromatin architecture, though we do not have 

reason to suspect they do.  

The final step towards publishing these genomes and producing high-quality reference 

sequences for the community is to generate annotations of commensurate quality. Often, protein 

coding sequence annotations are merely transferred based on sequence alignment, and transcript 
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and gene boundaries are left out altogether. We plan to use RNA-seq libraries in conjunction 

with splice leader seq libraries to accurately determine the 5` and 3` ends of each of the 

transcripts. Since there can be multiple splice sites in trypanosomes, we can use the furthest 

splice site for a given CDS to define gene boundaries and use the most common site to define 

transcript boundaries.  

With ubiquitous use of genome-wide sequencing experiments to answer biological 

questions, the absence of a high-quality genome for any given species hampers research. With 

accurate DNA, transcript, and coding sequences, omics experiments can capture a wider range of 

information with better correspondence to the underlying truth. We hope the publication of these 

species will further parasitology and help reveal the origins of this unusual branch on the tree of 

life.  
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Chapter 3. MEASURING SCAFFOLDING ACCURACY WITH EDIT 

DISTANCE 

 
This chapter is adapted from the following work: 

Sur, Aakash, William Stafford Noble, Shawn Sullivan, and Peter Myler. "Edison: 

measuring scaffolding accuracy with edit distance." bioRxiv (2022). 

  

3.1 INTRODUCTION 

 

The reference genome of a species is the starting point for the many types of sequencing 

experiments. Accordingly, errors in the reference genome often propagate through subsequent 

analyses. The critical task of constructing the reference genome is handled by genome 

assemblers, which distill large sets of genomic reads into stretches of contiguous sequence. 

Ideally, a genome assembly contains chromosome-length sequences, but in practice only 

subregions of high confidence, known as “contigs,” can be independently assembled. Arranging 

these contigs in the correct chromosome grouping, order, and orientation is known as the 

scaffolding problem. Although the scaffolding problem remains challenging, advances in 

experimental methods such as chromatin conformation capture have allowed researchers to 

publish high-quality scaffolds for historically difficult genomes45–47. 

Despite the importance of scaffolding to the assembly process, there is little agreement on 

how to assess the quality of a given scaffold. Since 1995, when the term “scaffolding” was 

introduced48, there has been a steady flow of new scaffolding algorithms, each with its own 

evaluation criteria (Table B.1). Typically, evaluation criteria fall into three categories: length 
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metrics, visual plots, and error counts. The most common length metric is N50, which is the size 

at which contigs of equal or greater length cover half the assembly. Though useful, since this 

metric only characterizes the length of the scaffolds, it does not evaluate the placement of 

contigs, which can lead to overly aggressive scaffolders receiving higher scores for otherwise 

inaccurate scaffolds. Visual inspection using dot plots and linkage maps can confer a sense of 

agreement with a reference genome but does not yield quantitative measurements. In contrast, 

enumerating the errors in scaffolds creates quantifiable values, but there are many choices in 

defining these errors. 

We suggest using the concept of edit distance, which measures the minimum number of 

edits (splitting scaffolds, joining scaffolds, moving contigs, and inverting contigs) required to fix 

misplaced contigs, to encompass all these flavors of accuracy. Edit distance has been studied in 

many contexts49, and in the field of evolutionary genomics it has generally been defined as the 

most parsimonious series of rearrangements in gene order that would explain the evolution of 

one species into another50–53. In 2006, an elegant formulation called the Double Cut and Join 

(DCJ) model was introduced, which accounted for chromosomal fusions, fissions, translocations, 

and inversions54. However, edit distance has rarely been applied to the evaluation of 

scaffolds55,56, and to the best of our knowledge, there is no current software tool to perform this 

task. 

We have developed Edison (Edit Distance Scaffolding), an open-source Python program 

that uses the DCJ edit distance between a scaffolded assembly and a high-quality reference 

genome as a measure of scaffolding accuracy. This software package calculates the overall 

length-weighted edit distance (relative to the correct placement of contigs), along with individual 

scores for grouping, ordering, and orientation accuracy. By focusing strictly on contig placement 
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instead of sequence error, we can disentangle errors in the genome assembly step and the 

scaffolding step. As such, our measurement of scaffolding accuracy allows researchers to 

benchmark existing scaffolders and test new algorithms against known genomes to gain a better 

under- standing of performance compared to traditional metrics such as N50 and base level 

errors. Our findings show that on random permutations of the yeast genome, scaffolding 

accuracy better evaluates the state of an assembly compared to N50. 

 

3.2 RESULTS 

    

Edison begins by breaking scaffolds into their constituent contigs at regions with a stretch 

of Ns. Next, contig sequences are aligned to the reference genome using MUMmer457. This 

alignment allows us to determine the optimal organization of contigs into scaffolds. To 

determine the edit distance, we compare this alignment-based scaffolding to the input scaffolds 

using the DCJ algorithm. The algorithm begins by constructing an adjacency graph that maps the 

positions of contigs in both assemblies onto a graph. The edit distance then becomes a simple 

relationship between the number of contigs and the number of even and odd paths in this graph 

(Appendix B). The edit distance is converted into accuracy by taking the total length of correctly 

placed contigs compared to the overall length of all the contigs (Figure 3.1). 

To assist in the interpretation of the accuracy and edit distance, we break down three of 

its contributing factors, the grouping, ordering, and orientation scores. The grouping score 

represents what fraction of a scaffold belongs to a single chromosome, averaged across all 

scaffolds by length. The ordering score is the length-weighted percent of contigs that are next to 

their expected neighbors. The orientation score is similar to the ordering score, but contigs are 
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required to be in the correct orientation in addition to being ordered correctly. Finally, Edison 

also produces a visualization which displays the MUMmer4 alignments of the contigs to further 

illuminate how a particular assembly compares to the reference genome. 

In the presence of a reference genome, we observe that accuracy is a much better 

indicator of correctness than the N50 of the assembly. To demonstrate this, we simulated a 

genome assembly by splitting the S. cerevisiae reference genome into equal sized 100kb contigs 

and scaffolding them according to their true chromosomal assignments. We then randomly made 

between 0 and 30 permutations to the assembly by moving contigs, merging scaffolds, and 

breaking scaffolds to create 1,000 permuted assemblies. Several of these scaffolds had 

considerably higher N50s than even the reference genome, which would have made them 

attractive candidates in a de novo setting. However, the accuracy of these assemblies is 

demonstrably lower due to the incorrect joins required to create these longer scaffolds. 

Developing new scaffolders is a challenging task, which has to balance producing longer 

scaffolds with producing correctly joined scaffolds, and it has been shown that more aggressive 

scaffolding parameters accumulate more errors58. Because these scaffolders are most often used 

in the de novo setting, where a reference genome is absent, correctness is quite difficult to 

characterize. With Edison, we propose that researchers benchmark and test their scaffolders on 

assemblies of species with known reference genomes in order to compare performance between 

scaffolders and evaluate the strengths and weaknesses of competing algorithms. 
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Figure 3.1: An overview of the Edison pipeline, and experimental results. A) Scaffolds in the 

assembly are first aligned to the reference genome to determine their optimal positions. B) We 

compare the original assembly and the assembly aligned to the reference by creating an 

adjacency graph. As described in the Double Cut and Join model, the adjacency graph can be 

used to compute the edit distance between these two layouts. C) Random permutations of the S. 

cerevisiae genome indicate that while the N50 can be artificially inflated, the accuracy cannot. 

The dashed vertical line represents the N50 of the reference genome. 
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Chapter 4. BENCHMARKING HI-C SCAFFOLDERS USING 

REFERENCE GENOMES AND DE NOVO 

ASSEMBLIES 

 
This chapter is adapted from the following work: 

Sur, Aakash, William Stafford Noble, and Peter J. Myler. "A benchmark of Hi-C 

scaffolders using reference genomes and de novo assemblies." bioRxiv (2022). 

 

4.1 INTRODUCTION 

 

 Robust genome sequences are foundational to molecular biology, yet many reference 

genomes remain in the purgatory of the draft assembly. Producing complete chromosome-length 

sequences of organisms has long been the goal for genome assembly, but progressing from high-

confidence contigs to scaffolded chromosomes has proven challenging. Recent experimental 

advances in interrogating the three-dimensional structure of genomes through chromatin 

conformation capture (Hi-C) has provided valuable new information to help solve the assembly 

problem21. Several groups have developed scaffolding algorithms that utilize Hi-C data to group, 

order, and orient contigs into completed genomes. Despite the proliferation of such methods, the 

accuracy of these methods has never been comprehensively benchmarked.  

