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University of Washington 

Abstract 

Automa ted learning of protein involvement in pathogenesis using integrated queries 

Eithon Cadag 

Chair of the Supervisory Committee: 
Research Professor Peter J. Myler 

Department of Medical Education & Biomedical Informatics, 
and Department of Global Health 

Methods of weakening and attenuating pathogens' abilities to infect and propagate in a 

host, and thus allowing the natural immune system to more easily decimate invaders, have 

gained attention as alternatives to broad-spectrum targeting approaches. The following 

work describes a technique to identifying proteins involved in virulence by relying on latent 

information computationally gathered across biological repositories. A lightweight method 

for data integration is introduced, which links information regarding a protein via a path-

based query graph and supports both exploratory and logical queries; data gathered in 

this way is characterized with experiments on retrieving high-quality annotation data. A 

system and method of weighting is then applied to query graphs that can serve as input to 

various statistical classification methods for discrimination, and the combined usage of both 

data integration and learning methods are leveraged against the problem of generalized and 

specific virulence function prediction. This approach improves coverage of functional data 

over a protein, outperforms other recent approaches to identification of virulence factors, is 

robust to different weighting schemes of varying complexity and is found to generalize well 

to traditional function prediction. 
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Chap te r 1 

I N T R O D U C T I O N 

Recorded history is replete with stories of mankind's eternal struggle against infectious 

disease. From the plague of Athens in 430 B.C., the Black Death of Europe in the 14*ft 

century, the Spanish flu of 1918 to the more modern pandemic of HIV/AIDS, bacterial 

and viral agents have been and remain to be responsible for millions of deaths across the 

globe. Indeed, in 2008 infectious diseases were attributed to approximately 10 million deaths 

[42], a conservative estimate that does not take into account our limited understanding 

of the role they may play in chronic conditions such as cancer or heart disease [43, 44]. 

Despite significant and admirable advances in both biomedical research and clinical care 

axound infectious disease, emergent and re-emergent infectious diseases, antibiotic-resistant 

microbes and weaponization of infectious agents are compelling arguments for continuing 

research and development in methods leading to effective therapeutic countermeasures. 

Though there are numerous obstacles in bringing basic research to clinical and applied 

fruition, the first challenge that many biomedical scientists often face when beginning to 

analyze their data and prioritize research attention is understanding what role each indi­

vidual gene, protein or pathway plays. The initial step in this process is the integration 

of data across biological repositories [45, 46], the importance of which cannot be under­

stated given that many of these data sources collectively contain a wealth of information 

that can be quickly and cheaply gathered in comparison to traditional wetlab benchwork. 

A major computational challenge in the post-genomic era is thus how best to query, mine 

and exploit the myriad biological information being generated and published; as resources 

are limited and therefore allocated to studies and experiments that could potentially have 

the most beneficial impact on human health, effective analysis and timely prioritization can 

help accelerate the drug development process. 

This dissertation introduces a method and system that takes advantage of integrated 
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data from disparate biological sources to identify proteins in infectious organisms that may 

be involved in virulence within human hosts. The approach is further demonstrated to 

be applicable beyond pathogenicity and is capable of predicting general protein function. 

The crux of this method is the data linkages afforded by path-based querying over cross-

referencing data sources, and the advantage a formal data integration implementation pro­

vides in coverage for any given protein in comparison to singular protein queries posed to 

databases individually. Additional benefit is added when the query results are enriched with 

weight scores generated iteratively for each individual result. By relying on query-level data 

integration, proteins are mapped into a space whose composition is defined by numerous 

data sources; these mappings are trained upon by a statistical classifier, and in this way 

arbitrary protein classifications can be learned. 

1.1 Dissertation progression 

The following dissertation proposes a novel approach to combining data and statistical learn­

ing methods via integration at the query level, and tests this approach on identification and 

ranking of virulence proteins across a variety of pathogenic roles. This chapter enumerates 

the contributions this coupling makes to areas of bioinformatics, data management and bi­

ological da ta mining, in the form of artifacts, methods and experimental findings. As the 

biological data integration and statistical learning approaches are both applied generally 

to the task of identification, the end of this chapter is marked with a brief review of and 

background information on gene and protein annotation. 

Immediately following this chapter, Chapter 2 discusses in detail the problem of virulence 

annotation and challenges related to adequate prioritization of proteins involved in disease 

pathogenesis. Chapter 2 further explores methods of manual annotation for virulence de­

tection, and outlines deficiencies in enabling more comprehensive and rapid understanding 

of infectious disease processes. 

Chapter 3 formally defines both statistical learning and data integration over biological 

data sources, and provides a literature review of approaches from both fields used for protein 

annotation of virulence factors and generalized protein function. The chapter concludes 

with a description of a method and implementation that uses path-based integrated queries 



3 

across multiple, heterogeneous data sources as a means of gathering information of varying 

relevance concerning a query. Chapter 5 describes an experiment to test the ability of this 

approach to retrieve high-quality biological information in the face of noisy data, and shows 

that naive integration alone is insufficient to derive information without encountering high 

rates of annotation error. 

Next, Chapter 6 describes a method capable of transforming data in path-based in­

tegrated queries into a form amenable for machine learning. Using a curated dataset of 

virulent and non-virulent proteins, it is shown that a combination of graph-based query-

level integration and learning methods outperforms other methods for generalized virulence 

prediction. 

Chapter 7 builds on the experiments of Ch. 6 by applying similar experiments to the 

problem of specific virulence factor identification - that is, the identification of exact roles 

proteins may play in infectious disease. The chapter outlines the process of manually cu-

rating a dataset organized by specific virulence protein labels, and describes the results 

of using integrated query graphs and support vector machine-based learning techniques to 

rank proteins by their involvement in specific pathogenic processes. These methods are 

generalized in Chapter 8, which reports results generated from using integrated queries and 

learning for overall function prediction. This combined approach shows further promise, 

and outperforms prior reported results from other studies and baseline methods. 

1.2 Novel contributions 

Both data integration methods and machine learning techniques have been applied to the 

domain of biology in the past, and many computational approaches for querying, managing 

and mining data have been adopted within biology. Data integration is a common approach 

to querying and retrieval; statistical learning is often used for biological classification and 

ranking, and more increasingly involves methods that incorporate integrated data. It is the 

hope that this dissertation's contribution is to broadly show the effectiveness of combin­

ing both these practices formally to take advantages of the strengths and ameliorate the 

weaknesses each may have alone, thereby showcasing the efficacy for learning that integra­

tion of data at the query level affords. Specifically, this dissertation makes the following 
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contributions: 

1. A lightweight da ta integration system and schema developed for protein virulence 

identification that cross-links data into an integrated query graph, as well as a novel 

query language for supporting ambiguous and ranged queries over integrated biomed­

ical data. 

2. Experiments to show the advantage of coverage and redundancy such a system pro­

vides. These experiments also suggest that data integration by itself may not be 

enough to separate high-quality data from poorer-quality data. 

3. A process and method of adapting integrated query graphs generated from the data 

integration system into a vector form amenable to machine learning. This process 

allows any query to be mapped into a space defined by constituent data sources, 

and thus each integrated query graph can become a canonical exemplar of a query. 

When combined with statistical learning techniques, integrated query graphs become 

learnable instances. 

4. Experiments to show that this method of query result transformation is capable of 

learning generalized virulence, and performs better than prior methods of generalized 

virulence identification and ranking. 

5. Further experiments to show that combining integrated queries and machine learning 

can be applied effectively to the more difficult task of specific virulence, where it 

outperforms baseline classification methods. 

6. Experiments to show that integrated queries can be used for the broad problem of 

generalized protein function, where it is compared to prior methods that partly rely 

on experimental data with favorable results. 

The above contributions demonstrate the usefulness of coupling formal data integration 

techniques with learning methods for a field where gene prioritization and relevancy ranking 

are an important step in the discovery pipeline. 
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1.3 Relevant biology 

The following section contains a brief introduction to aspects of molecular biology that are 

pertinent to this dissertation; a more comprehensive review of this topic in the context of 

computational research is available from other sources [47, 48]. 

1.3.1 Sequence and structure 

Many modern computational sequence analysis methods rely on the central dogma of genet­

ics as a basis - that is, information encoded in DNA (deoxyribonucleic acid) is transcribed 

from the genome into RNA (ribonucleic acid), which in turn is used during translation of 

molecules composed of amino acids. DNA, composed of the four-letter nucleic acid alpha­

bet ADNA = {A,C,T, G}, is organized in the genome as genes; the translated molecules 

generally are composed from a larger 20-letter amino acid alphabet which, when complete, 

form a protein with three-dimensional structure and motion. This information transfer from 

DNA to protein can be characterized as direct, with a correspondence of three nucleic acids 

to one amino acid. Once translated, proteins use interaction with other molecules to carry 

out one or more functions within, or in some cases, externally from (see Fig. 1.1), the cell; 

the conformation of the protein is integral in carrying out its tasks, and generally function 

follows from form. 

1.3.2 Protein functional analysis 

Unfortunately, structural elucidation of proteins via laboratory work can be very difficult, 

time-intensive and costly using traditional X-ray crystallography and nuclear magnetic res­

onance (NMR) methods [49, 50, 51]. Largely due to advances in computational hardware 

and algorithms a much faster, albeit more uncertain, approach is to infer the function of 

a protein from its sequence homology to other, known proteins - that is, using a variety of 

statistical measures and given a protein of unknown function or role, identify its purpose by 

examining how similar its sequence is to other sequences whose protein function is known. 

Using this leap from sequence to function, search algorithms such as B L A S T and its 

variants [52, 53] can compare a protein against a database of millions of sequences within 
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ATGGCAATGATTAAGATGAGTCCAGAGGAAATCAGAGCAAAATCGCAATCTTACGGGCAA 

GGTTCAGACCAAATCCGTCAAATTTTATCTGATTTAACACGTGCACAAGGTGAAATTGCA 

GCGAACTGGGAAGGTCAAGCTTTCAGCCGTTTCGAAGAGCAATTCCAACAACTTAGTCCT 

AAAGTAGAAAAATTTGCACAATTATTAGAAGAAATTAAACAACAATTGAATAGCACTGCT 

GATGCCGTTCAAGAGCAAGACCAACAACTTTCTAATAATTTCGGTTTGCAATAA 

(a) 

MAMIKMSPEEIRAKSQSYGQGSDqiRQILSDLTRAQGEIAANWEGQAFSRFEEQFQQLSP 

KVEKFAQLLEEIKQQLNSTADAVqEqDqQLSNNFGLq 

(b) 

(c) 

Figure 1.1: In the above, 1.1a is the genomic sequence that encodes the protein in 1.1b, 

which itself is one half of the corresponding homodimer shown in 1.1c (generated using 

[1]). The protein, ESXa, is implicated in host invasion and is associated with a S. aureus 

secretory pathway [2]. 
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Figure 1.2: General workflow process of functional determination from sequence; 'Computa­

tional methods' refers to the reliance of primarily local or global sequence-based homology, 

while 'Experimental methods' refers to structural elucidation or mutation and knockout 

studies. 

minutes and with negligible cost and effort when compared to lab-based functional anal­

ysis. Further analyses to corroborate findings could include remote homology detection, 

transmembrane region prediction, cellular localization and computational prediction of sec­

ondary and tertiary protein structure [54]. For example, hidden Markov models (HMMs) 

are commonly used to detect distant homologies, where a sequence may dramatically differ 

from the query despite sharing similar structure [55, 56]. An annotator would then depend 

on their knowledge to select the most accurate and characterizing function or set of func­

tions to assign to their unknown protein (see also Ch. 2.2 for a deeper discussion on protein 

annotation). 

Computational approaches thus provide an inexpensive and fast way of assigning prelim­

inary annotations to proteins, and can help scientists prioritize proteins of initial interest. 

Ideally, computational function assignment would be followed by, or conducted in parallel 

with, more rigorous experimental assays to confirm findings, as shown in Fig. 1.2. Fur­

thermore, curation and functional determination is often an incremental process that needs 

continual maintenance to remain up-to-date, as new information is discovered or old infor­

mation corrected. 
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Chap te r 2 

C H A L L E N G E S I N I D E N T I F Y I N G A N D E L U C I D A T I N G 
P A T H O G E N I C P R O T E I N S 

Among the first steps to understanding the mechanisms of infectious disease is the iden­

tification and annotation of the specific proteins involved in pathogenesis. This chapter un­

derlines the importance of infectious disease research and provides a definition of virulence 

factors, those proteins involved in invasion and maintenance of disease-causing microorgan­

isms in the human host. The chapter ends with several discussions on the challenges of 

annotating and identifying virulence factors from an automated perspective. 

2.1 Microbial pathogens and virulence factors 

Though recent decades have seen a decrease in mortality related to infectious disease, new 

dangers have appeared in the form of emerging and re-emerging pathogens in addition to 

the continuing threat of weaponized infectious agents [43, 57]. Underscoring the importance 

of this issue, the National Institute of Allergy and Infectious Disease maintains a categorical 

ranking of disease-causing microorganisms (NIAID Biodefense Categories) that could cause 

significant harm and mortality if wielded malevolently [58]. 

The threat of intentional agent release notwithstanding, infectious disease remains a 

global concern and a problem whose impact is most felt in poorer areas of the world. For 

example, of the more than one million deaths from malaria around the world, 85% occur in 

Africa; indeed the major killer of children under five years of age in Africa is malaria, just one 

of many tropical disease afflicting developing countries [59]. Furthermore, as urbanization 

expands in these countries, the risk of infectious disease incidence will likely increase (see 

Fig. 2.1) [7]. 

Fortunately, many pathogenic genomes have been sequenced, and genomic and pro-

teomic sequences are available for many bacterial and viral causes of disease. The National 

Microbial Pathogen Data Resource (NMPDR), a curated database of pathogenic genomes, 
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Figure 2.1: Infectious disease incidences across the globe from July 22 to August 20, 2009, 

colorized by urgency (deeper color is more urgent); this image was generated from [3] using 

data from the World Health Organization, ProMED [4, 5] and Eurosurveillance [6]. Areas of 

dense population, overuse of antibiotics and zoonosis tend to dominate instances of emerging 

infections disease [7]. 
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lists 801 different species and strains of archaea, bacteria and eukarya infectious to mankind 

[26]. The availability and dissemination of this data has allowed many new discoveries in 

pathogenic research to stem at least partly from computational methods. For instance, Gill 

et al. [60] used sequence-based comparative genomics methods on species of staphylococcus 

to identify syntenic regions, and were able to draw conclusions toward the relationship trans-

posons and insertion sequences have on the antibiotic resistance of S. aureus. And Setubal 

et al. developed an algorithm to predict lipoproteins in spirochetes to uncover novel genes 

involved in pathogenesis [61]. The challenge is thus no longer working with a poverty of 

data, but rather how best to mine and analyze the diverse pathogenic information available, 

so as to prioritize targets of study and quicken the pace of research. 

2.1.1 Pathogen targets and virulence factors 

One set of targets are genes within a pathogen that are directly involved in pathogenesis. 

In the 19*ft century, Robert Koch proposed a set of postulates which ostensibly defined a 

standard guideline for disease causation by a microorganism. Since that time, our under­

standing of biology and disease etiology has significantly increased and newer, gene-centric 

paradigms have arisen which assert that the presence of particular sequences within an 

organisms are a higher-resolution causative agent [62, 63]. These sequences, often termed 

virulence factors, can adopt a wide variety of functions within an organism and can have 

varying degrees of importance in pathogenesis. 

Because the involvement of a protein in pathogenesis can be measured along a spectrum, 

there are several ways of determining what constitutes a virulence factor. Casadevall and 

Liise-Anne, and Brown et al. explicitly link the definition of pathogenicity to host dam­

age, and casts it as a property that is modulated in part by both host susceptibility and 

resistance [64, 65]. Paine and Flower provide a broader definition: any moiety essential 

for causing disease in a host [63]. Wassenaar and Gaastra take a strict empirically-driven 

approach, and note that combined and specific evidence from phenotypic research, com­

parative genetics and immunological studies are necessary before a gene can be deemed 

as involved in virulence. They provide a hierarchy of virulence genes, ranging from those 
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involved in colonization and host immune evasion ("life-style genes") to true virulence genes 

(refer to Tbl. 2.1) - those genes that are absent in non-pathological strains and directly 

responsible for damage to the host during infection [22]. For the purposes described in this 

dissertation, the definition used is one provided by Alksne and Projan, and modified with 

exceptions from Raskin et al. that explicitly takes into account opportunistic pathogens 

such as those prevalent in immune-compromised individuals: virulence factors are those 

genes specifically expressed during the disease process, but may not be expressed outside 

a human host [66, 67]. This definition would optimally exclude those genes essential to an 

organism for general survival outside the host, but include those which may be implicated 

in antibiotic resistance or in vivo survival. 

Gene class 

True virulence 

Colonization 

Defense system evasion 

Processing virulence 

Secretory virulence 

Virulence housekeeping 

Regulatory 

Definition 

Factors present only in pathogenic proteins involved in damage to host. 

Ancillary factors that aid in pathogen localization and colonization. 

Factors involved in host immune evasion. 

Factors involved in the biosynthesis of other virulence factors. 

Genes involved in secretion of virulence factors. 

Genes that supply nutrients, or enable environmental survival within host. 

Factors involved in the regulation of virulence factor expression. 

Table 2.1: Abbreviated virulence classification proposed by Wassenaar and Gaastra; the 

complete classification system is available from [22]. The working definition of virulence 

factor used in this dissertation encompasses all of the above. 

While this definition provides a practical starting point when considering virulence, an 

important caveat is that mechanisms of virulence are often polygenic and a single factor by 

itself may be necessary but insufficient to cause pathogenesis. Furthermore, pathogenicity is 

not defined by the infectious agent in isolation - the characteristics of the host are equally, 

if not more, paramount considerations [64, 65]. As mentioned earlier in this chapter, an 

organism's potential to affect damage to a host is a relative measure, and the interactions 

between the host and disease-causing organism determine the etiology, progression and 
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severity of an infection. At the same time, virulence factors are families of proteins whose 

presence in an organism is strongly indicative of an invasive tendency, such as the type 

III secretion system present in Gram-negative bacteria, a complex injectisome used by the 

bacteria to secrete effector proteins into a host cell [68]. Such virulence factors often play 

an important role in the generation of toxins that destroy host cells, adhesins that allow 

the organism to bind to host surfaces and invasin-type proteins that help them gain entry 

into the host cell itself [69, 70, 71]. 

2.1.2 Challenges to identifying virulence factors 

Because mechanisms of pathogenesis can be complex, methods of classifying putative vir­

ulence proteins have arisen that reflect varying degrees of involvement in pathogenesis 

[70, 22]. Genes involved primarily in virulence have historically been infrequent targets 

for further therapeutic study, although they constitute a small subset of broad-spectrum 

targets [67, 72, 73]. This is true particularly in obligate or synthesis-handicapped microbes, 

whose metabolisms depend heavily on host processes for survival. Finding these proteins 

within the proteome of an entire organism can be challenging, however, because such a task 

requires a synthesis of skill and knowledge both about the organisms in question and the 

pathology and pathways involved in disease. 

In the past, these difficulties have been exacerbated by the unavailability of databases 

devoted specifically to pathogenicity, a problem which has begun to correct itself within the 

scientific community (refer to Ch. 2.1.3). Nonetheless, despite the rapid sequencing of new 

pathogenic genomes, concrete identification of virulence factors remains difficult. Though 

many pathogenic genes lay within pathogenicity isalnds (PAIs), denoted by flanking repeats 

and GC-rich content within the genomic sequence, the exact function is still difficult to 

determine for any individual gene, not to mention that many virulence factors lay outside 

PAIs [74, 75]. Additionally, virulence factors are often a host-negative side-effect of the 

normal metabolic function of microorganisms within a hostile environment, such as in the 

case of Y. pestis and E. coli, each of which have tracts of pathogenic genes implicated in iron 

uptake [76, 77]. Thus, a protein, whose function may be benign in avirulent strains of an 
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organism may be involved with virulence in another through complex, polygenic pathways. 

Concrete determination of a gene's involvement in disease is generally left to experi­

mental results, and many studies rely on knockouts or mutations of putative pathogenic 

genes, often within a mouse model [78, 79]. Resulting attenuation or avirulence would 

then be strong evidence that the gene is involved in disease, although the exact function 

or role may still remain a mystery. Proper target selection is important, however, given 

that laboratory science makes the identification and verification of virulence factors a costly 

endeavor. Though these methods are often definitive, they are expensive and laborious and 

as such are intractable for confirming the pathogenicity of thousands of genes at a time. 

Thus, faster methods are preferred early on that can highlight the most likely targets before 

experimental assays are carried out. 

2.1.3 Computational methods for finding virulence factors 

Genomics-based approaches are one such group of methods, and usually revolve around 

variations of identifying genes that are widely conserved across pathogens, but absent in the 

hosts, and targeting them for further study [80, 81, 82, 83]. In the case of several pathogens, 

many hypothetical virulence factors have dubious homologies to genes in other organisms, 

making them particularly difficult to identify and characterize [84, 66, 74]. Recent studies 

indicate, however, that virulence factors are a fresh and attractive target for attenuating a 

microbe's ability to thrive and cause damage in a host [74, 85, 86, 87, 88, 89], especially 

as bacterial pathogens continue to evolve significant resistances to traditional antimicrobial 

therapies [66, 67, 72, 90, 7]. 

Identifying and annotating these virulence factors is an early and integral part of un­

derstanding how a disease causes damage to a host; improvements in accuracy and speed 

for finding proteins involved in pathogenicity have the potential to increase the analytical 

throughput of therapeutic research. However, prior computational research in quickly iden­

tifying virulence factors has been limited, and has only in the last few years become an 

area of strong interest for researchers. Several public databases have recently been released 

that focus exclusively on pathogenesis (see Tbl. 2.2). Among these include: the Viru-
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lence Factor Database ( V F D B ) , a repository of genomic and proteomic data for bacterial 

human pathogens [23, 91]; the ARGO database, a collection of virulence factors believed 

to be involved with resistance for /^-lactam and vancomycin families of antibiotics [24]; 

and M V I R D B , a aggregated data warehouse of many, smaller virulence-related databases 

(including V F D B and A R G O ) [27]. 

Date 

2005 

2005 

2006 

2007 

2007 

2007 

2008 

2008 

2009 

Virulence-related sequence database 

Virulence Factor Database 

Antibiotic Resistance Genes Online 

PHI-base 

National Microbial Pathogen Database Resource 

MvirDB 

Pathema 

Infectious Disease Biomarker Database 

varDB 

Antibiotic Resistance Genes Database 

Area of focus 

General virulence factors 

Antibiotic resistance 

Pathogen-host interactions 

Annotations of pathogenic genomes 

General virulence factors 

In-depth curation of selected pathogens 

Early pathogen diagnosis 

Antigenic variation 

Antibiotic resistance 

Table 2.2: Sequence databases curated specifically for virulence factors, area of specialty 

and relevant dates of first publication; note that this list is not meant to be comprehensive 

of all virulence-specific sequence databases [23, 24, 25, 26, 27, 28, 29, 30, 31]. 

In addition to traditional homology-based search methods, classification algorithms have 

been applied to the problem of virulence recognition. For example, Sachdeva et al. used 

neural networks to identify adhesins related to virulence [92]. Saha used support vector 

machines to predict general virulence factors via an approach similar to one proposed in 

[93] - mapping combinations of the amino acid alphabet to a space such that the presence 

of a peptide sequence would constitute a classifiable feature [94]. However, the resulting 

top accuracy for virulence proteins, 62.86%, was relatively low in comparison to the other 

protein roles predicted (e.g., cellular and metabolic involvement). Work by Garg and Gupta 

improved on this performance by also relying on polypeptide frequencies, but in conjunction 

with Psi-BLAST data in a cascaded SVM-based classifier [95]. This approach yielded a much 
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higher accuracy of 81.8% and an area under the receiver operating characteristic (ROC) 

curve of 0.86 for generalized virulence prediction. 

While initial at tempts at using computational methods to identify virulence factors 

have met with some success, identifying and annotating genes involved in virulence remains 

an early and integral part of drug development. Improvements in accuracy and speed 

in finding proteins has the potential to increase the analytical throughput of functional 

determination pipelines, which is often one of the earliest rate-limiting steps in drug and 

vaccine development. 

2.2 Protein identification and annotation 

In order to prioritize genes for experimental assay, one must first be able to identify genes 

that have a high probability of being involved with the pathway or phenotype of interest, 

which subsequently involves providing a preliminary functional assignment. This process, 

annotation, involves assigning one or more molecular and biochemical processes to a protein, 

and can include additional information such as noting component domains, known sequence 

features of interest and the location of the protein within the cell. 

2.2.1 Manual and automated methods 

Manual annotation of proteins is widely recognized as time-consuming and laborious, gen­

erally requiring a scientist or team of scientists to perform numerous queries of their protein 

against multiple biological databases, followed by collation of the information into a cohe­

sive story relating to its function [96, 45]. Doing so depends on many factors, including 

their knowledge of biology, experience with specific databases and other resources they rely 

on. This process is still cost-effective in comparison to traditional laboratory methods, 

even though it generally involves reviewing and analyzing alignments, prediction results 

and functional information from many sources for hundreds of records [97, 54]. Indeed, 

given the current clip of biological discovery, it has been posited that manual methods are 

incapable of keeping pace with the amount of curation necessary [98]. 

To help expedite annotation, many groups have attempted to address the problems of 

speed inherent in manual annotation by developing automated or semi-automated annota-



16 

tion pipelines to aid in the annotation of specific species. Kasukawa et al. developed an 

annotation pipeline specific for the mouse genome, and used their systems annotations as 

first-pass labels for proteins that were later curated manually by scientists [99]; the E N -

SEMBL analysis system assigns standardized domain terms to proteins automatically, based 

on species-specific curated data [100]. 

Others have also tried to generalize the process of annotation; the FIGENIX system is 

a server-based annotation tool relying on multiple pipelines based on sequence, phylogeny 

and structure to infer functional annotation [101]; the GOblet system queries multiple, 

locally-stored databases to assign standardized nomenclature Gene Ontology (GO) terms 

to anonymous sequences [102, 103]. Accurate protein annotation often requires exhaus­

tive searches against databases, both public and local, by the scientist (s). As it pertains 

to identifying which proteins are involved in pathogenicity, annotation is among the first 

steps. Additional approaches that have more generalizability across organisms and are more 

modular have been tested, with some success [19, 104]. 

2.2.2 Challenges to automated annotation 

Despite the advantages automated annotation methods affords in effort saved, they are 

not without serious obstacles. Because of its speed and affordability, the primary method 

employed for most annotation systems is basic homology-based searching followed by au­

tomated analyses, often chained together in a pipeline. Unfortunately, many biological 

databases are rife with data of dubious quality and curation; these poor-quality annotations 

are often transferred from one database to another over time. Moreover, data submitted to 

repositories may appear correct during their time of submission given the information avail­

able, but later experiments are revealed that would alter the submission. The result of this 

is a significant percentage of annotations within biological databases that are either dated, 

poorly-annotated or even incorrect [105, 106, 107, 108]. These problems are often difficult 

for a skilled and knowledgeable annotator to parse through; for an automated system, it 

can lead to poor precision in annotation. 

Triangulation across multiple and corroborating sources and methods is one way of 
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Organism 

H. sapiens 

S. cerevisae 

H. influenzae 

A. thaliana 

C. elegans 

L. major 

T. cruzi 

T. brucei 

G. lamblia 

C. hominis 

C. parvum 

P. falciparum 

P. yoelii 

Size (Mb) 

3200 

12.5 

1.8 

125 

97 

33 

60 

35 

12 

10 

10.4 

25 

25 

Coding 

genes 

<30000 

6000 

1750 

25500 

19100 

8213 

25041 

10689 

9767 

3994 

3952 

5279 

5878 

Hypo. 

(%) 

50 

55 

37 

48 

48 

64 

66 

66 

56 

40 

25 

61 

63 

Func. 

(%) 

50 

45 

63 

52 

52 

36 

33 

33 

42 

60 

75 

39 

37 

Table 2.3: The state of annotation and gene identification for the human genome, model 

genomes and a number of protozoan genomes of public health interest [32]. Notably, the 

proteomes of many infectious disease organisms remain functionally unsolved. 

increasing confidence for computational predictions and increase the chances of high-quality 

results [54, 109, 104, 20]. 

Another challenge to automated annotation is related to maintenance and infrastructure; 

as many systems rely on different analytical and query sources, it can become difficult for 

such platforms to scale in phase with the number of ever-growing databases. While the de 

facto standard in almost every field for data storage, the relational database management 

system (RDBMS) model can be difficult to manage as the number of data sources scales 

up [110]. Consider that creating an RDBMS whose warehouse supports multiple databases 

would require a global schema which may have to be refactored when new sources are 

introduced; additionally, the data must be kept current, locally, across all sources. 
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2.3 Strengths and weaknesses of identification and annotation methods 

Current published methods of virulence factor identification rely primarily on computations 

upon the protein sequence itself. Notably, even though there are thousands of molecular 

databases available, very few classification algorithms have leveraged multi-database func­

tional information in virulence factor identification and instead rely on completely ab initio 

methods. This is particularly surprising, given that during manual protein annotation sci­

entists regularly use multiple data repositories to triangulate a function (see previous, Ch. 

2.2) and many general-purpose gene annotation systems use multiple data sources as input 

(e.g., ENSEMBL, [100]). 

It is important that any automated method identifies and annotates proteins, including 

those involved in virulence, first be an effective platform for data integration — transfor­

mation, storage and treatment of data from heterogeneous sources such that they may be 

queried and accessed uniformly. As emphasized by Wong [111], any method that integrates 

heterogeneous data for bioinformatics tasks must meet several criteria, among which in­

clude independence from external source schemata, a robust internal data model and loose 

couplings between the internal model and queries to reduce maintenance costs associated 

with external change. 

Identification and classification of virulence methods is further hampered by the limited 

holistic understanding virulence, the lack of a centralized vocabulary for describing a pro­

tein's involvement in pathogenicity and the only very recent arrival of multiple sequence 

databases focused on virulence genes. Furthermore, much of the data that is available in 

virulence and non-virulence databases can be specious in nature without human input and 

curation. 
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Chap te r 3 

M E T H O D S O F D A T A I N T E G R A T I O N A N D S T A T I S T I C A L 
C L A S S I F I C A T I O N I N B I O L O G Y 

The previous chapter (Ch. 2) outlined the challenges involved in annotating and iden­

tifying virulence proteins, and asserted that there were serious shortcomings of traditional 

approaches to gene annotation as it relates to predicting virulence. Some of these obstacles 

were endemic to annotation in general, while others were specific to the area of virulence 

factor identification. The following chapter discusses two separate computational methods 

in a general sense - machine learning and data integration - and provides the supporting 

groundwork for the use of a combination of these two approaches to address problems in 

identifying and annotating proteins involved in pathogenicity. 

