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Biological pathways are useful tools for understanding human physiology and disease pathogenesis.

Pathway analysis can be used to detect genes and functions associated with complex disease pheno-

types. When performing pathway analysis, researchers take advantage of multiple pathway datasets,

combining pathways from different pathway databases. Pathways from different databases do not eas-

ily inter-operate, and the resulting combined pathway dataset can suffer from redundancy or reduced

interpretability.

Ontologies have been used to organize pathway data and eliminate redundancy. I generated clus-

ters of semantically similar pathways bymapping pathways from seven databases to classes of one such

ontology, the Pathway Ontology (PW). I then produced a typology of differences between pathways by

summarizing the differences in content and knowledge representation between databases. Using the

typology, I optimized an entity and graph-based network alignment algorithm for aligning pathways

between databases. The algorithmwas applied to clusters of semantically similar pathways to generate

normalized pathways for each PW class. These normalized pathways were used to produce normal-

ized gene sets for gene set enrichment analysis (GSEA). I evaluated these normalized gene sets against

baseline gene sets in GSEA using four public gene expression datasets.

Results suggest that normalized pathways can help to reduce redundancy in enrichment outputs.

The normalized pathways also retain the hierarchical structure of the PW, which can be used to visual-

ize enrichment results and provide hints for interpretation. Ontology-based organization of biological



pathways can play a vital role in improving data quality and interoperability, and the resulting normal-

ized pathways may have broad applications in genomic analysis.
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Chapter 1

OVERVIEW

Molecular interactions form complex control networks involving genes, proteins, protein complexes,

and chemical species. These networks, when organized around biological function, are known as bio-

logical pathways. Pathways describe important biological functions; for example, a glycolysis pathway

describes how glucose is broken down into the three-carbon sugar pyruvate, and an apoptosis path-

way describes how controlled cell death is managed and controlled at the cellular level. Pathways can

describe metabolic, signaling, regulatory, disease, and other biological processes. Together, they con-

stitute knowledge about our overall physiology, describing the processes that make up our inter- and

intracellular control systems.

Using network and pathway models, we can interpret genomic data at a functional level, leading

to insights into healthy biological mechanisms, as well as disease pathogenesis and treatment. The

gene regulatory relationships that make up biological networks are vital for understanding how tissues

respond to internal and environmental changes, and also for illuminating the regulatory drivers of

disease. Complex diseases typically do not have singular genetic causes. A host of genetic factors come

into play, driving differences in disease risk, disease progression, and a patient’s response to therapy.

Extensive developments in sequencing techniques, animal models, and genome annotation have

led to an explosion of data for analysis. Motivated by the goal of understanding how our genetics

predispose us to certain diseases and affect their course and treatment, researchers have developed

numerous statistical methods to discover the associations between genetic variants and disease. From

genome wide association studies, which take a gene-centric approach, to pathway analysis tools that

take a pathway-centric approach, there have been rapid advancements of analysis tools across the field.

Because gene-level statistics are often difficult to interpret and have lower statistical power, there is

increasing interest and reliance on network- and pathway-centric approaches. The results of these
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approaches can lead to novel hypotheses regarding disease ideation and treatment targets, and drive

future waves of experimentation in diagnostics and treatment.

Pathway databases are repositories of curated pathway data, which can be used for secondary ap-

plications like pathway analysis. The growth of pathway databases has coincidedwith the development

of pathway analysis tools and techniques. However, there is no clear link between analysismethods and

pathway data sources, since most databases have not been validated for all analysis methods, or vice

versa. There are numerous pathway databases, covering a variety of biological functions. Yet users face

challenges in choosing the correct pathway dataset. The choice of different pathway datasets can lead

to variation in analysis results [58]. For example, the selection of BioCyc pathways would yield results

focused on metabolic functions, and the selection of Panther pathways on signaling functions, due to

the specialization of these pathway databases. Additionally, the same pathway may be defined differ-

ently in two databases, and one definition may be significantly represented in results while the other is

not. These differences are the result of a combination of factors, both the silo-ing of pathway function

into subdomains, and the different choices of knowledge representation made by various databases.

Although the problem can seemingly be mitigated by combining different pathway datasets, there

are impediments to this breadth-driven approach as well. Users face challenges in integrating data

across multiple sources. First, sources may not use the same standards for pathway representation, or

theymay only partially observe such standards. Second, theremay be representational or semantic dif-

ferences even when the same syntactic standard is followed. Bauer-Mehren et al in their 2009 review

of pathway databases and analysis techniques details the “strong need of tools for the automatic inte-

gration of different pathways in a biological meaningful way,” for which the main challenges discussed

were annotation problems and inconsistencies between pathway representations [24]. In subsequent

years, resources such as Pathway Commons and ConsensusPathDB have eased pathway retrieval from

multiple pathway databases, but no clear method for pathway data integration has been introduced.

Statisticalmethods such as ReCiPa [142] and PathCards [25] havemade themost progress. Thesemeth-

ods address pathway integration by merging pathways from different databases with a high degree of

entity membership overlap. These methods rely heavily on proper entity annotation in source path-

ways, whichmay not be present, and also fail to address how functional meaning is retained or defined
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in the merged pathways. If these issues can be addressed, the research community would be able to

derive greater value from existing pathway resources.

The previous arguments indicate a need for better integration of pathway data. Ontologies have

been successfully used to integrate data fromdisparate biomedical sources [101, 108, 134]. Anontology-

based organization and integration of pathway data could be used to improve pathway data quality and

provide structure for intepreting the results of genomic analysis. In this dissertation, I propose and

demonstrate ontology-driven methods for organizing, combining, and presenting pathway data from

various databases for pathway analysis. My contributions include:

• a classification of pathways from seven pathway databases using an organizing ontology, specif-

ically the Pathway Ontology [119],

• a typology of differences between pathway databases to inform pathway alignment,

• an algorithm for aligning pathway graphs, and

• an ontology-based normalized pathway dataset for pathway analysis.

To begin, I first discuss the state of pathway data (Chapter 2) andmotivate the need for pathway data

organization and integration (Chapter 3). Through the use of a unifying ontology, the Pathway Ontol-

ogy, I organize pathway data frommultiple databases under a single hierarchical structure, discussed in

Chapter 4. I then construct a typology of observed inconsistencies between pathway databases (Chap-

ter 5), which can be used by pathway editors to assist in quality assurance, auditing, and automated

review, and also forms a framework for aligning and merging semantically similar pathways from dif-

ferent databases. In Chapter 6, I discuss the design and implementation of an alignment algorithm for

pathway graphs. As the final portion of this work, discussed in Chapter 7, I generate a normalized

gene set dataset using the results of pathway alignment. I then perform an evaluation of the normal-

ized gene sets by comparing their performance against standard baseline gene sets in pathway analysis.

The normalized pathway-derived gene sets benefit from reduced redundancy, while maintaining the

functional meaning and organization imparted on them by an ontological class hierarchy. The results

suggest that ontology-based organization improves biological pathway data repurposed for secondary
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use. The inherent ontological structure of the integrated pathway data can also be used to visually assist

in the interpretation of analysis results. The generated normalized gene sets increase options for in-

formaticists working with genomic data, and pave the way forward for the next generation of pathway

analysis tools.
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Chapter 2

BACKGROUNDON PATHWAYS

Biological pathways play an important role in understanding and modeling physiology and disease

pathogenesis. Pathways have been generated through extensive human curation of experimental re-

search and published literature. Together, these curated pathways provide a summary of the current

state of knowledge surrounding biological function. Pathways are vital not only as models of biology,

but are tools that assist in exploratory research. They have been repurposed to provide understand-

ing of disease phenotype through the analysis of experimental data. The wealth of pathway resources

is a boon to systems biologists and bioinformatics researchers, but the large number and variety of

pathway data, and variability in their quality can lead to challenges in selecting, using, and interpreting

pathways.

This work focuses on human pathways. Although resources for other model organisms are plen-

tiful, human pathways were chosen to limit the size of these data. In this chapter, I provide some

background information on biological pathways that will enable the reader to better understand the

work discussed in the remainder of this dissertation. I begin by introducing the concept of biological

pathways and how they are used to model biological processes. I then discuss the pathway-related ter-

minology used throughout this work. Lastly, I describe a number of pathway data resources, as well as

some basic uses of pathways in functional enrichment analysis.

2.1 Biological pathways

Biological pathways are models of biological process. Contemporary pathways are often modeled as a

type of graph data, where nodes represent entities both physical and conceptual, and edges represent

the relationships between nodes. These nodes and edges reflect the biological entities and relationships

that result in some change or function in the body. Most pathways consist of two types of nodes, those
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representing physical entities, things like proteins ormolecules, and those representing processes, such

as biochemical reactions. Pathways also contain edges, which describe the various types of interactions

occurring between physical entities and processes. Interactions can take many forms, such as partici-

pation in a biochemical reaction, modification of reaction rates (activation or inhibition), or formation

of a complex.

The basic building block of many pathways is a biochemical reaction. In a typical biochemical

reaction, reactant entities are converted into product entities, usually through the action of an enzyme

or catalyst (modifier), as in:

M
↓

A B
(2.1)

In this simplistic reaction representation,A represents the reactant,B the product, andM themodifier.

The node in themiddle represents the reaction entity. Biochemical reactions can have large numbers of

reactants, products, or modifying enzymes, so A, B andM are sets of entities. The inputs and outputs

of various interactions can be one of many types of biomolecular entities, such as genes, proteins,

molecules, ions, DNAs, RNAs, or other chemical species. Other types of interactions include transport

reactions and binding reactions that create complexes.

Outside of reactants, products, and modifier, reactions may also include information about the

environment (whether the reaction takes place internal or external to a cell or organelle), the type of

modification (inhibition versus activation), or stoichiometry (howmany of each entity is consumed or

produced). A pathway links together many of these such interactions in a step-wise manner. Common

relationships that are described in pathway models are regulatory relationships (such as activation or

inhibition), and temporal relationships (how interactions are ordered). These concepts have largely

been encoded in theBiological PathwayExchange (BioPAX) language, one of themost common formats

for exchanging pathway data [43]. Developed as a community standard, BioPAX attempts to provide

a comprehensive model of biological processes. Throughout this dissertation, I borrow terminology

from the BioPAX language to describe the components of pathways.

Pathways can describe any biological function, and may in turn be categorized as metabolic, sig-
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naling, gene regulatory, or disease pathways, among others [3]. Metabolic pathways describe how large

molecules are broken down by the body, usually for energy. Examples include carbohydrate or lipid

metabolism. Metabolic processes can often be broken down further into synthesis, salvage, or catabol-

ic/degradation pathways. Signaling pathways describe signal transduction, or how cells interact with

their environment, and process messages from extracellular particles, leading to a change in cellular

state. Gene regulatory pathways describe how molecular regulators interact to alter gene expression.

Disease pathways describe how changes in cell regulation and interaction lead to disease phenotype.

These categories of pathways are not mutually exclusive, and in fact, many pathways can take on prop-

erties of more than one of these categories, e.g., many gene regulatory pathways are also signaling

pathways.

Although most pathways describe a specific biological function, all pathways interact. The assem-

blage of all pathway interactions together into one graph creates a biological network. Pathways often

need to be composed into a network view to enable the detection of relationships across functional

boundaries [72]. The boundaries of individual pathways within the network allows the network to be

interpreted in terms of functional modules. These pathway boundaries are somewhat arbitrary, and

can be defined in various ways by pathway editors. Although most researchers in a subfield may agree

on the primary reactions defining a certain pathway, many related or secondary reactions may or may

not be included in a particular pathway representation. The modularity of biological function intro-

duced by pathways is not necessarily inherent in nature, but is rather added by researchers and pathway

editors as a way of gaining better insight into the relationship between different functions.

Pathways have been created for a variety of purposes. First, they are diagrammatic, and provide a

visual aid for understanding biological interactions. They are also useful for understanding the con-

nections between different biological functions, as pathways can be assembled into a network view.

Most importantly, pathways are computable. They serve as foundational models on which other appli-

cations or analyses can be performed. For example, biosimulation models can be built upon pathway

definitions. By associating kinetic coefficients to pathway members, researchers can simulate the ac-

tivity and feedback loops governing these interactions [47, 111]. Pathways have also been used to pro-

vide understanding of inter-species phylogenetic relationships, by studying how canonical pathways
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compare between species [90]. This dissertation focuses on the usage of pathways in pathway analysis

[87], a class of statistical methods used to analyze and make sense of gene expression data. A primary

goal of pathway analysis is hypothesis generation. Biologists and clinicians can use the results of path-

way analysis to identify candidate genes and gene modules responsible for a disease phenotype; these

candidate genes can then be explored as drug targets. For example, pathway analysis has been used

with great success in understanding late-onset Alzheimer’s Dementia, a complex disease variant that

has eluded understanding of its genetic risk factors. Pathway-based analysis has been used to identify

shared features of differentially expressed genes and elucidate the genetic mechanisms of Alzheimer’s

pathogenesis and progression [55].

Because pathways can be used in so many ways, pathway data have also been created with dif-

ferent user groups in mind. This leads to inherent differences in pathway knowledge representation

between different databases. In this dissertation, I attempt to understand and describe some of these

differences, and determine how they affect the use of pathways in secondary analysis. I also propose

and demonstrate ways of reorganizing and combining existing pathway knowledge into a new dataset

more suitable for pathway analysis.

2.2 Pathway terminology

For the remainder of this dissertation, I will use the following terminology to refer to various parts of

pathway models. Many of these terms are borrowed directly from the Biological Pathway Exchange

(BioPAX) language (discussed in section 3.1), and will hopefully be familiar to many readers. The gly-

colysis pathway is provided as a reference example in Figure 2.2.

Each pathway consists of a series of pathway steps. Each step describes an interaction, such as a bio-

chemical reaction, complex formation, or transport. Although other types of interactions are documented,

such as deduced causal ties or hypothetical interactions, I focus on the above classes of interactions in

this work. A biochemical reaction has reactants (which I also refer to as inputs, or the left hand side),

products (also outputs, or right hand side), and modifiers (catalyzing enzymes or molecules). The reac-

tants, products, andmodifiers are sets of entities (proteins, protein complexes, molecules, DNAs, RNAs

etc) that participate in the reaction. Each of these entities can be associated with a stoichimetric con-
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Figure 2.2: The glycolysis pathway. A pathway diagram (left) and an example computational represen-
tation (right) of a single reaction (red box) in BioPAX format, derived from Reactome pathway R-HSA-
70171.

stant, denoting the ratio of entities in the reaction. All reactants, products, and modifiers are physical

entities. In the example pathway, the first step is the conversion of glucose into glucose-6-phosphate

(G6P). The reactants of this reaction are glucose and ATP, the products are G6P and ADP, and themod-
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ifier is hexokinase (HK). The entire glycolysis pathway consists of ten pathway steps, denoted by the

numbers 1-10.

Becausemany reactions are reversible, the distinction between reactants andproducts can be rather

unclear. A reaction proceeding in the opposite direction will swap its annotation of reactants and

products. Therefore, I also introduce the term participants, which describes all reaction participants

regardless of the direction of interaction. A more in depth description of pathway components and

relationships is given in Chapter 5, in which I assess the existing state of pathway knowledge repre-

sentation and compare choices made by different pathway curators.

Other attributes can be associated with pathway data. For example, many pathways describe pro-

cesses associated with a specific cell type. Pathways may also include kinetic constants, or environ-

mental variables, which can be used in other applications of pathways such as biosimulation models

[34, 47], or tissue-specific modeling [147]. For the purposes of this dissertation, these other attributes

are not considered.

Pathways diagrams are the way most users engage with pathways. However, pathways often have

an underlying data representation that is computable. A pathway diagram is a visual display of pathway

information, much like Figure 2.2 (left). The underlying pathway data representation is computable, and

is often described using an XML-like syntax. An example of a pathway data representation is given in

Figure 2.2 (right), showing the BioPAX representation of one reaction from the glycolysis pathway, the

conversion of phosphoenolpyrute and ADP to pyruvate and ATP. The representation includes inter-

actions between the reaction participants and the reaction entity, cross-reference identifiers of physi-

cal entities from external databases, PubMed references for the reaction, as well as other information.

These data representations are useful for understanding the complex network of relationships between

entities in this pathway, formodeling the behavior of various pathway components, and for integrating

pathway data with other types of data.

These pathway diagrams and data representations are generated and collected in repositories of

pathway data that I refer to as pathway databases (see section 2.3). Editors at each database author and

curate a selection of pathways. Users access pathways from various databases and adapt the pathways

for secondary use. Statistical analysis of gene expression data that takes advantage of pathway repre-



11

sentations or data derived from pathways will be referred to as pathway analysis (see section 2.4).

2.3 Pathway databases

Describing and studying biological pathways may be useful for understanding biological and disease

processes. Biological functions and processes follow from complex networks of interactions among

gene products and molecules. Through the study of pathways of known biochemical reactions, we

can gain deeper insights into these interactions. Many of these relationships and reactions have been

catalogued in pathway databases such as Reactome [40], BioCyc [31], the Kyoto Encyclopedia of Genes

and Genomes (KEGG) [83], and others.

As of June 2018, following the last major update of pathguide.org, the compendium of pathway

resources lists over 690 pathway and pathway-related databases, of which 79 are human pathway

databases [21]. Pathguide.org provides a comprehensive listing of biological interaction databases

and database metadata, such as each resource’s last update time, a summary of its pathway data, its

licensing and usage restrictions, and the standardized formats in which data are provided. Some new

databases or for-profit pathway resources are not listed on PathGuide, yet the large number of cata-

logued databases suggests continued growth and interest in pathway-related resources. Of these hun-

dreds of listed databases, only a subset contain computable pathway data, and a subset yet of these

contain data relevant to humans.

Pathway databases play several roles in the creation, curation, storage and querying of pathway data

and metadata. Many editors of pathway databases take on the duty of creating and editing pathways

by combining interactions detected in experimental data or summarizing pathways based on relation-

ships described in the literature. Compiling these interactions together into a pathway allow us greater

insight into the relationships between molecular species. Encoding these relationships in a standard

pathway language also allows a pathway to be used by other researchers and integrated with existing

pathway data. Creation and curation are usually conducted manually, with domain experts searching

the literature and extracting relevant interactions. These are then combined into pathway graphs and

attributed to the source data or literature.

Many pathway databases provide curator tools that editors use to edit and manipulate pathway
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data. For example, WikiPathways uses a web-based version of PathVisio to enable online collaboration

[140]. Other tools like Cell Designer [51] or ChiBE [20] are open-source pathway editing tools used

by researchers to create BioPAX pathways. A variety of tools have been create to help researchers

with pathway editing (see https://reactome.org/community/resources for a comprehensive

listing).

Pathways are constantly updated in databases as new information is discovered through experi-

mentation. Existing pathway data are incomplete, as many functions and cell types remain unexplored

or under-explored. Most pathway data resources are or have been public and open access for much

of their life, but in recent years, more and more pathway databases have introduced fee-for-access

models. For example, KEGG coverted to a subscription service in 2011, and BioCyc in 2016. There

are also several notable for-profit pathway resources such as Ingenuity Pathway Analysis (IPA) [7] and

MetaCore [8], distinguished as early-movers but also for their reputations of comprehensive coverage,

curation quality, and tool and workflow integration.

In this work, I focus on open access, publicly-funded resources, as the data are more readily avail-

able to academic and non-profit researchers. Several notable open access pathway databases are Reac-

tome, SMPDB, Panther Pathways, andWikiPathways. Reactome is a large, curated repository of path-

ways created by a collaborative team of researchers from the Ontario Institute for Cancer Research,

Oregon Health Science University, the European Bioinformatics Institute, and New York University

Langone Medical Center [40]. The resource has been regularly updated for the last decade and a half,

and boasts one of the largest sets of pathways. SMPDB, maintained by the Metabolomics Innovation

Center, specializes in human smallmolecule pathways, and is key for studying drugmetabolism and ac-

tion [50]. Panther pathways, part of the Gene Ontology Phylogenetic Annotation Project, is a database

of primarily signaling pathways, emphasizing annotation to Gene Ontology terms [103]. WikiPath-

ways is a pathway database that grew out of the Wiki movement, harnessing the power of volunteer

curators to create and edit pathways, in an effort to stay abreast of newly discovered gene interactions

in literature [92].

The remainder of this dissertation will focus on seven databases: HumanCyc, KEGG, Panther, the

National Cancer Institute’s Pathway Interactions Database (NCI-PID), Reactome, the Small Molecular
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Pathway Database (SMPDB), and WikiPathways. The choice of these databases is discussed in further

detail in Chapters 4 and 5.

2.4 Pathway analysis

Many secondary analyses of omics data use pathways. Summarized best by Khatri et al, “Pathway

analysis has become the first choice for gaining insight into the underlying biology of differentially

expressed genes and proteins, as it reduces complexity and has increased explanatory power.” Because

pathway models are constructed based on biological function, they provide a way to translate gene-

level data to a functional view. Pathway analysis refers to the collective set ofmethods that use pathways

to process and interpret gene expression data. The need for pathway analysis stems from the lack of

sufficient power when computing gene-level statistics, due to large natural genetic variation between

people, relatively sparse disease phenotype, and high rates of error and missing data at the gene level.

Most complex diseases are polygenic. Some examples are cardiovascular disease, Alzheimer’s De-

mentia, diabetes, andmany cancers. Genetic dysregulation in these diseases affect the expression levels

ofmany dozens or hundreds of genes. Genes can be risk factors for disease, and causally related to phe-

notype. Some genes can also contribute to phenotype, and may be differentially expressed in certain

disease subtypes. Other genes are associated with downstream effects (non-causal), or associated with

incidental effects. Identifying causal genes and gene variants, as well as genes associated with identi-

fiable disease subtypes, are especially important for explaining the genetic causes and heritability of

complex diseases.

Typically, to identify genes or variants corresponding to a disease phenotype, genomewide associa-

tion studies (GWAS) or genome-wide linkage studies are conducted. GWAS is a powerful, unbiased tool

for detecting genome-wide associations to phenotype. By looking everywhere in the genome, GWAS

can often draw our attention to previously unknown associations. For a GWAS, one compares people

exhibiting a disease phenotype of interest with healthy controls. Genetic differences between cases

and controls are used to identify genetic loci, commonly single nucleotide polymorphisms (SNPs), that

are highly correlated with the disease phenotype. The presence or absence of a specific SNP is cor-

related with the presence or absence of disease phenotype, generating a p-value. The p-value can be
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used to determine SNPs (and the corresponding genes) that are significantly associatedwith the disease

phenotype (see Figure 2.3). Many comparisons are made at the SNP level, and the p-value threshold

for genome wide significance is set to a low value to offset the errors of multiple hypothesis testing.

Typically, the significance level α in GWAS is set to 5e-8, which reduces false positives but makes

it challenging to detect modestly correlated SNPs. GWAS studies typically require large numbers of

study participants to account for high genetic variation between individuals and provide higher power

for detecting significant SNPs.

The detected significant genes in GWAS can help researchers hypothesize on the mechanisms of

pathogenesis. Of course, correlation may not directly translate to causation.

Figure 2.3: An exampleGWASoutputManhattanPlot. Each SNP is plotted at its chromosomal location
against the negative log of its correlation p-value with the phenotype. More significant SNPs have
higher values. Above the top dashed line threshold are SNPs found to be statistically correlated with
the disease phenotype when setting α to 5e-8. Below the top dashed line are other thresholds of lower
statistical significance. SNPs with negative log p-values between these lower dashed lines have a high
probability of being correlated with the phenotype but have not achieved statistical significance in this
GWAS study. Image reproduced from Ikram et al [76].

Differential gene expression data between cases and controls are also useful for understanding dis-

easemechanisms. Gene expression data present a snapshot of the transcriptome, all mRNA transcripts

present in the tissue at a moment in time. The data indicate which genes are transcribed, and in what

quantities, which can be used as a proxy measure for protein, and the biological functions associated
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with those proteins. Although levels of mRNA are not equivalent to levels of protein due to post-

transcriptional modifications, the two quantities are highly correlated. RNASeq is one transcriptomic

approach that sequences mRNA using next-generation sequencing techniques. High throughput tran-

scriptomic methods are subject to typical challenges of read alignment such as the presence of short

reads or similar paralogous genes.

Gene-level statistics can be used to analyze gene expression data. However, expense and tissue

availability limits the broad application of RNASeq and related methods. To increase power and inter-

pretability, pathway analysis can be used to assess differential gene expression data.

Pathways allow differences at the gene level to be aggregated over the set of genes represented in

a pathway. The resulting statistical significance is computed at a pathway level. Instead of determin-

ing the genes associated with a disease phenotype, pathway analysis determines associated pathways.