 A search of the current literature revealed ten Hi-C scaffolding methods, of which five 

(Lachesis, HiRise, 3d-dna, SALSA, and AllHiC) have been used in a publication more than three 

times (Table 4.1). In each of their respective publications, the authors test their scaffolder by 

solving a genome assembly, but the species and task vary considerably among papers. 
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Occasionally, a reference is artificially split into an arbitrary number of pieces and the scaffolder 

tasked with reassembling it (Salsa, AllHiC). In some cases, assemblies of known genome are 

scaffolded (Lachesis, HiRise, 3d-dna, Salsa, AllHiC), and other times unpublished genomes are 

solved (3d-dna, Salsa, AllHiC).  

Our primary objective in this study is to evaluate the performance of existing Hi-C 

scaffolders using a uniform set of tests and evaluation metrics. To this end, we evaluated the five 

most commonly used Hi-C scaffolders against four diverse eukaryotic species — Saccharomyces 

cerevisiae, Leishmania tarentolae, Arabidopsis thaliana, and Homo sapiens. Each of these 

genomes has unique characteristics, including widely varying genome size, base composition, 

rate of interchromosomal interaction, and even evolutionary differences in chromosome packing.  

  

Name Publication Date Citation Count Application Count 

Lachesis21 December 1, 2013 481 89 

Dna-triangulation59 December 1, 2013 138 0 

Graal60 December 17, 2014 108 1 

HiRise61 February 4, 2016 349 17 

3d-dna37 April 7, 2017 297 40 

Salsa62 July 12, 2017 71 5 

ALLHiC63 August 5, 2019 20 4 

HiCAssembler64 October 10, 2019 8 0 

HiC-Hiker65 May 5, 2020 0 0 

Manual Annotation* N/A N/A 5 

 

Table 4.1: The Hi-C scaffolding tools identified in the literature search along with their 

publication date, citation count, and number of times they were used in a genome publication as 

of September 15, 2020. Although scaffolders published earlier tend to have more citations, their 

actual application count varies significantly. Our selection criteria required scaffolders to have 
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three or more applications. *“Manual annotation” refers to studies that complete the genome by 

hand using the Hi-C map as a visual guide.  

 

 We tested the scaffolders with two different sets of contigs: split reference and de novo 

assemblies. The split assembly divides a reference genome into equal-sized pieces, presenting an 

artificially pristine test that is the best-case scenario for each scaffolder. Because real genome 

assembly is usually complicated by repeat ambiguity, haplotypes, and low complexity sequences, 

we created several de novo assemblies from long read datasets using the Canu assembler35. In 

both settings, scaffolders are tasked with joining a given set of contigs to produce scaffolds, 

which are then compared against the existing reference genome. We observed that scaffolders 

performed better on average on the split reference task than the de novo assembly task. 

Additionally, we found that the accuracy of the scaffolders changed with the species being 

tested, suggesting that sequence characteristics such as repeat content and heterozygosity levels 

may affect performance.  On average, HiRise and Lachesis performed the best, with HiRise and 

Salsa working best on less fragmented assemblies, and HiRise, Lacheis, or AllHiC being better 

choices for more fragmented assemblies. Although scaffolders can perform well under ideal 

circumstances, our results suggest that existing Hi-C scaffolders are still expected to make 

mistakes, requiring manual correction before new reference genomes can be published.    
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4.2 METHODS 

 

4.2.1 Literature Search 

To find all available Hi-C scaffolders, we conducted a literature search on PubMed for 

publications between January 1, 2010, to September 15, 2020. The search terms “(hi-c 

scaffolding) or (hi-c assembly) or (hi-c genome assembly) or (hic scaffolding) or (hic assembly) 

or (hic genome assembly)” yielded 370 results, of which 171 were ultimately deemed relevant 

(Figure C.13). Ten scaffolding methods were identified, as well as the frequency with which they 

have been used to publish genomes. Methods with three or more cited applications were selected 

for benchmarking.  

 

4.2.2 Split reference and de novo assemblies 

 To generate the split assemblies, we partitioned the established reference genomes of S. 

cerevisiae, L. tarentolae, A. thaliana, and H. sapiens into equal sized pieces of 10kb, 50kb, 

100kb, 500kb, and 1mb to create a total of sixteen split reference assemblies. To generate a 

diverse set of de novo assemblies for each of the four organisms, we collected a large repository 

of long-read data from NCBI’s SRA database, as well as our previously generated PacBio reads 

for L. tarentolae (Table C.7). To normalize for different genome sizes, we down-sampled the 

number of reads to achieve a theoretical coverage of 10x, 20x, …, 100x for each reference 

genome. We ran the Canu assembler on each of these down-sampled datasets using the default 

parameters to create forty different de novo assemblies (Table C.8). Canu was selected given its 
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popularity as a long-read assembler as well as its robust support for clusters and scheduling 

frameworks such as Slurm.  

 

4.2.3 Hi-C Alignments 

Hi-C scaffolders use the alignment of Hi-C reads against a genome assembly to optimally 

place contigs. We downloaded publicly available datasets of Hi-C reads from the SRA database 

for S. cerevisiae, A. thaliana, and H. sapiens, and used our previously generated Hi-C reads for 

L. tarentolae (Table 4.2). The Hi-C dataset for the human genome proved too large to easily 

work with so we opted to down-sample that dataset to 100 reads per kilobase. All reads were 

aligned against de novo and split reference assemblies using BWA66, and duplicate reads were 

filtered with samblaster67. The resulting alignment files were sorted with samtools68 into either 

coordinate-sorted files or read-sorted files depending on scaffolder requirements. 3d-dna 

required the use of the Juicer pipeline69, so reads were extracted from the filtered BAM 

alignments to be input to Juicer.  

 

Organism Hi-C Reads Hi-C Bases Hi-C 
Coverage* 

Hi-C 
Enzyme 

BioProject 

S. cerevisiae 1,542,620,558 128,833,195,802 127,489 DpnII PRJNA525842 

L. tarentolae 59,964,841 4,797,187,280 1,862 Sau3AI PRJNA818795  

A. thaliana 790,614,589 159,575,826,006 5,856 DpnII PRJNA227546 

H. sapiens 15,307,281,379 3,088,242,262,764 4,938 MboI PRJNA268125 

 

Table 4.2: Overview of the Hi-C data collected for each of the four organisms. All the Hi-C 

enzymes cut at the same site, allowing the pipeline to remain consistent. The H. sapiens data 

proved to be computationally unwieldy, it was down sampled to 100 reads/kb. *Hi-C coverage is 
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reported as reads per kilobase since the number of bases in a particular read do not contribute 

towards the contact count.  

 

4.2.4 Hi-C Scaffolding  

Of the five scaffolders selected for benchmarking, two initially failed to build due to 

errors in the source code (Lachesis and HiRise), one required deprecated software dependencies 

(Salsa), and two installed as intended (3d-dna and AllHiC). To work with this diverse set of 

software tools and with an eye towards providing a community resource, we containerized the 

four methods with installation hurdles in Docker and have made them freely available 

(https://hub.docker.com/u/aakashsur). Scaffolders were then tasked with joining the contigs of a 

genome assembly using the alignment of Hi-C reads to that assembly. Lachesis and AllHiC 

require an expected number of chromosomes when running, representing a potential limitation of 

those methods. Additionally, HiRise was originally developed for use with in vitro chromatin 

proximity ligation reads (Chicago) rather than Hi-C data.  

To determine how many Hi-C reads were required to effectively scaffold genomes, we 

selected a single assembly for each species and down-sampled the number of aligned and de-

duplicated Hi-C reads to 1, 50, 100, 500, and 1000 reads per kilobase. Since the difficulty of the 

scaffolding problem is often related to the fragmentation of the underlying genome assembly, we 

also wanted to determine how assembly quality affects scaffolding. To test the effects of 

different N50s, the number of Hi-C reads were normalized by down-sampling each run to 100 

aligned Hi-C reads per kilobase.  

 

https://hub.docker.com/u/aakashsur
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4.2.5 Scaffolding Accuracy 

Each scaffolder outputs a FASTA file where the appropriate joins have been made to the 

input contigs. To evaluate how closely this layout matches the optimal layout, we used 

MUMmer4 to map the assembly contigs to the known reference genome, and then compared 

them57. Using the python package Edison, we calculate the edit distance, overall accuracy, 

grouping accuracy, ordering accuracy, and orientation accuracy70. The edit distance is the 

number of edits needed to alter a given set of scaffolds such that they most closely resemble a 

reference genome. This distance is calculated using the Double Cut and Join (DCJ) algorithm for 

genomic rearrangements, which guarantees finding the theoretical minimum edit distance54. The 

overall accuracy is obtained from the DCJ model by determining what fraction of sequence in 

the assembly has been correctly placed. The grouping accuracy measures how effectively a 

scaffolder can partition contigs into their associated chromosomes and is computed using a 

length-weighted Jaccard index between scaffolds and chromosomes. The ordering accuracy is 

the length-weighted frequency of finding a pair of adjacent contigs in the assembly that are also 

adjacent in the reference. Finally, the orientation accuracy is similar to the ordering accuracy, but 

also requires that adjacent contigs be correctly oriented relative to each other.  