3.1 Computationally predicting protein function 

One family of methods that have been used extensively in the past for protein annotation, 

and thus holds promise for virulence factor identification, is statistical learning or pattern 

recognition algorithms. This is a broad category that encompasses a variety of compu­

tational approaches capable of either classifying instances into any number of categories, 

or, as is the case in regression, relate characteristics of instances to some predicted real 

value. The following section will review several popular methods and specifically focus on 

supervised methods - algorithms and approaches that rely on known prior instances to clas­

sify unknown future instances - which have been used with success with protein function 

prediction and computational annotation in the past. 

3.1.1 Supervised learning 

Formally, the problem of supervised class learning can be expressed simply as finding some 

function which defines a mapping or probability from any given instance or example to 
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some class or label. Each instance is represented by a set of features, which ostensibly are 

of some predictive value to discerning the correct label for the instance, either individually 

or in combination. For example, a simple yet effective feature for a protein sequence learner 

on cellular localization could be a boolean representing the presence of a signal peptide, 

with 0 for the absence of a signal peptide, 1 otherwise.1 

The problem of learning can then be further elaborated, where given a set S of m 

instances represented by n features with known corresponding labels taken from £: 

S = {(xi ,y i ) , . . . , (x m ,2 / m ) |y i £ £,Xi e Rn}, (3.1) 

define a function / and parameters 9 such that for any given instance z of unknown label: 

f(*\0,S)=y. (3.2) 

The above is a basic model for classification that applies to a large number of learning 

methods used in biology, some of which are outlined below. 

3.1.2 Review of learning methods in biology 

Approaches based on probabilistic belief networks have been popular in the past for cases 

where information can be expressed in a conditionally independent manner. Networks such 

as those grounded on Bayes' theorem provide a graphical way of representing data when their 

relationships are suspected to be causal in nature. In cases where the networks represent 

biological interaction, the function prediction is done via 'guilt by association'. For example, 

King et al. [112] used this approach to predict gene function using patterns of Gene Ontology 

(GO) [102] annotation, under the hypothesis that the co-occurrence of terms for S. cerevisiae 

can be used to identify as-yet undiscovered functions. Comparing Bayesian network and 

decision tree approaches with a model where annotations were assumed independent, King 

et al. found that both approaches performed well and that while a Bayesian network yielded 

a higher area under the ROC curve (AUC), decision trees did better at lower false positive 

1 Notably, this particular feature could be made richer by expressing the presence of a signal peptide by 
its location within the sequence. 
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rates. King et al. further applied the decision tree model to prediction of gene and phenotype 

relations, with similar albeit less optimum results [113]. 

While the work by King et al. relied primarily on a single data source, prior research 

by Troyanskaya et al. integrated multiple data sources over Bayesian methods to predict 

paired protein function [114]. The system developed, called MAGIC, uses protein-protein 

interaction, binding site and clustered microarray expression data to gauge the probability of 

the products of two genes interacting. Functional gene groupings are generated as a result, 

and can be used to infer the function of some protein based on other, known interacting 

proteins. 

The combination of heterogeneous information for use in protein function prediction has 

formed the basis for other approaches as well. Deng et al. used a Markov random field 

(MRF) to predict protein function using a variety of sources [115]. They compared this 

integrated approach with a baseline method that used only a single data source (physical 

interaction data), and found that the use of multiple data sources resulted in a considerable 

30% increase of precision. And Chua et al. [18] used graph-based methods to generate 

a weighted graph of estimated confidences built from different sources; a layered, simple 

voting scheme was then employed to determine function. This approach, termed Integrated 

Weighted Averaging (IWA) is computationally inexpensive, and compared favorably with 

methods that are more machine-intensive. In fact, the AUC of the IWA method improved 

when the input data was made up-to-date, underlining the transitory nature of biological 

information as it pertains to functional annotation. 

Another family of methods capable of discrimination and pattern recognition does so by 

forming a dividing plane between classes. Using the notation in (3.1), these methods operate 

by envisioning vector instances from S as points within an n-dimensional space, whereupon 

a separating hyperplane is found that forms the decision boundary between classes in the 

space. For a formal description, define a binary classification problem with £ = {1, — 1} and 

instances S. Identify a vector w normal to some hyperplane in R™ and offset b such that: 

1 = 2/i(wTXj + b), for i = 1, .. . ,m. (3.3) 
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Finding the separating hyperplane for x is thus found by solving the constrained optimiza­

tion problem (in primal form): 

1 
mm 7;— 
w>b I H I 2 (3.4) 

subject to 1 < yi(wTXi + b), for i = 1,..., m, 

which can be expressed in terms of instances rather than features via the dual form [116, 

1171: 

m -. m m 

subject to 

2 
i = l i = l j = l 

(3.5) 
aj > 0 for i = 1, ...,m, 

m 

yz otiVi=0. 

Notably, the above assumes a hyperplane exists that can perfectly separate the two classes, 

and thus a separating hyperplane may not be found if the classes are nonlinear in W1. To 

allow for a nonlinear mapping, some transformation mapping <& may be applied to x, where 

x f x j => $ ( x j ) T $ ( x j ) =>• &(XJ ,XJ) ; this defines the kernel function and allows the features 

of x to be mapped to some space where a linear separation may exist (refer to Fig. 3.1). 

Adapting (3.5) with a kernel function, and setting a minimum margin C from the sep­

arating hyperplane yields [117]: 

m -. m m 
max ^2 at - - ^ ^ aiCXj yiyj k (x* , Xj) 

subject to 

a ^—' 2 
i = l i = l j '=l 

(3.6) 
0 < Oii < C for i = 1,..., m, 

TO 

] P ajt/j = 0, 
i = l 

which is similar to the form given in (3.5), save the constraints on a and the primal min­

imization, ,, ^,2 + C ^ ™ = 1 ^ j , where £ is a slack variable allowing for some classification 
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(a) (b) 

Figure 3.1: Above, Fig. 3.1a shows a series of positive (red circles) and negative (black 

crosses) instances which are not linearly separable without large error in their native 2D 

space; Fig. 3.1b shows the same data plotted with a mapping (<£) to a 3D space (with 

z = (xy — f — I + | ) 2 ) where a linear separation is possible with less error. 

error up to a point such that £, > 1 indicates a misclassification for Xj thus forming a soft 

margin. The above defines a support vector machine (SVM) [116], and is generally solved 

using convex optimization methods [118]. 

Capable of both regression and discriminative classification, SVMs offer several advan­

tages over other learning algorithms. They are fairly resistant to overfitting, as the optimal 

hyperplane is chosen that maximizes the margin. This is in comparison to other learning 

methods, such as neural networks where a solution may not be optimal despite correct clas­

sification of the training set. Additionally, using a soft margin makes the training process for 

an SVM less sensitive to noise. Because of these appealing characteristics, as well as accu­

racy for nonlinear tasks, SVMs have been used for analysis and classification of biomedical 

data with resulting performance comparable to or better than other methods in many cases. 

Brown et al. apply SVMs with various kernels to the task of classifying genes into five Mu­

nich Information Center for Protein Sequences (MIPS) functional categories, compared their 
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performance to other non-SVM kernel methods and decision trees, and found that SVMs 

outperformed these other methods [119]. SVMs have also been used for secondary structure 

prediction, and in work by Hua and Sun it outperformed other approaches, including one 

based on consensus of multiple methods ([120]). Methods for classification based on protein 

sequence data have also been used successfully. Leslie et al. used a spectrum kernel whose 

input are the frequencies of protein words of varying length, and show that the accuracy at 

classifying proteins by SCOP (Structural Classification of Protein) is comparable to that of 

other, more computationally-expensive methods [93]. And, when this model is adapted to 

allow for gaps, it actually outperforms other state-of-the-art methods [121]. 

An additional advantage is that SVMs may be used to combine multiple sources of data 

in a variety of ways. One such method is the direct integration of the SVM's vectors, or 

early integration [122], where the feature vectors of two or more sources are concatenated, 

forming a vector for each instance whose length is equal to the total number of features 

across all sources. In intermediate integration, the kernels (K) themselves are added, i.e., 

[123]: 

K' = J2»iKi, (3-7) 
i 

where /i» is a weight for each source kernel Ki representative of the importance or affect 

each data source should have on the data; optimal weights can be determined via a grid 

search or quadratically constrained quadratic programming [124, 125]. The SVM is then 

trained on the aggregate kernel, K'. In late integration, source kernels are classified in­

dividually, and the distances from the respective decision boundaries are summed for the 

final result. These methods have been used for protein classification, DNA/RNA-binding 

protein prediction and prediction of metastatic cancer from clinical and microarray data 

[122, 126, 127]. Finally, in a more sophisticated form of late integration, SVMs can be used 

in such a way as to form the inputs to yet another learning method. Obozinski et al. used 

this approach for a regressor of consistent probabilistic values for GO terms [128], while 

Garg and Gupta used a cascaded SVM approach to predict protein-relatedness to virulence 

based on spectrum and Psi-BLAST kernels [95], the problem of interest for this dissertation. 
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The latter methods involved the use of multiple data sources of data in performing 

classification tasks. Scientists now look to examining as many views on their proteins of 

interest in order to draw conclusions; relying on many different forms of information is one 

way improving computational techniques by exploiting complementary and supporting in­

formation derived from them. Notably, many of these techniques often include experimental 

da ta sources, which are generally considered to be of the most trustable quality and highest 

provenance; in combination with less expensive methods, using many sources of data can 

produce impressive results. 

3.2 Data integration methods in biology 

Generally, experimentally verified information will be difficult to obtain, particularly for 

newly-sequenced genomes or in instances where proteins are difficult to work with in a 

laboratory. In these cases, relying on whatever sparse and speculative information is avail­

able from public biological databases via sequence alignments, statistical analyses, structure 

prediction, etc. is often the only place to turn for possibly pertinent information. Use of 

these resources, however, comes with its own challenges apart from those encountered in 

the laboratory. 

To any individual scientist, biological data relevant to their research is scattered across 

numerous and fractured databases, many of which have their own idiosyncratic interface, 

usage and data model. As a result, processes and analytical protocols that involve many 

databases can be difficult and tedious, and users of the databases must learn each individual 

source in order to take advantage of the complementary information available in repositories 

that contain information on different domains [129]. This problem is exacerbated by both 

the continued growth of the sheer number of biological databases and the dynamic nature 

of their content. 

There are a variety of methods that have been in use to address this problem, most of 

which rely on some variation of centralized data integration that allows multiple data sources 

to be queried via a single interface. Primarily, these approaches fall under two categories: 

data warehouses and federated systems [110]. In a data warehouse remote information is 

pulled, cleansed and then stored locally, generally within a traditional RDBMS; the local 
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copy of the data stored under this architecture is transformed physically from one data 

model to another. Benefits of this approach include query speed and greater control over 

the quality of data, and are juxtaposed against the disadvantages of limited guarantees 

for data currency and practical limitations on scalability. Previous applications of data 

warehouses to the domain of biology include E N S E M B L [100], ATLAS [33] and Gus [38], all 

of which have been used for da ta curation and annotation. For researchers dealing with 

multitudinous data and complex, expensive queries, the data warehouse approach provides 

a strong advantage in time to query retrieval and content control. 

To illustrate the disadvantages of an RDBMS warehouse, consider that as individual 

data sources evolve the data model within an RDBMS must evolve to match as well, re­

quiring database refactoring and possibly renormalization. These changes, in turn, may 

render previously valid queries obsolete. Given that biological databases change frequently 

and the increasing scale of repositories necessitate regular changes to the RDBMS schema, 

maintenance on data warehouses for biology can be very challenging. 

Under a federated architecture, data remains at the source, subsequently absolving the 

need for a locally-maintained RDBMS. Instead, a tiered architecture is used that allows 

reformulation of user queries to each of the individual sources for data retrieval. A ma­

jor shortcoming of this approach is the time it may take to resolve a query. However, 

because the data remains at the source and the job of maintenance is left to the origina­

tors, this approaches scales particularly well for ad hoc treatment of data sources relative 

to a warehouse-based system. Additionally, data retrieved under such a scheme is clearly 

guaranteed to be as current as the data within the source itself. 

The plot in Fig. 3.2 is a strong motivation to rely on federated architectures for com­

prehensive data integration. As the number of databases increases (and thus the number 

of potentially relevant repositories for any one domain of research) the cost of maintaining 

a federated system for uniform access will linearly increase; evolving a data warehouse to 

keep pace at the same level of cost would be more difficult. The federated data model has 

been employed successfully in the SRS[40], K2/Klesli [38] and TAMBIS [41] systems, among 

others. 
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Growth of molecular biology databases 

^ jfi ^fi ^ jp. ^ jf. jf> jfi jfi a0o* ̂  jsfi ^p> ^ 
Year 

Figure 3.2: The linearly-increasing number of biological databases from 2000 to 2009 [8, 9, 

10, 11, 12, 13, 14, 15, 16]; it would be physically near-impossible for a single scientist to 

manually parse through nearly up to 1200 databases in search of relevant information in a 

timely fashion. 
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3.2.1 Federated data integration 

For the reasons outlined in the previous section, the work of this dissertation relies on the 

federated architecture, and one driven by a specific type of schema. Following the syntax 

put forth by Lenzerini in [130], we can formally define an architecture-independent data 

integration system I as (Q,S,M), where Q is the global schema, S the source schema and 

M. the set of mappings between Q and <S. In the most conservative sense this formalism of 

data integration is reliant on source and schema explication, and thus the mappings m 6 Ai 

that form the correspondences between S and Q (rug \—• ms and ms i—> mg) are specific 

for all data sources T> described by S. In other words, formulating a query q over Q whose 

results would be satisfied by multiple data sources would require individual enumeration of 

those sources in q. 

To illustrate support for more expressive queries, we further define the components as 

follows: let Q be constructed from some collection Kg = {gi,g2, •••, gi}, where g represents a 

mediated class or entity, and S constructed from some collection As = {si,S2, • ••, Sj} where 

s is a valid element from any data source D € T>. Mappings from Q to S are handled as 

m(g) \-> m(s); then let: 

Vg • gQg (3.8) 

V&, gj : 9i Q 9j A gj C gt, then gt = gj (3.9) 

Vffi, gj,gk • gi Q gj A gj C gk, then gi C gk (3.10) 

which imposes a subsumptive ordering over the schema entities of Q which enables more ex­

pressive queries. The above relations can be likened to a frame-based hierarchy, whereupon 

if the hierarchy is restricted to singular inheritance: 

if a C b then qa{c) C <ft(c), where a,b £ Kg (3-11) 

holds, where qv is some query with variables c of arbitrary arity. This hierarchically-driven 

(per the ordering on Q) construct will be referred from now on as a mediator-based, or a 
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mediated schema, and allows queries on elements of Q that support inheritance and implicit 

containment (as in (3.11)) not possible under a normal global schema. Depending on 

the mappings, then, a single query may be posed on Q without individual enumeration of 

sources. Furthermore, other relations on the elements of Q beyond queries may have similar 

properties as (3.11). 

Example We define a mediated schema with the following elements and properties: 

Ag <— {Sequence, DNASequence, ProteinSequence} 

DNASequence C Sequence 

ProteinSequence C Sequence 

and queries: 

-*M < QSequence\c) 

"•1 < QProteinSequence{c) 

Rs <— qDNASequence{c) 

where Rn denote query results. Then the following holds true: 

R2 ^ R\ • 

From an intuitive biological perspective, the above states that given the same schema and 

sources across queries, the results of specific queries on protein and DNA sequences will be 

contained by a broader query on general biological sequences. • 

The federated, mediated approach described allows queries to be posed completely on 

a single, unifying schema in terms of Ag without regard to the individual sources. Ideally, 

the schema would be broadly representative of some domain of interest, such as functional 

annotation of proteins, yet specific enough to have utility in querying and retrieval. 
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Federated data integration systems have been employed in biology in the past, both 

informally and formally. On the informal side, the ENSEMBL system is a pipeline for sequence 

analysis and automated annotation [100]. ENSEMBL is composed of many, local analytical 

components specifically chained together in such a way as to offer a comprehensive analytical 

platform for sequences of interest. A management module (the 'Rule Manager') controls 

invocation of the components, and new components may be programmatically composed 

and linked to the appropriate section of the pipeline. The management module is not 

a formal generalized data integration system, however, and the schema is not mediated. 

Furthermore, the ability to query is extremely limited, as system interaction is strictly 

denned by the structure of the pipeline. And, any new components are specifically designed 

to fit in particular sections of the pipeline. As such the system is not scalable in the face of 

a large number of analyses. 

At the middle end of the spectrum, semi-formal integration systems include the Sequence 

Retrieval System, or SRS, which provides a federated architecture to accessing multiple 

sources described via linked flat-files [40]. While the SRS model is more generalized and 

does provide uniform access to the over 400 sources it supports, the prime use of SRS is as 

an indexing and search tool. Sources are parsed for text and field names and indexed in a 

relational database, which in turn is used to manage query retrieval. Because of this, SRS 

is sometimes characterized more as a user interface integration tool, and less a formal and 

fully-expressive data integration system [131]. 

A federated data integration systems with a centralized mediated schema is TAMBIS, 

which stands for Transparent Access to Multiple Bioinformatics Information Sources [41]. 

Unlike previously described systems, TAMBIS supports expressive user-posed queries via 

the CPL (Collection Programming Language) query langauge. Furthermore, TAMBIS is 

driven by a common data model that , though limited, describes the domain of interest and 

allows queries to be made independent of individual data sources. Whereas in the case of 

ENSEMBL, SRS and systems like them that require a non-trivial level of user knowledge of 

the sources for understanding, interaction with TAMBIS is in the language of the central 

schema. TAMBIS thus fits the model of a true federated data integration system, supporting 

both a centralized schema and a mechanism upon which expressive queries may be made 
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using that schema. 

On the other hand, effective interrogation of TAMBIS is predicated on the user's knowl­

edge and ability to form specific and directed queries in CPL. Thus, like the other systems 

described, TAMBIS is limited by the technical expertise of its users and serves as a barrier 

to usage. Also, while there are many cases where a biologist may be interested in posing 

a specific query, there are other cases, particularly in early research, where one may be in­

terested in generally acquiring as much information as possible regarding a gene or protein. 

The following section discusses a querying approach for integration systems that extends 

the federated model graphically. This path-based view of integration is effective at quickly 

discovering more information and provides a querying mechanism that is arguably easier 

than using directed queries. 

3.2.2 Path-based federation 

An extension of the method outlined in the previous section (Ch. 3.2.1) that fits particularly 

well in the paradigm of biological databases is managing retrieved data in a path-based 

manner [132, 133, 36]. This model begins with an initial query, and through a series of links 

made explicit in the schema, joins are made across databases connecting information many 

hops removed from the original query. The result is a query graph, which can be rapidly 

grown via continued re-querying of acquired data. If this is done in an exploratory fashion, 

the query graph will contain information of varying relevance to the original query; this 

action is termed an exploratory query [20]. 

Formally, the query graph G = {V, E) is composed of nodes V, representing queries 

or results, and edges E C {V x V} which are the relations between the nodes. Joins 

are accomplished using references of non-materialized nodes from materialized nodes, and 

are very much characterized similarly to the relational join concept; materialization of the 

edge between Vi and Vj is u, cx^ Vj, where Vi,Vj £ V and d is some attribute (naturally 

occurring or artificially generated) in Vj with primary key-like qualities. Nodes are populated 

according to the elements of As, but map to elements of Ag; these correspondences are 

concrete instances of the mappings in M, mg i—> 771,5. Thus, the query graph is essentially a 
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materialization of the mediated schema with instances of entities from data sources in the 

form of nodes. 

Example We define the following query and databases (with elements expressed in terms 

of kg) for some biological data integration system: 

q <— gene(a) 

D\ = (gene(a),protein(b),e(a,b)) 

£>2 = (protein(b), family(c),e(b,c)) 

D3 = (family(c)) 

which yields the following result on execution of q on D\ following path-based query expan­

sion: 

Rq <— gene(a),protein(b), family•(c),e(a,b),e(b,c). 

gene(a) protein(b) family(c) 

Figure 3.3: Graphical representation of the query expansion for q <— gene(a). 

In the above, gene is related to a family through their respective databases via the join 

D\ tXprotem D2 (see Fig. 3.3). • 

This formalism of representation and querying allows integrated data sources to be 

browsed in addition to being queried. In this model, users do not need to necessarily have 
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in mind what their particular interest is - they may now merely follow cross-references from 

source to source. While this approach may seem more tedious, and indeed may be in cases 

where a biologist is interested in determining a specific answer to a question, it is a more 

accurate reflection of how some biological tasks are carried out manually, including protein 

annotation. Though simple, it is a powerful and expressive model of data integration when 

applied to biological databases, many of which cover a variety of domains but often retain 

cross-references to other related databases [134]. 

Later federated data integration systems apply this model of data retrieval. Some sys­

tems even extend previous models to support path-based federation, such as BioGuideSRS 

[34], which provides a graphical path-based interface to SRS. Users may browse the sources 

in SRS using point-and-click interactions, and define preferences, such as the minimum 

number of cross-references per path. BioGuideSRS is thus an example of a system that 

uses a comprehensive, triangulation-based approach to presenting and querying informa­

tion; through path-based browsing, a scientist can visibly see via sources and paths how a 

result is reached. 

Another example of such as system is BioMediator, a generalized data integration system 

that has gone through several iterations, the latest of which supports graph-based browsing 

[132, 135]. Data retrieved by BioMediator is described using a richly-annotated mediated 

schema, with concepts featuring the characteristics as described in (3.8-3.10); indeed, even 

edges in BioMediator are organized within a hierarchical model. Similar to BioGuideSRS, 

users may make queries to a graph-based interface and browse by expanding and following 

links. Built on a tiered and decoupled architecture, BioMediator has been in the past 

adapted to several biological tasks, including expression array analysis [136], gene annotation 

[19, 104] and processing of neural information [137]. 

3.3 Discussion 

In this chapter, two fields important to information mining and management for biomedicine 

have been briefly reviewed: machine learning and data integration methods. The former 

has been used frequently in biological research as a way of labeling and classification, while 

the latter as means of querying and gathering large quantities of information. Moreover, 
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current research has trended toward a combination of these approaches - utilizing learning 

methods on combinations of data. These approaches, however, have been ad hoc and often 

any integration is done only at the data-level; no previous research has at tempted query-level 

integration with statistical learning techniques. 

The remainder of this dissertation discusses the methods and results for using a data 

integration systems as a means of aggregating and mapping stored biological da ta for vir­

ulence role prediction. Immediately following, Ch. 4 outlines the implementation of a 

novel data integration system that builds off the successes, and improves on the methods, 

of previous data integration platforms. This system is specifically designed to accommo­

date high-throughput, repeatable biological queries, the type of which current integration 

systems are unsuitable to address for a number of reasons. For example, while systems 

such as BioGuideSRS and BioMediator provide scalable approaches to both integrating and 

querying data, they have been designed primarily to serve in an 'active session' role. That 

is, the systems' model of usage are user-centric, and designed such that a biologist would 

query and search in an interactive manner. In order to support high-throughput proteomic 

analysis of the type needed for learning query-level data, a framework for data integration 

is needed that supports autonomous querying and data processing. 
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Chap te r 4 

M O D E L A N D I M P L E M E N T A T I O N O F A B I O L O G I C D A T A 
I N T E G R A T I O N E N G I N E 

The previous chapters have outlined challenges to general function prediction as well 

as methods in both the fields of data integration and machine learning used to address 

these challenges. A specific subproblem of function prediction, virulence identification, 

has also been discussed as well as recent advances in the emerging field of automation 

and computation for pathogenic proteins. This chapter1 goes beyond this background by 

proposing a model and implementation of a federated data integration system for biology. 

The design of the system proposed was motivated by addressing the challenges of scalable 

data integration faced in biology, with the added flexibility of rapidly accommodating new 

features, including those to support statistical learning for virulence identification. 

Relying on path-based exploratory queries, this system can pose singular queries uni­

formly across data sources, and return results recursively according to a mediated schema. 

Exploratory queries are effective at generating large quantities of information, albeit of 

varying relevance. Querying this way does not require the user to learn a possibly compli­

cated query language, and when coupled with a graphical user interface can be effective in 

conveying dominant information regarding the original query within the space of biological 

databases. 

Among prior research that deals with mining data from integrated biological sources, 

the work by Cohen-Boulakia, et al. with BioGuide, Lacroix et al. with BioNavigation, and 

BioMediator, stand out as the most comparable in terms of the data integration approach 

taken [132, 36, 138] (also refer to Tbl. 4.1). These systems rely on path-based querying 

over a graphical representation of the results, accommodate a browsing mode for exploratory 

xThe methods described herein for Ch. 4.1.4 were presented at the American Medical Informatics As­
sociation 2009 Fall Symposium as "Supporting retrieval of diverse biomedical data using evidence-aware 
queries"; a paper of the same name by Cadag and Tarczy-Hornoch is under consideration for journal 
publication as of Nov. 1, 2009. 
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queries and use explicit mappings of predefined entities to multiple sources for increased 

flexibility, all of which is used in the implementation herein. 

4.1 System architecture 

To address the shortcomings of current federated integration systems, a system was devel­

oped for the explicit purpose of supporting integration over heterogeneous biological data 

sources while at the same time affording the architectural flexibility and scalability to sup­

port high-throughput queries via a number of mediums. The purpose of the latter point 

being that such a system would make data retrieval and processing more amenable to sta­

tistical learning over the results. The MIQAPS framework (for "Multisource Intergrated 

Queries Against Protein Sequences", prounounced mai-kaps) was developed as a query, 

integration and retrieval engine for exploratory and structured queries. The primary com­

ponents of the data integration system developed are similar to those of a traditional feder­

ated data integration systems [139, 140, 132, 130]: a mediated schema, a data directory and 

source catalogue, interfaces to various data sources and a browsing engine. Using MIQAPS, 

it is possible to query using a protein sequence and retrieve similarity-based results across 

different heterogeneous resources, a practice that is amongst the most basic of needs in 

modern molecular biology laboratories. System implementation was done in the Python 

programming language [141]. 

Driven at its core by a general-purpose data integration engine2, MIQAPS is similar 

to several other data integration systems (see Tbl. 4.1). The architecture is close to that 

of BioMediator's, with some notable operational differences, the largest of which are that 

it was designed to be extremely lightweight and low-overhead, and allows caching within 

a relational database, via PostgreSQL3. Like BioMediator, however, MIQAPS supports 

exploratory queries of the kind useful for retrieving a large amount of information regarding 

a query. As a result, queries can be posed in an unguided way (as described below), 

which may be the most convenient for biologists uninterested in learning a path-based 

2PyDI, h t tp : / /pyd i . sourceforge .ne t 
3PostgreSQL, h t t p : //www. pos tgresq l . org 

http://pydi.sourceforge.net
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query language. Yet at the same time, the potential exists for expressive and specific query 

capabilities using a structured query language in the form of DaRQL [142]. Its scaled, 

extensible architecture allows for easy coupling with other systems or components, and for 

this research MIQAPS was joined with a graph analysis engine4 so that results from queries 

in MIQAPS are automatically mapped onto a manipulable graph for examination. 

G> 

schema 

browser 

source 
catalogue 

7 r 

data 
directory 

DBO 

DB1 

DB ... 

Figure 4.1: Architecture of the core MIQAPS system, where arrows denote information 

flow between the various components (dotted indicates a non-required interaction). Queries 

originate on the left (q) and are posed to a query graph instance either in an exploratory 

(key-value) fashion or using a path-based structured query language. 

Exploratory queries against MIQAPS are done in an entity-attribute-value tuple against 

the entities within the schema. For example, a protein sequence query would be posed via 

the tuple: (Seed,ProteinSequenceQuery,#ID,< seq > ) , where Seed is the local source, 

ProteinSequenceQuery an entity in the schema, #/-D a reserved term representing the 

unique identifier for all entities and < seq > is the query sequence. At a high level, an ex­

ploratory query is executed in the following manner: a client seeds a sequence query to the 

4NetworkX, h t t p : / /networkx. l a n l . gov 
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browser in the form of an entity-attribute-value tuple, valid types of which are enumerated 

within the schema. The browser communicates with the data directory, which performs a 

look-up within the source catalogue of the data sources to determine valid sources. Infor­

mation regarding queryable entities is stored in the user-defined schema, which explicitly 

defines the valid mappings between data sources as well as the structure and hierarchy of 

the entities used as mediating concepts across sources. The data directory manages the indi­

vidual interfaces to each data source (denoted by DB x in Fig. 4.1), which are modularized 

and separate from the core engine. Data that is returned may themselves be queryable, and 

thus continued querying of results amount to sequential joins across numerous databases 

(refer to Ch. 3.2.2). Once translated by the data directory into materialized schema entities, 

attributes and relations, results are sent back to the browser in the form of a query graph, 

where nodes represent individual data records mapped to entities in the schema, and edges 

the cross-referencing relations between those entities. 

4.1.1 Frame-based mediated schema 

The core of the constituent data integration engine, and thus of MIQAPS, is a user-definable 

mediated schema. This schema manages the translation mapping of queries posed to 

MIQAPS to the native query format of each individual source, as well as the translation 

mappings from the sources into entities. All of these components are stored within a single 

flat-file read during start-up, and are conceptually represented via S-expressions. 

Entity definitions conceptually form the mediated elements of the schema; records from 

each data source that are valid within MIQAPS map to some entity. The entities are inter­

related through a frame-based hierarchical system, as formally described in Ch. 3.2.1. This 

allows support for inheritance across concepts represented (per Eqs. 3.8, 3.9 and 3.10), and 

is composed of three primary components: the entity definitions, the source definitions and 

the link declarations. A natural consequence of this is that provided the schema is well-

constructed and is a fair reflection of the domain and information of interest, queries posed 

to a concept in the schema (and any associated data sources) allows axiomatic duplication of 

that query to the appropriate sub-concepts (and any further associated data sources). The 
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(: e l s < entity-name > 

( { ( : i s a < parentjname > ) } ) 

( { ( :atr < attribute -name > .|*)}) 

) 

Figure 4.2: Formal entity declaration in the MIQAPS mediated schema in extended Backus-

Naur form. The '. ' symbol denotes an attribute of single arity, while '*' indicates an attribute 

of n-nary arity. 

entities also form the language, which define the valid cross-reference mappings between 

data sources, in tandem with explicit sources. Fig. 4.2 displays the format of valid schema 

entities in the S-expression representation. A valid example of this is the eponymously-

named top-level entity whose definition is: ' ( : c l s E n t i t y () ( ) ) ' ; it is a parent of the 

query entity: ' ( : c l s Query ( ( : i s a E n t i t y ) ) ( ( : a t r QueryStr ing . ) ) ) ' . 

