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Biological pathways are useful tools for understanding human physiology and disease pathogenesis.
Pathway analysis can be used to detect genes and functions associated with complex disease pheno-
types. When performing pathway analysis, researchers take advantage of multiple pathway datasets,
combining pathways from different pathway databases. Pathways from different databases do not eas-
ily inter-operate, and the resulting combined pathway dataset can suffer from redundancy or reduced
interpretability.

Ontologies have been used to organize pathway data and eliminate redundancy. I generated clus-
ters of semantically similar pathways by mapping pathways from seven databases to classes of one such
ontology, the Pathway Ontology (PW). I then produced a typology of differences between pathways by
summarizing the differences in content and knowledge representation between databases. Using the
typology, I optimized an entity and graph-based network alignment algorithm for aligning pathways
between databases. The algorithm was applied to clusters of semantically similar pathways to generate
normalized pathways for each PW class. These normalized pathways were used to produce normal-
ized gene sets for gene set enrichment analysis (GSEA). I evaluated these normalized gene sets against
baseline gene sets in GSEA using four public gene expression datasets.

Results suggest that normalized pathways can help to reduce redundancy in enrichment outputs.
The normalized pathways also retain the hierarchical structure of the PW, which can be used to visual-

ize enrichment results and provide hints for interpretation. Ontology-based organization of biological



pathways can play a vital role in improving data quality and interoperability, and the resulting normal-

ized pathways may have broad applications in genomic analysis.
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Chapter 1

OVERVIEW

Molecular interactions form complex control networks involving genes, proteins, protein complexes,
and chemical species. These networks, when organized around biological function, are known as bio-
logical pathways. Pathways describe important biological functions; for example, a glycolysis pathway
describes how glucose is broken down into the three-carbon sugar pyruvate, and an apoptosis path-
way describes how controlled cell death is managed and controlled at the cellular level. Pathways can
describe metabolic, signaling, regulatory, disease, and other biological processes. Together, they con-
stitute knowledge about our overall physiology, describing the processes that make up our inter- and

intracellular control systems.

Using network and pathway models, we can interpret genomic data at a functional level, leading
to insights into healthy biological mechanisms, as well as disease pathogenesis and treatment. The
gene regulatory relationships that make up biological networks are vital for understanding how tissues
respond to internal and environmental changes, and also for illuminating the regulatory drivers of
disease. Complex diseases typically do not have singular genetic causes. A host of genetic factors come

into play, driving differences in disease risk, disease progression, and a patient’s response to therapy.

Extensive developments in sequencing techniques, animal models, and genome annotation have
led to an explosion of data for analysis. Motivated by the goal of understanding how our genetics
predispose us to certain diseases and affect their course and treatment, researchers have developed
numerous statistical methods to discover the associations between genetic variants and disease. From
genome wide association studies, which take a gene-centric approach, to pathway analysis tools that
take a pathway-centric approach, there have been rapid advancements of analysis tools across the field.
Because gene-level statistics are often difficult to interpret and have lower statistical power, there is

increasing interest and reliance on network- and pathway-centric approaches. The results of these



approaches can lead to novel hypotheses regarding disease ideation and treatment targets, and drive

future waves of experimentation in diagnostics and treatment.

Pathway databases are repositories of curated pathway data, which can be used for secondary ap-
plications like pathway analysis. The growth of pathway databases has coincided with the development
of pathway analysis tools and techniques. However, there is no clear link between analysis methods and
pathway data sources, since most databases have not been validated for all analysis methods, or vice
versa. There are numerous pathway databases, covering a variety of biological functions. Yet users face
challenges in choosing the correct pathway dataset. The choice of different pathway datasets can lead
to variation in analysis results [58]. For example, the selection of BioCyc pathways would yield results
focused on metabolic functions, and the selection of Panther pathways on signaling functions, due to
the specialization of these pathway databases. Additionally, the same pathway may be defined differ-
ently in two databases, and one definition may be significantly represented in results while the other is
not. These differences are the result of a combination of factors, both the silo-ing of pathway function

into subdomains, and the different choices of knowledge representation made by various databases.

Although the problem can seemingly be mitigated by combining different pathway datasets, there
are impediments to this breadth-driven approach as well. Users face challenges in integrating data
across multiple sources. First, sources may not use the same standards for pathway representation, or
they may only partially observe such standards. Second, there may be representational or semantic dif-
ferences even when the same syntactic standard is followed. Bauer-Mehren et al in their 2009 review
of pathway databases and analysis techniques details the “strong need of tools for the automatic inte-
gration of different pathways in a biological meaningful way,” for which the main challenges discussed
were annotation problems and inconsistencies between pathway representations [24]. In subsequent
years, resources such as Pathway Commons and ConsensusPathDB have eased pathway retrieval from
multiple pathway databases, but no clear method for pathway data integration has been introduced.
Statistical methods such as ReCiPa [142] and PathCards [25] have made the most progress. These meth-
ods address pathway integration by merging pathways from different databases with a high degree of
entity membership overlap. These methods rely heavily on proper entity annotation in source path-

ways, which may not be present, and also fail to address how functional meaning is retained or defined



in the merged pathways. If these issues can be addressed, the research community would be able to
derive greater value from existing pathway resources.

The previous arguments indicate a need for better integration of pathway data. Ontologies have
been successfully used to integrate data from disparate biomedical sources [101, 108, 134]. An ontology-
based organization and integration of pathway data could be used to improve pathway data quality and
provide structure for intepreting the results of genomic analysis. In this dissertation, I propose and
demonstrate ontology-driven methods for organizing, combining, and presenting pathway data from

various databases for pathway analysis. My contributions include:

+ aclassification of pathways from seven pathway databases using an organizing ontology, specif-

ically the Pathway Ontology [119],
+ atypology of differences between pathway databases to inform pathway alignment,
+ an algorithm for aligning pathway graphs, and

+ an ontology-based normalized pathway dataset for pathway analysis.

To begin, I first discuss the state of pathway data (Chapter 2) and motivate the need for pathway data
organization and integration (Chapter 3). Through the use of a unifying ontology, the Pathway Ontol-
ogy, | organize pathway data from multiple databases under a single hierarchical structure, discussed in
Chapter 4. I then construct a typology of observed inconsistencies between pathway databases (Chap-
ter 5), which can be used by pathway editors to assist in quality assurance, auditing, and automated
review, and also forms a framework for aligning and merging semantically similar pathways from dif-
ferent databases. In Chapter 6, I discuss the design and implementation of an alignment algorithm for
pathway graphs. As the final portion of this work, discussed in Chapter 7, | generate a normalized
gene set dataset using the results of pathway alignment. I then perform an evaluation of the normal-
ized gene sets by comparing their performance against standard baseline gene sets in pathway analysis.
The normalized pathway-derived gene sets benefit from reduced redundancy, while maintaining the
functional meaning and organization imparted on them by an ontological class hierarchy. The results

suggest that ontology-based organization improves biological pathway data repurposed for secondary



use. The inherent ontological structure of the integrated pathway data can also be used to visually assist
in the interpretation of analysis results. The generated normalized gene sets increase options for in-
formaticists working with genomic data, and pave the way forward for the next generation of pathway

analysis tools.



Chapter 2

BACKGROUND ON PATHWAYS

Biological pathways play an important role in understanding and modeling physiology and disease
pathogenesis. Pathways have been generated through extensive human curation of experimental re-
search and published literature. Together, these curated pathways provide a summary of the current
state of knowledge surrounding biological function. Pathways are vital not only as models of biology,
but are tools that assist in exploratory research. They have been repurposed to provide understand-
ing of disease phenotype through the analysis of experimental data. The wealth of pathway resources
is a boon to systems biologists and bioinformatics researchers, but the large number and variety of
pathway data, and variability in their quality can lead to challenges in selecting, using, and interpreting
pathways.

This work focuses on human pathways. Although resources for other model organisms are plen-
tiful, human pathways were chosen to limit the size of these data. In this chapter, I provide some
background information on biological pathways that will enable the reader to better understand the
work discussed in the remainder of this dissertation. I begin by introducing the concept of biological
pathways and how they are used to model biological processes. I then discuss the pathway-related ter-
minology used throughout this work. Lastly, I describe a number of pathway data resources, as well as

some basic uses of pathways in functional enrichment analysis.

2.1 Biological pathways

Biological pathways are models of biological process. Contemporary pathways are often modeled as a
type of graph data, where nodes represent entities both physical and conceptual, and edges represent
the relationships between nodes. These nodes and edges reflect the biological entities and relationships

that result in some change or function in the body. Most pathways consist of two types of nodes, those



representing physical entities, things like proteins or molecules, and those representing processes, such
as biochemical reactions. Pathways also contain edges, which describe the various types of interactions
occurring between physical entities and processes. Interactions can take many forms, such as partici-
pation in a biochemical reaction, modification of reaction rates (activation or inhibition), or formation
of a complex.

The basic building block of many pathways is a biochemical reaction. In a typical biochemical
reaction, reactant entities are converted into product entities, usually through the action of an enzyme

or catalyst (modifier), as in:

M
(2.1)
A —e— B

In this simplistic reaction representation, A represents the reactant, B the product, and M the modifier.
The node in the middle represents the reaction entity. Biochemical reactions can have large numbers of
reactants, products, or modifying enzymes, so A, B and M are sets of entities. The inputs and outputs
of various interactions can be one of many types of biomolecular entities, such as genes, proteins,
molecules, ions, DNAs, RNAs, or other chemical species. Other types of interactions include transport
reactions and binding reactions that create complexes.

Outside of reactants, products, and modifier, reactions may also include information about the
environment (whether the reaction takes place internal or external to a cell or organelle), the type of
modification (inhibition versus activation), or stoichiometry (how many of each entity is consumed or
produced). A pathway links together many of these such interactions in a step-wise manner. Common
relationships that are described in pathway models are regulatory relationships (such as activation or
inhibition), and temporal relationships (how interactions are ordered). These concepts have largely
been encoded in the Biological Pathway Exchange (BioPAX) language, one of the most common formats
for exchanging pathway data [43]. Developed as a community standard, BioPAX attempts to provide
a comprehensive model of biological processes. Throughout this dissertation, I borrow terminology
from the BioPAX language to describe the components of pathways.

Pathways can describe any biological function, and may in turn be categorized as metabolic, sig-



naling, gene regulatory, or disease pathways, among others [3]. Metabolic pathways describe how large
molecules are broken down by the body, usually for energy. Examples include carbohydrate or lipid
metabolism. Metabolic processes can often be broken down further into synthesis, salvage, or catabol-
ic/degradation pathways. Signaling pathways describe signal transduction, or how cells interact with
their environment, and process messages from extracellular particles, leading to a change in cellular
state. Gene regulatory pathways describe how molecular regulators interact to alter gene expression.
Disease pathways describe how changes in cell regulation and interaction lead to disease phenotype.
These categories of pathways are not mutually exclusive, and in fact, many pathways can take on prop-
erties of more than one of these categories, e.g., many gene regulatory pathways are also signaling

pathways.

Although most pathways describe a specific biological function, all pathways interact. The assem-
blage of all pathway interactions together into one graph creates a biological network. Pathways often
need to be composed into a network view to enable the detection of relationships across functional
boundaries [72]. The boundaries of individual pathways within the network allows the network to be
interpreted in terms of functional modules. These pathway boundaries are somewhat arbitrary, and
can be defined in various ways by pathway editors. Although most researchers in a subfield may agree
on the primary reactions defining a certain pathway, many related or secondary reactions may or may
not be included in a particular pathway representation. The modularity of biological function intro-
duced by pathways is not necessarily inherent in nature, but is rather added by researchers and pathway

editors as a way of gaining better insight into the relationship between different functions.

Pathways have been created for a variety of purposes. First, they are diagrammatic, and provide a
visual aid for understanding biological interactions. They are also useful for understanding the con-
nections between different biological functions, as pathways can be assembled into a network view.
Most importantly, pathways are computable. They serve as foundational models on which other appli-
cations or analyses can be performed. For example, biosimulation models can be built upon pathway
definitions. By associating kinetic coefficients to pathway members, researchers can simulate the ac-
tivity and feedback loops governing these interactions [47, 111]. Pathways have also been used to pro-

vide understanding of inter-species phylogenetic relationships, by studying how canonical pathways



compare between species [90]. This dissertation focuses on the usage of pathways in pathway analysis
[87], a class of statistical methods used to analyze and make sense of gene expression data. A primary
goal of pathway analysis is hypothesis generation. Biologists and clinicians can use the results of path-
way analysis to identify candidate genes and gene modules responsible for a disease phenotype; these
candidate genes can then be explored as drug targets. For example, pathway analysis has been used
with great success in understanding late-onset Alzheimer’s Dementia, a complex disease variant that
has eluded understanding of its genetic risk factors. Pathway-based analysis has been used to identify
shared features of differentially expressed genes and elucidate the genetic mechanisms of Alzheimer’s
pathogenesis and progression [55].

Because pathways can be used in so many ways, pathway data have also been created with dif-
ferent user groups in mind. This leads to inherent differences in pathway knowledge representation
between different databases. In this dissertation, I attempt to understand and describe some of these
differences, and determine how they affect the use of pathways in secondary analysis. I also propose
and demonstrate ways of reorganizing and combining existing pathway knowledge into a new dataset

more suitable for pathway analysis.

2.2 Pathway terminology

For the remainder of this dissertation, I will use the following terminology to refer to various parts of
pathway models. Many of these terms are borrowed directly from the Biological Pathway Exchange
(BioPAX) language (discussed in section 3.1), and will hopefully be familiar to many readers. The gly-
colysis pathway is provided as a reference example in Figure 2.2.

Each pathway consists of a series of pathway steps. Each step describes an interaction, such as a bio-
chemical reaction, complex formation, or transport. Although other types of interactions are documented,
such as deduced causal ties or hypothetical interactions, I focus on the above classes of interactions in
this work. A biochemical reaction has reactants (which I also refer to as inputs, or the left hand side),
products (also outputs, or right hand side), and modifiers (catalyzing enzymes or molecules). The reac-
tants, products, and modifiers are sets of entities (proteins, protein complexes, molecules, DNAs, RNAs

etc) that participate in the reaction. Each of these entities can be associated with a stoichimetric con-
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Figure 2.2: The glycolysis pathway. A pathway diagram (left) and an example computational represen-
tation (right) of a single reaction (red box) in BioPAX format, derived from Reactome pathway R-HSA-

70171.

stant, denoting the ratio of entities in the reaction. All reactants, products, and modifiers are physical

entities. In the example pathway, the first step is the conversion of glucose into glucose-6-phosphate

(G6P). The reactants of this reaction are glucose and ATP, the products are G6P and ADP, and the mod-
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ifier is hexokinase (HK). The entire glycolysis pathway consists of ten pathway steps, denoted by the
numbers 1-10.

Because many reactions are reversible, the distinction between reactants and products can be rather
unclear. A reaction proceeding in the opposite direction will swap its annotation of reactants and
products. Therefore, I also introduce the term participants, which describes all reaction participants
regardless of the direction of interaction. A more in depth description of pathway components and
relationships is given in Chapter 5, in which I assess the existing state of pathway knowledge repre-
sentation and compare choices made by different pathway curators.

Other attributes can be associated with pathway data. For example, many pathways describe pro-
cesses associated with a specific cell type. Pathways may also include kinetic constants, or environ-
mental variables, which can be used in other applications of pathways such as biosimulation models
(34, 47], or tissue-specific modeling [147]. For the purposes of this dissertation, these other attributes
are not considered.

Pathways diagrams are the way most users engage with pathways. However, pathways often have
an underlying data representation that is computable. A pathway diagram is a visual display of pathway
information, much like Figure 2.2 (left). The underlying pathway data representation is computable, and
is often described using an XML-like syntax. An example of a pathway data representation is given in
Figure 2.2 (right), showing the BioPAX representation of one reaction from the glycolysis pathway, the
conversion of phosphoenolpyrute and ADP to pyruvate and ATP. The representation includes inter-
actions between the reaction participants and the reaction entity, cross-reference identifiers of physi-
cal entities from external databases, PubMed references for the reaction, as well as other information.
These data representations are useful for understanding the complex network of relationships between
entities in this pathway, for modeling the behavior of various pathway components, and for integrating
pathway data with other types of data.

These pathway diagrams and data representations are generated and collected in repositories of
pathway data that [ refer to as pathway databases (see section 2.3). Editors at each database author and
curate a selection of pathways. Users access pathways from various databases and adapt the pathways

for secondary use. Statistical analysis of gene expression data that takes advantage of pathway repre-
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sentations or data derived from pathways will be referred to as pathway analysis (see section 2.4).
2.3 Pathway databases

Describing and studying biological pathways may be useful for understanding biological and disease
processes. Biological functions and processes follow from complex networks of interactions among
gene products and molecules. Through the study of pathways of known biochemical reactions, we
can gain deeper insights into these interactions. Many of these relationships and reactions have been
catalogued in pathway databases such as Reactome [40], BioCyc [31], the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [83], and others.

As of June 2018, following the last major update of pathguide.org, the compendium of pathway
resources lists over 690 pathway and pathway-related databases, of which 79 are human pathway
databases [21]. Pathguide.org provides a comprehensive listing of biological interaction databases
and database metadata, such as each resource’s last update time, a summary of its pathway data, its
licensing and usage restrictions, and the standardized formats in which data are provided. Some new
databases or for-profit pathway resources are not listed on PathGuide, yet the large number of cata-
logued databases suggests continued growth and interest in pathway-related resources. Of these hun-
dreds of listed databases, only a subset contain computable pathway data, and a subset yet of these
contain data relevant to humans.

Pathway databases play several roles in the creation, curation, storage and querying of pathway data
and metadata. Many editors of pathway databases take on the duty of creating and editing pathways
by combining interactions detected in experimental data or summarizing pathways based on relation-
ships described in the literature. Compiling these interactions together into a pathway allow us greater
insight into the relationships between molecular species. Encoding these relationships in a standard
pathway language also allows a pathway to be used by other researchers and integrated with existing
pathway data. Creation and curation are usually conducted manually, with domain experts searching
the literature and extracting relevant interactions. These are then combined into pathway graphs and
attributed to the source data or literature.

Many pathway databases provide curator tools that editors use to edit and manipulate pathway
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data. For example, WikiPathways uses a web-based version of PathVisio to enable online collaboration
[140]. Other tools like Cell Designer [51] or ChiBE [20] are open-source pathway editing tools used
by researchers to create BioPAX pathways. A variety of tools have been create to help researchers
with pathway editing (see https://reactome.org/community/resources for a comprehensive
listing).

Pathways are constantly updated in databases as new information is discovered through experi-
mentation. Existing pathway data are incomplete, as many functions and cell types remain unexplored
or under-explored. Most pathway data resources are or have been public and open access for much
of their life, but in recent years, more and more pathway databases have introduced fee-for-access
models. For example, KEGG coverted to a subscription service in 2011, and BioCyc in 2016. There
are also several notable for-profit pathway resources such as Ingenuity Pathway Analysis (IPA) [7] and
MetaCore [8], distinguished as early-movers but also for their reputations of comprehensive coverage,
curation quality, and tool and workflow integration.

In this work, I focus on open access, publicly-funded resources, as the data are more readily avail-
able to academic and non-profit researchers. Several notable open access pathway databases are Reac-
tome, SMPDB, Panther Pathways, and WikiPathways. Reactome is a large, curated repository of path-
ways created by a collaborative team of researchers from the Ontario Institute for Cancer Research,
Oregon Health Science University, the European Bioinformatics Institute, and New York University
Langone Medical Center [40]. The resource has been regularly updated for the last decade and a half,
and boasts one of the largest sets of pathways. SMPDB, maintained by the Metabolomics Innovation
Center, specializes in human small molecule pathways, and is key for studying drug metabolism and ac-
tion [50]. Panther pathways, part of the Gene Ontology Phylogenetic Annotation Project, is a database
of primarily signaling pathways, emphasizing annotation to Gene Ontology terms [103]. WikiPath-
ways is a pathway database that grew out of the Wiki movement, harnessing the power of volunteer
curators to create and edit pathways, in an effort to stay abreast of newly discovered gene interactions
in literature [92].

The remainder of this dissertation will focus on seven databases: HumanCyc, KEGG, Panther, the

National Cancer Institute’s Pathway Interactions Database (NCI-PID), Reactome, the Small Molecular
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Pathway Database (SMPDB), and WikiPathways. The choice of these databases is discussed in further
detail in Chapters 4 and 5.

2.4 Pathway analysis

Many secondary analyses of omics data use pathways. Summarized best by Khatri et al, “Pathway
analysis has become the first choice for gaining insight into the underlying biology of differentially
expressed genes and proteins, as it reduces complexity and has increased explanatory power.” Because
pathway models are constructed based on biological function, they provide a way to translate gene-
level data to a functional view. Pathway analysis refers to the collective set of methods that use pathways
to process and interpret gene expression data. The need for pathway analysis stems from the lack of
sufficient power when computing gene-level statistics, due to large natural genetic variation between
people, relatively sparse disease phenotype, and high rates of error and missing data at the gene level.

Most complex diseases are polygenic. Some examples are cardiovascular disease, Alzheimer’s De-
mentia, diabetes, and many cancers. Genetic dysregulation in these diseases affect the expression levels
of many dozens or hundreds of genes. Genes can be risk factors for disease, and causally related to phe-
notype. Some genes can also contribute to phenotype, and may be differentially expressed in certain
disease subtypes. Other genes are associated with downstream effects (non-causal), or associated with
incidental effects. Identifying causal genes and gene variants, as well as genes associated with identi-
fiable disease subtypes, are especially important for explaining the genetic causes and heritability of
complex diseases.

Typically, to identify genes or variants corresponding to a disease phenotype, genome wide associa-
tion studies (GWAS) or genome-wide linkage studies are conducted. GWAS is a powerful, unbiased tool
for detecting genome-wide associations to phenotype. By looking everywhere in the genome, GWAS
can often draw our attention to previously unknown associations. For a GWAS, one compares people
exhibiting a disease phenotype of interest with healthy controls. Genetic differences between cases
and controls are used to identify genetic loci, commonly single nucleotide polymorphisms (SNPs), that
are highly correlated with the disease phenotype. The presence or absence of a specific SNP is cor-

related with the presence or absence of disease phenotype, generating a p-value. The p-value can be
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used to determine SNPs (and the corresponding genes) that are significantly associated with the disease
phenotype (see Figure 2.3). Many comparisons are made at the SNP level, and the p-value threshold
for genome wide significance is set to a low value to offset the errors of multiple hypothesis testing.
Typically, the significance level o in GWAS is set to 5e-8, which reduces false positives but makes
it challenging to detect modestly correlated SNPs. GWAS studies typically require large numbers of
study participants to account for high genetic variation between individuals and provide higher power
for detecting significant SNPs.

The detected significant genes in GWAS can help researchers hypothesize on the mechanisms of

pathogenesis. Of course, correlation may not directly translate to causation.
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Figure 2.3: An example GWAS output Manhattan Plot. Each SNP is plotted at its chromosomal location
against the negative log of its correlation p-value with the phenotype. More significant SNPs have
higher values. Above the top dashed line threshold are SNPs found to be statistically correlated with
the disease phenotype when setting « to 5e-8. Below the top dashed line are other thresholds of lower
statistical significance. SNPs with negative log p-values between these lower dashed lines have a high
probability of being correlated with the phenotype but have not achieved statistical significance in this
GWAS study. Image reproduced from Ikram et al [76].
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Differential gene expression data between cases and controls are also useful for understanding dis-
ease mechanisms. Gene expression data present a snapshot of the transcriptome, all mRNA transcripts
present in the tissue at a moment in time. The data indicate which genes are transcribed, and in what

quantities, which can be used as a proxy measure for protein, and the biological functions associated
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with those proteins. Although levels of mRNA are not equivalent to levels of protein due to post-
transcriptional modifications, the two quantities are highly correlated. RNASeq is one transcriptomic
approach that sequences mRNA using next-generation sequencing techniques. High throughput tran-
scriptomic methods are subject to typical challenges of read alignment such as the presence of short
reads or similar paralogous genes.

Gene-level statistics can be used to analyze gene expression data. However, expense and tissue
availability limits the broad application of RNASeq and related methods. To increase power and inter-
pretability, pathway analysis can be used to assess differential gene expression data.

Pathways allow differences at the gene level to be aggregated over the set of genes represented in
a pathway. The resulting statistical significance is computed at a pathway level. Instead of determin-
ing the genes associated with a disease phenotype, pathway analysis determines associated pathways.
In other words, the output of pathway analysis can indicate biological functions that correlate with a
disease phenotype. This in turn leads to novel hypotheses on the drivers of disease, its related morbidi-
ties, and treatment possibilities. Pathway analysis is therefore a powerful and practical way of assessing
gene expression data.