 

4.3 RESULTS 

 

  We benchmarked the five most utilized Hi-C scaffolders: Lachesis, HiRise, 3d-dna, 

SALSA, and AllHiC. To simulate ideal conditions, we challenged the scaffolders to reproduce 

the high-quality reference genomes of S. cerevisiae, L. tarentolae, A. thaliana, and H. sapiens 

that had been split into equal size pieces. In addition, to assess performance in a more realistic 
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setting, we benchmarked each scaffolder using de novo assemblies which approximate the 

reference genomes, but contain the ambiguities and complexities of real assemblies. 

 

Several of the scaffolders proved challenging to install and run, so we have released 

patched versions as Docker containers at https://hub.docker.com/u/aakashsur. Despite these 

patches, there are inherent limitations to some of the software tools that lead to failed runs. Most 

commonly, Lachesis fails to finish if it is unable to build the specified number of chromosomes. 

Additionally, several scaffolders failed to complete the 10kb N50 split reference assembly of the 

human genome in the allotted 10 days — the maximum our cluster allows. In most cases, HiRise 

tends to have a run time that is an order of magnitude higher than the other scaffolders, and 

Lachesis consistently had the fastest time, even being able to scaffold human-sized genomes 

within an hour (Figure C.18).  

 To determine the impact of Hi-C read coverage on scaffolding ability, we down-sampled 

the number of Hi-C reads. As a baseline, we chose the 100kb split reference assembly to 

represent a plausible, modern assembly attempt. We found that the majority of the time, 

performance degrades as the amount of Hi-C data is reduced (Figure 4.1). Although we observed 

heterogeneity as to when this shift occurs, 50 reads/kilobase appears to be the point below which 

at least some of the scaffolders begin to perform worse. Lachesis and AllHiC appear to have both 

the smallest drop in performance suggesting that they are the most tolerant of less data. These 

results are broadly replicated in the de novo assembly setting as well (Table C.6).  

https://hub.docker.com/u/aakashsur
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Figure 4.1: The effect of down-sampling Hi-C coverage on scaffolding accuracy. While using 

the 100kb N50 split reference assembly, reads were down sampled to target densities. Past 50 

reads per kilobase, performance of all scaffolders tends to degrade, though some scaffolders are 

more resistant to decline than others.  
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 To measure accuracy as a function of assembly size, we varied the N50 of the genome 

assemblies while keeping a constant 100 reads per kilobase of Hi-C data. For the split reference 

assemblies, we found that scaffolders can reach upwards of 80% accuracy in many cases, but 

occasionally perform much worse (Figure 4.2). Indeed, the best scaffolder for one species was 

not necessarily the best for another, making the calculus of ranking more challenging. 

Nevertheless, a consistent trend was lower performance on 10kb N50 assemblies, suggesting 

their high degree of fragmentation makes them difficult to scaffold. Though this might suggest 

that more contiguous assemblies ought to fare better, we were surprised to find that several of the 

scaffolders had dramatic decreases in performance with the highest N50s. In fact, on five 

occasions, scaffolders perform worse than the baseline of no scaffolding, indicating the errors 

they have created exceed the starting errors. For AllHiC, this decrease occurs because the 

method produces a single scaffold containing all the contigs (Figure C.22). Similarly, 3d-dna 

yielded consistently low grouping scores for these two species and also showed a decline in 

ordering accuracy at the high N50 range with similar problems in “over-scaffolding,” i.e., 

producing fewer scaffolds than there are chromosomes.  
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Figure 4.2: The accuracy of Hi-C scaffolders on four reference genomes. For each species, we 
created five different assemblies by splitting the reference in equal sized parts. High performance 
on a particular organism does not guarantee high performance on others. Performance decreases 
by 10kb N50 for all species, but also decreases at the high N50 range for S. cerevisiae and L. 
tarentolae.  
 

For the de novo assemblies, significant variability in accuracy was observed across 

scaffolders and species, presumably due to the inherent complexities of the assembly process 
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(Figure 4.3). As a general trend, the scaffolders tended to perform worse on de novo assemblies 

than they did on split references. Particularly for A. thaliana and H. sapiens, accuracies are much 

lower and closer to baseline than in the split reference setting. Overall, we still see the trend 

where accuracy decreases at both extremes of the N50 spectrum, albeit in a less consistent 

fashion. Again, AllHiC and 3d-dna perform significantly worse on the more contiguous S. 

cerevisiae assemblies, similar to their trends on the split reference task. 
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Figure 4.3: The accuracy of Hi-C scaffolders on the de novo assemblies of four species. The 

scaffolders exhibited significant variability across species, as well as an overall lower 

performance compared to the split reference reconstruction task. Nevertheless, a similar trend of 

poorer performance at either end of the N50 spectrum remains, with highly fragmented 

assemblies causing poorer performance, and highly contiguous assemblies causing a drop as 

well.   
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While investigating the lower performance on the de novo assemblies of A. thaliana and 

H. sapiens compared to the split reference setting, we discovered that approximately fifty percent 

of the Hi-C reads for the A. thaliana assemblies mapped to more than one location, in 

comparison to about ten percent for the other species (Figure C.24). Because multi-mapping 

reads cannot be reliably used in the scaffolding process, Hi-C scaffolders typically mask these 

regions during preprocessing. We speculate that this led to the poor scaffolding performance on 

A. thaliana assemblies. 

While the culprit for low accuracy on de novo A. thaliana assemblies was the high repeat 

content, the same cannot be said for H. sapiens, which shows a multi-mapping rate on par with 

the other two species. Instead, our Mummer alignments of scaffolds hinted at a high frequency of 

small, overlapping contigs, known as haplotigs, which are typically caused by allelic variation 

(Figure C.21). Haplotigs are known to interfere in scaffolding since they create a scenario in 

which two different sequences belong to the same location along the genome. Since the goal of 

most assembly projects is to produce a haploid representation of the genome, haplotigs can be 

reasonably omitted from analysis. We found that most Hi-C scaffolders automatically exclude 

haplotigs in scaffolding, because they are small and therefore contribute a relatively small 

amount of Hi-C signal compared to the primary contig in a region. Consequently, excluding 

unscaffolded regions of the assembly led to only a 5% reduction in assembly size on average. 

The scaffolding accuracy of these assemblies improved dramatically for HiRise, Salsa, and 3d-

dna, suggesting that the presence of haplotigs can obfuscate the assessment of de novo 

assemblies (Figure 4.4). As such, future studies should attempt to remove haplotypes before 

scaffolding. We have had preliminary success along these lines using the purge_dups pipeline36 

(Figure C.23).   
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Figure 4.4: The improvement in accuracy by removing unscaffolded contigs of H. sapiens. We 

found that small overlapping contigs known as haplotigs are often excluded from scaffolds by 

the methods we tested. This suggests that the remaining scaffolded contigs show much higher 

accuracy, and is more consistent with results from the split reference setting.  

 

4.4 DISCUSSION  

 
 
 Given the proliferation of methods to scaffold genomes using Hi-C, it is critical to 

understand the landscape of their performance and assess the state of the field. Overall, we found 

that the performance of existing Hi-C scaffolding tools varies with species and assembly size, 

but with two salient trends across Hi-C scaffolders. First, accuracy decreases at low N50 values. 

Most scaffolders join contigs by pairing the two contigs with the highest number of connecting 

Hi-C reads. In a context where the contigs are both small and numerous, this approach leads to 



 

 

43 

ambiguities in edge strength and subsequent erroneous adjacencies. However, more surprising is 

the second trend, where scaffolders also perform worse in the high N50 regime. For example, 

when the yeast genome is broken into 1mb contigs, there are only four joins necessary to 

complete the genome. Yet only one assembler is successful at this task, whereas the others 

perform worse than the baseline of no scaffolding. Often it seems that over-grouping is the 

culprit, with AllHiC and 3d-dna prone to producing mega-scaffolds by grouping all of its contigs 

into a single scaffold. This suggests that single-contig scaffolds were not considered as a unique 

and important edge case for scaffolders. Recent advances in long read technologies have spurred 

the growth of near chromosome-length contigs in some species, and care should be taken to 

ensure that Hi-C scaffolders can also function as a polishing tool in this setting.  