Source definitions (shown in Fig. 4.3) specify which data sources are valid under the 

schema, and define the mappings between schema entities and records returned from each 

source. The source definitions contain extensive information on source-specific querying, 

mapping and importantly instructions on link reification, which allows the formation of an 

edge between two entities in the query graph. Each source is composed of any number of 

entities (defined via the entity hierarchy), and for each of these entities valid edges to the 

entity are defined (in the form of the :qry tuple). The :map tuple indicates how individual 

information returned from a source are translated into attributes of the entity. In some 

cases, it is useful to map to attributes that are not defined in the corresponding entity, 

and if so the : p rp tuple is used to form a bindable symbol on-the-fly. These symbols allow 

for the instantiation of source-to-source links without having to specify this information 

in each entity explicitly. Because some information collected real-time may be useful for 

filtering purposes (e.g., using alignment scores as an annotation between two sequences) 

and to prevent needless querying, parameters ( :par) may be added to a source-entity com­

bination. These parameters allow the schema to be tweaked for filtering without requiring 

code changes to the source interfaces. For example, one possible parameter might be ( : par 
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(: s rc < source-name > 

( { ( : c l s < entity-name > 

(: t r g < label > 

( {(:prp < reified-attr > . |*)} ) 

( {(:map < src-attribute > < attribute > ) } ) 

( {(:qry < entity-name > 

( {( :prp < attribute > . |*)} ) 

( {( :par < name > < value > )} ) )} )} 

) 

Figure 4.3: Formal source definition in the MIQAPS mediated schema in extended Backus-

Naur form. 

E-value-min l e - 3 5 ) ; this information could be used by the source interfaces as a minimal 

condition to conduct a recursive query. 

Finally, link declarations are the abstract representation of the edges between nodes in 

the query graph (formally described in Fig. 4.4). Each link is composed of two source 

references: one for the originating source (the tail) and one for the arriving source (the 

head); this permits the same source to be referenced in both cases, if there are entities 

internal to the source that are linked. The generator tuple (:gen) specifies the interface 

which is queried in order to materialize the head node in the link. The mapping between 

this query and the concept in each source is via the : qry tuple, present in both the link and 

the source definitions. However, it is at the link level where the edge attribute mappings 

are applied in the :map tuple, which maps information labeled from the data source as a 

reified attribute on the edge. 5 

Management of the three components of the schema fall on the source catalogue and 

data directory, the former handling the loading and instantiation of the objects into the 

hierarchical representations, source definitions and linkages, and the latter whose concerns 

are translation of returned results into schema form and data storage. While requiring 

5For concrete examples of how entities, sources and links are represented within MIQAPS, refer to App. 
A.l. 
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(: Ink < link.name > 

(:gen < generator -name >) 

( : s rc < source > ( : c l s < entity > (:prp < attribute > ) ) ) 

(:src < source > ( : c l s < entity > (:qry < queryjname > ) ) ) 

( {(:map < label > < attribute > )} ) ) ) ) 

) 

Figure 4.4: Formal link declaration in the MIQAPS mediated schema in extended Backus-

Naur form. 

considerable initial overhead, this layered system of mappings cleanly separates the retrieval 

of data on the source side from the management of the data once it has arrived in MIQAPS. 

As commonly happens in biomedical resources, access and format of the data evolves over 

time. Management of these changes within an integration system can be difficult and 

arduous, such as when the alterations affect cross-linkages and references between databases. 

It becomes even more difficult if queries with complexity beyond exploratory are necessary 

- entities and mappings must be retained in order to maintain the validity of past queries. 

This architecture addresses these challenges with clear divisions between a source layer (the 

interfaces), a query transformation layer (schema, data directory and source catalogue) and 

an interaction layer (browsing engine, query engine, query graph, discussed below); each of 

these layers may be changed with little impact to the others. Fig. 4.5 shows a schema used 

in MIQAPS, which relies on several different data sources of varying types.6 

4-1-2 Query graph and browsing engine 

The query graph and browsing engine are the primary mechanism through which a user 

interacts with the data integration system. In the case of exploratory queries made on 

MIQAPS, it is the browser which performs the planning involved in determining which 

6Fig. 4.5 appears in a prior publication by Cadag, Tarczy-Hornoch and Myler entitled "On the reachability 
of trustworthy information from integrated exploratory biological queries", in Lecture Notes in Computer 
Science (Data Integration in the Life Sciences 2009) 5647 pp. 55-70 with kind permission of Springer 
Science+Business Media. 
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Figure 4.5: The above shows the data sources (in grey, dotted boxes), associated classes (el­

lipses), cross-links (arrows) and cardinalities (arrow labels) for the integrated data retrieval 

system. Queries begin on the left, with the Seed source, and are expanded rightward. 

sources are valid for which queries, done through calls to the source catalogue and data di­

rectory. Additionally, the browsing engine manages how and when the cache is checked. Un­

like other federated data integration systems, MIQAPS operates on a slightly hybrid model 

of data integration by caching data queried from live sources into a relational database. 

The purpose of this component is to save time in repeated queries; time-to-response from 

the cache is measured in milliseconds, whereas a very slow, computationally-heavy source 

may take a minute or more to return results. Data within the cache is stored simply, in a 

key-value pair, where the key is some label in a source interface and the value its contents. 

Thus, when data is returned from the cache, it appears to the schema, source catalogue and 
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data directory as if it was newly queried from a live source. 

Figure 4.6: A small query graph generated using MIQAPS. Query graphs generated using 

MIQAPS are directed and acyclic. 

The query graph is the conceptual representation of the interlinked and recursively 

queried data. In MIQAPS, the query graph follows the structure and form of the kind 

formally defined in Ch. 3.2.2. Each node in the query graph is the materialization of some 

entity in the schema, with information loaded from some source result, and each edge is 

the materialization of a link between two of these entities. In MIQAPS, edges generally 

represent one of two types: an explicit cross-reference from one source to another {e.g., the 

referencing of a GO term from within a U N I P R O T entry); or, a more uncertain link from 

one sequence alignment to another {e.g., the connection between a protein sequence query 

and its B L A S T results). Mechanisms exist within the system to allow the user to expand a 

single node, thus performing a selective join on a particular entity in the query graph, or 

expand all nodes indiscriminately. 

Session management is also handled at the browser-level, and query graphs may be saved 
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and restored via serialization to a Py DI Data Set, or PDDS, file. PDDS files contain source 

results in the label-value format, and allow queries to be written to file, restored and then 

re-queried at a later time. The contents of the PDDS file are invariant to additive changes 

in schemata, such that if some schema (SA) under which a query graph was created is a 

literal sub-schema of some other subsuming super-schema (SQ, so SA C SB), the query 

graph may be viewed and queried upon error-free under the super-schema. 

4-1.3 Source interfaces 

The layer between the data integration engine and the individual sources are the source 

interfaces, which execute the queries made system-side onto the remote databases. Con­

cretely, these interfaces operate within the system as generators, whose input parameters 

are queries, and whose outputs are result datasets, the composition of which are records 

corresponding to individual results that have yet to be translated into schema entities. The 

virtual connection between the generators and the system are done via the : gen tag within 

the link declarations, as outlined in Ch. 4.1.1. In this way each link is aware of the necessary 

generator to call in order to produce the head-end of the join. 

Separation of the source interfaces and the integration system itself produces a decoupled 

and flexible approach to managing changes to both how the data is modeled and remote 

sources are treated. Using this architecture, changes made to the sources would generally 

require commensurate changes only at the interface level, given that the data content itself 

is unchanged; mappings, linkages, entities and even queries can remain the same and still 

be valid, thus reducing effort over time. Practically speaking, as remote sources change in 

format, modifications would only be necessary to the individual generators that handle the 

sources. 

The sources supported in MIQAPS are well-known biological repositories searchable via 

protein sequence, and provide coverage over several different biological domains [143, 144, 

145, 146, 147, 148, 149, 150, 151, 152]: 
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• Genes, Proteins: E N T R E Z G E N E 7 , E N T R E Z P R O T E I N (via BLAST) 8 , B I O C Y C 9 , K E G G 1 0 , 

U N I P R O T 1 1 

• Pathways: B I O C Y C , K E G G 

• Domains, Families: T I G R F A M 1 2 , I N T E R P R O 1 3 , C D D 1 4 

• Structural data: P D B 1 5 

• Annotation terms: A M I G O 1 6 , G E N N A V 1 7 

4-1-4 Support for structured queries 

Exploratory queries form the information retrieval method of choice used throughout this 

dissertation, owing primarily to its inexpensive approach to gathering as much data regard­

ing a query as possible. However, as a generalized data integration system it was essential 

to support the expression of more complex and specific queries in addition to the simple, 

albeit noisy, exploratory approach. Prior systems have benefited from the support of a 

formal query language layered over federated data, such as the BioNavigation platform and 

earlier versions of the BioMediator system [138, 153]. Importantly, these previous query 

language at tempts have relied on the use of regular expressions as a means of validating 

paths along the resultant query graphs; queries were satisfied only when the paths satisfied 

7http:/ /www.ncbi.nlm.nih.gov/sites/entrez?db=gene 

8 h t tp : / / b l a s t . ncb i . n lm .n ih .gov /B la s t . cg i 

9 h t tp : / / b iocyc .o rg 

http://www.genome.j p/kegg 

1 ht tp: / /www.uniprot .org/ 

1 h t tp: / /www.jcvi .org/cms/research/projects / t igrfams 

ht tp: / /www.ebi .ac .uk/ interpro 

1 4http:/ /www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml 

1 5http://www.rcsb.org/pdb 

1 6http:/ /amigo.geneontology.org 

1 7ht tp: / /mor .nlm.nih.gov/per l /gennav.pi 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://biocyc.org
http://www.genome.j
http://www.uniprot.org/
http://www.jcvi
http://www.ebi.ac.uk/interpro
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://www.rcsb.org/pdb
http://amigo.geneontology.org
http://mor.nlm.nih.gov/perl/gennav.pi
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the user-specified expression. Not all data is created equal, however, and for any individ­

ual biological task particular sources or entities may have higher ' t rust ' over others; these 

querying paradigms generally do not discern between the quality of data gathered from 

individual sources 

Beginning with the successes in these other approaches to querying while at the same 

time attempting to address their shortcomings, a query language for MIQAPS was developed 

that supports the ability to pose ambiguously ranged queries that account for evidence and 

data coverage not explicitly supported in other query languages. Thus, in addition to basic 

exploratory queries, MIQAPS also supports queries posed in DaRQL (pronounced dar-kle 

and short for "Domain-aware Regular Query Language"). DaRQL is loosely based on SQL 

and SPARQL query languages used for relational databases and RDF graphs, respectively. 

Queries in DaRQL follow the following format outlined in Fig. 4.7. 

TARGET < node-bindings > 

FROM < start-node-bindings > 

RESTRICT < path-and-node-constraints > 

Figure 4.7: Basic structure of a DaRQL query. 

In the figure, the TARGET clause provides a mechanism to allow a user to bind nodes 

which meet certain conditions to specific variables for later reference. The FROM clause 

anchors restrictions in the query with starting search nodes. Finally, the RESTRICT clause 

forms the selection of predicate constraints to enforce on satisfying nodes and paths, rep­

resented in regular expression form. These features are generally supported elsewhere in 

other systems that allow expressive queries over path-based data. However, an additional 

ability of DaRQL is explicit handling of nebulous queries of the type often seen in initial 

and formative biological research . 

Figure 4.8 shows an example query in DaRQL18 , with line 1 specifying two bindings such 

that all entities of type Term, are bound to the variable ? t and all entities of type Gene 

18For the complete grammar of DaRQL, refer to Fig. A.l. 
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TARGET ?t Term,?g Gene 

FROM ?q Query 

RESTRICT 

{?q.*.?g.?t}, 

?g:Species == "Homo sapiens" 

order(?t) > OMotifBased 

Figure 4.8: Example query in DaRQL. 

are bound to the variable ?g. Line 2 specifies that the path search should begin at a Query 

entity, and lines 4-6 provide the constraints over valid paths. Specifically, line 4 denotes that 

a satisfying path should begin with a Query entity, have any number of entities following, 

and must end with a Gene entity with a outward edge to a Term entity. This is the format 

of path constraints in DaRQL, and follows a syntax similar to regular expressions. Line 5 

indicates that any Gene within a satisfying path from line 4 has an attribute whose content 

is "Homo sapiens", and thus enforces a requirement for species. Lastly, line 6 requires that 

all valid Term entities are supported by evidence whose rigor is greater than motif-based 

analysis. 

The final line utilizes one of two special functions, order , in DaRQL that allow queries of 

ranged evidence and coverage. The other reserved function, d ivcount , allows the number 

range of diverse evidence types to be specified. Mappings between entities, sources and 

evidence types are handled in a separate evidence schema, or domain hierarchy which follows 

similar characteristics as the integration schema. 

DaRQL queries are evaluated over pre-existing exploratory queries - that is, they are 

used as a means of curating and filtering pre-existing retrieved data. The query is handled 

by the query engine which manages the details of the path constraints and node bindings 

over the schema and the domain hierarchy. A query plan is then formed, which is optimized 

by restricting execution of the query to only parts of the graph which could possibly satisfy 

it. Once a plan is prepared, a series of deterministic finite state machines (DFSMs) are 
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created, each of which check the RESTRICT predicates over the graph by walking all paths. 

Thus, leaf nodes in the query graph which contain DFSMs that are valid form the end of a 

satisfying path that can then be serialized and presented to the user. 

4.2 Motivations for design choices 

While possessing many features found in other federated and path-based data integration 

systems, MIQAPS is unique in several ways that allow it to better handle high-throughput 

data integration for the purposes of generating data for statistical learning. As mentioned 

previously, unlike other biological federated data integration systems MIQAPS has been 

coupled with a relational database to allow efficient re-querying, an option that may be 

turned on or off at will. Additionally, the core representational components of the system, 

namely the schema, source definitions and edge mappings, are expressed using the same 

format. This is in contrast a system such as BioMediator, where the schema is represented 

in a mix of third-party software (Protege19 for mediation, sources and edges) and an internal 

syntax (data directive files for mappings) [154]. An undesirable side-effect of this is while 

these data representation models are quite comprehensive, their areas of control tend to 

overlap, i.e., management of mappings involves changing both the mediated schema and the 

mapping directives, and the directives require unwieldy server-related data in addition to the 

mapping data. In contrast, within MIQAPS, the models that manage the schema, data and 

mapping are cleanly separated from the implementation. Also unlike other federated data 

integration systems, MIQAPS may perform both exploratory queries and use structured 

queries for filtering and curation, the latter being carried out via a novel query language 

capable of data retrieval using parameters whose ambiguity towards evidence and coverage 

can be specified easily and expressively. 

Further design choices were motivated by speed, both in execution and data processing, 

and long-term maintenance. Many systems rely on a standard interchange format both 

for external output of results as well as internal data transfer, such as XML or RDF. 

While this allows the data to be easily machine-readable and structured generically, such 

Protege ontology editor, h t tp : / /protege.s tc inford.edu 

http://protege.stcinford.edu
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formats tend to be verbose and involve non-trivial overhead processing. Internally, all 

data within MIQAPS is stored in tuple form (label-value pre-translation, and entity tuples 

post-translation, within the data directory) which can be quickly processed, at the cost 

a generalized data exchange format; externally, results in MIQAPS may be serialized in 

XML and thus inter-system information exchange is preserved. The inclusion of a cache 

within the system further allows expedited retrieval of data, provided those results have 

been queried and returned successfully in the past. 

Finally, the choice of Python as the implementation language was driven primarily by the 

desire for a succinct and thread-friendly scripting language. While a language such as Perl 

[155] is more recognized and widely adopted within the biomedical research community, 

it was important to select an environment with full-featured and mature object-oriented 

capabilities. At the same time a language with little development overhead was desired, 

given the nature of how biological resources evolve thus necessitating semi-regular updates 

to the interface layer. Java [156], though it is a language that has been used extensively in 

the past for various components of data integration systems [35, 138, 157], often requires 

extensive overhead and source maintenance that most small biological laboratories would 

be hard-pressed to upkeep. 
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4.3 Discussion 

This chapter has provided the design and implementation details of a federated data inte­

gration system with a schema and sources tuned specifically for the querying and retrieval of 

information related to protein sequences for the purpose of annotation. Though such data 

integration systems are not new, several features have been discussed that make MIQAPS 

uniquely suitable for dealing with high-throughput sequence queries posed both in an ex­

ploratory and structured fashion. 



52 

Chapte r 5 

C H A R A C T E R I Z I N G I N T E G R A T E D A C C E S S T O B I O L O G I C A L 
I N F O R M A T I O N 

The previous chapter outlined a method and system of integrating fractured and het­

erogeneous data via path-based federation. The effectiveness for path-based federated data 

integration relies on the interconnected nature of the databases of interest in order to re­

trieve a large amount of relevant da ta that would otherwise be difficult to gather one source 

at a time, one query at a time. However, data within these databases can be of question­

able quality and highly speculative. By their nature, exploratory queries on this data will 

provide results of high recall and low precision - there may be significant noise in retrieved 

results in the form of spurious data. 

This chapter1 comes after the introduction of the MIQAPS system from the previous 

chapter, and describes tests on the framework for the retrieval of high-quality information 

from biologic databases. These experiments rely on a fault tolerance model of reaching 

'trustworthy' information to test the use of naive exploratory queries for function identifi­

cation, the findings of which help in understanding the cross-referential characteristics of 

biological databases for annotation. The revelation is that data sources share a consider­

able amount of redundancy, for both high-quality data and probable noise; using basic and 

exploratory data integration methods alone, it would be difficult for a scientist to discern 

between the two consistently. 

lrThe related work, methods, results and following illustrative elements of this chapter appear in a prior 
publication by Cadag, Tarczy-Hornoch and Myler entitled "On the reachability of trustworthy information 
from integrated exploratory biological queries", in Lecture Notes in Computer Science (Data Integration 
in the Life Sciences 2009) 5647 pp. 55-70 with kind permission of Springer Science+Business Media: Figs. 
5.2, 5.3, 5.4, 5.5, 5.5 and 5.7; Tbls. 5.2 and 5.3. 
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5.1 Reachability of trustworthy integrated data 

As was seen in Ch. 2, whether annotation is done manually or using automated methods, 

functional annotation of a protein is often done using multiple, corroborating data sources, 

and an annotating scientists will generally rely on a variety of different and diverse biological 

databases before reaching a final conclusion [54]. The implications of encountering noise 

when integrating data for sequence annotations are obvious, since data of low quality will 

invariably lead to poor functional analyses. Subsequently, a simulation of interest would 

be to determine the likelihood that an annotator would reach a high-quality and correct 

annotation for a protein query as they follow references from one data source to another. 

Under this hypothetical scenario, the "naive annotator" may choose to stop searching at 

any given time. 

While simplified, this basic approach is not unlike how functional annotation is done 

manually, an often ad hoc and idiosyncratic process [19]. Determining how well an annotator 

would reach a high-quality annotation would provide insight into the use of data integration 

for biological research. Clearly, if the signal to noise ratio provided by data integration was 

low, then it may behoove a user to focus efforts more on navigating the most useful data 

source. On the other hand, if the value added by data integration for a task such as 

annotation was high, then the benefits of coverage and redundancy associated with data 

integration systems may be worth the extra effort of parsing and analyzing data from 

disparate sources. 

Using data collected via a federated, path-based framework, the remainder of this chap­

ter discusses the methods, results and analyses of just such an annotation simulation, based 

on the use of a common data model built for multi-source triangulation and employing 

the MIQAPS system as a proxy annotator. Roughly approximating methods and sources 

used by scientists for annotation [54, 19], it was found that unverified information of lower 

provenance was almost equally as encountered as experimental results, largely due to the 

amount of redundancy present in the databases; signal and noise is often indistinguishable 

by reachability alone. 
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5.2 Related work 

Others have conducted various studies in the past to analyze networks of cross-referential 

data. For example, Lacroix et al. leveraged graph statistics such as path length and cardi­

nality to aid in efficient query planning over graphs of biomedical data [134]. Additionally, 

Louie et al. used a random sampling model similar to that described later in this chapter 

to determine individual belief probabilities in the relevancy of integrated data records [104]. 

The question addressed here is not for the purposes of relevancy ranking or query planning 

per se; rather, the problem of interest is in measuring the accessibility of correct biomedical 

data using data integrative methods, and whether or not data integration by itself is a 

necessary and sufficient approach for triangulation of high-quality annotations. 

Research has also been done on naturally-occurring networks. Methods of reachability 

and connectivity in these instances have been valuable in determining the robustness of 

interaction pathways in model organisms, for example. Albert et al. demonstrates that a 

particular type of graph, scale-free networks, are particularly resistant to random failure 

when compared to binomial networks, and Amaral et al. showed that neural connectivity 

showed similar signs of tolerance [159, 160]. In a somewhat related previous study, Searls 

showed that database schemata and software dependencies display similar robustness, at 

least in part [161]. Methods such as these for evaluating network tolerance are adapted 

in this dissertation for the purposes of testing biological data reachability in the face of 

increasing failure rates. 2 

5.3 Methods 

5.3.1 Fault tolerance model over arbitrary query graphs 

The "naive annotator" scenario described in the previous section can be simulated in a 

straightforward manner by conducting random walks over arbitrary graphs. When these 

graphs are query graphs of integrated data, the effect is akin to functional annotation, 

2The text of Ch. 5.2 has been adapted from a previously-published paper by Cadag, Tarczy-Hornoch 
and Myler entitled "On the reachability of trustworthy information from integrated exploratory biological 
queries", in Lecture Notes in Computer Science (Data Integration in the Life Sciences 2009) 5647 pp. 
55-70 with kind permission of Springer Science+Business Media. 
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given the query of interest is an unannotated protein. This basic approach can be modeled 

stochastically and the reachability of particular 'annotations' can be assigned probabilistic 

likelihoods. Formally, for a query graph G seeded with a protein sequence and generated 

using the data integration methods described in Ch. 4, the task at hand is to measure 

how well connectivity holds from a seed node s G V to some other node t G V, which for 

annotation purposes may be a GO term. The reachability problem, otherwise known as 

st-connectivity, is jV£-complete and, via random sampling, likelihood estimates s ~+ t 3 

under arbitrary conditions (i.e., weighted nodes, edges) can be determined. 

Let R £ V represent the nodes of interest for which to test reachability from s (R may 

be the set of experimentally validated data, for instance), and I a specified failure rate -

the probability that any random node n G V \ (R U {s})4 is unavailable, whereupon n 

and edges entering and leaving n are removed from G, recursively. This model emulates 

instances where a data record did not return as expected, due to source downtime, retrieval 

processing problems or errors of omission on the part of the scientist. Denote the event 

of removing nodes as inducing node failure F. Then define the probability that any node 

i e i J retains a path from s after F as: 

p(G,R,l) = P(s^t\Fi). (5.1) 

The algorithm in Fig. 5.1 executes the random and recursive node removal process, thus 

generating an estimate of the probability expressed in (5.1). 

Extending (5.1) to all possible failure rates and taking the area under the resulting curve 

gives the fault tolerance of a graph G given arbitrary nodes R with respect to I. Formally, 

the fault tolerance, r , of a query graph is expressed by: 

/

oo 

p(G,R,l)dl. (5.2) 

•oo 

Note that as p(G, R, I) defines a probability function, T(G, R) is bounded from below by 0 

and above by 1. In practical terms, one can imagine r as the probability that an annotator, 

3 Where s ~-» t denotes that a transitive path exists from s to t. 

4Where A \ B = {x £ A\x £ B}. 
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following links from biological data source to data source and who may choose to abandon 

a path or select one path over another, will reach any term within a pre-specified set of GO 

terms R. 

Algor i thm 1: Estimating query graph tolerance at a specific failure rate 
Input: G = (V,E) with initial query s £V, targets R C V, simulations i 6 Z+, failure rate I = (0,1) 

Result: tolerance value r = (0,1) for G, R w.r.t. failure rate I 

1 n n - Q 

2 for iteration j , i times do 

H = (V',E') <-G, S <- R 

II Sample random nodes for removal (excluding the provided t a r g e t s and seed) 

for \V'\ * I times do V «- V \ sample(V \(RU {s})) 

for t £ S do 

| if -.(s ~-+ t) in H then S <- S \ {t} 

end 

4 

5 

6 

7 

8 

9 end 

10 return \ ^2k mk 

**i - (|f) 

Figure 5.1: Sampling procedure used to approximate p(G, R, I) with respect to target nodes 

R, in query graph G, at a failure rate I; applying this with I = (0.0,..., 1.0) yields r RS 

W-£ f c e ( P(G ; J R,fc) . 

Denote the tolerance curve of query graphs hereafter as Texp, with the above R the 

set of experimentally determined GO terms. It is also desirable to generate the random 

tolerance curve Trdm(G,N), where N C V \ {s} and |AT| = \R\, with the latter property 

used when in comparison with rexp. Calculation of TT&m would proceed in a similar way as 

Texp with the exception that nodes in N may be chosen randomly and at each iteration, and 

allow the possibility that nodes in R and any given iV may overlap. The random tolerance 

curve provides a baseline level of average reachability for G with which to compare to the 

experimental tolerance curve, and iV may be set to a specific set of nodes in a particular 

domain, such as when comparing well-curated GO terms, R, with poorly curated ones, 

placed in iV. 

In the context of integrated biological data sources, this allows the measurement of how 
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well-curated data is connected to an original query via any number of paths and links of 

questionable relevancy. For example, data that is known a priori to be of higher-quality 

that retains reachability from s in the face of random failure, while at the same time lower-

quality data loses reachability, suggests a query in which one can assign a reasonable level 

of confidence that sound results can be easily separated from unsupported results. On the 

other hand, graphs where lower-quality da ta retains reachability from the query better than 

high-quality data imply that separating the "wheat from the chaff" may involve a great deal 

of effort. As the above method is based on simple random sampling, it can easily be adapted 

to weighted edges, or examinations focused on subparts of a query graph, such as inducing 

failure only upon nodes that originate from a particular source; this enables explorations 

of data reachability in the face of specific source unavailability or omission, situations not 

uncommon for federated data integration systems. 

5.3.2 Estimating tolerance of biological queries for high-quality data 

The model formalized in Ch. 5.3.1 was applied to query graphs generated by MIQAPS in 

the form of an external module whose inputs were saved query graphs and whose outputs 

consisted of r values at various failure rates. The implementation of MIQAPS used is 

outlined in Fig. 5.2. Exploratory queries posed to MIQAPS for tolerance calculation were 

automated, and user involvement was limited to the submission of a single FASTA file 

containing all sequences. 

For the purposes of this experiment, a small number of U N I P R O T accessions from the 

G E N E O N T O L O G Y ANNOTATION DATABASE 5 (GOA) U N I P R O T which contained GO anno­

tations made on the basis of experimental evidence, as outlined via GO evidence codes6 in 

GOA {e.g., 'EXP' , 'IGF) were randomly selected. GO codes annotated in this fashion were 

considered to be experimentally verified, while all others {e.g., 'ISS', 'TAS') were nominally 

treated as not experimentally validated (non-verified). Thus, within an actual query and 

for evaluation purposes a GO term may be labeled as experimental, as determined by GOA, 

5http://www.ebi.ac.uk/GOA 

6GO evidence codes at http://www.geneontology.org/GO.evidence.shtml 

http://www.ebi.ac.uk/GOA
http://www.geneontology.org/GO.evidence.shtml
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Figure 5.2: MIQAPS architecture, adapted for fault tolerance experiments. The tolerance 

module enacts the simulation over saved query graphs generated using exploratory sequence 

queries. 

even if the associated evidence code in the query graph itself is not experimental. 104 pro­

teins were identified whose annotations included experimental codes, and which returned 

GO terms when queried using MIQAPS. Per Figure 4.5, seven different data sources were 

used to reach GO terms from the initial sequence query. 

Caveats to the approach described above include the possible confounder that annota­

tions linked from one of the sources MIQAPS covers contains GO terms transitively assigned 

from G O A U N I P R O T . This was somewhat mitigated by exclusion of U N I P R O T from the list 

of sources used; unfortunately, this problem is difficult to avoid when dealing with protein 

annotations across databases that are often referenced to curate other databases. Moreover, 

though GOA-determined experimental GO terms were treated as a evaluation standard and 

the sole measure of high-quality data, many GO terms that were not experimentally verified 

may have been equally valid. 

Because estimation of (5.1) is based on a simple random sampling approach that requires 

a large number of simulations, initial testing was done for the optimum choice of simulations 

that was not overly time-expensive but still converged on a value for r . Using 11 randomly-
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GO Code 

EXP 

IDA 

IPI 

IMP 

IGI 

IEP 

Description 

Inferred from experiment 

Inferred from direct assay 

Inferred from physical interaction 

Inferred from mutant phenotype 

Inferred from genetic interaction 

Inferred from expression pattern 

Table 5.1: Experimental Gene Ontology evidence codes, from ht tp : / /www.geneonto logy . 

org. 

selected proteins from the set of 104, it was found that on average convergence began at 

approximately 10 000 simulations (see Figure 5.3); this was thus the value used for i in 

running the algorithm in Fig. 5.1. 

0.016 
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0.012 

3 o.oio 
o "> 
u 
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g 
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Figure 5.3: Based on 11 randomly selected queries, convergence of the fault tolerance mea­

sure r started at approximately 10 000 simulations. 

In addition to comparing the behavior of the tolerance curves and fault tolerance values 

http://www.geneontology
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Texp and Trdm m the form of Texp-rc[m = Texp — Tr(jm, general graph statistics were also exam­

ined, such as the number of nodes and edges, the radius, the number of nodes originating 

from each source and the number of recognized a priori experimental GO terms, among 

others. The probability that a GO term t is experimentally verified, given that there exists 

a node from a non-AMlGO source D which has a path to t, i.e., P[t £ R\D ~^> t) was also 

obtained, and was readily calculable from the query graphs themselves.7 

5.4 Results 

Using the methods described in Ch. 5.3.1 and Ch. 5.3.2, rexp and Tr^m curves were generated 

for each of the 104 sample proteins. Overall, r was greater for the experimental GO terms 

than random GO terms in 60.5% of the cases, which implies that curated and verified 

annotation data will tend to be referenced more often in data sources than non-verified 

annotations. On closer detail, however, there was notable variety in how well an individual 

query was connected to a GO term through the data sources; values for Texp ranged from 

0.348 to as high as 0.882, and Trdm 0.348 to 0.790. Fig. 5.4 shows four different tolerance 

curves from the test set, representative of the curves generated overall; Texp ranges from 

extremely tolerant against node failure to slightly-worse than the proportional failure rate. 

The variation is made clearer when the average curves of Texp and Trdm are compared 

across all 104 proteins (see Fig. 5.6). The average difference between the two curves is 

only marginal, although Texp is significantly more varied towards the upper end. A possible 

explanation for this is that there are a minority of proteins where the curation toward 

experimentally verified results has been more thoroughly propagated throughout many of 

the data sources, and so there are numerous paths to the term from the query. In this 

group, even with as high as a 50% node failure rate across the query graph, a number of 

experimental GO terms remain reasonably reachable. For other proteins, however, it is 

difficult to discern the experimentally verified GO terms from others based on data source 

cross-linking alone. 