In other words, the output of pathway analysis can indicate biological functions that correlate with a

disease phenotype. This in turn leads to novel hypotheses on the drivers of disease, its relatedmorbidi-

ties, and treatment possibilities. Pathway analysis is therefore a powerful and practical way of assessing

gene expression data.

Gene Set Enrichment Analysis (GSEA) is a type of functional enrichment analysis that is often

used in conjunction with pathway data [133]. GSEA computes the statistical association between a

disease phenotype and a set of genes as an enrichment score. When a gene set is enriched, it is highly

associated with the disease phenotype. Gene sets can be derived from various sources, such as gene

co-location on chromosomes, genes annotated to the same Gene Ontology (GO) term, genes that have

shown correlation in microarray experiments, and of particular relevance to this dissertation, genes

that co-occur in the same pathway. TheMolecular Signatures Database (MSigDB) is a database of gene

sets curated for use in GSEA and other enrichment algorithms [99]. Many gene sets in MSigDB are

derived from pathway databases such as KEGG, NCI-PID, or Reactome. Each of these gene sets is

generated from an individual pathway.

Many pathway analysismethods also leverage pathway topology to calculate gene correlationswith

phenotype [113]. These network-based approaches take advantage of the interactions occuring be-

tween pathway components to produce more accurate findings. One example, signaling pathway im-
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pact analysis (SPIA), simulates perturbations within a pathway based on gene expression values, and

combines this perturbation statistic with traditional gene set methods to enhance results [136]. An-

other tool, DEGraph, implements a novel statistic incorporating graph structure into the computation

of differential expression between cases and controls [78]. DEGraph also introduces a new way for

identifying subgraph modules within each pathway that may be correlated with phenotype [78]. Yet

another technique uses random walk to discover gene modules functionally associated with cancer

phenotypes from a global gene interaction network [120].

The boundaries between pathways can be fairly arbitrary, and the member entities of one pathway

often partake in other pathways, e.g., the product species of the pentose phosphate pathway go on to en-

ter the glycolysis pathway at various steps. In some cases, a network view can allow researchers to iden-

tify pathwaymodules (for example, a part of one pathway, or the combined network of two interacting

pathways) that correlate with phenotype. Like other forms of pathway analysis, most network-based

approaches are also affected by the availability of pathways in a common data format, incomplete path-

way annotation or errors in annotation, and variability in pathway knowledge representation [113]. A

researcher may also need to choose different network-based pathway analysis methods based on the

size and type of their experimental data [75].

Together, these pathway analysis methods have been used broadly for the analysis of gene expres-

sion data and drug target identification. As pathway reuse increases, there have been corresponding

questions over the suitability of pathway data for this type of analysis. Very unsurprisingly, deficien-

cies in pathway coverage and data quality can negatively impact the results of pathway analysis [24, 25],

and the selection of different pathway datasets for pathway analysis can have profound implication on

results [58, 87]. There are no standard recommendations for choosing pathway datasets. Each pathway

database has been created to address different needs, and no one database can be expected to provide

adequate pathway data for all types of users. There have been attempts to enumerate and describe

available pathway databases, allowing users to select databases based on their individual analysis needs

[21, 37].

Researchers have addressed this challenge in several ways, by combining pathways from multiple

databases and by introducing standards for pathway data representation. However, these solutions
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do not sufficiently reduce problems of data quality, redundancy between pathway databases, or the

lack of overall organization and interpretability of pathway analysis output. In the following chapter,

I summarize and describe some shortcomings of existing solutions. I also propose an ontology-driven

approach for integrating and organizing pathway data, to generate a less redundant and more inter-

pretable pathway dataset for use in pathway analysis.
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Chapter 3

MOTIVATION: THE NEED FOR BETTER PATHWAYDATA INTEGRATION

For pathway analysis and other secondary applications of pathways, many researchers extract pathway

data frommultiple databases. This takes advantage of the breadth of curated data, incorporating path-

way knowledge created for different purposes and covering different aspects of biology. When com-

bining data frommultiple databases, researchersmust contendwith differences in pathway knowledge

representation, data quality, and content.

Efforts have been made to extract and integrate data from multiple pathway databases. These ef-

forts include:

1. the creation of pathway data exchange standards,

2. the development of pathway aggregator resources, and

3. methods for incorporating multiple pathway databases in analysis.

Pathway data exchange standards have been introduced to make pathways accessible in a unified file

format. This eases the burden of processing combined data. Pathway aggregators collect pathway data

from many databases, making them available for query and download from a single location. Many

analysis tools also incorporatemultiple pathway databases into a single genomic analysis pipeline, sim-

plifying the user’s role in integrating pathway data.

These resources and methods have dramatically improved our access to pathway data. Most path-

way data are now available in a common file standard, and can be easily found and retrieved from

the source database or an aggregator resource. However, once aggregated, overlapping pathways from

different databases must still be identified and combined to remove redundancy. Most existing meth-

ods for combining pathway datasets are statistical, and many of these methods ignore the integrity of

pathway functional definitions when merging pathways. By this, I mean that the merged pathways
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lack names or associations with particular biological functions, and may simply be called things like

Superpathway 101. These superpathways are difficult to use and interpret in pathway analysis. There is

therefore a need for improved algorithms for pathway integration and organization.

The trend is towards improved integration of pathway resource data and increased accessibility to

their content. Widespread adoption of pathway data sharing standards is necessary, but we also need

agreement within the context of data standards, as well as methods for consolidating and presenting

content for analysis and interpretation. These latter goals are the main motivation for my work.

To observe both the functional boundaries of pathways when integrating them, and to provide

some organization for ease of interpretability, I propose an ontology-driven method of pathway data

integration. An ontology of pathway terms allows one to identify semantically similar pathways, and

to incorporate the relationships between different classes of pathways into analysis. By associating

pathways from different databases with classes in a shared pathway ontology, I can use these class

associations to identify and combine semantically similar pathways to reduce redundancy. By reducing

redundancy and increasing interpretability, I can produce amore suitable pathway dataset for pathway

analysis.

In the ensuing chapter, I discuss some existing tools for improving pathway data interoperability.

I then discuss the shortcomings of these existing solutions, and propose an ontology-driven method

for integrating pathway data.

3.1 Standards for representing pathway data

Several pathway data standards have been created for the exchange of biological pathway data. The

most notable of these is the Biological Pathway Exchange (BioPAX) format, which is a community-

driven language explicitly created for representing pathway knowledge [43]. BioPAX is an ontology,

containing classes and properties relevant to the description of pathway data. These ontology classes

are borrowed extensively throughout this dissertation to discuss pathway components and interac-

tions.

Other standards in which pathway data are published are the Systems Biology Markup Language

(SBML) [73], Graphical Pathway Markup Language (GPML) [140], and the Proteomics Standards Ini-
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Standard Representation

BioPAX

:reaction1 a biopax3:BiochemicalReaction
:reaction1 biopax3:left :entity1
:entity1 biopax3:name ‘phosphoenolpyruvate ’
:reaction1 biopax3:left :entity2
:entity2 biopax3:name ‘ADP ’
:reaction1 biopax3:right :entity3
:entity3 biopax3:name ‘pyruvate ’
:reaction1 biopax3:right :entity4
:entity4 biopax3:name ‘ATP ’
:catalysis1 a biopax3:Catalysis
:catalysis1 biopax3:controlled :reaction1
:catalysis1 biopax3:controller :entity5
:entity5 biopax3:name ‘pyruvate kinase ’

SBML

<reaction id=‘reaction1 ’>
<listOfReactants >

<speciesReference species=‘phosphoenolpyruvate ’/>
<speciesReference species=‘ADP ’/>

</listOfReactants >
<listOfProducts >

<speciesReference species=‘pyruvate ’/>
<speciesReference species=‘ATP ’/>

</listOfProducts >
<listOfModifiers >

<modifierSpeciesReference species=‘pyruvate kinase ’/>
</listOfModifiers >
</reaction >

GPML

<DataNode TextLabel=‘phosphoenolpyruvate ’ GraphId=‘entity1 ’ Type=‘Metabolite
’/>

<DataNode TextLabel=‘ADP ’ GraphId=‘entity2 ’ Type=‘Metabolite ’/>
<DataNode TextLabel=‘pyruvate ’ GraphId=‘entity3 ’ Type=‘Metabolite ’/>
<DataNode TextLabel=‘ATP ’ GraphId=‘entity4 ’ Type=‘Metabolite ’/>
<DataNode TextLabel=‘Rx1 ’ GraphId=‘reaction1 ’ Type=‘Reaction ’/>
<Interaction GraphId=‘interaction1 ’>
<Graphics ZOrder =‘12288’ LineThickness =‘1.0’>

<Point X=‘200.0’ Y=‘150.0’ GraphRef=‘entity1 ’ RelX=‘-1.0’ RelY=‘0.0’/>
<Point X=‘250.0’ Y=‘200.0’ GraphRef=‘reaction1 ’ RelX=‘0.5’ RelY=‘-1.0’

ArrowHead=‘Arrow ’/>
</Graphics >
...

<Interaction >

Table 3.1: Comparison of pathway data standards for the reaction: phosphoenolpyruvate + ADP
pyruvate kinase−−−−−−−→ pyruvate + ATP

tiative’s Molecular Interactions (PSI-MI) XML specification [67]. SBML was designed to facilitate the

transfer of computational models of biological processes. It is suitable for representing biosimulation
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models [73]. GPML, the native format of PathVisio [140], provides away to consistently define elements

within a pathway diagram. PSI-MI, on the other hand, is most suitable for representing molecular in-

teractions [67].

All four exchange formats provide users themeans to represent biological processes, but with vary-

ing degrees of detail and syntax complexity due to the initial goals of the developers of each language.

A comparison study by Strömback and Lambrix [132] of BioPAX, SBML, and PSI-MI concluded that

BioPAX is “themost general and expressive of the formats,” while SBML ismore suitable for represent-

ing biosimulation models, and PSI-MI for interaction details. GPML, suitable for graphical editing, is

used broadly by the PathVisio and WikiPathways communities [92].

To illustrate the differences between these standards, the same reaction is given in BioPAX, SBML,

and GPML in Table 3.1. The BioPAX snippet is given in Turtle syntax. These three languages are used

by the pathway databases referenced throughout the remainder of this dissertation.

3.2 Pathway aggregators

Pathway aggregators collect pathway data frommultiple databases and allowquerying and access to the

data from a centralized access point. Resources such as Pathway Commons and ConsensusPathDB are

examples. In most cases, an aggregator provides additional functionality beyond acting as a repository

of pathway data. These resources may play a curatorial role, ensuring that their content pathways

have high data quality and are accessible in a pathway data-sharing standard. They can also provide

additional tools for combining and visualizing pathway networks. Aggregators improve querying from

multiple pathway databases, and pave theway towardsmore comprehensive networkmodels of human

biological processes.

Pathway Commons (PC) began in 2011 as a collection of publicly available pathway data, with an

emphasis on human pathways. It was initially created to address the “highly fragmented” nature of

pathway data across numerous databases [32]. Over the years, Pathway Commons has incorporated

data from around 25 pathway and interaction databases, and now consists of over 37,600 pathways

and 3 million protein-protein interactions. In addition to downloading and making available pathway

data, PC maintainers also convert all data to BioPAX format, thus allowing all PC-hosted pathways
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to nominally inter-operate. PC also incorporates pathway data from defunct databases such as NCI-

PID and Integrating Network Objects with Hierarchies (INOH), and the last open-access version of

licensed pathway databases such as HumanCyc and KEGG. Since its creation, Pathway Commons has

quickly become one of the leading ways of accessing pathway data. PC provides a query interface for

its entire pathway corpus, as well as the PCViz tool, which facilitates exploration of pathway and gene

interactions.

The ConsensusPathDB is a resource with the primary motivation of aggregating molecular in-

teractions [81]. These interactions between metabolites, proteins, genes, and other molecules can be

thought of as components of pathways, and can also be derived from biochemical pathways. The most

recent release of ConsensusPathDB incorporates interaction data from 32 databases, several of which

are primarily pathway databases. Aside from millions of molecular interactions, ConsensusPathDB

also hosts 5,436 pathways. Interactions and pathways from various databases are incorporated into a

single large interaction network, which can be queried through the ConsensusPathDB web interface.

Some curation is performed to reduce the number of redundant interactions.

The National Center for Biotechnology Information’s (NCBI) BioSystems database is a resource

aimed at integrating pathway annotations into the NCBI infrastructure [54]. The BioSystems database

allows users to take advantage of NCBI resources, such as the Entrez databases for gene, protein,

and molecular annotations, taxonomic databases, the Online Mendelian Inheritence in Man (OMIM)

database, and PubMed. The NCBI BioSystems database contains pathways from KEGG, Reactome,

BioCyc tier I and II databases, NCI-PID, WikiPathways, and the Gene Ontology. BioSystems links

these pathway entries to millions of NCI protein and gene records, as well as PubChem entries.

Other pathway aggregator resources that have been created include hiPathDB [155], the Human

Pathway Database (HPD) [36], the Integrated Pathway Analysis Database for Systematic Enrichment

Analysis (IPAD) [157], PathJam [56], and Pathway Distiller [46], among others. The resource hiPathDB

included 1,661 pathways from BioCarta, KEGG, NCI-PID, and Reactome [155]. HPD integrated 999

curated human pathways from NCI-PID, Reactome, BioCarta, KEGG, and the Protein Lounge Web

[36]. IPAD aggregated 1,956 pathways from databases such as BioCarta, KEGG, NCI-PID, Reactome,

and others. PathJam consolidates pathways fromKEGG,NCI-PID, BioCarta, and Reactome, providing
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users the ability to access disparate pathways from awebAPI [56]. PathwayDistiller is a pathway aggre-

gating tool that aims to improve pathway analysis conducted with multiple pathway datasets. Pathway

Distiller allows users access to 2,665 pathways derived from BioCarta, KEGG, NCI-PID, WikiPath-

ways, Reactome and HumanCyc [46]. hiPathDB, HPD, and IPAD have become unmaintained and de-

funct in the subsequent years following their development, likely due to the success and broad coverage

of Pathway Commons. PathJam and Pathway Distiller, although both still online and accessible, have

not been updated since their creation.

Table 3.2 summarizes the current state and content of these pathway aggregator resources. Inmany

cases, these aggregator resources are the only dependable repository for accessing certain legacy path-

way datasets, such as NCI-PID.

Although pathway aggregators greatly increase access to pathway data, the integration they per-

form over this data is limited. Even the de-duplication performed by ConsensusPathDB is largely

naive, combining entities based on shared cross-reference identifiers. Providing all pathway data in

a single data format is an important and positive step, yet it does not guarantee immediate interop-

erability. De-duplication of pathways between databases is difficult, and de-duplication of entities at

a sub-pathway level is even more of a challenge. Existing methods for identifying and de-duplicating

overlapping pathways are discussed in Section 3.4. These challenges must by addressed to improve

pathway data interoperability.

3.3 Using multiple pathway databases in analysis

Analysis tools have been built around the integration of data from multiple pathway databases. For

example, R Spider, a statistical framework for analyzing gene lists, generates gene interaction networks

from a provided gene set using relationships extracted from Reactome and KEGG [15]. By combining

interactions retrieved for metabolic and signaling pathways, the tool constructs a network connecting

the gene members of interest.

MSigDB, a database of gene sets, is commonly used to provide gene sets for gene set enrichment

analysis [99]. The MSigDB extracts gene sets from various pathways derived from databases such as

KEGG, NCI-PID, Reactome and others. All pathway-derived gene sets are accessible in a single gene
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Resource Versiona Aggregated content Status

ConsensusPathDB 34 5,436 pathways from 11 pathway databases and

over 660,000 molecular interactions

Active

NCBI BioSystems - pathways fromBioCyc tier I and II databases, GO,

KEGG, NCI-PID, Reactome, and WikiPathways

Active

Pathway Commons 10 over 37,600 pathways and 3 million protein-

protein interactions from 25 databases

Active

PathJam 2010 pathways from BioCarta, KEGG, NCI-PID, and

Reactome

Not updated

Pathway Distiller 2012 2,665 pathways derived from BioCarta, KEGG,

NCI-PID, WikiPathways, Reactome and Human-

Cyc

Not updated

hiPathDB - 1,661 pathways from BioCarta, KEGG, NCI-PID,

and Reactome

Defunct

HPD - 999 human pathways from NCI-PID, Reactome,

BioCarta, KEGG, and the Protein Lounge Web

Defunct

IPAD - 1,956 pathways fromBioCarta, CTDb, DrugBank,

KEGG, HOMERc, NCI-PID, PharmGKB, and Re-

actome

Defunct

Table 3.2: Comparison of pathway aggregator resources

aVersion number provided where available
bThe Comparative Toxicogenomics Database
cHypergeometric Optimization of Motif Enrichment

set file. MSigDB therefore makes it easy for users to perform GSEA using integrated pathway-derived

gene sets.

Another functional enrichment tool, the Database for Annotation, Visualization and Integrated
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Discovery (DAVID), also leverages pathway knowledge, by using pathway membership from resources

like KEGG, Reactome, and BioCarta in the functional clustering and classification of genes [44]. Genes

related to enriched functions can also be visualized on pathway diagrams for ease of understanding

and presentation.

Additionally, several of the pathway aggregating databases mentioned previously also provide util-

ities for gene set or pathway enrichment. In several of the aggregator databases in section 3.2, users can

either export consolidated pathway datasets for secondary use, or perform gene set enrichment within

a web tool hosted by the aggregator resource. In essence, much of the benefit provided by pathway ag-

gregator resources lies in providing users with a consolidated pathway dataset which derives pathways

from numerous primary source databases.

These tools and others incorporate pathways from multiple databases into the default inputs of

gene set analysis. They demonstrate that there is inherent utility and desire for access tomultiple path-

way datasets. However, beyond the derivation of data from multiple databases, these analysis tools do

not perform de-duplication or organization of pathway data. The combined pathway data are there-

fore subject to some of the same issues I described before, of being difficult to integrate and retaining

redundancy of content.

3.4 Methods for reducing pathway redundancy

Bioinformatics researchers recognize that pathway redundancy can negatively impact the results of

pathway analysis. When pathway analysis is conducted without removing ormerging redundant path-

ways, several variants of the same pathwaymay be statistically implicated in results due to similarity of

content. Vivar et al investigated the occurrence of redundant pathways inGSEA results and introduced

ReCiPa, an application for user-defined redundancy control [142]. ReCiPa allows the user to select a

threshold beyond which pathways sharing overlapping genes are merged into a superpathway. After

merging similar pathways, ReCiPa generates gene sets from the resulting superpathways. The authors

evaluated themethod using pathways fromKEGG and Reactome. They demonstrated that the merged

pathway set resulted in decreased redundancy, and a larger number of functionally independent gene

sets in enrichment results.
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PathCards is another tool created to reduce redundancy in pathway-derived gene sets [25]. Using

entity overlap and information-theoretic approaches, the authors combine pathways from 12 different

databases into superpathways. Using hierarchical clustering and nearest neighbor joining, PathCards

identifies clusters of overlapping pathways. Candidate pathways within each similar cluster are then

merged and redefined as a single superpathway. The PathCards database is a part of the GeneCards

suite of bioinformatics tools, which focuses on consolidating data and annotations in human biology.

BothReCiPa andPathCards combine pathways fromvarious databases intomerged superpathways

using statistical overlap. Thesemethods use entity overlap to define semantic similarity. Consequently,

they are dependent on the correct attribution of entities to pathways, as well as the appropriate labeling

of entities with cross-reference identifiers by source databases. They also assume that pathways with

distinct functions do not share a high degree of entity overlap. By ignoring functional boundaries

of pathways during merging, these methods reduce the ability to interpret enrichment results. For

example, GSEA results are presented as a ranked list of gene sets, whose functions are interpreted from

the name of the gene set, which is derived from the pathway name. Superpathways lack meaningful

names because they can result from combining semantically unrelated pathways. A better pathway

integration method should not only reduce redundancy in the resulting pathway dataset, but should

also retain the functional boundaries and meanings of individual pathways.

Othermethodswhichmay not directly reduce redundancy but aim to signal redundancy to the user

are visualization techniques indicating gene overlap betwen pathways. For example, the Cytoscape

Enrichment Map plug-in shows a network of enriched gene sets with edges to indicate the level of

overlap [102]. The Pathway CoexpressionNetwork is an attempt to quantify the degree of overlapping

expression between pathways, providing an indication of overlap between pathway modules based

on coexpression activity from microarray data [122]. These methods allow researchers to visualize

and manually account for the overlap between distinct pathway modules, but they do not identify and

merge semantically redundant pathways from different databases.
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3.5 Proposed solution for pathway data integration

There is an obvious need to integrate pathway data from multiple databases. By combining different

data sources, users can derive a pathway dataset with the largest breadth of coverage over biological

functions. A number of tools and resources have been created for this goal. Pathway data sharing stan-

dards and pathway aggregator resources allow pathway data frommany databases to be easily queried

and combined. Analysis methods have been developed with multiple databases in mind, often default-

ing to a consolidated pathway dataset. These tools have largely avoided the issues of increased pathway

redundancy and negative statistical effects which result from naively combining multiple overlapping

pathway datasets. Methods such as ReCiPa and PathCards attempt to address the issue of redundancy,

by discovering andmerging overlapping pathways. However, by relying on entitymembership alone to

identify similar pathways, these methods tend to ignore the boundaries of pathway function, affecting

the interpretation of enrichment analysis results.

Instead of identifying semantically similar pathways based on entity membership alone, I propose

an ontology-drivenmethod for organizing pathway data andmerging redundant pathways. Ontologies

have long been used in bioinformatics to organize data and promote interoperability between datasets

[101, 108, 134]. Most of the constituent members of pathway data: the genes, proteins, molecules,

and even reactions which make up the building blocks of pathways, are annotated to ontological re-

sources. For example, proteins may be annotated with UniProt or Ensembl identifiers, and molecules

withChEBI orKEGG identifiers. These annotations allow the same or similar entities to be recognized

in different databases.

Biological functions, which are described by pathways, also have certain corresponding ontology

terms, for example, in the GeneOntology biological processes sub-ontology, or the PathwayOntology.

Pathway annotations to ontological terms can therefore also be used to identify equivalent or similar

pathways among different databases. An ontology can provide a shared semantic framework for un-

derstanding hierarchical pathway relationships and for identifying semantically similar pathways.

Ontologies have been used by various pathway databases to organize pathway data. For example,

KEGG and EcoCyc are among the earliest pathway databases to have their own unique pathway class
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hierarchies [83, 84]. Ingenuity Pathway Analysis, although not public domain, also produced one of

the first genomic-scale human pathway ontologies [7]. The Gene Ontology biological processes sub-

ontology, although not an ontology of pathways, is used by many pathway databases to annotate their

pathways with terms describing biological function [18]. More recently, the Pathway Ontology (PW)

has been introduced by the Rat Genome Database specifically as an ontology of biological pathways

[119]. ThePWcontains classes of pathways relating to biological function, includingdisease and altered

pathways, those describing non-standard biological functions.

To perform ontology-based pathway integration, I first construct a predictive model to associate

pathways from a number of source databases to classes in a unifying ontology. Then, I formulate a

typology of representational mismatches between pathway databases by evaluating analogous con-

tent from different databases. Using these identified inconsistencies, I optimize entity and network

alignment algorithms to combine similar pathways from different databases – identified through an-

notation with the same ontology class – into normalized pathway representations. Lastly, I evaluate

the performance of these normalized pathway representations in pathway-based gene set enrichment

analysis relative to baseline pathway-derived gene sets.

Because of the large number of pathways and pathway databases, and the dozens or hundreds of

entities present in each pathway, computational models are needed to assist in the organization and

alignment of these pathway data. A predictive model is implemented to help curators map pathway

instances to ontology classes. An alignment model is engineered to then align pairs of pathways iden-

tified as being semantically related based on annotation to the same ontology class. Finally, strongly

aligned pathways are merged into normalized pathways for used in pathway analysis.

Imake the following contributions toward pathway data integration, which I discuss in the remain-

der of this dissertation:

1. An ontology-based classification of pathways from seven pathway databases. I develop

and train a machine learning model to identify candidate ontology classes for each pathway in-

stance. These candidate classes are reviewed by ontology curators to determine correctness.

This work is described in Chapter 4.
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2. A typology of differences between pathway databases. I identify classes of inconsistencies

in content and in knowledge representation between analogous pathways in different databases

through manual evaluation. This work is described in Chapter 5.

3. An algorithm for aligning pathway graphs. I adapt entity and graph alignment algorithms

to align pathways based on the classes of differences identified in the typology. The alignment

algorithm and a brief evaluation of its output is given in Chapter 6.

