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Radiation therapy is a treatment for metastatic Head and Neck Squamous Cell Carcinoma, which 

allows precision targeting of certain groups of lymph nodes. A Bayesian network predictive 

model was developed aiming to help achieve such precision using information on the primary 

site and size of the tumor, representing the current decision making process in clinical settings. 

Additional risk factors, the patient’s genetic profile and smoking history, were added to examine 

their predictability of metastasis through the improvement in prediction accuracies. The model 

was trained with publicly available data extracted from the Cancer Genome Atlas (TCGA) and 

validated against the TCGA dataset as well as clinical data reported to the University of 

Washington Tumor Board. Results show that genetic profile data improves model accuracy and 
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such improvement may affect clinical decision making especially for patients with more 

advanced metastasis. A prototype for decision support application was built based on the results 

to demonstrate the clinical significance of the model. However, more data is needed to show 

significance of the proposed effects, as well as to improve accuracy of the overall model. 
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CHAPTER 1 INTRODUCTION 

Head and neck cancers account for approximately 3% of all cancers in the United States 

[1]. More than 90% of head and neck cancers are squamous cell carcinoma [2]. Head and neck 

squamous cell carcinomas (HNSCC) have broadly varying survival rates, depending on the 

primary site, disease stage and the occurrence of metastasis [3]. HNSCC initially metastasizes to 

the lymph nodes in the neck, following lymph drainage pathways. The regions of the neck 

containing lymph nodes are classified into six imaging-based surgical neck levels I through VI as 

shown in Figure 1[4][5]. If PET scans or CT scans show evidence that the cancer cells have 

spread to any of the lymph nodes in a level, radiation therapy can be targeted to treat the level of 

interest. Radiation therapy is also prescribed if the tumor has reached a certain size, even if there 

are no detectable signs of lymphatic metastasis. This is because with current technology, small 

amounts of cancer cells in the lymph nodes do not appear on scans, but there is enough risk in 

these areas to warrant treatment. Being able to predict specific locations of lymphatic metastasis 

is critical for both minimizing the risk of recurrence and minimizing the complications resulting 

from unnecessary radiation. 

Since not all lymph nodes are equally likely to be involved in metastasis, physicians 

determine which lymph nodes to target based on prior knowledge and personal experience. The 

decision making process requires them to estimate many variables such as which lymphatic 

channels the tumor cells have taken and how far along the channels they have spread [6]. A study 

by Crosskerry showed that physician judgment can vary from reality by 15% on average [7]. In 

other words, there is approximately 15% probability that physicians might make either over-

conservative decisions and treated the healthy area or leave the cancerous lymph nodes 

untreated. There have been some studies that examined the likelihood of certain groups of lymph 
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nodes having cancer given the prior state. For example, a hidden Markov model was developed 

based on lymphatic anatomical structure, the primary tumor location and T-stages [6]. A 

predictive model applying the Bayesian network approach was also established with the same 

predictors and evaluated to show clinical significance, meaning it could successfully improve 

accuracy for medical decision-making [8]. With the promising results of both predictive models, 

we suspect that additional information could be added as predictors to improve model 

performance.   

Studies have shown that there is a genetic expression profile predictive of nodal 

metastasis of oral cancer [9] [10]. The proposed profile is identified through differential analysis 

of Affymetrix Human Genome Focus arrays and confirmed by immunohistochemical analysis 

for transglutaminase-3 and keratin 16 [9] [10]. We hypothesize that integrating genetic profile 

information into the predictive model will improve its performance, leading to more accurate 

decision aids for clinicians. Also, we will be able to quantify the effects that genetic profile have 

on metastasis by comparing the performance of models with and without it. On the other hand, 

although tobacco smoking and alcohol consumption are the leading causes for HNSCC [11], they 

are unlikely to affect lymphatic metastasis. This assumption can be investigated as well by 

incorporating the smoking history as an additional predictor into the model. 