7The text of Ch. 5.3 has been adapted from a previously-published paper by Cadag, Tarczy-Hornoch 
and Myler entitled "On the reachability of trustworthy information from integrated exploratory biological 
queries", in Lecture Notes in Computer Science (Data Integration in the Life Sciences 2009) 5647 pp. 
55-70 with kind permission of Springer Science+Business Media. 
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Tolerance of P46195 w.r.t. exper imenta l GO te rms Tolerance of Q6AY80 w.r.t. exper imental GO terms 

2 experimental termfe) 

Fraction of nodes removed from query graph 

(a) greater tolerance 

Fraction of nodes removed from query graph 

(b) less tolerance 

Tolerance of P32372 w.r.t. experimental GO terms Tolerance of 065440 w.r.t. experimental GO terms 

(c) equal tolerance 

Fraction of nodes removed from query graph 

(d) partial tolerance 

Figure 5.4: Selected archetypal tolerance curves ( r e i p ) for experimentally validated Gene 

Ontology terms compared to non-experimental (rr(/TO). 

Fig. 5.5 shows the distribution count of Texp_rc[m for the GOA protein set. Again, it 

is clear that many experimental terms are generally indistinguishable from random terms 

in regards to reachability, as the number of overall proteins where r e x p_ rdm > 0 is slight. 

However, using a two-tailed paired non-parametric test, it was found that Texp and Trdm in 

fact are derived from significantly different distributions, and this suggests that despite the 

visual parities found in the tolerance curves generally, experiment terms are more reachable, 

from a statistical standpoint (p-value = 0.023, statistically significant at a — 0.05). 

To explore this further, the graph statistics of the top 10 and bottom 10 query graphs, 

as sorted by Texp-rdm in Tbl. 5.2, were examined. Interestingly, the query graphs where 
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Figure 5.5: Histogram of rexp — Tr^m f° r the test proteins. Values below 0 indicate that 

random GO terms are more fault tolerant to node loss, and thus more reachable, than 

experimental GO terms, and vice versa. 

Texp-rdm is greatest were smaller than those where Texp-rdm were least, in terms of absolute 

number of edges and in ratio to the number of nodes (2.80 edges/node versus 2.34); the 

queries where the experimental results were most accessible were less connected than those 

where the experimental terms were indistinguishable from random terms, path-wise. 

In terms of biological relevance, the queries with a large Texp-rdm tended to be entries 

in UNlPROT that were reviewed (70%), half of which originating from the mouse proteome. 

Conversely, Queries where TeXp— rdm were most negative were more likely not to be reviewed 

(40%), and come from a more phylogenetically diverse list of organisms. As the mouse 

model is commonly used in biomedical research, the greater likelihood of arriving at an 

experimentally-based conclusion in the former is not surprising. Indeed, high Texp-rdm 

queries contained more experimental GO terms in their query results than low Texp-rdm 

queries, although there was no strong correlation between Texp-rdm
 a n d the number of 

experimental GO terms among the 104 queries overall. 
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Average tolerance of query graphs w.r.t. experimental GO terms 
l.Or 

0.2 0.4 0.6 0.8 
Fraction of nodes removed from query graph 

Figure 5.6: Average tolerances and standard deviations between experimental GO terms 

and random GO terms. 

Results thus far have been in the case of random failure - that is, any node from any 

source having a fractional I chance of being lost, much like how an annotator may miss or 

choose to ignore pursuing links while characterizing a protein. In order to measure data 

coverage, the effect of omissions of entire sources was analyzed. To this end, each of the 

sources that link to GO terms individually were systematically removed along the same 

linear failure rate / = (0.0,..., 1.0) and the effects incremental loss of individual sources had 

on tolerance were reviewed. 

Tbl. 5.3 shows the results of individual source unavailability; r is significantly higher 

in these instances as only a single source at a time was removed, and the rest of the query 

graph remains untouched. It immediately stands out that in the case of all but one of 

the sources ( E N T R E Z G E N E ) , the query graphs generally retain connectivity to GO terms, 

both random and experimental. Loss of ENTREZGENE does reduce r significantly; however, 

E N T R E Z G E N E nodes constitute on average 43% of the nodes in the query graphs that link 

to GO terms, yet have an impact of only 27-29% when removed, which lends credence to 
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Accession 

Q9JIL4 

Q49IK6 

P46195 

088379 

Q61176 

055081 

P55209 

Q14AC4 

Q10176 

A2A602 

Q2KT22 

Q19328 

Q8AY90 

Q6AY80 

A4FVK4 

P46974 

P91621 

Q24133 

B3DFT2 

Q7JLC3 

Texp—rdm 

0.249 

0.242 

0.225 

0.199 

0.184 

0.175 

0.173 

0.165 

0.154 

0.148 

-0.194 

-0.192 

-0.183 

-0.178 

-0.175 

-0.142 

-0.127 

-0.111 

-0.104 

-0.093 

Species 

M. musculus 

D. rerio 

B. taurus 

M. musculus 

M. musculus 

R. norvegicus 

H. sapiens 

M. musculus 

S. pombe 

M. musculus 

D. rerio 

C. elegans 

D. rerio 

R. norvegicus 

D. rerio 

S. cerevisiae 

D. melanogaster 

D. melanogaster 

D. rerio 

C. elegans 

Reviewed? 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Table 5.2: Top 10 and bottom 10 in TeXp—rdm'i proteins where the experimental GO terms 

are likely to stand out are from mammalian proteomes, or have been reviewed. 

the conclusion that there is considerable redundancy and overlap amongst the sources. 

Examining the probabilities that a source will lead to an experimental GO term, given 

that it leads to any GO term, provides additional information with regard to the overlapping 

coverage between the databases. For example, P(t G R\D ~~> t) is higher in K E G G than in 

ENTREZGENE, yet incrementally removing K E G G decreases the likelihood of encountering 

random, non-experimental terms, whereas the reverse is true for ENTREZGENE. A hypoth-
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Data source (D) 

BIOCYC 

ENTREZGENE 

INTERPRO 

KEGG 

PDB 

TIGRFAM 

Exp. GO terms (rexp) 

1.000 

0.710 

0.999 

1.000 

0.998 

0.993 

Rand. GO terms (rr(im) 

0.966 

0.729 

0.994 

0.994 

0.969 

0.994 

P(t G R\D •w t) 

0.052 

0.164 

0.101 

0.167 

0.053 

0.070 

Table 5.3: Average query graph tolerances for experimental Gene Ontology terms with 

source-targeted node failure, and likelihoods that a term is experimentally derived, given 

that a source has a path to it. 

esis to explain this occurrence may be that as a source, K E G G is likelier to reference GO 

terms to which other sources already link, and thus is useful for redundant coverage, but 

is less effective at uncovering novel, experimental data. E N T R E Z G E N E , on the other hand, 

appears to be a rich source for experimental GO terms, and although it had relatively few 

links to GO terms by comparison to make a significant impact, T I G R F A M possibly shares 

similar attributes. 

Finally, the overall graph structure of query graphs was compared with well-known graph 

structures of similar composition - namely, binomial (Erdos-Renyi) graphs, and power law 

graphs - with the intent to measure how graphs built from cross-references of disparate 

sources compare in resiliency to other graphical models. Representations of the canonical 

graphs were generated such that the node and edge counts, likelihood of edges between 

nodes and size \N\ were similar to query graph averages. Seed nodes in these graphs were 

simulated by randomly selecting a node in the center of the graph, and random nodes on 

the periphery were chosen as ersatz "GO terms." (see Fig. 5.7). 

Not surprisingly, binomial graphs lost connectivity to the peripheral nodes rapidly, as 

edges were formed independently and the formation of strongly-connected clusters or hubs 

was unlikely (incidentally, a number of individual query graphs appeared to follow this model 
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"(0 

Figure 5.7: Comparison of the random tolerance curve from query graphs, to the tolerance of 

similarly-composed power law and Erdos-Renyi graphs. Above, Trdm = 0.601, Tp0W = 0.553 

and Tera = 0.406. 

as well). At the opposite end of the spectrum, the power law graph maintains resiliency 

over the average query graph for / < 0.45 before it is overtaken. This is an interesting 

finding, as it suggests that some query graphs appear to have properties of resilience equal 

to or greater than that of scale-free networks. Generalizing the resiliency of query graphs 

beyond the narrow seed-to-term focus as it was studied here may be specious, however, 

since the sources and references used here were specifically geared towards forming paths 

to a targeted set of nodes.8 

5.5 Conclusion 

The findings for the use of tolerance curves as a means of estimating reachability of high 

quality biological annotations seem to both validate and complicate the view of how biologi-

8The text of Ch. 5.4 has been adapted from a previously-published paper by Cadag, Tarczy-Hornoch 
and Myler entitled "On the reachability of trustworthy information from integrated exploratory biological 
queries", in Lecture Notes in Computer Science (Data Integration in the Life Sciences 2009) 5647 pp. 
55-70 with kind permission of Springer Science+Business Media. 

Average tolerances of various graph structures 

Fraction of nodes removed from query graph 
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cal information is cross-referenced in public databases. The results reported in the previous 

section suggest that there is indeed a substantial amount of noise in these databases, and 

that for any given protein it can be difficult to determine whether or not the most frequently-

encountered annotation is correct. That does not, however, omit the finding that there are 

indeed cases where the most frequently-encountered annotations are also the most well-

curated and thus of greater value than average. The fact that the distributions of rexp 

and Trdm a r e different implies that there may be ways of augmenting naive data integrative 

methods in such a way as to optimize the selection of annotations for at least a subset of 

proteins. 

Furthermore, while the model of failure measurement described in Ch. 5.3.1 is theoret­

ically robust enough to handle more complex and rich graphical representations, such as 

weighted edges (which are, incidentally, akin to what one might find naturally, e.g., expect 

values between aligned sequences, where the sequences are the nodes), the approach used 

here does not take advantage of this. As such, the results represent somewhat of a lower 

bound of the performance of data integration - retrieval and traversal of data that is indif­

ferent to the quality of the paths and nodes of interest. For experiments and discussions 

on the topic of weighted graphs, refer to work by Louie et al. who use related methods 

to measure computational graph-based methods against manually curated functional anno­

tation (as opposed to experimental, as was done here) [104]. These simulations were also 

conducted using only exploratory queries. Further work would be required to test if the 

conclusions on reachability hold when targeted and specific queries are used; this is still an 

area of open research. 

5.6 Discussion 

This chapter, by using tests of reachability oriented around fault tolerance, has demon­

strated that while some high-quality data dominates in a select number of proteins, it is 

overall difficult to discern trustworthy data (interpreted as experimental evidence) from less 

trustworthy data for annotation across biological data sources. Though annotation noise 

is a well-published facet of molecular biology databases, what is surprising is the difficulty 

with which to distinguish even very well-curated, experimental data from model organisms, 
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as seen in the results. From these findings, one possible conclusion is that data integration in 

itself may be insufficient to properly parse apart signal from noise amongst biological data. 

The implications of this are far-reaching, as integrative methods both ad hoc and formal 

form the backbone of many automated functional annotation methods in biology. In the 

face of these challenges, complementary methods are needed to address the shortcomings 

produced by massive retrieval of biological data that is of varying relevance. 
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Chap te r 6 

L E A R N I N G P A T H O G E N I C P R O T E I N S F R O M I N T E G R A T E D 
Q U E R Y N E T W O R K S 

The research of this dissertation rests on two main premises, the first being that the re­

sulting path-generated graphs of integrated queries across multiple, fractured data sources 

add value to the retrieved data via triangulation and coverage, and that the resulting 

graphical structure of these integrated queries can be used in a predictive capacity to de­

termine characteristics of the query itself. The information retrieved in this way and cross-

referenced using formal integrative methods is vast and has strong potential for discovering 

biomedically-relevant relationships. At the same time, as shown in Ch. 5, mutual references 

between databases is insufficient for gleaning high-quality data. This chapter1 discusses the 

methods used in conjunction with the MIQAPS system (as outlined in Ch. 3) to identifying 

general virulence proteins2 using a variety of statistical learning approaches. 

6.1 Methods 

6.1.1 Learning query graphs 

Presumably, within a path-based model, the closer a node is to the initial query, the more 

relevance it has; those further from the query itself are multiple sources detached from 

the direct query and are theoretically of waning relevance. The query graphs used in this 

research were fully grown (i.e., all expansions were exhausted) according to the mediated 

schema, and many graphs include records that may be quite distant from the initial query. 

Prior work by others in the field of biologic data representation explored various methods 

lrThe methods and results of this chapter appear in an as-yet unpublished manuscript by Cadag, Tarczy-
Hornoch and Myler entitled "Path-based integration of heterogeneous biological data for learning bacterial 
virulence proteins". 

2The virulence data used in this chapter was graciously prepared and formatted for use by Jason Smith 
at the Lawrence Livermore National Laboratory's Pathogen Bioinformatics Group, to whom the author 
is most grateful. 
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of exploiting the graph structure for inferring the relevance of individual nodes and paths. 

Bharat and Henzinger, for example, describe several algorithms, such as ones that use the 

in- and out-degree of nodes, for the analogous problem of determining topical relevance 

of hyperlinked documents [162]; Tsuda et al. use a diffusion-based approach to assign 

weights within protein networks [163], a method readily adaptable to query graphs; Weston 

et al. apply a rank propagation algorithm on sequence similarity graphs generated from 

Psi-BLAST hit values [164]; and Detwiler et al. test a variety of methods, such as Monte 

Carlo simulations and relevance propagation, to rank nodes in similar graphs [20]. Here, 

the interest is less in the relevance of any individual node; rather, the interest is in the value 

of using the graph globally and as a representation of the query in classification activities. 

After seeding an initial query, retrieving records and fully growing the query graph, the 

next step was to transform the content of the graph into a representation more amenable to 

classification. The technique used to accomplish this involved weighting nodes in the query 

graphs; query graphs become readily transformable into a feature vector representation, at 

which point various statistical learning methods can be employed. Doing so bypasses the 

difficulties in comparing query graphs directly, and depending on the weighting scheme used 

can still leverage the benefits of the graph structure. Because the query graph is generated 

by a series of cross-linkages across databases, nodes that are cross-linked most often or have 

strong sequence-similarity to the query can be weighed highest. An ideal scheme would 

heavily weigh nodes that characterize the query sequence more precisely, and lightly weigh 

nodes that do not, thereby minimizing noise. 

This work relied on methods similar to that of Detwiler et al. and Chua et al. as this 

approach was found to be among the computationally least-expensive while still performing 

well [20, 18]. The subjective weights used by Detwiler et al. assigned to each data source, 

link and record determined a priori were omitted in this case. The belief was that as 

the targets of interest are the query graphs the correlation of the weights to the actual 

relevance requires only a modicum of precision, since query graphs are treated as classifiable 

representations and not individual results within the graphs per se. 

Begin by letting wt{n) be the weight of node n in the query graph at iteration t, and 
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that: 

0 < wt(n) < 1, for all t, n. (6.1) 

To take advantage of the interconnected nature of the query graph, it is desirable to allow 

wt(n) to be influenced by its neighbors, recursively. This represents the grounding that a 

user's posed query is the most confident node within the graph, and that further confidences 

emanating from resultant queries are derivative of this, and propagate outwards. A natural 

way of representing degradation of confidences between nodes in an exploratory, query 

sequence-based graph would be expect values, such that expect(p,n) is a function which 

returns the expect value from some query p to the result n. Thus, the influence of a node's 

inward-joining neighbors may be represented as a factor of both those neighbors weights 

(wt-i(p)) and their relation to the target node (expect(p,n)), i.e., : 

wt(n) oc Yl wt-i(p)^(P,n), (6.2) 
(p,n)€E 

or, under the mathematically convenient assumption that the right-hand of (6.2) defines a 

probabilistic function: 

wt(n) oc — . (6.3) 
1 - [[ wt-i(p)ip(p,n)) 

(p,n)eE 

To accommodate this assumption, define ip as a probability function that maps the ex­

pect value between the relation (p,n) G E such that tp(p,n) —> [0,1]. To express Wt(n) 

probabilistically so that wt{n) is within the domain of (0,1), the weights of the nodes are 

calculated thusly: 

wt(n)^-\(l- J] (l-VH-ibWfanj)), (6.4) 
(p,n)eE 

where A —• [0,1) is a path degradation rate and serves a similar purpose as the PageRank 

damping factor [165], representing the belief that information further from the initial query 
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is of decreasing relevance. In the case of this research, A = 0.7 was used and ip is: 

log10(expect(p,n)) 
V»(P,n)= ^ 5 - , (6-5) 

the above being an empirical derivation from [104]. All nodes were given initial weights 

of 0, save the query itself, which is given a weight of 1, and the algorithm iterates until 

convergence. Applying weights in this manner takes into account the thought that some 

nodes will be more well-connected than others. Consequently, nodes with more incoming 

edges will have a higher weight than nodes with less, all other things being equal. The 

above will be referred henceforth as the propagation scheme. 

For comparison purposes, another, simpler method of applying weights was additionally 

used, where each node in the graph is given a weight of 1, i.e.: 

w(n) <- l,for a l i n e V. (6.6) 

This weighting represents the naive, high-recall low-precision approach of simply treating 

all nodes in the graph as equally important in respect to the query sequence. The purpose 

of this approach is to measure the value of applying weighted metrics to the integrated data, 

separate from any graph structure; this is termed the binary scheme. 

Once a graph is weighted, it can be transformed into a feature vector representation. 

The problem of classification can be generalized within a feature vector space model, as was 

shown in (3.1) and (3.4). In the case of a query graph, x can represent a vector of weights 

from a single data source, with each value therein corresponding to a concrete instance in 

the query graph. This approach allows one to represent any query graph as several feature 

vectors, depending on the number of sources, and implicitly captures the presumed relevance 

of the node under the propagation scheme. 

Transformation of the graph weights to fit the feature vector space model is straight­

forward, and missing data treated simply. Given a data source D with subset of known 

records H (H C D), the feature vector v for G on D is: 

v r = {for all v G H : VQ, • • • , vn}, (6.7) 
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where, 

vn = < 
w{n) ifne(HnV) 

0 otherwise. 

In the above, w(n) may take the value of any arbitrary weighting scheme. If v has known 

classification, it would then be possible to use it as a member instance of a label in classifi­

cation training. When a classification method necessitates it, v may be transformed using 

some function <fr(v) to generate a kernel, and thus none of the weighting methods above 

(propagation or binary) in themselves violate Mercer's condition. 

6.1.2 Evaluation methods 

The above method and implementation provides a means to query a protein, weight the 

nodes in the query graph and transform the results into a feature vector representation 

suitable for training and classification. As the domain of interest is identifying virulent 

and nonvirulent proteins in bacterial organisms, a curated set of proteins with which to 

evaluate the performance of our approach was identified in the form of the non-redundant 

protein set used by Garg and Gupta to test their own virulence detection system [95]. 

As an added benefit, this allowed for performance comparison of this methodology with 

previously-published results for the same dataset. The positive, virulent number of examples 

in the set was 1025, with 820 of these acting as training instances for cross-validation and 

parameter selection, and the remaining 205 for testing. Likewise, the nonvirulent proteins 

numbered 1030, with a division of 206 and 824 for testing and cross-validation, respectively. 

This constituted an 80%-20% train-test split, with the larger fraction used to optimize the 

parameters for each algorithm and the smaller used for final testing. 

The query graphs for the evaluation were generated using the same sources and schema 

as the evaluation in Ch. 5.3.2 (refer to Fig. 4.5), with the addition of G E N N A V [166]. Of the 

sources incorporated into the schema, all except for E N T R E Z G E N E , E N T R E Z P R O T E I N and 

U N I P R O T were used for classification; the purpose of the omitted sources was primarily to 

facilitate cross-linkage between other da ta sources, most notably among them G E N N A V and 
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A M I G O . Though both returned GO terms, the distinction between the two sources was that 

A M I G O only returned the terms directly being referenced, whereas G E N N A V additionally 

provided the ancestors of terms. 

Figure 6.1: Adapted schema used for virulence identification, with C D D , G E N N A V and 

UNlPROT added. Note that G E N N A V is a recursive source - that is, it may re-query itself 

to recreate the GO hierarchy within the query graph. 

Query graphs were generated for all 2055 proteins in the evaluation set during the month 

of October 2008, using the mediated schema (see Fig. 6.1), in MIQAPS. The analysis of 

the data focuses on two main aspects: characteristics of the structure of the query graphs, 

and evaluation of performance via the AUC, which was chosen because of its usefulness 

in measuring predictive algorithms and its wide adoption within machine learning research 

[167]. The AUC is a value between 0 and 1, and is the area under the curve of the true 
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positive rate against the false positive rate. From a practical standpoint, this value translates 

into the following: given any random positive instance and any random negative instance, 

the AUC is the probability that the positive instance will have a higher score than the 

negative instance, assuming a higher score is indicative of positive instances. Consequently, 

a classifier whose AUC is 0.5 performs no better than random; conversely, one whose AUC 

approaches 1.0 denotes perfect classification. As a metric, it has several desirable properties. 

In contrast to many other measures such as precision, recall and F-score, the AUC is robust 

to the number of instances in either the positive or negative set [168]; in comparison to 

accuracy, the AUC is more informative and the resulting curve can be used as a guide to 

choosing an ideal threshold. Efficient calculation of the AUC for any given classifier, while 

straightforward, involves several steps, and one may refer to [167] for further details. 

Three learning algorithms were tested to evaluate whether the approach can be robustly 

applied to different classifiers: SVMs, ridge regression and k nearest-neighbor (fcNN) [116, 

169, 170]. Publicly-available implementations3 of these algorithms were used in conjunction 

with the query graphs. Because these methods have varying degrees of tolerance to noise, 

this would also allow the level of spurious information in the data sources to be gauged by 

each algorithm's relative performance. The parameters optimized were the following for each 

algorithm: regularization cost C and kernel (linear, Guassian, polynomial) function (with 

appropriate width for the Gaussian4 and power for polynomial) in SVMs; ridge parameter in 

ridge regression; and neighborhood size in &NN. The train-test process was applied for each 

source, in order to determine their individual predictive ability, and the final test results 

compared. 

6.2 Results 

6.2.1 Query results characteristics 

The retrieval of abundant data relevant to a query protein is one of the lynchpins of this 

research. However, many proteins lack significant sequence similarity to sequences from 

3PyML, h t t p : //pyml. sourcef orge.net 
| |x -x ' | ( 2 

The Gaussian kernel is denned as: fc(x, x') = e ?°* , and the polynomial as fc(x, x') = (x • x ') z , where 
a is the width and z is the power for the Gaussian and polynomial, respectively. 
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outside their genera and a notable fraction of these proteomes are "hypothetical". For 

example, approximately 12% of Shigella proteins are hypothetical, and for Pseudomonas 

this number approaches 30% [171, 172]. Using a data integrative approach, however, yielded 

sufficient numbers of returned records for at least one data source. This was particularly 

true for G E N N A V and A M I G O , which provided results for more than 90% of the query 

proteins (see Tbl. 6.1). Recall that these sources rely primarily on cross-linkage from other 

sources, and so the GO terms in the graph are not associated with the query sequence 

directly, but rather may be transitively connected through similar sequences. 

Data src. 

A M I G O 

BIOCYC 

CDD 

GENNAV 

INTERPRO 

KEGG 

P D B 

TIGRFAM 

Fraction of coverage 

Virulent 

(n = 1025) 

0.91 

0.39 

0.72 

0.91 

0.86 

0.41 

0.48 

0.38 

Non-virulent 

(n = 1030) 

0.99 

0.60 

0.93 

0.98 

0.96 

0.53 

0.72 

0.67 

Source size 

(in appr. units) 

2500 terms 

1347 proteins, pathways 

4640 models 

3355 terms 

2256 models 

150 pathways 

4443 molecules 

1055 models 

Table 6.1: Database coverage by fraction across all sources for the training and test sets by 

MIQAPS. Source sizes are estimates as of January 2009. 

Consistent across all data sources, there was more information available for non-virulent 

proteins than for virulent proteins. The difference is particularly stark for T I G R F A M , which 

has a broad focus of coverage across the microbial proteome [149]. Similarly, P D B and 

B I O C Y C have significant differences in coverage between virulent and non-virulent proteins. 

One possible explanation is that a large number of non-virulent proteins are involved in 

metabolic activities, which are likely to be conserved across bacteria. While many viru­

lence factors across pathogens play similar roles and may share homology, the mechanisms 

themselves may vary [173]; this is supported by the coverage differential between KEGG and 

B I O C Y C . While both are pathway-centered databases, B I O C Y C is more heavily influenced 
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by well-curated metabolic data, and K E G G includes more organisms in its database - 919, 

the vast majority of which are bacterial, to B I O C Y C ' S 371. 

An examination of the query graphs themselves revealed a non-normal skew towards 

a high number of poorly-connected nodes, and a comparatively small number of well-

connected nodes. The query graphs are not strictly scale-free, though various sections of the 

cumulative distribution may be interpreted to be power-law derived based on the results of 

a nonlinear fitting to the probability distribution (see App. B. l ) , which complements the 

findings of the fault tolerance experiment in Ch. 5.4. 

(a) (b) 

Figure 6.2: In the above, Fig. 6.2a is the frequency of the in-degrees of nodes in all 2055 

query graphs (with detailed inset), and Fig. 6.2b is a log-log plot of the in-degree cumulative 

probability distribution; the seed nodes are omitted in these charts. 

Weight frequencies of the propagation scheme displayed similarly atypical distributions 

(see Fig. 6.3), ones which appear to reflect the expansion-based structure of the graph. 

Data source entities that included intra-links to other entities or that were linked indirectly 

to the query node exhibited multimodal frequencies with a periodicity equivalent to powers 

of the path degradation rate A (see Fig. 6.3 for frequencies). This is most apparent in 

G E N N A V , where the numerous frequency spikes beyond those at the ends reflect a traversal 



78 

of the hierarchy. Furthermore, data sources that search against shorter sequences or motifs, 

such as C D D and T I G R F A M , have relatively fewer nodes that score on the higher end of 

the weighting spectrum - likely as a result of the expect value conversion used (6.5). All 

of these could have effects on the use of any given data source as a discriminator between 

virulent and non-virulent protein classes. 

6.2.2 Performance across sources, learning methods 

The performance of using data sources individually as a means of predicting relation to 

virulence was measured via the AUC. For comparison with Vi ru len tPred , from which the 

training and testing set was derived, accuracy was also used as a performance metric (see 

Tbl. 6.4). 

Data source 

A M I G O 

BIOCYC 

CDD 

GENNAV 

INTERPRO 

KEGG 

KEGG (pathways) 

PDB 

TIGRFAM 

Classification method 

SVM (RBF) 

0.894 

0.698 

0.729 

0.940 

0.846 

0.733 

0.740 

0.740 

0.688 

Ridge regr. 

0.907 

0.687 

0.760 

0.935 

0.804 

0.778 

0.739 

0.737 

0.702 

fcNN 

0.867 

0.679 

0.755 

0.878 

0.832 

0.779 

0.717 

0.710 

0.704 

Table 6.2: Results by source and method for predicting virulent and non-virulent bacterial 

proteins given AUC. The best performer, G E N N A V was run with a Gaussian kernel whose 

a — 1.0 and regularization cost C — 1.0. 

One emergent pattern from the results was that the more coverage a data source pro­

vided, the better it performed. The notable exception is the difference between A M I G O 

and G E N N A V - both sources use GO terms linked from other sources, and have the same 

coverage. However, G E N N A V links to the parents of the GO terms, and the parents of those 

GO terms and so on, up to the top-level of the GO hierarchy. Despite the similarity in cov-



79 

Propagation weight 

(a) A M I G O 

I 
I 

$ -
s - K 

Non-virulent 
Virulent 

Propagation weight 

(b) BIOCYC 

it'' 
v ^ 

Non-virulent 

Propagation weight 

(c) CDD 

Propagation weight 

(d) GENNAV 

Non-virulent i 

UhJ..., 1 1 

1 ." 
K 

- - - Non-vinj lent 

] 

1 

1 1 

Propagat ion weigfi t 

(e) INTERPRO 

1 

Non-vinjlent 
Virulent 

i 

i 
Propagation weight 

(f) KEGG 

Non-virulent 

t ^ ^ W a ^ . ^ . 

PDB 

8 -
5 Non-vinjlent 

V~ i 

Propagation weight 

(h) TIGRFAM 

5 • : : ; ; : ; — Hon-vtoiimt 

Is-ill M l I 
o . 4»*4_i I— •, i I 

Propagation weight 

(i) All 

Figure 6.3: Frequency plots of the propagation weights across non-virulent and virulent 

proteins, by source; Fig. 6.3i shows the periodic influence of A on discretizing records 

beyond the query node. 
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erage, G E N N A V outperforms A M I G O by as much as 0.05. G E N N A V generates more data 

than A M I G O via self-reference, and the performance difference suggests that leveraging the 

ancestry of a GO term may be more useful for predictive purposes than just the immediate 

GO term by itself. Overall, results imply that the sources oriented around GO terms were 

the best performing, while TlGRFAM and B I O C Y C were the least predictive. 

Source-specific ROC curves for generalized virulence 

1 - Specificity 

Figure 6.4: ROC curves for the eight different data sources based on the test data. Param­

eters were coarsely optimized for the AUC. 

To see if the pattern carried over when empty query graphs were excluded, the same 

train-test process was re-ran as before, omitting any query graph from the training or testing 

that did not yield any query results. As the SVM approach seemed to do the best on average 

compared to ridge regression and fcNN, that statistical learning approach was used for the 

re-run, and the appropriate parameters were optimized for this subset of the training-testing 

data as described in Ch. 6.1.2. 

Omitting empty graphs reduced the number of training and testing instances for each 

source, in some cases by more than 50%. However, the result was a rough sense of the 
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predictive ability of each source, given records existed for that source in the query graph 

(see Tbl. 6.3). Though A M I G O and G E N N A V maintained essentially the same scores, 

the rest of the sources experienced noticeable increases. Despite this overall improvement, 

the relative ranking of the sources remained the same, again with A M I G O and G E N N A V 

outperforming other sources. 

Data source 

A M I G O 

BIOCYC 

CDD 

GENNAV 

INTERPRO 

KEGG 

KEGG (pathways) 

P D B 

AUC 

0.886 

0.807 

0.876 

0.940 

0.883 

0.795 

0.815 

0.875 

TIGRFAM J 0.872 

Table 6.3: Above are results by source, when empty graphs (query graphs with no returned 

results) are excluded from training and testing; the scores are thus those of each source 

given data from that source was available. 

Comparing the AUCs and accuracies of using weighted and integrated queries with the 

cascaded SVM approach, there is a marked improvement in performance. Using the best-

scoring single source ( G E N N A V ) , the three learning approaches were compared to a sequence 

baseline and Vi ru l en tP red , the cascaded SVM system developed by Garg and Gupta (see 

Tbl. 6.4); this comparison uses the first train-test phase that includes all query graphs 

(including those with empty query results). Regardless of the statistical learning method 

used, G E N N A V integrated queries resulted in AUCs of 0.07-0.08 higher than the cascaded 

SVM approach, and approximately 0.15 greater than the sequence baseline. Accuracies 

are less one-sided, and in fact the fcNN approach did only 0.053 better than the sequence 

baseline, suggestive of the significant amount of noise present in the retrieved data. 
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Data src. 

l-mer 

-
GENNAV 

GENNAV 

GENNAV 

Class, method 

S V M (RBF) 

VirulentPred 
S V M (RBF) 

Ridge regression 
A;NN 

AUC 

0.786 

0.860 

0.940 

0.935 

0.935 

Accuracy 

0.710 

0.818 

0.868 

0.863 

0.763 

Table 6.4: Comparison of the top-performing integrated predictor against a sequence base­

line and Vi ru l en tP red ; all methods outlined in the table used the same set of proteins. 