Gene Set Enrichment Analysis (GSEA) is a type of functional enrichment analysis that is often
used in conjunction with pathway data [133]. GSEA computes the statistical association between a
disease phenotype and a set of genes as an enrichment score. When a gene set is enriched, it is highly
associated with the disease phenotype. Gene sets can be derived from various sources, such as gene
co-location on chromosomes, genes annotated to the same Gene Ontology (GO) term, genes that have
shown correlation in microarray experiments, and of particular relevance to this dissertation, genes
that co-occur in the same pathway. The Molecular Signatures Database (MSigDB) is a database of gene
sets curated for use in GSEA and other enrichment algorithms [99]. Many gene sets in MSigDB are
derived from pathway databases such as KEGG, NCI-PID, or Reactome. Each of these gene sets is
generated from an individual pathway.

Many pathway analysis methods also leverage pathway topology to calculate gene correlations with
phenotype [113]. These network-based approaches take advantage of the interactions occuring be-

tween pathway components to produce more accurate findings. One example, signaling pathway im-
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pact analysis (SPIA), simulates perturbations within a pathway based on gene expression values, and
combines this perturbation statistic with traditional gene set methods to enhance results [136]. An-
other tool, DEGraph, implements a novel statistic incorporating graph structure into the computation
of differential expression between cases and controls [78]. DEGraph also introduces a new way for
identifying subgraph modules within each pathway that may be correlated with phenotype [78]. Yet
another technique uses random walk to discover gene modules functionally associated with cancer
phenotypes from a global gene interaction network [120].

The boundaries between pathways can be fairly arbitrary, and the member entities of one pathway
often partake in other pathways, e.g., the product species of the pentose phosphate pathway go on to en-
ter the glycolysis pathway at various steps. In some cases, a network view can allow researchers to iden-
tify pathway modules (for example, a part of one pathway, or the combined network of two interacting
pathways) that correlate with phenotype. Like other forms of pathway analysis, most network-based
approaches are also affected by the availability of pathways in a common data format, incomplete path-
way annotation or errors in annotation, and variability in pathway knowledge representation [113]. A
researcher may also need to choose different network-based pathway analysis methods based on the
size and type of their experimental data [75].

Together, these pathway analysis methods have been used broadly for the analysis of gene expres-
sion data and drug target identification. As pathway reuse increases, there have been corresponding
questions over the suitability of pathway data for this type of analysis. Very unsurprisingly, deficien-
cies in pathway coverage and data quality can negatively impact the results of pathway analysis [24, 25],
and the selection of different pathway datasets for pathway analysis can have profound implication on
results [58, 87]. There are no standard recommendations for choosing pathway datasets. Each pathway
database has been created to address different needs, and no one database can be expected to provide
adequate pathway data for all types of users. There have been attempts to enumerate and describe
available pathway databases, allowing users to select databases based on their individual analysis needs
(21, 37].

Researchers have addressed this challenge in several ways, by combining pathways from multiple

databases and by introducing standards for pathway data representation. However, these solutions
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do not sufficiently reduce problems of data quality, redundancy between pathway databases, or the
lack of overall organization and interpretability of pathway analysis output. In the following chapter,
[ summarize and describe some shortcomings of existing solutions. I also propose an ontology-driven
approach for integrating and organizing pathway data, to generate a less redundant and more inter-

pretable pathway dataset for use in pathway analysis.
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Chapter 3
MOTIVATION: THE NEED FOR BETTER PATHWAY DATA INTEGRATION

For pathway analysis and other secondary applications of pathways, many researchers extract pathway
data from multiple databases. This takes advantage of the breadth of curated data, incorporating path-
way knowledge created for different purposes and covering different aspects of biology. When com-
bining data from multiple databases, researchers must contend with differences in pathway knowledge
representation, data quality, and content.

Efforts have been made to extract and integrate data from multiple pathway databases. These ef-

forts include:

1. the creation of pathway data exchange standards,
2. the development of pathway aggregator resources, and

3. methods for incorporating multiple pathway databases in analysis.

Pathway data exchange standards have been introduced to make pathways accessible in a unified file
format. This eases the burden of processing combined data. Pathway aggregators collect pathway data
from many databases, making them available for query and download from a single location. Many
analysis tools also incorporate multiple pathway databases into a single genomic analysis pipeline, sim-
plifying the user’s role in integrating pathway data.

These resources and methods have dramatically improved our access to pathway data. Most path-
way data are now available in a common file standard, and can be easily found and retrieved from
the source database or an aggregator resource. However, once aggregated, overlapping pathways from
different databases must still be identified and combined to remove redundancy. Most existing meth-
ods for combining pathway datasets are statistical, and many of these methods ignore the integrity of

pathway functional definitions when merging pathways. By this, | mean that the merged pathways
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lack names or associations with particular biological functions, and may simply be called things like
Superpathway 101. These superpathways are difficult to use and interpret in pathway analysis. There is
therefore a need for improved algorithms for pathway integration and organization.

The trend is towards improved integration of pathway resource data and increased accessibility to
their content. Widespread adoption of pathway data sharing standards is necessary, but we also need
agreement within the context of data standards, as well as methods for consolidating and presenting
content for analysis and interpretation. These latter goals are the main motivation for my work.

To observe both the functional boundaries of pathways when integrating them, and to provide
some organization for ease of interpretability, I propose an ontology-driven method of pathway data
integration. An ontology of pathway terms allows one to identify semantically similar pathways, and
to incorporate the relationships between different classes of pathways into analysis. By associating
pathways from different databases with classes in a shared pathway ontology, I can use these class
associations to identify and combine semantically similar pathways to reduce redundancy. By reducing
redundancy and increasing interpretability, I can produce a more suitable pathway dataset for pathway
analysis.

In the ensuing chapter, I discuss some existing tools for improving pathway data interoperability.
I then discuss the shortcomings of these existing solutions, and propose an ontology-driven method

for integrating pathway data.
3.1 Standards for representing pathway data

Several pathway data standards have been created for the exchange of biological pathway data. The
most notable of these is the Biological Pathway Exchange (BioPAX) format, which is a community-
driven language explicitly created for representing pathway knowledge [43]. BioPAX is an ontology,
containing classes and properties relevant to the description of pathway data. These ontology classes
are borrowed extensively throughout this dissertation to discuss pathway components and interac-
tions.

Other standards in which pathway data are published are the Systems Biology Markup Language
(SBML) (73], Graphical Pathway Markup Language (GPML) [140], and the Proteomics Standards Ini-
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Standard | Representation
:reactionl a biopax3:BiochemicalReaction
:reactionl biopax3:left :entityl
:entityl biopax3:name ‘phosphoenolpyruvate’
:reactionl biopax3:left :entity2
:entity2 biopax3:name ¢ADP’
:reactionl biopax3:right :entity3
rentity3 biopax3:name ‘pyruvate’
BioPAX :reactionl biopax3:right :entity4
rentity4 biopax3:name ‘ATP?’
:catalysisl a biopax3:Catalysis
:catalysisl biopax3:controlled :reactionl
:catalysisl biopax3:controller :entityb
:entity5 biopax3:name ‘pyruvate kinase’
<reaction id=‘reactionl’>
<listOfReactants>
<speciesReference species=‘phosphoenolpyruvate’/>
<speciesReference species=‘ADP’/>
</list0OfReactants>
<listO0fProducts>
<speciesReference species=‘pyruvate’/>
SBML <speciesReference species=‘ATP’/>
</listO0fProducts>
<listO0fModifiers>
<modifierSpeciesReference species=‘pyruvate kinase’/>
</list0fModifiers>
</reaction>
<DataNode TextLabel=‘phosphoenolpyruvate’ GraphId=‘entityl’ Type=‘Metabolite
> / >
<DataNode TextLabel=‘ADP’ GraphId=‘entity2’ Type=‘Metabolite’/>
<DataNode TextLabel=‘pyruvate’ GraphId=‘entity3’ Type=‘Metabolite’/>
<DataNode TextLabel=‘ATP’ GraphId=‘entity4’ Type=‘Metabolite’/>
<DataNode TextLabel=‘Rx1’ GraphId=‘reactionl’ Type=‘Reaction’/>
<Interaction GraphId=‘interactionl’>
GPML <Graphics ZOrder=¢12288° LineThickness=1.0’>
<Point X=¢200.0° Y=¢150.0’ GraphRef=‘entityl’ RelX=‘-1.0’ RelY=¢0.0’/>
<Point X=¢250.0’ Y=°200.0’ GraphRef=‘reactionl’ RelX=°0.5’ RelY=¢-1.0’
ArrowHead=‘Arrow’/>
</Graphics>
<Interaction>

Table 3.1: Comparison of pathway data standards for the reaction: phosphoenolpyruvate + ADP

pyruvate kinase

pyruvate + ATP

tiative’s Molecular Interactions (PSI-MI) XML specification [67]. SBML was designed to facilitate the

transfer of computational models of biological processes. It is suitable for representing biosimulation
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models [73]. GPML, the native format of PathVisio [140], provides a way to consistently define elements
within a pathway diagram. PSI-MI, on the other hand, is most suitable for representing molecular in-
teractions [67].

All four exchange formats provide users the means to represent biological processes, but with vary-
ing degrees of detail and syntax complexity due to the initial goals of the developers of each language.
A comparison study by Strémback and Lambrix [132] of BioPAX, SBML, and PSI-MI concluded that
BioPAX is “the most general and expressive of the formats,” while SBML is more suitable for represent-
ing biosimulation models, and PSI-MI for interaction details. GPML, suitable for graphical editing, is
used broadly by the PathVisio and WikiPathways communities [92].

To illustrate the differences between these standards, the same reaction is given in BioPAX, SBML,
and GPML in Table 3.1. The BioPAX snippet is given in Turtle syntax. These three languages are used

by the pathway databases referenced throughout the remainder of this dissertation.
3.2 Pathway aggregators

Pathway aggregators collect pathway data from multiple databases and allow querying and access to the
data from a centralized access point. Resources such as Pathway Commons and ConsensusPathDB are
examples. In most cases, an aggregator provides additional functionality beyond acting as a repository
of pathway data. These resources may play a curatorial role, ensuring that their content pathways
have high data quality and are accessible in a pathway data-sharing standard. They can also provide
additional tools for combining and visualizing pathway networks. Aggregators improve querying from
multiple pathway databases, and pave the way towards more comprehensive network models of human
biological processes.

Pathway Commons (PC) began in 2011 as a collection of publicly available pathway data, with an
emphasis on human pathways. It was initially created to address the “highly fragmented” nature of
pathway data across numerous databases [32]. Over the years, Pathway Commons has incorporated
data from around 25 pathway and interaction databases, and now consists of over 37,600 pathways
and 3 million protein-protein interactions. In addition to downloading and making available pathway

data, PC maintainers also convert all data to BioPAX format, thus allowing all PC-hosted pathways
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to nominally inter-operate. PC also incorporates pathway data from defunct databases such as NCI-
PID and Integrating Network Objects with Hierarchies (INOH), and the last open-access version of
licensed pathway databases such as HumanCyc and KEGG. Since its creation, Pathway Commons has
quickly become one of the leading ways of accessing pathway data. PC provides a query interface for
its entire pathway corpus, as well as the PCViz tool, which facilitates exploration of pathway and gene
interactions.

The ConsensusPathDB is a resource with the primary motivation of aggregating molecular in-
teractions [81]. These interactions between metabolites, proteins, genes, and other molecules can be
thought of as components of pathways, and can also be derived from biochemical pathways. The most
recent release of ConsensusPathDB incorporates interaction data from 32 databases, several of which
are primarily pathway databases. Aside from millions of molecular interactions, ConsensusPathDB
also hosts 5,436 pathways. Interactions and pathways from various databases are incorporated into a
single large interaction network, which can be queried through the ConsensusPathDB web interface.
Some curation is performed to reduce the number of redundant interactions.

The National Center for Biotechnology Information’s (NCBI) BioSystems database is a resource
aimed at integrating pathway annotations into the NCBI infrastructure [54]. The BioSystems database
allows users to take advantage of NCBI resources, such as the Entrez databases for gene, protein,
and molecular annotations, taxonomic databases, the Online Mendelian Inheritence in Man (OMIM)
database, and PubMed. The NCBI BioSystems database contains pathways from KEGG, Reactome,
BioCyc tier I and II databases, NCI-PID, WikiPathways, and the Gene Ontology. BioSystems links
these pathway entries to millions of NCI protein and gene records, as well as PubChem entries.

Other pathway aggregator resources that have been created include hiPathDB [155], the Human
Pathway Database (HPD) [36], the Integrated Pathway Analysis Database for Systematic Enrichment
Analysis (IPAD) [157], PathJam [56], and Pathway Distiller [46], among others. The resource hiPathDB
included 1,661 pathways from BioCarta, KEGG, NCI-PID, and Reactome [155]. HPD integrated 999
curated human pathways from NCI-PID, Reactome, BioCarta, KEGG, and the Protein Lounge Web
[36]. IPAD aggregated 1,956 pathways from databases such as BioCarta, KEGG, NCI-PID, Reactome,

and others. PathJam consolidates pathways from KEGG, NCI-PID, BioCarta, and Reactome, providing
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users the ability to access disparate pathways from a web API [56]. Pathway Distiller is a pathway aggre-
gating tool that aims to improve pathway analysis conducted with multiple pathway datasets. Pathway
Distiller allows users access to 2,665 pathways derived from BioCarta, KEGG, NCI-PID, WikiPath-
ways, Reactome and HumanCyc [46]. hiPathDB, HPD, and IPAD have become unmaintained and de-
funct in the subsequent years following their development, likely due to the success and broad coverage
of Pathway Commons. PathJam and Pathway Distiller, although both still online and accessible, have
not been updated since their creation.

Table 3.2 summarizes the current state and content of these pathway aggregator resources. In many
cases, these aggregator resources are the only dependable repository for accessing certain legacy path-
way datasets, such as NCI-PID.

Although pathway aggregators greatly increase access to pathway data, the integration they per-
form over this data is limited. Even the de-duplication performed by ConsensusPathDB is largely
naive, combining entities based on shared cross-reference identifiers. Providing all pathway data in
a single data format is an important and positive step, yet it does not guarantee immediate interop-
erability. De-duplication of pathways between databases is difficult, and de-duplication of entities at
a sub-pathway level is even more of a challenge. Existing methods for identifying and de-duplicating
overlapping pathways are discussed in Section 3.4. These challenges must by addressed to improve

pathway data interoperability.
3.3 Using multiple pathway databases in analysis

Analysis tools have been built around the integration of data from multiple pathway databases. For
example, R Spider, a statistical framework for analyzing gene lists, generates gene interaction networks
from a provided gene set using relationships extracted from Reactome and KEGG [15]. By combining
interactions retrieved for metabolic and signaling pathways, the tool constructs a network connecting
the gene members of interest.

MSigDB, a database of gene sets, is commonly used to provide gene sets for gene set enrichment
analysis [99]. The MSigDB extracts gene sets from various pathways derived from databases such as

KEGG, NCI-PID, Reactome and others. All pathway-derived gene sets are accessible in a single gene
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Resource Version® | Aggregated content Status

ConsensusPathDB | 34 5,436 pathways from 11 pathway databases and | Active
over 660,000 molecular interactions

NCBI BioSystems | - pathways from BioCyc tier I and Il databases, GO, | Active
KEGG, NCI-PID, Reactome, and WikiPathways

Pathway Commons | 10 over 37,600 pathways and 3 million protein- | Active
protein interactions from 25 databases

PathJam 2010 pathways from BioCarta, KEGG, NCI-PID, and | Not updated
Reactome

Pathway Distiller 2012 2,665 pathways derived from BioCarta, KEGG, | Not updated
NCI-PID, WikiPathways, Reactome and Human-
Cyc

hiPathDB - 1,661 pathways from BioCarta, KEGG, NCI-PID, | Defunct
and Reactome

HPD - 999 human pathways from NCI-PID, Reactome, | Defunct
BioCarta, KEGG, and the Protein Lounge Web

IPAD - 1,956 pathways from BioCarta, CTD", DrugBank, | Defunct

KEGG, HOMERS, NCI-PID, PharmGKB, and Re-

actome

Table 3.2: Comparison of pathway aggregator resources

“Version number provided where available

bThe Comparative Toxicogenomics Database

‘Hypergeometric Optimization of Motif Enrichment

set file. MSigDB therefore makes it easy for users to perform GSEA using integrated pathway-derived

gene sets.

Another functional enrichment tool, the Database for Annotation, Visualization and Integrated
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Discovery (DAVID), also leverages pathway knowledge, by using pathway membership from resources
like KEGG, Reactome, and BioCarta in the functional clustering and classification of genes [44]. Genes
related to enriched functions can also be visualized on pathway diagrams for ease of understanding
and presentation.

Additionally, several of the pathway aggregating databases mentioned previously also provide util-
ities for gene set or pathway enrichment. In several of the aggregator databases in section 3.2, users can
either export consolidated pathway datasets for secondary use, or perform gene set enrichment within
a web tool hosted by the aggregator resource. In essence, much of the benefit provided by pathway ag-
gregator resources lies in providing users with a consolidated pathway dataset which derives pathways
from numerous primary source databases.

These tools and others incorporate pathways from multiple databases into the default inputs of
gene set analysis. They demonstrate that there is inherent utility and desire for access to multiple path-
way datasets. However, beyond the derivation of data from multiple databases, these analysis tools do
not perform de-duplication or organization of pathway data. The combined pathway data are there-
fore subject to some of the same issues I described before, of being difficult to integrate and retaining

redundancy of content.
3.4 Methods for reducing pathway redundancy

Bioinformatics researchers recognize that pathway redundancy can negatively impact the results of
pathway analysis. When pathway analysis is conducted without removing or merging redundant path-
ways, several variants of the same pathway may be statistically implicated in results due to similarity of
content. Vivar et al investigated the occurrence of redundant pathways in GSEA results and introduced
ReCiPa, an application for user-defined redundancy control [142]. ReCiPa allows the user to select a
threshold beyond which pathways sharing overlapping genes are merged into a superpathway. After
merging similar pathways, ReCiPa generates gene sets from the resulting superpathways. The authors
evaluated the method using pathways from KEGG and Reactome. They demonstrated that the merged
pathway set resulted in decreased redundancy, and a larger number of functionally independent gene

sets in enrichment results.
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PathCards is another tool created to reduce redundancy in pathway-derived gene sets [25]. Using
entity overlap and information-theoretic approaches, the authors combine pathways from 12 different
databases into superpathways. Using hierarchical clustering and nearest neighbor joining, PathCards
identifies clusters of overlapping pathways. Candidate pathways within each similar cluster are then
merged and redefined as a single superpathway. The PathCards database is a part of the GeneCards

suite of bioinformatics tools, which focuses on consolidating data and annotations in human biology.

Both ReCiPa and PathCards combine pathways from various databases into merged superpathways
using statistical overlap. These methods use entity overlap to define semantic similarity. Consequently,
they are dependent on the correct attribution of entities to pathways, as well as the appropriate labeling
of entities with cross-reference identifiers by source databases. They also assume that pathways with
distinct functions do not share a high degree of entity overlap. By ignoring functional boundaries
of pathways during merging, these methods reduce the ability to interpret enrichment results. For
example, GSEA results are presented as a ranked list of gene sets, whose functions are interpreted from
the name of the gene set, which is derived from the pathway name. Superpathways lack meaningful
names because they can result from combining semantically unrelated pathways. A better pathway
integration method should not only reduce redundancy in the resulting pathway dataset, but should

also retain the functional boundaries and meanings of individual pathways.

Other methods which may not directly reduce redundancy but aim to signal redundancy to the user
are visualization techniques indicating gene overlap betwen pathways. For example, the Cytoscape
Enrichment Map plug-in shows a network of enriched gene sets with edges to indicate the level of
overlap [102]. The Pathway Coexpression Network is an attempt to quantify the degree of overlapping
expression between pathways, providing an indication of overlap between pathway modules based
on coexpression activity from microarray data [122]. These methods allow researchers to visualize
and manually account for the overlap between distinct pathway modules, but they do not identify and

merge semantically redundant pathways from different databases.
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3.5 Proposed solution for pathway data integration

There is an obvious need to integrate pathway data from multiple databases. By combining different
data sources, users can derive a pathway dataset with the largest breadth of coverage over biological
functions. A number of tools and resources have been created for this goal. Pathway data sharing stan-
dards and pathway aggregator resources allow pathway data from many databases to be easily queried
and combined. Analysis methods have been developed with multiple databases in mind, often default-
ing to a consolidated pathway dataset. These tools have largely avoided the issues of increased pathway
redundancy and negative statistical effects which result from naively combining multiple overlapping
pathway datasets. Methods such as ReCiPa and PathCards attempt to address the issue of redundancy,
by discovering and merging overlapping pathways. However, by relying on entity membership alone to
identify similar pathways, these methods tend to ignore the boundaries of pathway function, affecting

the interpretation of enrichment analysis results.

Instead of identifying semantically similar pathways based on entity membership alone, I propose
an ontology-driven method for organizing pathway data and merging redundant pathways. Ontologies
have long been used in bioinformatics to organize data and promote interoperability between datasets
(101, 108, 134]. Most of the constituent members of pathway data: the genes, proteins, molecules,
and even reactions which make up the building blocks of pathways, are annotated to ontological re-
sources. For example, proteins may be annotated with UniProt or Ensembl identifiers, and molecules
with ChEBI or KEGG identifiers. These annotations allow the same or similar entities to be recognized

in different databases.

Biological functions, which are described by pathways, also have certain corresponding ontology
terms, for example, in the Gene Ontology biological processes sub-ontology, or the Pathway Ontology.
Pathway annotations to ontological terms can therefore also be used to identify equivalent or similar
pathways among different databases. An ontology can provide a shared semantic framework for un-

derstanding hierarchical pathway relationships and for identifying semantically similar pathways.

Ontologies have been used by various pathway databases to organize pathway data. For example,

KEGG and EcoCyc are among the earliest pathway databases to have their own unique pathway class
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hierarchies [83, 84]. Ingenuity Pathway Analysis, although not public domain, also produced one of
the first genomic-scale human pathway ontologies [7]. The Gene Ontology biological processes sub-
ontology, although not an ontology of pathways, is used by many pathway databases to annotate their
pathways with terms describing biological function [18]. More recently, the Pathway Ontology (PW)
has been introduced by the Rat Genome Database specifically as an ontology of biological pathways
[119]. The PW contains classes of pathways relating to biological function, including disease and altered
pathways, those describing non-standard biological functions.

To perform ontology-based pathway integration, I first construct a predictive model to associate
pathways from a number of source databases to classes in a unifying ontology. Then, I formulate a
typology of representational mismatches between pathway databases by evaluating analogous con-
tent from different databases. Using these identified inconsistencies, I optimize entity and network
alignment algorithms to combine similar pathways from different databases — identified through an-
notation with the same ontology class — into normalized pathway representations. Lastly, I evaluate
the performance of these normalized pathway representations in pathway-based gene set enrichment
analysis relative to baseline pathway-derived gene sets.

Because of the large number of pathways and pathway databases, and the dozens or hundreds of
entities present in each pathway, computational models are needed to assist in the organization and
alignment of these pathway data. A predictive model is implemented to help curators map pathway
instances to ontology classes. An alignment model is engineered to then align pairs of pathways iden-
tified as being semantically related based on annotation to the same ontology class. Finally, strongly
aligned pathways are merged into normalized pathways for used in pathway analysis.

[ make the following contributions toward pathway data integration, which I discuss in the remain-

der of this dissertation:

1. An ontology-based classification of pathways from seven pathway databases. I develop
and train a machine learning model to identify candidate ontology classes for each pathway in-
stance. These candidate classes are reviewed by ontology curators to determine correctness.

This work is described in Chapter 4.
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2. A typology of differences between pathway databases. I identify classes of inconsistencies
in content and in knowledge representation between analogous pathways in different databases

through manual evaluation. This work is described in Chapter 5.

3. An algorithm for aligning pathway graphs. I adapt entity and graph alignment algorithms
to align pathways based on the classes of differences identified in the typology. The alignment

algorithm and a brief evaluation of its output is given in Chapter 6.