We propose to extend existing predictive models to capture the probabilities of finding 

cancerous lymph nodes in each neck level using patient’s primary tumor site, tumor size and 

genetic profile (or smoking history indicator). Such a model could potentially help physicians to 

make improved evidence-based decisions while performing targeted treatments such as radiation 

therapy. The studied effects of a genetic profile on metastasis may enable physicians to adopt 

more individualized treatments.  
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CHAPTER 2 METHODS 

Two Bayesian network models with different structures were constructed, one used for 

evaluating the effects of adding additional predictors, the other used to make a prototype for the 

decision support application. I will refer to these two models as the evaluation model and the 

prototype model in this paper. We used two data sources to train and test the models. Data on the 

primary site, genetic profile, and metastatic levels were be pre-processed to be better 

incorporated into the two models. Parameter learning and cross-validation results were generated 

to evaluate model performance and build the decision support application prototype. 

	
   2.1 MODEL STRUCTURE – EVALUATION MODEL AND PROTOTYPE MODEL  

Figure 1. Regions of the neck classified by the surgical levels I 

through VI. Level I, submental and submandibular group; Level II, 

upper jugular group; Level III, middle jugular group; Level IV, 

lower jugular group; Level V, posterior triangle group; Level VI, 

anterior compartment. 

 

To model the nodal metastasis of HNSCC, we need to understand the anatomical 

structure of the lymphatic system in the neck. There are six surgical neck dissection levels, 

shown in figure 1, which are used to delineate regions of cancerous tissue targeted for treatment. 

Nodal metastasis tends to follow well-delineated pathways that map to the regions described by 

these surgical levels [12]. Based on the physical connectivity of the lymphatic system, cancer 

cells can only travel to lymph nodes that drain the primary tumor, and to other lymph nodes 

through connected drainage channels. We were able to draw detailed anatomic knowledge on 
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lymphatic connectivity from the Foundational Model of Anatomy (FMA) [13]. We assume that 

despite primary sites or T-stages, once the cancer cells enter the lymphatic system, the metastasis 

pathway remains consistent and unidirectional, which means the spread of cancer occurs only 

along described lymphatic channels, and in a direction away from the primary tumor.  

2.1.1    Evaluation Model Structure	

For the purpose of studying model performance with additional predictors, we made a 

simplified assumption that the spread of cancer follows a linear fashion from level I to level V. 

Clinically, there are exceptions due to skip lesions and branching, but representing these 

scenarios can complicate our interpretation of adding additional predictors. Therefore, we 

developed a Bayesian network model with the structure shown in Figure 2. The model outcome 

is generalized to indicate the highest level of metastatic prognosis. This means for each level 

below the highest, the estimated probability of that level containing cancer cells is the sum of the 

probabilities of all levels at or above it. The inputs of the baseline model, based on existing 

research and our hypothesis, are the tumor origin, the size and local involvement of the primary 

tumor represented by T-stage. The patient’s tumor-associated genetic profile and tobacco 

smoking history indicator were added as inputs into the baseline model separately to study their 

effects on model performance. 
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 Figure 2. Bayesian network model structure for the evaluation model. Node PS represents 

primary site of the tumor; node T represents T-stage/size of the tumor, node GP represents 

genetic profile of the patient, node H represent HPV status of the patient, node S represents the 

smoking history indicator, node L represent surgical levels of the neck. The directed edges 

(arrows) indicate conditional relationships between variables. The variables at arrowheads are 

conditionally dependent on the variables at the tails of the arrows. The dotted edges are 

relationships to be evaluated. 

2.1.2    Prototype Model Structure 

After evaluating the effects of additional predictors on metastasis, we developed a 

prototype model that accounted for the anatomical lymphatic structure of the neck, as well as all 

skip lesions and branching scenarios, represented by the conditional dependencies between 

different levels of metastasis (Figure 3). The outcome of each level is binary (positive or 

negative), and can be a predictor for other levels. Only genetic profile information was added as 

the additional predictor based on the results from evaluation model. Also, genetic profile only 

affects the outcomes of the levels that HNSCC can initially metastasizes to, which are level I, II 
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and III.  