 Overall, we found that HiRise offers the best performance on average across all 

conditions. (Table C.6) Though it was the slowest of all scaffolders, it was one of the only 

scaffolders not to experience any significant performance decay at large N50s. It should be noted 

that the original software release of HiRise contains several errors in the source code, and that 

subsequent development has been taken on by a private company (Dovetail Genomics). Lachesis 

was the second-best scaffolder on average, though it was the tool that most commonly failed to 

run under default settings. Its initial release also contains several installation bugs, and its later 

development has been taken on by another private company (Phase Genomics). AllHiC and 

Salsa yielded slightly worse performance than Lachesis. Interestingly, though 3d-dna had some 

of the lowest performing runs of the group under certain conditions, it remains one of the most 

heavily used methods. We traced its largest drop in performance to low grouping accuracy, 

which in turn was caused by a strong tendency to place most contigs into one or two scaffolds.  
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We offer several recommendations to consider when developing new Hi-C scaffolders. 

First, the most common starting point for Hi-C scaffolders is the BAM alignment file and 

assembly FASTA file. Since these files are both straightforward to parse and routinely produced, 

they offer excellent starting points for scaffolding. We found that deviations from this workflow, 

such as 3d-dna's requirement of the Juicer pipeline, created additional barriers to use. Second, we 

found the requirement for chromosome count to be unnecessary to achieve good performance. 

The two scaffolders which required this parameter, Lachesis and AllHiC, did not perform 

substantially better than other methods. Because Hi-C scaffolding is most often used in a de novo 

context, chromosome count is often unknown or unreliable, and therefore should be estimated by 

the method itself. Third, several scaffolders include integrated methods to break scaffolds at 

positions where a misassembly may have occurred. This step should be optional, because in 

some situations it erroneously breaks contigs that have been assembled with the aid of additional 

sequencing information such as mate pairs or optical mapping. Finally, scaffolders should output 

an AGP file to describe the organization of contigs71. Several scaffolders omit this information, 

and some create their own bespoke file formats which lead to problems comparing and 

understanding scaffolding outputs.  

The current state of Hi-C scaffolding remains a two-step process: first, assemblies are 

passed through scaffolding software, and then the errors are fixed by hand. Opportunities for 

improvement lie on both ends of the workflow - better algorithms to scaffold genomes with Hi-

C, and more modern tools for the manual correction of scaffolds. Despite any shortcomings of 

current methods, Hi-C scaffolding is a powerful tool in the evolving science of building 

reference genomes, and we hope that future developers can look to our study to help select an 

appropriate scaffolder for their own assembly tasks.  
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4.5 AVAILABILITY OF DATA AND MATERIALS 

All the scripts used in this study are available at https://github.com/Noble-

Lab/hic_scaffolder_benchmarks under the MIT license. All the docker containers created 

containing the Hi-C scaffolders are also available under open licenses.  

 

  

https://github.com/Noble-Lab/hic_scaffolder_benchmarks
https://github.com/Noble-Lab/hic_scaffolder_benchmarks
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Chapter 5. A MACHINE LEARNING APPROACH TO 

SCAFFOLDING GENOMES WITH HI-C 

 

5.1 INTRODUCTION 

 

 A vast amount of information is locked away in the genome of a species until it is first 

sequenced and assembled. With a high-quality reference genome, we can predict genes, 

transcripts, and proteins, and open the door to multi-omics experiments. Historically, efforts to 

produce reference sequences required large consortia and a careful delegation of work, but 

several key advances in sequencing technologies have enabled individual labs to publish 

chromosome-length sequences. Among these advances are improvements in scaffolding 

capabilities due to the development of genome-wide chromatin conformation capture (Hi-C).72 

Hi-C allows scaffolders to algorithmically organize contigs into chromosomes, but these 

methods fall short of human performance.73 The current state of Hi-C scaffolding separates the 

task into two steps: first, a scaffolding algorithm provides a partially completed scaffold and 

second, mistakes are manually corrected by hand. Here, we attempt to leverage the growing 

number of genomes manually assembled with Hi-C to train a classifier to identify adjacent 

contigs and close the gap between computer and human performance.  

The goal of scaffolding in genome assembly is to find a path of contigs to form 

chromosome length sequences. Contigs fall short of spanning chromosomes due to the presence 

of challenging genomic segments, such as repeat regions, allelic variation, and low-complexity 

sections.74 Using proximity information, Hi-C scaffolders determine which contigs are adjacent 
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to each other. Typically, a scaffolder will start by creating a contig graph where each contig is 

represented by a node. Then, edges are created to connect nodes, with weights proportional by 

the number of Hi-C reads connecting two contigs. The underlying assumption of this approach is 

that distances in three-dimensions is highly correlated with distances in distances in one 

dimension. Accordingly, the most common approach is to find the maximum spanning tree of the 

resulting graph, where each node is connected with its highest edge weight partners. Finally, to 

produce a linear set of sequences equivalent to a set of chromosomes, scaffolders must identify a 

set of paths from this maximum spanning tree. Branches are impermissible in a scaffolding, 

because a branch would indicate that one contig has three adjacent neighbors rather than two, a 

property not allowed by the linear nature of the genome. Ultimately, this approach is inherently 

error prone since the relationship between the one-dimensional and three-dimensional genomics 

positions is complicated by the cell organizing its chromatin in particular patterns.      

Hi-C scaffolders mostly differ in the heuristics they utilize to find paths in the tree. 

Lachesis21, HiRise61, and AllHiC63 utilize a clustering step to partition the contig graph before 

moving on to subsequent steps. 3d-dna37 and Salsa62 attempt to resolve orientation of contigs by 

further splitting each contig into two halves before computing a maximum spanning tree. HiRise 

and AllHiC optimize an objective function to determine orientation, and AllHiC extends this 

approach to determine order as well. However, even with the supplement of heuristics, our prior 

investigation into benchmarking Hi-C scaffolders revealed that they fall short of human 

performance. Human curators identify and correct scaffolding errors by visually evaluating the 

patterns present in the Hi-C interaction matrix between two contigs rather than their edge weight.  

Given that human curators do not use additional data for the scaffolding task beyond the 

Hi-C matrix, we reason that all the requisite information for scaffolding is present in the 
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interaction matrix. To mimic the manual approach of visually assessing regions of the Hi-C 

matrix, we opted to use an image-based machine learning approach to learn how to discriminate 

between adjacent and non-adjacent contigs. We used the DNA Zoo repository of manually 

curated Hi-C based genome assemblies as our training set.14 By extracting millions of examples 

of adjacent and non-adjacent pairs of contigs from ten species, we trained a convolutional neural 

network to classify contig adjacencies. One of the key challenges in applying a machine learning 

approach was to feed the variable-sized Hi-C matrices into models that most often require fixed 

input sizes. We developed a novel approach to classify a given Hi-C matrix by jointly analyzing 

the four different corners of the matrix. We show that with this approach, we achieved high 

precision and recall on several of our validation species. Finally, we found that our proof-of-

concept approach to generating scaffolds using the model produce comparable results to current 

Hi-C scaffolding algorithms. With further optimization of our model and path finding algorithm, 

we believe a machine learning approach could be a feasible method of exceeding current 

scaffolding capabilities.  
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5.2 METHODS 

 

5.2.1 Data Collection 

 We relied on the DNA Zoo for high-quality, manually curated, and publicly available 

genomes that have associated Hi-C reads. For our approach to be broadly applicable to new 

species, we sought to gather training data diversely across the tree of life.75 We mapped all 

available species across the DNA Zoo on the tree of life and selected 10 diverse species that 

covered as many distinct branches as possible (Figure 5.1). We chose two plants (the large white 

petunia Petunia axillaris and 'Hillquist' blackberry Rubus argutus), a fungus (the common 

mushroom Agaricus bisporus), a nematode (the brown stomach worm Teladorsagia 

circumcincta), an insect (the orange-legged furrow bee Halictus rubicundus), a fish (yellowfin 

tuna Thunnus albacares), a reptile (the Argentine black and white tegu Salvator merianae), a 

bird (the emu Dromaius novaehollandiae), and two mammals (the black-footed cat Felis 

nigripes and bearded seal Erignathus barbatus). We then downloaded for each species the input 

assembly FASTA, the Hi-C reads, and the assembly file which indicates how contigs were 

ultimately organized. After correcting misnamed sequences, we aligned the Hi-C reads against 

the assembly file and created cooler files from the resulting alignments76. These cooler files store 

the Hi-C contact matrix, offer fast programmatic access, and are compatible with the HiGlass 

viewer.77  
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Figure 5.1: A mapping of all the species available in DNA Zoo on the eukaryotic section of the 

tree of life. The project is geared towards completed mammalian genomes so the vast majority of 

species are concentrated in a few branches. We attempted to pick our training species to as 

broadly represent the tree of life. 