4. An ontology-based normalized pathway dataset. Semantically similar pathways associated
with the same ontology class are aligned and merged using the alignment algorithm. These
normalized pathways are evaluated relative to baseline pathway-derived gene sets provided by
MSigDB. I evaluate these pathways on public gene expression datasets for Alzheimer’s Disease
and two types of cancer. I also propose some ways of integrating ontological structure into the

output of pathway enrichment analysis.
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Chapter 4

ONTOLOGY-BASED ORGANIZATION OF PATHWAY DATA

To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is
needed. Ontologies can be used to harmonize data from disparate sources. By associating pathway
instances from different databases to the appropriate class in a shared ontology, I can determine the
semantic relationships between pathways. Pathways associated with the same ontology class are se-

mantically related, and can be aligned and merged into one normalized pathway.

[ leverage one particular ontology, the Pathway Ontology (PW)' as a unifying ontology for orga-
nizing pathway data [119]. In this chapter, I describe how pathways from databases such as Reactome,
HumanCyc, and WikiPathways are mapped to PW classes. Working with PW curators, I designed and

implemented a machine learning model for class-instance annotation prediction.

This model is an addition to the PW curatorial pipeline, which has traditionally relied on manual
review alone. Previously, a curator would identify the best match PW class for a particular pathway
instance using knowledge of the PW ontological structure and string-based search. A predictive model
can improve this process by selecting potential matches from the PW and presenting them to a curator

for further review. The curators ultimately select the best match for each pathway instance.

[ implemented and compared two machine learning models for class-instance annotation predic-
tion. The first is a baseline bag-of-words (BOW) model, which is similar to the string-based search
currently employed by the curators. The second is a neural network (NN) model that employs lexi-
cal, semantic, and relationship features of pathways and PW classes to produce suitable matches. This
NN model is based on supervised machine learning and bootstrapping. The model was trained us-

ing existing annotations (gold standard annotations generated previously through manual curation)

'Because PO is already used for the Plant Ontology, PW was chosen as the resource identifier prefix for the Pathway
Ontology. I use PW throughout this dissertation for consistency.
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in the PW as well as external and bootstrapped training data. The trained NN model was then used
to predict new mappings between previously unseen pathway data and ontology classes. PW curators
assessed the outputs of the predictive model and used model recommendations as a guide for adding
new annotations between pathway instances and PW classes.

For evaluation, I compared the annotation predictions generated using the BOW and NN models.
Using each predictive model, I generated mapping recommendations between Reactome pathways and
PW classes. A 5% subset of Reactome pathways (111 pathways) was randomly selected, and the cor-
responding PW class recommendations output by both models were evaluated independently by two
curators. The precision of the BOW model was found to be higher (0.49 for BOW and 0.39 for NN),
but the recall was correspondingly lower (0.42 for BOW and 0.78 for NN). In other words, around
78% of Reactome pathways received pertinent recommendations from the NN model, while only 42%
from the BOW model. An error analysis was conducted on the remaining 22% of pathways that did not
receive useful recommendations from the NN model. Of these, many did not map to current classes in
the PW, and new classes or relationships were added to the PW to account for these pathways. Detailed
descriptions of model architecture and evaluation procedures are given in Section 4.2.

The predictive model produced meaningful class recommendations that assisted PW curators in
selecting appropriate class mappings for pathway instances. These methods can be used to reduce
the manual effort associated with ontology curation, and more broadly, for augmenting the curators’
ability to organize and integrate data from pathway databases using the Pathway Ontology. The output
mappings are also used to derive semantically similar pathway clusters from which I then generate
normalized pathways for pathway analysis.

The neural network model is used to produce PW class mappings for HumanCyc, Panther, Reac-
tome, and WikiPathways pathways. Mappings for all four databases are used in conjunction with exist-
ing annotations in the PW to identify semantically similar pathway clusters for alignment and merging.
In Chapter 6, I describe how pathways graphs can be aligned using entity attributes and graph topol-
ogy. In Chapter 7, Section 7.1, I then describe how the alignment algorithm is applied to each pathway
cluster from the PW to produce normalized pathways. The resulting normalized pathways contain less

redundant information, yet retain semantic relationships to other pathways in the PW. These normal-
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ized pathways can provide additional information for interpretation when used in pathway analysis. In
Chapter 7, I provide a comparative evaluation of gene sets derived from normalized pathways versus
standard pathway-derived gene sets. By taking advantage of the relationships between PW classes, the
results of pathway analysis conducted using normalized pathways can be organized hierarchically and
are therefore open to better functional interpretation.

The model and results described in the remainder of this chapter are adapted from the follow-
ing manuscript. The work discussed in the manuscript was conducted with members of the Pathway

Ontology group within the Rat Genome Database Project.

Wang L.L., G. Thomas Hayman, Jennifer R. Smith, Monika Tutaj, Mary E. Shimoyama, John H.
Gennari. Predicting instances of Pathway Ontology classes for pathway integration. Submitted

to the Journal of Biomedical Semantics.

4.1 Background € Motivation

Ontologies can be used to align and integrate data from multiple sources. In the case of biological path-
ways, there are numerous databases collecting and describing information about pathway networks,
but no centralized schema to organize these various pathways. A shared organizational scheme would
allow researchers to identify semantically similar pathways, providing a framework for pathway data
integration.

Pathways are a form of graph data describing biological function. Individual pathway modules de-
scribe the interactions between dozens or hundreds of genes, proteins, and molecules, and how these
interactions contribute to events of biological consequence. The complexities of analyzing genomic
data have led to a rise in the use of pathways for pathway analysis, a class of statistical methods that ag-
gregate single gene effects over the genes described in pathway modules. These pathway analysis tech-
niques (such as gene set enrichment analysis (GSEA) [133] or network-based pathway analysis methods
[113]) allow variations in gene expression to be interpreted at a functional level. Due to the large vari-
ety of pathways available from different databases, pathway analysis, in many cases, leverages pathways

from multiple databases. For example, MSigDB, which many researchers use as a source of gene sets
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for GSEA, combines pathways from KEGG, NCI-PID, and Reactome [99].

Combining pathways from different databases results in redundancy in the pathway data set. The
same or a similar pathway may be represented in multiple databases. Meta-resources such as Pathway
Commons [32] and ConsensusPathDB [81] allow for querying and access to pathways from different
databases, but lack the ability to collapse redundant pathways between databases. Other resources such
as PathCards [25] or ReCiPa [142] use statistical methods to detect gene overlap between two pathways,
merging pathways with significant overlapping entities into superpathways to reduce membership re-
dundancy. However, these methods fail to retain the functional boundaries of pathways, which are
crucial for pathway analysis result interpretation, i.e., allowing gene expression differences to be ag-
gregated and interpreted at a functional level.

Pathways from different databases are challenging to integrate due to content and representational
differences between various pathway databases. Previous studies have described the differences that
exist between pairs of pathway databases [14, 37, 129, 130], and in Chapter 5, I categorically summarize
ways in which pathway representations are found to differ between many common pathway databases.
Although most databases provide data in pathway file sharing standards such as BioPAX [43], SBML
(73], or GPML [140], these standards are insufficient for ensuring interoperability. Even when two
databases present data using the same standard language, the different decisions of pathway editors at
both individual and database levels can result in variable pathway representation.

Ontologies have been used successfully to combine disparate datasets in the biomedical domain
[101, 108, 134]. I hypothesize that an ontology of pathway classes can be used to organize data from
different pathway databases, allowing pathways to be merged while maintaining an understanding of
the semantic relationships between various pathways. Several existant uses of ontologies by pathway
resources have been discussed in Chapter 3.

The Pathway Ontology (PW), an ontology of pathway terms, can be used as an anchoring ontology
to identify similar pathways [119]. The PW was developed as part of the Rat Genome Database (RGD)
as a means to catalog and describe the relationships among various biological pathways. The ontol-
ogy covers broad pathway categories such as pathways of metabolism, gene regulation, cell signaling,

disease, and drug metabolism, and allows for the representation of both subclass and mereological
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hierarchies via the subclass and part-of relationships respectively. The subclass hierarchy describes is-
a relationships, for example, the glycolysis pathway is a carbohydrate metabolic pathway, and shares
certain features with all other carbohydrate metabolic pathways. The part-of hierarchy describes mere-
ological relationships, where the process described by one pathway may be a subprocess of the process
described in another pathway, for example, the conversion of phenylalanine to tyrosine is a part of the
phenylalanine degradation pathway.

The PW is a suitable ontology for integrating pathway data because it provides:

« a hierarchy of pathway classes and their relations to one another,
« classes describing altered and disease pathways, and

« existing mappings to pathways from KEGG, NCI-PID, and SMPDB.

The Gene Ontology (GO) describes biological processes, and could be a suitable ontology for pathway
data integration based on its more developed classes and richer annotations [18]. However, the GO
lacks classes describing altered or disease pathways, which are essential for downstream applications
of pathway resources. The PW describes both altered and disease pathways in its class hierarchy and
is therefore more suitable for integrating pathway data.

Using the PW, I can group together semantically and functionally similar pathways by mapping
them to the appropriate PW class. All pathways mapped to a particular PW class can then be merged
together to form a normalized pathway representation of that class. This set of normalized pathways
can be used in pathway analysis applications, and will have less redundancy compared to naively com-
bined pathway datasets, as well as increased functional interpretability due to the preserved PW class
hierarchy.

To better enable pathway data integration, I first need to map the content of other pathway databases
to the PW. However, manual mappings are both laborious and time-consuming to produce. In light of
limited curatorial resources, I integrate computational predictions into the curation pipeline, allowing
a predictive model to reduce the number of manual comparisons that must be made by PW curators.

Machine learning methods have been used with success for ontology-related tasks such as ontology
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learning, ontology completion, and ontology alignment [26, 116, 145]. Rule-based techniques have
been very successful, but supervised or semi-supervised approaches can also be used when training
data are available. I propose and implement a supervised learning framework for inferring mappings
between pathways from pathway databases and the PW, with a goal of reducing the hours associated
with manual curation.

In this chapter, [ describe efforts to generate PW class mappings for pathways from Reactome, one
of the largest and most comprehensive pathway databases [40]. These methods are generalizable to
other pathway databases, such as BioCyc [31], Panther pathways [103], and WikiPathways [92], that are
not currently represented in the PW. I have also applied the trained model to HumanCyc, Panther, and
WikiPathways to generate mappings, which are used in subsequent chapters to generate normalized

pathways. The contributions in this chapter are three-fold; I introduce:

+ an ontology curation pipeline that integrates a predictive model with manual curation
« an evaluation of the predictive model, and

+ newly predicted and curated mappings between the PW and Reactome

I describe the design and implementation of this curation pipeline, with emphasis on a supervised
neural network prediction model. The architecture of the model is described below followed by an
evaluation of the neural network model results compared to a baseline BOW model. PW curators
manually reviewed a randomly selected subset of mapping outputs to determine the precision and
recall of each model. I also discuss new mappings and relationships that are planned for future versions
of the PW, with particular emphasis on expanding the part-of hierarchy and the inclusion of regulatory
relationships through the usage of terms from the Relation Ontology.

By integrating a machine learning predictive model into the PW curation pipeline, I hope to reduce
the burden of manual curation on efforts to integrate pathway data. It is my hope that other researchers
can incorporate similar methodology into their ontology curation pipelines, thereby reducing curato-

rial labor while increasing high quality mappings between datasets and ontologies.
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Figure 4.1: Semi-automated curation pipeline for the Pathway Ontology

4.2 Predictive model design € development

The goal is to associate pathway instances from various databases to the correct class in the Pathway
Ontology. The following describes my methods as applied to the Reactome database. Specifically, I
map each Reactome pathway to a matching class in the PW if a matching class exists. In cases where
no matching class exists, a new PW class is introduced to account for the pathway; the new class is
inserted where appropriate into the PW class hierarchy.

Each class in the PW consists of its unique identifier and its descriptive information: a canonical
name, aliases (synonyms), definition, and its location in the PW subclass and part-of hierarchies. Each
Reactome pathway has similar descriptive information, along with the pathway content itself: the enti-
ties and relationships that describe the biochemical functions of the pathway. These pieces of descrip-
tive information can be used to associate pathways with PW classes. Leveraging this information along
with training data, I can generate high-quality mapping recommendations between Reactome and the
PW. This predictive model can then be inserted into the PW curation pipeline to improve the speed
and quality of curated mappings. For this task, I propose a supervised machine learning algorithm that
learns features and weights from the information provided for each PW class or Reactome pathway.

The pipeline (Figure 4.1) I propose and test consists of the following steps:

1. Extract training data from the PW and the Unified Medical Language System (UMLS) Metathe-

saurus [28]

2. Bootstrap additional training data by predicting high likelihood mappings between Reactome

pathways and PW classes
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3. Train a neural network model using all training data
4. Predict Reactome mappings to the PW using the trained model

5. Review predicted mappings manually for correctness and inclusion into the PW

[ treat the predictive task as a binary classification problem, where given a pathway and a PW class, |
predict whether the two have a high likelihood of matching. I constructed two neural network models,
one which predicts matches over the names and aliases of pathways and PW classes, and one which
predicts matches over the natural language definitions of pathways and PW classes. The distinction
is introduced because not all pathways or PW classes have natural language definitions, and neural
network models can be challenged by the presence of null fields in cases where training datasets are
small. A subsequent decision module then collects the predictive model outputs for the separate name
and definition models and combines these to form a final predicted similarity score.

Details for each step in the curation pipeline are provided in the following sections. I also provide
a description of the candidate selector module used for both negative data sampling and candidate
selection when running the predictive model. All results presented discuss pathways from Reactome

v65, released 2018, June 12.

4.2.1 Baseline bag-of-words model

A bag-of-words model is provided as a baseline model for comparison. For the BOW model, each
pathway and PW class is represented as a set of word and n-gram tokens, generated from its name,
synonyms, definition, and the names and synonyms of its parent and children classes. An idf-weighted

Jaccard index is computed between the token set of a Reactome pathway (A) and the token set of a PW
class (B) as:

S i)
w10

For each Reactome pathway, PW classes with weighted Jaccard indices above a threshold similarity

Jw (4.1)

score are selected as output. The optimal threshold was determined using a grid search over the train-



38

ing data. All results provide comparisons between the neural network-based predictive model against

this baseline model.

4.2.2 Candidate selection

The candidate selector module takes as input a pathway and outputs a ranked list of PW classes that are
potential matches. Good matches are determined by large lexical overlap in descriptive information.
[ first generate a string representation of each pathway or PW class by appending together its name,
synonyms, definition, and the names and synonyms of all its parents and children. Each pathway string
or PW class string from this corpus is then parsed to a set of word tokens and character n-gram tokens.
Each token is weighted by its inverse document frequency (idf) in the entire corpus. Tokens with higher
idf occur less frequently and may be more relevant for determining matches. The overall lexical overlap
score between a pathway and a PW class is determined by summing the idf of all overlapping tokens
between the two.

The candidate selector is used to reduce the number of necessary comparisons when predicting PW
class mappings. When the candidate selector is given a pathway as input, it first selects all PW classes
with any token overlap with the input pathway. The selector then sorts the overall lexical overlap scores
for these PW classes and returns the top 20 as candidates. Instead of performing m comparisons for
each pathway (where m is the number of PW classes), the candidate selector reduces the number of
comparisons to 20.

The candidate selector is also used to generate “hard” negatives (see section 4.2.3), which are neg-
ative training data where there is substantial lexical overlap between the pathway string and PW class
string. “Hard” negatives are selected from the candidate list while ensuring no overlap with positive

training data. Hard negatives are introduced into the training data to force greater predictive precision.

4.2.3 Training data

To train a binary classifier, both positive and negative training data are required. Prior mappings of
KEGG, NCI-PID, and the SMPDB to the PW can be used as positive labeled training data. Together,

860 mappings are provided in the PW. These mappings exist over 732 unique PW classes, out of a total
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Source No. positive No. negative
PW mappings to KEGG, NCI-PID, and SMPDB 860 7,116
GO/MeSH mappings 732 325
Bootstrapped PW/Reactome mappings 730 720

Total 2,322 8,161

Table 4.1: Training data for PW class predictive model by source

of 2,627 classes; in other words, around 28% of PW classes have existing mappings to pathways. These

mappings reference 206 unique pathways from KEGG, 76 from NCI-PID, and 557 from SMPDB.

For each PW class, negative mappings are sampled from these three pathway databases for train-
ing. Approximately two “easy” and two “hard” negatives are sampled for each PW class, where “easy”
negatives are randomly selected from the pathway database, and “hard” negatives are selected using
the candidate selector module. Care was taken to ensure that no extracted negatives overlap with any

positive training examples.

To augment these existing mappings, I also extracted mappings from the UMLS Metathesaurus
between Gene Ontology (GO) biological process terms and the Medical Subject Headings (MeSH) [28].
GO biological process classes overlap with concepts in the pathway space, and these mappings can pro-
vide reasonable distant supervision for our classifier. From UMLS, I extracted 732 mappings between

MeSH and GO.

The breakdown of all extracted training data is given in Table 4.1. Of these, 860 positive and 7,116
negative mappings are extracted from the PW and 732 positive and 325 negative mappings from the

UMLS Metathesaurus.
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Figure 4.2: Bootstrapping procedure for Pathway Ontology training data The initial training data
are derived from existing PW mappings and UMLS mappings between MeSH and GO. A simple logistic
regression model is trained on these data and used to bootstrap training samples from Reactome. The
best matches between Reactome pathways and PW classes are added to the training data set over 10
iterations to generate a final training data set.

4.2.4 Bootstrapping

To further boost training data, I extracted high probability positive matches between the PW and path-
ways from Reactome. Including training examples from Reactome adapts the predictive model to the
specifics of the Reactome database and one can expect an improvement in prediction quality. A boot-

strapping procedure (Figure 4.2) is used to iteratively train a predictive model and append its highest
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likelihood predictions to the training data [12]. I employ a simple logistic regression model using man-

ually engineered lexical similarity features. The features used are:

+ Normalized absolute value percent word token number difference
+ Word token Jaccard index

+ Character n-gram Jaccard index for n=3, 4, 5

For each bootstrapping iteration, I train a logistic regression model over the training data. I then
run this trained model over the PW and Reactome, generating a set of predicted PW classes for each
pathway in Reactome. The top and bottom 0.25% of predictions are added to the training data as
respective positive and negative training examples for the following iteration. I iteratively train the
bootstrapping module 10 times, generating 730 positive and 720 negative training samples from Re-
actome. A cursory review of the added training samples revealed good quality matches (88% correct
at iteration 10), where most of the matches can be considered “low-hanging fruit,” with pathway and
PW class names that match well based on string similarity alone. Incorrect matches have very close
semantic relationships, such as the Reactome pathway for RNA polymerase I transcription matching to

the PW class for RNA polymerase I transcription.

4.2.5 Neural networks

Two neural network models were constructed for processing pathway names and pathway definitions
respectively. I begin by describing the pathway name model.

Each pathway name is represented using pre-trained word embeddings. For each word token, I
concatenate a 100-dimensional word 2vec [104] vector and a 100-dimensional fasttext [29] vector, gener-
ating a 200-dimensional word vector. Both word 2vec and fasttext embeddings were trained on Pubmed
Central full-length journal articles. Word 2vec tends to capture the semantic context of a word and fast-
text its internal structure (prefixes, suffixes etc), so combining the two captures information about both

the meaning and appearance of a word.
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Figure 4.3: Architecture of Pathway Ontology class-instance prediction neural network model
The neural network computes similarity between a pathway definition and a PW class definition. A
bidirectional LSTM is used to encode the definition texts. This example shows the definition for Reac-
tome pathway R-HSA-109606 and PW class PW:0000104 being encoded and compared in the neural
network.

The pathway name is treated as a set of token-level embeddings; the embeddings of each word
token in the name are summed, generating a pathway name embedding: a 200-dimensional vector.
A PW class name embedding is generated from the PW class name in a similar fashion. These two
embeddings are concatenated and input into a decision network consisting of two fully connected
neuron layers. A sigmoid function processes the output of this network, producing a final similarity

score between 0 and 1, which can be threshold-ed to determine the binary class output.
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Pathway definitions consist of longer pieces of text with many internal relationships (see Figure
4.3 for examples). Instead of summing over token-level embeddings, a bidirectional long-short term
memory (LSTM) network is used to capture more semantic information [68]. The hidden layers at both
ends of the LSTM are concatenated to produce a pathway definition embedding vector. The pathway
definition embedding and PW class definition embedding vectors are then concatenated and input
into a decision network of fully connected neuron layers. Similarly, an output score between 0 and
1 is generated as output using a sigmoid function. Figure 4.3 shows the network architecture of the
definition model; the name model sums the token-level embeddings in lieu of the LSTMs.

The final training data are split into a training (90%) and development (10%) set. The models are
trained to minimize the binary cross-entropy loss with respect to the training labels. I use the develop-
ment set to optimize model training for recall, because [ am more concerned about deriving all possible

matches rather than all certain matches.

4.2.6 Combining predictions for curatorial review

The trained neural networks are used to predict mappings between Reactome and the PW. For each
pathway in Reactome, the candidate selector selects the top 20 PW classes, generating up to 20 candi-
date pairs. For each candidate pair (IV, M), where N is a pathway from Reactome and M a class from
PW, N has names Nyame = {11,712, ..., np} and M has names Mpame = {m1, mo, ..., mq}. These
names are formed into unique name pairs by taking the Cartesian product of Njame and Myame.-
Each pair of names (4, j) is fed into the name neural network model, producing a set of name similar-

ity scores:

Sname = {Sij ’ (Z,j) EIV’name X Mname} (42)

Each score s;; is the similarity between the pathway name 7 and PW class name j.
If the Reactome pathway has a definition, then the definition texts of the pathway and PW class are
fed into the definition neural network model, yielding a single similarity score Sg.. A final similarity

score is produced by combining and weighting the name and definition similarities:
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Stotal = 0.75max (Sname) + O.25Sdef (43)

The weights of max (Spame) and Sy are selected to favor name similarity because in many cases,
there is a lack thereof or non-specific definition in Reactome. More optimal weights are likely to exist,
but I do not explore them in this work due to limited resources for evaluation. PW classes with S,

above a threshold of 0.25 are output by the predictive model as recommendations.

4.2.7 Evaluation of model results

For evaluation, a 5% subset of pathways from Reactome were randomly selected, a total of 111 pathways
out of 2,222. For this subset, all output predictions from both the BOW and NN model were extracted
and presented to two curators independently for manual review. Output predictions were presented to
curators after first grouping by Reactome pathway and then sorting the PW classes within each group
by similarity score. A separate subset of 211 class recommendations produced by the NN model was
also evaluated by both curators, in order to determine inter-rater agreement.

Curators were asked to perform the following task on each selected subset: for each Reactome
pathway-PW class pair, grade the pair as y(es)/n(0)/r(elated), where y(es) indicates an exact match, n(o)
indicates an incorrect match, and r(elated) indicates that although the pair is not an exact match, the
pathway is related to the PW class (maps to parent, child, or sibling classes). Two metrics are computed
over the labeled results, precision per mapping (ppm), and recall per pathway (rpp). The ppm is defined
as the ratio of pathway-PW class pairs rated y(es) or r(elated) over all pairs rated. It is a measure of
how correct the models are for each recommendation produced. The rpp is defined as the number of
pathways for which at least one y(es) or r(elated) PW class is recommended over the total number of
pathways. It is a measure of how successful the algorithm is at making at least one successful recom-
mendation for each pathway.

For each Reactome pathway, curators also selected the correct mapping, either from among the
predicted PW class matches, or from elsewhere in the PW. These mappings are then added to the PW

for future release. In cases where a correct mapping is not predicted by our model, curators must
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Figure 4.4: Model for weighting similarity scores Similarity scores for pathway names and defini-
tions and weighted and combined to generate a final similarity score.

determine whether a new class or relation needs to be added to accommodate the Reactome pathway

in question.
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4.3 Evaluation of model outputs

The model was used to generate PW mapping recommendations for Reactome human pathways. The
BOW model yielded 4,122 mapping suggestions for 2,222 Reactome pathways. The NN model pro-
duced 10,952 suggestions for the same pathways. Approximately half of all Reactome pathways did
not receive mapping suggestions from the BOW model, whereas the NN model had much higher yield.
Table 4.2 shows example NN predictions generated for the Reactome human apoptosis pathway, R-
HSA-109581, of which there is no direct name-matched class in the PW. The predictions show that
the predictive model is able to retrieve PW classes that are similar to the Reactome pathway in both
name and content. The top predicted matches are those describing the apoptotic process, followed
by those describing related processes in immune response and cell death. Of these recommended PW
classes, the correct match is to PW:0000009, the apoptotic cell death pathway, the second ranked PW
class recommended by the predictive model. This PW class was selected by curators as the correct PW

mapping for R-HSA-109581.