Figure 3. Bayesian network model structure for the prototype model. Node PS represents 

primary site of the tumor; node T represents T-stage/size of the tumor, node GP represents 

genetic profile of the patient, node I through V represent surgical levels of the neck. The directed 

edges (arrows) indicate conditional relationships between variables. The variables at 

arrowheads are conditionally dependent on the variables at the tails of the arrows.  

   2.2 DATA SOURCES 

We used two data sources. The first data source is from University of Washington tumor 

board (UW TB). We obtained records of 383 patients with untreated, non-recurrent squamous 

cell carcinoma (SCCA) of the head and neck presented to the UW head and neck tumor board 

over a 3.5-year period. Since this dataset does not contain either patient genetic information or 

HPV status, we used this for training the baseline model. 

The second data source is from the Cancer Genome Atlas (TCGA)[14]. We exported 528 

subjects’ clinical data, pathology reports, HTSeq-FPKM-UQ (upper quintile of normalized gene 
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expression values) and HTSeq-Counts (raw gene expression values) from the TCGA data portal. 

   2.3 TCGA DATA PREPARATION 

2.3.1 Clinical Data	

Unique identifiers, primary site information, clinical T stage, HPV status, smoking 

history indicator were extracted from subjects’ clinical data. Because of the limited sample size 

and the relatively wide range of different primary sites, the number of subjects for each primary 

site is too small to be statistically significant. Hence, the primary sites were aggregated into 

larger regional sites as follows: “Tongue”, “Floor Of Mouth”, “Oral Commissure”, “Lip”. 

“Alveolar Ridge”, “Buccal Mucosa” and “Mandible” are represented as “Oral Cavity”; “Base Of 

Tongue”, “Tonsil”, “Retromolar Trigone” are represented as “Oropharynx”; “Supraglottic 

larynx” and “Glottic Larynx” are represented as “Larynx”. Some primary sites (e.g. “Palate”) 

contained too few samples and were not included. Subjects with unknown T-stage were dropped. 

Those with “T4a” and “T4b” T-stages were combined into stage “T4”. 

Each patient’s level of nodal metastatic information was manually extracted from 

pathology reports, linked to corresponding subjects based on the TCGA manifest, and reviewed 

by two team members for accuracy. Only 349 out of 528 subjects had data on their nodal 

metastatic level. The data are presented as the number of positive lymph nodes in each level.  For 

the evaluation model (Figure 2), we only used information on the highest level of nodal 

metastasis, for example, if both level I and level III have positive nodes, level III is reported for 

this subject as the highest level of metastasis. For the prototype model (Figure 3), the nodal 

metastasis level data were turned into boolean variables (positive/negative) for each level.  

2.3.2 Gene Expression Data 

Since studies performed by Mendez et al. have identified the tumor-specific genes 
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differentially expressed between metastatic and non-metastatic oral cancer [8][9], we applied this 

established gene expression profile to the TCGA dataset. Because only oral cancer patients were 

studied by Mendez et al. and our dataset has other types of HNSCC, we first validated the gene 

expression profile using the TCGA dataset. The HTSeq-Counts of the subjects in this dataset 

were analyzed to identify differentially expressed genes between patients who had lymphatic 

metastasis and those who did not. The differential analysis was performed using the R 

Bioconductor package, version 3.4, DESeq2. The resulting genes were ranked based on p-value 

and used to cross-reference with the tumor-specific genes determined in Mendez et al.’s studies 

[8][9]. Of the genes we identified from the TCGA dataset, 53 genes match to genes discovered in 

the previous Mendez studies. All 53 matched genes were associated with low p-values that fall 

within the first half of the ranked gene list, which supported our decision to apply this 

established gene expression profile to our dataset.  