4. An ontology-based normalized pathway dataset. Semantically similar pathways associated

with the same ontology class are aligned and merged using the alignment algorithm. These

normalized pathways are evaluated relative to baseline pathway-derived gene sets provided by

MSigDB. I evaluate these pathways on public gene expression datasets for Alzheimer’s Disease

and two types of cancer. I also propose some ways of integrating ontological structure into the

output of pathway enrichment analysis.
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Chapter 4

ONTOLOGY-BASEDORGANIZATIONOF PATHWAYDATA

To improve the outcomes of biological pathway analysis, a better way of integrating pathway data is

needed. Ontologies can be used to harmonize data from disparate sources. By associating pathway

instances from different databases to the appropriate class in a shared ontology, I can determine the

semantic relationships between pathways. Pathways associated with the same ontology class are se-

mantically related, and can be aligned and merged into one normalized pathway.

I leverage one particular ontology, the Pathway Ontology (PW)1 as a unifying ontology for orga-

nizing pathway data [119]. In this chapter, I describe how pathways from databases such as Reactome,

HumanCyc, and WikiPathways are mapped to PW classes. Working with PW curators, I designed and

implemented a machine learning model for class-instance annotation prediction.

This model is an addition to the PW curatorial pipeline, which has traditionally relied on manual

review alone. Previously, a curator would identify the best match PW class for a particular pathway

instance using knowledge of the PWontological structure and string-based search. A predictive model

can improve this process by selecting potential matches from the PW and presenting them to a curator

for further review. The curators ultimately select the best match for each pathway instance.

I implemented and compared two machine learning models for class-instance annotation predic-

tion. The first is a baseline bag-of-words (BOW) model, which is similar to the string-based search

currently employed by the curators. The second is a neural network (NN) model that employs lexi-

cal, semantic, and relationship features of pathways and PW classes to produce suitable matches. This

NN model is based on supervised machine learning and bootstrapping. The model was trained us-

ing existing annotations (gold standard annotations generated previously through manual curation)

1Because PO is already used for the Plant Ontology, PW was chosen as the resource identifier prefix for the Pathway
Ontology. I use PW throughout this dissertation for consistency.
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in the PW as well as external and bootstrapped training data. The trained NN model was then used

to predict new mappings between previously unseen pathway data and ontology classes. PW curators

assessed the outputs of the predictive model and used model recommendations as a guide for adding

new annotations between pathway instances and PW classes.

For evaluation, I compared the annotation predictions generated using the BOW and NNmodels.

Using each predictivemodel, I generatedmapping recommendations betweenReactome pathways and

PW classes. A 5% subset of Reactome pathways (111 pathways) was randomly selected, and the cor-

responding PW class recommendations output by both models were evaluated independently by two

curators. The precision of the BOW model was found to be higher (0.49 for BOW and 0.39 for NN),

but the recall was correspondingly lower (0.42 for BOW and 0.78 for NN). In other words, around

78% of Reactome pathways received pertinent recommendations from the NNmodel, while only 42%

from the BOWmodel. An error analysis was conducted on the remaining 22% of pathways that did not

receive useful recommendations from the NNmodel. Of these, many did not map to current classes in

the PW, and new classes or relationships were added to the PW to account for these pathways. Detailed

descriptions of model architecture and evaluation procedures are given in Section 4.2.

The predictive model produced meaningful class recommendations that assisted PW curators in

selecting appropriate class mappings for pathway instances. These methods can be used to reduce

the manual effort associated with ontology curation, and more broadly, for augmenting the curators’

ability to organize and integrate data from pathway databases using the PathwayOntology. The output

mappings are also used to derive semantically similar pathway clusters from which I then generate

normalized pathways for pathway analysis.

The neural network model is used to produce PW class mappings for HumanCyc, Panther, Reac-

tome, andWikiPathways pathways. Mappings for all four databases are used in conjunctionwith exist-

ing annotations in the PW to identify semantically similar pathway clusters for alignment andmerging.

In Chapter 6, I describe how pathways graphs can be aligned using entity attributes and graph topol-

ogy. In Chapter 7, Section 7.1, I then describe how the alignment algorithm is applied to each pathway

cluster from the PW to produce normalized pathways. The resulting normalized pathways contain less

redundant information, yet retain semantic relationships to other pathways in the PW. These normal-
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ized pathways can provide additional information for interpretationwhen used in pathway analysis. In

Chapter 7, I provide a comparative evaluation of gene sets derived from normalized pathways versus

standard pathway-derived gene sets. By taking advantage of the relationships between PW classes, the

results of pathway analysis conducted using normalized pathways can be organized hierarchically and

are therefore open to better functional interpretation.

The model and results described in the remainder of this chapter are adapted from the follow-

ing manuscript. The work discussed in the manuscript was conducted with members of the Pathway

Ontology group within the Rat Genome Database Project.

Wang L.L., G. Thomas Hayman, Jennifer R. Smith, Monika Tutaj, Mary E. Shimoyama, John H.

Gennari. Predicting instances of Pathway Ontology classes for pathway integration. Submitted

to the Journal of Biomedical Semantics.

4.1 Background &Motivation

Ontologies can be used to align and integrate data frommultiple sources. In the case of biological path-

ways, there are numerous databases collecting and describing information about pathway networks,

but no centralized schema to organize these various pathways. A shared organizational scheme would

allow researchers to identify semantically similar pathways, providing a framework for pathway data

integration.

Pathways are a form of graph data describing biological function. Individual pathway modules de-

scribe the interactions between dozens or hundreds of genes, proteins, and molecules, and how these

interactions contribute to events of biological consequence. The complexities of analyzing genomic

data have led to a rise in the use of pathways for pathway analysis, a class of statistical methods that ag-

gregate single gene effects over the genes described in pathwaymodules. These pathway analysis tech-

niques (such as gene set enrichment analysis (GSEA) [133] or network-based pathway analysis methods

[113]) allow variations in gene expression to be interpreted at a functional level. Due to the large vari-

ety of pathways available fromdifferent databases, pathway analysis, inmany cases, leverages pathways

from multiple databases. For example, MSigDB, which many researchers use as a source of gene sets
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for GSEA, combines pathways from KEGG, NCI-PID, and Reactome [99].

Combining pathways from different databases results in redundancy in the pathway data set. The

same or a similar pathway may be represented in multiple databases. Meta-resources such as Pathway

Commons [32] and ConsensusPathDB [81] allow for querying and access to pathways from different

databases, but lack the ability to collapse redundant pathways between databases. Other resources such

as PathCards [25] or ReCiPa [142] use statisticalmethods to detect gene overlap between two pathways,

merging pathways with significant overlapping entities into superpathways to reduce membership re-

dundancy. However, these methods fail to retain the functional boundaries of pathways, which are

crucial for pathway analysis result interpretation, i.e., allowing gene expression differences to be ag-

gregated and interpreted at a functional level.

Pathways from different databases are challenging to integrate due to content and representational

differences between various pathway databases. Previous studies have described the differences that

exist between pairs of pathway databases [14, 37, 129, 130], and inChapter 5, I categorically summarize

ways in which pathway representations are found to differ betweenmany common pathway databases.

Although most databases provide data in pathway file sharing standards such as BioPAX [43], SBML

[73], or GPML [140], these standards are insufficient for ensuring interoperability. Even when two

databases present data using the same standard language, the different decisions of pathway editors at

both individual and database levels can result in variable pathway representation.

Ontologies have been used successfully to combine disparate datasets in the biomedical domain

[101, 108, 134]. I hypothesize that an ontology of pathway classes can be used to organize data from

different pathway databases, allowing pathways to be merged while maintaining an understanding of

the semantic relationships between various pathways. Several existant uses of ontologies by pathway

resources have been discussed in Chapter 3.

The Pathway Ontology (PW), an ontology of pathway terms, can be used as an anchoring ontology

to identify similar pathways [119]. The PW was developed as part of the Rat Genome Database (RGD)

as a means to catalog and describe the relationships among various biological pathways. The ontol-

ogy covers broad pathway categories such as pathways of metabolism, gene regulation, cell signaling,

disease, and drug metabolism, and allows for the representation of both subclass and mereological
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hierarchies via the subclass and part-of relationships respectively. The subclass hierarchy describes is-

a relationships, for example, the glycolysis pathway is a carbohydrate metabolic pathway, and shares

certain featureswith all other carbohydratemetabolic pathways. The part-of hierarchy describesmere-

ological relationships, where the process described by one pathwaymay be a subprocess of the process

described in another pathway, for example, the conversion of phenylalanine to tyrosine is a part of the

phenylalanine degradation pathway.

The PW is a suitable ontology for integrating pathway data because it provides:

• a hierarchy of pathway classes and their relations to one another,

• classes describing altered and disease pathways, and

• existing mappings to pathways from KEGG, NCI-PID, and SMPDB.

The Gene Ontology (GO) describes biological processes, and could be a suitable ontology for pathway

data integration based on its more developed classes and richer annotations [18]. However, the GO

lacks classes describing altered or disease pathways, which are essential for downstream applications

of pathway resources. The PW describes both altered and disease pathways in its class hierarchy and

is therefore more suitable for integrating pathway data.

Using the PW, I can group together semantically and functionally similar pathways by mapping

them to the appropriate PW class. All pathways mapped to a particular PW class can then be merged

together to form a normalized pathway representation of that class. This set of normalized pathways

can be used in pathway analysis applications, and will have less redundancy compared to naively com-

bined pathway datasets, as well as increased functional interpretability due to the preserved PW class

hierarchy.

Tobetter enable pathwaydata integration, I first need tomap the content of other pathwaydatabases

to the PW. However, manual mappings are both laborious and time-consuming to produce. In light of

limited curatorial resources, I integrate computational predictions into the curation pipeline, allowing

a predictive model to reduce the number of manual comparisons that must be made by PW curators.

Machine learning methods have been used with success for ontology-related tasks such as ontology
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learning, ontology completion, and ontology alignment [26, 116, 145]. Rule-based techniques have

been very successful, but supervised or semi-supervised approaches can also be used when training

data are available. I propose and implement a supervised learning framework for inferring mappings

between pathways from pathway databases and the PW, with a goal of reducing the hours associated

with manual curation.

In this chapter, I describe efforts to generate PW class mappings for pathways from Reactome, one

of the largest and most comprehensive pathway databases [40]. These methods are generalizable to

other pathway databases, such as BioCyc [31], Panther pathways [103], andWikiPathways [92], that are

not currently represented in the PW. I have also applied the trained model to HumanCyc, Panther, and

WikiPathways to generate mappings, which are used in subsequent chapters to generate normalized

pathways. The contributions in this chapter are three-fold; I introduce:

• an ontology curation pipeline that integrates a predictive model with manual curation

• an evaluation of the predictive model, and

• newly predicted and curated mappings between the PW and Reactome

I describe the design and implementation of this curation pipeline, with emphasis on a supervised

neural network prediction model. The architecture of the model is described below followed by an

evaluation of the neural network model results compared to a baseline BOW model. PW curators

manually reviewed a randomly selected subset of mapping outputs to determine the precision and

recall of eachmodel. I also discuss newmappings and relationships that are planned for future versions

of the PW, with particular emphasis on expanding the part-of hierarchy and the inclusion of regulatory

relationships through the usage of terms from the Relation Ontology.

By integrating amachine learning predictivemodel into the PW curation pipeline, I hope to reduce

the burden ofmanual curation on efforts to integrate pathway data. It ismy hope that other researchers

can incorporate similar methodology into their ontology curation pipelines, thereby reducing curato-

rial labor while increasing high quality mappings between datasets and ontologies.
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Figure 4.1: Semi-automated curation pipeline for the Pathway Ontology

4.2 Predictive model design & development

The goal is to associate pathway instances from various databases to the correct class in the Pathway

Ontology. The following describes my methods as applied to the Reactome database. Specifically, I

map each Reactome pathway to a matching class in the PW if a matching class exists. In cases where

no matching class exists, a new PW class is introduced to account for the pathway; the new class is

inserted where appropriate into the PW class hierarchy.

Each class in the PW consists of its unique identifier and its descriptive information: a canonical

name, aliases (synonyms), definition, and its location in the PW subclass and part-of hierarchies. Each

Reactome pathway has similar descriptive information, alongwith the pathway content itself: the enti-

ties and relationships that describe the biochemical functions of the pathway. These pieces of descrip-

tive information can be used to associate pathways with PW classes. Leveraging this information along

with training data, I can generate high-quality mapping recommendations between Reactome and the

PW. This predictive model can then be inserted into the PW curation pipeline to improve the speed

and quality of curated mappings. For this task, I propose a supervised machine learning algorithm that

learns features and weights from the information provided for each PW class or Reactome pathway.

The pipeline (Figure 4.1) I propose and test consists of the following steps:

1. Extract training data from the PW and the UnifiedMedical Language System (UMLS)Metathe-

saurus [28]

2. Bootstrap additional training data by predicting high likelihood mappings between Reactome

pathways and PW classes
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3. Train a neural network model using all training data

4. Predict Reactome mappings to the PW using the trained model

5. Review predicted mappings manually for correctness and inclusion into the PW

I treat the predictive task as a binary classification problem, where given a pathway and a PWclass, I

predict whether the two have a high likelihood of matching. I constructed two neural networkmodels,

one which predicts matches over the names and aliases of pathways and PW classes, and one which

predicts matches over the natural language definitions of pathways and PW classes. The distinction

is introduced because not all pathways or PW classes have natural language definitions, and neural

network models can be challenged by the presence of null fields in cases where training datasets are

small. A subsequent decision module then collects the predictive model outputs for the separate name

and definition models and combines these to form a final predicted similarity score.

Details for each step in the curation pipeline are provided in the following sections. I also provide

a description of the candidate selector module used for both negative data sampling and candidate

selection when running the predictive model. All results presented discuss pathways from Reactome

v65, released 2018, June 12.

4.2.1 Baseline bag-of-words model

A bag-of-words model is provided as a baseline model for comparison. For the BOW model, each

pathway and PW class is represented as a set of word and n-gram tokens, generated from its name,

synonyms, definition, and the names and synonyms of its parent and children classes. An idf-weighted

Jaccard index is computed between the token set of a Reactome pathway (A) and the token set of a PW

class (B) as:

Jweighted =

∑
tεA∩B idf(t)∑
tεA∪B idf(t)

(4.1)

For each Reactome pathway, PW classes with weighted Jaccard indices above a threshold similarity

score are selected as output. The optimal threshold was determined using a grid search over the train-
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ing data. All results provide comparisons between the neural network-based predictive model against

this baseline model.

4.2.2 Candidate selection

The candidate selectormodule takes as input a pathway and outputs a ranked list of PW classes that are

potential matches. Good matches are determined by large lexical overlap in descriptive information.

I first generate a string representation of each pathway or PW class by appending together its name,

synonyms, definition, and the names and synonyms of all its parents and children. Each pathway string

or PW class string from this corpus is then parsed to a set of word tokens and character n-gram tokens.

Each token isweighted by its inverse document frequency (idf ) in the entire corpus. Tokenswith higher

idf occur less frequently andmay bemore relevant for determiningmatches. The overall lexical overlap

score between a pathway and a PW class is determined by summing the idf of all overlapping tokens

between the two.

The candidate selector is used to reduce the number of necessary comparisonswhen predicting PW

class mappings. When the candidate selector is given a pathway as input, it first selects all PW classes

with any token overlapwith the input pathway. The selector then sorts the overall lexical overlap scores

for these PW classes and returns the top 20 as candidates. Instead of performingm comparisons for

each pathway (where m is the number of PW classes), the candidate selector reduces the number of

comparisons to 20.

The candidate selector is also used to generate “hard” negatives (see section 4.2.3), which are neg-

ative training data where there is substantial lexical overlap between the pathway string and PW class

string. “Hard” negatives are selected from the candidate list while ensuring no overlap with positive

training data. Hard negatives are introduced into the training data to force greater predictive precision.

4.2.3 Training data

To train a binary classifier, both positive and negative training data are required. Prior mappings of

KEGG, NCI-PID, and the SMPDB to the PW can be used as positive labeled training data. Together,

860 mappings are provided in the PW. These mappings exist over 732 unique PW classes, out of a total
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Source No. positive No. negative

PWmappings to KEGG, NCI-PID, and SMPDB 860 7,116

GO/MeSH mappings 732 325

Bootstrapped PW/Reactome mappings 730 720

Total 2,322 8,161

Table 4.1: Training data for PW class predictive model by source

of 2,627 classes; in other words, around 28% of PW classes have existing mappings to pathways. These

mappings reference 206 unique pathways from KEGG, 76 from NCI-PID, and 557 from SMPDB.

For each PW class, negative mappings are sampled from these three pathway databases for train-

ing. Approximately two “easy” and two “hard” negatives are sampled for each PW class, where “easy”

negatives are randomly selected from the pathway database, and “hard” negatives are selected using

the candidate selector module. Care was taken to ensure that no extracted negatives overlap with any

positive training examples.

To augment these existing mappings, I also extracted mappings from the UMLS Metathesaurus

between Gene Ontology (GO) biological process terms and theMedical Subject Headings (MeSH) [28].

GObiological process classes overlapwith concepts in the pathway space, and thesemappings can pro-

vide reasonable distant supervision for our classifier. From UMLS, I extracted 732 mappings between

MeSH and GO.

The breakdown of all extracted training data is given in Table 4.1. Of these, 860 positive and 7,116

negative mappings are extracted from the PW and 732 positive and 325 negative mappings from the

UMLSMetathesaurus.
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Figure 4.2: Bootstrapping procedure for PathwayOntology training dataThe initial training data
are derived fromexisting PWmappings andUMLSmappings betweenMeSHandGO.A simple logistic
regression model is trained on these data and used to bootstrap training samples from Reactome. The
best matches between Reactome pathways and PW classes are added to the training data set over 10
iterations to generate a final training data set.

4.2.4 Bootstrapping

To further boost training data, I extracted high probability positivematches between the PW and path-

ways from Reactome. Including training examples from Reactome adapts the predictive model to the

specifics of the Reactome database and one can expect an improvement in prediction quality. A boot-

strapping procedure (Figure 4.2) is used to iteratively train a predictive model and append its highest
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likelihood predictions to the training data [12]. I employ a simple logistic regressionmodel usingman-

ually engineered lexical similarity features. The features used are:

• Normalized absolute value percent word token number difference

• Word token Jaccard index

• Character n-gram Jaccard index for n=3, 4, 5

For each bootstrapping iteration, I train a logistic regression model over the training data. I then

run this trained model over the PW and Reactome, generating a set of predicted PW classes for each

pathway in Reactome. The top and bottom 0.25% of predictions are added to the training data as

respective positive and negative training examples for the following iteration. I iteratively train the

bootstrapping module 10 times, generating 730 positive and 720 negative training samples from Re-

actome. A cursory review of the added training samples revealed good quality matches (88% correct

at iteration 10), where most of the matches can be considered “low-hanging fruit,” with pathway and

PW class names that match well based on string similarity alone. Incorrect matches have very close

semantic relationships, such as the Reactome pathway for RNA polymerase II transcriptionmatching to

the PW class for RNA polymerase I transcription.

4.2.5 Neural networks

Two neural network models were constructed for processing pathway names and pathway definitions

respectively. I begin by describing the pathway name model.

Each pathway name is represented using pre-trained word embeddings. For each word token, I

concatenate a 100-dimensionalword2vec [104] vector and a 100-dimensional fasttext [29] vector, gener-

ating a 200-dimensional word vector. Both word2vec and fasttext embeddings were trained on Pubmed

Central full-length journal articles.Word2vec tends to capture the semantic context of a word and fast-

text its internal structure (prefixes, suffixes etc), so combining the two captures information about both

the meaning and appearance of a word.
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Figure 4.3: Architecture of Pathway Ontology class-instance prediction neural networkmodel
The neural network computes similarity between a pathway definition and a PW class definition. A
bidirectional LSTM is used to encode the definition texts. This example shows the definition for Reac-
tome pathway R-HSA-109606 and PW class PW:0000104 being encoded and compared in the neural
network.

The pathway name is treated as a set of token-level embeddings; the embeddings of each word

token in the name are summed, generating a pathway name embedding: a 200-dimensional vector.

A PW class name embedding is generated from the PW class name in a similar fashion. These two

embeddings are concatenated and input into a decision network consisting of two fully connected

neuron layers. A sigmoid function processes the output of this network, producing a final similarity

score between 0 and 1, which can be threshold-ed to determine the binary class output.
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Pathway definitions consist of longer pieces of text with many internal relationships (see Figure

4.3 for examples). Instead of summing over token-level embeddings, a bidirectional long-short term

memory (LSTM) network is used to capturemore semantic information [68]. The hidden layers at both

ends of the LSTM are concatenated to produce a pathway definition embedding vector. The pathway

definition embedding and PW class definition embedding vectors are then concatenated and input

into a decision network of fully connected neuron layers. Similarly, an output score between 0 and

1 is generated as output using a sigmoid function. Figure 4.3 shows the network architecture of the

definition model; the name model sums the token-level embeddings in lieu of the LSTMs.

The final training data are split into a training (90%) and development (10%) set. The models are

trained tominimize the binary cross-entropy loss with respect to the training labels. I use the develop-

ment set to optimizemodel training for recall, because I ammore concerned about deriving all possible

matches rather than all certain matches.

4.2.6 Combining predictions for curatorial review

The trained neural networks are used to predict mappings between Reactome and the PW. For each

pathway in Reactome, the candidate selector selects the top 20 PW classes, generating up to 20 candi-

date pairs. For each candidate pair (N,M), whereN is a pathway from Reactome andM a class from

PW, N has namesNname = {n1, n2, ..., np} andM has namesMname = {m1,m2, ...,mq}. These

names are formed into unique name pairs by taking the Cartesian product of Nname and Mname.

Each pair of names (i, j) is fed into the name neural network model, producing a set of name similar-

ity scores:

Sname = {sij | (i, j) εNname ×Mname} (4.2)

Each score sij is the similarity between the pathway name i and PW class name j.

If the Reactome pathway has a definition, then the definition texts of the pathway and PW class are

fed into the definition neural network model, yielding a single similarity score Sdef . A final similarity

score is produced by combining and weighting the name and definition similarities:
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Stotal = 0.75max (Sname) + 0.25Sdef (4.3)

The weights of max (Sname) and Sdef are selected to favor name similarity because in many cases,

there is a lack thereof or non-specific definition in Reactome. More optimal weights are likely to exist,

but I do not explore them in this work due to limited resources for evaluation. PW classes with Stotal

above a threshold of 0.25 are output by the predictive model as recommendations.

4.2.7 Evaluation of model results

For evaluation, a 5% subset of pathways fromReactomewere randomly selected, a total of 111pathways

out of 2,222. For this subset, all output predictions from both the BOW andNNmodel were extracted

and presented to two curators independently formanual review. Output predictionswere presented to

curators after first grouping by Reactome pathway and then sorting the PW classes within each group

by similarity score. A separate subset of 211 class recommendations produced by the NN model was

also evaluated by both curators, in order to determine inter-rater agreement.

Curators were asked to perform the following task on each selected subset: for each Reactome

pathway-PW class pair, grade the pair as y(es)/n(o)/r(elated), where y(es) indicates an exact match, n(o)

indicates an incorrect match, and r(elated) indicates that although the pair is not an exact match, the

pathway is related to the PW class (maps to parent, child, or sibling classes). Twometrics are computed

over the labeled results, precision per mapping (ppm), and recall per pathway (rpp). The ppm is defined

as the ratio of pathway-PW class pairs rated y(es) or r(elated) over all pairs rated. It is a measure of

how correct the models are for each recommendation produced. The rpp is defined as the number of

pathways for which at least one y(es) or r(elated) PW class is recommended over the total number of

pathways. It is a measure of how successful the algorithm is at making at least one successful recom-

mendation for each pathway.

For each Reactome pathway, curators also selected the correct mapping, either from among the

predicted PW class matches, or from elsewhere in the PW. These mappings are then added to the PW

for future release. In cases where a correct mapping is not predicted by our model, curators must
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Figure 4.4: Model for weighting similarity scores Similarity scores for pathway names and defini-
tions and weighted and combined to generate a final similarity score.

determine whether a new class or relation needs to be added to accommodate the Reactome pathway

in question.
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4.3 Evaluation of model outputs

The model was used to generate PWmapping recommendations for Reactome human pathways. The

BOW model yielded 4,122 mapping suggestions for 2,222 Reactome pathways. The NN model pro-

duced 10,952 suggestions for the same pathways. Approximately half of all Reactome pathways did

not receivemapping suggestions from the BOWmodel, whereas theNNmodel hadmuch higher yield.

Table 4.2 shows example NN predictions generated for the Reactome human apoptosis pathway, R-

HSA-109581, of which there is no direct name-matched class in the PW. The predictions show that

the predictive model is able to retrieve PW classes that are similar to the Reactome pathway in both

name and content. The top predicted matches are those describing the apoptotic process, followed

by those describing related processes in immune response and cell death. Of these recommended PW

classes, the correct match is to PW:0000009, the apoptotic cell death pathway, the second ranked PW

class recommended by the predictive model. This PW class was selected by curators as the correct PW

mapping for R-HSA-109581.