Two RGD curators (GTH and MT) conducted a reproducibility review of the predictions. Table 4.3
shows the results of the reproducibility analysis. Review of 211 class recommendations showed a 0.73

agreement between two reviewers for each mapping (Cohen’s kappa for three classes (y/n/r) = 0.56).

A comparison of BOW and NN models is provided in Table 4.4. Curators reviewed 243 mapping
recommendations produced by the BOW model for 111 randomly sampled pathways, and 660 recom-
mendations produced by the NN model for the same 111 pathways. Although the BOW model had
higher precision than the NN model (BOW: ppm = 0.49; NN: ppm = 0.39), it also had correspondingly
lower recall (BOW: rpp = 0.42; NN: rpp = 0.78). Overall, the NN model provided more opportunities
for selecting an appropriate mapping. Perhaps combining the outputs of both models could yield better

coverage with higher precision.

A number of pathways did not receive relevant suggestions via either model. Reactome, in par-
ticular, contains very specialized regulatory pathway representations that do not currently have cor-
responding classes in the PW. Some portions of the PW class hierarchy, such as those describing the

immune system and cellular signaling, may require further development. For example, several Reac-
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PW ID PW class name Beginning of definition text
1 | PW_0000104 | intrinsic apoptotic pathway The apoptotic pathway involving organelles,
primarily the mitochon...
2 | PW_0000009 | apoptotic cell death pathway | Apoptosisis a programmed cell death pathway
that is characterized by...
3 | PW_0000106 | extrinsic apoptotic pathway The apoptotic pathway involving the death re-
ceptors mediated route of...
4 | PW_0000718 | p53 signaling pathway p53 transcription factor is a tumor suppressor
frequently mutated in...
5 | PW_0000124 | cellular detoxification pathway | A pathway triggered by exogenous or endoge-
nous elements, compounds...
6 | PW_0000823 | humoral immunity pathway Humoral immunity is mediated by antibodies
secreted by the B cell...
7 | PW_0000824 | cell-mediated immunity path- | Cell-mediated immune response pathways are
way carried out by T cell...
8 | PW_0000499 | nuclear factor kappa B signal- | NF-kB signaling plays an essential role in the
ing pathway mammalian immune...
9 | PW_0000680 | altered extrinsic apoptotic | <no definition>
pathway
10 | PW_0000233 | tumor necrosis factor medi- | Tumor necrosis factor (Tnf) signaling plays

ated signaling pathway

pivotal roles in immunity...

Table 4.2: Top ranked predicted mappings for Reactome pathway R-HSA-109581, “Apoptosis.”

tome pathways dealing with interferon-mediated immunity, such as R-HSA-1834941 (“STING me-

diated induction of host immune responses”) or R-HSA-918233 (“TRAF3-dependent IRF activation

pathway”) do not have corresponding pathway classes in the PW. The PW contains classes for type



48

Rater #1
Rater #2 | yles) r(elated) n(o) | Totals
yles) 24 8 0 | 32
r(elated) 0 69 4 73
n(o) 0 46 60 106
Totals 24 123 64 211

Table 4.3: Inter-rater agreement for mapping labeling task

Model | Precision (ppm) Recall (rpp)
BOW | 0.49 0.42
NN 0.39 0.78

Table 4.4: Comparison of BOW and NN model predictions

I (PW:0000895) and type II (PW:0000896) interferon signaling pathways, and has several subclasses
describing signaling pathways related to innate immune response (PW:0000819), but none of these ex-
isting classes are suitable for describing the functions represented by the example Reactome pathways.
The PW may need to add either more granular pathway classes, or introduce properties such as regu-
lates or related_to to annotate the relationships described above and found throughout pathways from

Reactome.

The above methods can also be applied to other pathway databases. I ran the trained predictive
model over pathways from HumanCyc, Panther, and WikiPathways, generating predicted mappings to
the PW. The NN model produced 1199 recommendations for 217 HumanCyc pathways, 1105 recom-
mendations for 242 Panther pathways, and 1652 recommendations for 351 WikiPathways pathways.
These recommendations have yet to be reviewed by curators, but can provide a helpful starting point
when mapping pathways from these other databases to the PW. New mappings between Reactome and
PW classes can be used as an additional source of training data for improving the predictive model. As

the quantity of high-quality training data increases, the predictive model should improve, helping to
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further reduce the curatorial burden of mapping other pathway databases to the PW.

4.4 Discussion of results

I have described efforts to incorporate a predictive classifier into the PW curation pipeline for gen-
erating mappings between pathway databases and the PW. The above results demonstrate that the
model is able to recommend relevant PW class mappings for pathways. By automatically inferring
high-likelihood mappings between pathways and PW classes, the burden on curators is reduced.

Mapping pathways to PW classes contributed to the overall goal of pathway data organization and
integration. Organizing pathways from different databases under a single unifying ontology allows me
to identify how pathway data from different databases relate to one another. In Chapter 7, I use the
mappings generated in this chapter to select clusters of similar pathways for merging. Unlike statisti-
cal approaches such as PathCards [25] or ReCiPa [142], pathways for merging are identified based on
semantic similarity, calculated as their relatedness in the PW hierarchy. By merging pathways that are
semantically similar, the resulting normalized pathways retain better interpretability due to the class
hierarchy and relationships provided in the PW.

There are many challenges to pathway data integration, such as 1) the usage of different pathway
organizational schemes by different databases, 2) incomplete or inconsistent description of pathway-
subpathway relationships, as well as 3) differences in identifier and semantic choices in representing
pathway data among the various source databases [25, 142, 24]. In Chapter 5, I discuss some of these
challenges in detail and categorize the classes of content and representational differences that occur
among several popular pathway databases. Using a unifying ontology for organization at the path-
way level will help to ameliorate the first two of these challenges. To address the third, I demonstrate
methods for entity disambiguation and graph alignment capable of aligning pathways even in the pres-
ence of identifier or semantic differences. In Chapter 6, [ discuss these alignment methods and explore
lexical and topological techniques for pathway alignment. These pathway alignment techniques can
address many of the described representational differences when merging pathways. Examples are
given showing the success and failures of alignment models and techniques.

The pathway-PW mapping prediction algorithm described in this chapter used pathway metadata,
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name and definition information (and to some extent, the names of parent and child pathways and
PW classes, through the candidate selector), to match pathways with PW classes. One limitation of the
current algorithm is that it does not take advantage of the pathway content itself: the graph of enti-
ties and relationships that describe biological function. These pathway member entities were left out
of the current mapping algorithm due to concern about increasing the size of the predictive model.
Additionally, it is unclear that enough information is available in the PW class name and definition to
best make use of the pathway content when mapping. One way to incorporate such information into
the mapping model would be to apply named entity recognition to the text of all PW class definitions,
and then count the number of entities in each pathway that are found in different PW class defini-
tions. This count could then be used as a feature during class prediction. Lastly, because the PW was
developed following the creation of many pathway databases, its developers incorporated elements of
existing pathway databases into its ontological structure. Pathways that were first mapped to the PW,
such as those from KEGG and SMPDB, have an out-sized role in defining its class structure. The PW

may therefore be biased in its representation of all biological pathways.

Pathway member entity information is subsequently used to generate features for the pathway
alignment algorithm. In Chapter 6 and Chapter 7, I discuss how the results of the PW mapping model
are combined with the pathway alignment algorithm to generate normalized pathways. For the align-
ment algorithm, entities between two pathway instances are aligned based on annotation, lexical, and

topological features associated with each entity.

Pathway databases are all different, each with its own strengths and limitations. What works for Re-
actome may not apply directly to all other pathway databases. Using the predictive model trained on the
training data and bootstrapped Reactome mappings, I generated recommendations for the HumanCyc,
Panther, and WikiPathways databases. For HumanCyc, 1199 recommendations were generated for 217
pathways. For Panther, 1105 recommendations were generated over 242 pathways. For WikiPathways,
1652 recommendations were generated for 351 pathways. A cursory review of these results suggests
that relevant PW classes are being retrieved for pathways in these other databases even though the
training data was only bootstrapped over Reactome pathways. Because these other databases empha-

size different aspects of pathway data, they may benefit from alternate curatorial choices for select-
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ing appropriate mappings and for handling pathways without matching PW classes. For example, the
BioCyc databases predominately contain metabolic pathways, and the predictive model could be con-
strained to only suggest PW class matches that describe metabolic pathways. These decisions will need
to be explored in a further study of generalizability.

For the remainder of this dissertation, existing mappings in the PW to KEGG, NCI-PID, and SM-
PDB as well as preliminary mapping recommendations made by the predictive model for HumanCyc,
Panther, Reactome, and WikiPathways are used to identify semantically similar clusters of pathways
for alignment and merging.

Pathway representations are critical for modeling and understanding the physiological processes
underlying both normal and disease health states, but a lack of understanding of the relationships be-
tween pathways of different provenance undermine their collective usability. Combining the data from
different pathway databases using a unifying ontology addresses many of these issues. I demonstrated
in this chapter the design, implementation and evaluation of a computationally-assisted pipeline for
mapping pathway data to classes in the Pathway Ontology. An assessment of predictions made by the
classification model show promise, highlighting a number of pathway instance to PW class mappings
that were positively assessed by curators. Preliminary mappings are used to cluster pathways for align-

ment in the following chapters.
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Chapter 5

A TYPOLOGY OF DIFFERENCES FOR PATHWAY KNOWLEDGE
REPRESENTATION

The same biological pathway can be represented in different ways by different databases. These dis-
crepancies can be due to the differing goals of pathway editors as well as natural variation in pathway
language expressivity and subjective curator choices. Even when two pathways effectively represent
the same biological processes, they may still exhibit variability at the entity and relationship level based
on choices made by individual curators or databases. Aligning pathways in light of this variability is
challenging. Differences in entity and property naming, relation topology, and pathway scope all af-
fect how entity alignments are generated. A deeper understanding of the representational differences
among different pathway databases is necessary to guide pathway alignment. In this chapter, [ perform
a review of pathway databases, cataloguing the types of content and representational differences ob-
served between resources. I also propose computational methods for identifying and addressing these

discrepancies when aligning pathways.

Classes of pathway differences were identified through manual review of pathways from multiple
pathway databases. I emphasized human pathways since these contain data most relevant to disease
modeling and pathway analysis. I also make an effort to compare all suitable databases that are popular,
up-to-date, open-access, and present data in a standard format. These specifics of these criteria are

described in section 5.2.

Databases such as Reactome, Panther, SMPDB, WikiPathways, as well as available versions of KEGG,
HumanCyc, and NCI-PID were analyzed. These databases contain pathways describing metabolic, sig-
naling, and gene regulatory processes. Many biological functions were represented in most or several
of these databases, and these overlapping representations can be used to evaluate how the same path-

way can be authored and edited in a variety of ways.
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I evaluated similar pathways available in these pathway databases to determine classes of content
and representational differences. Below, I first describe the selection process for pathway databases.
I then describe classes of annotation and topological differences that are problematic for the com-
putational assessment of node and edge similarity for biological networks generated using different
pathway databases. For each class of differences, I give examples and describe how mismatches may
provide challenges to pathway data integration. For each type of mismatch, I offer potential computa-
tional solutions for detection and alignment.

This chapter is adapted from the 2016 conference paper:

Wang L.L., Gennari J.H., Abernethy N.F. An analysis of differences in biological pathway re-
sources. Proceedings of the 2016 Joint International Conference on Biological Ontology and

BioCreative.

All analysis has been updated to best reflect the current state of biological pathway databases.

5.1 Background € Motivation

Progress has been made towards harmonizing pathway representations, but inconsistencies between
different pathway databases are still common. Although significant overlap exists between the content
of different pathway databases, the representational choices made by different databases within this
overlap are highly variable. Altman et al compared the MetaCyc and KEGG databases on their breadth
of compound, reaction, and pathway representations, and found that MetaCyc is richer in reaction
and pathway representations and KEGG in compound representations [14]. A review performed by
Chowdhury et al compared human cell signaling pathway resources, and noted “pathway data het-
erogeneity” and annotation inconsistencies as major challenges for existing databases [37]. Stobbe et
al described the occurrence of many representational differences between several popular metabolic
pathway databases [129, 130] and proposed methods to indicate such disparities to resource editors
[131]. The authors noted that many resources use very different terms for expressing the same ideas,

and that such differences in expression preclude data integration [129, 130].
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The above studies focus on metabolic or signaling pathways, and describe some of the differences
between specific pathway resources. They emphasize differences in entity membership between path-
ways and differing counts of unique entities and pathways among databases. However, they do not
focus on the challenges imposed by these differences on cross-resource entity and relationship align-
ment. These studies also do not systematically define the representational mismatches that occur be-
tween most pathway databases and do not offer computational solutions for merging pathway repre-

sentations.

Curators are also continuously improving pathway databases, not only through the addition of new
material, but through the removal of problematic content, which can occur as a consequence of audit-
ing by third-party academic researchers [85, 128, 59, 138]. Databases have responded by re-engineering
the underlying ontology [17, 43], clarifying semantic representation [17, 57, 115, 61, 23], creating more
detailed style guides for curators [31, 9, 11], or exploring computational auditing as part of the curato-
rial process [33, 158]. However, because many databases rely on manual curation, the addition of new
relationships or the editing of existing relationships largely falls back to a set of individuals, for whom
time is limited and expensive. The systematic identification of pathway data inconsistencies is useful
for quality assurance, auditing, and automated review. Improving the data quality and interoperability
of pathway resources through content auditing benefits the bioinformatics research community, who

use these resources for a variety of analyses.

To align pathway data, it is important to understand the types of differences one may encounter.
By creating a typology of pathway differences, I aim to understand and improve the computational
alignment of pathway modules across different databases. Stobbe et al have provided an excellent start
in this direction, citing numerous examples and descriptions of differences observed among metabolic
pathway resources [130, 129]. Here, I extend this work, aiming at a comprehensive typology of mis-
matches among pathway resources. In particular, I describe and give examples of mismatches in (a)
annotation, (b) existence, (c) reaction semantics, and (d) granularity. My goal is to enable understand-
ing and discussion of database differences through mismatch categorization. This should in turn allow

for improved consensus formation when integrating data from multiple pathway databases.
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5.2 Selecting pathway databases for analysis

Pathway databases were collected from Pathguide [21] and PubMed search results. The following in-

clusion criteria were used to guide the selection of pathway databases for analysis:

1. The database contains pathways for Homo sapiens.

2. The database either a) contains representations of metabolic pathways, signaling pathways, and/or
gene regulatory pathways, or b) consists of pathway diagrams that have been translated into path-

way representations.

3. The database is free for all users or available under academic licensing. If the updated resource

is not available, a previous, publicly-available version is considered when possible.

4. The database makes available pathways in a standardized format such as BioPAX, SBML, GPML,
or PSI-MI.

5. The database is either a) actively updated (official release within the past three years), or b) has

not been actively updated but is still widely used for pathway analysis by researchers.

Criteria 1 restricts resources to those describing human biological pathways, which fall within the
scope of this dissertation. Criteria 2 describes the types of pathways in which I am interested, those
that are available for computational modeling. It requires that computational pathway representations
be available for analysis, in addition to diagrams. Criteria 3 satisfies my and other researchers’ financial
and accessibility constraints. The database must be available openly to enable long-term access. Since
[ am trying to describe and quantify the differences between databases in the context of standardized
formats, criteria 4 allows me to identify databases providing standardized data exports. Many well-
known and popular pathway databases are available in at least one major pathway standard, either
provided by the database itself, or translated by a third-party or aggregator pathway database. Lastly,
criteria 5 restricts resources to those that are still active and up-to-date, or those that are firmly es-
tablished and entrenched in the pathway domain. These resources contain the most relevant data and

must be included in this analysis.
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Figure 5.1: Distribution of entity counts per pathway in each database. The x-axis shows the number
of entities, and the y-axis the number of pathways. Although most pathways have less than 100 entities,
many pathways exist between the 100-200 entity range. Some databases, like PID and SMPDB, have
larger pathways on average.
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Database Version Date No. pathways URL

HumanCyc 20.5 Dec 2016 242 http://humancyc.org/

KEGG — Jul2011 122 http://www.genome. jp/kegg/

NCI PID — Jul 2015 745 https://pid.nci.nih.gov/

Panther 3.6.1 Jan 2018 324 http://www.pantherdb.org/pathway/
Reactome 65 Jun 2018 2222 http://reactome.org/

SMPDB 2.0 Jun 2018 724 http://smpdb.ca/

WikiPathways — Jun 2018 452 http://wikipathways.org/

Table 5.1: Pathway databases used in analysis

From PathGuide, 79 human pathway databases were retrieved in November 2016 [10]. Of these,
75 satisfied the second criteria, containing pathway representations in addition to diagrams. Of all 79
databases, 61 were free to access, 9 were available under academic licensing, 6 were paid, and 3 were
defunct. A small percentage of these databases provided data in a pathway standard, with only 21 ex-
porting data in BioPAX, SBML, or PSI-M]I, the standards tracked by PathGuide. Several of these path-
way databases were also aggregator databases, those that derive data from other primary databases but
which do not create novel pathways. Among these were ConsensusPathDB, Integrating Network Ob-
jects with Hierarchies (INOH), and Integrated Pathway Resources, Analysis and Visualization System
(iPAVs), which were excluded from analysis. Several of the remaining databases had not been updated
in the previous three years or were otherwise unmaintained. Some were also found to be defunct when
navigating to the host site. Lastly, although these databases were all listed as pathway databases, some
contain only protein-protein interactions, which fall outside the scope of this analysis.

An additional 16 resources were found through PubMed search. These were also reviewed ac-
cording to the inclusion criteria. A final set of 7 databases were analyzed. Details of these databases
are given in Table 5.1. The distribution of pathway sizes within each database is given in Figure 5.1.

No new pathway databases created after 2016 were included in this analysis. Although there have been
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extensive updates to existing pathway databases during the last few years, no new pathway databases
published during this time were deemed suitable for inclusion in analysis.

Corresponding versions of each database were downloaded. The last updated versions of KEGG
and NCI-PID were downloaded from Pathway Commons. The last freely available version of Human-
Cyc from 2016 is used. All pathway databases were retrieved in BioPAX format except for WikiPath-

ways, which was downloaded in GPML format.
5.3 Identifying overlapping pathways

To construct this typology, I reviewed several sets of pathways for which multiple representations ex-
isted in the included databases. Comparable pathways were selected using pathway name and synonym
overlap. Entity membership overlap was also computed, although it was not used to select pathways
for comparison. Pathway name and entity membership have been used in previous studies to identify
analogous pathways between databases, and pathway name is considered to have high precision but
low recall for identifying analogous pathways when used alone [46]. I elected to use strict name or
synonym overlap to ensure that the selected pathways described semantically equivalent processes.
The numbers of unique pathways contained in each database are given in Table 5.1. From these
pathways, 152 pathway names were identified in at least two databases, and 34 pathway names in at
least three databases. Figure 5.2 shows clusters of overlapping pathway names among the databases.
Of these overlapping pathways, a subset were sampled for manual review and alignment of entities.
Comparison diagrams for the pentose phosphate pathway (also “pentose shunt”) and glycolysis pathway
are shown in Figures 5.4 and 5.6 respectively. The results of manual alignment were used to derive the

following pathway mismatch typology.
5.4 Typology of differences

To provide examples of mismatches, I retrieved pathway and reaction representations from Human-
Cyc, KEGG, Panther, NCI PID, Reactome, SMPDB, and WikiPathways. Figure 5.3 shows the canonical
pentose shunt pathway used as a reference for manual alignment. Primary reacting species are green,

other small molecules are yellow, and modifying enzymes are shown next to blue circles representing
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Figure 5.2: Pathway names that are shared by pathways from three or more databases. Displayed name
is a selected canonical name; some pathways share synonyms. Databases are H=HumanCyc, K=KEGG,
Pa=Panther, PI=PID, R=Reactome, S=SMPDB, and W=WikiPathways.



Figure 5.3: A schematic of the basic reactions
in the pentose shunt pathway. The pathway is
made up of 8 primary reactions. The resulting
species F6P and G3P can go on to participate
in the glycolysis pathway.

Abbreviations:

G6P = glucose-6-phosphate

G6PD = glucose-6-phosphate dehydrogenase
6PGL = 6-phosphonoglucono-d-lactone
PGLS = 6-phosphogluconolactonase

PDG = 6-phospho-D-gluconate

PGD = 6-phosphogluconate dehydrogenase
RUS5P = ribulose 5-phosphate

RPIA = ribose-5-phosphate isomerase

RPE = ribulose 5-Phosphate 3-Epimerase
R5P = ribose 5-phosphate

XY5P = xylulose 5-phosphate

TKT = transketolase

G3P = glyceraldehyde 3-phosphate

SH7P = sedoheptulose 7-phosphate
TALDO = transaldolase

F6P = fructose 6-phosphate

E4P = erythrose 4-phosphate
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reactions. Arrows show the expected direction of reactions; some reactions are reversible. Figure 5.4

shows a comparison of pentose shunt pathways from six different pathway databases. The pathways

compared are HumanCyc:PENTOSE-P-PWY, KEGG:hsa00030, Panther:P02762, Reactome:R-HSA-

71336, SMP00031, and WikiPathways WP134, all variants of the pentose phosphate pathway. In the

figure, missing entities and relations are displayed with gray dashed lines, extraneous entities and rela-

tions with gray-filled colored circles. Entities outlined in gray are provided by the source database, but

no cross-reference identifier is available. Light blue circles over gray lines indicate proteins without

cross-reference identifiers. The directions of arrows indicate my best interpretation of the directions
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Figure 5.4: Comparison of pentose shunt pathway from six databases
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ADP

Figure 5.5: Core reactions of glycolysis.
The pathway consists of 10 reactions. — ;
Y HK
Abbreviations:
HK = hexokinase
G6P = glucose 6-phosphate
PGI = phosphoglucose isomerase
F6P = fructose 6-phosphate
PFK = phosphofructokinase
F1,6BP = fructose 1,6-bisphosphate
ALDO = fructose-bisphosphate aldolase A ALDO
GADP = glyceraldehyde 3-phosphate
DHAP = dihydroxyacetone phosphate
TPI = triosephosphate isomerase

D) GAPDH
GAPDH = glyceraldehyde phosphate

dehydrogenase

1,3BPG = 1,3-bisphosphoglycerate & PGK

PGK = phosphoglycerate kinase
3PG = 3-phosphoglycerate
PGM = phosphoglycerate mutase D PGM
2PG = 2-phosphoglycerate
ENO = enolase

PEP = phosphoenolpyruvate
PK = pyruvate kinase

of reactions given in each database.

Similarly, Figure 5.5 shows the canonical glycolysis pathway used to anchor manual alignments.
Figure 5.6 shows a comparison of five glycolysis pathways: HumanCyc:PWY66-400, KEGG:hsa00010,
Panther:P00024, Reactome:R-HSA-70171, and SMP00040. Figure 5.7 shows several different repre-
sentations of a single step of the glycolysis pathway: the conversion reaction [phosphoenolpyruvate
+ ADP — pyruvate + ATP] modulated by the enzyme pyruvate kinase. In this single, well-studied
biochemical reaction, there are a variety of important mismatches, of which a subset are described

below.
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541 Annotation

Several types of annotation problems can arise:

1. A database fails to include annotations to external cross-reference identifiers.
2. Cross-reference identifiers do not agree with the entity annotated.

3. Cross-reference identifiers chosen by different databases do not match.

Cross-reference identifiers help to identify physical entities by anchoring them to uniform resource
identifiers (URIs) in reference databases. For example, proteins are commonly cross-referenced to
UniProt or Entrez identifiers, and molecules to ChEBI or PubChem identifiers.

The first type of annotation issue is exemplified in Figure 5.4 and 5.6 by pathways from Panther. In
both example pathways, numerous entities (proteins and molecules) are missing annotations to cross-
reference identifiers. In these cases, alignment of entities to the anchoring pathways or to other path-
ways can only be completed using entity names. Several other proteins, such as PGD in HumanCyc
pentose shunt and HK in Reactome glycolysis are also missing appropriate protein identifiers. In Fig-
ure 5.7, the KEGG molecule PEP is missing an identifier to ChEBI, and is therefore difficult to compare
to its counterparts in the four other databases.

The second issue arises when a cross-reference identifier references an entity that does not match
the annotated entity. Egregious cases are usually due to annotation error. In most cases of this type
of discrepency, an annotation is made not to an incorrect entity but to a related entity. For example,
the entity phosphoenolpyruvate is named “phosphoenolpyruvate” in HumanCyc but annotated to a
conjugate acid or base such as phosphonatoenolpyruvate (ChEBI:58702).