Because the 53 genes are not equally predictive of the level that the lymph nodes would 

be affected, having all of them as individual predictors will be likely to include the low-effect 

ones. We first applied a Principle Component Analysis (PCA) and a Random Forest model 

aiming to reduce the dimensionality. However, results from both dimension reduction methods 

required us to set an arbitrary threshold of inclusion (supplement figure 1 & 2). Therefore, we 

decided to use an aggregation approach and applied the multivariate logistic regression model 

published in Dr. Mendez’s studies to fit our HTSeq-FPKM-UQ data and the metastatic status 

[8][9].   

The log odd calculated from fitting the regression model were used as propensity score 

for each patient to indicate the risk of metastasis associated with his or her genetic profile. The 

normalized propensity scores of the 349 subjects have the following distribution (Figure 4). They 
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were then categorized based on effect sizes with 95% confidence intervals to help clinicians to 

identify patients who are more prone to develop metastasis. Specifically, subjects with high 

propensity scores are classified into “high” risk category (n = 56), subjects with low propensity 

scores are classified into “low” risk category (n = 54), and the rest of the subjects fall	under the 

“regular” risk category (n = 239). 

		

	

Figure 4. Histogram of normalized overall 

propensity scores of the 349 subjects 

	
	

 
 
2.4 PARAMETER LEARNING/CONDITIONAL PROBABILITY TABLE 

From the two data sources, TCGA and UW tumor board, we produced datasets described 

as follows: 

1. TCGA data with genetic expression profile, sample size = 349, training set = 233 

2. TCGA data with smoking history indicator, sample size = 349, training set = 233 

3. TCGA data without any additional predictors, sample size = 349, training set = 233 

4. UW tumor board data without any additional predictors, sample size = 383, training set = 

255 

5. Combination of TCGA and UW tumor board data without any additional predictors, 

sample size = 595, training set = 392. When combining the datasets, we tried to preserve 

the primary site distribution of the TCGA dataset by proportionally adding data from the 

UW tumor board dataset, data points were randomly selected but reproducible. 
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The evaluation model was trained and tested using the R “bnlearn” package (Version 

4.1.1) with the 3-fold cross-validation method with each of the above dataset. Conditional 

probability tables were produced from fitting the training set; predictions were made on their 

corresponding test sets. The model performance and prediction accuracies were measured and 

compared by calculating the correlation coefficients, cosine similarities and the Area Under the 

Curve (AUC) values. Because there is no significance test for comparing model accuracies, we 

used these three measures to ensure the validity of our results. The correlation coefficient 

measures the model performance by correlating the predicted probability of each distinct 

combination of predictors learned from the training set with the observed probability from the 

test set. Cosine similarity measures prediction accuracy by calculating the cosine of the angle 

between the predicted level of nodal metastasis and the observed one in the test set. The 

weighted AUC measures discrimination, that is, the ability of the model to correctly predict 

subjects’ highest metastatic level. Since our model output has more than two classes, we 

generated ROC curves for each outcome independently and then averaged them while taking into 

account the sizes of the classes.   

The prototype model was trained and tested with the TCGA dataset with and without 

genetic profile, UW tumor board dataset and the combination dataset. Since there are five 

outcome variables, one for each level, prediction accuracies were only reported for level III as an 

example. The prediction accuracies were compared with those from training the evaluation 

model, aiming to investigate the effects of incorporating anatomical lymphatic structure on 

model performance and prediction accuracies. 

2.5 DECISION SUPPORT TABLE AND APPLICATION 

The estimated probabilities of having positive lymph nodes in each level were 
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categorized into “treat,” “maybe treat”, and “do not treat” based on a consensus reached by 

physicians (< 7% = do not treat, between 7% and 15% inclusive = maybe treat, > 15% = treat) as 

reported in a previous study [15].  

For the evaluation model, we studied the effect of adding genetic information to these 

decision support tables, and whether it improves clinically relevant decision making. The 

decision support tables were only constructed for subjects with T4 “Oral Cavity” tumors because 

data on these subjects is most complete amongst the rest and the decision support tables have the 

least number of missing values. 