TwoRGD curators (GTH andMT) conducted a reproducibility review of the predictions. Table 4.3

shows the results of the reproducibility analysis. Review of 211 class recommendations showed a 0.73

agreement between two reviewers for each mapping (Cohen’s kappa for three classes (y/n/r) = 0.56).

A comparison of BOW and NN models is provided in Table 4.4. Curators reviewed 243 mapping

recommendations produced by the BOWmodel for 111 randomly sampled pathways, and 660 recom-

mendations produced by the NN model for the same 111 pathways. Although the BOW model had

higher precision than the NNmodel (BOW: ppm = 0.49; NN: ppm = 0.39), it also had correspondingly

lower recall (BOW: rpp = 0.42; NN: rpp = 0.78). Overall, the NN model provided more opportunities

for selecting an appropriatemapping. Perhaps combining the outputs of bothmodels could yield better

coverage with higher precision.

A number of pathways did not receive relevant suggestions via either model. Reactome, in par-

ticular, contains very specialized regulatory pathway representations that do not currently have cor-

responding classes in the PW. Some portions of the PW class hierarchy, such as those describing the

immune system and cellular signaling, may require further development. For example, several Reac-
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PW ID PW class name Beginning of definition text

1 PW_0000104 intrinsic apoptotic pathway The apoptotic pathway involving organelles,

primarily the mitochon...

2 PW_0000009 apoptotic cell death pathway Apoptosis is a programmed cell death pathway

that is characterized by...

3 PW_0000106 extrinsic apoptotic pathway The apoptotic pathway involving the death re-

ceptors mediated route of...

4 PW_0000718 p53 signaling pathway p53 transcription factor is a tumor suppressor

frequently mutated in...

5 PW_0000124 cellular detoxification pathway A pathway triggered by exogenous or endoge-

nous elements, compounds...

6 PW_0000823 humoral immunity pathway Humoral immunity is mediated by antibodies

secreted by the B cell...

7 PW_0000824 cell-mediated immunity path-

way

Cell-mediated immune response pathways are

carried out by T cell...

8 PW_0000499 nuclear factor kappa B signal-

ing pathway

NF-kB signaling plays an essential role in the

mammalian immune...

9 PW_0000680 altered extrinsic apoptotic

pathway

<no definition>

10 PW_0000233 tumor necrosis factor medi-

ated signaling pathway

Tumor necrosis factor (Tnf) signaling plays

pivotal roles in immunity...

Table 4.2: Top ranked predicted mappings for Reactome pathway R-HSA-109581, “Apoptosis.”

tome pathways dealing with interferon-mediated immunity, such as R-HSA-1834941 (“STING me-

diated induction of host immune responses”) or R-HSA-918233 (“TRAF3-dependent IRF activation

pathway”) do not have corresponding pathway classes in the PW. The PW contains classes for type
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Rater #1

Rater #2 y(es) r(elated) n(o) Totals

y(es) 24 8 0 32

r(elated) 0 69 4 73

n(o) 0 46 60 106

Totals 24 123 64 211

Table 4.3: Inter-rater agreement for mapping labeling task

Model Precision (ppm) Recall (rpp)

BOW 0.49 0.42

NN 0.39 0.78

Table 4.4: Comparison of BOW and NNmodel predictions

I (PW:0000895) and type II (PW:0000896) interferon signaling pathways, and has several subclasses

describing signaling pathways related to innate immune response (PW:0000819), but none of these ex-

isting classes are suitable for describing the functions represented by the example Reactome pathways.

The PW may need to add either more granular pathway classes, or introduce properties such as regu-

lates or related_to to annotate the relationships described above and found throughout pathways from

Reactome.

The above methods can also be applied to other pathway databases. I ran the trained predictive

model over pathways fromHumanCyc, Panther, andWikiPathways, generating predictedmappings to

the PW. The NNmodel produced 1199 recommendations for 217 HumanCyc pathways, 1105 recom-

mendations for 242 Panther pathways, and 1652 recommendations for 351 WikiPathways pathways.

These recommendations have yet to be reviewed by curators, but can provide a helpful starting point

whenmapping pathways from these other databases to the PW.Newmappings between Reactome and

PW classes can be used as an additional source of training data for improving the predictive model. As

the quantity of high-quality training data increases, the predictive model should improve, helping to
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further reduce the curatorial burden of mapping other pathway databases to the PW.

4.4 Discussion of results

I have described efforts to incorporate a predictive classifier into the PW curation pipeline for gen-

erating mappings between pathway databases and the PW. The above results demonstrate that the

model is able to recommend relevant PW class mappings for pathways. By automatically inferring

high-likelihood mappings between pathways and PW classes, the burden on curators is reduced.

Mapping pathways to PW classes contributed to the overall goal of pathway data organization and

integration. Organizing pathways from different databases under a single unifying ontology allowsme

to identify how pathway data from different databases relate to one another. In Chapter 7, I use the

mappings generated in this chapter to select clusters of similar pathways for merging. Unlike statisti-

cal approaches such as PathCards [25] or ReCiPa [142], pathways for merging are identified based on

semantic similarity, calculated as their relatedness in the PW hierarchy. By merging pathways that are

semantically similar, the resulting normalized pathways retain better interpretability due to the class

hierarchy and relationships provided in the PW.

There are many challenges to pathway data integration, such as 1) the usage of different pathway

organizational schemes by different databases, 2) incomplete or inconsistent description of pathway-

subpathway relationships, as well as 3) differences in identifier and semantic choices in representing

pathway data among the various source databases [25, 142, 24]. In Chapter 5, I discuss some of these

challenges in detail and categorize the classes of content and representational differences that occur

among several popular pathway databases. Using a unifying ontology for organization at the path-

way level will help to ameliorate the first two of these challenges. To address the third, I demonstrate

methods for entity disambiguation and graph alignment capable of aligning pathways even in the pres-

ence of identifier or semantic differences. In Chapter 6, I discuss these alignment methods and explore

lexical and topological techniques for pathway alignment. These pathway alignment techniques can

address many of the described representational differences when merging pathways. Examples are

given showing the success and failures of alignment models and techniques.

The pathway-PWmapping prediction algorithm described in this chapter used pathway metadata,
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name and definition information (and to some extent, the names of parent and child pathways and

PW classes, through the candidate selector), to match pathways with PW classes. One limitation of the

current algorithm is that it does not take advantage of the pathway content itself: the graph of enti-

ties and relationships that describe biological function. These pathway member entities were left out

of the current mapping algorithm due to concern about increasing the size of the predictive model.

Additionally, it is unclear that enough information is available in the PW class name and definition to

best make use of the pathway content when mapping. One way to incorporate such information into

the mapping model would be to apply named entity recognition to the text of all PW class definitions,

and then count the number of entities in each pathway that are found in different PW class defini-

tions. This count could then be used as a feature during class prediction. Lastly, because the PW was

developed following the creation of many pathway databases, its developers incorporated elements of

existing pathway databases into its ontological structure. Pathways that were first mapped to the PW,

such as those from KEGG and SMPDB, have an out-sized role in defining its class structure. The PW

may therefore be biased in its representation of all biological pathways.

Pathway member entity information is subsequently used to generate features for the pathway

alignment algorithm. In Chapter 6 and Chapter 7, I discuss how the results of the PWmapping model

are combined with the pathway alignment algorithm to generate normalized pathways. For the align-

ment algorithm, entities between two pathway instances are aligned based on annotation, lexical, and

topological features associated with each entity.

Pathway databases are all different, eachwith its own strengths and limitations. Whatworks forRe-

actomemaynot apply directly to all other pathway databases. Using the predictivemodel trained on the

training data and bootstrapped Reactomemappings, I generated recommendations for theHumanCyc,

Panther, andWikiPathways databases. ForHumanCyc, 1199 recommendationswere generated for 217

pathways. For Panther, 1105 recommendationswere generated over 242 pathways. ForWikiPathways,

1652 recommendations were generated for 351 pathways. A cursory review of these results suggests

that relevant PW classes are being retrieved for pathways in these other databases even though the

training data was only bootstrapped over Reactome pathways. Because these other databases empha-

size different aspects of pathway data, they may benefit from alternate curatorial choices for select-
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ing appropriate mappings and for handling pathways without matching PW classes. For example, the

BioCyc databases predominately contain metabolic pathways, and the predictive model could be con-

strained to only suggest PW class matches that describe metabolic pathways. These decisions will need

to be explored in a further study of generalizability.

For the remainder of this dissertation, existing mappings in the PW to KEGG, NCI-PID, and SM-

PDB as well as preliminary mapping recommendations made by the predictive model for HumanCyc,

Panther, Reactome, and WikiPathways are used to identify semantically similar clusters of pathways

for alignment and merging.

Pathway representations are critical for modeling and understanding the physiological processes

underlying both normal and disease health states, but a lack of understanding of the relationships be-

tween pathways of different provenance undermine their collective usability. Combining the data from

different pathway databases using a unifying ontology addresses many of these issues. I demonstrated

in this chapter the design, implementation and evaluation of a computationally-assisted pipeline for

mapping pathway data to classes in the Pathway Ontology. An assessment of predictions made by the

classification model show promise, highlighting a number of pathway instance to PW class mappings

that were positively assessed by curators. Preliminarymappings are used to cluster pathways for align-

ment in the following chapters.
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Chapter 5

A TYPOLOGYOF DIFFERENCES FOR PATHWAY KNOWLEDGE
REPRESENTATION

The same biological pathway can be represented in different ways by different databases. These dis-

crepancies can be due to the differing goals of pathway editors as well as natural variation in pathway

language expressivity and subjective curator choices. Even when two pathways effectively represent

the same biological processes, theymay still exhibit variability at the entity and relationship level based

on choices made by individual curators or databases. Aligning pathways in light of this variability is

challenging. Differences in entity and property naming, relation topology, and pathway scope all af-

fect how entity alignments are generated. A deeper understanding of the representational differences

among different pathway databases is necessary to guide pathway alignment. In this chapter, I perform

a review of pathway databases, cataloguing the types of content and representational differences ob-

served between resources. I also propose computational methods for identifying and addressing these

discrepancies when aligning pathways.

Classes of pathway differences were identified through manual review of pathways from multiple

pathway databases. I emphasized human pathways since these contain data most relevant to disease

modeling and pathway analysis. I alsomake an effort to compare all suitable databases that are popular,

up-to-date, open-access, and present data in a standard format. These specifics of these criteria are

described in section 5.2.

Databases such asReactome, Panther, SMPDB,WikiPathways, aswell as available versions ofKEGG,

HumanCyc, andNCI-PIDwere analyzed. These databases contain pathways describingmetabolic, sig-

naling, and gene regulatory processes. Many biological functions were represented in most or several

of these databases, and these overlapping representations can be used to evaluate how the same path-

way can be authored and edited in a variety of ways.
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I evaluated similar pathways available in these pathway databases to determine classes of content

and representational differences. Below, I first describe the selection process for pathway databases.

I then describe classes of annotation and topological differences that are problematic for the com-

putational assessment of node and edge similarity for biological networks generated using different

pathway databases. For each class of differences, I give examples and describe how mismatches may

provide challenges to pathway data integration. For each type of mismatch, I offer potential computa-

tional solutions for detection and alignment.

This chapter is adapted from the 2016 conference paper:

Wang L.L., Gennari J.H., Abernethy N.F. An analysis of differences in biological pathway re-

sources. Proceedings of the 2016 Joint International Conference on Biological Ontology and

BioCreative.

All analysis has been updated to best reflect the current state of biological pathway databases.

5.1 Background &Motivation

Progress has been made towards harmonizing pathway representations, but inconsistencies between

different pathway databases are still common. Although significant overlap exists between the content

of different pathway databases, the representational choices made by different databases within this

overlap are highly variable. Altman et al compared theMetaCyc and KEGG databases on their breadth

of compound, reaction, and pathway representations, and found that MetaCyc is richer in reaction

and pathway representations and KEGG in compound representations [14]. A review performed by

Chowdhury et al compared human cell signaling pathway resources, and noted “pathway data het-

erogeneity” and annotation inconsistencies as major challenges for existing databases [37]. Stobbe et

al described the occurrence of many representational differences between several popular metabolic

pathway databases [129, 130] and proposed methods to indicate such disparities to resource editors

[131]. The authors noted that many resources use very different terms for expressing the same ideas,

and that such differences in expression preclude data integration [129, 130].
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The above studies focus on metabolic or signaling pathways, and describe some of the differences

between specific pathway resources. They emphasize differences in entity membership between path-

ways and differing counts of unique entities and pathways among databases. However, they do not

focus on the challenges imposed by these differences on cross-resource entity and relationship align-

ment. These studies also do not systematically define the representational mismatches that occur be-

tween most pathway databases and do not offer computational solutions for merging pathway repre-

sentations.

Curators are also continuously improving pathway databases, not only through the addition of new

material, but through the removal of problematic content, which can occur as a consequence of audit-

ing by third-party academic researchers [85, 128, 59, 138]. Databases have respondedby re-engineering

the underlying ontology [17, 43], clarifying semantic representation [17, 57, 115, 61, 23], creatingmore

detailed style guides for curators [31, 9, 11], or exploring computational auditing as part of the curato-

rial process [33, 158]. However, because many databases rely on manual curation, the addition of new

relationships or the editing of existing relationships largely falls back to a set of individuals, for whom

time is limited and expensive. The systematic identification of pathway data inconsistencies is useful

for quality assurance, auditing, and automated review. Improving the data quality and interoperability

of pathway resources through content auditing benefits the bioinformatics research community, who

use these resources for a variety of analyses.

To align pathway data, it is important to understand the types of differences one may encounter.

By creating a typology of pathway differences, I aim to understand and improve the computational

alignment of pathway modules across different databases. Stobbe et al have provided an excellent start

in this direction, citing numerous examples and descriptions of differences observed amongmetabolic

pathway resources [130, 129]. Here, I extend this work, aiming at a comprehensive typology of mis-

matches among pathway resources. In particular, I describe and give examples of mismatches in (a)

annotation, (b) existence, (c) reaction semantics, and (d) granularity. My goal is to enable understand-

ing and discussion of database differences throughmismatch categorization. This should in turn allow

for improved consensus formation when integrating data from multiple pathway databases.
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5.2 Selecting pathway databases for analysis

Pathway databases were collected from Pathguide [21] and PubMed search results. The following in-

clusion criteria were used to guide the selection of pathway databases for analysis:

1. The database contains pathways for Homo sapiens.

2. Thedatabase either a) contains representations ofmetabolic pathways, signaling pathways, and/or

gene regulatory pathways, or b) consists of pathwaydiagrams that have been translated into path-

way representations.

3. The database is free for all users or available under academic licensing. If the updated resource

is not available, a previous, publicly-available version is considered when possible.

4. The databasemakes available pathways in a standardized format such as BioPAX, SBML,GPML,

or PSI-MI.

5. The database is either a) actively updated (official release within the past three years), or b) has

not been actively updated but is still widely used for pathway analysis by researchers.

Criteria 1 restricts resources to those describing human biological pathways, which fall within the

scope of this dissertation. Criteria 2 describes the types of pathways in which I am interested, those

that are available for computational modeling. It requires that computational pathway representations

be available for analysis, in addition to diagrams. Criteria 3 satisfiesmy and other researchers’ financial

and accessibility constraints. The database must be available openly to enable long-term access. Since

I am trying to describe and quantify the differences between databases in the context of standardized

formats, criteria 4 allows me to identify databases providing standardized data exports. Many well-

known and popular pathway databases are available in at least one major pathway standard, either

provided by the database itself, or translated by a third-party or aggregator pathway database. Lastly,

criteria 5 restricts resources to those that are still active and up-to-date, or those that are firmly es-

tablished and entrenched in the pathway domain. These resources contain the most relevant data and

must be included in this analysis.
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Figure 5.1: Distribution of entity counts per pathway in each database. The x-axis shows the number
of entities, and the y-axis the number of pathways. Althoughmost pathways have less than 100 entities,
many pathways exist between the 100-200 entity range. Some databases, like PID and SMPDB, have
larger pathways on average.
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Database Version Date No. pathways URL

HumanCyc 20.5 Dec 2016 242 http://humancyc.org/

KEGG — Jul 2011 122 http://www.genome.jp/kegg/

NCI PID — Jul 2015 745 https://pid.nci.nih.gov/

Panther 3.6.1 Jan 2018 324 http://www.pantherdb.org/pathway/

Reactome 65 Jun 2018 2222 http://reactome.org/

SMPDB 2.0 Jun 2018 724 http://smpdb.ca/

WikiPathways — Jun 2018 452 http://wikipathways.org/

Table 5.1: Pathway databases used in analysis

From PathGuide, 79 human pathway databases were retrieved in November 2016 [10]. Of these,

75 satisfied the second criteria, containing pathway representations in addition to diagrams. Of all 79

databases, 61 were free to access, 9 were available under academic licensing, 6 were paid, and 3 were

defunct. A small percentage of these databases provided data in a pathway standard, with only 21 ex-

porting data in BioPAX, SBML, or PSI-MI, the standards tracked by PathGuide. Several of these path-

way databases were also aggregator databases, those that derive data from other primary databases but

which do not create novel pathways. Among these were ConsensusPathDB, Integrating Network Ob-

jects with Hierarchies (INOH), and Integrated Pathway Resources, Analysis and Visualization System

(iPAVs), which were excluded from analysis. Several of the remaining databases had not been updated

in the previous three years or were otherwise unmaintained. Somewere also found to be defunct when

navigating to the host site. Lastly, although these databases were all listed as pathway databases, some

contain only protein-protein interactions, which fall outside the scope of this analysis.

An additional 16 resources were found through PubMed search. These were also reviewed ac-

cording to the inclusion criteria. A final set of 7 databases were analyzed. Details of these databases

are given in Table 5.1. The distribution of pathway sizes within each database is given in Figure 5.1.

No new pathway databases created after 2016 were included in this analysis. Although there have been
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extensive updates to existing pathway databases during the last few years, no new pathway databases

published during this time were deemed suitable for inclusion in analysis.

Corresponding versions of each database were downloaded. The last updated versions of KEGG

andNCI-PID were downloaded from Pathway Commons. The last freely available version of Human-

Cyc from 2016 is used. All pathway databases were retrieved in BioPAX format except for WikiPath-

ways, which was downloaded in GPML format.

5.3 Identifying overlapping pathways

To construct this typology, I reviewed several sets of pathways for which multiple representations ex-

isted in the included databases. Comparable pathwayswere selected using pathway name and synonym

overlap. Entity membership overlap was also computed, although it was not used to select pathways

for comparison. Pathway name and entity membership have been used in previous studies to identify

analogous pathways between databases, and pathway name is considered to have high precision but

low recall for identifying analogous pathways when used alone [46]. I elected to use strict name or

synonym overlap to ensure that the selected pathways described semantically equivalent processes.

The numbers of unique pathways contained in each database are given in Table 5.1. From these

pathways, 152 pathway names were identified in at least two databases, and 34 pathway names in at

least three databases. Figure 5.2 shows clusters of overlapping pathway names among the databases.

Of these overlapping pathways, a subset were sampled for manual review and alignment of entities.

Comparisondiagrams for the pentose phosphate pathway (also “pentose shunt”) and glycolysis pathway

are shown in Figures 5.4 and 5.6 respectively. The results of manual alignment were used to derive the

following pathway mismatch typology.

5.4 Typology of di�erences

To provide examples of mismatches, I retrieved pathway and reaction representations from Human-

Cyc, KEGG, Panther, NCI PID, Reactome, SMPDB, andWikiPathways. Figure 5.3 shows the canonical

pentose shunt pathway used as a reference for manual alignment. Primary reacting species are green,

other small molecules are yellow, and modifying enzymes are shown next to blue circles representing
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Figure 5.2: Pathway names that are shared by pathways from three or more databases. Displayed name
is a selected canonical name; some pathways share synonyms. Databases are H=HumanCyc, K=KEGG,
Pa=Panther, PI=PID, R=Reactome, S=SMPDB, and W=WikiPathways.
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Figure 5.3: A schematic of the basic reactions
in the pentose shunt pathway. The pathway is
made up of 8 primary reactions. The resulting
species F6P and G3P can go on to participate
in the glycolysis pathway.

Abbreviations:
G6P = glucose-6-phosphate
G6PD = glucose-6-phosphate dehydrogenase
6PGL = 6-phosphonoglucono-δ-lactone
PGLS = 6-phosphogluconolactonase
PDG = 6-phospho-D-gluconate
PGD = 6-phosphogluconate dehydrogenase
RU5P = ribulose 5-phosphate
RPIA = ribose-5-phosphate isomerase
RPE = ribulose 5-Phosphate 3-Epimerase
R5P = ribose 5-phosphate
XY5P = xylulose 5-phosphate
TKT = transketolase
G3P = glyceraldehyde 3-phosphate
SH7P = sedoheptulose 7-phosphate
TALDO = transaldolase
F6P = fructose 6-phosphate
E4P = erythrose 4-phosphate

reactions. Arrows show the expected direction of reactions; some reactions are reversible. Figure 5.4

shows a comparison of pentose shunt pathways from six different pathway databases. The pathways

compared are HumanCyc:PENTOSE-P-PWY, KEGG:hsa00030, Panther:P02762, Reactome:R-HSA-

71336, SMP00031, and WikiPathways WP134, all variants of the pentose phosphate pathway. In the

figure, missing entities and relations are displayed with gray dashed lines, extraneous entities and rela-

tions with gray-filled colored circles. Entities outlined in gray are provided by the source database, but

no cross-reference identifier is available. Light blue circles over gray lines indicate proteins without

cross-reference identifiers. The directions of arrows indicate my best interpretation of the directions



61

Figure 5.4: Comparison of pentose shunt pathway from six databases
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Figure 5.5: Core reactions of glycolysis.
The pathway consists of 10 reactions.

Abbreviations:
HK = hexokinase
G6P = glucose 6-phosphate
PGI = phosphoglucose isomerase
F6P = fructose 6-phosphate
PFK = phosphofructokinase
F1,6BP = fructose 1,6-bisphosphate
ALDO = fructose-bisphosphate aldolase
GADP = glyceraldehyde 3-phosphate
DHAP = dihydroxyacetone phosphate
TPI = triosephosphate isomerase
GAPDH = glyceraldehyde phosphate
dehydrogenase
1,3BPG = 1,3-bisphosphoglycerate
PGK = phosphoglycerate kinase
3PG = 3-phosphoglycerate
PGM = phosphoglycerate mutase
2PG = 2-phosphoglycerate
ENO = enolase
PEP = phosphoenolpyruvate
PK = pyruvate kinase

of reactions given in each database.

Similarly, Figure 5.5 shows the canonical glycolysis pathway used to anchor manual alignments.

Figure 5.6 shows a comparison of five glycolysis pathways: HumanCyc:PWY66-400, KEGG:hsa00010,

Panther:P00024, Reactome:R-HSA-70171, and SMP00040. Figure 5.7 shows several different repre-

sentations of a single step of the glycolysis pathway: the conversion reaction [phosphoenolpyruvate

+ ADP −→ pyruvate + ATP] modulated by the enzyme pyruvate kinase. In this single, well-studied

biochemical reaction, there are a variety of important mismatches, of which a subset are described

below.
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5.4.1 Annotation

Several types of annotation problems can arise:

1. A database fails to include annotations to external cross-reference identifiers.

2. Cross-reference identifiers do not agree with the entity annotated.

3. Cross-reference identifiers chosen by different databases do not match.

Cross-reference identifiers help to identify physical entities by anchoring them to uniform resource

identifiers (URIs) in reference databases. For example, proteins are commonly cross-referenced to

UniProt or Entrez identifiers, and molecules to ChEBI or PubChem identifiers.

The first type of annotation issue is exemplified in Figure 5.4 and 5.6 by pathways from Panther. In

both example pathways, numerous entities (proteins and molecules) are missing annotations to cross-

reference identifiers. In these cases, alignment of entities to the anchoring pathways or to other path-

ways can only be completed using entity names. Several other proteins, such as PGD in HumanCyc

pentose shunt and HK in Reactome glycolysis are also missing appropriate protein identifiers. In Fig-

ure 5.7, the KEGGmolecule PEP ismissing an identifier toChEBI, and is therefore difficult to compare

to its counterparts in the four other databases.

The second issue arises when a cross-reference identifier references an entity that does not match

the annotated entity. Egregious cases are usually due to annotation error. In most cases of this type

of discrepency, an annotation is made not to an incorrect entity but to a related entity. For example,

the entity phosphoenolpyruvate is named “phosphoenolpyruvate” in HumanCyc but annotated to a

conjugate acid or base such as phosphonatoenolpyruvate (ChEBI:58702).