 

5.2.2 Generating Training Data 

 To generate positive and negative training data, we extracted information from the cooler 

files. Each example corresponds to a pair of contigs. Positive examples were extracted for any 

contigs that were adjacent to each other. In theory, the set of all interactions minus positive 
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examples could be negative examples; however, because that number is related to the square of 

the number of contigs, it is prohibitive to extract all negative examples. Instead, we focused on 

only extracting negative examples which were between highly connected contigs. For each 

contig, the top 50 most connected contigs which were not the positive connection were used as 

negative examples. To determine connectivity, we normalized by contig length by dividing the 

number of reads between contigs by the multiple of both contig lengths. We also limited contig 

sizes to ≥10kb to ensure that interaction matrices would at least be of a certain size. Starting with 

the 2kb resolution balanced Hi-C matrix, we extracted positive and negative examples by taking 

the 5x5 pixel corners of each matrix. For each interaction matrix, we first trimmed any rows and 

columns on the edges which contain no reads. To ensure that for larger contigs adequate signal 

was captured, we dynamically lower the resolution . For example, if the interaction matrix was 

20x40 pixels, we would run a pooling operation to generate the 10x20 pixel version of that 

matrix before extracting the corners. The 4x5x5 arrays were stored along with their labels for use 

during training. Each array was normalized such that the highest value in the matrix was 1 and 

augmented with random gaussian noise with a standard deviation of 0.1 each time it was drawn 

from the set of examples.  

 

5.2.3 Model Architecture and Training 

Our model has two stages: a grouped convolution stage, then a connected layer (Figure 5.2). The 

very first layer contains four sets of convolutional kernels, one set for each of the four corners of 

the interaction matrix. After that, there is a joint convolution layer and several dense layers, 

before finally outputting a vector of length five with each position undergoing a softmax. The 



 

 

52 

first four positions in the output vector correspond to the four different orientations two contigs 

can be in, and the fifth position indicates they are not connected.  

 There is a deep class imbalance due to the presence of far more negative samples than 

positive ones. To ensure that there is sufficient training on positive examples, we created training 

batches with equal numbers of up-sampled positive and negative examples per species. 

Additionally, since each species has a different number of contigs, the total number of examples 

from each varied considerably. To avoid learning from one species more than another, we also 

up-sampled examples from underrepresented species such that an equal number of examples 

from each species were included in each batch.  

To understand how well the model was generalizing its predictions, we used a ten-fold 

cross validation approach in which we withheld one species during each run. We recorded 

training and validation loss, accuracy, recall, and precision. During inference on the validation 

sets, we did not up-sample positive examples so that the inference would mimic the ratio of 

classes we might expect to see in the real world. Due to the class imbalance, a precision recall 

(PR) curve was more appropriate than a ROC curve. We measured the PR curve of two 

properties: the order and orientation success. The order PR curve shows the ability to correctly 

determine the adjacency of two contigs, regardless of their orientation. The orientation PR curve 

takes the average PR curve of each of the four orientations to generate an overall understanding 

of how well the model orients contigs.  
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Figure 5.2: An overview of the architecture of our model. For any two contigs, there exists an 

interaction matrix between them. To maintain a fixed size input to our model, we focus on 

extracting the four corners of this image. They are then jointly fed into a grouped convolution 

layer such that each corner maintains a unique set of convolutional filters. After a series of dense 

layers, the output is a vector of length five, where the first four positions encode the orientation 

and the fifth position encodes the possibility of not being connected.  

 

5.2.4 Path Algorithm 

 To generate a global scaffolding, we need to bridge the gap between classifying 

individual contig adjacencies and complete contig paths. On inference, the Hi-C interaction 

matrix is extracted in an identical fashion to the training dataset. For each contig, we gathered 

images from the top 50 most connected contigs as determined by read density. The model was 

then used to determine the probability of each of the edges in the top 50 nearest neighbor graph. 
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The first step in our path algorithm was to identify the maximum spanning tree in the probability 

graph. To resolve branches that might form in the spanning tree, we implemented a rudimentary 

tree cutting algorithm. For every vertex with a degree greater than 2, we only retain the top two 

edges. This guarantees that the resulting graph will only contain non-overlapping paths.  

 

5.3 RESULTS 

 

5.3.1 Training Data 

 We extracted images in the form of Hi-C interaction matrices from ten different species 

for our training and validation sets. For each positive example, we had approximately 50 

negative examples involving the same contig, creating a class imbalance of about 98% negative. 

We found that more than 99% of the time, the top 50 connected contigs contained the true 

adjacency. Our initial training data extraction focused on pulling 10x10 pixel corners at a fixed 

1kb resolution. However, by dynamically changing the resolution, trimming empty rows and 

columns, and extracting a smaller 5x5 pixel square from each corner, we improved the area 

under the precision recall curve four-fold. We also found that balancing the number of examples 

between classes and species greatly improved the generalizability between validation folds.  

 

5.3.2 Model Performance 

 We trained our convolutional neural network on 2,608,964 examples over 5 epochs, and 

found the model converged in the first few epochs. Overall, we found that our model performed 
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well on half of the species we validated. Using the F. nigripes genome as validation, the model 

achieved ~70%  precision and 80% recall when classifying contigs as adjacent or non-adjacent 

(Figure 5.3). During our cross validation, we found wide variation in performance between 

species. Performance was high on A. bisporus, T. albacares, F. nigripes, E. barbatus, and D. 

novaehollandiae, moderate on R. argutus and S. merianae, and low on P. axillaris, T. 

circumcincta, and H. rubicundus (Figure D.1 – Figure D.9).  On a high-performing validation 

species such as F. nigripes, we found that the precision-recall curve exceeds that of even the 

training data set, suggesting the validation task was not as difficult as the training task (Figure 

5.4). 

 

Figure 5.3: The evaluation metrics of the model during training. The dashed lines represent the 

baseline model of a random classifier. Since there is a large class imbalance, with a skew 

towards negative examples, precision and recall values are particularly revealing.  
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Figure 5.4: The precision recall curve when using F. nigripes as the validation set. The validation 

precision recall performance is better than even the training set, recapitulating the training loss 

observations. The model performs the best on this particular species compared to the other cross 

validation folds.  

 

5.3.3 Scaffolding Accuracy 

 Using D. novaehollandiae as our validation species, we tested the scaffolding accuracy of 

our approach. We implemented our path finding approach to generated scaffolds and used 

Edison70 to determine scaffolding accuracy (Figure 5.5). Scaffolds generated in this manner were 

70% accurate when compared to the manually curated genome. The major contributor in loss of 

accuracy was the low grouping score of 6.3%, suggesting that scaffolds were short but highly 

accurate. We tested several other ,scaffolders and found that most had an accuracy of around 

70% - 80%, indicating that the machine learning approach is a viable method (Table 5.1). 
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Figure 5.5: The progression of graphs during the path finding phase of the machine learning 

approach. A) The probability graph after each edge in the contig graph has been evaluated by the 

convolutional neural network and the probability of adjacency is determined. B) The maximum 

spanning tree of the contig probability graph. Branches are impermissible when producing 

scaffolds, so this tree needs to be reduced to a set of paths. C) The paths generated by the tree 

trimming algorithm, where each path represents an independent scaffold. 

 

 

B) A) 

C) 
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Method Accuracy 
CNN 70.05% 

Lachesis 81.25% 
Hirise 68.79% 
3d-dna 78.99% 
Salsa 1.11% 
Allhic 77.08% 

 

Table 5.1: The accuracy of various Hi-C scaffolding methods on D. novaehollandiae. Our 

machine learning based approach (CNN) does not exceed state of the art but does appear to 

produce comparable results using a simple and conservative path finding algorithm.  

 

5.4 DISCUSSION 

 Hi-C based scaffolding offers an exciting new chapter in genome assembly, though 

current state-of-the-art methods all require extensive manual correction. We attempt to close this 

gap by applying a machine learning approach and learning patterns of Hi-C data between 

neighboring contigs. To the best of our knowledge, this is the first data-driven approach to Hi-C 

based scaffolding. In a two-step approach, we use our trained model to compute the probability 

of contig adjacencies, and then use a path finding algorithm to traverse the resulting graph and 

produce scaffolds.   