For the prototype model, we fitted the entire TCGA dataset to produce the conditional 

probability tables, which were used to build the decision support tables for each combination of 

the independent variables. A Shiny Application was developed to allow users to select different 

features of the patient and get the resulting decision support table.  
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CHAPTER 3 RESULTS 

  3.1  EVALUATION MODEL 

The distributions of primary sites, T-stage, and positive nodal metastasis of patients in the 

training datasets are given in Table 1 - 3. 

Table 1– Datasets Comparison – Primary Sites 

Primary Sites TCGA 

n = 349 

UW Tumor Board 

n = 383 

Combination  

n = 595 

Oral Cavity 0.70 0.37 0.65 

Larynx 0.19 0.20 0.20 

Oropharynx 0.10 0.42  0.14 

Table 2– Datasets Comparison – Clinical T Stage 

T Stages TCGA 

n = 349 

UW Tumor Board 

n = 383 

Combination  

n = 595 

T1 0.07 0.18 0.13 

T2 0.27 0.34 0.30 

T3 0.27 0.19 0.24 
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T4 0.37 0.28 0.31 

Table 3– Datasets Comparison – Highest Nodal Metastasis Level 

Nodal Metastasis 
Level 

TCGA 

n = 349 

UW Tumor Board 

n = 383 

Combination  

n = 595 

No Met 0.51 0.33 0.46 

Level I 0.09 0.08 0.08 

Level II 0.16 0.28  0.20 

Level III 0.13 0.20 0.14 

Level IV 0.08 0.08 0.07 

Level V 0.03 0.03 0.03 

 

The cosine similarities of different data sets (Table 4) indicate some heterogeneity 

between TCGA and UW tumor board data. Specifically, TCGA dataset contains a larger 

proportion of subjects with “Oral Cavity” tumors (70% in TCGA; 37% in UW TB), whereas the 

UW tumor board dataset has a larger proportion (10% in TCGA; 42% in UW TB) of subjects 

with “Oropharynx” tumor (Table 1). The difference in distribution may affect our results for 

prediction accuracy comparison between models trained with different datasets. This is because 

for the evaluation model, we made a simplified assumption that metastasis follows a linear 

fashion, which is more representative of the metastasis of oral cavity cancer. For the UW tumor 
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board dataset, which has more other types of head and neck cancers, the prediction accuracy 

could be worse and make our results difficult to interpret. Therefore, when combining the two 

datasets, the primary site distribution of TCGA dataset was maximally preserved. 

Table 4– Cosine similarities between the datasets 

 
TCGA vs. UW TB 

UW TB vs. 
Combination 

TCGA vs. 
Combination 

Cosine similarity 0.86 0.90 0.99 

 

3.1.1 Sample Size And Model Performance 

The comparison of baseline model prediction accuracies learned from the two different 

data sources with different sample sizes is shown in Table 5. None of these models incorporated 

additional predictors. 

Table 5– Model performance and prediction accuracy comparison - two data sources 

Dataset 
Training Set 
Sample Size 

Correlation 
Coefficient 

Cosine 
Similarity 

 

AUC 

TCGA 233 0.70 0.66 0.65 

UW Tumor Board  255 0.63 0.70 0.57 

Combination 392 0.86 0.77 0.72 

 

The correlation coefficient, cosine similarity and weighted AUC of the model trained 
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with the combination dataset are the highest amongst all the groups. It means the model has 

relatively better model performance, the differences between the predictions and the observations 

are relatively small and that this model resulted in the least amount of classification errors. The 

improvement in prediction accuracies is most likely due to the increase in sample size, as the 

combination dataset has the most amounts of data.  

The model trained with the UW Tumor Board dataset has relatively poor prediction 

accuracies, although its sample size is a little bit larger than that of the TCGA dataset. The 

reason could be that not accounting for the lymphatic structure and dependencies between 

metastatic levels is a poorer assumption to make for tumors developed from certain primary 

sites. The UW Tumor Board dataset contains more subjects with Oropharynx cancer and less 

Oral Cavity cancer comparing to the TCGA dataset (Table 1), and Oropharynx cancer actually 

does not metastasize to level I or level V of the neck. 