This leads into the third issue, when pathway databases refer to the same entity with different

identifiers or different names. The display names for entities tend to differ between databases, and

cross-reference identifiers are useful for determining equivalences in cases where names are different.

Figure 5.7 shows that databases tend to be highly variable with both name and cross-reference iden-

tifier choices. Although the majority of resources use the entity name phosphoenolpyruvate, or PEP,

SMPDB, uses phosphoenolpyruvic acid. The phosphoenolpyruvate/phosphoenolpyruvic acid entity is
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annotated to three different ChEBI identifiers by the five resources, ChEBI:18021, ChEBI:58702, and

ChEBI:44897, named “phosphoenolpyruvate,” “phosphonatoenolpyruvate,” and “phosphoenolpyruvic

acid” in ChEBI respectively. Most resources use pyruvate, or PYR as the entity name, but SMPDB uses

pyruvic acid. This pyruvate entity is annotated with two different identifiers among the databases:

ChEBI:15361 and ChEBI:32816, named “pyruvate” and “pyruvic acid” respectively. These groups of

ChEBI entities may be related to one another as conjugate acids and bases, but the use of different

names and cross-reference identifiers by different pathway databases makes it difficult to easily equate

and align entities between these pathways. Determining conjugate acid/base relationships requires an

additional query toChEBI. Similar issues of cross-reference identifier choice exist for the other entities

in this example reaction, as well as throughout the example and other pathways.

To resolve these annotation mismatches, either a top-down or bottom-up approach can be taken.

Databases can attempt to enforce consistent labeling of entities across resources, or I can infer the

alignment of similar but differently annotated entities across databases. The former strategy has been

attempted by standard recommendations [4], but has been limited in its ability to resolve these is-

sues. In this case, I can infer similarity by treating ChEBI identifiers that refer to conjugate acid/base

pairs as synonyms. A semantic similarity measure can take into account the distance between two

cross-reference identifiers when aligning entities between pathways. In cases where entities are miss-

ing cross-referenced identifiers, string names and other features such as entity relationships and local

network topology can be used to align entities between databases. Both of these techniques are incor-

porated into the pathway alignment model discussed in Chapter 6.

5.4.2 Existence

Existence refers to missing or extraneous physical entities, reactions, relationships, or information,

e.g., entities that participate in a reaction or reactions that are members of a pathway in one database

but not another, or a connection between two reactions that occurs in one database but not another.

In Figure 5.4, the protons (H+) shown in gray are examples of extraneous entities, those that are not

included in the canonical pathway definition. HumanCyc, KEGG, Panther, and Reactome exhibit extra

entities. On the other hand,WikiPathways does not include small molecules such as NADP+, NADPH,
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H2O, or CO2, so these are missing from its pathway representation.

Missing relationships can also be seen in the Panther pathway example, where relationships be-

tween R5P and G3P, XY5P and SH7P, G3P and F6P, and XY5P and F6P are absent. Similar existence

issues are seen in glycolysis pathways in Figure 5.6, where HumanCyc includes extraneous reactions

involving the same participants as the canonical glycolysis pathway, but also fails to include the con-

version of glucose to G6P as a step in its pathway. SMPDB is also missing reaction 5 from its glycolysis

pathway.

In both figures, I have left out other extraneous reactions due to practicality. I have only included

extraneous reactions that involve the same primary species as the canonical reactions. Other extrane-

ous reactions usually involve somemember of the canonical pathwayparticipants, butmaynot describe

a crucial step to the overall represented process.

As for the inclusion of protons in many reactions in both the pentose shunt and glycolysis path-

ways, theH+ ion is included in order to balance reaction charge. According toBioPAX3documentation

however, reaction participants should be neutral and ions such as H+ andMg2+ are not recommended

for inclusion [4]. Additionally, the inclusion or exclusion of charge-balancing ions tends to be incon-

sistent even within a single database. For example, HumanCyc includes a proton in reactions 1 and 2

of the pentose phosphate pathway, but not in reaction 3; KEGG includes a proton in reactions 1 and 3,

but not reaction 2, etc. Since it seems difficult to maintain consistency even within a single resource,

eliminating charge-balancing ions altogether would be a suitable simplifying maneuver when aligning

and merging pathways.

Other potential existence mismatches can occur if one database lacks or is missing relevant infor-

mation about a relationship between two entities, or one database specifically negates the existence of

a relationship asserted in another resource. In these cases, databases can be prioritized duringmerging

to determine the appropriate alignment result.

Existence mismatches can be resolved by either taking the most common representation between

many resources (democratic) or by integrating all possible representations (exhaustive). Although an

exhaustive consensus method is unlikely to leave out information, it may however produce a large and

unwieldy alignment. Instead, a parsimonious representation including all canonical reactions relevant



68

to a pathway may be more ideal for pathway analysis applications.

5.4.3 Reaction semantics

Manydifferences in reaction representation have been described in Stobbe et al, such as using the terms

left and right, product and substrate, and input and output to describe participants in reactions [130].

In BioPAX, the properties conversionDirection, stepDirection, left, and right are used to indicate reaction

direction, as well as the identities of reactants and products [4]. In Figure 5.7, KEGG, Panther, and

Reactome label phosphoenolpyruvate as left and pyruvate as right, with a reaction direction of left-

to-right. However, in HumanCyc and SMPDB, phosphoenolpyruvate is labeled right and pyruvate left

and the reaction direction is given as right-to-left. Upon investigation, HumanCyc reports that this

choice is dictated by the Enzyme Commission (EC) system [6], a recommendation of the BioPAX3

specifications [4]. However, when studying the entire pathway, inconsistencies again arise, as some

reactions follow EC directions and others do not.

Resolving this type of semantic mismatch between resources requires knowledge about the or-

dering of reactions, which can be derived from pathway design, or when reactions are taken out of

context, may depend on chemical kinetics and the reacting environment. For well-studied pathways, a

consensus ordering usually exists. When participant left and right labels differ between resources and

ordering is unclear, the BioPAX pathwayOrder object (designed to relay reaction topology) can some-

times be used along with reaction direction to infer the correct reaction sequence. Identifying the

correct reaction direction is crucial for proper pathway alignment, since small changes in direction

can drastically alter the topology of a pathway. In Chapter 6, I compute global graph alignments of

pathways to infer additional entity mappings based on similar topology; however, this technique was

negatively impacted by reversed reaction directions. To ameliorate, I ignored reaction direction when

performing topology-based pathway alignment. Ideally, however, one could make use of the direction

information when aligning pathways.
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Figure 5.8: The oxidative decarboxylation of isocitrate can be represented as a two-step process with
an oxalosuccinate intermediary (left) and as a one-step process (right).

5.4.4 Granularity

Mismatches of granularity occur when databases represent the same entity or process using different

levels of detail. One example is complex naming. Many reaction enzymes are complexes made up of

multiple protein subunits. A reaction may be annotated with a protein modifier, when in actuality, it

is catalyzed by a complex: a protein dimer, trimer etc. In Figure 5.7, Reactome makes this distinction

by annotating to the “pyruvate kinase tetramer,” a protein complex. Reactome annotates the complex

components to UniProt identifiers P14618-1 and P14618-2, isoforms of the pyruvate kinase protein.

Due to the lack of standardized complex naming, however, we cannot easily align complexes and pro-

teins between resources.

Another type of granularity mismatch occurs at the reaction level. For example, one resource may

choose to represent the elementary steps of a reaction, including intermediate chemical species. A

single reaction in one resourcemay be represented as several in another, with the same ultimate inputs

and outputs. For example, the oxidative decarboxylation of isocitrate is a two step process, modified by

the enzyme isocitrate dehydrogenase, producingα-ketoglutarate from isocitrate via an oxalosuccinate
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intermediate. The reaction can be represented both with and without the intermediate species, as in

Figure 5.8. In these cases, we can study the ultimate inputs and outputs of ordered reaction sequences

to determine the appropriate reaction alignment.

5.5 Discussion of typology

The complexity of pathway content is a barrier to data integration, but as shown here, content and

representational differences between databases pose perhaps an even larger challenge. Standards like

BioPAX help clarify some differences between databases, but they do not solve all issues of inter-

operability. Aligning pathways among databases involve identifying differences between databases,

and resolving some of these differences using the recommendations described above. Existing cross-

reference identifiers and stringnames canbeused to align a sizable number of entities betweendatabases.

However, annotation features alone are insufficient for matching a majority of entities between re-

sources. Knowledge of relationships, reaction semantics, granularity, and more about these databases

is necessary to create and evaluate potential alignments.

To reduce redundancy and errors when merging information from different pathway databases,

entities and other assertions must be correctly aligned between databases. Entity alignment is a nec-

essary first step before clarifying alignments between higher-order concepts such as complexes, re-

actions, and interactions. Although mismatches of annotation and existence are the most frequent

and easy to observe, other issues such as those of semantics and granularity must also be addressed

when aligning pathways. By incorporating features such as the relationships between entities and graph

properties such as degree and bipartite connectivity, a better alignment can be achieved. In Chapter 6,

I discuss an alignment algorithm that incorporates some of the observations described in this typology

of differences.

To align and integrate pathway knowledge across resources, I develop strategies for resolving these

different classes of mismatches. Somemismatches, such as those of annotation, can largely be resolved

using the existing data. Other issues of semantics, such as differences in how standard languages are

used to express the same knowledge, pose a bigger challenge. Database editors should be allowed to

make different choices in knowledge representation. However, this flexibility does not necessarily have
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to come with the cost of increased error or decreased interoperability. A better understanding of how

specific mismatches occur will provide a roadmap for databases to work toward interoperable data

and representations.
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Chapter 6

SEMANTICALLY-DRIVEN PATHWAY ALIGNMENT

Pathway databases provide useful structured knowledge for bioinformaticists and systems biologists,

who use pathways to assist in the analysis of gene expression data, build models of physiological pro-

cesses, and explore the connections between therapeutics and disease. Researchers choose from a large

number of pathway databases and representations for pathway analysis. As discussed in prior chap-

ters, the abundance of choice can lead to variable results, since different databases offer redundant and

sometimes conflicting accounts of the same pathway.

Results of secondary analysis using pathway databases change depending on the database chosen

[58]. Khatri et al point to annotation inaccuracies in pathway databases as a challenge to pathway

analysis [87]. In a more recent publication by Ballouz et al, some biases in the gene set enrichment

analysis (GSEA) algorithm are attributed to overlaps between the gene sets used for analysis, where the

gene sets can be derived from pathways [22].

Many applications of pathway resources naively combine pathway data from multiple databases.

For example, MSigDB, used by many researchers as a source of gene sets for GSEA, includes gene

sets derived from KEGG, PID, and Reactome [99]. Another resource, ConsensusPathDB, combines

the pathway interaction networks of pathways from several dozen pathway resources [81]). In Con-

sensusPathDB, cross-reference identifiers are used to identify and merge equivalent entities between

different pathway graphs. However, due to incomplete annotation of pathway entities and representa-

tionalmismatches between similar pathways (as shown in the previous chapter), substantial entity-level

redundancy can remain in the combined interaction network.

Both redundancies and conflicts between semantically similar pathways can undermine the out-

put produced by pathway analysis tools. I use redundancy to refer to semantic redundancy, which

I define here as occurring when two pathways represent the same (or highly similar) biological pro-
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cess. Because they describe the same process, redundant pathways can have a high amount of entity

overlap. Statistical methods for pathway merging such as ReCiPa or PathCards take advantage of this

feature, combining pathways with high entity overlap into superpathways [142, 25]. However, some

pathways share entity membership and content because the same protein or molecule can be involved

in many biological processes. It is therefore important to take pathway semantics into account when

determining redundancy.

Instead of using pathways as they are, I believe that individual pathways from different databases

should be pre-organized based on semantic similarity (through Pathway Ontology classification), and

merged based on user needs to generate normalized pathways for secondary use. Using the methods

described in Chapter 4, pathways from seven different databases are organized based on textual and

content attributes. Proposed PW class mappings are used to determine pathways for alignment and

merging. In this chapter, I discuss methods for pathway alignment, and demonstrate how alignment

algorithms can be adapted to align pathway data. In addition to cross-reference identifiers, I incor-

porate lexical attributes and graph topology in pathway alignment. In the following chapter, Chapter

7, I discuss how this alignment algorithm is applied to clusters of similar pathways to generate a nor-

malized pathway dataset. The derived gene sets from these normalized pathways are subsequently

evaluated against baseline gene sets in enrichment analysis.

I aim toprovide a bettermethod for pathway alignment, taking advantage of not only cross-reference

identifiers for identifying equivalent entities, but also the lexical and structural features of the entities

and pathway graph. Using identifiers along with these other features, I can probabilistically identify

matching entities between two pathways. In this chapter, using the typology of differences fromChap-

ter 5 as a guide, I describe how I adapt and tailor entity and graph alignment algorithms for the purposes

of pathway alignment. I demonstrate how this algorithm can be applied to similar pathways from dif-

ferent databases to generate an entity-level alignment. I also provide some example output alignments

generated by the algorithm and a brief assessment of its effectiveness.

Parts of this chapter pertaining to the review of network alignment methods and assessing entity

overlap between pathways are adapted from the 2017 conference paper:
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Wang L.L., Gennari J.H. Similarity metrics for determining overlap among biological pathways.

Proceedings of the 2017 International Conference on Biomedical Ontology.

6.1 Review of alignment methods for biological networks

Given the number and uniqueness of pathway databases, inter-resource merging is a challenge. To

successfully align and integrate the content of multiple knowledge bases, I have evaluated variabil-

ity in content correctness, standards usage, knowledge representation choices, and coverage among

databases. Pathway standards such as BioPAX, SBML, GPML and PSI-MI [43, 73, 140, 67] assist in

the interchange of pathway data, but even data available in the same standard still retain differences

in content and representation. Nonetheless, my goal is to identify and align similar pathways, so that

users can benefit from a semantic union across multiple pathway databases.

Before discussing the pathway alignment algorithmused in this chapter, I first describe other graph

alignment algorithms and how they have been used to align biological networks. Networks consist of

nodes, representing entities, and edges, representing relationships between adjacent entities. Pathways

are directed networks, in which edges have an associated direction, pertinent to the relationship be-

tween the source and target nodes. Network alignment techniques have been used in the biological

domain to align and determine similarities between protein-protein interaction (PPI) networks, and

to provide evidence for phylogeny based on the identification of analogousmetabolic networks among

related species.

Several network alignment tools have been used to compare and map entities between PPI net-

works, such as PathBLAST [86], IsoRank [126], IsoRankN [98], andNETAL [112]. PathBLASTmatches

an input protein interaction path to the reference network of a well-characterized species by identi-

fying and aligning ortholog genes [86]. IsoRank and IsoRankN are both global alignment algorithms.

IsoRank uses protein sequence similarity and neighborhood topology similarity to identify ortholo-

gous genes between species [126], while IsoRankN uses spectral clustering [98]. TheNETAL algorithm

performs greedy alignment over a matrix of protein similarity scores computed from biological data

and graph topology [?]. Other applications of graph alignment algorithms and implementations con-

tinue to be introduced with great frequency, opening the door for novel applications in the biomedical
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domain [89, 156, 91, 64, 63].

Comparing interaction networks between different species allows for the discovery of functional

orthologs1 between species. Conserved function between species may allow us to transfer the knowl-

edge we have about a well-studied species to a less understood organism. For example, Kelley et al

found many conserved pathways between yeast and the bacterium Helicobacter pylori through analysis

of their PPI networks [86]. A popular global network alignment algorithm, IsoRank, has been used to

align PPI networks from multiple species with maximal coverage and consistency [98]. Alignment of

metabolic pathways has also yielded notable information, such as the areas of convergent and divergent

metabolism between species [121, 38, 96, 82], and the identification of conserved metabolic modules

[118, 143, 109]. Methods used to achieve metabolic pathway alignment are numerous [41, 35, 96, 19,

13].

Some alignment tools are general purpose, fit for application to any graph data. Substructure

Index-based Approximate Graph Alignment (SAGA) is one such subgraphmatching tool that was used

to calculate graph similarity between different biological pathways [137]. NetAligner is another align-

ment tool that identifies conserved complexes and pathways between different organisms [117]. Faisal

et al summarizes these above tools and others in their 2015 review paper on biological network align-

ment [48].

The above methods are primarily concerned with aligning pathways between different model or-

ganisms. In this dissertation, I adapt graph alignment algorithms to the task of aligning analogous path-

way representations from different pathway databases. Therefore, although the techniques applied are

similar, the end goal is different. Optimizations are necessary to adapt the majority of algorithms to

suit this purpose.

Existing tools for entity normalization of proteins [71] andmetabolites [152]may provide a starting

point for alignment. Published studies emphasize aligning metabolic pathways of different species in

order to find analogous but missing relationships [19, 13], merging resources for combined network

analysis [15, 125], or defining conserved pathway elements across existing pathway resources [107].

1Homologous gene sequences between species that derive from a common ancestral gene.
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These methods are helpful for identifying entities that map between different pathways.

To maximize successful alignment, I would like to take advantage of both topological features as

well as the lexical and identifier attributes of nodes and edges. More recently, somemethods that incor-

porate node and edge features into global alignment have been developed. Struc2vec is a representation

learningmethod that learns a vector for each node based on its neighborhood structure and connectiv-

ity in the graph [49]. Fast AttributedNetworkAlignment, or FINAL, is an attributednetwork alignment

algorithm that works on numerical or categorical attribute data [159], significantly improving align-

ment correctness when compared to purely topological-based algorithms. More recent developments

such as HashAlign [65], Representation Learning-based Graph Alignment (REGAL) [66] and Trsedya

et al [139] incorporate representation learning into graph alignment methods. Entity representations

are learned based on the values of entity attributes, and these representation vectors are then used in

secondary tasks such as graph alignment. The learned representations are not only able to capture

entity-specific attributes, but also features of nodes and edges in the entity’s neighborhood. Many of

these techniques are further improvements on knowledge graph embedding techniques, which have

been a historically popular and successful way to perform tasks such as knowledge graph completion,

curation, or alignment [148, 100, 114].

In prior work, I demonstrated how global graph alignment algorithms such as Graph Edit Distance

+ Evolution (GEDEVO) [74] can be combined with cross-reference identifiers to generate better align-

ments [144]. Attributed network alignment algorithms improve upon topology-based graph alignment

algorithms by considering entity attributes such as entity type, name, cross-references, and other de-

tails. In the case of pathway data, entity attributes are vital for identifying the appropriate mapping

between entities in two pathways.

I combine the topology representation learningmethodof struc2vecwith rule-based and representa-

tion-based attribute matching to compute entity similarity between pathways [49]. The typology of

pathway representational inconsistencies identified in Chapter 5 is used to guide the design of the

alignment algorithm. I compute entity-level similarities between the entities of two pathways. I then

use a greedy alignment algorithm to generate global alignments between pairs of pathways. I manually

review a set of alignment results, comparing them against those obtained using cross-reference iden-
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tifiers alone. Using the final alignment algorithm, I generate a full set of normalized pathways based

on pathway clusters identified using Pathway Ontology classes (see Chapter 7).

6.2 Methods for pathway alignment

Each pair of pathways is aligned using entity attribute and topology features. I refer to attributes as the

various properties associated with each entity, such as its name, definition, type, and any associated

cross-reference identifiers. Topology refers to features defined by the connectivity of the entity within

the pathway graph. The steps in the alignment procedure for aligning two pathways are as follows:

1. Enrich pathway entities with data from external identifier databases,

2. Compute rule-based similarity values between the entities from the two pathways,

3. Learn vector representations for each entity in the two pathways based on lexical features and

topology,

4. Compute overall entity similarities as a combination of rule-based and representation-based

similarities, and

5. Use greedy alignment to generate a final global alignment.

The pair of pathways to align is given as P1 and P2, where each pathway is of the form P (N,E),

where N is the set of entities (or nodes), of which there are N total, and E is the set of relations (or

edges), of which there are E total. N = {n1, n2, ..nN}, where each node ni is associated with a list of

attributes attri. E = {e1, e2, ..eE}, where each edge ei is a relationship between two nodes inN, and

takes the form (nsource, property, ntarget). The property relating the source and target nodes describes

the nature of the relationship, for example participant or controller for relationships between reactions

and proteins.

The alignment between two pathways is generated using the output of the similarity function

Sim (P1(N,E), P2(M,F )). The output of the Sim function is S, an N xM array, where the value

at the (i, j) position indicates the similarity between the ni node from P1 and themj node from P2.
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A value of 1.0 indicates highly similar, and a value of 0.0 indicates no similarity. The final alignment is

generated from S, and produces anN xM array of boolean values, where 1 indicates a match, and 0

indicates no match. The remainder of this section describes in detail the steps of the alignment proce-

dure.

6.2.1 Pathway entity enrichment

Entities in each pathway are enriched with information from external databases. Each entity starts

with the initial cross-reference identifiers provided in the source pathway database. For each UniProt

identifier, secondary accession identifiers, synonym class identifiers, and associated gene names are

retrieved from UniProt [16]. For each ChEBI identifier, secondary acccesion identifiers, parent class

identifiers, conjugate acid/base classes, and tautomer classes are retrieved from ChEBI [42]. Both

UniProt and ChEBI APIs are accessed through the Python Bioservices library [39]. The BridgeDB API

is also used to perform synonym identifier extraction [141]. Identifier mappings from BridgeDB are

selected primarily based on the expected type of entities annotatedwith identifiers from each database,

and can generally be organized into identifiers for proteins (Ensemble, Entrez, NCBI Protein, UniProt),

small molecules (ChEBI, HMDB, KEGG Compound, PubChem), and RNAs (EMBL, Ensembl, Entrez,

miRBASE). For each of these types of entities, the corresponding synonym identifiers are derived from

the given list of databases. Data extracted from UniProt, ChEBI, and BridgeDB are provided in Table

6.1. Using this procedure, proteins, complexes, and small molecules are enrichedwith related ontology

identifiers, which can be used to derive synonymy between semantically similar entities.

6.2.2 Computing rule-based similarity scores

Rule-based alignment is performed based on entity attributes both native to the pathway and extracted

from external databases. The rule-based similaritymodel produces a similarity score based on features

shared between the two entities. If two entities share a cross-reference identifier, they are considered

semantically equivalent, and are given a similarity score of 1.0. In some cases, where strong synonymy

is implied, for example, when two entities share synonym identifiers inUniProt orChEBI, or conjugate

acid-base identifiers in ChEBI, a similarity score of 1.0 is given. In other cases where there is medium
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External database Identifier source Data extracted

UniProt UniProt Name

Synonyms

Secondary accession identifiers

Associated gene names

ChEBI ChEBI Name

Synonyms

Secondary accession identifiers

Conjugate acid/base identifiers

Tautomer identifiers

Parent classes

BridgeDB ChEBI HMDB, KEGG Compound, PubChem identifiers

EMBL Ensembl, Entrez, miRBase identifiers

Ensembl Entrez, NCBI Protein, UniProt identifiers

Entrez Ensembl, NCBI Protein, UniProt identifiers

HMDB ChEBI, KEGG Compound, PubChem identifiers

KEGG Compound ChEBI, HMDB, PubChem identifiers

miRBase EMBL, Ensembl, Entrez identifiers

NCBI Protein Ensembl, Entrez, UniProt identifiers

PubChem ChEBI, HMDB, KEGG Compound identifiers

UniProt Ensembl, Entrez, NCBI Protein identifiers

Table 6.1: Synonym identifiers extracted per resource

confidence of synonymy, for example, when the name of one entity matches the UniProt associated

gene name of the other entity, a similarity score of 0.75 is given. If no similarity is identified between

the two entities based on the rules, a similarity score of 0.0 is given.
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Rule applied Score

Cross-reference identifiers from source databases match AND same entity type 1.0

Secondary accession identifiers match AND same entity type 1.0

Conjugate acid/base identifiers match AND same entity type 1.0

Tautomer identifiers match AND same entity type 1.0

BridgeDB identifiers match AND same entity type 1.0

Entity names exact match AND same entity type 0.75

Entity name matches names/synonyms from external database AND same entity type 0.75

Entity name (of protein/complex) matches gene name from UniProt 0.75

Entity names exact match AND different entity type 0.5

Entity name matches names/synonyms from external database AND different entity type 0.5

Parent identifiers from external databases match AND same entity type 0.25

Table 6.2: Rule-based similarity scores

A list of rules and their corresponding output similarity score are given in Table 6.2. The similarity

value for each rule is assigned manually based on the perceived likelihood of two entities matching

when observing each rule. Within these rules, the highest priority is given to matches based on cross-

reference identifiers, as these are the features most strongly associated with semantic similarity. Entity

name similarities are given lower similarity scores based on the inconsistencies observed in naming,

some of which have been described in Chapter 5. The scores are not optimized, but provide a good

starting point for representation-based alignment. The rules are applied in the order given in Table 6.2,

and the maximum score is assigned to the entity pair. The output of the rule-based similarity function

on an entity pair is represented as rule(ni,mj).