This leads into the third issue, when pathway databases refer to the same entity with different
identifiers or different names. The display names for entities tend to differ between databases, and
cross-reference identifiers are useful for determining equivalences in cases where names are different.
Figure 5.7 shows that databases tend to be highly variable with both name and cross-reference iden-
tifier choices. Although the majority of resources use the entity name phosphoenolpyruvate, or PEP,

SMPDB, uses phosphoenolpyruvic acid. The phosphoenolpyruvate/phosphoenolpyruvic acid entity is
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annotated to three different ChEBI identifiers by the five resources, ChEBI:18021, ChEBI:58702, and
ChEBI:44897, named “phosphoenolpyruvate,” “phosphonatoenolpyruvate,” and “phosphoenolpyruvic
acid” in ChEBI respectively. Most resources use pyruvate, or PYR as the entity name, but SMPDB uses
pyruvic acid. This pyruvate entity is annotated with two different identifiers among the databases:
ChEBI:15361 and ChEBI:32816, named “pyruvate” and “pyruvic acid” respectively. These groups of
ChEBI entities may be related to one another as conjugate acids and bases, but the use of different
names and cross-reference identifiers by different pathway databases makes it difficult to easily equate
and align entities between these pathways. Determining conjugate acid/base relationships requires an
additional query to ChEBI. Similar issues of cross-reference identifier choice exist for the other entities
in this example reaction, as well as throughout the example and other pathways.

To resolve these annotation mismatches, either a top-down or bottom-up approach can be taken.
Databases can attempt to enforce consistent labeling of entities across resources, or I can infer the
alignment of similar but differently annotated entities across databases. The former strategy has been
attempted by standard recommendations [4], but has been limited in its ability to resolve these is-
sues. In this case, I can infer similarity by treating ChEBI identifiers that refer to conjugate acid/base
pairs as synonyms. A semantic similarity measure can take into account the distance between two
cross-reference identifiers when aligning entities between pathways. In cases where entities are miss-
ing cross-referenced identifiers, string names and other features such as entity relationships and local
network topology can be used to align entities between databases. Both of these techniques are incor-

porated into the pathway alignment model discussed in Chapter 6.

5.4.2 Existence

Existence refers to missing or extraneous physical entities, reactions, relationships, or information,
e.g., entities that participate in a reaction or reactions that are members of a pathway in one database
but not another, or a connection between two reactions that occurs in one database but not another.
In Figure 5.4, the protons (H) shown in gray are examples of extraneous entities, those that are not
included in the canonical pathway definition. HumanCyc, KEGG, Panther, and Reactome exhibit extra

entities. On the other hand, WikiPathways does not include small molecules such as NADP*, NADPH,
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H50, or COy, so these are missing from its pathway representation.

Missing relationships can also be seen in the Panther pathway example, where relationships be-
tween R5P and G3P, XY5P and SH7P, G3P and F6P, and XY5P and F6P are absent. Similar existence
issues are seen in glycolysis pathways in Figure 5.6, where HumanCyc includes extraneous reactions
involving the same participants as the canonical glycolysis pathway, but also fails to include the con-
version of glucose to G6P as a step in its pathway. SMPDB is also missing reaction 5 from its glycolysis
pathway.

In both figures, I have left out other extraneous reactions due to practicality. I have only included
extraneous reactions that involve the same primary species as the canonical reactions. Other extrane-
ous reactions usually involve some member of the canonical pathway participants, but may not describe
a crucial step to the overall represented process.

As for the inclusion of protons in many reactions in both the pentose shunt and glycolysis path-
ways, the HT ion is included in order to balance reaction charge. According to BioPAX3 documentation
however, reaction participants should be neutral and ions such as H" and Mg?" are not recommended
for inclusion [4]. Additionally, the inclusion or exclusion of charge-balancing ions tends to be incon-
sistent even within a single database. For example, HumanCyc includes a proton in reactions 1 and 2
of the pentose phosphate pathway, but not in reaction 3; KEGG includes a proton in reactions 1 and 3,
but not reaction 2, etc. Since it seems difficult to maintain consistency even within a single resource,
eliminating charge-balancing ions altogether would be a suitable simplifying maneuver when aligning
and merging pathways.

Other potential existence mismatches can occur if one database lacks or is missing relevant infor-
mation about a relationship between two entities, or one database specifically negates the existence of
arelationship asserted in another resource. In these cases, databases can be prioritized during merging
to determine the appropriate alignment result.

Existence mismatches can be resolved by either taking the most common representation between
many resources (democratic) or by integrating all possible representations (exhaustive). Although an
exhaustive consensus method is unlikely to leave out information, it may however produce a large and

unwieldy alignment. Instead, a parsimonious representation including all canonical reactions relevant
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to a pathway may be more ideal for pathway analysis applications.

5.4.3 Reaction semantics

Many differences in reaction representation have been described in Stobbe et al, such as using the terms
left and right, product and substrate, and input and output to describe participants in reactions [130].
In BioPAX, the properties conversionDirection, stepDirection, left, and right are used to indicate reaction
direction, as well as the identities of reactants and products [4]. In Figure 5.7, KEGG, Panther, and
Reactome label phosphoenolpyruvate as left and pyruvate as right, with a reaction direction of left-
to-right. However, in HumanCyc and SMPDB, phosphoenolpyruvate is labeled right and pyruvate left
and the reaction direction is given as right-to-left. Upon investigation, HumanCyc reports that this
choice is dictated by the Enzyme Commission (EC) system [6], a recommendation of the BioPAX3
specifications [4]. However, when studying the entire pathway, inconsistencies again arise, as some

reactions follow EC directions and others do not.

Resolving this type of semantic mismatch between resources requires knowledge about the or-
dering of reactions, which can be derived from pathway design, or when reactions are taken out of
context, may depend on chemical kinetics and the reacting environment. For well-studied pathways, a
consensus ordering usually exists. When participant left and right labels differ between resources and
ordering is unclear, the BioPAX pathwayOrder object (designed to relay reaction topology) can some-
times be used along with reaction direction to infer the correct reaction sequence. Identifying the
correct reaction direction is crucial for proper pathway alignment, since small changes in direction
can drastically alter the topology of a pathway. In Chapter 6, I compute global graph alignments of
pathways to infer additional entity mappings based on similar topology; however, this technique was
negatively impacted by reversed reaction directions. To ameliorate, I ignored reaction direction when
performing topology-based pathway alignment. Ideally, however, one could make use of the direction

information when aligning pathways.
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Figure 5.8: The oxidative decarboxylation of isocitrate can be represented as a two-step process with
an oxalosuccinate intermediary (left) and as a one-step process (right).

544 Granularity

Mismatches of granularity occur when databases represent the same entity or process using different
levels of detail. One example is complex naming. Many reaction enzymes are complexes made up of
multiple protein subunits. A reaction may be annotated with a protein modifier, when in actuality, it
is catalyzed by a complex: a protein dimer, trimer etc. In Figure 5.7, Reactome makes this distinction
by annotating to the “pyruvate kinase tetramer,” a protein complex. Reactome annotates the complex
components to UniProt identifiers P14618-1 and P14618-2, isoforms of the pyruvate kinase protein.
Due to the lack of standardized complex naming, however, we cannot easily align complexes and pro-

teins between resources.

Another type of granularity mismatch occurs at the reaction level. For example, one resource may
choose to represent the elementary steps of a reaction, including intermediate chemical species. A
single reaction in one resource may be represented as several in another, with the same ultimate inputs
and outputs. For example, the oxidative decarboxylation of isocitrate is a two step process, modified by

the enzyme isocitrate dehydrogenase, producing a-ketoglutarate from isocitrate via an oxalosuccinate



70

intermediate. The reaction can be represented both with and without the intermediate species, as in
Figure 5.8. In these cases, we can study the ultimate inputs and outputs of ordered reaction sequences

to determine the appropriate reaction alignment.

5.5 Discussion of typology

The complexity of pathway content is a barrier to data integration, but as shown here, content and
representational differences between databases pose perhaps an even larger challenge. Standards like
BioPAX help clarify some differences between databases, but they do not solve all issues of inter-
operability. Aligning pathways among databases involve identifying differences between databases,
and resolving some of these differences using the recommendations described above. Existing cross-
reference identifiers and string names can be used to align a sizable number of entities between databases.
However, annotation features alone are insufficient for matching a majority of entities between re-
sources. Knowledge of relationships, reaction semantics, granularity, and more about these databases
is necessary to create and evaluate potential alignments.

To reduce redundancy and errors when merging information from different pathway databases,
entities and other assertions must be correctly aligned between databases. Entity alignment is a nec-
essary first step before clarifying alignments between higher-order concepts such as complexes, re-
actions, and interactions. Although mismatches of annotation and existence are the most frequent
and easy to observe, other issues such as those of semantics and granularity must also be addressed
when aligning pathways. By incorporating features such as the relationships between entities and graph
properties such as degree and bipartite connectivity, a better alignment can be achieved. In Chapter 6,
I discuss an alignment algorithm that incorporates some of the observations described in this typology
of differences.

To align and integrate pathway knowledge across resources, I develop strategies for resolving these
different classes of mismatches. Some mismatches, such as those of annotation, can largely be resolved
using the existing data. Other issues of semantics, such as differences in how standard languages are
used to express the same knowledge, pose a bigger challenge. Database editors should be allowed to

make different choices in knowledge representation. However, this flexibility does not necessarily have
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to come with the cost of increased error or decreased interoperability. A better understanding of how
specific mismatches occur will provide a roadmap for databases to work toward interoperable data

and representations.
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Chapter 6

SEMANTICALLY-DRIVEN PATHWAY ALIGNMENT

Pathway databases provide useful structured knowledge for bioinformaticists and systems biologists,
who use pathways to assist in the analysis of gene expression data, build models of physiological pro-
cesses, and explore the connections between therapeutics and disease. Researchers choose from a large
number of pathway databases and representations for pathway analysis. As discussed in prior chap-
ters, the abundance of choice can lead to variable results, since different databases offer redundant and

sometimes conflicting accounts of the same pathway.

Results of secondary analysis using pathway databases change depending on the database chosen
[58]. Khatri et al point to annotation inaccuracies in pathway databases as a challenge to pathway
analysis [87]. In a more recent publication by Ballouz et al, some biases in the gene set enrichment
analysis (GSEA) algorithm are attributed to overlaps between the gene sets used for analysis, where the

gene sets can be derived from pathways [22].

Many applications of pathway resources naively combine pathway data from multiple databases.
For example, MSigDB, used by many researchers as a source of gene sets for GSEA, includes gene
sets derived from KEGG, PID, and Reactome [99]. Another resource, ConsensusPathDB, combines
the pathway interaction networks of pathways from several dozen pathway resources [81]). In Con-
sensusPathDB, cross-reference identifiers are used to identify and merge equivalent entities between
different pathway graphs. However, due to incomplete annotation of pathway entities and representa-
tional mismatches between similar pathways (as shown in the previous chapter), substantial entity-level
redundancy can remain in the combined interaction network.

Both redundancies and conflicts between semantically similar pathways can undermine the out-
put produced by pathway analysis tools. I use redundancy to refer to semantic redundancy, which

[ define here as occurring when two pathways represent the same (or highly similar) biological pro-
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cess. Because they describe the same process, redundant pathways can have a high amount of entity
overlap. Statistical methods for pathway merging such as ReCiPa or PathCards take advantage of this
feature, combining pathways with high entity overlap into superpathways [142, 25]. However, some
pathways share entity membership and content because the same protein or molecule can be involved
in many biological processes. It is therefore important to take pathway semantics into account when

determining redundancy.

Instead of using pathways as they are, I believe that individual pathways from different databases
should be pre-organized based on semantic similarity (through Pathway Ontology classification), and
merged based on user needs to generate normalized pathways for secondary use. Using the methods
described in Chapter 4, pathways from seven different databases are organized based on textual and
content attributes. Proposed PW class mappings are used to determine pathways for alignment and
merging. In this chapter, I discuss methods for pathway alignment, and demonstrate how alignment
algorithms can be adapted to align pathway data. In addition to cross-reference identifiers, I incor-
porate lexical attributes and graph topology in pathway alignment. In the following chapter, Chapter
7, I discuss how this alignment algorithm is applied to clusters of similar pathways to generate a nor-
malized pathway dataset. The derived gene sets from these normalized pathways are subsequently

evaluated against baseline gene sets in enrichment analysis.

[ aim to provide a better method for pathway alignment, taking advantage of not only cross-reference
identifiers for identifying equivalent entities, but also the lexical and structural features of the entities
and pathway graph. Using identifiers along with these other features, I can probabilistically identify
matching entities between two pathways. In this chapter, using the typology of differences from Chap-
ter 5 asa guide, I describe how I adapt and tailor entity and graph alignment algorithms for the purposes
of pathway alignment. [ demonstrate how this algorithm can be applied to similar pathways from dif-
ferent databases to generate an entity-level alignment. I also provide some example output alignments

generated by the algorithm and a brief assessment of its effectiveness.

Parts of this chapter pertaining to the review of network alignment methods and assessing entity

overlap between pathways are adapted from the 2017 conference paper:
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Wang L.L., Gennari J.H. Similarity metrics for determining overlap among biological pathways.

Proceedings of the 2017 International Conference on Biomedical Ontology.

6.1 Review of alignment methods for biological networks

Given the number and uniqueness of pathway databases, inter-resource merging is a challenge. To
successfully align and integrate the content of multiple knowledge bases, I have evaluated variabil-
ity in content correctness, standards usage, knowledge representation choices, and coverage among
databases. Pathway standards such as BioPAX, SBML, GPML and PSI-MI [43, 73, 140, 67] assist in
the interchange of pathway data, but even data available in the same standard still retain differences
in content and representation. Nonetheless, my goal is to identify and align similar pathways, so that
users can benefit from a semantic union across multiple pathway databases.

Before discussing the pathway alignment algorithm used in this chapter, I first describe other graph
alignment algorithms and how they have been used to align biological networks. Networks consist of
nodes, representing entities, and edges, representing relationships between adjacent entities. Pathways
are directed networks, in which edges have an associated direction, pertinent to the relationship be-
tween the source and target nodes. Network alignment techniques have been used in the biological
domain to align and determine similarities between protein-protein interaction (PPI) networks, and
to provide evidence for phylogeny based on the identification of analogous metabolic networks among
related species.

Several network alignment tools have been used to compare and map entities between PPI net-
works, such as PathBLAST [86], IsoRank [126], IsoRankN [98], and NETAL [112]. PathBLAST matches
an input protein interaction path to the reference network of a well-characterized species by identi-
fying and aligning ortholog genes [86]. IsoRank and IsoRankN are both global alignment algorithms.
IsoRank uses protein sequence similarity and neighborhood topology similarity to identify ortholo-
gous genes between species [126], while IsoRankN uses spectral clustering [98]. The NETAL algorithm
performs greedy alignment over a matrix of protein similarity scores computed from biological data
and graph topology [?]. Other applications of graph alignment algorithms and implementations con-

tinue to be introduced with great frequency, opening the door for novel applications in the biomedical
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domain [89, 156, 91, 64, 63].

Comparing interaction networks between different species allows for the discovery of functional
orthologs' between species. Conserved function between species may allow us to transfer the knowl-
edge we have about a well-studied species to a less understood organism. For example, Kelley et al
found many conserved pathways between yeast and the bacterium Helicobacter pylori through analysis
of their PPI networks [86]. A popular global network alignment algorithm, IsoRank, has been used to
align PPI networks from multiple species with maximal coverage and consistency [98]. Alignment of
metabolic pathways has also yielded notable information, such as the areas of convergent and divergent
metabolism between species [121, 38, 96, 82], and the identification of conserved metabolic modules
[118, 143, 109]. Methods used to achieve metabolic pathway alignment are numerous [41, 35, 96, 19,
13].

Some alignment tools are general purpose, fit for application to any graph data. Substructure
Index-based Approximate Graph Alignment (SAGA) is one such subgraph matching tool that was used
to calculate graph similarity between different biological pathways [137]. NetAligner is another align-
ment tool that identifies conserved complexes and pathways between different organisms [117]. Faisal
et al summarizes these above tools and others in their 2015 review paper on biological network align-

ment [48].

The above methods are primarily concerned with aligning pathways between different model or-
ganisms. In this dissertation, [ adapt graph alignment algorithms to the task of aligning analogous path-
way representations from different pathway databases. Therefore, although the techniques applied are
similar, the end goal is different. Optimizations are necessary to adapt the majority of algorithms to

suit this purpose.

Existing tools for entity normalization of proteins [71] and metabolites [152] may provide a starting
point for alignment. Published studies emphasize aligning metabolic pathways of different species in
order to find analogous but missing relationships [19, 13], merging resources for combined network

analysis [15, 125], or defining conserved pathway elements across existing pathway resources [107].

"Homologous gene sequences between species that derive from a common ancestral gene.
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These methods are helpful for identifying entities that map between different pathways.

To maximize successful alignment, I would like to take advantage of both topological features as
well as the lexical and identifier attributes of nodes and edges. More recently, some methods that incor-
porate node and edge features into global alignment have been developed. Struc2vec is a representation
learning method that learns a vector for each node based on its neighborhood structure and connectiv-
ity in the graph [49]. Fast Attributed Network Alignment, or FINAL, is an attributed network alignment
algorithm that works on numerical or categorical attribute data [159], significantly improving align-
ment correctness when compared to purely topological-based algorithms. More recent developments
such as HashAlign [65], Representation Learning-based Graph Alignment (REGAL) [66] and Trsedya
et al [139] incorporate representation learning into graph alignment methods. Entity representations
are learned based on the values of entity attributes, and these representation vectors are then used in
secondary tasks such as graph alignment. The learned representations are not only able to capture
entity-specific attributes, but also features of nodes and edges in the entity’s neighborhood. Many of
these techniques are further improvements on knowledge graph embedding techniques, which have
been a historically popular and successful way to perform tasks such as knowledge graph completion,
curation, or alignment [148, 100, 114].

In prior work, I demonstrated how global graph alignment algorithms such as Graph Edit Distance
+ Evolution (GEDEVO) [74] can be combined with cross-reference identifiers to generate better align-
ments [144]. Attributed network alignment algorithms improve upon topology-based graph alignment
algorithms by considering entity attributes such as entity type, name, cross-references, and other de-
tails. In the case of pathway data, entity attributes are vital for identifying the appropriate mapping
between entities in two pathways.

[ combine the topology representation learning method of struc2vec with rule-based and representa-
tion-based attribute matching to compute entity similarity between pathways [49]. The typology of
pathway representational inconsistencies identified in Chapter 5 is used to guide the design of the
alignment algorithm. I compute entity-level similarities between the entities of two pathways. I then
use a greedy alignment algorithm to generate global alignments between pairs of pathways. [ manually

review a set of alignment results, comparing them against those obtained using cross-reference iden-
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tifiers alone. Using the final alignment algorithm, I generate a full set of normalized pathways based

on pathway clusters identified using Pathway Ontology classes (see Chapter 7).
6.2 Methods for pathway alignment

Each pair of pathways is aligned using entity attribute and topology features. I refer to attributes as the
various properties associated with each entity, such as its name, definition, type, and any associated
cross-reference identifiers. Topology refers to features defined by the connectivity of the entity within

the pathway graph. The steps in the alignment procedure for aligning two pathways are as follows:

1. Enrich pathway entities with data from external identifier databases,
2. Compute rule-based similarity values between the entities from the two pathways,

3. Learn vector representations for each entity in the two pathways based on lexical features and

topology,

4. Compute overall entity similarities as a combination of rule-based and representation-based

similarities, and

5. Use greedy alignment to generate a final global alignment.

The pair of pathways to align is given as P, and P,, where each pathway is of the form P(N, E),
where N is the set of entities (or nodes), of which there are /N total, and E is the set of relations (or
edges), of which there are F total. N = {ny, ns, ..nx }, where each node n; is associated with a list of
attributes attr;. E = {ej, eq, ..ep }, where each edge ¢; is a relationship between two nodes in N, and
takes the form (nsource, property, niarger). The property relating the source and target nodes describes
the nature of the relationship, for example participant or controller for relationships between reactions
and proteins.

The alignment between two pathways is generated using the output of the similarity function
Sim (P (N, E), Po(M, F)). The output of the Sim function is S, an N x M array, where the value

at the (7, j) position indicates the similarity between the n; node from P, and the m; node from P.
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A value of 1.0 indicates highly similar, and a value of 0.0 indicates no similarity. The final alignment is
generated from S, and produces an N x M array of boolean values, where 1 indicates a match, and 0
indicates no match. The remainder of this section describes in detail the steps of the alignment proce-

dure.

6.2.1 Pathway entity enrichment

Entities in each pathway are enriched with information from external databases. Each entity starts
with the initial cross-reference identifiers provided in the source pathway database. For each UniProt
identifier, secondary accession identifiers, synonym class identifiers, and associated gene names are
retrieved from UniProt [16]. For each ChEBI identifier, secondary acccesion identifiers, parent class
identifiers, conjugate acid/base classes, and tautomer classes are retrieved from ChEBI [42]. Both
UniProt and ChEBI APIs are accessed through the Python Bioservices library [39]. The BridgeDB API
is also used to perform synonym identifier extraction [141]. Identifier mappings from BridgeDB are
selected primarily based on the expected type of entities annotated with identifiers from each database,
and can generally be organized into identifiers for proteins (Ensemble, Entrez, NCBI Protein, UniProt),
small molecules (ChEBI, HMDB, KEGG Compound, PubChem), and RNAs (EMBL, Ensembl, Entrez,
miRBASE). For each of these types of entities, the corresponding synonym identifiers are derived from
the given list of databases. Data extracted from UniProt, ChEBI, and BridgeDB are provided in Table
6.1. Using this procedure, proteins, complexes, and small molecules are enriched with related ontology

identifiers, which can be used to derive synonymy between semantically similar entities.

6.2.2 Computing rule-based similarity scores

Rule-based alignment is performed based on entity attributes both native to the pathway and extracted
from external databases. The rule-based similarity model produces a similarity score based on features
shared between the two entities. If two entities share a cross-reference identifier, they are considered
semantically equivalent, and are given a similarity score of 1.0. In some cases, where strong synonymy
isimplied, for example, when two entities share synonym identifiers in UniProt or ChEBI, or conjugate

acid-base identifiers in ChEB], a similarity score of 1.0 is given. In other cases where there is medium
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Data extracted

UniProt UniProt Name
Synonyms
Secondary accession identifiers
Associated gene names
ChEBI ChEBI Name
Synonyms
Secondary accession identifiers
Conjugate acid/base identifiers
Tautomer identifiers
Parent classes
BridgeDB ChEBI HMDB, KEGG Compound, PubChem identifiers
EMBL Ensembl, Entrez, miRBase identifiers
Ensembl Entrez, NCBI Protein, UniProt identifiers
Entrez Ensembl, NCBI Protein, UniProt identifiers
HMDB ChEBI, KEGG Compound, PubChem identifiers
KEGG Compound | ChEBI, HMDB, PubChem identifiers
miRBase EMBL, Ensembl, Entrez identifiers
NCBI Protein Ensembl, Entrez, UniProt identifiers
PubChem ChEBI, HMDB, KEGG Compound identifiers
UniProt Ensembl, Entrez, NCBI Protein identifiers

Table 6.1: Synonym identifiers extracted per resource

confidence of synonymy, for example, when the name of one entity matches the UniProt associated

gene name of the other entity, a similarity score of 0.75 is given. If no similarity is identified between

the two entities based on the rules, a similarity score of 0.0 is given.
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Rule applied Score
Cross-reference identifiers from source databases match AND same entity type 1.0
Secondary accession identifiers match AND same entity type 1.0
Conjugate acid/base identifiers match AND same entity type 1.0
Tautomer identifiers match AND same entity type 1.0
BridgeDB identifiers match AND same entity type 1.0
Entity names exact match AND same entity type 0.75
Entity name matches names/synonyms from external database AND same entity type 0.75
Entity name (of protein/complex) matches gene name from UniProt 0.75
Entity names exact match AND different entity type 0.5

Entity name matches names/synonyms from external database AND different entity type 0.5

Parent identifiers from external databases match AND same entity type 0.25

Table 6.2: Rule-based similarity scores

Alist of rules and their corresponding output similarity score are given in Table 6.2. The similarity
value for each rule is assigned manually based on the perceived likelihood of two entities matching
when observing each rule. Within these rules, the highest priority is given to matches based on cross-
reference identifiers, as these are the features most strongly associated with semantic similarity. Entity
name similarities are given lower similarity scores based on the inconsistencies observed in naming,
some of which have been described in Chapter 5. The scores are not optimized, but provide a good
starting point for representation-based alignment. The rules are applied in the order given in Table 6.2,
and the maximum score is assigned to the entity pair. The output of the rule-based similarity function

on an entity pair is represented as rule(n;, m;).