For classifying adjacent contigs, our novel convolutional neural network approach shows 

promising results, though further refinement is necessary. On half of the species tested the model 

performed well, though in other cases only moderate or low performance was achieved. We are 

still exploring why this is the case, though we found that performance does not seem to be 

related to size of the contigs or genome. We also want to explore the information content of 

negative examples, and determine if down sampling those examples and subsequently increasing 
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the number of epochs would lead to better performance. One potentially limiting factor in our 

current approach is the use of dynamic Hi-C resolutions. For large contigs, a lower resolution is 

chosen such that more information can be summarized, and for smaller contigs, a higher 

resolution is used so that there are enough pixels to input into the model. It is possible that this 

change in Hi-C resolution could introduce size-based biases during classification. We are 

currently exploring methods to use a fixed resolution and minimize our preprocessing of the 

data, thereby moving towards a more end-to-end approach.  

The last step of the scaffolding process in our framework is to convert edge weights, that 

correspond to the probability of being connected, into a set of paths which map to chromosomes. 

During our exploratory work into this step, we found that we achieve a level of accuracy 

comparable with existing Hi-C scaffolders. Considering that we used a simple and highly 

conservative approach to our path finding algorithm, we believe there is much room for 

improvement. The maximum spanning tree of the contig probability graph shows many 

components with long paths that have intervening short branches. Rather than cutting at all 

branch points, we could first identify the longest path between terminal nodes in a component, 

then cut all branches not on the path to yield longer scaffolds. Interestingly, Lachesis currently 

uses a similar approach, and it would be quite interesting to see if it works better with a 

probability graph than a read count graph.  

With the excitement around sequencing initiatives such as the T2T human genome 

project and vertebrate genome project, Hi-C based scaffolding has come to the forefront of 

genome assembly. We have shown that a machine learning based approach holds promise, and 

with further optimization could close the gap between computer and human performance. 
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Additionally, a machine learning paradigm would allow us to continuously improve future 

scaffolding efforts by retraining on future releases of manually curated genomes.  

Chapter 6. CONCLUSION 

 

The first Hi-C based scaffolder was introduced almost a decade ago. At the time, the 

genome-wide version of chromatin conformation capture had only recently been described. 

Conducting the Hi-C experiment was challenging as it required specialized reagents, lacked a 

streamlined kit, and even the underlying procedure was in relative flux with various competing 

versions of the protocol. News of a novel method to scaffold genomes was only just percolating 

into the genome assembly community, and only a few ambitious groups ventured to attempt the 

Hi-C experiment and scaffolding process.  

Since then, the field has leapt forward and matured, with the genesis of several initiatives 

and the widespread adoption of Hi-C. The 4DN initiative is a dedicated NIH initiative to study 

the three-dimensional organization of chromatin. It has spurred greater collaboration in the 

community, as well as a push toward standardization of data and methods. The DNA Zoo is an 

initiative to conduct Hi-C and scaffold mostly mammalian genomes and has greatly popularized 

Hi-C as a scaffolding method. Even initiatives initially unrelated to Hi-C have incorporated it as 

a key element in their work. Notably, the telomere-to-telomere initiative for the human genome 

utilized Hi-C to validate their sequence of challenging regions. The vertebrate genome project 

has incorporated Hi-C as a necessary step to scaffold genomes.  

Perhaps most telling, is the development of a new genome assembly “recipe” by the T2T 

initiative. In their approach, sequencing efforts are directed towards generating PacBio HiFi 
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reads, which provide high quality long reads, Oxford Nanopore reads, which provide ultra-long 

sequencing data, and Hi-C reads, which allow the completion of chromosomes and validation of 

contig accuracy. Our work with assembling the genomes of various species suggests that long 

reads are critical to the assembly process. Previous efforts to assemble E. gracilis relied on short 

read data and ultimately did not yield a workable result. In addition, we found that with the 

longer contigs generated by utilizing long read data, the process of manually correcting the 

scaffolds was greatly simplified. The longer contigs yielded greater Hi-C signal, making the 

patterns of correct and incorrectly scaffolded contigs far more obvious than in more fragmented 

assemblies.  

 Our efforts in understanding the state of the field for algorithmic based Hi-C scaffolded 

yielded a surprising irony - that the rise of third generation sequencing was at odds with many 

Hi-C scaffolders. We found that several scaffolders struggled on the high-quality assemblies we 

might expect to see from groups utilizing the long read technologies we suggest adopting. It 

seems that many of these scaffolders were geared toward scaffolding assemblies with thousands 

of pieces rather than a few dozen. This gap between the state of genome assembly and the state 

of genome scaffolding reveals a key opportunity for researchers to address.  

 One potential avenue of addressing differences in human performance on Hi-C 

scaffolding and algorithmic performance is to leverage the growing amount of publicly available 

Hi-C data. We utilized the repository of assemblies and Hi-C data available through the DNA 

zoo initiative in a machine learning approach. To our knowledge, there are no supervised 

learning methods that have attempted to address the Hi-C scaffolding problem. Our novel 

approach performs well on some species, though we were not able to achieve more general 
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performance. The landscape of possibilities for data processing, models, and training regimens is 

large, so we cannot discount the possibility of a better approach.  

 In conclusion, Hi-C scaffolding has become a critical component of modern genome 

assembly. In conjunction with the long-read data generated by third generation sequencing 

technologies, Hi-C has enabled the completion of giga-base sized genomes. We expect that its 

use will continue to grow in the coming years, giving urgent need for high performance tools in 

the ecosystem. With this body of work, we hope we can contribute to the field and enable others 

to navigate the many paths and methods available in the space.  
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APPENDIX A 

 

 
Figure A.1: The Hi-C interaction map of the scaffolded and completed genome for L. donovani. 

The Hi-C map did not show a significant presence of TADs or compartments, indicating that the 

species lack the more advanced chromatin organization typically seen in higher eukaryotes. 

However, it does show a classic centromeric interaction, allowing us to annotate these positions 

for the first time. 
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Figure A.2: The Hi-C interaction map of the scaffolded and completed genome for L. tarentolae. 
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Figure A.3: The Hi-C interaction map of the scaffolded and completed genome for C. 

fasciculata. 
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Figure A.4: The smudgeplot of C. fasciculata showing a strong indication of a diploid genome.  
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Figure A.5: The k-mer distribution from C. fasciculata short read libraries. 
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Figure A.6: The smudgeplot of L. donovani. Though the plot indicates the possibility of 

tetraploidy, the authors state that under conditions of low allelic variation, there can be a 

conflation of ploidies. We believe that L. donovani is diploid with species with aneuploidies for 

individual chromosomes.  
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Figure A.7: The k-mer distribution from L. donovani short read libraries.  
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Figure A.8: The smudgeplot of L. tarentolae. Though similar in pattern to the L. donovani 

smudgeplot, this plot yields a proposal of a diploid genome. We believe that this is further 

evidence that both species in the genus are in fact diploid.  
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Figure A.9. The k-mer distribution from L. tarentolae short read libraries.  
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Figure A.10: The Smudgeplot for E. gracilis showing a strong possibility of a triploid genome. 

Smudgeplot computes single base pair changes between k-mers, and from the distribution of 

these allelic variations suggests a ploidy and heterozygosity rate.  
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Figure A.11: The k-mer distribution from E. gracilis short read libraries. Using a ploidy three, as 

estimated by Smudgeplot, Genomescope2 estimates genome size, heterozygosity rates, and 

repetitiveness.  
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Method N50 Contigs Largest Contig Total Sequence 
Cambridge 955 2,066,288 166,587 1,435,499,417 

Spades 2,109 2,460,937 127,613 1,628,627,972 
Haslr 10,786 35,293 99,257 247,420,723 
Canu 23,984 37,085 334,076 697,360,445 

Masurca 293,344 6,114 2,352,880 1,022,182,428 
 
Table A.1: A summary of results from various assemblers. These represent our best attempt with 

each assembler. The Cambridge row refers to the existing published draft assembly of E. 

gracilis. We found that Masurca offers the assembly metrics, though with a total sequence length 

that exceeds the expected haploid genome size.  