6.2.3 Comparison of query graph weighting schemes 

The results of the previous section rely on the more complex propagation scheme, which 

attempts to take into account the structure of the graph to elevate query results that are 

well-referenced by assigning them relatively higher weights under the assumption that those 

results better represent the query. In the binary scheme, the primary interest is in whether 

or not there is value in the abundance of data itself - if the fact that the data was retrieved 

at all can be predictive, independent of the path taken from the query to retrieve it. 

Fig. 6.5 compares node-weighting using the propagation scheme with node-weighting 

with the binary scheme, both via the SVM learning method. As it was for propagation data, 

cross-validation and training-testing for the binary scheme was conducted to determine 

optimum parameters and final scores. Other than I N T E R P R O , B I O C Y C and P D B , which 

seems to perform better with propagation weighting, most data sources perform nearly 

equivalently using either the propagation or binary scheme. Differences between binary and 

propagation AUCs were most visible for less predictive sources, but for the highest-scoring 

data sources the differences are negligible. 

6.3 Conclusion 

Based on these findings, one can draw several conclusions on the use of fractured databases 

as sources of predictive information. Surprisingly, it was found that the data sources several 

nodes away from our query were the most predictive, which may at first glance seem counter-
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X GenNav 

X AmiGO 

X KEGGall 

T 1 1 - ^ 

0.6 0.7 0.8 0.9 1.0 

ROC (binary weighting) 

Figure 6.5: Plot of ROC scores between using propagation-weighted nodes (y-axis) and 

binary-weighted nodes (a:-axis); done using SVM-based classification. 

intuitive. G E N N A V and A M I G O both are source indirectly connected to the initial queries 

in the query graph, yet they were the best performing. A large part of this may be due to 

their superior coverage, as they are referenced by other data sources, but even when empty 

graphs are omitted it was found that these data sources still out-scored the other sources 

directly connected to the query. This reinforces the position that, as it pertains to using 

biological databases for classifying protein data, shallow queries are generally not sufficient. 

Manually, this information can be difficult to sift through, and using robust methods (e.g., 

statistical learning) to cut through the "chaff" is indispensable. This is particularly salient 

given the results that learning methods more resistant to noise (SVMs, ridge regression) 

were the best at identifying virulent proteins. At the same time, latent information in many 

databases are redundant to each other, as the results with using an unweighted integrated 

kernel seems to suggest. This is in corroboration with earlier findings in Ch. 5 regarding 

o 
o 
en 

X PURQGl 
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fault tolerance. 

A limitation which is not explored in this chapter but is self-evident in implementation is 

that the performance will likely be very dependent on the choice of data sources and cross-

linkages. Nonetheless, one can find here that there is value in cross-linking across data 

sources, and that while provenance and quality of data is naturally very important even 

the most naive retrieval approaches can provide useful information on identifying protein 

virulence, and perhaps protein class in general. A possible conclusion is that data which 

is most indicative of characterizing a protein and that which is less indicative may not 

necessarily reflect a continuous distribution of relevance. This is supported by the relatively 

equivalent performances between the propagation and binary schemes for many sources. 

Interestingly, though, it appears as if the propagation method works best for sources closest 

to the originating query, which either suggests that there is some significant information 

loss as sources further form the query are explored, or that some sources are simply more 

informative in themselves than others for virulence classification, and that propagation 

scoring does not add any further significant value to predictive ability. 

The methods outlined in this chapter were applied to a very broad class of proteins, and 

it is the assertion of this dissertation that the process described is readily generalizable to 

protein classifications of other types as well, since no single step other than the choice of 

training and testing set is virulence-specific. Furthermore, as the foundation of the method 

is built on the MIQAPS data integration framework and not a specific model of integration, 

extending and evaluating the work beyond the sources and cross-links outlined here would 

be as simple as providing interfaces to the sources and defining the inter-source connections. 

While the data sources may be different, generally graphs of cross-linked biologic databases 

tend to exhibit similar structure. Redundancy of data suggests there is some considerable 

robustness in these graphs concerning interconnectedness, again supporting the findings 

from Ch. 5. Moreover, from a biological standpoint, these conclusions validate the position 

that information for virulence proteins is less available in biological data sources than that 

of the general protein population. In a feedback loop, this also makes it more difficult to 

elucidate mechanisms of infectious disease pathogenicity using traditional, shallow bioinfor-

matics methods, and seems to emphasize the importance of continued work in providing 
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integrated access to virulence-related data. 

6.4 Discussion 

The benefits of combining classification methods and data integration include the syner­

gistic and complementary nature of the two fields. First, as alluded to in Ch. 2, wet-lab 

experiments are costly, and without proper prioritization assays can be fruitless when a spe­

cific goal is in mind. Computational methods, while inexpensive, often yield high-quality 

information only for well-known proteomes at best, and speculative and unverified infor­

mation for others. Data integration provides a means of generating sufficient functional 

coverage for data using non-experimental query-based methods, while statistical learning 

techniques such as SVMs provide a means of deriving information from the queried data 

of tunable quality. By using path-based integration and exploratory queries, coverage is 

greatly increased, albeit at the cost of likely greater noise. 

This chapter outlined a method of combining statistical learning and federated data 

integration methods by weighting query results into feature values via an iterative process, 

and then transforming those weights into learnable representations of query graphs. Thus, 

protein queries (and theoretically, queries of any arbitrary type) become examples that can 

be used for classification by leveraging the mapping space of available public biologic data 

sources. This approach was tested on a known dataset of virulence proteins, with the finding 

that it outperforms a previously-developed approach using similar classification methods, 

but without data collected by integrated queries. 

While being able to identify generalized virulence proteins is of some use, specific roles 

in virulence would be of greater utility to a biomedical scientist. Imagine, for example, a 

biologist whose interest is specifically in proteins likely involved in biofilm creation - an 

extracellular matrix generated by colonies of bacteria used for in vivo survival. Being able 

to identify with high precision proteins involved in biofilm development would be more 

informative in this case than merely virulence in general. The next chapter addresses 

this issue, and generalizes the methods in this chapter by expanding integrated queries to 

learning specific virulence roles. 
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Chap te r 7 

L E A R N I N G P R O T E I N I N V O L V E M E N T I N S P E C I F I C P A T H O G E N I C 
R O L E S 

The results presented in Ch. 6 strongly suggested that a learnable query graph can be 

used for specific virulence prediction. Indeed, the performance of using a subset of nodes 

(GO terms) from a query graph outperformed previously-attempted methods at generalized 

virulence prediction. While these findings are encouraging, prediction of virulent proteins 

is of limited value without specific identification of the role or function the protein may 

play in pathogenesis and infection maintenance. A classifier that could provide a researcher 

with not only the information that a protein is involved in virulence, but also in what 

capacity, would be more useful for gene prioritization. To that end, this chapter discusses 

the methods and results associated with assigning specific roles of virulence for pathogenic 

proteins. 

7.1 Methods 

7.1.1 Dataset preparation 

While the dataset developed by Garg and Gupta and used in the general virulence prediction 

experiment in Ch. 6 was curated, it lacked the annotation granularity needed to determine 

particular virulence roles a protein may play; the dataset was purely binary in classification, 

and a protein was categorized as either 'virulent' or 'non-virulent'. For a more specific 

prediction of virulence factors, a new, and ostensibly larger, dataset was necessary that 

contained not only information on whether or not a protein was involved in pathogenesis 

but also conveyed information regarding in what capacity. In Ch. 2.1.1, a number of 

pathogen-specific databases were listed, among them MviRDB. As a data warehouse for 

pathogenic proteins, MviRDB provided a rich resource for a number of proteins that were 

involved in infectious disease, including information that was confirmed through literary 
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review and experimental results [27]. Because of its comprehensiveness M V I R D B was used 

as the primary resource for generating a dataset with finer-grained classes of virulence for 

the experiments described later in this chapter. 

In order to transform the protein data in M V I R D B into a suitable training and testing 

set, the first step was curation of the data into a non-redundant, representative set of 

proteins. The original MVIRDB dataset used consisted of 14544 records, primarily of amino 

acid sequences with some genomic sequences interspersed throughout. DNA sequences were 

translated to protein sequences, beginning at the methionine if present and using the longest 

open reading frame; otherwise, the DNA sequence was removed from the set. Databases 

whose contents were viral sequences were removed from the set; these initial filters yielded 

5052 remaining proteins. For negative instances, 3000 proteins were randomly drawn from 

G E N B A N K [151] and filtered for proteins highly likely to be involved in virulence based on 

regular expression searches on the protein names and annotations. For example, proteins 

whose names contained 'drug' or 'toxin' were removed. Proteins from known pathogenic 

organisms were otherwise left undisturbed in the negative set, as presumably not all proteins 

within an infectious organism are involved in virulence. At the same time, hypothetical 

proteins whose functions were unknown were also removed from the negative set. Finally, 

CD-HIT [174] was used to generate non-redundant protein clusters at a 40% level of identity. 

The final sequence dataset consisted of 3700 proteins, 1703 of which constituted the negative 

(non-virulent) set and 1997 of which formed the positive (virulent) classes. 

7.1.2 Curating virulence factor subclasses 

Once the datasets were curated for non-redundancy (in the positive set) and possible vir­

ulence factors (in the negative set), the positive set proteins were classified into various 

virulence functions. Classifications were done based on the information regarding the pro­

tein readily available from the virulence data sources; many of the databases that M V I R D B 

integrated used a native classification system. For example, one data source included in 

M V I R D B was V F D B [23], a database with a deep hierarchical classification system for 

virulence factors consisting of four top-level terms ('Offensive virulence factors', 'Defensive 
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virulence factors', 'Nonspecific virulence factors' and 'Regulation of virulence-associated 

genes') and 36 lower-level terms ranging from 'Adherence' to 'Type VII secretion' to 'Toxin: 

intracellular toxin: DnaseF. Though M V I R D B provided uniform access to the data within 

these other sources, methods of classifying and organizing virulence factors were not aligned 

in any way, and thus the proteins within M V I R D B were classified via a number of different, 

and often quasi-overlapping, umbrella terms. The challenge of aligning the terminology and 

classifications of virulence factors is well-known, and has been noted as a major impediment 

to consolidation of virulence data [175]. 

Because of the misalignment of classifications in the dataset, virulence proteins were an­

notated manually by the author of this manuscript, based on the original classifications and 

literature references of the native databases. To illustrate the need for manual annotation 

over the positive dataset, many databases whose focus was on a specific type or family of 

proteins, such as in the case of A R G O and antibiotic resistance proteins, simply annotated 

all proteins as a single type. As a result, a small number of categories have very many 

instances. In other cases, annotations appeared idiosyncratic at the deepest level, but may 

have been subsumed by higher-level annotations. In this regard, the problem faced is sim­

ilar to that encountered by the curators of the Unified Medical Language System (UMLS), 

the Foundational Model of Anatomy (FMA) and GO [176, 177, 102] and similarly a solution 

based on manual alignment of the various databases' classifications schemes is used here. 

While automated and semi-automated methods exists for the 'ontology alignment' problem 

(e.g., see [178, 179]), manual methods were used for the positive dataset to ensure the high­

est quality annotations possible, given the limitations to manpower and time. This manual 

annotation process is outlined stepwise in Tbl. 7.1. 

Per the steps, manual annotation of the virulence proteins was an iterative process 

that continued until no further classification changes were made to the dataset (either 

added, changed or deleted). For the positive dataset, three iterations were done before 

changes were no longer made and the classifications were deemed to have reached a steady 

state. As a result of the manual annotation, 28 different hierarchical virulence-related 

classifications were derived. Because many of these classifications contained a small number 

of proteins unsuitable for instance-based classification, only the 11 top-level classes were 
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Procedure for manual curation of virulence factors 

1. Examine the source or database of each protein annotation for possible clas­

sifications, using the annotation set across all databases as a starting point. 

Record annotations according to information from the source or database; each 

protein may have more than one annotation. If a protein is directly involved 

in a virulence process or is a regulator of that process, record it as such. In 

this way, proteins may have more than one annotation. 

2. Examine any publications which are linked from the source. Record annotations 

according to information from the publication regarding the protein. 

3. If an annotation was unclear or unknown, conduct a keyword publication search 

of the virulence factor to obtain resolution. 

4. Repeat steps (1-3) across all proteins (i.e., re-annotate) until no further changes 

were made from the previous annotation. 

Table 7.1: Iterative method used to manually align and annotate the virulence classifications 

for pathogenic proteins in the training and testing dataset. 
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used for virulence prediction (see Tbl. 7.2). There were a small number of proteins whose 

status as virulence factors could not be confirmed, or whose evidence appeared suspect upon 

review of annotation or literature; these proteins were removed from the dataset. Across 

all levels of the curated virulence classification hierarchy, the annotation of each protein to 

a coarse-level virulence annotation was not done de novo; annotations were based on the 

annotation and classification information for each protein entry in the originating databases. 

Moreover, in cases where further investigation of a protein was required for clarification, 

only literary evidence was used; sequence searches were omitted from the annotation process, 

which would have directly influenced the results of the automated classification. 

7.1.3 Baseline classifiers 

Unlike the dataset used in Ch. 6.1, the dataset whose preparation was outlined in Ch. 7.1.1 

is an artifact created for the purposes of exploring the methods described in this dissertation, 

and thus there are no existing approaches upon which it has been tested. Subsequently, three 

classifiers were developed as baseline systems for comparisons to query-level integration and 

learning. 

The first such baseline approach used 3mer sequence frequencies, as was employed for 

comparison in Ch. 6.1. The use of a purely sequence-based classifier again provides an 

ab initio baseline for the classifier, and represents a simple but effective remote homology 

detection algorithm [93]. The feature space for this classifier was calculated on-the-fly for 

each protein sequence, and indexed by the space of all 3mer words seen in the training 

dataset. 

A BLAST database of the specific virulence dataset was created, and the second baseline 

classifier was based on the mutual BLAST results of the dataset proteins against each other. 

Each individual protein i was queried against the created BLAST database, and its affinity 

p to any given class L G C was determined by: 

Pl€L = ne"' , (7.1) 

(k) 
where the set N^ denotes the neighborhood of fc-nearest proteins to i (as determined by 
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Virulence Categories 

(1) Adherence (e.g., pili, fimbriae) 

(2) Surface factor (i.e., outer membrane proteins, porins) 

(3) Invasion-related 

Entry (into host cell) 

Spreading factor (facilitation of pathogen spread or population growth, e.g., biofilm) 

(4) Transport and uptake (metal and nutrient transport related to pathogenesis) 

Iron uptake and storage 

(5) Toxin (evocation of host tissue damage or cytolysis) 

Exotoxin 

Endotoxin 

Bacteriocin (toxin specific to host bacterial flora) 

(6) Catalysis (e.g., protease, proteinase) 

(7) Secretion 

Type I 

Type II 

Type III 

Type IV 

TypeV 

Type VII 

(8) Motility 

(9) Antibiotic resistance 

(10) Resistance and defense (e.g., intra-host survival, stress adaptation, anti-immune effects) 

Antiphagocytosis 

Immune evasion 

Antigen and antigenic variation 

(11) Other 

Cell wall 

Transduction 

Table 7.2: 11 top-level virulence factor categories derived from the positive training and 

testing set, with subclassifications. Importantly, a virulence factor may be classified under 

several labels, e.g., a protein may be both a 'Surface factor' (label 2) and an 'Antigen' (label 

10). 
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(a) Adherence (b) Surface factor (c) Invasion 

H 

(d) Transport (e) Toxin (f) Catalysis 

PlinMK l«nilty Olnrlbutlen tor AnrJMgtM: •*! 

(g) Secretion (h) Motility (i) A.B. Resist. 

3 

tm Ictartty dMribulDn Igr Otrw 

(j) Defense (k) Other 

Figure 7.1: Inter- and intra-category similarity distribution by identity, pre-40% identity 

clustering and using b l a s t a l l with the low-complexity filter off 
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highest results from BLAST), and ln(L) is the indicator function, which is equal to 1 if 

n G L and 0 otherwise; thus, p is the fraction of the fc-nearest neighbors of i that have 

membership in L. This approach was used since each protein in the dataset could take on 

multiple classes at once and the formulation in (7.1) permits the measurement of membership 

strength for any arbitrary class, given some protein. For the purposes of this dissertation, 

the cluster size was chosen to be k — 3, based on its popular usage in previously-published 

experiments using nearest-neighbor methods on protein sequences. The motivation behind 

this very simple approach is to measure annotation based on data from a single source, and 

in such a way as to emulate how an annotator may scan the best-scoring BLAST hits of a 

sequence to determine function [19]. 

The third and final baseline classifier used is also based on BLAST, but relies on a more 

sophisticated approach - indeed, it uses SVMs trained on pairwise hits (with a high e-value 

threshold) against a BLAST database of the training set. To generate features for this third 

classifier, each test sequence was queried against the trained BLAST database, resulting in 

a vector representation of a sequence's negative log transformed e-value score to the other 

sequences within the database. This method is referred to as BLAST+SVM and a similar 

method has been used in past research, where SVMs based on pairwise BLAST queries 

outperformed or were comparable to other methods such as SVM-Fisher, SAM, PSI-BLAST, 

Smith-Waterman and motifs+SVMs in detecting sequences that were remotely homologous 

[180, 181], 

7.1.4 Evaluation methods 

Unlike the prediction of generalized virulence in the previous chapter, the problem of specific 

virulence as it has been presented here is a multiclass problem. Each protein is permitted 

to have multiple virulence labels attached to it, and thus for each classification method and 

source 11 different SVMs were tested in a one-versus-rest fashion. That is, each virulence 

category was set as the 'positive' set of interest, and all other proteins (nonvirulent proteins 

and virulent proteins of a differing classification) were treated as the 'negative' set. Two 

primary experiments were conducted on the specific virulence set. 
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First, similarly to how evaluation was conducted for generalized virulence, the dataset 

for specific virulence was split into a training and testing components, and 80% of the 

dataset was used for training the various parameters for the classifiers and 20% retained 

for final testing (refer to Tbl. 7.3 for details). For the integrated query graphs, data was 

generated as in the generalized virulence experiment, with the same data sources and iden­

tical schema. As the Gaussian SVM performed the best overall in the generalized virulence 

experiment, this kernel was chosen for all SVMs in the specific virulence classification ex­

periment. Optimal parameters for the integrated query graph were determined via a grid 

search on the width and cost of a Gaussian kernel, again using the same procedure as gen­

eralized virulence. The parameters selected for each source and for each virulence class 

were those that provided the best AUC performance. 

One step utilized in specific virulence that was not done in general virulence was feature 

selection on the integrated query graphs for the train-test split experiment, in the form of F-

scores. This metric, calculated prior to SVM training and testing, provides a rough estimate 

of the predictive value of a feature, independent of the other features, for any given class. 

The addition of this step in the evaluation process seemed appropriate, given the larger size 

of the dataset, and thus the larger number of features expected to be returned per data 

source (the details of source coverage are in Ch. 7.2). The calculation used here follows the 

formulation outlined in [182]. Let i correspond to the ith feature in a data source. Then: 

|x ( + , l -. |xl >\ 

| x ( + ) | - l ^ (Xfc,i ~Xi ^ + l x ( - ) | - l ^ ^ ~~Xi ^ 1 ' fc=i ' ' fc=i 

where, respectively, x(+) and x(~) are the positive and negative datasets, x^+\ x^~\ Xi are 

the averages of the positive, negative and complete sets of the ith feature, and xj, / , xjj. ^ are 

the values of the ith feature of the kth instance of the positive and negative sets. Features 

whose F-scores were in the top 25%, 50% and 75% were tested, per source in the training 

set. As with the SVM parameters, the features that yielded the best AUC in training were 

the features then used for the final test results. 

The second experiment involved running six five-fold cross-validations for each class and 
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No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Virulence category 

Adherence 

Surface factor 

Invasion 

Transport and uptake 

Toxin 

Catalysis 

Secretion 

Motility 

Antibiotic resistance 

Defense 

Other 

Instance count 

360 

66 

249 

225 

319 

84 

483 

181 

239 

488 

214 

Table 7.3: The 11 main virulence categories derived manually from the pathogenic protein 

data sources with the number of training and testing records, after 40% identity pruning. 

method with the intention of obtaining measures of variance and deviation for each classi­

fier. For each cross-validation run, the five-fold splits were the same across all classifiers to 

accommodate direct, paired comparison. In the case of SVM-based baseline methods and 

sources, Gaussian kernels were used, as they seemed to have the most consistent perfor­

mance in generalized virulence prediction; parameters for the kernel and SVM were default 

and non-optimized, per L I B S V M [183]. Because 30 individual values are reported for each 

classifier per virulence class, paired two-tailed t-tests were used to measure the significance 

of any mean differences between the sources, and between the sources and baseline methods. 

Furthermore, because of the statistical power provided by 30 paired values, all integrated 

sources and baseline methods were used for this experiment and p-values were conservatively 

adjusted for multiple pairwise comparisons via Bonferroni correction. 

7.2 Results 

7.2.1 Coverage and summary statistics 

For virulence proteins, coverage using data retrieved via formal data integration methods 

were similar to those yielded by the Garg and Gupta dataset (see Tbl. 7.4; refer back to 
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Tbl. 6.1 for generalized comparison). However, the coverage for nonvirulent proteins was 

considerably different, with the randomly-selected negative dataset for specific virulence 

being slightly less characterized than the negative set used for generalized virulence testing. 

Furthermore, in the specific nonvirulent case the level of characterization is less than that 

of the virulent proteins - the opposite of what was found in the generalized virulence exper­

iments. This discordance is likely due to the choice of databases and annotation level from 

which the negative instances were drawn. The negative set used by Garg and Gupta were 

taken from the SwiSS-PROT database [152], a database of manually curated and annotated 

proteins. One would expect, then, that these proteins would be fairly well characterized, 

and given the standing the SwiSS-PROT database has within the molecular biology com­

munity it would be of little surprise if a number of these annotations from SwiSS-PROT 

propagated to other databases as well. 

Data src. 

A M I G O 

BIOCYC 

CDD 

GENNAV 

INTERPRO 

KEGG 

P D B 

TIGRFAM 

Fraction of coverage 

Virulent 

(n = 1997) 

0.91 

0.43 

0.72 

0.90 

0.86 

0.42 

0.49 

0.39 

Non-virulent 

(n = 1703) 

0.80 

0.37 

0.70 

0.83 

0.87 

0.57 

0.55 

0.29 

Num. features 

(in appr. units) 

5102 terms 

1674 proteins, pathways 

6463 models 

6425 terms 

3540 models 

234 pathways 

7954 structures 

1109 models 

Table 7.4: Database coverage by fraction across all sources for the training and test sets by 

MIQAPS for the specific virulence dataset. 

On the other hand, the negative dataset used for specific virulence prediction was drawn 

from G E N B A N K , and is expectedly less well-characterized. Arguably, this dataset is a more 

accurate reflection of available biologic information, since the random selection resulted in 

a mix of proteins of varying levels of annotation. Intuitively, the coverage for the specific 

dataset also match what one would expect from an automated annotation system dealing 
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with live data, and trends with the 70% 'hurdle' of easily-annotatable proteins [184]. Given 

the larger size of the specific virulence dataset (almost double that of the general virulence 

dataset), a larger feature space was present. This was expected, and the F-score selection 

process (Ch. 7.1.4) was included partly to lessen the computational resources the higher 

feature space would require in training and testing. 
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Figure 7.2: Feature distributions by source on log-y plots; the x-axis refers to individual 

features, sorted descending by the number of instances in which they appear (in the y-axis). 

Less precipitous drops indicate sources where the appearance of any given feature in any 

instance is more evenly distributed. 

One argument for using integrated queries across multiple data sources is to provide 

adequate and informative coverage of results for a query that could not be met by a single 

source on its own. As was the case in generalized virulence, several data sources generated 

very sparse matrices. Recall that the primary method used for retrieving results directly 

related to the query was through sequence comparisons to individual databases, and many 

proteins in the dataset did not have any homologous proteins in some sources. Subsequently, 
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for many sources, a feature will appear in only one instance, and never again, though some 

features appear very frequently across all instances in the dataset. Fig. 7.2 displays the 

features in each source against the number of instances in which that feature appears, with 

the belief that the most informative and discriminating features lay in-between the two 

extremes of appearing almost ubiquitously and appearing only once. From this hypothesis, 

K E G G pathways appear to have the most evenly distributed feature frequency, followed 

by G E N N A V . Notably, these sources are query-integrated, in the sense that the features 

contained within them are never directly connected to the query itself, and thus are only 

reachable through proxy results i.e., other sources, in the case of G E N N A V , and KEGG genes 

for KEGG pathways. 

7.2.2 Source-against-source performance 

Using the methods outlined in Ch. 7.1.4, and with propagation weighting on the query 

graphs, SVMs were trained for individual queryable datasources. The optimum (by AUC) 

training parameters, per source and per label, were determined using a coarse, grid-based 

search on the C and a for a Gaussian kernel. Execution of the resulting classifier on the 

test set are shown in Fig. 7.3. 

Across all specific virulence categories the AUCs of the G E N N A V and A M I G O data-

sources, whose records are indirectly queried from the seeding protein, outperformed all 

other methods and datasources, in some cases by very large margins. Examination of the 

sources as a whole additionally reveal that the data sources, individually, perform at vary­

ing levels. However, under Kendall's rank correlation, coverage appears significantly related 

to AUC at a = 0.01 for three classes (Toxin, Surface factor, Defense), and a — 0.05 at all 

others. Comparisons of the GO-based results to the other sources are further indicative that 

a learner based on integrated queries provides a more optimal classifier, and visibly by the 

greater convexity of the G E N N A V and A M I G O curves. Undoubtedly, a strong contributing 

factor in this is the superior coverage afforded by these two sources; two other sources that 

are more lightly integrated, K E G G and I N T E R P R O also perform well relative to the other 

sources. 



99 

Source-specific ROC curves for Adherence Source-specif ic ROC curves for Surface factor 

J • • • • • ( ' 

} ' • • .•'.-

r .-' / 
I-- • 

— 

AmiGO 

BioCyc 

C D D 

G e n N a v 

interPro 

KEGG 

POB 

TIGRFAM 

Source-specific ROC curves for Invasion 

0.2 0.3 <M 0.5 0.6 < 

Source-specific ROC curves for Transport and uptake 

.9 

.8 

.7 

.6 

4 
J 

A 
, 

Source-specif ic ROC curves for Toxin 

/f^''"''" 

r ''/' 
1 i'1* / • ' / — AmiGO 

f > / ; / - - BioCyc 
'{*/• '' C D D 

Lf . - G e n N a v 

\i .' / - - InterPro 

| l ' / - - KEGG 

; - — POB 

TTGRFAM 

Source-specific ROC curves for Catalysis ^m 

0 4 

0.8 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

Source-specific ROC 

s-r-
f '''' 

y. / 

i / / 

y 

cu ives 

^*'. 
: • • / • 

for Secret ion 

~7-

--

A m i G O 

BioCyc 

CDO 

KEGG 

PDA 

TIGRFAM 

1.0 

0.9 

*** 
5 0.5 

«... 

0.J 

0.1 

Source-specific ROC 

y 

y 

curves for Motil ity 

. - - • ' , . X ^ l 

/ 

- - BioCyc 

- - C D D 

- - InterPro 

- - KEGG 

- POB 

TIGRFAM 

Source-specific ROC curves for Antibiotic resistance 

Source-specific ROC curves for Defense Source-specific ROC curves for Other 

Figure 7.3: ROC curves for data-integrated sources using optimized parameters. 
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Further analysis of the ROC score results reveals other interesting results. Category 8, 

Motility, was relatively trivial to classify not merely by G E N N A V but by other sources as 

well, including KEGG and I N T E R P R O . One explanation for these results is that the motility 

of pathogenic bacteria, and indeed bacteria in general, is a very well characterized process, 

and proteins related to bacterial motion are well-annotated and unambiguous. Despite its 

coverage in comparison to sources like T I G R F A M and B I O C Y C , and contrary to the case in 

other categories, PDB fails to predict motility well. This may partly be due to the fact that 

motility-related proteins, given their high probability of containing transmembrane regions, 

are difficult to structurally elucidate and thus good exemplars of this class are more absent 

in this database. 

7.2.3 Data integrated learning vs. baseline methods 

Besides making inter-source comparisons, it was also important to compare data integration-

based learning methods to baseline methods that have been previously published. As men­

tioned earlier in this chapter, several baseline methods were used in comparisons to query-

level integration for learning specific virulence (see Ch. 7.1.4): a purely sequence-based 

approach (3mer) that uses an SVM classifier, a simple A;NN method to emulate BLAST-

based annotation and a pairwise BLAST-based SVM technique that has performed well in 

the past. Fig. 7.4 shows the pairwise comparison results of six five-fold cross validation 

runs with the sources and baseline methods, with better methods appearing higher in the 

graph. Note that unlike the parameter-optimized results in the previous section, feature 

selection based on training data for the sources was not performed and classification was 

done using an unpruned feature set. The metrics used in this experiment include the AUC, 

which has been used in the previous experiment, and the area under the ROC50 curve, 

scaled to between 0 and 1 [185]. This truncated version of the ROC curve is the probability 

that a positive class will score higher than a negative class up to the first 50 false positives, 

and is often used in biology as a representation of the number of false positives a biologist 

might realistically be willing to manually review. 

Statistical significance of pairwise comparisons are also visible in Fig. 7.4 via transitive 
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Figure 7.4: Statistical significances based on six five-fold cross-validations for all 11 virulence 

classes. An arrow from a head source or method to a tail source or method transitively 

indicates better pairwise performance from the head against the tail. Results, via two-

tailed i-test, for ROC and ROC50 are shown and nodes are color-coded based on source 

type (blue indicates domain- or motif-based sources, red GO term-based sources, yellow-

brown for pathways, gray for structural sources and green for baseline methods). Actual 

values are listed in Tbls. B.l- B.13. 

arrows. It stands out that in all but one virulence class, at least one of the queried data 

sources outperforms all baseline methods; 3mer performance on the Surface factor label is 

exemplary compared to most sources and the other baseline methods. However, it is also 

the label with the fewest instances. In eight of the virulence classes, the ROC curves of 

GO-term based methods outperform not just baseline methods, but all other sources as 

well. Interestingly, for proteins related to antibiotic resistance, such as drug efflux pumps, 

INTERPRO does significantly better than all other sources and methods. Examining ROC50 

results provides a truncated view up to a specific number of false positives, and in this view 
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Figure 7.5: Fig. 7.5a shows histograms of query graph sizes for a subset of instances; those 

within P D B ' S ROC50 curve ( 'PDB top-scoring') were generally larger than those outside of 

it ( 'PDB low-scoring'). The difference between the two distributions (which appear shifted, 

though symmetrical) is statistically significant with a p-value less than 2.2e-16, via two-tailed 

signed rank test. Fig. 7.5b shows cumulative probability distributions for the number of 

instances within the ROC50 of PDB and G E N N A V against the baseline of all query graphs. 