3.1.2 Genetic Profile And Model Performance 

Table 5 shows the comparison between the prediction accuracies trained with baseline 

model and the ones with additional predictors. All models were trained and tested with the 

TCGA dataset. 

Table 5– Model performance and prediction accuracy comparison – TCGA baseline model with 

additional predictors 
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Additional Predictors Correlation Coefficient 
Cosine 

Similarity 

 

AUC 

None 0.70 0.66 0.65 

Genetic Profile  0.80 0.74 0.71 

Smoking 0.51 0.67 0.60 

 

The model with genetic profile has higher correlation coefficient, cosine similarity and 

AUC comparing to the baseline model, indicating that adding this feature can improve model 

performance and prediction accuracy. The model with smoking as the additional predictor has 

lower measures of accuracy compared to the baseline model, which supports our hypothesis that 

smoking does not affect metastasis although it’s a strong predictor for the onset of HNSCC. 

3.1.3 Genetic Profile And Probability of Metastasis 

Table 6 shows the comparison of the estimated probabilities of a subject with T4 “Oral 

Cavity” cancer having metastasis to specific nodal levels, as predicted by the models with and 

without genetic profile information as a predictor. Figures 5,6 are the visualizations for the 

probabilities in Table 6. 

Table 6– Conditional Probability Table Comparison for T4 Oral Cavity tumor metastasis 
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Model 

TCGA 

All 

TCGA 

High Risk 

TCGA 

Regular Risk 

TCGA 

Low Risk 

UW Tumor  

Board 

No mets 0.43 0.21 0.48 0.43 0.33 

Level I 0.16 0.20 0.15 0.15 0.18 

Level II  0.21 0.39 0.18 0.21 0.27 

Level III 0.08 0.10 0.05 0.15 0.09 

Level IV 0.08 0.00 0.10 0.05 0.12 

Level V 0.04 0.10 0.05 0.00 0.00 

TCGA whole: TCGA data without genetic expression profile (n = 233). TCGA High: TCGA data 

with high propensity score (n = 40). TCGA Regular: TCGA with regular propensity score (n = 

155). TCGA Low: TCGA with low propensity score (n = 38) UW TB: UW Tumor Board (n = 

255) 

 

Figure 5. Comparing the effects of low, regular, and high-risk genetic profile on metastasis 
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status. Red area represents proportions of subjects in datasets with metastasis; Green area 

represents proportions of subjects in datasets without metastasis.  

 

Figure 6. Comparing the effects of low, regular, and high-risk genetic profile on metastasis to 

certain levels. Blue bars represent subjects from the entire TCGA dataset: Pink bar represents 

subjects from the TCGA dataset with a High risk genetic profile. Yellow bars represent subjects 

from the TCGA dataset with a Regular risk genetic profile. Purple bars represent subjects from 

the TCGA dataset with a Low risk genetic profile. Grey bars represent subjects from the UW 

Tumor Board dataset. 

Probabilities shown in Table 6 and Figure 5 imply that patients with high propensity 

scores are more likely to develop nodal metastasis regardless of levels (79% of the subjects with 

“high” risk had metastasis; 57% of the subjects with “low” risk had metastasis. They are also 

more prone to have level I and II nodal metastasis (pink bar in Figure 6). This seems valid 

because Oral Cavity tumor initially metastasizes to level II and level I (level II more often than 
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level I), and the genetic profile is predictive of the onset of metastasis rather than the prognosis. 

However, there is not enough evidence to show significance of these findings because of the 

relatively small sample sizes, especially for the groups with high and low propensity score. 