 
 

Method N50 Contigs Largest Contig Total Sequence 
Canu 28,601 25,960 334,076 554,925,320 

Canu + Long Read 75,575 13,390 532,820 558,430,984 
Canu + Long Read + RNA 99,357 11,283 865,718 558,644,154 

Canu + Long Read + RNA + 10x 151,983 9,689 1,312,997 558,803,554 
Masurca 281,066 5,425 2,343,329 899,150,175 

Masurca + Long Read 370,471 4,319 2,978,512 901,439,185 
Masurca + Long Read + RNA 565,909 3,090 3,621,805 901,562,186 

Masurca + Long Read + RNA + 10x 668,595 2,791 3,621,805 901,592,086 
 
Table A.2: Scaffolding results after utilizing long reads, 10x genomics linked reads, and RNA-

seq data. We focused on scaffolding the Canu assembler and Masurca assembler, as they had the 

highest BUSCO scores and best assembly metrics. We used LongStitch for the long-read 

scaffolding, p_rna_scaffolder for RNA-seq based scaffolding, and Arcs for linked read 

scaffolding. For each scaffolder, we did a hyperparameter search to find the best parameters.  
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Method Complete Single Copy Duplicated Fragmented Missing Searched 
Cambridge 4 3 1 42 209 255 

Spades 14 13 1 56 185 255 
Haslr 5 5 0 14 236 255 
Canu 53 47 6 60 142 255 

Masurca 49 45 4 59 147 255 
 
Table A.3: BUSCO results for each of the assembly attempts for E. gracilis. Canu and Masurca 

offer the highest BUSCO scores indicating that they are the most complete genomes, and that 

they likely contain the least number of base level errors.  

 
 

Location Complete Single Copy Duplicated Fragmented Missing Searched 
Cambridge 185 177 8 39 31 255 

Tokyo 90 72 18 3 162 255 
Liege 212 87 125 18 25 255 

 
Table A.4: BUSCO results for each of the available transcriptomes for E. gracilis. The newest 

transcriptome from the University of Liege contains the most number of BUSCOs, but also a 

higher duplication rate. We chose to use the Cambridge transcriptome when assessing the quality 

of our genome assemblies due to its higher single copy count.  

 

Method Missing Genes Gene Alignment Length 
Cambridge 4.02% 60.69% ± 31.32 

Spades 1.93% 72.19% ± 26.36 
Haslr 50.28% 61.36% ± 29.30 
Canu 13.59% 83.87% ± 21.19 

Masurca 8.69% 89.56% ± 16.15 
 
Table A.5: Transcript alignment results for each E. gracilis genome assembly. Taking the 

Cambridge transcriptome, we mapped all the genes to each genome assembly to determine the 

quality of alignments. Missing genes refers to the number of transcripts that do not have  
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APPENDIX B 

 

Computing the accuracy of an assembly requires determining whether the grouping, order, and 

orientation of each contig within a scaffold matches its position in the corresponding 

chromosome of the reference genome. Here, we outline the steps necessary to do so, along with 

the equations to compute accuracy metrics.  

B.1 MAPPING 

All scaffolding methods output a FASTA file, in which contigs are joined in some particular 

order. We produce an “A Golden Path” (AGP) file to record this order, and then disassemble it 

into its constituent contigs by splitting scaffolds at runs of Ns (default: 10 Ns)71. MUMmer 4 is 

then used to determine where contigs map on the reference genome. Alignments must have a 

minimum alignment length (default: 1000bp) and a minimum percent of the query sequence 

aligning to the reference (default: 20%), otherwise they are excluded from subsequent steps. 

From this coordinate map, we generate another AGP file representing the ideal scaffolding. 

Evaluation of scaffolding accuracy can then be computed solely from these two AGP files.  

B.2 EDIT DISTANCE  

The method for computing the edit distance between two assemblies 𝐴 and 𝐵 begins by 

constructing the adjacency graph. In this bipartite graph, the two sets of vertices are the 

adjacencies in each genome, and edges connect vertices with overlapping adjacencies. The 

algorithm for creating the adjacency graph is outlined in greater detail in the original Double Cut 

and Join edit distance paper54. The distance can then be computed as a function of 𝑁, the number 

of contigs, 𝐶, the number of cycles and 𝐼, the number of odd paths in the adjacency graph:  



 

 

86 

𝑓𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑁 − (𝐶 +
𝐼

2
) 

In two assemblies that are identical, all contigs are involved in cycles of length two or odd paths 

of length one. This observation lets us compute a length weighted version of edit distance, our 

notion of accuracy, where the longest two contigs in each cycle and odd path are taken to 

represent the number of bases that do not have to be moved:  

𝑓𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑙𝑒𝑛(𝐶) +
𝑙𝑒𝑛(𝐼)

2
 

Intuitively, we can divide scaffolding into three tasks: grouping contigs into chromosomes, 

ordering contigs, and orienting them such that contiguous ends are touching. Though a scaffolder 

may not explicitly perform these tasks, they are always implicit in the output, allowing any 

scaffolder to be compared on these common fronts. Here, we further define the metrics for each 

of these sub-tasks.  

B.2.1 Grouping  

To evaluate grouping performance, we must determine the degree to which scaffolds overlap 

with reference chromosomes. Suppose there exists some reference chromosome 𝐴𝑖 and some 

assembly scaffold 𝐵𝑗, then the intersection of these two sets of contigs are those contigs which 

belong to both the chromosome and the scaffold. We define the length weighted Jaccard index as 

the sum of contig lengths in the intersection divided by the sum of contig lengths in the union for 

any two sets:  

𝐽(𝐴𝑖 , 𝐵𝑗) =
𝑙𝑒𝑛(𝐴𝑖 ∩ 𝐵𝑗)

𝑙𝑒𝑛(𝐴𝑖 ∪ 𝐵𝑗)
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We then find the maximum length weighted Jaccard index for each reference chromosome by 

iterating through all the assembly scaffolds. These maximum Jaccard values are then weighted 

by the length of the reference chromosome it corresponds to, such that smaller chromosomes get 

weighed less. The sum of these weighted Jaccard maximums are then divided by the length of 

the reference genome:  

𝑓𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔(𝐴, 𝐵) =
∑ 𝑎𝑟𝑔𝑚𝑎𝑥𝑗 (𝐽(𝐴𝑖 , 𝐵𝑗)) ∗ 𝑙𝑒𝑛(𝐴𝑖)
|𝐴|
𝑖=0

𝑙𝑒𝑛(𝐴)
 

Since the Jaccard index is a value between 0 and 1, the grouping score is also a value between 0 

and 1.  

B.2.2 Ordering  

The ordering performance can be evaluated by determining how many contigs were next to their 

expected adjacency. Given contigs 𝑘 and 𝑙 in the reference 𝐴, let their adjacency be 𝑘𝑙. The two 

adjacencies 𝑘𝑙 and 𝑙𝑘 are then the same. The length weighted adjacency is then the length of 𝑘 

plus the length of 𝑙. If we record all the length weighted adjacencies in the reference 𝐴 and the 

assembly 𝐵, then the ordering score is the sum of adjacencies in the intersection divided by the 

sum of adjacencies in the reference 𝐴:  

𝑓𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔(𝐴,𝐵) =
𝑙𝑒𝑛(𝐴𝑒𝑑𝑔𝑒𝑠 ∩ 𝐵𝑒𝑑𝑔𝑒𝑠)

𝑙𝑒𝑛(𝐴𝑒𝑑𝑔𝑒𝑠)
 

B.2.3 Orientation  

In a similar fashion, we can compute the orientation accuracy if we construct our adjacency set 

to also include orientation. Here, we retain which end of each contig is adjacent when recording 

the set of adjacencies such that contigs 𝑖 and 𝑗 might create an edge 𝑖ℎ𝑗𝑡 indicating the head of 𝑖 
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is contiguous with the tail of 𝑗. Again, the adjacency 𝑖ℎ𝑗𝑡  is equivalent to 𝑗𝑡𝑖ℎ . Then the 

orientation score is the sum of adjacencies in the intersection divided by the sum of adjacencies 

in reference 𝐴:  

𝑓𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔(𝐴, 𝐵) =
𝑙𝑒𝑛(𝐴𝑒𝑑𝑔𝑒𝑠′ ∩ 𝐵𝑒𝑑𝑔𝑒𝑠′)

𝑙𝑒𝑛(𝐴𝑒𝑑𝑔𝑒𝑠′)
 

B.3 SOFTWARE  

We implement the methods in a python package which is freely available under the MIT license 

(https://github.com/Noble-Lab/edison). It takes in two inputs, a reference FASTA and scaffolded 

FASTA file, and chiefly produces five metrics of accuracy. While running, it also produces a 

plot of how the contigs map to the reference genome and the scaffolds to which they belong 

(Figure B.12). Additionally, it produces two AGP files representing how the assembly places 

contigs and how they ought to be placed to most closely match the reference.  