The rule-based similarity model produces Simrule, aN xM similarity matrix where each entry is

the similarity between entity ni andmj computed as rule(ni,mj). This output is combined with the

entity representation similarity computed in the next section to generate an overall similarity matrix.
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6.2.3 Computing entity representations

A representation of each entity ri is computed as the concatenation of its lexical features li and its

topological features ti, as in:

ri = [li, ti] (6.1)

The lexical features are computed using pre-trained word embeddings. Word2vec [104] and fast-

text [29] embeddings trained on Pubmed Central full-length journal articles (the same vectors used in

Chapter 4) are used to capture information at the level of word tokens. As before, word2vec is used to

capture the semantic context of a word and fasttext its internal structure, and combining the two best

captures information about both the meaning and appearance of a word.

Each entity is represented as the set of word tokens in its names. For example, the entity ATP

from Reactome (http://www.reactome.org/biopax/65/48887#SmallMolecule28) has the set

of names {ATP, Adenosine 5’-triphosphate}, which can be represented as the word token set {ATP,

Adenosine, 5, triphosphate}. Eachword token is then represented as a concatenationof a 100-dimensional

word2vec vector and a 100-dimensional fasttext vector. The lexical vector li is computed by averaging

over the concatenated word vectors of each token, producing a single 200-dimensional vector repre-

sentation.

The topology representation ti is computed using struc2vec [49]. Struc2vec computes node embed-

dings based on the connectivity and structure of each node in a graph. The structural context of each

node is learned by measuring node context similarity. I use Struc2vec to generate a 100-dimensional

structural representational for each node. For each entity, the struc2vec embedding is concatenated

with the lexical embedding computed previously, generating the complete representation ri. For the

set of nodes in each pathway, N = {n1, n2, ..nN}, I compute the associatedN x 300 entity represen-

tation arrayR = [r1; r2; ..rN ].

The representation similarity matrixSimrep is anN xM matrix where each entry is the similarity

between the representations of ni andmj . This similarity is computed as the normalized cosine sim-

ilarity between the corresponding representation vectors, where a similarity value in the range [-1, 1]

is mapped to the range [0, 1]:
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simrep(ni,mj) = norm(cos_sim(r1i, r2j)) (6.2)

Algorithm 1 Pseudocode for greedy alignment algorithm
procedure AlignPathways(S)

matches← [ ]

while max(S) > threshold do

maxval← max(S)

i, j← S.index(maxval)

matches.append((i, j))

other_matches← list(S.index(val) where val > (maxval− ε))

matches← matches+ other_matches

S[i][:]← 0

S[:][j]← 0

A← zeros(N,M)

for i, j in matches do

A[i][j]← 1

return A

6.2.4 Generating final alignment

The overall similaritySimcombined(P1, P2) is computed by combining the rule-based similaritymatrix

Simrule and representation-based similarity matrix Simrep, and taking the element-level maximum.

Simcombined(P1, P2) is theN xM matrix:

Simcombined(P1, P2) = max
1≤j≤N ;1≤k≤M

[Simrule;Simrep]ijk (6.3)

A greedy alignment algorithm is then used to select the final alignment from Simcombined. The

algorithm is provided in pseudocode in Algorithm1. A threshold value is set as theminimum similarity



83

score to allow a positive match. A ε value allows for multiple matches to be made each iteration. Score

values within ε of the current maximum similarity are matched. This sometimes generates 1-to-n

or n-to-n mappings. For pathway alignment, a threshold of 0.1 and ε of 0.01 were used. The final

alignment matrix uses a 1 to indicate positive mappings, and 0 to indicate negative mappings. The

positive mappings are extracted as a list of unique pairs, which can be visualized between the two

pathway graphs.

6.3 Pathway alignment results

Several pathways discussed in prior chapters are used to illustrate the results of alignment. The glycol-

ysis pathway and the pentose phosphate pathway are used to produce example figures. Six glycolysis

pathways and six pentose phosphate pathways were aligned using the algorithm described previously.

Pairwise alignments were generated between all pairs within each of the two groups of pathways.

The following shows the hierarchical organization of the glycolysis pathway class in the PW, along

with the correct association of pathways to each class in the hierarchy:

PW:0000025 (glycolysis/gluconeogenesis pathway)

KEGG:hsa00010 “Glycolysis / Gluconeogenesis”

WikiPathways:WP534 “Glycolysis and Gluconeogenesis”

PW:0000641 (gluconeogenesis pathway)

HumanCyc:GLUCONEO-PWY “gluconeogenesis I”

Reactome:R-HSA-70263 “Gluconeogenesis”

SMPDB:SMP00128 “Gluconeogenesis”

PW:0000640 (glycolysis pathway)

HumanCyc:GLYCOLYSIS “glucose degradation”

Panther:P00024 “Glycolysis”

Reactome:R-HSA-70171 “Glycolysis”
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SMPDB:SMP00040 “Glycolysis”

Since gluconeogenesis is essentially the reverse pathway to glycolysis, the two pathways involve

similar reactions and reacting species. In the PW, the KEGG pathway hsa00010 is associated with

all three classes, PW:0000025 (glycolysis/gluconeogenesis), PW:0000641 (gluconeogenesis), and PW:

0000640 (glycolysis). Looking only at the PW class PW:0000640, glycolysis, the pathways associated

to this class by the PW mapping algorithm in Chapter 4 include HumanCyc:GLYCOLYSIS, KEGG:

hsa00010, Panther:P00024, Reactome:R-HSA-70171, SMPDB:SMP00040, andWikiPathways:WP534.

Alignment results were computed between each pair of pathways in this set. Figure 6.1 shows how

individual elements in these pathways align to one another. Due to space and visualization constraints,

the pathways are shown with the source sorted alphabetically and only neighboring alignments are

illustrated. Non-illustrated alignments show similar trends. The majority of resulting alignments are

correct, with some incorrect alignments shown with red arrows.

Figure 6.2 shows pentose phosphate pathways from six databases and their neighboring align-

ments. All six pathways are associated with the same PW class:

PW:0000045 (pentose phosphate pathway)

HumanCyc:PENTOSE-P-PWY

KEGG:hsa00030

Panther:P02762

Reactome:R-HSA-71336

SMPDB:SMP00031

WikiPathways:WP134

Of these pathways, Panther:P02762 is the worst annotated. As shown in figure 6.2, the Panther

pathway shows poor alignment results with its neighboring pathways, including higher rates of incor-

rect alignments. Although not all pairwise alignments are shown in the figure due to space constraints,
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the alignment algorithm also produced poor alignment results between Panther and the other pentose

phosphate pathways used in this example. When normalizing pathways, pathway annotation quality

(the number of entities labeled with cross-reference identifiers) can be used to prioritize certain path-

ways over others. The specialization of Panther Pathways in signaling pathways may explain the poor

annotation provided for this metabolic pathway.

6.3.1 An evaluation of PW-based alignment results

In total, 23,504 pairs of pathways from the seven pathway databases were aligned using this algorithm.

Pairs of pathways were derived from PW class mapping results generated in Chapter 4. Among the

pathway pairs, the smallest alignment had 13 aligned entity pairs, and the largest 237 aligned entity

pairs.

A subset of aligned pathways were manually reviewed for correctness. Each alignment between

entities is rated as either correct or incorrect based on manual interpretation of entity information. A

precision score is computed as the number of correct entity alignments out of all alignments generated

by the algorithm. I randomly selected 20 aligned pathway pairs for review. In total, I reviewed 1286

pairwise entity alignments. An overall precision of 0.69 was observed over all entity alignments.

An overall alignment score is generated for each pair of aligned pathways. This score is the average

of the similarity values of all positivemappings in the resulting global alignment. This overall alignment

score is used to determine which groups of pathways to merge when generating normalized pathways.

This procedure is discussed in Chapter 7.

6.3.2 Alignment of subpathways

Pathways with entity subset relationships can also be aligned using this algorithm. Figure 6.3 shows

an example alignment between the HumanCyc pathway for the pentose phosphate pathway (non-

oxidative branch) and the Reactome pentose phosphate pathway. The former is a subpathway of the

latter. The Reactome pathway, Reactome:R-HSA-71336, is associated with PW_0000045, pentose

phosphate pathway. The HumanCyc pathway, HumanCyc:NONOXIPENT-PWY, is associated with

PW_0000574, pentose phosphate pathway - non-oxidative phase, a subclass of PW_0000045. The Re-
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actome pathway consists of reactions in both the oxidative and non-oxidative phase of the pentose

phosphate pathway, while the HumanCyc pathway only describes reactions in the latter phase. This

part-wise relationship is illustrated by the hierarchy of the Pathway Ontology.

Figure 6.3: Alignment of two pathways that exhibit a subset relationship. Entities found in both path-
ways are outlined in black. Gray lines and circles are those relationships and entities found only in
Reactome. All reactions are labeled ’Rx’; all complexes are labeled ’Cx.’ All entities have been manually
aligned. Blue entities would have been matched correctly using cross-reference identifiers, green enti-
ties were correctly aligned by the alignment algorithm, and red entities incorrectly aligned. Complexes
drawn in dotted circles only exist in Reactome, and cannot be explicitly matched using the algorithm.

6.4 Discussion

Improving the waywe discuss andmeasure similarity among pathway representations will have reper-

cussions for secondary use of pathway resources. Instead of using all pathways available for pathway

analysis, eliminating redundant pathways will increase the power of analysis results. Using the PW, I

have identified clusters of semantically related pathways. Through the application of this alignment al-

gorithm, similar pathways can be identified and merged together, reducing redundancy. The ontology

also enables the better organization of these pathways, making clear where overlap and subprocess

relationships occur. In the following chapter, I discuss how merged pathways are used to generate

normalized gene sets, which can be used in gene set enrichment analysis. Compared to standard gene
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sets derived from pathways, the normalized gene sets are less redundant, and also benefit from the

organizational structure of the Pathway Ontology.

Several different pathway relationships are seen in PW clustering results. Some pathways describe

similar processes, and show good entity overlap, especially when the pathways are well annotated.

Examples are the glycolysis and pentose phosphate pathways shown pairwise-aligned in Figures 6.1

and 6.2. These overlapping pathways are all instances of the same PW class. Other pathways show a

subset relationship as in Figure 6.3, where one pathway can be described as a subprocess of the other

pathway, exemplifying the part-of relationship. A third case is possible, but not illustrated, where one

pathway is both a subset of another pathway and describes the same overall process. This could happen

if pathway editors model processes with different levels of granularity. The subset entities would be

interleaved through the larger pathway as opposed to forming a tightly connected subnetwork as in the

subprocess case. All three cases: overlap, subprocess, and granularity subset, can be discovered using a

combination of entity membership and graph metrics.

Identifying these relationships is an important step to reducing redundancy in pathway data for

secondary use. Overlapping pathways can be reduced to a single pathway representation. Pathways

containing subprocesses can be modularized into several non-overlapping parts, or subpathways. For

example, the Reactome pentose phosphate pathway can be broken down into two subprocesses, the

oxidative phase, and the non-oxidative phase. PW terms can be used to identify these relationships

between pathways. The PW is-a relationship describes both overlap and granularity subset relation-

ships, and the PW part-of relationship describes subprocess relationships. When merging pathways

and generating normalized gene sets, I primarily focus on identifying and merging overlapping path-

ways. The identification and integration of part-wise pathway relationships into enrichment analysis

will be studied in future work.

In this chapter, I demonstrated a pathway alignment method that aligns the entities between two

pathways based on entity attributes and topology. In Chapter 7, this pathway alignment algorithm

is used to merge pathways and generate normalized pathway-derived gene sets, which are compared

against standard gene sets in enrichment analysis.

There are several points of potential improvement in the alignment procedure described in this
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chapter. The results of manual assessment indicate that lexical entity features may be better than

topology-based features for aligning entities, especially in pathways that are poorly annotated. I can

expand upon the lexical entity attributes used for computing similarity. Stemming and lemmatization

refer to the process of reducing words to their base form; for example, metabolism, metabolic, and

metabolite all share a stem word. Prefix and suffix analysis can also be employed to discover similar

classes of words, especially chemical species, which can be grouped together based on suffixes, like -

oses (sugars) and -ases (proteins). Using stemmed and suffixed entity names as entity attributes could

improve the performance of the alignment algorithm.

Some manual review is inevitable to generate ideal normalized pathways. In future work, I aim to

provide a platform for exploring the overlaps among these pathways and to allow for the generation

of pathway data sets with reduced redundancies among member pathways. Such an interface could

allow the user to control inputs such as the pathway databases from which to derive pathway data,

the ontology to use for harmonizing the data, and the preferred amount of merging. The user could

generate unique gene sets for GSEA or other types of pathway-based enrichment analysis based on

their individual needs. For example, one could combine several signaling pathway databases using the

Gene Ontology biological processes sub-ontology, and only merge pathways that have more than 25%

entity overlap.

Understanding the similarities and redundancies among pathway representations is critical for

improving the quality of secondary analyses performed using pathways. Associations among differ-

ent pathways can be deduced by studying the features of each individual pathway, such as its name,

description, entity membership, and topological structure. In this chapter, I have shown that a com-

bination of entity attributes and topology features can be used to infer alignments between pathways.

Pathway alignments can be combined with ontology class associations to select pathways suitable for

merging.

In Chapter 7, I discuss how I combine the alignment algorithm and PW-class annotations to select

pathways for merging. I perform a comparative evaluation of these merged pathways against baseline

pathway-derived pathways in pathway analysis. The structure of resources such as the PathwayOntol-

ogy or the Gene Ontology biological processes hierarchy can be used to aid interpretation of analysis
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results. Continuing forward, my goal is to provide a shared organizational structure across multiple

pathway databases that will make it easier for researchers to use pathways with appropriate content

and granularity.
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Chapter 7

A COMPARATIVE EVALUATIONOF NORMALIZED PATHWAYS FOR
PATHWAY ANALYSIS

Pathway analysis enables researchers to interpret gene-level activity at a functional level. Pathway

analysis, however, is sensitive to the pathways used [58, 142, 25]. Statistics in algorithms like Gene

Set Enrichment Analysis (GSEA) do not account for the presence of semantically similar pathways

in analysis, and genes from redundant pathways receive unequal representation in aggregated results

[22]. Network-based analysis methods introduce better ways of handling overlapping pathways, but

they must still contend with incomplete or inaccurate pathway entity annotations, or differences in

pathway knowledge representation among various databases [113].

By merging redundant pathways that describe similar function based on Pathway Ontology clas-

sification, I produce a set of normalized pathways. When used in pathway analysis, these normalized

pathways generate lower redundancy in analysis results, as similar pathways have been identified and

merged together. Additionally, the structure of the PW provides organization to the outputs of path-

way analysis. This ontological structure can be used to visualize the relationships between various

pathways, and aid in the interpretation of results. Instead of an otherwise flat list of pathways and en-

richment scores, the output of pathway analysis conducted using PW-normalized pathways retains the

semantic relationships between various pathways.

In this chapter, I perform a comparative evaluation of these normalized pathways against a set of

standard pathways. I compare the two sets of pathways in GSEA [133]. I first derive normalized gene

sets from all merged pathways. I then perform GSEA on four gene expression datasets, comparing

the normalized gene sets against baseline pathway-derived gene sets retrieved from MSigDB [99]. I

compare the enrichment results and qualitatively and quantitatively assess the level of redundancy

among enriched gene sets. I also show how the structure of the PW can be used to visualize and help
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interpret the results of GSEA conducted using PW-normalized pathways.

Public gene expression datasets are used for evaluation. All data used in this comparative evalua-

tion are generated using RNASeq [149]. RNASeq is a technique that measures the quantity of mRNA

in tissue, a proxy for gene expression. RNASeq data allow us to measure gene expression in tissues

under various conditions, including those subject to environmental perturbation or disease. I conduct

my evaluation using study data that have been previously analyzed and published in peer-reviewed

scientific journals.

Prior GWAS and pathway analysis studies conducted by researchers on related data establish a

baseline understanding of associated genes and pathways for each disease phenotype. Since there is

no gold standard of pathway analysis, I perform a comparative analysis. Figure 7.1 describes the steps

undertaken. For each gene expression dataset, I first A) perform a standard analysis using the GSEA

protocol and baseline pathway-derived gene sets obtained fromMSigDB [99]. I then B) performGSEA

on the same gene expression data using normalized gene sets derived from the results of PW-based

pathway alignment. GSEAwas selected due to its widespread adoption and ease of application. Valida-

tion on other pathway analytic techniques, including network-based pathway analysis, will be explored

in future work.

Pathways from the seven databases (HumanCyc, KEGG, NCI-PID, Panther, Reactome, SMPDB,

and WikiPathways) are clustered based on PW class annotations, and merged based on the alignment

results of Chapter 6. Gene sets are derived from the member entities of merged pathways. I compare

the enrichment outputs of analysis performed using baselineMSigDBpathway-derived gene sets to the

enrichment outputs obtained using normalized gene sets. I solicit expert review to help interpret the

results of both sets of pathway analysis. I also compare the results of analysis to previous results from

journal publications conducted on relevant experimental data. Previous study results are summarized

in Section 7.4.

In this chapter, I discuss 1) the creation of normalized pathways based on the alignment outputs of

Chapter 6, 2) a comparative evaluation using public gene expression datasets, and 3) the visualization

of pathway analysis results using the structure of the Pathway Ontology.
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Figure 7.1: Pipeline for evaluating normalized pathways.

Figure 7.2: Procedure for generating gene sets based on normalized pathways. Scores from the PW
mapping algorithm are combined with entity Jaccard indices to generate a combined similarity score
for each pathway pair. The pathway alignment algorithm is used to generate a network alignment for
each pathway pair. Those pairs with alignment scores above a threshold are combined. Normalized
gene sets are generated from all combined and singleton pathway sets.

7.1 Developing a normalized pathway dataset

A normalized pathway dataset is generated by combining semantically similar pathways from seven

disparate databases. Figure 7.2 displays the steps associated with generating normalized pathways and
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associated gene sets. First, pathway pairs suitable for alignment are identified using the output of the

PW mapping model from Chapter 4. For each class in the PW, I first extract the set of pathways as-

sociated with the class,Pdb,i. This setPdb,i consists of previously annotated pathway instances from

KEGG,NCI-PID, and SMPDB, as well as the set of pathways fromHumanCyc, Panther, Reactome, and

WikiPathways associated with the PW class by the PW mapping algorithm. An example membership

of the setPdb,i is given as:

Pdb,i =



pkegg,1,

psmpdb,1,

phumancyc,1, phumancyc,2,

preactome,1, preactome,2, preactome,3,

pwikipathways,1


(7.1)

where the set is made up of pathways from multiple databases, some of which provide multiple as-

sociated pathway instances. This example includes pathways from five databases, but actual results

may include pathways from all seven databases. From this set, I generate the pairwise combinations of

pathways with different database provenance, given as:

(
N

2

)
Pdb,i where db1 6= db2 (7.2)

This yields an overall list of semantically associated pathway pairs. Similarity scores between pairs

are used to determine suitability for alignment. For each pair, I compute an overall similarity score as

the average of the PWmapping similarity score and the pathway entity overlap score. The entity over-

lap score is the Jaccard similarity between the entity sets of the two pathways. The mapping similarity

scores and Jaccard index are combined for the pathway pair (pdb1,i, pdb2,j) using the following formula:

S (pdb1,i, pdb2,j) =Mean

 Mean

 Sim (pdb1,i, PW_class) ,

Sim (pdb2,j, PW_class)

 ,

Jaccard (pdb1,i, pdb2,j)

 (7.3)

Pathway pairs with S > 0.2 are aligned using the pathway alignment algorithm described in the
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previous chapter. The threshold is used to reduce the number of overall alignments computed due

to limitation of computational time and resources. The alignment algorithm generates an alignment

score between 0 and 1 and an overall graph alignment for each pair of pathway inputs. In total, 23,504

pairs of pathways are aligned using this algorithm. An alignment score is produced for each pair of

aligned pathways as the mean similarity of all positive mappings in the resulting alignment. Pairs of

pathways with alignment scores over 0.5 are combined into a single pathway entry.

Entities and relations from these combined pathway entries can then be used to extract alternate

representations for pathway enrichment analysis. For example, to generate gene sets for GSEA, I ex-

tract the cross-reference identifiers associatedwith each aligned protein/complex entity from the com-

bined pathway representation. Using the Bioservices library [39] and queries to BioMart [127], I map

these cross-reference identifiers first to Ensembl identifiers and then to gene symbols, which are out-

put as gene sets. These gene sets are then used to analyze gene expression data through the GSEA

algorithm.

Each gene set is named based on the PW class associated with its constituent pathways. The gene

set name takes on the form <PW_id> <PW_class_name>; for example, a gene set generated for

PW_0000475 is named PW_0000475 HEMOSTASIS PATHWAY. If multiple non-intersecting clus-

ters of pathways are identified as being associated with the same PW class, more than one gene set can

be generated based on the PW identifier, in which case, a number is added as a suffix identifier, as in

PW_0000394 DOPAMINE SIGNALING PATHWAY 1 and PW_0000394 DOPAMINE SIGNALING

PATHWAY 2. When only one pathway is associated with a PW class, the name of the gene set also

includes the source database of the gene set, taking on the form<PW_id><source_database_name>

<source_pathway_name>, as in PW_0000039 REACTOME RECYCLING OF BILE ACIDS AND

SALTS. Large pathway instances that lack strong associations to PW classes are also included in the

output gene sets. Pathways with greater than 15 entities were included (minimum gene set size thresh-

old used for GSEA), and were given names in the form <source_database_name> <source_path-

way_name>, as in PID MTOR SIGNALING PATHWAY. These gene set names are provided in the

outputs of analysis.

A total of 757 normalized gene sets are generated for use in comparative analysis. Of these, the
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vast majority, 743, are associated with a Pathway Ontology class, and 14 are larger pathway instances

for which a notable PW class match could not be detected from PWmapping results. Of the 743 PW-

associated gene sets, 639 are created by merging two or more pathways together, and 104 are derived

from a single pathway.

7.2 Comparative evaluation

GSEA experiments are conducted to compare the performance of baseline gene sets against normal-

ized gene sets. The baseline gene sets are derived from the Molecular Signatures Database (MSigDB),

version 6.2, and consist of all MSigDB pathway-derived gene sets, numbering 1329 in total [99]. These

gene sets are curated from pathways in KEGG, BioCarta, NCI-PID, and Reactome, as well as derived

directly from pathway-related publications. A large proportion of these, 673 gene sets, originate from

Reactome pathways. Because each gene set is derived from a single pathway, some biological functions

are represented repeatedly. For example, gene sets representing Wnt signaling are derived from Wnt

signaling pathways present in BioCarta, KEGG,NCI-PID, Reactome, and other publications. Although

these gene sets are not equivalent, they do overlap significantly and may therefore arise repeatedly in

analysis results if the Wnt signaling function is enriched.

Normalized gene sets are derived from merged pathways using the methods described in section

7.1. Pathway clusters are identified using similarity scores to PW classes. Pathway alignment scores

are used to determine whether two pathways within a cluster should be combined. A total of 757

normalized gene sets are generated in this manner and used in all following analyses.

There are more baseline gene sets, 1329, versus normalized gene sets, 757. Because normalized

gene sets are generated from a less redundant pathway dataset, this is not surprising. The expectation

is that repeated gene sets would be eliminated in the normalized sample. The source pathway databases

of the baseline and normalized gene sets overlap, but the normalized gene sets are derived from a larger

number of pathway databases. The baseline gene sets are derived from pathway databases KEGG, Bio-

Carta, NCI-PID, and Reactome, and also include unaffiliated published pathways. The normalized

gene sets are derived from KEGG, NCI-PID, and Reactome, but also derive fromHumanCyc, Panther,

SMPDB, and WikiPathways. Pathways from BioCarta are not incorporated into the normalized gene
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sets, because BioCarta is a database of pathway diagrams for which pathway representations are not

easily accessible. Pathways published outside of pathway databases are also not used to derive normal-

ized gene sets, because these would also need to be manually converted into pathway representations.

Four gene expression datasets are used for evaluation. These datasets are discussed in section 7.2.1.

Default parameters are used for all GSEA experiments (minimumgene set size = 15, maximumgene set

size = 500, permutations = 1000, permutation type = sample labels, number of top gene sets analyzed =

20). The R implementation of the Broad Institute’s GSEA algorithm, R-GSEA1 and the Python library

GSEApy 0.9.92 are used to conduct all experiments.