Table 7– Probability with Treatment Decision Comparison for T4 Oral Cavity tumor metastasis 

Model 

UW Tumor  

Board 

TCGA 

All 

TCGA 

High Risk 

TCGA 

Regular Risk 

TCGA 

Low Risk 

No mets 0.33 0.43 0.21 0.48 0.43 

Level I 0.66 0.57 0.79 0.52 0.57 

Level II  0.48 0.41 0.59 0.38 0.41 

Level III 0.21 0.20 0.20 0.20 0.20 

Level IV 0.12 0.12 0.10 0.15 0.05 

Level V 0.00 0.04 0.10 0.05 0.00 

Shading of the cells indicates treatment decisions. Red represents “treat”; yellow represents 

“maybe treat”; green represents “do not treat”.  

Table 7 shows the comparison of the estimated probability of finding positive lymph 

nodes in each level for subjects with T4 “Oral Cavity” cancer and the treatment decision based 

on decision thresholds. The treatment decisions from training the entire TCGA dataset and the 

UW tumor board datasets are the same (leftmost two columns in Table 7), but they are different 

for subjects with different genetic profiles. Comparing to subjects with “regular” risk genetic 

profiles and subjects from datasets without genetic information, the ones with “high” risk genetic 
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profiles show a change in decision at level V (from “do not treat” to “maybe treat”); subjects 

with “low” risk genetic profiles show a change in decision at level IV (from “maybe treat” to “do 

not treat”). This result seems reasonable, as more treatments should be considered for patients 

with a high risk of developing metastasis. 

  3.2 PROTOTYPE MODEL 

Even though the intention for constructing the prototype model was to build the decision support 

application, given the available results on the evaluation model, we could easily study the effect 

of incorporating the anatomical structure of the lymphatic system in the neck by comparing the 

two models’ performances. Table 9 compares the prediction accuracies and model performance 

for level III nodal metastasis from training the prototype model and the evaluation model using 

the four different datasets. 	

Table 9– Model performance and prediction accuracy comparison – Level III  different model 

structure and different datasets 
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Dataset 

 

Model Structure 

 

Correlation 
Coefficient 

 

Cosine 
Similarity 

 

AUC 

TCGA with genetic 
profile information 

Prototype Model 0.83 0.95 0.61 

TCGA with genetic 
profile information 

Evaluation Model 0.80 0.74 0.71 

TCGA without 
genetic profile 

information 

Prototype Model 0.73 0.95 0.52 

TCGA without 
genetic profile 

information 

Evaluation Model 0.70 0.66 0.65 

UW Tumor Board  Prototype Model 0.72 0.98 0.57 

UW Tumor Board  Evaluation Model 0.63 0.70 0.57 

Combination Prototype Model 0.87 0.95 0.61 

Combination Evaluation Model 0.86 0.77 0.72 

The prototype model has better model performance, reflected by the relatively higher 

correlation coefficients from all four datasets. This means that incorporating the lymphatic 

anatomical structure into the model improved its representativeness of the data, however, this 

also means that the model may have been overfitted. In terms of cosine similarities, because the 

outputs for the prototype model are binary (negative or positive; 0 or 1) whereas the evaluation 

model’s output has five possibilities (level 0 – 5), they are not comparable. The prediction 
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accuracies, AUC values, of the prototype model are all worse than those of the evaluation model. 

This could be explained by the significantly smaller training set sample size now that the nodal 

metastasis in some levels are dependent on the others.  

Comparing the prediction accuracies between prototype model trained with different 

datasets (rows with grey background in Table 9), the one with genetic profile information and the 

one trained with the most data still have the highest prediction accuracies amongst the rest, 

which agrees with the comparison results from training the evaluation model.  