P D B instances that fall under the ROC50 tend to be larger than both the overall average 

and G E N N A V . These charts omit query graphs for which no results were returned. 

the findings change. Sources closer to the queries themselves do better, and in particular 

P D B and T I G R F A M , whose performance under the full ROC was only at or similar to baseline 

methods. Moreover, the BLAST+SVM method, which is nearly indistinguishable from other 

baseline methods under the full ROC, does well compared both other baseline methods and 

sources that are more query-integrated, i.e., A M I G O , G E N N A V , I N T E R P R O and KEGG. 

This was an interesting finding, and suggested that for some proteins integration may 

have added noise - a side-effect previously conjectured on from the experiments run for Ch. 

5. To explore this prospect deeper, proteins in the optimized test set were stratified by 

those that fell under P D B ' S ROC50 curve and those that were outside of it. The number 

of results for the two sets were reviewed, with the hypothesis that those that fell within 

P D B ' S ROC50 curve would be better characterized, as measured by the size of its query 
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graph. The findings are reported in Figs. 7.5a and Fig. 7.5b, and suggest that for proteins 

that are already very well characterized, integration of further sources may be of marginal 

benefit. Notably, only 50% of query graphs that fall within the ROC50 of PDB are less 

than 100 nodes in size, whereas in the case of G E N N A V 80% of the query graphs are less 

than 100 nodes in size. At the same time, proteins which are less well-characterized and 

more novel appear harder for an individual source such as P D B to classify; in such cases, 

integration across multiple sources as a means of providing coverage can alleviate the lack 

of information. 

Because the proteins of interest for this dissertation are those involved in pathogenesis, 

it was also important to determine how well virulence classes could be discerned using 

varying levels of training set sizes. The motivation behind measuring this was to gauge 

how well-known a family of virulence factors may need to be for successful identification 

'in the wild.' Fig. 7.6 displays the AUCs of a subset of sources (those that performed best 

in the generalized virulence classification test) and all baseline methods from three paired 

five-fold cross-validations under different and increasing training set sizes - 10%, 40%, 70% 

and 100% of the original training set sizes; testing sets remain untouched. 

It immediately stands out that some classes are largely invariant to the number of in­

stances seen, relative to the AUC. In the case of the Motility and Secretion classes, both 

KEGG and G E N N A V perform essentially the same and with little change, though for other 

sources such as I N T E R P R O the AUC increased with the training set size. This leads to the 

conclusion that some data sources may better characterize classes than other sources, and 

that in the case of G E N N A V and KEGG for Secretion, there are likely a set of terms or path­

ways that commonly describe pathogen secretory mechanisms, and that these annotations 

are widespread across the set of secretion-related proteins. Also of note is the performance 

of G E N N A V under small training set size conditions. Other sources and methods generally 

tend to perform poorly (< 0.7 AUC) with training sets less than 500 instances, whereas 

G E N N A V does considerably better in 7 of the 10 cases often by more than 0.1. This suggests 

that heavily integrated sources, such as G E N N A V , may have additional utility over other 

methods when the number of seen and known instances from which to train are very low, 

furthering the finding that integrated methods do better under more ambiguous conditions. 
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Figure 7.6: Average AUCs and 95% confidence intervals for a subset of sources and the 

baselines by training set size, based on three five-fold cross-validations. The 'Surface factor' 

virulence class is omitted due to the small number of instances present in the training set. 
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Thus far, results have strongly suggested that some categories are much easier to classify 

than others. For example, Motility is easily predicted across all integrated sources, and 

for some even at very low numbers of training instances. In comparison, other virulence 

classes such as Invasion and Defense remain harder to identify with strong confidence. 

Because of many of these nuances in performance are both source- and label-specific, it 

was of interest to generate ROCs using only the weights determined from the propagation 

algorithm in the query graphs. For each category and source, the F-score per (7.2) was 

computed, and the highest-performing feature was kept. Recall that each feature generated 

a weight from the propagation algorithm within the query graph (see 6.4); this value was 

used as the thresholding function for the generation of AUC scores. The result of this is 

a very basic classifier, Top-F\, that relies only on the single-most discriminating feature 

of each source for each label. The AUC for this classifier represents upper bound (with 

respect to the harmonic mean of precision and recall) predictions ignorant of any value in 

combining multiple features; comparisons of this with other methods would thus illustrate 

any advantages or disadvantages from using more sophisticated approaches on the query 

graph data. 

Fig. 7.7 shows a heatmap of the difference between SVM AUCs. Across all sources 

and labels, the ROC curves using SVM-based methods demonstrated added utility over 

Top-Fi, though colors trending toward the deep blue end of the spectrum represent only 

modest increases; colors closer to deep red are more marked improvements for the SVM 

method over Top-F\. It is clear that there is marginal benefit to using a more sophisticated 

classification method for KEGG and G E N N A V on the Motility class, although other sources 

such as B I O C Y C derive a noticeable advantage from using SVMs for classification. This 

further corroborates the findings shown in Fig. 7.6, and for some sources and labels the 

mere presence of a single feature can be strongly indicative of membership. 

At the same time, other sources benefit greatly from the combination of features, namely 

I N T E R P R O and C D D , the two sources which on average have the highest improvement of 

using SVMs over Top-Fi. At the opposite end, T I G R F A M and B I O C Y C show the least im­

provement overall, with the GO-term based sources ( A M I G O , G E N N A V ) showing moderate 

improvement. Examining the GO-term based sources shows interesting differences between 



106 

SVM AUC improvement over propagation 

1 2 3 4 5 6 7 8 9 10 11 
Virulence class 

Figure 7.7: Improvement in AUC of using an SVM for classification for cross-validated tests 

over Top-F\. The colors in each cell correspond to the difference in AUC between using 

an SVM for prediction and using the top-performing feature per source, per label. Higher 

values indicate cases where there is added benefit in considering multiple features via SVMs. 

using only direct annotation information ( A M I G O ) and enrichment via traversing the GO 

hierarchy ( G E N N A V ) . While most of the changes between the two sources are commen­

surate, A M I G O strongly benefits from the use of SVMs for the Secretion category. One 

possible conclusion from this is that there are several top-level terms in GO that suggest 

secretion, and that under G E N N A V these terms are retrieved; under A M I G O , however, this 

information is not available, but is ameliorated by the availability of terms that may share 

mutual parents. 

7.3 Conclusion 

Overall, the integrated methods perform significantly better than all baselines under the 

ROC metric for the greater majority of virulence categories. Under ROC50 performances are 

more muted, and though the most integrated sources outperformed the simpler baselines, 

sources closer to the query and the B L A S T + S V M method did better across all virulence 

classes. One possible reason for this is that data scored in the ROC50 are those instances 

that score highest for the given method. These instances may represent 'low hanging fruit' 
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that are already well-characterized, and extensive query-level integration merely adds noise. 

In cases where data is not available (i.e., the proteins are less well-characterized), these 

low-coverage sources provide little information. The value in query-level integration may 

then be in providing information for harder-to-characterize, and more novel, sequences. 

In consideration of the generalized virulence experiment, there was some slight change 

in source performance for specific virulence prediction. A notable finding was that the 

performance of A M I G O as a classifier was indistinguishable from that of G E N N A V (see Fig. 

7.3), which was not the case for generalized virulence. Since the difference between these 

sources is that G E N N A V essentially recreates the subtree of the GO hierarchy within the 

query results, this may indicate that many of the GO terms specific to virulence categories 

share parents across other categories and complete traversal of the hierarchy has diminishing 

returns as it pertains to generating features for classification. At the same time, since the 

difference in generalized virulence between A M I G O and G E N N A V was notable (see Tbl. 

6.2) gives evidence to the belief that while different pathogenic processes may share similar 

functions overall, there is a more defined division between the functions occupied by non­

pathogenic and pathogenic proteins. 

One well-known drawback of using data integrated at the query level, using a federated 

approach, is the time-to-query; the time needed to gather the information necessary to run 

classification experiments on integrated GO term information was non-trivial, and ran at 

approximately four minutes per sequence on average, mapping to > 150 hours of query time 

for the specific virulence dataset. For other data sources that were directly linked to the 

query sequence (such as KEGG and C D D ) retrieval would be satisfied at half that time, or 

less. Conversely, the baseline methods were relatively fast to compute, and in particular 

the &NN approach, whose total calculation was measured in minutes, excluding the time 

needed to build and query the associated BLAST database. Fortunately, this shortcoming 

scales well as the number of querying machines are increased and can be easily parallelized; 

at a modest four servers, for example, integrated GO term data could have been collected 

within 11 hours or less. 

Also, the time spent querying is not fruitless, and independent of its application for 

classification the query results themselves may be of use to a biologist. Because one of the 
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features used in data integrated learning is a standardized vocabulary for describing gene 

function, individual classifier predictions can be easily reviewed and confirmed or rejected. 

Each query results in a number of GO terms that can be informative in determining why a 

particular protein was classified within a specific virulence category. Unless the biologist is 

very familiar with the mechanisms and characteristics of the proteins predicted to be related 

to virulence, it may be difficult to discern the biological relevance using other methods, 

such as the 3mer approach whose features are only sequence word frequencies. Thus, in 

addition to providing classifications, the query-level integrated approach also acts to lessen 

the obfuscation often associated with learning methods. 

Finally, despite very fruitful and interesting findings, there are several notable caveats 

with regard to both the dataset and the problem of specific virulence identification. Curation 

of the specific virulence dataset, and in particular the partitioning of proteins into the 

broad categories of virulences roles, was done in an iterative fashion and relied heavily on 

verification of experimental and literary evidence. Nonetheless, there is a strong possibility 

that a large number of proteins were misclassified or had correct classifications omitted; 

given the method used to curate evidence of virulence and the already difficult nature 

virulence roles the latter is a more likely occurrence, though both are probable. 

7.4 Discussion 

In this chapter, the benefits of combining both data integration and classification were 

extended beyond generalized virulence to multiclass specific virulence. The added benefit 

of this versus the former problem is the ability to perform finer-grained predictions for 

virulence based on specific roles for the purposes of gene prioritization. Thus, there are two 

primary contributions made in this chapter to the dissertation as a whole, the first of which 

is the curation of a specific virulence dataset. 

Thus far, virulence had been treated in computational classification and identification 

problems as a single category, despite the fact that there are often differences between 

various forms of pathogenic proteins which may occupy distinct, but perhaps overlapping, 

roles. This chapter presents a method and the resulting dataset of curated, non-redundant 

unified categorization of 11 different virulence factor classes and several other subcategories. 
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The formation and development of this dataset was based upon the disparate classification 

system of several virulence-related databases whose schemata, until now, had not been 

merged. 

Second, this chapter provides the results of experiments in classifying proteins into the 

11 virulence categories based on query results from data sources that were integrated in a 

path-based fashion. Additional experiments include the performance of one of these sources 

against several baseline approaches. Using the primary scoring metric, area under the ROC 

curve, it was found that GO term data sources significantly outperformed both other data 

sources and the baseline methods across a considerable majority of categories. However, 

under the more strict ROC50 metric, the results were more mixed, with well-curated sources 

more closely related to the query, such as P D B , performing best. The finding that no single 

source or method dominated in all classes across the all portions of the ROC curve suggests 

that in determining virulence using sequence-based homology queries, employing multiple 

data sources may provide a good hedge; when done using a data integration system, these 

queries can be made uniformly and in parallel, reducing scientist overhead in retrieving the 

data directly. 

This chapter and the one preceding it, Ch. 6, focused on experimental results done within 

the confines of a controlled dataset. Though this provides convincing 'laboratory-level' 

results in regards to the utility of classifiers built on integrated data, it is also important 

to test the ability of the methods described on full, virulent proteomes. Coupled with 

manual inspection of the findings, the results of such predictions would provide not only 

practical validation of using query-level integration with learning methods, but also stand 

to contribute to biological research in the form of novel virulence factors within specific, 

pathogenic genomes. 
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Chapte r 8 

G E N E R A L I Z A B I L I T Y O F Q U E R Y - A N D D A T A - L E V E L 
I N T E G R A T I O N A N D L E A R N I N G 

As previously seen in Ch. 7, the use of integrated queries is an effective means of 

forming a feature space upon which entities may be classified for detecting both general 

and specific virulence. However, the generalizability of this method within other problems 

in bioinformatics has not been discussed so far in this dissertation. The following chapter 

outlines another set of experiments to test the methods described in Ch. 3, 6 and 7 for use 

in a problem of more general interest for biomedical research. 

8.1 Applicability of methods and concepts 

One of the hypotheses that form the basis of this research is that integrated query graphs of 

interlinked data across fractured and heterogeneous sources add value, both as a method of 

expansive information retrieval and as a comprehensive feature space to which queries may 

be mapped. A common dichotomy in biology is that while experimental data is too few and 

far between, computationally-derived data is abundant and easily available. No single data 

source, however, provides absolute and perfect coverage for any given domain. Employing 

formal da ta integration methods thus acts as a means of extending coverage over queries of 

interest, and the use of statistical learning methods are an effective means of mollifying the 

distorting noise often seen in these databases. 

8.2 Case study: predicting generalized protein function 

A natural extension of the application for integrated queries is towards protein function 

prediction, a problem that is well-studied within literature (see Ch. 2.2 for a review), and a 

task which at first glance appears very similar to that of specific virulence role identification. 

However, two main aspects set this problem apart from specific virulence prediction. First, 

a protein's role in virulence is generally a product of its function, and is thus more of a latent 
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rather than directly-attributable label. Unlike virulence, protein function is often ascribed 

a definite status, and lines of demarcation between different functions are comparatively 

well-recognized. Second, whereas information in databases is not explicitly designed to 

capture virulence information (with some exception), protein function characteristics are 

much better captured in biological databases. Indeed, the GO hierarchy is intended to 

serve as a terminology of discourse around gene function. 

While the differentiation may appear to favor protein function as an easier task, as 

alluded to in Ch. 2 it can be tremendously difficult. Ch. 5 showed, for instance, that 

functional data can be very noisy in spite of its abundance. Additionally, many automated 

methods of varying sophistication have shown to be quite effective first-pass annotation 

systems; improving on existing functional prediction methods is challenging. The following 

section outlines the methods and results of applying the integrated query as a discriminative 

feature space for learning specific protein function. 

8.2.1 Methods 

The sole datasource used for functional annotation from the integrated query graphs was 

G E N N A V . This decision was grounded in the findings from both general (Ch. 6) and specific 

virulence prediction (Ch. 7), which show G E N N A V to be a significantly better predictor than 

all other sources and baseline methods. Naturally, other sources were queried, however, as 

GO terms (and thus G E N N A V ) are only accessible from a protein query indirectly under 

the schema used (see Fig. 6.1). 

For testing general function prediction, the data used for both training and testing was 

the functional protein set with the first 13 categories of MIPS for S. cerevisiae. This set 

of proteins is well-curated, and has been used extensively in the past for testing functional 

annotation methods [115, 17, 18, 186]. As was the case with the specific virulence dataset, 

proteins in the MIPS functional set could assume multiple labels, in addition to being a 

multiclass problem. Tbl. 8.1 lists the 13 MIPS categories, and the number of proteins that 

fall under each. 

Like in the previous experiments, da ta querying and retrieval was done using the MIQAPS 



112 

1-W 
(a) Metabolism (b) Energy (c) Cell eye. & DNA proc. 

(d) Transcription (e) Protein synthesis (f) Protein fate 

Bt CHI tnnqMrt ind I n 

c 

(g) Cell, trnsp. and mech. (h) Cell resc, def., vir. (i) Interact, cell, envir. 

H IdcnUiy autrtbultan tw Trtmport lx 

(j) Cell fate (k) Contr. cell. org. (1) Trnsp. facilitation 

MldwimyJiPiblUlgi IV 01 

(m) Other 

Figure 8.1: Inter- and intra-category similarity distribution by identity. 
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No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Functional class 

Metabolism 

Energy 

Cell cycle and DNA processing 

Transcription 

Protein synthesis 

Protein fate 

Cellular transport and transport mechanism 

Cell rescue, defense and virulence 

Interaction with the cellular environment 

Cell fate 

Control of cellular organization 

Transport facilitation 

Other 

Count 

1048 

242 

600 

753 

335 

578 

479 

264 

193 

411 

192 

306 

81 

Table 8.1: MIPS functional categories, with protein counts drawn from yeast. 

package and the propagation weighting approach was used to generate the initial values for 

nodes before kernel transformation. Classifier training and testing proceeded similarly to 

the baseline comparisons done in Ch. 7 via cross-validation. In these experiments, baseline 

performances were set by the results reported in the experiments by Lanckriet et al. , Deng 

et al. and Chua et al. [17, 115, 18], and the procedure for training and testing thus emulates 

the one outlined in [17] in both SVM parameters (C = 1 and a = 0.5 for all classes) and 

test method in order to enhance comparability. Furthermore, the fcNN method as described 

in Ch. 7 was added as a baseline, chosen for its simplicity; for this experiment, k = 3 was 

used. In this evaluation approach, five-fold cross-validation was done three times resulting 

in 15 separate ROC curves that were used to obtain the averages and standard deviations 

of the classifiers' performances. 

8.2.2 Results 

Relative coverage across all datasources was surprisingly slightly lower than the levels seen 

previously in the other experiments overall (refer to Tbl. 8.2). Given that the set of 

proteins originated from yeast, a model organism, one might have expected a larger number 
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of annotations propagated across genomes. Especially notable was the amount of data 

retrieved from B I O C Y C and TlGRFAM, which were strikingly low in comparison to the 

other sources. Nonetheless, ratios of the number of unique records returned for G E N N A V 

also approximated expected numbers, with 1.03 GO terms per protein on average. 

Data src. 

A M I G O 

BIOCYC 

CDD 

GENNAV 

INT'ERPRO 

KEGG 

P D B 

TIGRFAM 

Fraction of coverage 

Fraction 

(n = 6355) 

0.93 

0.05 

0.56 

0.93 

0.73 

0.92 

0.40 

0.16 

Source size 

(in appr. units) 

6580 terms 

351 proteins, pathways 

6700 models 

7733 terms 

4012 models 

213 pathways 

8394 molecules 

975 models 

Table 8.2: Database coverage by fraction across all sources for the training and test sets by 

MIQAPS for the MIPS protein set. 

The results of using integrated G E N N A V in combination with an SVM classifier against 

the various baseline classifications are shown in Fig. 8.2; note that the results reported for 

the baseline method using semidefinite programming to optimize integrated kernel weights 

('SDP + SVM') uses data which includes an enriched Pfam kernel with the Smith-Waterman 

algorithm (the highest-performing variant reported in [17]). Using integrated query graphs 

with a SVM classifier performs best across most of the 13 categories, though the difference 

is not statistically significant for some of the categories. Somewhat expectedly, the simple 

BLAST-based 3-NN baseline approach did well for the final category, 'Other', given the few 

assumptions that method makes and the varied nature of that category. Unexpectedly, how­

ever, this baseline approach did not perform much differently than the more sophisticated 

MRF method used by Deng et al. 

Though it did not perform significantly different from G E N N A V alone in the specific 

virulence case, a fused kernel of G E N N A V and 3mer data was also tested, with weights 



115 

AUC of MIPS functional groups 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Figure 8.2: Comparison of ROC performance on 13 MIPS functional groups using Markov 

random fields (MRF), fused kernels with SVMs enriched with Pfam data (SDP+SVM), 

integrated weight-averaging (IWA), BLAST-based &NN, integrated query graphs with SVMs 

(DI+SVM) and integrated query graphs and 3mer in a fused kernel (DI+ikSVM). Error 

bars for denote 95% confidence intervals for average ROC, based on 15 cross-validated 

experiments. The data for MRF and SDP+SVM are from [17], and the data for IWA are 

from [18]. 

distributed equally (0.5) for both kernel matrices (see (3.7)). While the same conclusion on 

statistical significance to G E N N A V could be reached in the instance of generalized function 

prediction, it was found that the fused kernel resulted in less deviation for ROC scores. 

Indeed, the fused query kernel (denoted in Fig. 8.2 as 'DI+ikSVM') showed performance 

above the non-fused query-level data integration approach for 12 of the 13 MIPS functional 

classes at a significant level. The sole exception, again, being the final catch-all category 

where a classification model with fewer assumptions did as well. 

8.2.3 Discussion 

The findings of this chapter generalize the methods and results of Ch. 6 and 7 by applying 

query-level data integration and learning to function prediction, as well as virulence. No­

tably, the sources and schema used for this generalization are the same as those used for the 

virulence experiments, and suggest that this basic data model oriented around a selected 

number of sources to provide domain, pathway and structural coverage may be of broad 
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utility for tasks in molecular biology where protein sequence queries are involved. 

For this task, the usage of a naive integrated kernel composed of query graph data and 

3mer data had a stabilizing effect on the variability of the results; these are interesting 

findings, and suggest that the addition of other sources or a more finely-tuned weighting 

may eventually provide better performance, as was demonstrated in previous work [17]. 

A shortcoming of this approach, however, is the computational demands for assembling 

and learning on integrated kernels - at tempts to integrate three large query kernels led to 

excessive paging on a machine with 2GB of memory. Strategies for feature selection, or 

alternatives to kernel-level integration, may be needed to make this approach more scalable 

across a large number of datasources. 

Nonetheless, even using a single query-integrated source ( G E N N A V ) produced good re­

sults for protein function prediction, particularly considering that this method is entirely se­

quence similarity-based, versus the compared baseline methods which used protein-protein 

interaction and experimental data. However, one caveat to these findings is that as the 

baseline methods were conducted in the past, it is guaranteed that information within the 

datasources used for this experiment have increased and improved since; it is very likely 

that performance would be different had this experiment been conducted earlier. At the 

same time, this also serves as a strong argument for methods that can scale with the pace 

of information growth. In this regard, query-level data integration is an attractive option. 
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Chap te r 9 

C O N T R I B U T I O N S A N D S I G N I F I C A N C E O F W O R K 

The preceding chapters have posed a problem of biological importance and have pro­

posed and tested a combination of computational methods as a means of addressing it. In 

Ch. 1 and 2, the challenges of identifying and elucidating pathogenic proteins is outlined, 

while Ch. 3 and 4 describe data integration and statistical learning as a set of approaches 

that can serve to address the challenges. They further introduce a system capable of uni­

formly querying biological data sources in a path-based, federated fashion under different 

models of data retrieval suitable for biology. Ch. 5 provides a statistical characterization 

of the nature of integrated and heterogeneous biological data as it pertains to the problem, 

and motivates the reasoning behind using high-coverage methods as a means of producing 

predictive features for classification algorithms. This is followed by the experiments of Ch. 

6 and 7 that empirically demonstrate query-level integration with supervised learning is 

capable of predicting pathogenic proteins, and at levels better than other approaches used 

as baselines. Ch. 8 then illustrates the generalizability of the methods described in this 

dissertation beyond the specific problem of pathogenicity to generalized function prediction, 

where it performs well against other methods, including those that are state-of-the-art. 

This final chapter reviews these findings in summary, and specifically highlights the main 

contributions made by this dissertation. Biologically-relevant implications of the findings are 

outlined, and limitations of the methods and results are also discussed within this context. 

Finally, specific areas which are left unresolved in this dissertation or are of tangential 

interest are raised as future work. 

9.1 Novelty of path-based federated integration and learning 

Early on, two major rate-limiting steps in biological research are the lack of available infor­

mation regarding a protein, and the lack of time and resources for manual curation of data. 
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The formal framework for data collection and integration posited by this research moves to­

wards a direction where biological information can be uniformly and easily queried without 

having to explicitly handle idiosyncrasies of individual repositories. As demonstrated by the 

experiments described in this dissertation (see Ch. 6 and Ch. 7), the task of deriving knowl­

edge from scientific information can be alleviated using learning methods that discriminate 

between proteins involved in different virulence-related roles. If such classification schemes 

are robust to the inevitable amount of noise encountered in biomedical datasets, the auto­

mated annotations resulting from this retrieve-classify process can effectively aid scientists 

in guiding their research and highlighting targets of possibly high impact for experimental 

assay or manual curat ion. 

The methods of this dissertation attempt to reach this level of utility, and importantly 

tries to do so using publicly available data that is known to be both cheap and abundant. 

Whereas other previous research has attempted to use such biological data as an end to itself 

by careful and principled means of automated and semi-automated curation [20, 36, 37, 101], 

one notable aspect of this research is the side-effect of bypassing this goal entirely. This 

dissertation's results, produced by combining path-based federated integration and learning, 

are not necessarily dependent on the quality of the data contained within the individual 

repositories; indeed, one assumption made regarding the data is that for any given protein 

query, irrelevant data will be present, but that such information may still be useful in 

classification if such irrelevancies are also present in proteins of the same class. 

The generalizability of this research was tested on traditional function prediction, a well-

studied area of biological and computational research (see Ch. 8). Using a dataset relied 

upon in the past many times for function prediction, results from this experiment were 

encouraging as the performance of query- and data-level integration outperformed other 

methods in most protein functional classes, and in many cases by a significant amount. 

Notably, the schema and sources used for this generalization were the same as the virulence 

cases, suggesting that schemata across biological tasks may have some limited form of shared 

utility. As in the case of the virulence datasets, the feature inputs for classification were 

drawn from myriad data sources. 

In addition to the aforementioned characteristics of functional coverage and class discern-
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ment, an additional benefit of the combined federated and learning approach presented by 

this dissertation is in the interpretation of findings. For many biologists statistical methods, 

such as SVMs, remain a 'black box' technology - the intimate operations of the technique 

can be difficult to understand, and the process by which results are arrived are often unclear. 

By basing predictions on functional biologic information such as GO terms, scientists may 

examine the findings of the classifications and then retrospectively review the data gath­

ered that may have contributed to the results. For example, among the most indicative GO 

terms for the 'Antibiotic resistance' specific virulence class (by F-score) were GO:0046677, 

r esponse t o a n t i b i o t i c and GO:0008800, b e t a - l a c t a m a s e a c t i v i t y , the former be­

ing a self-evident finding and the latter a well-known biological process associated with 

antibiotic resistance. This is in contrast to prior work, where functional information may 

be harder to elucidate from the findings, and thus results may be less penetrable for the 

average biological researcher [95, 115]. 

Adequate coverage of such functionally informative terms would be much more chal­

lenging without applying integration of sources at the query level. Moreover, triangulation 

of multiple sources is not an exotic concept to biomedical researchers, as many automated 

annotation systems perform this to some degree already in an ad hoc fashion (see Ch. 2.1.2); 

the system and method described in this dissertation formalizes this and attempts to trans­

late it into a computable form for learning that retains information regarding cardinality, 

topology and lineage. Along this line, the use of a path-based federated data integration 

architecture for retrieval was a key contribution employed in this research (see Ch. 4). 

Considering the application of learning to path-based federated data in itself, one can 

imagine three factors of primary importance for deriving biological information: cost, qual­

ity and scalability. The chart shown in Fig. 9.1 displays the methods presented in this 

research (shown as A) in the context of these three considerations, and relative to two 

other broad approaches that have been used in the past in conjunction with path-based 

data integration. A decided advantage of a supervised learning approach, as employed for 

combined data integration and learning, is that the task of classification scales well as new 

data is introduced; the production of a new, adapted classifier is a relatively straightforward 

process, with most cost being attributable to parameter and feature selection. It must be 
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Quality 

Figure 9.1: Perceived comparison of three path-based federated approaches (A-

discriminative, the method of this dissertation; B-logical, as described in [19]; C-belief, 

as described in [20, 21]) to deriving biological knowledge along three axes (cost, quality 

and scalability). These methods are juxtaposed against the backdrop of the cost, quality 

and scalability levels traditionally associated with semi-automated and automated methods, 

manual curation methods and methods that produce experimentally validated evidence. 

noted, however, that there is some considerable upfront cost in labeling a dataset with the 

classes of interest, if such dataset is not already available; this was a task undertaken for this 

research for specific virulence. For a logical model (shown as B), existing rules may need 

to be changed or new rules added as data evolves. Though they can closely emulate the 

quality of live researchers, because these rules are optimally derived from expert knowledge, 

their development and curation is an expensive and time-consuming process that does not 

scale as well when new information is discovered. There are thus considerable associated 

upfront and maintenance costs, and this approach does not scale well to growing biological 

data. On the other hand, belief-based methods (shown as C) of the type used in [20, 21] 

are perhaps the cheapest to employ, scale well as values are determined directly from the 

contents of the query graph and are fairly robust even with naively set parameters. How­

ever, as was demonstrated in [187], this avenue suffers from considerably decreased quality 
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in comparison to the more expensive logical approach. 

Further work would be required in order to validate generally how well these different 

theoretical approaches fit within the above paradigm of cost, quality and scalability. Within 

the scope of automated molecular biology research, however, it is clear that methods of data 

integration at the query level are a rich source of informative, albeit disparate, material with 

which to base annotations and classifications. As was shown in this work, coupling this data 

with statistical learning provides a scalable and precise method for target prioritization. 

9.2 Novel biological implications 

The work of this dissertation is grounded on the overarching theory that a multitude of 

biologic data drawn disparately and of varying relevancy can be used to generate high-

quality classifications, and there are many subsequent practical applications. As alluded 

to in Ch. 2, foremost among these applications is proteome-wide prediction of virulence 

factors, and facilitating selection of proteins for further study that have a high likelihood of 

being involved in infectious pathogenesis. 

As an illustration of this, the methods of this dissertation were applied to the prediction 

of virulence proteins in Burkholderia pseudomallei, the causative agent of melioidosis. The 

disease is often fatal, particularly in the septic form, and even in treated cases has a 40% 

mortality rate [188]. Tables 9.1a and 9.1b provide an overview of the results obtained from 

submitting the entire proteome of B. pseudomallei into the specific virulence prediction 

classifiers generated from Ch. 7. To ensure high-specificity classification, only those proteins 

whose decision threshold was at or above the 95% precision level for each virulence category 

(based on cross-validated results over the entire specific virulence dataset) were selected; 

parameters were non-optimized. This represented a conservative, high-confidence, set of 

proteins which are possibly involved in virulence, and though comprehensive analyses of 

proteome-wide results are left for future work, many of the top-scoring classifications appear 

plausible, given the actual protein annotations. 

The examples provided give some hint at the possible biological implications of the 

information generated from using data integration and learning for virulence recognition. 

Researchers interested in a specific organism or disease may use the class outputs and 
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Class name 

Adherence 

Surface factor 

Invasion-related 

Transport & uptake 

Toxin 

Catalysis 

Secretion 

Motility 

Antibiotic resistance 

Resistance & defense 

Other 

Total labels assigned 

Total unique proteins 

# 
22 

17 

18 

77 

36 

8 

90 

43 

147 

34 

0 

492 

432 

(a) 

T R E M B L ID 

Q3JS28 

Q3JI69 

Q3JHL6 

Q3JTT3 

Q3JXA5 

Q3JLM7 

Q3JP63 

Q3JN46 

Annotation 

Type-1 fimbrial protein, A subunit 

Phospholipase C 

Hemin transport protein HmuS 

Dihydropteroate synthase 

Response regulator protein 

Prolyl oligopeptidase family protein 

Cap. polysac. biosynth. protein fam. 