Differences in analysis output are described both qualitatively and quantitatively. I identify en-

riched pathways in the outputs of GSEA conducted using both baseline and normalized pathway-

derived gene sets. I provide a qualitative comparison of the top 20 ranked enriched gene sets produced

by each analysis. Because the gene sets are derived from different groupings of pathways, they cannot

be directly compared between the two analyses. However, I identify locations where the same func-

tional gene set occurs multiple times in the baseline results while only once in the normalized results.

I compare the leading edge genes produced in the two analyses. The differences between the leading

edge gene lists are assessed quantitatively. I rank the leading edge genes from the top 20 enriched gene

sets by occurrence, and compute the rank biased overlap (RBO) [150] between the ranked lists. The

RBO measure is a description of similarity between two ranked lists, and has been used to compare

results produced by search engines and other such information retrieval systems. It is applicable here,

where I compare two incomplete, non-overlapping lists of implicated genes. I also compute the Jaccard

index to indicate the level of overlap between the leading edge gene lists. This gives an indication of

any similarities between the genes identified as most responsible for enrichment among the baseline

and normalized gene sets.

I also quantify redundancy among the enriched gene sets obtained from the two analyses. My

aim is to reduce semantic redundancy, and I use gene set membership overlap as a proxy measure for

semantic overlap. By computing the pairwise Jaccard index between each pair of enriched gene sets, I

1http://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/R-GSEA_Readme
2https://gseapy.readthedocs.io/en/latest/
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can determine the overall similarity between thewhole set of enriched gene sets. I compare the average

pairwise Jaccard index between all enriched baseline gene sets and all enriched normalized gene sets.

Lower redundancy is indicated by lower average Jaccard index.

Lastly, I perform an in-depth analysis of all baseline and normalized enriched gene sets for one

gene expression dataset. Instead of comparing just the top 20 enriched gene sets, I extract all enriched

gene sets with positive enrichment score and p-value less than 0.05, indicating a greater likelihood

for statistical significance. I then group these enriched gene sets by functional categorization. In this

way, I can identify the biological functions found to be enriched in both analyses. I can also compare

the number of gene sets associated with each function from the baseline and normalized enrichment

results. This provides a qualitative assessment of redundancy among enrichment results.

7.2.1 Evaluation datasets

I perform an evaluation using four different public gene expression datasets. Of the datasets, two are

derived from Alzheimer’s patient cohorts, and two from cancer cohorts via the Cancer Genome Atlas

(TCGA). All four datasets provide RNASeq data from patients and controls. Details are provided in

Table 7.1.

Dataset Disease Description

ADTBI Alzheimer’s Dementia 377 samples (180 AD, 197 control) taken from

the temporal cortex, parietal cortex, cortical

white matter, and hippocampus

MSBB Alzheimer’s Dementia 938 samples (665 AD, 273 control) taken from

Brodmann Areas 10, 22, 36, and 44

TCGA-HNSC Head and neck squa-

mous cell carcinoma

546 samples (502 tumor, 44 matched normal)

TCGA-LUAD Lung adenocarcinoma 594 samples (535 tumor, 59 matched normal)

Table 7.1: Evaluation RNASeq datasets
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The Aging, Dementia and Traumatic Brain Injury (ADTBI) dataset is derived from a sub-cohort

of the Adult Changes in Though (ACT) study [105]. The sub-cohort was established to characterize

the relationship between traumatic brain injury (TBI) earlier in life and the development of dementia,

specifically Alzheimer’s Dementia. Data for the ADTBI study were derived from the data portal hosted

by the Allen Institute for Brain Science [1].

TheMSBBAlzheimer’s dataset derives from theMount Sinai BrainBank, and is part of theAcceler-

ating Medicines Partnership-Alzheimer’s Disease (AMP-AD) Target Discovery and Preclinical Valida-

tion Project, a consortium created to understand and discover novel therapeutic targets for Alzheimer’s

Disease. The gene expression data are part of a multi-omics dataset procured from the Mount Sinai

Alzheimer’s Disease cohort [146]. Data from the MSBB were acquired from the AMP-AD knowledge

portal hosted on Synapse by Sage Bionetworks [2].

For both of these studies, normalized RNASeq data were used, and patients were separated into

two groups, AD and Control. Other patient attributes such as exposure to TBI, presence/absence of

ApoE4 allele, or other dementiawere not explored in this comparative analysis. For the ADTBI dataset,

data was separated into the four tissue types: temporal cortex, parietal cortex, cortical white matter,

and hippocampus, and each tissue subset analyzed independently. For theMSBB dataset, data was also

separated by brain region, and GSEA was conducted separately for each of the four Brodmann Areas.

Four sub-experimentswere therefore conducted for each of theADTBI andMSBBdatasets, and results

are provided for each brain region independently.

Two datasets from TCGA were also analyzed [151]. Data from patients with head and neck squa-

mous cell carcinoma (HNSCC) and lung adenocarcinoma (LUAD) were extracted for analysis from the

National Cancer Institute’s Genomic Data Commons Data Portal [5]. RNASeq Fragments Per Kilo-

base of transcript per Million (FPKM) mapped reads along with patient metadata were downloaded

and used in analysis. For both TCGA datasets, control data was derived from matched normal tissue

samples. Both cancer datasets are more unbalanced than the AD datasets.
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7.2.2 GSEA results

I computed gene set enrichment for all 10 gene expression datasets using both baseline and normalized

gene sets. Table 7.2 shows the top 20 enriched gene sets from both the baseline and normalized gene

sets for the ADTBI study hippocampus tissue. Although the enriched pathways are different between

the two result sets, there are common themes seen on both sides. For example, a number of pathways

related to the complement cascade and coagulation are seen on both sides. Table 7.6 shows enriched

pathways grouped by function. Among the enriched baseline gene sets, 8 pathways among the top 20

are associated with coagulation: rank 3, 7, 9, 10, 12, 13, 16, and 17. Among the enriched normalized

gene sets, only 2 pathways among the top 20 are associated with coagulation: rank 2 and 16. Several

other catgeories are well represented in the outputs of both analysis, but the results of normalized

analysis suggest a decrease in redundancy of output. On the normalized side, pathways related to

steroid signaling, immune response, and amino acid metabolism are better represented among the

top 20 results.

Table 7.3 shows the top enriched gene sets for HNSCC. The enrichment results are quite different

between baseline and normalized gene sets. Some common themes are seen, such as the presence on

both sides of gene sets related to lipid metabolism. Overall, the enriched normalized gene sets place

emphasis on metabolic diseases, such as those related to glycogen storage and porphyrias, a group of

diseases caused by buildup of porphyrin.

Table 7.4 shows the top enriched gene sets for lung adenocarcinoma. Baseline enrichment results

are dominated by pathways related to cell cycle. These include pathways relating to transcription, mi-

tosis, meiosis, apoptosis, and telomere processing. Some pathways related to lipid transport and pro-

cessing are also enriched. For normalized gene sets, pathways related to cell cycle, apoptosis, immunity,

gastric cancer, and the complement and coaguation cascades are enriched. The results provided by the

normalized gene sets display greater variety and may provide a more diverse picture of enriched func-

tions associated with lung adenocarcinoma.

Ranked enrichment results for the remaining gene expression datasets are available in Appendix

A. In all tables, the normalized enrichment scores (NES) and gene set names are given for the top 20
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enriched gene sets from both baseline and normalized gene sets.

Table 7.5 shows comparisons between the leading edge genes from baseline and normalized gene

sets in the enrichment output. The top 10 leading edge genes for each dataset are shown. Also shown

are the RBO and Jaccard indices for the baseline versus normalized outputs. The leading edge genes of

the top 20 enriched gene sets are extracted and sorted by number of occurrence. Leading edge genes

show the highest degree of similarity between baseline and normalized gene sets in the enrichment

output of ADTBI data. The Jaccard similarity is around 0.2, and is the highest for the hippocampus

and temporal neocortex tissues. There is low RBO and Jaccard similarity for both TCGA datasets, and

the enrichment output for the TCGA tissues are correspondingly less similar between baseline and

normalized gene sets.

I computed the pairwise Jaccard index between each pair of enriched gene sets to show the overall

similarity between all enriched gene sets. Lower Jaccard similarity between two gene sets is correlated

with lower functional overlap. Figure 7.3 shows the Jaccard indices calculated between each pair of

enriched baseline pathways compared to the Jaccard indices calculated between each pair of enriched

normalized pathways. A Jaccard of 1 (identical sets) is indicated as a white square; a Jaccard of 0 (no

set similarity) is indicated as a black square. The pairwise Jaccard indices among enriched baseline

pathways are much higher, while most of the Jaccard indices for enriched normalized pathways are

close to 0, indicating little to no overlap between the gene sets. The average pairwise Jaccard is 0.08 for

enriched baseline gene sets and 0.02 for enriched normalized gene sets.

Lastly, I extracted the enriched gene sets from both baseline and normalized GSEA of the ADTBI

hippocampus tissue. Enriched gene sets with positive enrichment score and p-value less than 0.05 are

kept for analysis. I identify biological functions associated with each enriched pathway and group the

pathways by function. For the baseline GSEA, 59 baseline gene sets were found to satisfy these cri-

teria. For the normalized GSEA, 37 normalized gene sets were found to satisfy these criteria. Table

7.6 shows all of these gene sets grouped by biological function. Functions found in both sets of GSEA

results are coagulation, complement cascade, immune response, lipid metabolism and transport, cell

cycle, xenobiotic processing, glutathione conjugation, cellular transport, cell differentiation, and mus-

cle contraction. Functions not found in both analysis or not of particular note are also provided in the
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Dataset RBO Jaccard Top 10 leading edge genes from baseline gene sets Top 10 leading edge genes from normalized gene

sets

ADTBI-fore 0.090 0.177 IFNA7, IFNA4, IFNA14, IFNA10, IFNA21,

IFNA17, IFNA5, IFNA1, IFNA8, IL2...

FGA, F13B, SLC6A3, IL4, CTLA4, LCK, FOS, ITK,

IL2, TNF...

ADTBI-hippo 0.115 0.268 UGT1A6, UGT2B10, UGT2B7, UGT2B17, FGA,

FGG, UGT2A3, UGT2B15, GSTA2, GSTA1...

F2, GSTA2, IFNG, F9, SERPINB2, F13B, SER-

PINC1, SERPINA5, FGB, UGT1A6...

ADTBI-p_neo 0.242 0.130 CD3D, CD3E, LCK, CD28, ZAP70, CD8B, FOS,

CTLA4, ITK, IL4...

MYC, FOS, FASLG, CDKN1A, CCND1, TP53,

LCK, ITK, CD28, ZAP70...

ADTBI-t_neo 0.380 0.269 CD3D, CD3E, LCK, ZAP70, IL4, IL2RG, ITK,

CD28, CD8B, IL2RB...

HMGCS2, FTMT, ITK, ZAP70, CD28, LCK, IL4,

CD3D, IL2RG, ENPP7...

MSBB-BM10 0.021 0.150 CALM1, CALM3, CAMK2B, GRIN2D, GRIN1,

GRIN2A, RPS6KA6, GRIA1, CAMK4, PRKCB...

PRKACA, MAPK1, PPARGC1A, PRKCZ, GNAS,

GNB1, MAP2K1, MTOR, NCOA1, NCOA2...

MSBB-BM22 0.013 0.167 TP53, TGFB1, FOS, HLA-DRA, HLA-DRB1,

CDKN2A, ITPR3, RXRA, PPARA, CREBBP...

RELA, PIK3CG, MAP3K8, MAP3K14, TLR5,

TLR8, TLR7, TIRAP, TLR3, NFKB2...

MSBB-BM36 0.050 0.108 CDKN2A, TGIF1, CCND1, TP53, CDKN2B,

TGIF2, SERPINE1, AR, CASP8, RNF135...

RELA, IKBKB, TGFB1, SERPINE1, LEF1,

PIK3CG, RPS6KA1, IRF7, FOS, TGFBR2...

MSBB-BM44 0.023 0.152 FGF23, FGF17, FGF9, KLB, FGFR4, FGF18,

FGF20, FGF7, FGF22, CREBBP...

CYP3A4, ABCC3, NR1I3, ABCC2, GCK, CYP3A5,

ABCB1, PPARGC1A, SP1, ABCA1...

TCGA-HNSCC 0.039 0.040 FGF3, FGF20, FGF4, FGF17, FGF6, FGF23,

FGF10, FGF8, FGF19, KLB...

UGT2B11, AMY1B, AMY1A, CYP4A11, F11, FGB,

FGA, PLG, F9, F13B...

TCGA-LUAD 0.083 0.095 HIST1H4F,HIST1H4L,HIST1H2BB,HIST1H2BI,

HIST1H4C, HIST1H4B, HIST1H4A, HIST1H2AB,

HIST1H4D, HIST1H2AJ...

PLG, F2, PLAT, F9, F13B, THBD, SERPINC1, FGB,

F8, PROS1...

Table 7.5: Comparison of leading edge genes
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Figure 7.3: Jaccard similarities between pairs of enriched baseline pathways (left) and enriched normal-
ized pathways (right) for the ADTBI hippocampus tissue.

table.
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7.3 Representing pathway organization in results

A potential benefit of integrating pathway data using the Pathway Ontology is the additional ontolog-

ical structure imposed upon the output data. In addition to identifying semantically similar pathways,

the PW is also a way to organize pathway data. I hypothesize that the organizational structure of path-

ways in the PWmay be useful for interpreting the results of pathway analysis. To illustrate the potential

uses of PW organization, I prototyped an interactive tree visualization to display the outputs of PW-

based GSEA.

For the prototype, I extracted all PW-associated pathways and their corresponding enrichment

scores from the enrichment results. I then constructed a sparse tree from all PW-associated pathways,

which consist of all enriched pathways and their parents and grandparents from the PW. A summed

enrichment score was computed for each parent node in the sparse tree as the summation of enrich-

ment scores over its child nodes. Upon collapsing the tree to a certain level, these summed enrichment

scores can be used to compare functional enrichment at lower levels of granularity.

Figure 7.4 shows the enriched normalized gene sets for the ADTBI parietal neocortex dataset vi-

sualized over the corresponding portion of the PW tree. Nodes with red circles are the enriched gene

sets, and the size of each highlighted circle corresponds to the normalized enrichment score. When

a parent node is collapsed, the size of the node is made to reflect the summed enrichment scores of

its enriched children and grandchildren. The same figure shows the tree collapsed to only PW gene

sets at level 2. The parent PW classes PW_0000818 (“Signaling pathway pertinent to immunity”) and

PW_0000465 (“Hormone signaling pathway”) show strong aggregate levels of enrichment.

When a subtree is collapsed into a parent node, the enrichment scores of the child nodes are summed

and displayed as the size of the collapsed parent node. For example, PW_0000818 (“Signaling pathway

pertinent to immunity”) is not an enriched pathway, but its child nodes PW_0000897, PW_0000912,

and PW_0000821 are. Once collapsed, PW_0000818 shows high levels of enrichment. Collapsing the

tree in this fashion allows the user to explore enrichment of lower granularity biological functions.

Several other examples of this tree visualization are given in Appendix B. The visualization of

enriched gene sets using the hierarchical structure of the Pathway Ontology gives researchers new
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Figure 7.4: Visualization of
GSEA output for ADTBI
parietal neocortex data using
normalized gene sets. The
tree layout of enriched gene
sets is generated based on
the PW class hierarchy. The
size of each highlighted node
represents its enrichment
score. The tree is shown
fully expanded (above) and
collapsed to the second level
(left). A demonstration of
this interactive prototype is
available at http://llwang.
net/uw/dissertation/
demo/ad_pneo.html.
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options for exploring enrichment results. In future work, I aim to explore how PW tree-based visual-

ization can be used to better explore and understand enrichment results.

7.4 Comparison of results to prior studies

Studying gene expression differences between patients and healthy controls can help researchers for-

mulate the mechanisms underlying complex diseases. Identifying regulatory genes associated with a

disease phenotype can also lead to the isolation of potential treatment targets. There are many tech-

niques for analyzing gene expression data. Genome wide association studies (GWAS) can identify in-

dividual genes that correlate strongly with a disease phenotype. Pathways and interaction networks

can be used to identify gene sets or gene network modules associated with disease. These pathway

and network analysis methods can detect gene modules where individual member genes may not be

strongly associated with the phenotype of interest, but where the module is statistically associated.

Below, for each of the disease phenotypes analyzed in my comparative analysis, I discuss previous

work related to pathway analysis. I provide a review of the gene and functional modules found to be

associated or enriched in that phenotype. Some prior results suggest causal mechanisms implied by

the results of these analyses.

7.4.1 Alzheimer’s dementia

According to Naj et al, "the ultimate goal of these genomic studies are to identify the key biological

pathways influencing development of AD as targets for the development of therapeutic interventions

to treat and ideally cure the disease" [110]. Pathway analysis allows gene-level associations to be ag-

gregated and studied at a functional level, and can lead to both better mechanistic understanding of

disease, and also drive innovation in treatment. For AD, a long history of genomic studies have been

used to map out our current understanding of the AD gene network, and further study is necessary to

clarify mechanism and characterize disease variants.

The APOE ε 4 allele has long been known to increase AD risk [30]. Developments in linkage anal-

ysis, next-generation sequencing, and GWAS allowed the detection of other genes and variants with

significant association with the AD phenotype. Numerous genome wide association studies have been
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undertaken with Alzheimer’s patient data to shed light on the genetic variants that impact risk and

progression of Alzheimer’s Disease [62, 124, 135, 69, 94, 80, 77]. These studies have successfully de-

tected a number of genomic markers associated with the AD phenotype. Genes such as APP, PSEN1,

PSEN2 and others were found to be associated with early-onset AD [55]. GWAS and genome-wide

linkage studies have also identified numerous genes and susceptibility alleles characterizing late-onset

AD [55, 110].

Pathway and network-based enrichment studies of AD gene expression data and results have ex-

panded our understanding of the biological functions influencing AD disease progression [79, 123, 95,

70]. An early application of GSEA to AD SNP variants found that all immune-related pathways and

some lipid and cholesterol metabolic pathways were significantly enriched, of which the strongest en-

riched pathwayswere the complement cascade and cholesterol transport [79]. A genome-wide pathway

analysis of Alzheimer’s Disease Neuroimaging Initiative (ADNI) data showed enrichment in pathways

associated with neuronal cell adhesion, inflammation, neurotrasmitter signaling, and brain develop-

ment [123]. Ameta-analysis byLi et al found enrichment amongpathways associatedwithmacrophages,

DNA transcription, cytokines, and mitochondrial dysfunction [95]. A literature-based study of AD-

related genes shows enrichment in brain development, metabolism, cell growth and survival, and im-

mune function [70].

Giri et al summarizes that the genes identified through gene-level studies cluster into three major

pathways describing inflammatory response, lipid metabolism, and endocytosis [55]. Pathway analysis

confirms these functions, but have also shown enrichment in novel functions such as neurotransmitter

signaling, neuronal development, and cell cycle regulation.

Recentwork in region-specific tissue sampling of ADpatient brain tissue have shown region-based

expression differences [60]. Regions of the brain vulnerable to increased aggregation of amyloid pro-

teins showed negative enrichment of pathways related to protein synthesis and mitochondrial respi-

ration, while regions of the brain affected most by neurodegeneration showed positive enrichment of

pathways related to neurite outgrowth, synaptic contact and intracellular signaling, and proteoglycan

metabolism [60]. These results demonstrate different regional affects of disease, and hint at tissues and

functions causally related to disease.
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The results of my experiments using the ADTBI and MSBB AD gene expression datasets confirm

prior work. Immune response is well-represented in enrichment results. For example, in Table 7.2,

and Table 7.6, pathways relating to immune function, complement cascade, and lipid metabolism are

well-represented among the baseline enriched gene sets. In the results of enrichment performed us-

ing normalized gene sets, the top 5 enriched pathways all clearly represent functions associated with

immunity and steroid metabolism. There are several representative gene sets related to the comple-

ment/coagulation cascades, interleukin signaling, and steroid signaling. Table 7.6 shows all statistically

significant enriched gene sets from both analyses grouped together by biological function.

7.4.2 Head and neck squamous cell carcinoma

Head and neck squamous cell carcinoma is a cancer of the squamous cells lining the aerodigestive

tract. Genomic studies have been used to characterizeHNSCC susceptibility, recurrence, and subtypes

[93, 106, 153]. Lacko et al found that genetic susceptibility to HNSCC is associated with pathways of

DNA repair, apoptosis, human papillomavirus (HPV), mitochondrial polymorphisms, and polymor-

phism related to the bilirubin metabolism [93]. Moore et al, in an analysis of TCGA HNSCC gene

expression data, identified several patient subgroups with distinct expression characteristics. HPV

negative tumors were found associated with pathways of apoptotic signaling and regulation, while

HPV positive tumors were associated with deletions and mutations of TNF receptor-associated fac-

tor 3 (TRAF3). The authors also report alterations among RAS, PI3K, and EGFR signaling cascades,

and in tumor suppressor genes such as TP53 and CDKN2A. These modifications can be clustered into

gene groupings related to RTK/RAS/PI3K signaling, cell death, immunity, differentiation, and oxida-

tive stress, by order of enrichment [106]. In another analysis of TCGA data, Yan et al performed GO

and KEGG pathway enrichment analysis. GO terms related to cell cycle, apoptosis, cell migration, ex-

tracellular matrix, and cellular signaling were associated with up-regulated genes, indicating cellular

proliferation and metastatic tendencies. KEGG-based pathway analysis showed high levels of enrich-

ment in the cell cycle, Wnt signaling, p53 signaling, Jak/STAT signaling, TGF-β signaling, and Toll-like

receptor signaling [153].

The results ofmy experiments using TCGAHNSCCdata show similar baseline gene sets in enrich-
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ment results. Signaling cascades related to fibroblast growth factor receptors (FGFR and FRS2), SHC-

transforming protein 1 (SHC), and PI3K, as well as cell cycle, integrin signaling, and lipid metabolism

and transport are seen in the enriched baseline gene sets. FGFR plays important regulatory roles in

cell death and proliferation, cellular differentiation, and angiogenesis. SHC regulates apoptosis. PI3K

regulates cell death and proliferation, cellular differentiation, and cell motility. All three have been

implicated in tumorigenesis. For example, the FGFR and SHC signaling pathways were among gene

modules identified as being associated with cancer by Petrochilos et al [120].

The results of GSEA using normalized gene sets are more difficult to interpret. Results shows en-

richment among pathways associated with metabolic disease, especially glycogen storage, porphyria,

lipid metabolism and cytokine-mediated signaling. Notably, variants of the FGFR gene are present in

the leading edge of many enriched baseline gene sets, but was not found in enriched normalized gene

sets. This is likely due to the methods I used to convert pathways into gene sets. Reactome pathways

are sometimes annotated with numerous variants of each gene, and in some cases, these variants can

dominate membership within a pathway and the resulting gene set. A benefit of this is the high level

of enrichment that results for that pathway when a representative gene member is differentially ex-

pressed. However, there may be cases where the domination of a gene set by one member gene is less

desirable. The proper conversion of pathwaymember entities to a gene set is a problem to be explored

in future work.

7.4.3 Lung adenocarcinoma

Lung adenocarcinoma is one of the most common forms of lung cancer. Sequencing and gene ex-

pression data have provided enhanced understanding of the mechanisms underlying this disease. In

a review of genomic studies, Devarakonda et al report that the most common pathways associated

with lung adenocarcinoma are the RTK/RAS/RAF, mTOR, and JAK-STAT signaling pathways, and

pathways of DNA repair, cell cycle regulation, and epigenetic deregulation [45]. In a meta-analysis

of TCGA and Gene Expression Omnibus (GEO) data, Gan et al show that pathways associated with

steroid metabolism, carbohydrate metabolism, protein metabolism, and drug metabolism (both Cy-

tochrome P450 modulated and otherwise) are enriched for the lung adenocarcinoma phenotype [52].
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Bismeijer et al introduce Functional Sparse-Factor Analysis (funcSFA) for characterizing tumor sub-

types. FuncSFA uses GSEA to identify the dominant functional modules associated with each tumor.

Results of FunSFA applied to lung adenocarcinoma expression data show enrichment for gene sets

related to mitochondria, DNA replication, and immune response [27].

The results of my GSEA experiments using the TCGA LUAD gene expression dataset show sim-

ilar enrichment patterns. Among baseline gene sets, enrichment results are dominated by gene sets

associated with cell cycle. Enriched normalized gene sets showmore diversity of function, implicating

pathways related to cell cycle, immunity, steroid signaling, gastric cancer, complement and coagulation

cascades, lipid metabolism and others. Again, leading edge genes in baseline gene sets are dominated

by variants of the Histone Cluster 1 (HIST1) gene. Like in the case of HNSCC, this may be a feature

of Reactome pathways. The greater variety of gene sets implicated from the normalized gene sets may

provide a more complete picture of functions disrupted in lung adenocarcinoma disease progression.