The rule-based similarity model produces S, 2 N x M similarity matrix where each entry is
the similarity between entity n; and m; computed as rule(n;, m;). This output is combined with the

entity representation similarity computed in the next section to generate an overall similarity matrix.
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6.2.3 Computing entity representations

A representation of each entity 7; is computed as the concatenation of its lexical features /; and its

topological features ¢, as in:

r; = i, ;] (6.1)

The lexical features are computed using pre-trained word embeddings. Word2vec [104] and fast-
text [29] embeddings trained on Pubmed Central full-length journal articles (the same vectors used in
Chapter 4) are used to capture information at the level of word tokens. As before, word2vec is used to
capture the semantic context of a word and fasttext its internal structure, and combining the two best
captures information about both the meaning and appearance of a word.

Each entity is represented as the set of word tokens in its names. For example, the entity ATP
from Reactome (http://www.reactome.org/biopax/65/48887#SmallMolecule28) has the set
of names {ATP, Adenosine 5-triphosphate}, which can be represented as the word token set {ATP,
Adenosine, 5, triphosphate }. Each word token is then represented as a concatenation of a 100-dimensional
word 2vec vector and a 100-dimensional fasttext vector. The lexical vector [; is computed by averaging
over the concatenated word vectors of each token, producing a single 200-dimensional vector repre-
sentation.

The topology representation ¢; is computed using struc2vec [49]. Struc2vec computes node embed-
dings based on the connectivity and structure of each node in a graph. The structural context of each
node is learned by measuring node context similarity. I use Struc2vec to generate a 100-dimensional
structural representational for each node. For each entity, the struc2vec embedding is concatenated
with the lexical embedding computed previously, generating the complete representation 7;. For the
set of nodes in each pathway, N = {ny, ns, ..nx }, [ compute the associated N x 300 entity represen-
tation array R = [ry; ro; ..7n].

The representation similarity matrix S, is an N x M matrix where each entry is the similarity
between the representations of n; and m;. This similarity is computed as the normalized cosine sim-
ilarity between the corresponding representation vectors, where a similarity value in the range [-1, 1]

is mapped to the range [0, 1]:
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$iMyep(ni, mj) = norm(cos_sim(ry;, r25)) (6.2)

Algorithm 1 Pseudocode for greedy alignment algorithm

procedure AlignPathways(S)

matches < | |

while max(S) > threshold do
maxval <— max(S)
i,j < S.index(maxval)
matches.append((i,j))
other_matches <— list(S.index(val) where val > (maxval — ¢))
matches <— matches + other_matches
Sli][:] <0
S[17] 0

A < zeros(N, M)

for i, j in matches do
Al 1

return A

6.24  Generating final alignment

The overall similarity Sim.compineda(P1, P2) is computed by combining the rule-based similarity matrix
Simy, e and representation-based similarity matrix S7m,.p, and taking the element-level maximum.
SiMecompined(P1, P2) is the N x M matrix:

Simcombined(Pla PQ) = max [Simrule; Simrep] (63)

1<j<N;1<k<M ik

A greedy alignment algorithm is then used to select the final alignment from Sim ompined- The

algorithm is provided in pseudocode in Algorithm 1. A threshold value is set as the minimum similarity
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score to allow a positive match. A € value allows for multiple matches to be made each iteration. Score
values within € of the current maximum similarity are matched. This sometimes generates 1-to-n
or n-to-n mappings. For pathway alignment, a threshold of 0.1 and € of 0.01 were used. The final
alignment matrix uses a 1 to indicate positive mappings, and O to indicate negative mappings. The
positive mappings are extracted as a list of unique pairs, which can be visualized between the two

pathway graphs.
6.3 Pathway alignment results

Several pathways discussed in prior chapters are used to illustrate the results of alignment. The glycol-
ysis pathway and the pentose phosphate pathway are used to produce example figures. Six glycolysis
pathways and six pentose phosphate pathways were aligned using the algorithm described previously.
Pairwise alignments were generated between all pairs within each of the two groups of pathways.
The following shows the hierarchical organization of the glycolysis pathway class in the PW, along

with the correct association of pathways to each class in the hierarchy:

PW:0000025 (glycolysis/gluconeogenesis pathway)

KEGG:hsa00010 “Glycolysis / Gluconeogenesis”
WikiPathways:WP534 “Glycolysis and Gluconeogenesis”
PW:0000641 (gluconeogenesis pathway)

HumanCyc:GLUCONEO-PWY “gluconeogenesis I”
Reactome:R-HSA-70263 “Gluconeogenesis”

SMPDB:SMP00128 “Gluconeogenesis”
PW:0000640 (glycolysis pathway)

HumanCyc:GLYCOLYSIS “glucose degradation”
Panther:P00024 “Glycolysis”

Reactome:R-HSA-70171 “Glycolysis”
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SMPDB:SMP00040 “Glycolysis”

Since gluconeogenesis is essentially the reverse pathway to glycolysis, the two pathways involve
similar reactions and reacting species. In the PW, the KEGG pathway hsa00010 is associated with
all three classes, PW:0000025 (glycolysis/gluconeogenesis), PW:0000641 (gluconeogenesis), and PW:
0000640 (glycolysis). Looking only at the PW class PW:0000640, glycolysis, the pathways associated
to this class by the PW mapping algorithm in Chapter 4 include HumanCyc:GLYCOLYSIS, KEGG:
hsa00010, Panther:P00024, Reactome:R-HSA-70171, SMPDB:SMP00040, and WikiPathways:WP534.
Alignment results were computed between each pair of pathways in this set. Figure 6.1 shows how
individual elements in these pathways align to one another. Due to space and visualization constraints,
the pathways are shown with the source sorted alphabetically and only neighboring alignments are
illustrated. Non-illustrated alignments show similar trends. The majority of resulting alignments are
correct, with some incorrect alignments shown with red arrows.

Figure 6.2 shows pentose phosphate pathways from six databases and their neighboring align-

ments. All six pathways are associated with the same PW class:

PW:0000045 (pentose phosphate pathway)

HumanCyc:PENTOSE-P-PWY
KEGG:hsa00030
Panther:P02762
Reactome:R-HSA-71336
SMPDB:SMP00031

WikiPathways:WP134

Of these pathways, Panther:P02762 is the worst annotated. As shown in figure 6.2, the Panther
pathway shows poor alignment results with its neighboring pathways, including higher rates of incor-

rect alignments. Although not all pairwise alignments are shown in the figure due to space constraints,
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the alignment algorithm also produced poor alignment results between Panther and the other pentose
phosphate pathways used in this example. When normalizing pathways, pathway annotation quality
(the number of entities labeled with cross-reference identifiers) can be used to prioritize certain path-
ways over others. The specialization of Panther Pathways in signaling pathways may explain the poor

annotation provided for this metabolic pathway.

6.3.1 An evaluation of PW-based alignment results

In total, 23,504 pairs of pathways from the seven pathway databases were aligned using this algorithm.
Pairs of pathways were derived from PW class mapping results generated in Chapter 4. Among the
pathway pairs, the smallest alignment had 13 aligned entity pairs, and the largest 237 aligned entity
pairs.

A subset of aligned pathways were manually reviewed for correctness. Each alignment between
entities is rated as either correct or incorrect based on manual interpretation of entity information. A
precision score is computed as the number of correct entity alignments out of all alignments generated
by the algorithm. I randomly selected 20 aligned pathway pairs for review. In total, | reviewed 1286
pairwise entity alignments. An overall precision of 0.69 was observed over all entity alignments.

An overall alignment score is generated for each pair of aligned pathways. This score is the average
of the similarity values of all positive mappings in the resulting global alignment. This overall alignment
score is used to determine which groups of pathways to merge when generating normalized pathways.

This procedure is discussed in Chapter 7.

6.3.2 Alignment of subpathways

Pathways with entity subset relationships can also be aligned using this algorithm. Figure 6.3 shows
an example alignment between the HumanCyc pathway for the pentose phosphate pathway (non-
oxidative branch) and the Reactome pentose phosphate pathway. The former is a subpathway of the
latter. The Reactome pathway, Reactome:R-HSA-71336, is associated with PW_0000045, pentose
phosphate pathway. The HumanCyc pathway, HumanCyc:NONOXIPENT-PWY, is associated with
PW_0000574, pentose phosphate pathway - non-oxidative phase, a subclass of PW_0000045. The Re-
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actome pathway consists of reactions in both the oxidative and non-oxidative phase of the pentose
phosphate pathway, while the HumanCyc pathway only describes reactions in the latter phase. This

part-wise relationship is illustrated by the hierarchy of the Pathway Ontology.

Reactome:R-HSA-71336 “Pentose phosphate pathway”

) @ |
@ Cm ) @) () o) () @
o o) U

xref-matched
correctly aligned
incorrectly aligned

.

Figure 6.3: Alignment of two pathways that exhibit a subset relationship. Entities found in both path-
ways are outlined in black. Gray lines and circles are those relationships and entities found only in
Reactome. All reactions are labeled 'Rx’; all complexes are labeled 'Cx.” All entities have been manually
aligned. Blue entities would have been matched correctly using cross-reference identifiers, green enti-
ties were correctly aligned by the alignment algorithm, and red entities incorrectly aligned. Complexes
drawn in dotted circles only exist in Reactome, and cannot be explicitly matched using the algorithm.

6.4 Discussion

Improving the way we discuss and measure similarity among pathway representations will have reper-
cussions for secondary use of pathway resources. Instead of using all pathways available for pathway
analysis, eliminating redundant pathways will increase the power of analysis results. Using the PW, I
have identified clusters of semantically related pathways. Through the application of this alignment al-
gorithm, similar pathways can be identified and merged together, reducing redundancy. The ontology
also enables the better organization of these pathways, making clear where overlap and subprocess
relationships occur. In the following chapter, I discuss how merged pathways are used to generate

normalized gene sets, which can be used in gene set enrichment analysis. Compared to standard gene
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sets derived from pathways, the normalized gene sets are less redundant, and also benefit from the
organizational structure of the Pathway Ontology.

Several different pathway relationships are seen in PW clustering results. Some pathways describe
similar processes, and show good entity overlap, especially when the pathways are well annotated.
Examples are the glycolysis and pentose phosphate pathways shown pairwise-aligned in Figures 6.1
and 6.2. These overlapping pathways are all instances of the same PW class. Other pathways show a
subset relationship as in Figure 6.3, where one pathway can be described as a subprocess of the other
pathway, exemplifying the part-of relationship. A third case is possible, but not illustrated, where one
pathway is both a subset of another pathway and describes the same overall process. This could happen
if pathway editors model processes with different levels of granularity. The subset entities would be
interleaved through the larger pathway as opposed to forming a tightly connected subnetwork as in the
subprocess case. All three cases: overlap, subprocess, and granularity subset, can be discovered using a
combination of entity membership and graph metrics.

Identifying these relationships is an important step to reducing redundancy in pathway data for
secondary use. Overlapping pathways can be reduced to a single pathway representation. Pathways
containing subprocesses can be modularized into several non-overlapping parts, or subpathways. For
example, the Reactome pentose phosphate pathway can be broken down into two subprocesses, the
oxidative phase, and the non-oxidative phase. PW terms can be used to identify these relationships
between pathways. The PW is-a relationship describes both overlap and granularity subset relation-
ships, and the PW part-of relationship describes subprocess relationships. When merging pathways
and generating normalized gene sets, I primarily focus on identifying and merging overlapping path-
ways. The identification and integration of part-wise pathway relationships into enrichment analysis
will be studied in future work.

In this chapter, I demonstrated a pathway alignment method that aligns the entities between two
pathways based on entity attributes and topology. In Chapter 7, this pathway alignment algorithm
is used to merge pathways and generate normalized pathway-derived gene sets, which are compared
against standard gene sets in enrichment analysis.

There are several points of potential improvement in the alignment procedure described in this
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chapter. The results of manual assessment indicate that lexical entity features may be better than
topology-based features for aligning entities, especially in pathways that are poorly annotated. I can
expand upon the lexical entity attributes used for computing similarity. Stemming and lemmatization
refer to the process of reducing words to their base form; for example, metabolism, metabolic, and
metabolite all share a stem word. Prefix and suffix analysis can also be employed to discover similar
classes of words, especially chemical species, which can be grouped together based on suffixes, like -
oses (sugars) and -ases (proteins). Using stemmed and suffixed entity names as entity attributes could
improve the performance of the alignment algorithm.

Some manual review is inevitable to generate ideal normalized pathways. In future work, I aim to
provide a platform for exploring the overlaps among these pathways and to allow for the generation
of pathway data sets with reduced redundancies among member pathways. Such an interface could
allow the user to control inputs such as the pathway databases from which to derive pathway data,
the ontology to use for harmonizing the data, and the preferred amount of merging. The user could
generate unique gene sets for GSEA or other types of pathway-based enrichment analysis based on
their individual needs. For example, one could combine several signaling pathway databases using the
Gene Ontology biological processes sub-ontology, and only merge pathways that have more than 25%
entity overlap.

Understanding the similarities and redundancies among pathway representations is critical for
improving the quality of secondary analyses performed using pathways. Associations among differ-
ent pathways can be deduced by studying the features of each individual pathway, such as its name,
description, entity membership, and topological structure. In this chapter, I have shown that a com-
bination of entity attributes and topology features can be used to infer alignments between pathways.
Pathway alignments can be combined with ontology class associations to select pathways suitable for
merging.

In Chapter 7, I discuss how I combine the alignment algorithm and PW-class annotations to select
pathways for merging. I perform a comparative evaluation of these merged pathways against baseline
pathway-derived pathways in pathway analysis. The structure of resources such as the Pathway Ontol-

ogy or the Gene Ontology biological processes hierarchy can be used to aid interpretation of analysis
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results. Continuing forward, my goal is to provide a shared organizational structure across multiple
pathway databases that will make it easier for researchers to use pathways with appropriate content

and granularity.
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Chapter 7

A COMPARATIVE EVALUATION OF NORMALIZED PATHWAYS FOR
PATHWAY ANALYSIS

Pathway analysis enables researchers to interpret gene-level activity at a functional level. Pathway
analysis, however, is sensitive to the pathways used [58, 142, 25]. Statistics in algorithms like Gene
Set Enrichment Analysis (GSEA) do not account for the presence of semantically similar pathways
in analysis, and genes from redundant pathways receive unequal representation in aggregated results
[22]. Network-based analysis methods introduce better ways of handling overlapping pathways, but
they must still contend with incomplete or inaccurate pathway entity annotations, or differences in

pathway knowledge representation among various databases [113].

By merging redundant pathways that describe similar function based on Pathway Ontology clas-
sification, I produce a set of normalized pathways. When used in pathway analysis, these normalized
pathways generate lower redundancy in analysis results, as similar pathways have been identified and
merged together. Additionally, the structure of the PW provides organization to the outputs of path-
way analysis. This ontological structure can be used to visualize the relationships between various
pathways, and aid in the interpretation of results. Instead of an otherwise flat list of pathways and en-
richment scores, the output of pathway analysis conducted using PW-normalized pathways retains the

semantic relationships between various pathways.

In this chapter, I perform a comparative evaluation of these normalized pathways against a set of
standard pathways. I compare the two sets of pathways in GSEA [133]. I first derive normalized gene
sets from all merged pathways. I then perform GSEA on four gene expression datasets, comparing
the normalized gene sets against baseline pathway-derived gene sets retrieved from MSigDB [99]. 1
compare the enrichment results and qualitatively and quantitatively assess the level of redundancy

among enriched gene sets. I also show how the structure of the PW can be used to visualize and help
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interpret the results of GSEA conducted using PW-normalized pathways.

Public gene expression datasets are used for evaluation. All data used in this comparative evalua-
tion are generated using RNASeq [149]. RNASeq is a technique that measures the quantity of mRNA
in tissue, a proxy for gene expression. RNASeq data allow us to measure gene expression in tissues
under various conditions, including those subject to environmental perturbation or disease. I conduct
my evaluation using study data that have been previously analyzed and published in peer-reviewed

scientific journals.

Prior GWAS and pathway analysis studies conducted by researchers on related data establish a
baseline understanding of associated genes and pathways for each disease phenotype. Since there is
no gold standard of pathway analysis, [ perform a comparative analysis. Figure 7.1 describes the steps
undertaken. For each gene expression dataset, I first A) perform a standard analysis using the GSEA
protocol and baseline pathway-derived gene sets obtained from MSigDB [99]. I then B) perform GSEA
on the same gene expression data using normalized gene sets derived from the results of PW-based
pathway alignment. GSEA was selected due to its widespread adoption and ease of application. Valida-
tion on other pathway analytic techniques, including network-based pathway analysis, will be explored

in future work.

Pathways from the seven databases (HumanCyc, KEGG, NCI-PID, Panther, Reactome, SMPDB,
and WikiPathways) are clustered based on PW class annotations, and merged based on the alignment
results of Chapter 6. Gene sets are derived from the member entities of merged pathways. I compare
the enrichment outputs of analysis performed using baseline MSigDB pathway-derived gene sets to the
enrichment outputs obtained using normalized gene sets. I solicit expert review to help interpret the
results of both sets of pathway analysis. I also compare the results of analysis to previous results from
journal publications conducted on relevant experimental data. Previous study results are summarized

in Section 7.4.

In this chapter, [ discuss 1) the creation of normalized pathways based on the alignment outputs of
Chapter 6, 2) a comparative evaluation using public gene expression datasets, and 3) the visualization

of pathway analysis results using the structure of the Pathway Ontology.



94

standard baseline
gene sets

A

gene sets derived
from normalized B

Peer-reviewed Gene
publication expression pathways
dataset

Figure 7.1: Pipeline for evaluating normalized pathways.
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Figure 7.2: Procedure for generating gene sets based on normalized pathways. Scores from the PW
mapping algorithm are combined with entity Jaccard indices to generate a combined similarity score
for each pathway pair. The pathway alignment algorithm is used to generate a network alignment for
each pathway pair. Those pairs with alignment scores above a threshold are combined. Normalized
gene sets are generated from all combined and singleton pathway sets.

7.1 Developing a normalized pathway dataset

A normalized pathway dataset is generated by combining semantically similar pathways from seven

disparate databases. Figure 7.2 displays the steps associated with generating normalized pathways and
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associated gene sets. First, pathway pairs suitable for alignment are identified using the output of the
PW mapping model from Chapter 4. For each class in the PW, I first extract the set of pathways as-
sociated with the class, Pgp, ;. This set Pgy, ; consists of previously annotated pathway instances from
KEGG, NCI-PID, and SMPDB, as well as the set of pathways from HumanCyc, Panther, Reactome, and
WikiPathways associated with the PW class by the PW mapping algorithm. An example membership

of the set Pqp, ; is given as:

DPkegg,15
Psmpdb,1,
A= Phumancye,1y Phumancye,25 (71)

Preactome,15 Preactome,2, Preactome,3;

Pwikipathways,1

\ /

where the set is made up of pathways from multiple databases, some of which provide multiple as-
sociated pathway instances. This example includes pathways from five databases, but actual results
may include pathways from all seven databases. From this set, [ generate the pairwise combinations of

pathways with different database provenance, given as:

N
< 9 ) de,i where dbl 7£ dbg (7.2)

This yields an overall list of semantically associated pathway pairs. Similarity scores between pairs
are used to determine suitability for alignment. For each pair, I compute an overall similarity score as
the average of the PW mapping similarity score and the pathway entity overlap score. The entity over-
lap score is the Jaccard similarity between the entity sets of the two pathways. The mapping similarity

scores and Jaccard index are combined for the pathway pair (pap, i, Ddb,,;) using the following formula:

Sim (pay, i, PW _class) ,
Mean ’
S (Pavy i> Pavy.j) = Mean Sim (papy.;, PW _class) (7.3)
Jaccard (Pap, is Dvs.j)

Pathway pairs with S > (.2 are aligned using the pathway alignment algorithm described in the
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previous chapter. The threshold is used to reduce the number of overall alignments computed due
to limitation of computational time and resources. The alignment algorithm generates an alignment
score between 0 and 1 and an overall graph alignment for each pair of pathway inputs. In total, 23,504
pairs of pathways are aligned using this algorithm. An alignment score is produced for each pair of
aligned pathways as the mean similarity of all positive mappings in the resulting alignment. Pairs of
pathways with alignment scores over 0.5 are combined into a single pathway entry.

Entities and relations from these combined pathway entries can then be used to extract alternate
representations for pathway enrichment analysis. For example, to generate gene sets for GSEA, I ex-
tract the cross-reference identifiers associated with each aligned protein/complex entity from the com-
bined pathway representation. Using the Bioservices library [39] and queries to BioMart [127], [ map
these cross-reference identifiers first to Ensembl identifiers and then to gene symbols, which are out-
put as gene sets. These gene sets are then used to analyze gene expression data through the GSEA
algorithm.

Each gene set is named based on the PW class associated with its constituent pathways. The gene
set name takes on the form <PW_id> <PW_class_name>; for example, a gene set generated for
PW_0000475 is named PW_0000475 HEMOSTASIS PATHWAY. If multiple non-intersecting clus-
ters of pathways are identified as being associated with the same PW class, more than one gene set can
be generated based on the PW identifier, in which case, a number is added as a suffix identifier, as in
PW_0000394 DOPAMINE SIGNALING PATHWAY 1 and PW_0000394 DOPAMINE SIGNALING
PATHWAY 2. When only one pathway is associated with a PW class, the name of the gene set also
includes the source database of the gene set, taking on the form <PW_id> <source_database_name>
<source_pathway_name>, as in PW_0000039 REACTOME RECYCLING OF BILE ACIDS AND
SALTS. Large pathway instances that lack strong associations to PW classes are also included in the
output gene sets. Pathways with greater than 15 entities were included (minimum gene set size thresh-
old used for GSEA), and were given names in the form <source_database_name> <source_path-
way_name>>, as in PID MTOR SIGNALING PATHWAY. These gene set names are provided in the
outputs of analysis.

A total of 757 normalized gene sets are generated for use in comparative analysis. Of these, the
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vast majority, 743, are associated with a Pathway Ontology class, and 14 are larger pathway instances
for which a notable PW class match could not be detected from PW mapping results. Of the 743 PW-
associated gene sets, 639 are created by merging two or more pathways together, and 104 are derived

from a single pathway.

7.2 Comparative evaluation

GSEA experiments are conducted to compare the performance of baseline gene sets against normal-
ized gene sets. The baseline gene sets are derived from the Molecular Signatures Database (MSigDB),
version 6.2, and consist of all MSigDB pathway-derived gene sets, numbering 1329 in total [99]. These
gene sets are curated from pathways in KEGG, BioCarta, NCI-PID, and Reactome, as well as derived
directly from pathway-related publications. A large proportion of these, 673 gene sets, originate from
Reactome pathways. Because each gene set is derived from a single pathway, some biological functions
are represented repeatedly. For example, gene sets representing Wnt signaling are derived from Wnt
signaling pathways present in BioCarta, KEGG, NCI-PID, Reactome, and other publications. Although
these gene sets are not equivalent, they do overlap significantly and may therefore arise repeatedly in
analysis results if the Wnt signaling function is enriched.

Normalized gene sets are derived from merged pathways using the methods described in section
7.1. Pathway clusters are identified using similarity scores to PW classes. Pathway alignment scores
are used to determine whether two pathways within a cluster should be combined. A total of 757
normalized gene sets are generated in this manner and used in all following analyses.

There are more baseline gene sets, 1329, versus normalized gene sets, 757. Because normalized
gene sets are generated from a less redundant pathway dataset, this is not surprising. The expectation
is that repeated gene sets would be eliminated in the normalized sample. The source pathway databases
of the baseline and normalized gene sets overlap, but the normalized gene sets are derived from a larger
number of pathway databases. The baseline gene sets are derived from pathway databases KEGG, Bio-
Carta, NCI-PID, and Reactome, and also include unaffiliated published pathways. The normalized
gene sets are derived from KEGG, NCI-PID, and Reactome, but also derive from HumanCyc, Panther,

SMPDB, and WikiPathways. Pathways from BioCarta are not incorporated into the normalized gene
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sets, because BioCarta is a database of pathway diagrams for which pathway representations are not
easily accessible. Pathways published outside of pathway databases are also not used to derive normal-
ized gene sets, because these would also need to be manually converted into pathway representations.