Unnamed protein product 

Predicted role 

Adherence 

Toxin 

Transport k, uptake 

Antibiotic resistance 

Invasion 

Catalysis 

Defense 

Defense 

Table 9.1: Tbl. 9.1a shows the number of predicted virulence proteins in B. pseudomallei, 

via data integration and SVM learning. G E N N A V GO terms were used as the predictive 

features, and the threshold was set by 95% precision of the specific virulence dataset. Tbl. 

9.1b is a sampling of the top-ranked possible virulence factors from the predictions. 

scores of the system as guide to which proteins are most likely relevant to their research. 

For example, 'Hemin transport protein HmuS' (shown in Tbl. 9.1b) is a protein involved 

in heme transport. While this protein (Q3JHL6) has not been directly implicated in the 

virulence of B. pseudomallei, recent studies have shown that in low-iron conditions, not 

unlike that encountered in a human host, heme-related transporters and receptors are up-

regulated in B. pseudomallei [189]. In this organism, HmuS may be a tempting target for 

possible attenuation of infection severity. 

Examples as the one just discussed illustrate how the results of the methods described 

in this research can help guide the attention of scientists to targets of interest. Overall, 

as displayed by the findings for both generalized and specific virulence, this work provide 

a means of detecting, classifying and ranking proteins that may be of important health-

related impact. Moreover, the data which drives the procedure do not come from expensive 
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experimental methods and is publicly available to any research biologist. Ch. 4 describes 

the process by which this data can be uniformly and easily gathered without regard to the 

individual repositories themselves. Together, this provides a complete system usable by 

biologists vertically integrated from gathering initial data on a protein to the end result of 

prioritization (and beginning of experimental or manual review) for virulence-relatedness. 

9.3 Limitations of methods and results 

Despite the performance of combined data integration and learning for various tasks, and 

the overall generalizability of the approach to other domains of biology, there are several 

limitations of which a reader should be aware when regarding the findings of this research. 

While these methods work well for both virulence and traditional function prediction, there 

is little guarantee that performance would be similar had different schemata been tried. 

The schema used was developed specifically to reach functional information in the form of 

GO terms. It is possible that another schema not so specialized and which converged to 

different data sources may have produced vastly different results. 

Furthermore, it is difficult to predict how well the classifiers generated as a result of 

training and testing for the different classification experiments will generalize as the data 

sources in the schema evolve over time. Because the training process and the curation of 

newly labeled 'gold standard' data is the most time-intensive of combining query-level inte­

gration and learning, the ideal situation would be that the quality of the classifiers generated 

are largely invariant to most changes encountered in databases. And, for simplicity, this 

work has assumed that the data sources and the information within them remain relatively 

unchanged. 

Indeed, some evidence from Ch. 5 indicate that for functional annotation the same terms 

will be encountered over and over again; and results from Ch. 6.2.3 show that the individual 

changes in databases separately do not seem to make a difference in using integrated data for 

prediction, as topological information on the query graph appears of only marginal benefit 

within this context. However, practically speaking, as information is added, modified and 

deleted in the repositories the information that is retrieved will change. These changes may 

slowly shift the content of databases across a domain; database updates in this manner may 
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well affect results substantially, and methods of maintaining the currency of classifiers in 

the face of constantly changing data is an interesting and unexplored aspect of this research. 

One advantage of growing databases, though, is that further information would also in­

crease the coverage afforded by a formal integration for da ta retrieval. For the experimental 

results of this research, GO functional coverage was reached for almost 90% of all proteins -

an impressive number, given that the level of functional information available for any given 

genome can range from 90% to 50% or less (see Tbl. 2.3). A strong limitation of data inte­

gration and learning, however, remains the amount of information that can be obtained for 

any given query. For this work, sequence similarity searches were used to gather data for a 

query sequence. Under this model, an entirely novel protein for which no close homologues 

exist would be unclassifiable. While there are many ways of circumventing this problem, 

such as relaxing similarity requirements so that even very dissimilar proteins are returned, 

it is unclear how these compromises for coverage, at the expense of quality, would affect 

the results. The BLAST+SVM baseline method described in Ch. 7.1.3, which produces 

a pairwise kernel based on query similarity to arbitrary proteins given a very high expect 

value threshold, is this circumvention for a single source and performed relatively well in 

comparison to other baseline methods. However, given the better ROC performance of 

many other data sources (e.g., C D D , I N T E R P R O , A M I G O ) it seems that there is value in 

keeping the information used for prediction as relevant to the query as possible. 

From a perspective of validity, a further limitation is the way in which the specific 

virulence dataset was curated. Though every effort was made to ensure the classifications 

used were of high quality and specificity, the proteins and classes used in Ch. 7 were 

conducted only by a single person, the author of this monograph. Curation was done in 

an iterative fashion (see Fig. 7.1) and thus proteins were essentially 'classified' multiple 

times until convergence. Undoubtedly, there are proteins either whose correct label has 

been mistakenly omitted, an incorrect label assigned or both. Based on the procedure 

used for classification, an error of omission is more likely than that of commission - a 

challenging problem for the development of any gold standard dataset in a field where 

scientific knowledge is in a state of constant expansion. As a result, for the specific virulence 

dataset a perfect classification may in fact be impossible, given differences the level of 
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comprehensiveness of classification for each protein. At the same time, this important 

limitation acts mostly as an upper bound on experimental performance and should not call 

into question the relative standing of the approaches compared; any errors in classification 

are independent of each other and uniformly distributed amongst the training, test and 

cross-validation sets. 

Additionally, the virulence datasets consisted entirely of bacterial microorganisms, and 

thus the ability of the approach to discern proteins of pathogenic eukarya were not repre­

sented or tested. Attempts to apply bacterial virulence learning models to eukarya have met 

only modest success [95], and it is likely that the methods described in this research will pro­

duce less than optimal results when applied to eukaryotic or viral pathogens. Nonetheless, 

extending these methods to other kingdoms would be relatively easy; likewise, narrowing 

the granularity, by adapting the methods to specific phyla or families for example, would be 

a matter of curating virulence factors restricted to that set. In the former case, a looming 

challenge may be the number of known virulence factors available for a specific subset of 

organisms, and in both cases it would be advisable to generate new datasets specific to each. 

Perhaps the most important limitation is that this research has focused primarily on only 

one aspect of pathogenesis - that is, the proteins in the disease-causing organism itself. For 

this work, the goal at hand was target prioritization for proteins within pathogens most likely 

to be involved in virulence. As previously mentioned in Ch. 2.1.1, the characteristics of the 

host are also of great importance, and recent examinations of the interactions between host 

and pathogen at a genomic level have highlighted the fact that a subset of well-connected 

human genes are the targets for many viruses [190]. Subsequently, an interesting corollary 

to the methods of this dissertation may be to incorporate host information to determine 

the manner in which predicted virulence proteins interact with human protein targets, 

improving knowledge of how deletion or mutation of specific infection-related proteins may 

result in attenuated virulence. 

9.4 Future work 

Despite the role their usage has played in making many remarkable advances in biomedicine, 

the use of publicly available repositories for high-throughput analyses is a largely unexplored 
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field. The preceding chapters of this dissertation have outlined, enumerated and answered 

the method and hypothesis of whether or not these sources can be mined collectively to 

generate biologically-relevant virulence knowledge. At the same time, the findings have 

revealed other interesting, tangential questions that remain to be answered, and many 

challenging problems that have yet to be solved. 

One obvious question is whether or not there are better ways of combining heterogeneous 

and disparate data such that virulence predictions are improved. The virulence datasets, 

notably, were tested foremost using SVMs, and more broadly discriminative classifiers, 

whereby classes are learned directly from the data. Thus, the results from experiments 

are subject to the limitations well-known for maximum margin-based methods, such as 

performance sensitivity to parameters. The choice of a discriminative approach is in contrast 

to Bayesian, or generative methods, which attempt to model the likelihood that any given 

instance fits a class using probabilistic means [191]. Adoption of a discriminative angle was 

predicated largely by concerns on the spuriousness of information that may be present in the 

integrated data; SVMs in particular have been known to be accurate even for very noisy data, 

and whose applications to classification tasks in biological domains have often equaled or 

outperformed other methods (e.g., [192]). Nonetheless, there are many compelling reasons 

to explore probabilistic approaches to virulence detection, not the least them being the 

manner in which the data is represented (graphically) - a structure which lends itself well 

to methods relying on dependencies. Indeed, based on the findings for virulence, it is likely 

that probabilistic methods of data fusion on the combined data sources could yield promising 

results. 

Moreover, while integrated kernels of disparate sources was only briefly explored for 

traditional function prediction (see Ch. 8), other means of explicitly combining sources 

that are perhaps less computationally expensive may be interesting. A possible avenue of 

research in this area is to explore various stages of source integration (e.g., early integration) 

but with restrictions imposed by logical queries of the type definable by query languages 

such as DaRQL. This would allow bench scientists to formulate what they believe to be the 

most trustable data within the myriad returned, with the hypothesis that the more relevant 

da ta will be less noisy and more predictive. 
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Future work should also include extending the results of this research beyond virulence 

and generalized function prediction to other domains, including those outside molecular 

biology. A interesting implication from this would be the generalization of query-level data 

integration and learning across varied schemata, and a possible way of validating this may 

be to test different schemata and changes in source inclusion across the same classification 

problem. 

And an aspect of this research which was neglected, but is of paramount practical im­

portance, is to explore how best to present the results of classifications based on multiple 

sources to a biologist. Any ground-breaking in silico findings for biomedical research are 

for naught if the information cannot be easily digested by those who do the experimen­

tal validation. Ease of use is a strong reason to include various querying paradigms {e.g., 

exploratory, declarative) within any data integration framework, and similar parallels ex­

ist when trying to present actionable information to biologists from statistical methods. 

Comparatively little has been done in this area, where biomedical computation meets com­

prehensible presentation, and given the amount of uncertainty and data often dealt with by 

researchers it will continue to remain an open problem. 

9.5 Concluding remarks 

One goal of this dissertation was to rely on abundant, error-filled, messy data to generate 

predictive findings that rival those of other methods that might rely on more well-curated or 

even experimental inputs. Methods that scale with the growth of data are now more than 

ever important in biomedical research, and it may not be folly to presume in the very near 

future that the computer will be as commonplace a reference in biomedical research as the 

lab notebook, or algorithms as well-used as a pipette. Regardless of the methods, the most 

integral piece of solving biological puzzles will be the data, and part of that are means of 

effectively integrating, mining and navigating its nuances. Leveraging this deluge of data, 

despite many imperfections, can yield insight which might otherwise take considerably more 

time to expose itself. 

By presenting a system and method of mining this data in the context of two biological 

tasks and presenting the results, a major overall contribution made by dissertation is that 
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even without extensive manual curation integrated data can be very effective for prioriti­

zation of both virulence factors and general function prediction. This approach scales well 

against both the number of sources incorporated and the amount of ground t ruth informa­

tion known, making it an appropriate choice for high-throughput biological research. Lastly, 

any results produced by the artifacts of this research are possible targets of health-related 

interest in a new and evolving subfield of public health and biology; highlighting these 

proteins for additional study may further improve knowledge of pathogenesis and disease. 
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Appendix A 

I N T E G R A T I O N A R C H I T E C T U R E 

A.l Query graph definitions 

This section contains the complete query graph data definition used for this dissertation. 

Comment lines are preceded by a ' ; ' , and the block is divided into the following ordered 

sections: the schema itself, source declarations and link definitions. Each section begins 

with a (shorthand) illustration of how each data type is declared. 

========== BEGIN BLOCK ========== 

; Copyright (C) 2008 Eithon Cadag 

; This program is free software: you can redistribute it and/or modify 

; it under the terms of the GNU General Public License as published by 

; the Free Software Foundation, either version 3 of the License, or 

; (at your option) any later version. 

; This program is distributed in the hope that it will be useful, 

; but WITHOUT ANY WARRANTY; without even the implied warranty of 

; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

; GNU General Public License for more details. 

; You should have received a copy of the GNU General Public License 

; along with this program. If not, see <http://www.gnu.org/licenses/>. 

; Bioinformatics-oriented MIQAPS schema to run with PyDI 

:cls 

:isa 

:atr 

:src 

:trg 

:prp 

:map 

:qry 

— 
— 

— 

— 

— 

— 

— 

— 

top-level: class declaration; o.w. 

class inheritance 

class attribute 

top-level: source declaration; o.w 

class instantiation trigger 

property declaration or reference 

mapping from local label to global 

query declaration within a class 

class reference 

: source reference 

attribute (within a class) 

http://www.gnu.org/licenses/
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; :par — parameter passable to whatever carries out the query 

; :lnk — link declaration 

;;;;;;;;;;;;; Schema ;;;;;;;;;;;;;;; 

; (:cls <name> 

; ( {Oisa <name>)} ) 

; ( {(:atr <name> .I*)} )) 

(:cls Entity 

() 

()) 

(:els Query 

((:isa Entity)) 

((:atr QueryString .))) 

(:els ProteinSequenceQuery 

((:isa Query)) 

()) 

(:els GeneNameQuery 

(Oisa Query)) 

0) 

(:cls SourceQuery 

((:isa Query)) 

((:atr Sequence .))) 

(:els Feature 

(Oisa Entity)) 

((:atr Desc .) 

(:atr Start .) 

(:atr Stop .))) 

(:cls Protein 

((:isa Entity)) 

((:atr Name .) 

(:atr Species .) 

(:atr Sequence .))) 

(:cls Family 

(Oisa Entity)) 

(Oatr Name .) 

Oatr Desc .))) 

(:els SuperfamilyCls 

(Oisa Family)) 

0) 
Ocls Domain 



!(:isa Entity)) 

[(:atr Name .) 

(:atr Desc .))) 

[:els Gene 

'A :isa Entity)) 

.(:atr Species .) 

(:atr Desc .))) 

':els PseudoGene 

!(:isa Gene)) 

X:atr Degrade .))) 

'.: els Attribute 

.(:isa Entity)) 

:)) 
;:cls CrystallizabilityAttribute 

X:isa Attribute)) 

'(:atr Crystallizability .))) 

'.: els Structure 

X:isa Entity)) 

X:atr Name .))) 

!:cls Term 

.(:isa Entity)) 

.(. :atr Name .) 

(:atr Desc .))) 

:cls HierarchicalTerm 

(:isa Term .)) 

(:atr Parents *))) 

:cls SignalPeptide 

(:isa Feature)) 

)) 

:els Pathway 

(:isa Entity)) 

(:atr Name .))) 

:cls TransmembraneRegion 

(:isa Feature)) 

)) 

:els SequenceComposition 

(:isa Attribute)) 

(:atr MetPct .) ; M 

(:atr LeuPct .) ; L 

(:atr AsnPct .) ; N 

(:atr IlePct .) ; I 

(:atr LysPct .) ; K 
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:atr GluPct . 

:atr AspPct . 

:atr GlyPct . 

:atr AlaPct . 

:atr CysPct . 

:atr HisPct . 

:atr PhePct . 

:atr ThrPct . 

:atr TyrPct . 

:atr ProPct . 

:atr TrpPct . 

:atr ArgPct . 

:atr SerPct . 

:atr GlnPct . 

:atr ValPct . 

:atr PositiveChargePct .) 

:atr NegativeChargePct .) 

:atr TotalChargePct .) 

:atr NetChargePct .) 

:atr HydrophobicsPct .))) 

;;;;;;;;;;; Source declarations ;;;; 

(:src <name> 

( {(:cls <name> 

(:trg <label> 

( {(:prp <name> .1*)} ) 

( {(:map <label> <name>)} ) 

( {(:qry <name> 

( {(:prp <name> .1*)} ) 

( {(:par <name> <value>)} ) ) } ) } ) 

(:src Seed 

(:cls ProteinSequenceQuery 

(:trg pseq_query) 

(( 

(( 

( 

(( 

() 

()))) 

(:els GeneNameQuery 

prp Seeder2NCBI .)) 

map src #S0URCE) 

map id #ID)) 

qry SeederQuery 



(:trg gname_query) 

((:prp Seeder2NCBIGene .)) 

(;(:map gene_name Seeder2NCBIGene) 

(:map src #SOURCE) 

(:map id #ID)) 

((:qry GeneQuery 

() 

O)))) 

(:src Superfamily 

(:cls SuperfamilyCls 

(:trg superf amily) 

0 
(Oraap id #ID) 

(:map src #S0URCE) 

(:map name Name)) 

((:qry Superf arailySequenceQueryable 

((:prp Evalue .)) 

())))) 

(:src TIGRFAM 

(:cls Family 

(:trg family) 

((:prp Function .) 

(:prp TIGRFAM2EC *) 

(:prp TIGRFAM2InterPro *) 

(:prp TIGRFAH2G0 *)) 

((:map id #ID) 

(:map src #SDURCE) 

(:map name Name) 

(:map function Function) 

(:map ec TIGRFAM2EC) 

(:map interpro TIGRFAM2InterPro) 

(:map go TIGRFAM2G0)) 

((:qry TIGRFAMQueryable 

((:prp Evalue .) 

(:prp Score .)) 

())))) 

(:src BioCyc 

(:cls Protein 

(:trg protein) 

((:prp BioCyc2G0 *) 
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(:prp BioCyc2NCBI *) 

(:prp BloCyc2UniProt *) 

(:prp BioCyc2Pathway *)) 

(Omap id #ID) 

(:map src #S0URCE) 

(:map name Name) 

(:map biocyc2go BioCyc2G0) 

(:map biocyc2ncbi BioCyc2NCBI) 

Omap biocyc2uniprot BioCyc2UniProt) 

(:map biocyc2pathway BioCyc2Pathway)) 

((:qry BioCycSequenceQueryable 

((:prp Evalue .) 

(:prp Score .) 

(:prp Length .)) 

()))) 

(:els Pathway 

(:trg pathway) 

0 

(Omap id #ID) 

Omap src #S0URCE) 

Omap name Name)) 

(Oqry BioCycPathwayQueryable 

() 

())))) 

Osrc KEGG 

(:els Gene 

Otrg gene) 

(Oprp Gene2Term *) 

Oprp Gene2Pathway *) 

Oprp KEGG2EntrezGene .) 

Oprp KEGG2UniProt .)) 

(Omap id #ID) 

Omap src #S0URCE) 

(:map org Species) 

(:map def Desc) 

Omap 2orthology Gene2Term) 

(:map 2pathway Gene2Pathway) 

Omap kegg2ncbi KEGG2EntrezGene) 

(:map kegg2uniprot KEGG2UniProt)) 

((:qry KEGGSequenceQueryable 

((:prp Evalue .) 



(:prp Bits .)) 

()))) 

(:cls Term 

(:trg term) 

((:prp Term2Pathway *)) 

((:map id #ID) 

(:map src #SQURCE) 

(:map name Name) 

(:map def Desc) 

(:map 2pathway Term2Pathway)) 

((:qry KEGGOrthologyQueryable 

() 

()))) 

(:els Pathway 

(:trg pathway) 

() 

((:map id #ID) 

(:map src #SQURCE) 

(:map name Name)) 

((:qry KEGGPathwayQueryable 

() 

())))) 

(:src SAPS 

(:els SequenceComposition 

(: trg seqanal) 

((:prp FIKMNYGroup .) 

(:prp STGroup .) 

(:prp AGPGroup .)) 

((:map src #S0URCE) 

(:map fikmny_grp FIKMNYGroup) 

(:map st_grp STGroup) 

(:map agp_grp AGPGroup) 

(:map pos_charge PositiveChargePct) 

(:map neg_charge NegativeChargePct) 

(:map total_charge TotalChargePct) 

(.-map net_charge NetChargePct) 

(:map hydrophobics HydrophobicsPct) 

(:map pct_A AlaPct) 

(:map pct_R ArgPct) 

(:map pct_N AsnPct) 

(:map pct_D AspPct) 
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(:map pct_C CysPct) 

(:map pct_E GluPct) 

(:map pct_Q GlnPct) 

(:map pct_G GlyPct) 

(:map pct_H HisPct) 

(:map pct_I I lePct ) 

(:map pct_L LeuPct) 

(:map pct_K LysPct) 

(:map pct_M MetPct) 

(:map pct_F PhePct) 

(:map pct_P ProPct) 

(:map pct_S SerPct) 

(:map pct_T ThrPct) 

(:map pct_W TrpPct) 

(:map pct_Y TyrPct) 

(:map pct_V ValPct)) 

((:qry SAPSQueryable 

() 

())))) 

(: src Phobius 

(:els TransmembraneRegion 

(:trg tm) 

() 

(Oraap id #ID) 

(:map src #S0URCE) 

(:map desc Desc) 

(:map start Start) 

(:map stop Stop)) 

((:qry PhobiusQueryable 

() 

()))) 

(:cls SignalPeptide 

(:trg sp) 

() 

((:map id #ID) 

(:map src #S0URCE) 

(:map desc Desc) 

(:map start Start) 

(:map stop Stop)) 

((:qry PhobiusQueryable 

() 



())))) 

(:src GenNavGO 

(:cls HierarchicalTerm 

(:trg term) 

((:prp Type .)) 

((:map id #ID) 

(:map src #SOUHCE) 

(:map name Name) 

(:map type Type) 

(:map parents Parents)) 

((:qry GenNavGOIDQueryable 

0 

())))) 

(:src AmiGO 

(:cls HierarchicalTerm 

(:trg term) 

((:prp Type .)) 

((:map id #ID) 

(:map src #SDURCE) 

(:map name Name) 

(:map type Type)) 

((:qry AmiGOIDQueryable 

0 

())))) 

(: src XtalPred 

(:cls CrystallizabilityAttribute 

(:trg xtal) 

() 

((:map class #ID) 

(:map src #SOURCE)) 

((:qry XtalPredSequenceQueryable 

((:prp Length .) 

(:prp Gravy .) 

(:prp InstabilityIndex .) 

(:prp IsoelectricPoint .) 

(:prp CoiledCoils .) 

(:prp LongestDisorderRegion .) 

(:prp PctCoilStructure .) 
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prp TransmembraneHelices .) 

prp SignalPeptides .) 

prp InsertionsScore .) 

prp HomologsInNR .) 

prp HomologsInPDB .)) 

())))) 

(:src UniProt 

(:cls Protein 

(:trg protein) 

:prp EntryName .) 

:prp Accession .) 

:prp Status .) 

:prp UniProt2InterPro *) 

:prp UniProt2Pfam * ) 

:prp UniProt2G0 *)) 

:map accession #ID) 

:map entryname EntryName) 

:map pname Name) 

:map src #S0URCE) 

:map org Species) 

:map status Status) 

:map interpros UniProt2InterPro) 

:map pfams UniProt2Pfam) 

:map gos UniProt2G0) 

:map sequence Sequence)) 

:qry UniProtIDQueryable 

) 
qry UniProtSequenceQueryable 

prp Length .) 

prp Score .) 

prp Evalue .) 

prp Identity .)) 

par E-value-min le-35)))))) 

(:src CDD 

(:els Domain 

(:trg domain) 

((:prp Accession .)) 

((:map ext_id #ID) ; Using external id as source id cdd\d+, CQG\d+, etc. 

(:map src #S0URCE) 
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( 
( 

(( 
(( 
( 
( 
( 

(( 

map 

map 

qry 

prp 

prp 

prp 

prp 

par 

name Name) 

cdd_id Acces sion)) ; 

CDDSequenceQueryable 

Evalue .) 

Identity .) 

Length .) 

Score .)) 

E-value-min 

Using 

le-10)))))) 

PSSH--id as secondary 

(:src PDB 

(:els Structure 

(:trg structure) 

((:prp Function .) 

(:prp PDB2G0 *) 

(:prp ExperimentalMethod .) 

(:prp Type .) 

(:prp Classification .) 

(:prp Organism *)) 

(Omap id #ID) 

(:map src #S0URCE) 

(:map name Name) 

(:map type Type) 

(:map classification Classification) 

(:map organisms Organism) 

(:map pdb2go PDB2G0)) 

((:qry PDBIDQueryable 

() 

()) 

(:qry PDBSequenceQueryable 

((:prp Evalue .)) 

())))) 

(:src NCBI 

(:cls Protein 

(:trg protein) 

((:prp Accession .) 

(:prp NCBI2EntrezGene *)) 

((:map id #ID) 

(:map src #S0URCE) 

(:map name Name) 

(:map species Species) 
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(:map gi Accession) 

(:map sequence Sequence) 

(:map geneid NCBI2EntrezGene)) 

((:qry ProteinSequenceQueryable 

((:prp Evalue .) 

(:prp Identity .) 

(:prp Length .) 

(:prp Score .)) 

((:par E-value-min le-35)))))) 

(:src EntrezGene 

(:els Gene 

(:trg gene) 

((:prp EntrezGene2G0 *) 

(:prp EntrezGene2UniProt *)) 

(Omap id #ID) 

(:map src #S0URCE) 

(:map tax Species) 

(:map entrezgene2go EntrezGene2GD) 

(:map entrezgene2uniprot EntrezGene2UniProt)) 

((:qry EntrezGenelDQueryable 

O 

())))) 

(:src InterPro 

(:els Domain 

(:trg iptype) 

((:prp InterPro2EC *) 

(:prp InterPro2PDB *) 

(:prp InterPro2G0 *) 

(:prp InterPro2CATH *) 

(:prp InterPro2SC0P *) 

(:prp Taxonomy *)) 

((:map id #ID) 

(:map src #S0URCE) 

(:map desc Name) 

(:map ec InterPro2EC) 

(:map pdb InterPro2PDB) 

(:map go InterPro2G0) 

(:map cath InterPro2CATH) 

(:map scop InterPro2SC0P) 

(:map tax Taxonomy)) 



((:qry InterProIDQueryable 

() 

()) 

(:qry InterProSequenceQueryable 

((:prp Evalue .) 

(:prp Start .) 

(:prp Stop .)) 

()))) 

(:cls Family 

(:trg Family) 

((:prp InterPro2EC *) 

(:prp InterPro2PDB *) 

(:prp InterPro2G0 *) 

(:prp InterPro2CATH *) 

(:prp InterPro2SC0P *) 

(:prp Taxonomy *)) 

((:map id #ID) 

(:map src #S0URCE) 

(:map desc Name) 

(:map ec InterPro2EC) 

(:map pdb InterPro2PDB) 

(:map go InterPro2G0) 

(:map cath InterPro2CATH) 

(:map scop InterPro2SC0P) 

(:map tax Taxonomy)) 

((:qry InterProIDQueryable 

0 

()) 

(:qry InterProSequenceQueryable 

((:prp Evalue .) 

(:prp Start .) 

(:prp Stop .)) 

())))) 

;;;;;;;;;;;;;;;;; Link declarations ,,,,,,, 

; (:Ink <name> 

; (:gen <generator>) 

; (:src <name> (:cls <name> (:prp <name>))) 

; (:src <name> (:cls <name> (:qry <name 

; ( {(:map <label> <name>)} ))))) 
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; Seed links 

(:Ink Seed2NCBI_Protein_Link 

(:gen NCBIProteinSequenceSearchGenerator) 

(:src Seed (:cls ProteinSequenceQuery (:prp #ID))) 

(:src NCBI (:els Protein (:qry ProteinSequenceQueryable 

((:map evalue Evalue) 

(:map identity Identity) 

(:map length Length) 

(:map score Score)))))) 

(:lnk Seed2UniProt_Protein_Link 

(:gen UniProtSequenceGenerator) 

(:src Seed (:cls ProteinSequenceQuery (:prp #ID))) 

(:src UniProt (:cls Protein (:qry UniProtSequenceQueryable 

((:map len Length) 

(:map score Score) 

(:map evalue Evalue) 

(:map identity Identity)))))) 

(:lnk Seed2Superfamily_Superfamily_Link 

(:gen SuperfamilySequenceGenerator) 

(:src Seed (:cls ProteinSequenceQuery Oprp #ID))) 

(:src Superfamily (:cls SuperfamilyCls (:qry SuperfamilySequenceQueryable 

((:map evalue Evalue)))))) 

(:Ink Seed2TIGRFAM_Family_Link 

(:gen TIGRFAMSequenceGenerator) 

(:src Seed (:cls ProteinSequenceQuery Oprp #ID))) 

(:src TIGRFAM (:els Family (:qry TIGRFAMQueryable 

((:map score Score) 

(:map evalue Evalue)))))) 

(:Ink Seed2XtalPred_Crystallizability_Link 

(:gen XtalPredSequenceGenerator) 

(:src Seed (:cls ProteinSequenceQuery (:prp #ID))) 

(:src XtalPred (:cls CrystallizabilityAttribute (:qry XtalPredSequenceQueryable 

((:map len Length) 

(:map gravy Gravy) 

(:map ii Instabilitylndex) 

(:map iso IsoelectrlcPoint) 



(:map cc CoiledCoils) 

(:map ldr LongestDisorderRegion) 

(:map pes PctCoilStructure) 

(:map tms TransmembraneHelices) 

(:map sp SignalPeptides) 

(:map is InsertionsScore) 

( :map hnr HomologsInNR) 

(:map hpdb HomologsInPDB)))))) 

(:Ink Seed2PDB_Structure_Link 

(:gen PDBSequenceGenerator) 

(:src Seed (:cls ProteinSequenceQuery (:prp #ID))) 

(:src PDB (:cls Structure (:qry PDBSequenceQueryable 

((:map eval Evalue)))))) 

(:lnk Seed2BioCyc_Protein_Link 

(:gen BioCycSequenceGenerator) 

(:src Seed (:cls ProteinSequenceQuery (:prp #ID))) 

(:src BioCyc (:cls Protein (:qry BioCycSequenceQueryable 

((:map evalue Evalue) 

(:map score Score) 

(:map length Length)))))) 

; Note the query also will fire for SignalPeptide — the trigger in the generator 

; tells the engine what class to instantiate, and it is not enfored by the link. 