7.5 Summary & Discussion

In all cases, some overlap was seen between the leading edge genes of outputs generated using base-

line and normalized pathway gene sets. Although the genes and pathways seen in enrichment output

differ substantially in some cases, as described above, the overall classes of expected pathways can be

found in the experimental results for analysis conducted on all four gene expression datasets. In sev-

eral cases, the results suggest that normalized pathways can reduce redundancy in enrichment results.

Redundant enriched pathways can be seen in several of the baseline analyses. For example, in Table

7.2 and Table 7.6, baseline results show 11 enriched pathways related to coagulation, such as the for-

mation of fibrin clot clotting cascade (rank 3), GRB2 SOS provides linkage to MAPK signaling for

intergrins (rank 7), platelet aggregation plug formation (rank 9), the KEGG pathway for complement

and coagulation cascades (rank 10), the Biocarta intrinsic pathway, describing coagulation (rank 12),

integrin alphaIIb beta3 signaling (rank 13) and so on. These pathways describe related biological func-

tion. In the normalized analysis, the results include PW_0000475 hemostasis pathway (rank 2) and

PW_0000474 coagulation cascade pathway (rank 16), which correspond to the functions described by

the baseline enriched pathways. Reducing the enriched baseline gene sets related to coagulation to



118

two normalized gene sets may be beneficial. It preserves the functions described in the gene sets while

eliminating redundancy and providing room for greater diversity in the rest of the enrichment results.

Similarly, in Table 7.4, baseline enrichment results are dominated by variants of Reactome-derived

gene sets related to cell cycle regulation. Enrichment with normalized gene sets show several gene sets

related to cell cycle and apoptosis, but there is greater diversity in function. Other enriched gene sets

highlight the association of lung adenocarcinomawith immunity, lipidmetabolism, and gastric cancer,

among other biological functions.

Future work is necessary to understand how these normalized pathways perform in real world

applications of pathway analysis. For example, there is room for improvement in the process I used to

generate normalized pathways andnormalized gene sets. When researchers performanalysis using this

novel pathway dataset, their feedback can be incorporated to improve data quality and performance.

Several points to address in future studies include:

1. How well do ontology-normalized pathways represent the associated biological function,

2. How best to generate gene sets from pathways,

3. How normalized pathway representations perform in other types of pathway analysis, and

4. How best to present the results of pathway analysis exploiting the structure of an organizing

ontology.

I began addressing the first question in Chapter 4, by evaluating the goodness of the PW-mapping

algorithm. However, I have not performed an exhaustive reviewof pairs of pathways selected formerg-

ing based on PW class similarity and alignment score. Such a study could inform how to improve both

the PW class mapping algorithm described in Chapter 4 as well as the pathway alignment algorithm

described in Chapter 6.

Regarding how best to generate gene sets from normalized pathways, I have addressed some of

the shortcomings of the current method I use to map pathway member proteins to genes. The cur-

rent approach used is fully automated, and converts each aligned protein/complex entity into a gene

symbol through API calls to Ensembl and BioMart. Pathway gene sets commonly used for GSEA, for
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example, fromMSigDB, are subject to curation. In some cases, such as with BioCarta pathways, mem-

ber proteins in a pathway diagram are manually converted into gene symbols. The coverage obtained

through manual curation will have higher breadth and fidelity than the approach I currently use. How

to achieve better, more accurate coverage will be the subject of future research.

Other forms of pathway analysis, such as network-based analysis, take advantage of the connectiv-

ity of each pathway representation. In the current evaluation, I have not assessed the fitness of normal-

ized pathway representations for pathway analysis that preserves protein and molecular interactions.

There are numerous such analysis techniques, and preserving the interaction network of pathways can

provide significant benefit to the interpretation of results. I hope to explore applications of normalized

pathways in network-based pathway analysis in future work.

Lastly, to aid in interpretability, I also demonstrate how the structure of the Pathway Ontology

can be used to display enrichment results. This demo is a first step towards addressing the last point.

The additional organization of pathways imposed by the structure of the Pathway Ontology can pro-

vide an easy way for clinicians and researchers to summarize enrichment results at different levels of

granularity. Further experiments are necessary to gauge the best way to display and interact with this

underlying structure. However, I believe the prototype successfully demonstrates the value of pathway

organization and structure to the interpretation and presentation of pathway analysis results.

Navigating pathways using a common ontology can assist researchers in understanding enrich-

ment results and forming novel hypotheses. In this chapter, I converted PW class mappings and path-

way alignments into a normalized pathway dataset. I then generated gene sets from each normalized

pathway. Using four public RNASeq expression datasets (2 Alzheimer’s Disease, 1 HNSCC, 1 lung

adenocarcinoma), I evaluated the performance of these normalized gene sets compared to standard

baseline gene sets retrieved fromMSigDB. Comparative results suggest that primary functional mod-

ules shown to be enriched in previous studies are largely found in the enrichment results of GSEA

performed with both baseline and normalized gene sets. There is also some indication that PW-based

integration of pathway data can reduce redundancy in enrichment results by combining semantically

similar pathways from different databases. A prototype visualization also points to the benefits of the

Pathway Ontology’s hierarchical organizational structure, which can be used to visualize the associ-
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ations between different clusters of gene sets based on parent function. I believe significant benefit

can be derived from the integration and normalization of pathway data from different databases. This

work shows some of the promises of this ontology-driven approach for integrating pathway data and

its applications to real-world data.
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Chapter 8

SUMMARY

Recent advances in sequencing methods, animal models, sequence annotation tools, and other de-

velopments have led to an explosion of genomic data. It has become increasingly clear that human

physiology results from the complex interactions of many genes andmolecules, translating into differ-

ent biological functions within and between an array of tissues and cell types. Many complex diseases

have polygenic causes. There can be numerous genetic markers relevant to disease pathogenesis and

progression. Identifying these groups of interacting genes is critical for the systems-level understand-

ing of biology and disease.

Pathway analysis plays an important role in processing and understanding genomic data. Pathway

analysis takes advantage of pre-defined biological pathways. These pathways are tied to function, and

provide an alternate lens for viewing the correlations and interactions between genes, proteins, and

other molecules. Pathway databases provide access to thousands of pathways created through manual

curation of the literature and experimental results. The pathways within these databases represent

the distilled knowledge of the research community. Pathways are created for a variety of reasons, but

rarely are they validated specifically for use in pathway analysis. As a result, users face the difficult

decision of choosing the appropriate pathway dataset for use in analysis. There are no guidelines for

choosing a pathway dataset, and users may make decisions based on availability, popularity, or habit.

Unfortunately, the choice of different pathways can alter pathway analysis results [58, 87].

To minimize result inconsistencies caused by choosing different pathways, and to increase the

breadth of coverage over more biological functions, many users combine pathways from different

databases. Successful combination of pathway datasets requires two things: 1) pathway data from

different databases must inter-operate, and 2) duplicate pathways from different databases must be

identified and removed. The introduction of pathway data exchange standards and pathway aggrega-
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tor databases improve query and access to integrated pathway data, largely addressing the first point.

However, naive merging of pathway datasets do not adequately identify duplicate pathways.

Statistical methods have been used to identify andmerge pathways that overlap on entity member-

ship [142, 25]. Pathways with sufficient entity overlap are merged into superpathways. These methods

successfully reduce entity overlap between superpathways. However, because the pathways merged

using these methods may not be semantically related, the resulting superpathways can be challenging

to interpret. An ideal method for integrating pathway data should identify and remove redundancies

in the resulting combined dataset, while preserving or even emphasizing the semantic relationships

between various pathways to improve interpretability.

It is for these reasons that I proposed and demonstrated an ontology-based integration of path-

way data. The previous chapters detailed the various steps I undertook to construct an ontology-

normalized pathway dataset for pathway analysis. I organized pathways from seven source databases:

HumanCyc, KEGG, NCI-PID, Panther, Reactome, SMPDB, and WikiPathways, using the class hier-

archy of the Pathway Ontology. I then formed normalized pathways for each cluster of pathways as-

sociated with a particular PW class. The normalized pathways generated in this fashion have lower

redundancy, yet retain their semantic association with biological function. My research contributions

are as follows:

• A machine learning model that predicts mappings between pathways and classes in an organizing

ontology

• A typology of knowledge representation differences between pathway databases

• A network alignment algorithm for aligning pathway graphs, and

• A normalized pathway dataset, which was evaluated in GSEA using public gene expression datasets.

Using a shared ontology, the PathwayOntology, I first organized pathways of different provenance

based on semantic similarity. In Chapter 4, I describe the procedure for mapping pathways to PW

classes. I compared two models, a baseline bag-of-words (BOW) model similar to the existing string-

based search used by PW curators, and a neural network (NN) model trained on gold standard and
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bootstrapped data. I derived training data fromgold standardmappings in the PW, theUnifiedMedical

Language System, and bootstrapped mappings between Reactome pathways and PW classes. I then

trained a neural network model based on learned vector representations of pathways and PW classes.

Curators at the Rat Genome Database annotated a random sample of results from both models

to determine precision and recall. Compared to the BOW model, the NN model produced mappings

with lower precision per mapping (BOW: 0.49, NN: 0.39), but significantly higher recall per pathway

(BOW: 0.42, NN: 0.78). Because the goal of this predictive model is to assist curators in selecting the

appropriate class mapping for each pathway, a higher recall per pathway is preferred. Higher recall

offers curators more options for each input pathway. Based on the evaluation results, the NN model

was able to produce relevant recommendations for 78% of all pathways.

The NNmodel was used to generate mappings for pathways fromHumanCyc, Panther, Reactome,

andWikiPathways to classes in the PW.These, in addition to the existingmappings toKEGG,NCI-PID,

and SMPDB, were used to derive clusters of semantically similar pathways for merging.

Through reviewing similar pathways from seven databases, I then produced a typology of knowl-

edge representation differences between pathway databases, discussed in Chapter 5. Four types of in-

consistencies were detailed, those of annotation, existence, reaction semantics, and granularity. Anno-

tation inconsistencies involve disagreements over cross-reference identifiers. They occur either when

cross-reference identifiers are missing, inaccurate, or disagree between two databases in reference to

the same semantic entity. Existence inconsistencies occur when entities or relationships are present

in one representation of a pathway from one database, but are missing in the same pathway from an-

other database. The third type of inconsistency, that of reaction semantics, can occur either when a

pathway provides internally inconsistent reaction directions, or when the directions of equivalent re-

actions from two databases disagree. Lastly, granularity inconsistencies can occur either at an entity

level, e.g., complexes versus proteins, or at a reaction level, where intermediate reactions can either be

given or omitted. I offer examples of these inconsistencies in Chapter 5.

In Chapter 6, I then use this typology to design a graph alignment algorithm used to align pathways

and generate normalized pathways. The algorithm takes in a pair of pathways and produces an align-

ment between the entities in the two pathways. The alignment is based on similarity scores computed
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between the entities from the two pathways. Rule-based similarity scores and representation learning

similarity scores are combined into an overall similarity. Rule-based similarity values are computed

based on a set of manually defined rules, which define similarity based on the relationships of cross-

reference identifiers given in the two pathways. Queries to external databases such as ChEBI, UniProt,

Ensembl, and BridgeDB are used to determine synonymy between given identifiers. The represen-

tation learning similarities are computed between vector representations learned for each node. The

vector representation for an entity is learned from its lexical attributes, as well as its topological rela-

tionship to the overall pathway graph. A greedy algorithm is used to generate an entity-level alignment

over the combined rule-based and representation similarities. I provide several examples of alignment

output in Chapter 6. These outputs show that the algorithm is able to generate good alignments, but

suffers from more inaccuracies when pathway data quality is low.

Applying the alignment algorithm to pathways clustered by PW class, I generated a set of normal-

ized pathways. I performed a comparative evaluation of the normalized pathways in Gene Set Enrich-

ment Analysis (GSEA) using public gene expression datasets. In Chapter 7, I described the procedures

involved. For each gene expression dataset, I first conducted GSEA using baseline pathway-derived

gene sets from MSigDB. I then conducted GSEA using gene sets derived from the PW-normalized

pathways. I compared the enrichment outputs for the two analyses, identifying functions represented

in both, and qualitatively assessing the presence of redundancies in the baseline output that were elimi-

nated in the normalized output. I also quantitatively computed the entitymembership overlap between

the baseline enriched gene sets and normalized enriched gene sets using pairwise Jaccard similarity.

The results of evaluation showed that PW-normalized pathways tend to produce fewer enriched

pathways in output with lower rates of redundancy between output pathways. The pairwise Jaccard

index computations showed that the enriched normalized gene sets tend to be more dissimilar to one

another than the enriched baseline gene sets, which is also suggestive of lower redundancy among the

normalized pathways.

I also created a prototype visualization based on the hierarchical structure of the Pathway Ontol-

ogy. The visualization allows users to browse enrichment outputs based on the semantic inter-relations

between enriched pathways given by the class structure of the PW. Suchmethods for browsing enrich-
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ment outputs may aid the interpretation of pathway analysis results.

8.1 Limitations

Several limitations affect the generalizability of this work. First and foremost, is the limited generaliz-

ability to other pathway analysis methods. The current normalized pathways have not been tested for

other pathway analysismethods, and in their current form, can not be easily used for certain techniques

that incorporate pathway topology into the analysis of differential gene expression.

I have conducted an evaluationof these normalizedpathways inGSEA,which is one type of pathway-

adjacent analysis among many. Although GSEA is a popular method, it simplifies pathway representa-

tions to gene sets, and does not use information such as pathway molecular interactions or topology.

Third-generation pathway analysis approaches [87] that incorporate pathway topology into enrich-

ment computations necessitate the presence of a pathway network. The alignment algorithmdescribed

in this dissertation does not include a way to generate a merged graph topology. The algorithm out-

puts entity-level alignments, and relationship alignments would be necessary to construct an aligned

network. Further work is therefore necessary to evaluate against other pathway analysis methods.

There is no systematic way for validating pathway data for different analysis methods. Part of the

problem is the lack of standardized metrics for evaluating and comparing pathway analysis methods.

A recent publication proposes some possible metrics [154], which if adopted broadly, could improve

the ability to validate individual analysis methods. These metrics could also be used to compare the

fitness of pathway datasets used in analysis.

The lack of broad manual validation of Pathway Ontology mappings is another limitation to this

work. Curators were able to assess only a portion of pathway instance to PW class mappings produced

by the predictive model. Ideally, all instance-class mappings would be manually validated for correct-

ness. Only validated pathways would then be used to generate normalized pathways. This would re-

duce the error introduced through incorrect mappings and should dramatically improve the semantic

cohesiveness of each normalized pathway.

Other factors that may affect the accuracy of pathway to PW class mappings are pathway contexts

and metadata. For example, some pathways are defined for specific cell types, or are implicated in spe-
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cific diseases. These contexts can be useful for identifying the appropriate PW class. Incorporating

such information in ontology mapping could produce improved mapping results. However, inconsis-

tencies in pathway metadata prevented me from taking advantage of these contexts during mapping.

Lastly, the alignment algorithm I used to align pathway graphs may not be directly generalizable to

pathways from other databases. The algorithm is designed based on a typology of knowledge repre-

sentational differences identified from seven pathway databases. It is likely that other inconsistencies

would be observed when more databases are included for study. Pathway data in other data standards

(besides BioPAX or GPML) could also introduce further complication. Therefore, the current align-

ment algorithm may need to be adapted when applied to pathways from databases outside the scope

of this study. Other pathway databases, especially for-profit ventures such as MetaCore and Ingenuity

Pathway Analysis, play important roles in pathway analysis. The current methods I discuss for gener-

ating normalized pathways are not directly applicable to these other databases.

8.2 Future Work

There are several directions going forward that extend upon the ideas proposed and demonstrated in

this dissertation. Below, I proposeways to improve the generalizability and impact of this work, as well

as some potential future projects. I first discuss ways of improving the current pipeline for organizing

pathway data and generating normalized pathways. I then discuss how to increase and assess the broad

applicability of ontology-based pathway organization.

Improvements to overall pipeline

Improvements to both the ontology mapping pipeline and the pathway alignment algorithm are likely

to improve the quality of normalized pathways. An obvious first step to improving the outputs of the

pathway normalization pipeline is to improve the outputs of either of these two models.

In Chapter 4, I described a supervisedmodel for predicting PathwayOntology classmappings. The

model ismeant to assist PWcurators in selecting the appropriate class for eachpathway instance. In this

task, there is reasonable success. A 0.78 recall per pathway indicates that themodel is able to present cu-

rators with high quality PW class recommendations for a large portion of pathway instances. However,
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these same results show thatmore than a fifth of all pathways donot receive relevant recommendations.

Of these poorly mapped pathways, some may not have corresponding classes in the PW, and further

development of the ontology is necessary to incorporate these pathways into the PW model. I briefly

discussed this issue using the example of a PW branch (PW:0000819 “innate immune response”) that

is insufficiently developed to represent several pathways from Reactome. Ontology development is an

ongoing process, and the Pathway Ontology will continue to be improved and developed in parallel

and as a response to the results of this work. As newer version of pathway databases and the Pathway

Ontology are released, the normalized pathways resulting from the methods described in this work

may need to be reevaluated for use in pathway analysis. Due to the use of a unified ontology, however,

reproducibility should be better than in studies using different versions of data from many pathway

databases. Ontology change management can be used to track ontological changes between different

versions and to generate mappings between current and future versions of the ontology [97, 88].

Other aspects that can be improved in the mapping model are its mapping precision and output

granularity. Some proposed recommendationswere found to be irrelevant on a permapping basis (ppm

= 0.39). However, all generatedmappings for HumanCyc, Panther, Reactome, andWikiPathways path-

ways are used to cluster pathways for alignment andmerging. Many pathways subject to the alignment

procedure may therefore be incorrectly associated with an ontology class. Although the mapping and

alignment scores are used to determine whether or not two aligned pathways are actually combined

into a normalized pathway, some errors will propagate between mapping and normalization. As part

of future work, manual curation of PW class mappings will improve the quality of pathway mappings

used for pathway clustering and normalization.

Along this same vein, the currentmappingmodel can be altered to better distinguish between exact

mappings (pathway is an instance of some ontology class) and relatedmappings (pathway is an instance

of a related ontology class: parent, child, or sibling). Especially in cases where no exact mapping exists

in the PW, identifying related classes should aid in both the final mapping decision as well as highlight

areas in the PW in need of further development.

Improvements to the pathway alignment algorithm could also increase the quality of normalized

pathways. The current algorithmwas designed based on studies of knowledge representational incon-
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sistencies between different pathway databases, and it relies heavily on entity-level features such as

available cross-reference annotations (through the calculation of rule-based entity similarity) and lex-

ical features (representation-based entity similarity). Although both lexical and topological (through

struc2vec) features are computed, interactions between them are not well utilized. There are numer-

ous other graph alignment algorithms, incorporating features such as node similarity, edge similarity,

or structural equivalence. Many are based on representation learning, such as REGAL [66] or vari-

ous methods for learning knowledge graph embeddings [148, 100, 114]. However, I believe the needs

of pathway alignment may be different, and in many ways, simpler than the strategies employed by

these methods; the reason being that pathways are small graphs that are ideally (and in most cases)

well annotated with identifier information. Further iteration on the alignment algorithm, perhaps by

integrating more data from reference databases and improving synonymy identification, are the next

steps in improving the alignment algorithm.

Using normalized pathways for other pathway analysis

Generalizability to other pathway analysis methods is another broad direction for future work. I have

evaluated the gene sets derived from the normalized pathways in GSEA, but I have not validated these

normalized pathways for other pathway analysis methods. First, I need to generate a normalized path-

way topology for each group of pathways that are merged together. Because the alignment algorithm I

currently employ is entity-driven, it does not produce a connected pathway graph as output. There are

several methods for producing such a graph from the entity-level alignments, for example, by adopt-

ing a graph from one of the pathways merged, or deriving edge connections based on the successful

matching of source and target nodes. A third option would demand a re-engineering of the alignment

algorithm, to produce edge alignments in addition to node alignments. Yet another democratic option

could take the union of all edges to the aligned entities, and adjust the strength of each edge based on

the number of databases that include that edge.

Once these normalized pathway graphs are generated, they can be assessed in various other forms

of pathway analysis. There are dozens of these methods, detailed in various literature reviews [87,

53]. Many analysis methods are restricted in the pathway data they accept as input, and some are in



129

various states of non-maintanence. An exhaustive validation of normalized pathways in all available

pathway analysis methods is not suggested. However, I aim to demonstrate the adaptability of these

normalized pathways to different classes of analysis methods. For example, an evaluation in topology-

based pathway analysismethodswould providemore evidence of these normalized pathways operating

in a similar fashion to, and perhaps exceling over, existing pathways.

Exploring ontology-based pathway visualization

I also look forward to assessing the utility of ontology-based result visualization in pathway enrichment

analysis. In Chapter 7, I presented a prototype visualization of enriched pathways using the hierarchy

of the Pathway Ontology. Enrichment scores of pathways in the same ontological subtree could be

summed in parent pathway nodes, allowing users to explore enrichment at different granularities of

biological function.

Visualization of interacting pathway networks and pathway analysis results is an open research

topic. One goal of these visualization tools is to better enable users to identify interactions between

different pathways. This is done by illustrating functional overlap. There is no one way to quantify

functional overlap between pathways. The Cytoscape EnrichmentMap, for example, indicates overlap

using shared entity membership, which is visualized as links between the nodes in a network of en-

riched gene sets [102]. The Pathway Coexpression Network uses gene coexpression computed from

microarray data to compute overlap between pathways [122]. In the work presented in this disserta-

tion, the structure of the Pathway Ontology can be used to model the semantic relationships between

various pathways, and provides a novel way of visualizing these relationships.

Further study is necessary to gauge the usefulness of this type of visualization. User studies can

help illuminate vital features. Researchers can be presented with these interactive visualizations while

interpreting analysis results. An assessment of their thought process and needs could be used to im-

prove the design of the result visualization. I suspect that multiple types of visualizations showing

different measures of pathway interaction may provide researchers with the best toolset for exploring

enrichment results.
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8.3 Conclusion

Pathways have become an ingrained and vital way ofmodeling biological systems. They help us under-

stand how individual biochemical interactions combine to produce the biological functions that make

up human physiology. They can also help us identify the mechanisms of disease, when these normal

functions go awry. As increasing data are collected on the various molecular interactions occurring in

different tissues, we can elucidate the structure, role, and interactions of previously unknown biolog-

ical pathways.

Pathway analysis can help researchers understand genomic data through the lens of pathway and

network models. Pathway analysis methods depend heavily on the availability and interoperability

of pathway data. In this dissertation, I outlined how an ontology can be used to organize disparate

pathway data. The semantic structure of an ontology can be used to identify and reduce redundancy

among pathway data, and provide novel ways of visualizing and interacting with sets of pathways.

There is great value in ontology-driven pathway data integration. Using the methods I detailed

in this dissertation, I am able to reduce redundancy in the combined pathway data while maintaining

the semantic meaning associated with each pathway, in other words, the biological function it repre-

sents. The resulting ontology-normalized pathways allow researchers to preserve existing analysis ca-

pabilities while deriving maximal utility from each pathway’s functional role and relationship to other

pathways.

The true test of these methods rests on how well these normalized pathways perform in genomic

analysis. It is my hope that others will be inspired by these methods for organizing biological pathway

data. I also hope that fellow researcherswill use these normalized pathways to explore and interactwith

genomic data. Sometimes it simply takes a different lens to discover something novel: a mechanism

for disease, an unknown upstream regulator, a new hypothesis.
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Appendix A

GSEA RESULTS: TOP ENRICHED PATHWAYS

Enrichment output are provided for the ADTBI (forebrain, parietal neocortex, and temporal neo-

cortex) and MSBB (Brodmann areas 10, 22, 36, and 44) gene expression datasets. The top 20 ranked

baseline gene sets and the top 20 ranked normalized gene sets associated with each disease phenotype

are provided for comparison.
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Appendix B

INTERACTIVE VISUALIZATIONS OF ENRICHED PATHWAYS

Interactive visualizations are useful tools for navigating and interpreting results. The following fig-

ures provide visualization of the GSEA enrichment results for the TCGA HNSCC and TCGA LUAD

gene expression datasets. Normalized gene sets associated with PW classes are displayed in a hier-

archical fashion with their enrichment scores. Users can collapse nodes in the PW class hierarchy to

aggregate enrichment scores into parent classes.
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Figure B.2: Collapsed view of the GSEA output of the HNSCC dataset.
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Figure B.4: Collapsed view of the GSEA output of the LUAD dataset.



158

VITA

Lucy Lu Wang is an academic researcher studying biomedical ontology, resource interoperability,

biomedical natural language processing, and knowledge representation. She completed her PhD at the

University of Washington in the Department of Biomedical Informatics and Medical Education.

She welcomes your comments to lucylw@uw.edu.