Four gene expression datasets are used for evaluation. These datasets are discussed in section 7.2.1.
Default parameters are used for all GSEA experiments (minimum gene set size = 15, maximum gene set
size = 500, permutations = 1000, permutation type = sample labels, number of top gene sets analyzed =
20). The R implementation of the Broad Institute’s GSEA algorithm, R-GSEA' and the Python library
GSEApy 0.9.9% are used to conduct all experiments.

Differences in analysis output are described both qualitatively and quantitatively. I identify en-
riched pathways in the outputs of GSEA conducted using both baseline and normalized pathway-
derived gene sets. | provide a qualitative comparison of the top 20 ranked enriched gene sets produced
by each analysis. Because the gene sets are derived from different groupings of pathways, they cannot
be directly compared between the two analyses. However, I identify locations where the same func-
tional gene set occurs multiple times in the baseline results while only once in the normalized results.

[ compare the leading edge genes produced in the two analyses. The differences between the leading
edge gene lists are assessed quantitatively. I rank the leading edge genes from the top 20 enriched gene
sets by occurrence, and compute the rank biased overlap (RBO) [150] between the ranked lists. The
RBO measure is a description of similarity between two ranked lists, and has been used to compare
results produced by search engines and other such information retrieval systems. It is applicable here,
where I compare two incomplete, non-overlapping lists of implicated genes. [ also compute the Jaccard
index to indicate the level of overlap between the leading edge gene lists. This gives an indication of
any similarities between the genes identified as most responsible for enrichment among the baseline
and normalized gene sets.

I also quantify redundancy among the enriched gene sets obtained from the two analyses. My
aim is to reduce semantic redundancy, and I use gene set membership overlap as a proxy measure for

semantic overlap. By computing the pairwise Jaccard index between each pair of enriched gene sets, |

'http://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/R-GSEA_Readme

’https://gseapy.readthedocs.io/en/latest/
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can determine the overall similarity between the whole set of enriched gene sets. I compare the average
pairwise Jaccard index between all enriched baseline gene sets and all enriched normalized gene sets.
Lower redundancy is indicated by lower average Jaccard index.

Lastly, I perform an in-depth analysis of all baseline and normalized enriched gene sets for one
gene expression dataset. Instead of comparing just the top 20 enriched gene sets, I extract all enriched
gene sets with positive enrichment score and p-value less than 0.05, indicating a greater likelihood
for statistical significance. I then group these enriched gene sets by functional categorization. In this
way, | can identify the biological functions found to be enriched in both analyses. I can also compare
the number of gene sets associated with each function from the baseline and normalized enrichment

results. This provides a qualitative assessment of redundancy among enrichment results.

7.2.1 Evaluation datasets

I perform an evaluation using four different public gene expression datasets. Of the datasets, two are
derived from Alzheimer’s patient cohorts, and two from cancer cohorts via the Cancer Genome Atlas

(TCGA). All four datasets provide RNASeq data from patients and controls. Details are provided in

Table 7.1.

Dataset Disease Description

ADTBI Alzheimer’s Dementia 377 samples (180 AD, 197 control) taken from
the temporal cortex, parietal cortex, cortical
white matter, and hippocampus

MSBB Alzheimer’s Dementia 938 samples (665 AD, 273 control) taken from
Brodmann Areas 10, 22, 36, and 44

TCGA-HNSC Head and neck squa- | 546 samples (502 tumor, 44 matched normal)

mous cell carcinoma
TCGA-LUAD Lung adenocarcinoma 594 samples (535 tumor, 59 matched normal)

Table 7.1: Evaluation RNASeq datasets
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The Aging, Dementia and Traumatic Brain Injury (ADTBI) dataset is derived from a sub-cohort
of the Adult Changes in Though (ACT) study [105]. The sub-cohort was established to characterize
the relationship between traumatic brain injury (TBI) earlier in life and the development of dementia,
specifically Alzheimer’s Dementia. Data for the ADTBI study were derived from the data portal hosted

by the Allen Institute for Brain Science [1].

The MSBB Alzheimer’s dataset derives from the Mount Sinai Brain Bank, and is part of the Acceler-
ating Medicines Partnership-Alzheimer’s Disease (AMP-AD) Target Discovery and Preclinical Valida-
tion Project, a consortium created to understand and discover novel therapeutic targets for Alzheimer’s
Disease. The gene expression data are part of a multi-omics dataset procured from the Mount Sinai
Alzheimer’s Disease cohort [146]. Data from the MSBB were acquired from the AMP-AD knowledge

portal hosted on Synapse by Sage Bionetworks [2].

For both of these studies, normalized RNASeq data were used, and patients were separated into
two groups, AD and Control. Other patient attributes such as exposure to TBI, presence/absence of
ApoE4 allele, or other dementia were not explored in this comparative analysis. For the ADTBI dataset,
data was separated into the four tissue types: temporal cortex, parietal cortex, cortical white matter,
and hippocampus, and each tissue subset analyzed independently. For the MSBB dataset, data was also
separated by brain region, and GSEA was conducted separately for each of the four Brodmann Areas.
Four sub-experiments were therefore conducted for each of the ADTBI and MSBB datasets, and results

are provided for each brain region independently.

Two datasets from TCGA were also analyzed [151]. Data from patients with head and neck squa-
mous cell carcinoma (HNSCC) and lung adenocarcinoma (LUAD) were extracted for analysis from the
National Cancer Institute’s Genomic Data Commons Data Portal [5]. RNASeq Fragments Per Kilo-
base of transcript per Million (FPKM) mapped reads along with patient metadata were downloaded
and used in analysis. For both TCGA datasets, control data was derived from matched normal tissue

samples. Both cancer datasets are more unbalanced than the AD datasets.
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7.2.2  GSEA results

I computed gene set enrichment for all 10 gene expression datasets using both baseline and normalized
gene sets. Table 7.2 shows the top 20 enriched gene sets from both the baseline and normalized gene
sets for the ADTBI study hippocampus tissue. Although the enriched pathways are different between
the two result sets, there are common themes seen on both sides. For example, a number of pathways
related to the complement cascade and coagulation are seen on both sides. Table 7.6 shows enriched
pathways grouped by function. Among the enriched baseline gene sets, 8 pathways among the top 20
are associated with coagulation: rank 3, 7, 9, 10, 12, 13, 16, and 17. Among the enriched normalized
gene sets, only 2 pathways among the top 20 are associated with coagulation: rank 2 and 16. Several
other catgeories are well represented in the outputs of both analysis, but the results of normalized
analysis suggest a decrease in redundancy of output. On the normalized side, pathways related to
steroid signaling, immune response, and amino acid metabolism are better represented among the

top 20 results.

Table 7.3 shows the top enriched gene sets for HNSCC. The enrichment results are quite different
between baseline and normalized gene sets. Some common themes are seen, such as the presence on
both sides of gene sets related to lipid metabolism. Overall, the enriched normalized gene sets place
emphasis on metabolic diseases, such as those related to glycogen storage and porphyrias, a group of

diseases caused by buildup of porphyrin.

Table 7.4 shows the top enriched gene sets for lung adenocarcinoma. Baseline enrichment results
are dominated by pathways related to cell cycle. These include pathways relating to transcription, mi-
tosis, meiosis, apoptosis, and telomere processing. Some pathways related to lipid transport and pro-
cessing are also enriched. For normalized gene sets, pathways related to cell cycle, apoptosis, immunity,
gastric cancer, and the complement and coaguation cascades are enriched. The results provided by the
normalized gene sets display greater variety and may provide a more diverse picture of enriched func-

tions associated with lung adenocarcinoma.

Ranked enrichment results for the remaining gene expression datasets are available in Appendix

A. In all tables, the normalized enrichment scores (NES) and gene set names are given for the top 20
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enriched gene sets from both baseline and normalized gene sets.

Table 7.5 shows comparisons between the leading edge genes from baseline and normalized gene
sets in the enrichment output. The top 10 leading edge genes for each dataset are shown. Also shown
are the RBO and Jaccard indices for the baseline versus normalized outputs. The leading edge genes of
the top 20 enriched gene sets are extracted and sorted by number of occurrence. Leading edge genes
show the highest degree of similarity between baseline and normalized gene sets in the enrichment
output of ADTBI data. The Jaccard similarity is around 0.2, and is the highest for the hippocampus
and temporal neocortex tissues. There is low RBO and Jaccard similarity for both TCGA datasets, and
the enrichment output for the TCGA tissues are correspondingly less similar between baseline and
normalized gene sets.

I computed the pairwise Jaccard index between each pair of enriched gene sets to show the overall
similarity between all enriched gene sets. Lower Jaccard similarity between two gene sets is correlated
with lower functional overlap. Figure 7.3 shows the Jaccard indices calculated between each pair of
enriched baseline pathways compared to the Jaccard indices calculated between each pair of enriched
normalized pathways. A Jaccard of 1 (identical sets) is indicated as a white square; a Jaccard of 0 (no
set similarity) is indicated as a black square. The pairwise Jaccard indices among enriched baseline
pathways are much higher, while most of the Jaccard indices for enriched normalized pathways are
close to 0, indicating little to no overlap between the gene sets. The average pairwise Jaccard is 0.08 for
enriched baseline gene sets and 0.02 for enriched normalized gene sets.

Lastly, I extracted the enriched gene sets from both baseline and normalized GSEA of the ADTBI
hippocampus tissue. Enriched gene sets with positive enrichment score and p-value less than 0.05 are
kept for analysis. I identify biological functions associated with each enriched pathway and group the
pathways by function. For the baseline GSEA, 59 baseline gene sets were found to satisfy these cri-
teria. For the normalized GSEA, 37 normalized gene sets were found to satisfy these criteria. Table
7.6 shows all of these gene sets grouped by biological function. Functions found in both sets of GSEA
results are coagulation, complement cascade, immune response, lipid metabolism and transport, cell
cycle, xenobiotic processing, glutathione conjugation, cellular transport, cell differentiation, and mus-

cle contraction. Functions not found in both analysis or not of particular note are also provided in the
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Dataset RBO | Jaccard | Top 10 leading edge genes from baseline gene sets Top 10 leading edge genes from normalized gene
sets

ADTBI-fore 0.090 0.177 IFNA7, IFNA4, IFNAI14, IFNA10, IFNA21, | FGA, F13B,SLC6A3,1L4, CTLA4, LCK, FOS,ITK,
IFNA17,IFNA5, IFNAL, IFNAS, IL2... IL2, TNF...

ADTBI-hippo 0.115 0.268 UGT1A6, UGT2B10, UGT2B7, UGT2B17, FGA, | F2, GSTA2, IFNG, F9, SERPINB2, F13B, SER-
FGG, UGT2A3, UGT2B15, GSTA2, GSTAL... PINCI, SERPINAS5, FGB, UGT1A6...

ADTBI-p_neo 0.242 0.130 CD3D, CD3E, LCK, CD28, ZAP70, CD8B, FOS, | MYC, FOS, FASLG, CDKN1A, CCND1, TP53,
CTLA4, ITK, ILA4... LCK, ITK, CD28, ZAP70...

ADTBI-t_neo 0.380 0.269 CD3D, CD3E, LCK, ZAP70, IL4, IL2RG, ITK, | HMGCS2, FTMT, ITK, ZAP70, CD28, LCK, IL4,
CD28, CD8B, IL2RB... CD3D, IL2RG, ENPP7...

MSBB-BM10 0.021 0.150 CALM1, CALM3, CAMK2B, GRIN2D, GRIN1, | PRKACA, MAPK1, PPARGC1A, PRKCZ, GNAS,
GRIN2A, RPS6KA6, GRIA1, CAMK4, PRKCB... GNBI1, MAP2K1, MTOR, NCOA1, NCOA2...

MSBB-BM22 0.013 0.167 TP53, TGFB1, FOS, HLA-DRA, HLA-DRBI, | RELA, PIK3CG, MAP3K8, MAP3K14, TLRS5,
CDKN2A, ITPR3, RXRA, PPARA, CREBBP... TLRS8, TLR7, TIRAP, TLR3, NFKB2...

MSBB-BM36 0.050 0.108 CDKN2A, TGIF1, CCND1, TP53, CDKN2B, | RELA, IKBKB, TGFB1, SERPINE1l, LEFI,
TGIF2, SERPINE], AR, CASP8, RNF135... PIK3CG, RPS6KAL1, IRF7, FOS, TGFBR2...

MSBB-BM44 0.023 0.152 FGF23, FGF17, FGF9, KLB, FGFR4, FGF18, | CYP3A4, ABCC3, NR1I3, ABCC2, GCK, CYP3AS5,
FGF20, FGF7, FGF22, CREBBP... ABCBI1, PPARGCIA, SP1, ABCAL...

TCGA-HNSCC 0.039 0.040 FGF3, FGF20, FGF4, FGF17, FGF6, FGF23, | UGT2B11,AMY1B,AMY1A, CYP4A11,F11,FGB,
FGF10, FGF8, FGF19, KLB... FGA, PLG, F9, F13B...

TCGA-LUAD 0.083 0.095 HIST1HA4F, HIST1H4L, HIST1H2BB, HIST1H2BI, | PLG,F2,PLAT, F9, F13B, THBD, SERPINCI, FGB,

HIST1HA4C, HIST1H4B, HIST1H4A, HIST1H2AB,
HIST1HA4D, HIST1H2A]J...

F8, PROSI...

Table 7.5: Comparison of leading edge genes
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Figure 7.3: Jaccard similarities between pairs of enriched baseline pathways (left) and enriched normal-
ized pathways (right) for the ADTBI hippocampus tissue.

table.
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7.3 Representing pathway organization in results

A potential benefit of integrating pathway data using the Pathway Ontology is the additional ontolog-
ical structure imposed upon the output data. In addition to identifying semantically similar pathways,
the PW is also a way to organize pathway data. [ hypothesize that the organizational structure of path-
ways in the PW may be useful for interpreting the results of pathway analysis. To illustrate the potential

uses of PW organization, [ prototyped an interactive tree visualization to display the outputs of PW-

based GSEA.

For the prototype, I extracted all PW-associated pathways and their corresponding enrichment
scores from the enrichment results. I then constructed a sparse tree from all PW-associated pathways,
which consist of all enriched pathways and their parents and grandparents from the PW. A summed
enrichment score was computed for each parent node in the sparse tree as the summation of enrich-
ment scores over its child nodes. Upon collapsing the tree to a certain level, these summed enrichment

scores can be used to compare functional enrichment at lower levels of granularity.

Figure 7.4 shows the enriched normalized gene sets for the ADTBI parietal neocortex dataset vi-
sualized over the corresponding portion of the PW tree. Nodes with red circles are the enriched gene
sets, and the size of each highlighted circle corresponds to the normalized enrichment score. When
a parent node is collapsed, the size of the node is made to reflect the summed enrichment scores of
its enriched children and grandchildren. The same figure shows the tree collapsed to only PW gene
sets at level 2. The parent PW classes PW_0000818 (“Signaling pathway pertinent to immunity”) and

PW_0000465 (“Hormone signaling pathway”) show strong aggregate levels of enrichment.

When a subtree is collapsed into a parent node, the enrichment scores of the child nodes are summed
and displayed as the size of the collapsed parent node. For example, PW_0000818 (“Signaling pathway
pertinent to immunity”) is not an enriched pathway, but its child nodes PW_0000897, PW_0000912,
and PW_0000821 are. Once collapsed, PW_0000818 shows high levels of enrichment. Collapsing the

tree in this fashion allows the user to explore enrichment of lower granularity biological functions.

Several other examples of this tree visualization are given in Appendix B. The visualization of

enriched gene sets using the hierarchical structure of the Pathway Ontology gives researchers new
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options for exploring enrichment results. In future work, I aim to explore how PW tree-based visual-

ization can be used to better explore and understand enrichment results.
7.4 Comparison of results to prior studies

Studying gene expression differences between patients and healthy controls can help researchers for-
mulate the mechanisms underlying complex diseases. Identifying regulatory genes associated with a
disease phenotype can also lead to the isolation of potential treatment targets. There are many tech-
niques for analyzing gene expression data. Genome wide association studies (GWAS) can identify in-
dividual genes that correlate strongly with a disease phenotype. Pathways and interaction networks
can be used to identify gene sets or gene network modules associated with disease. These pathway
and network analysis methods can detect gene modules where individual member genes may not be
strongly associated with the phenotype of interest, but where the module is statistically associated.
Below, for each of the disease phenotypes analyzed in my comparative analysis, I discuss previous
work related to pathway analysis. I provide a review of the gene and functional modules found to be
associated or enriched in that phenotype. Some prior results suggest causal mechanisms implied by

the results of these analyses.

74.1 Alzheimer’s dementia

According to Naj et al, "the ultimate goal of these genomic studies are to identify the key biological
pathways influencing development of AD as targets for the development of therapeutic interventions
to treat and ideally cure the disease" [110]. Pathway analysis allows gene-level associations to be ag-
gregated and studied at a functional level, and can lead to both better mechanistic understanding of
disease, and also drive innovation in treatment. For AD, a long history of genomic studies have been
used to map out our current understanding of the AD gene network, and further study is necessary to
clarify mechanism and characterize disease variants.

The APOE ¢ 4 allele has long been known to increase AD risk [30]. Developments in linkage anal-
ysis, next-generation sequencing, and GWAS allowed the detection of other genes and variants with

significant association with the AD phenotype. Numerous genome wide association studies have been
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undertaken with Alzheimer’s patient data to shed light on the genetic variants that impact risk and
progression of Alzheimer’s Disease [62, 124, 135, 69, 94, 80, 77]. These studies have successfully de-
tected a number of genomic markers associated with the AD phenotype. Genes such as APP, PSEN1,
PSEN2 and others were found to be associated with early-onset AD [55]. GWAS and genome-wide
linkage studies have also identified numerous genes and susceptibility alleles characterizing late-onset
AD [55, 110].

Pathway and network-based enrichment studies of AD gene expression data and results have ex-
panded our understanding of the biological functions influencing AD disease progression [79, 123, 95,
70]. An early application of GSEA to AD SNP variants found that all immune-related pathways and
some lipid and cholesterol metabolic pathways were significantly enriched, of which the strongest en-
riched pathways were the complement cascade and cholesterol transport [79]. A genome-wide pathway
analysis of Alzheimer’s Disease Neuroimaging Initiative (ADNI) data showed enrichment in pathways
associated with neuronal cell adhesion, inflammation, neurotrasmitter signaling, and brain develop-
ment [123]. Ameta-analysis by Li et al found enrichment among pathways associated with macrophages,
DNA transcription, cytokines, and mitochondrial dysfunction [95]. A literature-based study of AD-
related genes shows enrichment in brain development, metabolism, cell growth and survival, and im-
mune function [70].

Giri et al summarizes that the genes identified through gene-level studies cluster into three major
pathways describing inflammatory response, lipid metabolism, and endocytosis [55]. Pathway analysis
confirms these functions, but have also shown enrichment in novel functions such as neurotransmitter
signaling, neuronal development, and cell cycle regulation.

Recent work in region-specific tissue sampling of AD patient brain tissue have shown region-based
expression differences [60]. Regions of the brain vulnerable to increased aggregation of amyloid pro-
teins showed negative enrichment of pathways related to protein synthesis and mitochondrial respi-
ration, while regions of the brain affected most by neurodegeneration showed positive enrichment of
pathways related to neurite outgrowth, synaptic contact and intracellular signaling, and proteoglycan
metabolism [60]. These results demonstrate different regional affects of disease, and hint at tissues and

functions causally related to disease.
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The results of my experiments using the ADTBI and MSBB AD gene expression datasets confirm
prior work. Immune response is well-represented in enrichment results. For example, in Table 7.2,
and Table 7.6, pathways relating to immune function, complement cascade, and lipid metabolism are
well-represented among the baseline enriched gene sets. In the results of enrichment performed us-
ing normalized gene sets, the top 5 enriched pathways all clearly represent functions associated with
immunity and steroid metabolism. There are several representative gene sets related to the comple-
ment/coagulation cascades, interleukin signaling, and steroid signaling. Table 7.6 shows all statistically

significant enriched gene sets from both analyses grouped together by biological function.

7.4.2  Head and neck squamous cell carcinoma

Head and neck squamous cell carcinoma is a cancer of the squamous cells lining the aerodigestive
tract. Genomic studies have been used to characterize HNSCC susceptibility, recurrence, and subtypes
[93, 106, 153]. Lacko et al found that genetic susceptibility to HNSCC is associated with pathways of
DNA repair, apoptosis, human papillomavirus (HPV), mitochondrial polymorphisms, and polymor-
phism related to the bilirubin metabolism [93]. Moore et al, in an analysis of TCGA HNSCC gene
expression data, identified several patient subgroups with distinct expression characteristics. HPV
negative tumors were found associated with pathways of apoptotic signaling and regulation, while
HPV positive tumors were associated with deletions and mutations of TNF receptor-associated fac-
tor 3 (TRAF3). The authors also report alterations among RAS, PI3K, and EGFR signaling cascades,
and in tumor suppressor genes such as TP53 and CDKIN2A. These modifications can be clustered into
gene groupings related to RTK/RAS/PI3K signaling, cell death, immunity, differentiation, and oxida-
tive stress, by order of enrichment [106]. In another analysis of TCGA data, Yan et al performed GO
and KEGG pathway enrichment analysis. GO terms related to cell cycle, apoptosis, cell migration, ex-
tracellular matrix, and cellular signaling were associated with up-regulated genes, indicating cellular
proliferation and metastatic tendencies. KEGG-based pathway analysis showed high levels of enrich-
ment in the cell cycle, Wnt signaling, p53 signaling, Jak/STAT signaling, TGF- [ signaling, and Toll-like
receptor signaling [153].

The results of my experiments using TCGA HNSCC data show similar baseline gene sets in enrich-
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ment results. Signaling cascades related to fibroblast growth factor receptors (FGFR and FRS2), SHC-
transforming protein 1 (SHC), and PI3K, as well as cell cycle, integrin signaling, and lipid metabolism
and transport are seen in the enriched baseline gene sets. FGFR plays important regulatory roles in
cell death and proliferation, cellular differentiation, and angiogenesis. SHC regulates apoptosis. PI3K
regulates cell death and proliferation, cellular differentiation, and cell motility. All three have been
implicated in tumorigenesis. For example, the FGFR and SHC signaling pathways were among gene
modules identified as being associated with cancer by Petrochilos et al [120].

The results of GSEA using normalized gene sets are more difficult to interpret. Results shows en-
richment among pathways associated with metabolic disease, especially glycogen storage, porphyria,
lipid metabolism and cytokine-mediated signaling. Notably, variants of the FGFR gene are present in
the leading edge of many enriched baseline gene sets, but was not found in enriched normalized gene
sets. This is likely due to the methods I used to convert pathways into gene sets. Reactome pathways
are sometimes annotated with numerous variants of each gene, and in some cases, these variants can
dominate membership within a pathway and the resulting gene set. A benefit of this is the high level
of enrichment that results for that pathway when a representative gene member is differentially ex-
pressed. However, there may be cases where the domination of a gene set by one member gene is less
desirable. The proper conversion of pathway member entities to a gene set is a problem to be explored

in future work.

7.4.3  Lung adenocarcinoma

Lung adenocarcinoma is one of the most common forms of lung cancer. Sequencing and gene ex-
pression data have provided enhanced understanding of the mechanisms underlying this disease. In
a review of genomic studies, Devarakonda et al report that the most common pathways associated
with lung adenocarcinoma are the RTK/RAS/RAF, mTOR, and JAK-STAT signaling pathways, and
pathways of DNA repair, cell cycle regulation, and epigenetic deregulation [45]. In a meta-analysis
of TCGA and Gene Expression Omnibus (GEO) data, Gan et al show that pathways associated with
steroid metabolism, carbohydrate metabolism, protein metabolism, and drug metabolism (both Cy-

tochrome P450 modulated and otherwise) are enriched for the lung adenocarcinoma phenotype [52].
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Bismeijer et al introduce Functional Sparse-Factor Analysis (funcSFA) for characterizing tumor sub-
types. FuncSFA uses GSEA to identify the dominant functional modules associated with each tumor.
Results of FunSFA applied to lung adenocarcinoma expression data show enrichment for gene sets
related to mitochondria, DNA replication, and immune response [27].

The results of my GSEA experiments using the TCGA LUAD gene expression dataset show sim-
ilar enrichment patterns. Among baseline gene sets, enrichment results are dominated by gene sets
associated with cell cycle. Enriched normalized gene sets show more diversity of function, implicating
pathways related to cell cycle, immunity, steroid signaling, gastric cancer, complement and coagulation
cascades, lipid metabolism and others. Again, leading edge genes in baseline gene sets are dominated
by variants of the Histone Cluster 1 (HIST1) gene. Like in the case of HNSCC, this may be a feature
of Reactome pathways. The greater variety of gene sets implicated from the normalized gene sets may

provide a more complete picture of functions disrupted in lung adenocarcinoma disease progression.