 
Figure B.12: Visualizing contig alignments to a reference genome. Here, each row represents a 

new contig, where the horizontal coordinates indicate where on the reference chromosome they 

aligned, the arrow indicates the orientation of alignment, and the color corresponds to scaffold 

membership.  
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Method Year N50 
Visual 
Plots 

Misassembly Grouping Ordering Orientation 
Edit 

Distance 

Bambus78 2004 ✓    ✓* ✓*  

Soma79 2008     ✓*   

Amos80 2008   ✓     

Mauve81 2011  ✓ ✓    ✓* 

Sspace82 2011 ✓       

Gage83 2013 ✓ ✓ ✓*     

Lachesis21 2013 ✓ ✓  ✓ ✓ ✓  

Hunt's84 2014     ✓* ✓*  

Hirise61 2016 ✓    ✓* ✓*  

3d-dna37 2017 ✓ ✓      

Arks58 2018 ✓ ✓ ✓*     

Salsa62 2019 ✓   ✓* ✓* ✓*  

Scop85 2019     ✓* ✓*  

Lrscaf86 2019 ✓  ✓*     

Slr87 2019 ✓  ✓*     

Allhic63 2019 ✓ ✓      

Ragoo56 2019 ✓ ✓ ✓* ✓* ✓* ✓* ✓* 

Ldscaff88 2020 ✓ ✓ ✓     

Edison70 2022 ✓   ✓ ✓ ✓ ✓ 

 

Table B.1: Scaffolding methods and the metrics they use to assess the accuracy. “Visual plots” 

refers to any kind of visual analysis, such as dot plots, linkage plots, and circle plots. 

“Misassemblies” refers to the counting of structural variants such as inversions, deletions, 

substitutions, and translocations. *Indicates that the metric is a count and is not weighted by the 

length of the contigs.   
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APPENDIX C 

 

Figure C.13: A sankey diagram depicting the literature search process. We identified ten 

different Hi-C scaffolding methods in the literature and found that their usage varied 

significantly, with only five methods showcasing more than three published genomes.  

 
 
  

Grouping Order Orientation Accuracy 
Method Split De novo Split De novo Split De novo Split De novo 
lachesis 0.91 ± 0.1 0.71 ± 0.2 0.95 ± 0.03 0.66 ± 0.1 0.95 ± 0.03 0.55 ± 0.2 0.95 ± 0.03 0.55 ± 0.2 
hirise 0.74 ± 0.3 0.69 ± 0.2 0.87 ± 0.2 0.49 ± 0.3 0.87 ± 0.2 0.44 ± 0.3 0.87 ± 0.2 0.62 ± 0.2 

3d_dna 0.35 ± 0.2 0.38 ± 0.3 0.66 ± 0.3 0.34 ± 0.2 0.66 ± 0.3 0.30 ± 0.2 0.71 ± 0.2 0.41 ± 0.2 
salsa 0.52 ± 0.3 0.47 ± 0.3 0.85 ± 0.2 0.44 ± 0.2 0.84 ± 0.2 0.41 ± 0.2 0.85 ± 0.1 0.50 ± 0.2 
allhic 0.75 ± 0.4 0.52 ± 0.3 0.95 ± 0.1 0.58 ± 0.3 0.94 ± 0.1 0.49 ± 0.3 0.84 ± 0.2 0.39 ± 0.3 

baseline 0.18 ± 0.3 0.36 ± 0.3 0.03 ± 0.1 0 0.03 ± 0.1 0 0.16 ± 0.2 0.28 ± 0.3 
 
Table C.6: An overview of performance of each of the methods based on their average accuracy 

determined by Edison. The split column refers to the task of scaffolding equal sized pieces of the 

reference genome. The de novo column refers to the task of scaffolding the assemblies created by 

Canu. Baseline represents the score for contigs without scaffolding.  
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Organism Genome Size Reads Bases Coverage BioProject 
S. cerevisiae 12,100,000 313,114 1,701,530,052 141 PRJEB7245 
L. tarentolae 32,200,000 1,360,815 7,198,339,498 224 PRJNA821548 
A. thaliana 135,000,000 7,353,356 49,942,606,909 370 PRJNA314706 
H. sapiens 3,100,000,000 47,885,330 328,978,598,683 106 PRJNA301527 

 
Table C.7: Overview of data collected for de novo genome assemblies. The amount of data is 

roughly proportional to the size of the genome such that they can be down sampled to a similar 

read coverage.  

 
 

Coverage Yeast N50 Leishmania N50 Arabidopsis N50 Human N50 
10 21,825 9,250 24,823 18,711 
20 176,516 18,595 86,731 43,231 
30 551,752 41,537 159,879 105,563 
40 568,123 40,610 147,845 626,886 
50 614,056 94,577 149,418 1,873,143 
60 813,309 213,275 161,138 2,018,914 
70 777,771 71,335 140,209 4,761,131 
80 813,629 117,224 149,909 7,508,518 
90 813,427 229,090 164,531 9,231,632 
100 930,538 332,478 186,445 10,553,285 

 

Table C.8: Overview of the de novo assemblies created by Canu. We generated ten assemblies 

for each species and down sampled reads used to create them to vary their N50s. As a general 

trend, we observed that increased read coverage led to long contigs. Arabidopsis appeared to be 

an outlier of this trend, and its genome assembly appeared to be challenging and indicative of 

high rates of heterozygosity.  
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Figure C.14: The grouping scores of scaffolders on split reference assemblies. There is wide 

variation in grouping performance, with trends pointing to difficulty with small assemblies with 

large N50s and large assemblies with small N50s.  
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Figure C.15: The grouping scores for Hi-C scaffolders on de novo assemblies. Higher grouping 

accuracy indicates that scaffolders were able to uniquely isolate contigs belonging to the same 

chromosome within scaffolds.  
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Figure C.16: The order scores for Hi-C scaffolders on split reference assemblies.  
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Figure C.17: The order scores for Hi-C scaffolders on de novo assemblies. Higher order accuracy 

indicates that scaffolders were able to correctly place contigs next to their expected neighbors.  
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Figure C.18 The runtime of Hi-C scaffolders on split assemblies.  
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Figure C.19: The runtime of Hi-C scaffolders on de novo assemblies. Hirise is generally the 

slowest and Lachesis the fastest scaffolder.  
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Figure C.20: Downsampling of Hi-C reads on de novo assemblies. The same trend as the split 

references is seen here, where Hi-C read densities below 50 reads per kilobase lead to a decline 

in performance.  
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Figure C.21: An overview of how HiRise scaffolded the 10mb N50 H. sapiens assembly for 

Chromosome 22. Each row represents a contig, and each label and color represents a scaffold. 

The x-axis represents the alignment based position of the contig, and the y-axis represents the 

scaffolder based order of the contigs. Here, HiRise picks out a set of larger contigs and scaffolds 

them in the correct order relative to each other. However it leaves out a number of the smaller 

contigs, including ones that overlap with its primary scaffold (Scaffold 503) for this 

chromosome. 

 



 

 

101 

 

Figure C.22: AllHiC scaffolding 500kb contigs from the split reference assembly of S. 

cerevisiae. While the contigs have been placed mostly in the correct order and orientation, all the 

contigs were placed in a single mega-scaffold causing the overall accuracy to dramatically 

decrease for this particular scaffolding.  
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Figure C.23: Using purge_dups to remove halpotigs. The top section shows the contigs of the 

original assembly for L. tarentolae that map to chromosome 12. The bottom section shows the 

remaining contigs after the purging of haplotigs.  
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Figure C.24: The percent of reads that map to multiple positions in the de novo assembly. We 

found that as the number of reads used to create the de novo assembly goes up, the repetitive 

content of the genome goes up. The uniformly low accuracy against A. thaliana assemblies can 

likely be attributed to a high percentage of multi-mapping reads, which cannot be used by Hi-C 

scaffolders.  
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APPENDIX D 

 

 
Figure D.25: The precision recall curve while holding P. axillaris as the validation set.  

 

 
Figure D.26: The precision recall curve while holding H. rubicundus as the validation set.  
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Figure D.27: The precision recall curve while holding A. bisporus as the validation set.  

 
 

 
Figure D.28: The precision recall curve while holding T. circumcincta as the validation set.  
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Figure D.29: The precision recall curve while holding T. albacares as the validation set.  

 
 

 
Figure D.30: The precision recall curve while holding E. barbatus as the validation set.  
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Figure D.31: The precision recall curve while holding S. merianae as the validation set.  

 
 
 

 

Figure D.32: The precision recall curve while holding D. novaehollandiae as the validation set.  
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Figure D.9: The precision recall curve while holding R. argutus as the validation set. 
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