The resulting conditional probability tables from fitting the entire TCGA dataset with 

genetic information into the prototype model are built into a decision support application shown 

in figure 7. The web Application is available at: https://sw21.shinyapps.io/met_pred/. Users can 

select different primary site, T stage, risk associated with patient’s genetic profile, and metastasis 

status of level I, II and III on the side panel, click “show predictions” button, and get the 

probabilities of having metastasis in each level of the neck, along with the medical decision 

suggestions. A figure of the lymphatic drainage pathway for the primary site selected will also be 

shown on the bottom of the main panel for better clarity.  
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Figure 7: Interface of the Decision Support Application Prototype 

CHAPTER 4 DISCUSSION 

Based on the results from both the evaluation model and the prototype model, all three 

accuracy measures (correlation, cosine similarity and AUC) showed evidence that having a 

genetic profile as an additional predictor improved model’s prediction accuracies compared to 

models trained without it. The improvements seem to be equal to that of having a larger training 

set when we compared the prediction accuracies between TCGA with genetic profile (n = 233) 

and the Combination (n = 392) dataset (rows with grey background in Table 9).  This is 

promising, since it is often more difficult to recruit a larger sample population than to examine 

all possible predictors in a relatively smaller sample. 

Because we used the genetic profile identified in the Mendez et al. [9][10] studies and the 

associated parameters while preparing the training sets for our model, our results further proved 
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the validity of using the genetic profile to predict metastasis in HNSCC patients. It remains to be 

investigated whether the genetic profile predictive of metastasis can also be predictive once the 

cancer cells have spread into the lymphatic system. If there exists a genetic profile associated 

with more aggressive cancer cells leading to a higher level of metastasis, it could provide a 

future research direction.  

Due to the limited sample size, the current prototype model structure reflected all 

variations and possibilities in metastatic pathways for all of the primary sites because we 

aggregated the primary sites into the three regions (Oral Cavity, Oropharynx, Larynx). Since 

primary sites have differences in metastatic potential even within a region, poorer performance is 

expected from aggregating into regions than if we had enough data to model individual primary 

sites. Ideally, models should be constructed separately to represent the metastasis pathway for 

each individual primary site to allow precision and easy interpretation of the results. In addition, 

when constructing the models, structure learning from the data should be able to provide 

validation for the actual relationships between each level of the neck. However in our case, 

because many of the combinations of predictor variables only corresponded to either a few or 

none of the subjects, the prototype model structure was constructed based on the lymphatic 

anatomical structure, and structure learning could not provide much insight. For the same reason, 

the prediction accuracies of the prototype model were lower than those of the evaluation model 

and the results from training this model should only be used to demonstrate the ability of the 

decision support tool and not be used in clinical settings for now. 

The major limitation of this study is the small sample sizes. Because not all pathology 

reports include the recording of metastatic levels, it was difficult for us to gather this data. Data 

including patient genetic information is even more sparse, as only certain research studies 
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currently collect the  patient’s genetic information for analysis. We therefore needed to use 

cross-validation rather than a separate dataset with both genetic profile information and 

metastatic level information to validate our model. Moreover, even though we were able to 

quantify the effects of genetic profile on metastasis, we could not show evidence that such 

effects are statistically significant and can lead to changes in treatment decisions. However, 

because the treatment decisions do not change much depending on the dataset used to train the 

model (Table 8), it means that our baseline model is consistent in terms of treatment granularity 

across all data. As the TCGA dataset being continuously updated, perhaps more data will 

become available in the future for us to improve the methods and results of this project to 

achieve better model performance and be able to make more significant conclusions. 

Despite the limitations, our study is the first to quantify the effects of incorporating 

additional predictor, such as genetic profiling, on the level of metastasis in HNSCC patients. It is 

also an indication that genetic information can be used to assist medical decision-making in this 

domain, although the effect size is inconclusive. This calls for an increased collection of relevant 

data to determine the significance.  

CHAPTER 5 CONCLUSION 

Our predictive model depicted and quantified the relationships between the metastatic 

level in patients with HNSCC and potential predictors such as tumor primary site, T-stage, and 

metastatic risk propensity derived from patient genetic profiles. The results supported our 

hypothesis that gene expression have effects on metastasis, and that including it as a predictor 

can improve model accuracy. Although there was not enough data to show the significance of the 

effects that different genetic profiles have on treatment decision-making, a decision support 
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application was developed to demonstrate the clinical significance of our model. Overall, our 

predictive model can improve scientific knowledge and clinical practice in HNSCC treatment 

and can be further improved with more data. 
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