7.5 Summary € Discussion

In all cases, some overlap was seen between the leading edge genes of outputs generated using base-
line and normalized pathway gene sets. Although the genes and pathways seen in enrichment output
differ substantially in some cases, as described above, the overall classes of expected pathways can be
found in the experimental results for analysis conducted on all four gene expression datasets. In sev-
eral cases, the results suggest that normalized pathways can reduce redundancy in enrichment results.
Redundant enriched pathways can be seen in several of the baseline analyses. For example, in Table
7.2 and Table 7.6, baseline results show 11 enriched pathways related to coagulation, such as the for-
mation of fibrin clot clotting cascade (rank 3), GRB2 SOS provides linkage to MAPK signaling for
intergrins (rank 7), platelet aggregation plug formation (rank 9), the KEGG pathway for complement
and coagulation cascades (rank 10), the Biocarta intrinsic pathway, describing coagulation (rank 12),
integrin alphallb beta3 signaling (rank 13) and so on. These pathways describe related biological func-
tion. In the normalized analysis, the results include PW_0000475 hemostasis pathway (rank 2) and
PW_0000474 coagulation cascade pathway (rank 16), which correspond to the functions described by

the baseline enriched pathways. Reducing the enriched baseline gene sets related to coagulation to
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two normalized gene sets may be beneficial. It preserves the functions described in the gene sets while
eliminating redundancy and providing room for greater diversity in the rest of the enrichment results.

Similarly, in Table 7.4, baseline enrichment results are dominated by variants of Reactome-derived
gene sets related to cell cycle regulation. Enrichment with normalized gene sets show several gene sets
related to cell cycle and apoptosis, but there is greater diversity in function. Other enriched gene sets
highlight the association of lung adenocarcinoma with immunity, lipid metabolism, and gastric cancer,
among other biological functions.

Future work is necessary to understand how these normalized pathways perform in real world
applications of pathway analysis. For example, there is room for improvement in the process I used to
generate normalized pathways and normalized gene sets. When researchers perform analysis using this
novel pathway dataset, their feedback can be incorporated to improve data quality and performance.

Several points to address in future studies include:

1. How well do ontology-normalized pathways represent the associated biological function,
2. How best to generate gene sets from pathways,
3. How normalized pathway representations perform in other types of pathway analysis, and

4. How best to present the results of pathway analysis exploiting the structure of an organizing

ontology.

[ began addressing the first question in Chapter 4, by evaluating the goodness of the PW-mapping
algorithm. However, I have not performed an exhaustive review of pairs of pathways selected for merg-
ing based on PW class similarity and alignment score. Such a study could inform how to improve both
the PW class mapping algorithm described in Chapter 4 as well as the pathway alignment algorithm
described in Chapter 6.

Regarding how best to generate gene sets from normalized pathways, | have addressed some of
the shortcomings of the current method I use to map pathway member proteins to genes. The cur-
rent approach used is fully automated, and converts each aligned protein/complex entity into a gene

symbol through API calls to Ensembl and BioMart. Pathway gene sets commonly used for GSEA, for
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example, from MSigDB, are subject to curation. In some cases, such as with BioCarta pathways, mem-
ber proteins in a pathway diagram are manually converted into gene symbols. The coverage obtained
through manual curation will have higher breadth and fidelity than the approach I currently use. How
to achieve better, more accurate coverage will be the subject of future research.

Other forms of pathway analysis, such as network-based analysis, take advantage of the connectiv-
ity of each pathway representation. In the current evaluation, [ have not assessed the fitness of normal-
ized pathway representations for pathway analysis that preserves protein and molecular interactions.
There are numerous such analysis techniques, and preserving the interaction network of pathways can
provide significant benefit to the interpretation of results.  hope to explore applications of normalized
pathways in network-based pathway analysis in future work.

Lastly, to aid in interpretability, I also demonstrate how the structure of the Pathway Ontology
can be used to display enrichment results. This demo is a first step towards addressing the last point.
The additional organization of pathways imposed by the structure of the Pathway Ontology can pro-
vide an easy way for clinicians and researchers to summarize enrichment results at different levels of
granularity. Further experiments are necessary to gauge the best way to display and interact with this
underlying structure. However, I believe the prototype successfully demonstrates the value of pathway
organization and structure to the interpretation and presentation of pathway analysis results.

Navigating pathways using a common ontology can assist researchers in understanding enrich-
ment results and forming novel hypotheses. In this chapter, I converted PW class mappings and path-
way alignments into a normalized pathway dataset. I then generated gene sets from each normalized
pathway. Using four public RNASeq expression datasets (2 Alzheimer’s Disease, ] HNSCC, 1 lung
adenocarcinoma), I evaluated the performance of these normalized gene sets compared to standard
baseline gene sets retrieved from MSigDB. Comparative results suggest that primary functional mod-
ules shown to be enriched in previous studies are largely found in the enrichment results of GSEA
performed with both baseline and normalized gene sets. There is also some indication that PW-based
integration of pathway data can reduce redundancy in enrichment results by combining semantically
similar pathways from different databases. A prototype visualization also points to the benefits of the

Pathway Ontology’s hierarchical organizational structure, which can be used to visualize the associ-
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ations between different clusters of gene sets based on parent function. I believe significant benefit
can be derived from the integration and normalization of pathway data from different databases. This
work shows some of the promises of this ontology-driven approach for integrating pathway data and

its applications to real-world data.
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Chapter 8

SUMMARY

Recent advances in sequencing methods, animal models, sequence annotation tools, and other de-
velopments have led to an explosion of genomic data. It has become increasingly clear that human
physiology results from the complex interactions of many genes and molecules, translating into differ-
ent biological functions within and between an array of tissues and cell types. Many complex diseases
have polygenic causes. There can be numerous genetic markers relevant to disease pathogenesis and
progression. Identifying these groups of interacting genes is critical for the systems-level understand-

ing of biology and disease.

Pathway analysis plays an important role in processing and understanding genomic data. Pathway
analysis takes advantage of pre-defined biological pathways. These pathways are tied to function, and
provide an alternate lens for viewing the correlations and interactions between genes, proteins, and
other molecules. Pathway databases provide access to thousands of pathways created through manual
curation of the literature and experimental results. The pathways within these databases represent
the distilled knowledge of the research community. Pathways are created for a variety of reasons, but
rarely are they validated specifically for use in pathway analysis. As a result, users face the difficult
decision of choosing the appropriate pathway dataset for use in analysis. There are no guidelines for
choosing a pathway dataset, and users may make decisions based on availability, popularity, or habit.

Unfortunately, the choice of different pathways can alter pathway analysis results [58, 87].

To minimize result inconsistencies caused by choosing different pathways, and to increase the
breadth of coverage over more biological functions, many users combine pathways from different
databases. Successful combination of pathway datasets requires two things: 1) pathway data from
different databases must inter-operate, and 2) duplicate pathways from different databases must be

identified and removed. The introduction of pathway data exchange standards and pathway aggrega-
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tor databases improve query and access to integrated pathway data, largely addressing the first point.
However, naive merging of pathway datasets do not adequately identify duplicate pathways.

Statistical methods have been used to identify and merge pathways that overlap on entity member-
ship [142, 25]. Pathways with sufficient entity overlap are merged into superpathways. These methods
successfully reduce entity overlap between superpathways. However, because the pathways merged
using these methods may not be semantically related, the resulting superpathways can be challenging
to interpret. An ideal method for integrating pathway data should identify and remove redundancies
in the resulting combined dataset, while preserving or even emphasizing the semantic relationships
between various pathways to improve interpretability.

It is for these reasons that I proposed and demonstrated an ontology-based integration of path-
way data. The previous chapters detailed the various steps I undertook to construct an ontology-
normalized pathway dataset for pathway analysis. I organized pathways from seven source databases:
HumanCyc, KEGG, NCI-PID, Panther, Reactome, SMPDB, and WikiPathways, using the class hier-
archy of the Pathway Ontology. I then formed normalized pathways for each cluster of pathways as-
sociated with a particular PW class. The normalized pathways generated in this fashion have lower
redundancy, yet retain their semantic association with biological function. My research contributions

are as follows:
+ A machine learning model that predicts mappings between pathways and classes in an organizing
ontology

+ A typology of knowledge representation differences between pathway databases

+ A network alignment algorithm for aligning pathway graphs, and

+ A normalized pathway dataset, which was evaluated in GSEA using public gene expression datasets.
Using a shared ontology, the Pathway Ontology, I first organized pathways of different provenance

based on semantic similarity. In Chapter 4, I describe the procedure for mapping pathways to PW

classes. I compared two models, a baseline bag-of-words (BOW) model similar to the existing string-

based search used by PW curators, and a neural network (NN) model trained on gold standard and
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bootstrapped data. [ derived training data from gold standard mappings in the PW, the Unified Medical
Language System, and bootstrapped mappings between Reactome pathways and PW classes. I then
trained a neural network model based on learned vector representations of pathways and PW classes.

Curators at the Rat Genome Database annotated a random sample of results from both models
to determine precision and recall. Compared to the BOW model, the NN model produced mappings
with lower precision per mapping (BOW: 0.49, NN: 0.39), but significantly higher recall per pathway
(BOW: 0.42, NN: 0.78). Because the goal of this predictive model is to assist curators in selecting the
appropriate class mapping for each pathway, a higher recall per pathway is preferred. Higher recall
offers curators more options for each input pathway. Based on the evaluation results, the NN model
was able to produce relevant recommendations for 78% of all pathways.

The NN model was used to generate mappings for pathways from HumanCyc, Panther, Reactome,
and WikiPathways to classes in the PW. These, in addition to the existing mappings to KEGG, NCI-PID,
and SMPDB, were used to derive clusters of semantically similar pathways for merging.

Through reviewing similar pathways from seven databases, I then produced a typology of knowl-
edge representation differences between pathway databases, discussed in Chapter 5. Four types of in-
consistencies were detailed, those of annotation, existence, reaction semantics, and granularity. Anno-
tation inconsistencies involve disagreements over cross-reference identifiers. They occur either when
cross-reference identifiers are missing, inaccurate, or disagree between two databases in reference to
the same semantic entity. Existence inconsistencies occur when entities or relationships are present
in one representation of a pathway from one database, but are missing in the same pathway from an-
other database. The third type of inconsistency, that of reaction semantics, can occur either when a
pathway provides internally inconsistent reaction directions, or when the directions of equivalent re-
actions from two databases disagree. Lastly, granularity inconsistencies can occur either at an entity
level, e.g., complexes versus proteins, or at a reaction level, where intermediate reactions can either be
given or omitted. I offer examples of these inconsistencies in Chapter 5.

In Chapter 6, I then use this typology to design a graph alignment algorithm used to align pathways
and generate normalized pathways. The algorithm takes in a pair of pathways and produces an align-

ment between the entities in the two pathways. The alignment is based on similarity scores computed
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between the entities from the two pathways. Rule-based similarity scores and representation learning
similarity scores are combined into an overall similarity. Rule-based similarity values are computed
based on a set of manually defined rules, which define similarity based on the relationships of cross-
reference identifiers given in the two pathways. Queries to external databases such as ChEBI, UniProt,
Ensembl, and BridgeDB are used to determine synonymy between given identifiers. The represen-
tation learning similarities are computed between vector representations learned for each node. The
vector representation for an entity is learned from its lexical attributes, as well as its topological rela-
tionship to the overall pathway graph. A greedy algorithm is used to generate an entity-level alignment
over the combined rule-based and representation similarities. I provide several examples of alignment
output in Chapter 6. These outputs show that the algorithm is able to generate good alignments, but
suffers from more inaccuracies when pathway data quality is low.

Applying the alignment algorithm to pathways clustered by PW class, I generated a set of normal-
ized pathways. I performed a comparative evaluation of the normalized pathways in Gene Set Enrich-
ment Analysis (GSEA) using public gene expression datasets. In Chapter 7, I described the procedures
involved. For each gene expression dataset, I first conducted GSEA using baseline pathway-derived
gene sets from MSigDB. I then conducted GSEA using gene sets derived from the PW-normalized
pathways. [ compared the enrichment outputs for the two analyses, identifying functions represented
in both, and qualitatively assessing the presence of redundancies in the baseline output that were elimi-
nated in the normalized output. [ also quantitatively computed the entity membership overlap between
the baseline enriched gene sets and normalized enriched gene sets using pairwise Jaccard similarity.

The results of evaluation showed that PW-normalized pathways tend to produce fewer enriched
pathways in output with lower rates of redundancy between output pathways. The pairwise Jaccard
index computations showed that the enriched normalized gene sets tend to be more dissimilar to one
another than the enriched baseline gene sets, which is also suggestive of lower redundancy among the
normalized pathways.

[ also created a prototype visualization based on the hierarchical structure of the Pathway Ontol-
ogy. The visualization allows users to browse enrichment outputs based on the semantic inter-relations

between enriched pathways given by the class structure of the PW. Such methods for browsing enrich-
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ment outputs may aid the interpretation of pathway analysis results.
8.1 Limitations

Several limitations affect the generalizability of this work. First and foremost, is the limited generaliz-
ability to other pathway analysis methods. The current normalized pathways have not been tested for
other pathway analysis methods, and in their current form, can not be easily used for certain techniques
that incorporate pathway topology into the analysis of differential gene expression.

[ have conducted an evaluation of these normalized pathways in GSEA, which is one type of pathway-
adjacent analysis among many. Although GSEA is a popular method, it simplifies pathway representa-
tions to gene sets, and does not use information such as pathway molecular interactions or topology.
Third-generation pathway analysis approaches [87] that incorporate pathway topology into enrich-
ment computations necessitate the presence of a pathway network. The alignment algorithm described
in this dissertation does not include a way to generate a merged graph topology. The algorithm out-
puts entity-level alignments, and relationship alignments would be necessary to construct an aligned
network. Further work is therefore necessary to evaluate against other pathway analysis methods.

There is no systematic way for validating pathway data for different analysis methods. Part of the
problem is the lack of standardized metrics for evaluating and comparing pathway analysis methods.
A recent publication proposes some possible metrics [154], which if adopted broadly, could improve
the ability to validate individual analysis methods. These metrics could also be used to compare the
fitness of pathway datasets used in analysis.

The lack of broad manual validation of Pathway Ontology mappings is another limitation to this
work. Curators were able to assess only a portion of pathway instance to PW class mappings produced
by the predictive model. Ideally, all instance-class mappings would be manually validated for correct-
ness. Only validated pathways would then be used to generate normalized pathways. This would re-
duce the error introduced through incorrect mappings and should dramatically improve the semantic
cohesiveness of each normalized pathway.

Other factors that may affect the accuracy of pathway to PW class mappings are pathway contexts

and metadata. For example, some pathways are defined for specific cell types, or are implicated in spe-
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cific diseases. These contexts can be useful for identifying the appropriate PW class. Incorporating
such information in ontology mapping could produce improved mapping results. However, inconsis-
tencies in pathway metadata prevented me from taking advantage of these contexts during mapping.
Lastly, the alignment algorithm [ used to align pathway graphs may not be directly generalizable to
pathways from other databases. The algorithm is designed based on a typology of knowledge repre-
sentational differences identified from seven pathway databases. It is likely that other inconsistencies
would be observed when more databases are included for study. Pathway data in other data standards
(besides BioPAX or GPML) could also introduce further complication. Therefore, the current align-
ment algorithm may need to be adapted when applied to pathways from databases outside the scope
of this study. Other pathway databases, especially for-profit ventures such as MetaCore and Ingenuity
Pathway Analysis, play important roles in pathway analysis. The current methods I discuss for gener-

ating normalized pathways are not directly applicable to these other databases.

8.2 Future Work

There are several directions going forward that extend upon the ideas proposed and demonstrated in
this dissertation. Below, I propose ways to improve the generalizability and impact of this work, as well
as some potential future projects. I first discuss ways of improving the current pipeline for organizing
pathway data and generating normalized pathways. I then discuss how to increase and assess the broad

applicability of ontology-based pathway organization.

Improvements to overall pipeline

Improvements to both the ontology mapping pipeline and the pathway alignment algorithm are likely
to improve the quality of normalized pathways. An obvious first step to improving the outputs of the
pathway normalization pipeline is to improve the outputs of either of these two models.

In Chapter 4, I described a supervised model for predicting Pathway Ontology class mappings. The
model is meant to assist PW curators in selecting the appropriate class for each pathway instance. In this
task, there is reasonable success. A 0.78 recall per pathway indicates that the model is able to present cu-

rators with high quality PW class recommendations for a large portion of pathway instances. However,



127

these same results show that more than a fifth of all pathways do not receive relevant recommendations.
Of these poorly mapped pathways, some may not have corresponding classes in the PW, and further
development of the ontology is necessary to incorporate these pathways into the PW model. I briefly
discussed this issue using the example of a PW branch (PW:0000819 “innate immune response”) that
is insufficiently developed to represent several pathways from Reactome. Ontology development is an
ongoing process, and the Pathway Ontology will continue to be improved and developed in parallel
and as a response to the results of this work. As newer version of pathway databases and the Pathway
Ontology are released, the normalized pathways resulting from the methods described in this work
may need to be reevaluated for use in pathway analysis. Due to the use of a unified ontology, however,
reproducibility should be better than in studies using different versions of data from many pathway
databases. Ontology change management can be used to track ontological changes between different
versions and to generate mappings between current and future versions of the ontology [97, 88].

Other aspects that can be improved in the mapping model are its mapping precision and output
granularity. Some proposed recommendations were found to be irrelevant on a per mapping basis (ppm
= 0.39). However, all generated mappings for HumanCyc, Panther, Reactome, and WikiPathways path-
ways are used to cluster pathways for alignment and merging. Many pathways subject to the alignment
procedure may therefore be incorrectly associated with an ontology class. Although the mapping and
alignment scores are used to determine whether or not two aligned pathways are actually combined
into a normalized pathway, some errors will propagate between mapping and normalization. As part
of future work, manual curation of PW class mappings will improve the quality of pathway mappings
used for pathway clustering and normalization.

Along this same vein, the current mapping model can be altered to better distinguish between exact
mappings (pathway is an instance of some ontology class) and related mappings (pathway is an instance
of a related ontology class: parent, child, or sibling). Especially in cases where no exact mapping exists
in the PW, identifying related classes should aid in both the final mapping decision as well as highlight
areas in the PW in need of further development.

Improvements to the pathway alignment algorithm could also increase the quality of normalized

pathways. The current algorithm was designed based on studies of knowledge representational incon-
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sistencies between different pathway databases, and it relies heavily on entity-level features such as
available cross-reference annotations (through the calculation of rule-based entity similarity) and lex-
ical features (representation-based entity similarity). Although both lexical and topological (through
struc2vec) features are computed, interactions between them are not well utilized. There are numer-
ous other graph alignment algorithms, incorporating features such as node similarity, edge similarity,
or structural equivalence. Many are based on representation learning, such as REGAL [66] or vari-
ous methods for learning knowledge graph embeddings [148, 100, 114]. However, I believe the needs
of pathway alignment may be different, and in many ways, simpler than the strategies employed by
these methods; the reason being that pathways are small graphs that are ideally (and in most cases)
well annotated with identifier information. Further iteration on the alignment algorithm, perhaps by
integrating more data from reference databases and improving synonymy identification, are the next

steps in improving the alignment algorithm.

Using normalized pathways for other pathway analysis

Generalizability to other pathway analysis methods is another broad direction for future work. I have
evaluated the gene sets derived from the normalized pathways in GSEA, but I have not validated these
normalized pathways for other pathway analysis methods. First, I need to generate a normalized path-
way topology for each group of pathways that are merged together. Because the alignment algorithm I
currently employ is entity-driven, it does not produce a connected pathway graph as output. There are
several methods for producing such a graph from the entity-level alignments, for example, by adopt-
ing a graph from one of the pathways merged, or deriving edge connections based on the successful
matching of source and target nodes. A third option would demand a re-engineering of the alignment
algorithm, to produce edge alignments in addition to node alignments. Yet another democratic option
could take the union of all edges to the aligned entities, and adjust the strength of each edge based on
the number of databases that include that edge.

Once these normalized pathway graphs are generated, they can be assessed in various other forms
of pathway analysis. There are dozens of these methods, detailed in various literature reviews [87,

53]. Many analysis methods are restricted in the pathway data they accept as input, and some are in
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various states of non-maintanence. An exhaustive validation of normalized pathways in all available
pathway analysis methods is not suggested. However, I aim to demonstrate the adaptability of these
normalized pathways to different classes of analysis methods. For example, an evaluation in topology-
based pathway analysis methods would provide more evidence of these normalized pathways operating

in a similar fashion to, and perhaps exceling over, existing pathways.

Exploring ontology-based pathway visualization

[ also look forward to assessing the utility of ontology-based result visualization in pathway enrichment
analysis. In Chapter 7, | presented a prototype visualization of enriched pathways using the hierarchy
of the Pathway Ontology. Enrichment scores of pathways in the same ontological subtree could be
summed in parent pathway nodes, allowing users to explore enrichment at different granularities of

biological function.

Visualization of interacting pathway networks and pathway analysis results is an open research
topic. One goal of these visualization tools is to better enable users to identify interactions between
different pathways. This is done by illustrating functional overlap. There is no one way to quantify
functional overlap between pathways. The Cytoscape Enrichment Map, for example, indicates overlap
using shared entity membership, which is visualized as links between the nodes in a network of en-
riched gene sets [102]. The Pathway Coexpression Network uses gene coexpression computed from
microarray data to compute overlap between pathways [122]. In the work presented in this disserta-
tion, the structure of the Pathway Ontology can be used to model the semantic relationships between

various pathways, and provides a novel way of visualizing these relationships.

Further study is necessary to gauge the usefulness of this type of visualization. User studies can
help illuminate vital features. Researchers can be presented with these interactive visualizations while
interpreting analysis results. An assessment of their thought process and needs could be used to im-
prove the design of the result visualization. I suspect that multiple types of visualizations showing
different measures of pathway interaction may provide researchers with the best toolset for exploring

enrichment results.
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8.3 Conclusion

Pathways have become an ingrained and vital way of modeling biological systems. They help us under-
stand how individual biochemical interactions combine to produce the biological functions that make
up human physiology. They can also help us identify the mechanisms of disease, when these normal
functions go awry. As increasing data are collected on the various molecular interactions occurring in
different tissues, we can elucidate the structure, role, and interactions of previously unknown biolog-
ical pathways.

Pathway analysis can help researchers understand genomic data through the lens of pathway and
network models. Pathway analysis methods depend heavily on the availability and interoperability
of pathway data. In this dissertation, I outlined how an ontology can be used to organize disparate
pathway data. The semantic structure of an ontology can be used to identify and reduce redundancy
among pathway data, and provide novel ways of visualizing and interacting with sets of pathways.

There is great value in ontology-driven pathway data integration. Using the methods I detailed
in this dissertation, I am able to reduce redundancy in the combined pathway data while maintaining
the semantic meaning associated with each pathway, in other words, the biological function it repre-
sents. The resulting ontology-normalized pathways allow researchers to preserve existing analysis ca-
pabilities while deriving maximal utility from each pathway’s functional role and relationship to other
pathways.

The true test of these methods rests on how well these normalized pathways perform in genomic
analysis. It is my hope that others will be inspired by these methods for organizing biological pathway
data. I also hope that fellow researchers will use these normalized pathways to explore and interact with
genomic data. Sometimes it simply takes a different lens to discover something novel: a mechanism

for disease, an unknown upstream regulator, a new hypothesis.
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Appendix A
GSEA RESULTS: TOP ENRICHED PATHWAYS

Enrichment output are provided for the ADTBI (forebrain, parietal neocortex, and temporal neo-
cortex) and MSBB (Brodmann areas 10, 22, 36, and 44) gene expression datasets. The top 20 ranked
baseline gene sets and the top 20 ranked normalized gene sets associated with each disease phenotype

are provided for comparison.
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Appendix B
INTERACTIVE VISUALIZATIONS OF ENRICHED PATHWAYS

Interactive visualizations are useful tools for navigating and interpreting results. The following fig-
ures provide visualization of the GSEA enrichment results for the TCGA HNSCC and TCGA LUAD
gene expression datasets. Normalized gene sets associated with PW classes are displayed in a hier-
archical fashion with their enrichment scores. Users can collapse nodes in the PW class hierarchy to

aggregate enrichment scores into parent classes.
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Figure B.2: Collapsed view of the GSEA output of the HNSCC dataset.
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Figure B.4: Collapsed view of the GSEA output of the LUAD dataset.
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