(:lnk Seed2Phobius_Link 

(:gen PhobiusGenerator) 

(:src Seed (:cls ProteinSequenceQuery (:prp #ID))) 

(:src Phobius (:cls TransmembraneRegion (:qry PhobiusQueryable ())))) 

(:lnk Seed2SAPS_Link 

(:gen SAPSSequenceGenerator) 

(:src Seed (:cls ProteinSequenceQuery (:prp #ID))) 

(:src SAPS (:cls SequenceComposition (:qry SAPSQueryable ())))) 

(:Ink Seed2InterProSequence_Link 

(:gen InterProSequenceGenerator) 

(:src Seed (:cls ProteinSequenceQuery (:prp #ID))) 

(:src InterPro (:cls Domain (:qry InterProSequenceQueryable 

((:map eval Evalue) 

(:map start Start) 

(:map stop Stop)))))) 



144 

(:Ink Seed2CDD_Domain_Link 

(:gen CDDProteinSequenceSearchGenerator) 

(:src Seed (:cls ProteinSequenceQuery (:prp #ID))) 

(:src CDD (:cls Domain (:qry CDDSequenceQueryable 

((:map evalue Evalue) 

(:map identity Identity) 

(:map length Length) 

(:map score Score)))))) 

(:Ink Seed2KEGG_Gene_Link 

(:gen KEGGSequenceGenerator) 

(:src Seed (:cls ProteinSequenceQuery (:prp #ID))) 

(:src KEGG (:cls Gene (:qry KEGGSequenceQueryable 

((:map eval Evalue) 

(:map bits Bits)))))) 

; BioCyc links 

(:Ink BioCyc_Protein2BioCyc_Pathway 

(:gen BioCycPathwayGenerator) 

(:src BioCyc (:cls Protein (:prp BioCyc2Pathway))) 

(:src BioCyc (:cls Pathway (:qry BioCycPathwayQueryable ())))) 

(:lnk BioCyc_Protein2AmiG0_Link 

(:gen GOAmiGOIDGenerator) 

(:src BioCyc (:cls Protein (:prp BioCyc2G0))) 

(:src AmiGO (:cls HierarchicalTerm (:qry AmiGOIDQueryable ())))) 

;lnk was omitted originally (whoops) 

(: Ink BioCyc_Protein2GenNavG0_Link 

(:gen GQGenNavIDGenerator) 

(:src BioCyc (:cls Protein (:prp BioCyc2G0))) 

(:src GenNavGO (:cls HierarchicalTerm (:qry GenNavGOIDQueryable())))) 

; PDB Links 

(:Ink PDB_Structure2GenNavG0_Link 

(:gen GOGenNavIDGenerator) 

(:src PDB (:cls Structure (:prp PDB2G0))) 



(:src GenNavGO (:cls HierarchicalTerm (:qry GenNavGOIDQueryable ())))) 

; Use AmiGQ as backup 

(:Ink PDB_Structure2AmiG0_Link 

(:gen GOAmiGOIDGenerator) 

(:src PDB (:cls Structure (:prp PDB2GD))) 

(:src AmiGO (:cls HierarchicalTerm (:qry AmiGOIDQueryable ())))) 

; InterPro links 

(:Ink InterPro_Domain2GenNavG0_Link 

(:gen GOGenNavIDGenerator) 

(:src InterPro (:cls Domain (:prp InterPro2G0))) 

(:src GenNavGO (:cls HierarchicalTerm (:qry GenNavGOIDqueryable ())))) 

(:Ink InterPro_Family2GenNavG0_Link 

(:gen GOGenNavIDGenerator) 

(:src InterPro (:cls Family (:prp InterPro2G0))) 

(:src GenNavGO (:cls HierarchicalTerm (:qry GenNavGOIDQueryable ())))) 

; Use AmiGO as backup 

(:Ink InterPro_Domain2AmiG0_Link 

(:gen GOAmiGOIDGenerator) 

(:src InterPro (:cls Domain (:prp InterPro2G0))) 

(:src AmiGO (:cls HierarchicalTerm (:qry AmiGOIDQueryable ())))) 

(:Ink InterPro_Family2AmiG0_Link 

(:gen GOAmiGOIDGenerator) 

(:src InterPro (:cls Family (:prp InterPro2G0))) 

(:src AmiGO (:cls HierarchicalTerm (:qry AmiGOIDQueryable ())))) 

; TIGRFAM links 

(:Ink TIGRFAM_Family2AmiG0_Link 

(:gen GOAmiGOIDGenerator) 

(:src TIGRFAM (:cls Family (:prp TIGRFAM2G0))) 

(:src AmiGO (:cls HierarchicalTerm (:qry AmiGOIDQueryable ())))) 

(:Ink TIGRFAM_Family2GenNavG0_Link 

(:gen GOGenNavIDGenerator) 
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(:src TIGRFAM (:cls Family (:prp TIGRFAM2G0))) 

(:src GenNavGO (:cls HierarchicalTerm (:qry GenNavGOIDQueryable ())))) 

(:Ink TIGRFAM_Family2InterPro_Link 

(:gen InterProIDGenerator) 

(:src TIGRFAM (:cls Family (:prp TIGRFAM2InterPro))) 

(:src InterPro (:cls Family (:qry InterProIDQueryableO)))) 

; UniProt links 

(:Ink UniProt_Protein2GenNavG0_Link 

(:gen GOGenNavIDGenerator) 

(:src UniProt (:cls Protein (:prp UniProt2G0))) 

(:src GenNavGO (:cls HierarchicalTerm (:qry GenNavGOIDQueryable ())))) 

(:lnk UniProt_Protein2AmiG0_Link 

(:gen GOAmiGOIDGenerator) 

(:src UniProt (: els Protein Oprp UniProt2G0))) 

(:src AmiGO (:cls HierarchicalTerm (:qry AmiGOIDQueryable ())))) 

; GenNavGO links 

(:Ink GenNavG0_HierarchicalTerm2GenNavGO_HierarchicalTerm 

(:gen GOGenNavIDGenerator) 

(:src GenNavGO (:cls HierarchicalTerm Oprp Parents))) 

(:src GenNavGO (:cls HierarchicalTerm (:qry GenNavGOIDQueryable ())))) 

; EntrezGene links 

(:Ink EntrezGene_Gene2AmiG0_Link 

(:gen GOAmiGOIDGenerator) 

(:src EntrezGene (:cls Gene (:prp EntrezGene2G0))) 

(:src AmiGO (:cls HierarchicalTerm (:qry AmiGOIDQueryable ())))) 

(:Ink EntrezGene_Gene2GenNavG0_Link 

(:gen GOGenNavIDGenerator) 

(:src EntrezGene (:cls Gene (:prp EntrezGene2G0))) 

(:src GenNavGO (:cls HierarchicalTerm (:qry GenNavGOIDQueryable ())))) 
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(: Ink EntrezGene_Gene2UniProt_Protein_Link 

(:gen UniProtlDGenerator) 

(:src EntrezGene (:cls Gene (:prp EntrezGene2UniProt))) 

(:src UniProt (:cls Protein (:qry UniProtlDQueryable ())))) 

; NCBI links 

(:Ink NCBI_Protein2EntrezGene_Gene_Link 

(:gen EntrezGenelDGenerator) 

(:src NCBI (:cls Protein (:prp NCBI2EntrezGene))) 

(:src EntrezGene (:cls Gene (:qry EntrezGenelDQueryable ())))) 

; KEGG links 

(:Ink KEGG_Gene2Term_Link 

(:gen KEGGOrthologyGenerator) 

(:src KEGG (:cls Gene (:prp Gene2Term))) 

(:src KEGG (:cls Term (:qry KEGGDrthologyQueryable ())))) 

(:Ink KEGG_Gene2Pathway_Link 

(:gen KEGGPathwayGenerator) 

(:src KEGG (:cls Gene (:prp Gene2Pathway))) 

(:src KEGG (:cls Pathway (:qry KEGGPathwayQueryable ())))) 

(:Ink KEGG_Term2Pathway_Link 

(:gen KEGGPathwayGenerator) 

(:src KEGG (:cls Term (:prp Term2Pathway))) 

(:src KEGG (:cls Pathway (:qry KEGGPathwayQueryable ())))) 

(:Ink KEGG_Gene2EntrezGene_Gene_Link 

(:gen EntrezGenelDGenerator) 

(:src KEGG (:cls Gene (:prp KEGG2EntrezGene))) 

(:src EntrezGene (:cls Gene (:qry EntrezGenelDQueryable ())))) 

(:Ink KEGG_Gene2Uniprot_Protein_Link 

(:gen UniProtlDGenerator) 

(:src KEGG (:cls Gene (:prp KEGG2UniProt))) 

(:src UniProt (:cls Protein (:qry UniProtlDQueryable ())))) 

========== END BLOCK ========== 
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A.2 DaRQL grammar 

query = target-Clause, ws, from_clause, us, restrict_clause; 

target_clause = ''TARGET'', us, nodelist; 

nodelist = ( node | varset ) , ['','', nodelist ]; 

node = entity_node | source_node | domain_node; 

entity-node = { alpha }; 

varset = var, " " " , ( entity_node | source_node | domain_node ); 

var = " ? " , { alpha }; 

source_node = " " " , { alpha }, ">>>>• 

domain_node = ''3'' , { alpha }; 

from_clause = ''FROM'', ws, nodelist; 

restrict_clause = "RESTRICT", us, constraint-list; 

constraint-list = constraint, [ '','', constraint-list ]; 

constraint = path-constraint | node_constraint; 

node-constraint = varacc, binop, varacc; 

binop = '•! = " | " = " | ">=>> | "<=>> | <<>>> | <<<"; 

varacc = var | literal | number j divfunc | evfunc; 

divfunc = ''divcount'', ''('', var, " ) ' ' ; 

evfunc = "order", " ( " , var, " ) " ; 

path-constraint = " { " , path, " } " ; 

path = pathable, " .'' , path; 

pathable = source_node | domain_node | entity-node j "*'> | var | conjuct | disjunct; 

conj unct = " (" , node, " k", node " ) ' ' ; 

disjunct = " ( " , node, " | " , node ' ) ' ; 

number = [ - ] , { digit }, [ ''. " , number]; 

digit = ? all digits between 0 and 9 inclusive ?; 

alpha = ? all alphabetical characters ?; 

literal = " { alpha } " ; 

ws = { " " }; 

Figure A.l : DaRQL production rules, in extended Backus-Naur Form. 
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A.3 DaRQL query planning benchmarks 

With query planning Without query planning 

200 400 600 800 1000 1200 
Query graph edge count 

200 400 600 800 1000 1200 
Query graph edge count 

Figure A.2: Query execution times for 99 randomly selected proteins from yeast, without 

query planning and with query planning for a restrictive query with many constraints and 

for a loosely-defined query with few constraints; solid horizontal lines mark the means for 

each query, and dotted horizontal lines the standard deviations. Benchmarks were done on 

an Intel dual core 2.66GHz Linux machine with 3GB of RAM. 
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Appendix B 

L E A R N I N G E X P E R I M E N T S 

B.l Characteristics of the query graph 

(a) (b) 

Figure B.l: A power-law model fitted to the distribution frequency of in-degrees in the query 

graphs (Fig. B.la), and the residuals (Fig. B.lb). The model was fitted via unweighted 

least-squares regression using the formula Pk — k~a, with Pf~ the distribution frequency for 

in-degree k. a was estimated to be 1.67. 
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B.2 Generalized virulence results 
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Figure B.2: Individual propagation weights for GO terms, based on virulent and non-

virulent records; Fig. B.2b is a zoomed-in subset of Fig. B.2a. 
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i 1 1 1 ; 1 

a b c d e f 

Integrated kernel type 

Figure B.3: Progressive results of integrating kernel sources via (3.7) into a sequence-

baseline (a) SVM classifier (source order is (a+) G E N N A V (—> b), (a + b+) A M I G O (-» c), 

I N T E R P R O (d), K E G G (e), C D D ( / ) ) . There was no significant improvement in using 

integrated kernels using equal weighting; ad hoc weighting of the kernels did show some 

improvement (not shown), but weight-tuning was not done comprehensively. 

B.3 Statistical significance of specific virulence 

Tables B.l to B . l l contain the statistical significance tests for the six five-fold cross-

validations of the integrated data sources against the baseline, according to the results 

of paired i-tests. Each cell contains a Bonferroni-adjusted p-value if the source or method 

describing the row statistically outperforms the source or method on the column, a (+) if 

the source along the row is not statistically better than the source or method along the 

column and a (-) if the source or method along the row is the same or worse (statistically 

or otherwise). Significance for these comparisons was set at a = 0.05. 

For these tables, the sources are listed as BioCyc (BCyc), CDD, GenNav (GN), AmiGO 

(AG), InterPro (IPro), KEGG, TIGRFAM (TFAM), PDB, BLAST with fcNN (kNNB), 

3mers frequencies and BLAST with SVM (BSVM). 



BioC 

C D D 

GN 

AG 

IPro 

KEGG 

TFAM 

P D B 

kNNB 

3mer 

BSVM 

BCyc 

-
3.79e-13 

0.00e+00 

0.00e+00 

0.00e+00 

1.49e-02 

-
6.26e-03 

6.65e-06 

6.66e-09 

+ 

C D D 

-
-

4.95e-12 

5.75e-12 

6.23e-13 

-
-
-
-
-
-

GN 

-
-
-
-
-
-
-
-
-
-
-

AG 

-
-
+ 
-
-
-
-
-
-
-
-

IPro 

-
-
+ 
+ 
-
-
-
-
-
-
-

KEGG 

-
4.09e-07 

0.00e+00 

0.00e+00 

0.00e+00 

-
-
-
+ 

1.84e-03 

+ 

TFAM 

+ 
1.220-14 

0.00e+00 

0.00e+00 

0.00e+00 

2.03e-05 

-
3.30e-05 

5.83O-06 

4.34e-09 

+ 

P D B 

-
1.870-12 

0.00e+00 

0.00e+00 

0.00e+00 

+ 
-
-

3.28o-02 

8.55e-06 

+ 

kNNB 

-
+ 

5.13e-10 

3.67e-10 

4.07e-ll 

-
-
-
-
+ 
-

3mer 

-
+ 

1.29e-ll 

1.09e-ll 

9.72e-12 

-
-
-
-
-
-

BSVM 

-
1.14e-04 

3.04e-12 

2.040-12 

6.84e-13 

-
-
-
+ 

4.42e-04 

-

Table B.l: ROC p-values for the Adherence virulent class. 

BioC 

C D D 

GN 

AG 

IPro 

KEGG 

TFAM 

P D B 

kNNB 

3mer 

BSVM 

BCyc 

-
4.96o-06 

1.73e-12 

5.86e-13 

7.58e-12 

+ 
+ 

2.28e-04 

3.21e-04 

1.22o-14 

2.91e-05 

C D D 

-
-

9.53e-07 

1.25o-06 

+ 
-
-
-
+ 

6.36O-08 

+ 

GN 

-
-
-
-
-
-
-
-
-
+ 
-

AG 

-
-
+ 
-
-
-
-
-
-
+ 
-

IPro 

-
-

7.99e-04 

5.74e-04 

-
-
-
-
-

2.57e-06 

-

KEGG 

-
3.05e-02 

1.59e-13 

2.44e-14 

5.99e-09 

-
-
+ 

3.36c-02 

0.00e+00 

1.50o-04 

TFAM 

-
3.19e-02 

l.Ho-12 

1.10e-12 

2.33e-09 

+ 
-
+ 

1.55O-03 

1.22e-14 

5.49o-05 

P D B 

-
+ 

5.23e-09 

9.75e-09 

2.51e-03 

-
-
-
+ 

l .lle-11 

+ 

kNNB 

-
-

6.040-06 

5.83e-07 

+ 
-
-
-
-

1.25e-06 

+ 

3mer 

-
-
-
-
-
-
-
-
-
-
-

BSVM 

-
-

3.89O-05 

2.74e-05 

+ 
-
-
-
-

3.83e-07 

-

Table B.2: ROC p-values for the Surface factor virulent class. 
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BioC 

C D D 

GN 

AG 

I P r o 

K E G G 

T F A M 

P D B 

k N N B 

3mer 

BSVM 

BCyc 

-
2.430-10 

0 .00e+00 

0 .00e+00 

1.03e-12 

9.71e-08 

+ 
1.74O-05 

1.31e-04 

6.02o-03 

-

C D D 

-
-

4.15O-07 

2.67e-05 

+ 
+ 
-
-
-
-
-

GN 

-
-
-
-
-
-
-
-
-
-
-

AG 

-
-

1.96e-05 

-
-
-
-
-
-
-
-

I P r o 

-
-

5.61O-06 

7.01e-04 

-
-
-
-
-
-
-

K E G G 

-
-

1.76e-06 

1.84e-04 

+ 
-
-
-
-
-
-

T P A M 

-
1.09O-08 

8.55e-14 

1.98e-12 

3.18e-13 

4.29e-07 

-
6.42e-04 

6.04e-04 

4.93e-02 

-

P D B 

-
1.36O-03 

8 .74e- l l 

4.57e-09 

1.41e-05 

6.61e-03 

-
-
+ 
+ 
-

kNNB 

-
+ 

1.35O-09 

1.18e-06 

+ 
+ 
-
-
-
-
-

3mer 

-
+ 

1.58e-10 

5.46o-09 

1.97e-03 

2.31e-03 

-
-
+ 
-
-

BSVM 

+ 
5.47o-09 

7.33e-14 

1.47e-13 

6.81e-12 

1.18e-10 

+ 
2.19e-05 

2.73e-05 

6.51e-05 

-

Table B.3: ROC p-values for the Invasion virulent class. 

BioC 

C D D 

GN 

AG 

I P r o 

K E G G 

T F A M 

P D B 

k N N B 

3mer 

BSVM 

BCyc 

-
1.65e- l l 

0 .00e+00 

7.94e-13 

2.21e-08 

+ 
-

5.13e-03 

+ 

-
-

C D D 

-
-

1.51e- 06 

+ 

-
-
-
-
-
-
-

GN 

-
-
-
-
-
-
-
-
-
-
-

AG 

-
-

2.98e-05 

-
-
-
-
-
-
-
-

I P r o 

-
+ 

1.67e-06 

1.43e-02 

-
-
-
-
-
-
-

K E G G 

-
3.15e-09 

O.OOc+00 

7.330-14 

5.18O-07 

-
-
+ 
+ 

-
-

T F A M 

1.22e-06 

4.03e-13 

0 .00e+00 

O.OOo+OO 

4.88e-14 

3.81o-05 

-
2.32e-10 

2.83C-06 

-
-

P D B 

-
5.06C-08 

2 .12e - l l 

1.78C-08 

2.50e-04 

-
-
-
+ 

-
-

kNNB 

-
1.29e-02 

3.18C-07 

1.33e-03 

+ 
-
-
-
-
-
-

3mer 

4.25e-08 

2.81C-13 

0 .00e+00 

0 .00e+00 

1.40e-12 

1.04e-10 

+ 
2.86C-10 

1.58e-07 

-
+ 

BSVM 

4.45e-08 

0 .00e+00 

0 .00e+00 

O.OOc+00 

9.77e-14 

4.00e-09 

+ 
1.48e-12 

1.10e-07 

-
-

Table B.4: ROC p-values for the Transport and uptake virulent class. 

BioC 

C D D 

GN 

AG 

I P r o 

K E G G 

T F A M 

P D B 

k N N B 

3mer 

BSVM 

BCyc 

-
1.83e-13 

O.OOo+OO 

0 .00e+00 

0 .00e+00 

1.73e-05 

-
1.18e-05 

6.85e-03 

+ 
-

C D D 

-
-

6.85e-12 

1.35e-09 

6.86O-05 

-
-
-
-
-
-

GN 

-
-
-
-
-
-
-
-
-
-
-

AG 

-
-

1.22e-04 

-
-
-
-
-
-
-
-

I P r o 

-
-

5.84e-07 

8.43e-04 

-
-
-
-
-
-
-

K E G G 

-
5.10e-06 

0 .00e+00 

l . lOc-13 

2 .09e - l l 

-
-
+ 
-
-
-

T F A M 

3.900-06 

0 .00e+00 

O.OOo+OO 

0 .00e+00 

0 .00e+00 

2.52e-10 

-
8.18o-13 

4.82e-07 

3.82e-03 

+ 

P D B 

-
5.79e-06 

0 .00e+00 

9.77c-14 

2.31e-12 

-
-
-
-
-
-

kNNB 

-
4.59e-05 

1.95e-13 

1.48e-12 

3.40o-10 

+ 
-
+ 
-
-
-

3mer 

-
9.97c-07 

0 .00e+00 

3.66e-14 

1.20e-10 

+ 
-
+ 
+ 
-
-

BSVM 

+ 
3.68e-12 

0 .00e+00 

0 .00e+00 

0 .00e+00 

4.62e-05 

-
4.17e-09 

1.70e-03 

3.02o-02 

-

Table B.5: ROC p-values for the Toxin virulent class. 
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BioC 

C D D 

GN 

AG 

IPro 

K E G G 

T P A M 

P D B 

k N N B 

3mer 

BSVM 

B C y c 

-
0 .00e+00 

0 .00e+00 

O.OOc+00 

0 .00e+00 

1.60e-02 

+ 
8.67e-10 

3.050-13 

2.44e-14 

2.97o-05 

C D D 

-
-

2.84e-05 

1.940-05 

+ 
-
-
-
-
-
-

GN 

-
-

-
-
-
-
-
-
-
-

AG 

-
-
+ 
-
-
-
-
-
-
-
-

I P r o 

-
-

8.01c-05 

1.38e-04 

-
-
-
-
-
-
-

K E G G 

-
6.72e-13 

0 .00e+00 

0 .00e+00 

3.66e-14 

-
-

2.44e-05 

3.20e-10 

1.92e-12 

4.12e-02 

T F A M 

-
2.44e-14 

0 .00e+00 

0 .00e+00 

0 .00e+00 

+ 
-

2.87e-08 

1.38e-l l 

3.13e-12 

4.88O-04 

P D B 

-
6.36e-03 

3.56e-09 

6.41e-09 

1.04e-05 

-
-
-
+ 
+ 
-

kNNB 

-
+ 

1.55e-07 

1.84e-07 

+ 
-
-
-
-
+ 
-

3mer 

-
+ 

6.09e-07 

4.610-07 

+ 
-
-
-
-
-
-

BSVM 

-
1.150-05 

4.90e-09 

1.07o-08 

4.12e-06 

-
-
+ 

4.03e-02 

5.56e-04 

-

Table B.6: ROC p-values for the Catalysis virulent class. 

BioC 

C D D 

GN 

AG 

I P r o 

K E G G 

T F A M 

P D B 

k N N B 

3mer 

B S V M 

BCyc 

-
O.OOo+OO 

0.000+00 

0 .00e+00 

0 .00e+00 

0 .00e+00 

1.94e-06 

+ 
4.17e-07 

2.18e-02 

-

C D D 

-
-

O.OOo+OO 

0 .00e+00 

0 .00e+00 

2.74e-08 

-
-
-
-
-

GN 

-
-
-
-
-
-
-
-
-
-
-

AG 

-
-

3.90e-06 

-
-
-
-
-
-
-
-

I P r o 

-
-

1.02e-07 

+ 

-
-
-
-
-
-
-

K E G G 

-
-

0 .00e+00 

1.44e-l l 

5 .00e- l l 

-
-
-
-
-
-

T F A M 

-
6 .40e- l l 

O.OOc+00 

0 .00e+00 

O.OOo+OO 

0.00e+00 

-
-
+ 
-
-

P D B 

-
1.22C-14 

0 .00e+00 

0 .00e+00 

0 .00e+00 

O.OOc+00 

5.87e-04 

-
1.93o-05 

+ 
-

kNNB 

-
+ 

0 .00e+00 

1.71e-13 

1.53e-12 

3.300-09 

-
-
-
-
-

3mer 

-
1.02e-06 

0 .00e+00 

0 .00e+00 

O.OOo+OO 

4.15e-13 

+ 
-
+ 
-
-

BSVM 

3.54e-02 

4.27e-13 

O.OOo+OO 

0.00e+00 

0 .00e+00 

0 .00e+00 

3.70e-07 

1.67e-04 

2.32o-08 

2.81e-05 

-

Table B.7: ROC p-values for the Secretion virulent class. 

BioC 

C D D 

GN 

AG 

IPro 

K E G G 

T F A M 

P D B 

k N N B 

3mer 

BSVM 

B C y c 

-
1.46e-08 

0 .00e+00 

O.OOo+OO 

1.99e-12 

3.71o-08 

-
-
-
-
-

C D D 

-
-

6.11e-14 

8.55o-14 

8.77e-05 

+ 
-
-
-
-
-

GN 

-
-
-
-
-
-
-
-
-
-
-

AG 

-
-
+ 
-
-
-
-
-
-
-
-

I P r o 

-
-

1.55e-10 

2.65e-10 

-
-
-
-
-
-
-

K E G G 

-
-

6.28e-10 

2.66e-09 

+ 
-
-
-
-
-
-

T F A M 

5.85e-05 

3.66e-14 

0 .00e+00 

0 .00e+00 

0 .00e+00 

2.09e-12 

-
-
+ 
-
-

P D B 

1.75e-10 

O.OOo+OO 

0.00e+00 

0 .00e+00 

0 .00e+00 

0 .00e+00 

1.48e-05 

-
2.61o-08 

+ 
-

kNNB 

+ 
3.63e-04 

3.66e-14 

1.83e-13 

6.66e-07 

4.77e-08 

-
-
-
-
-

3mer 

1.74e-06 

1.29e-12 

0 .00e+00 

0 .00e+00 

0 .00e+00 

1.71e-13 

+ 
-

4.04e-05 

-
-

BSVM 

4.66e-09 

0 .00e+00 

0 .00e+00 

0 .00e+00 

0 .00e+00 

3.66e-14 

1.15e-05 

+ 
1.24O-05 

+ 
-

Table B.8: ROC p-values for the Motility virulent class. 
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BioC 

C D D 

GN 

AG 

I P r o 

K E G G 

T F A M 

P D B 

k N N B 

3mer 

BSVM 

BCyc 

-
8 .12e- l l 

0 .00e+00 

1.16e-08 

0 .00e+00 

-
-
-
-
-
-

C D D 

-
-

1.24e-06 

+ 
2.66e-12 

-
-
-
-
-
^ 

GN 

-
-
-
-

1.67e-02 

-
-
-
-
-
-

AG 

-
-

1.22e-14 

-
9.43C-12 

-
-
-
-
-
-

I P r o 

-
-
-
-
-
-
-
-
-
-
-

K E G G 

1.40e-08 

0 .00e+00 

0 .00e+00 

3.66e-14 

0 .00e+00 

-
9.74e-06 

5.32e-06 

5.62e-07 

-
-

T F A M 

2.56e-06 

0 .00e+00 

O.OOo+OO 

1.47e-13 

O.OOo+OO 

-
-
+ 
+ 

-
-

P D B 

6.64o-03 

0 .00e+00 

O.OOe+00 

2.98e-10 

0 .00e+00 

-
-
-
+ 

-
-

kNNB 

+ 
2.80e-05 

1.22e-14 

3.19e-08 

0 .00e+00 

-
-
-
-
-
-

3mer 

3.63e-09 

1.10e-13 

0 .00e+00 

0 .00e+00 

0 .00e+00 

+ 
4.34e-05 

9.41o-04 

5.01e-07 

-
-

BSVM 

4 .98e - l l 

0 .00e+00 

O.OOc+00 

0 .00e+00 

O.OOo+OO 

+ 
8.13e-07 

7.37o-06 

2.32e-06 

+ 
-

Table B.9: ROC p-values for the Antibiotic resistance virulent class. 

BioC 

C D D 

GN 

AG 

I P r o 

K E G G 

T F A M 

P D B 

kNNB 

3mer 

BSVM 

BCyc 

-
1.22o-14 

0 .00e+00 

1.22e-14 

0 .00e+00 

4.77e-05 

-
+ 

2.90e-03 

+ 
-

C D D 

-
-

1.38e-03 

6.70O-04 

1.66e-07 

-
-
-
-
-
-

GN 

-
-
-
-
-
-
-
-
-
-
-

AG 

-
-
+ 
-
+ 
-
-
-
-
-
-

I P r o 

-
-
+ 
-
-
-
-
-
-
-
-

K E G G 

-
3.98e-03 

1.95e-13 

2 .22e - l l 

1.56e-ll 

-
-
-
-
-
-

T F A M 

2.35o-03 

0 .00e+00 

0 .00e+00 

0 .00e+00 

0 .00e+00 

1.39O-08 

-
2.25e-03 

1.86o-05 

4.50e-02 

+ 

P D B 

-
2.54e-12 

2.32e-13 

2.08e-13 

O.OOo+OO 

9.58O-04 

-
-

7.71c-03 

+ 
-

k N N B 

-
7.92e-04 

2.34e-09 

2.88e-08 

2.370-12 

+ 
-
-
-
-
-

3mer 

-
7.12e-08 

1.05e-12 

5.25e-13 

3.66e-14 

6.990-03 

-
-

1.76C-02 

-
-

BSVM 

+ 
2 .03e- l l 

1.15C-11 

1.39e-ll 

0 .00e+00 

7.39e-04 

-
+ 

5.68O-03 

+ 
-

Table B.10: ROC p-values for the Defense virulent class. 

BioC 

C D D 

GN 

AG 

I P r o 

K E G G 

T F A M 

P D B 

k N N B 

3mer 

BSVM 

BCyc 

-
2.200-13 

0 .00e+00 

8.55e-14 

8.55e-14 

-
-
-
-
+ 
-

C D D 

-
-

1.47e-04 

6.86O-03 

+ 
-
-
-
-
-
-

GN 

-
-
-
-
-
-
-
-
-
-
-

AG 

-
-
+ 
-
-
-
-
-
-
-
-

IP ro 

-
-

7.28e-06 

8.57e-03 

-
-
-
-
-
-
-

K E G G 

+ 
3.53e-08 

O.OOc+00 

1.22e-14 

5.620-12 

-
-
-
+ 
+ 
-

T F A M 

1.57o-04 

1.22e-14 

1.22o-14 

1.34e-13 

3.54e-13 

+ 
-
+ 
+ 

2.06e-02 

-

P D B 

+ 
2.44e-14 

O.OOo+OO 

9.77e-14 

3.42e-13 

+ 
-
-
+ 
+ 
-

kNNB 

+ 
2.58e-06 

4.80c-12 

1.59e-l l 

7.67e-10 

-
-
-
-
+ 
-

3mer 

-
3.87e-05 

4.880-14 

1.76e-12 

9.05C-09 

-
-
-
-
-
-

BSVM 

1.68e-08 

3.66e-14 

O.OOe+00 

O.OOo+OO 

3.66e-14 

4.38o-06 

1.93e-04 

1.46o-04 

2.19e-04 

1.96e-10 

-

Table B . l l : ROC p-values for the Other virulent class. 



BioC 

C D D 

GN 

AG 

IPro 

KEGG 

TFAM 

P D B 

kNNB 

3mer 

BSVM 

1 

0.647 

0.716 

0.793 

0.791 

0.785 

0.666 

0.637 

0.664 

0.695 

0.708 

0.668 

2 

0.582 

0.669 

0.801 

0.796 

0.720 

0.607 

0.595 

0.647 

0.679 

0.813 

0.690 

3 

0.625 

0.693 

0.766 

0.746 

0.707 

0.703 

0.626 

0.663 

0.678 

0.663 

0.611 

4 

0.733 

0.798 

0.842 

0.818 

0.795 

0.737 

0.683 

0.757 

0.766 

0.653 

0.661 

5 

0.648 

0.731 

0.808 

0.793 

0.763 

0.684 

0.616 

0.689 

0.678 

0.661 

0.628 

6 

0.626 

0.828 

0.900 

0.898 

0.850 

0.664 

0.631 

0.774 

0.803 

0.818 

0.727 

7 

0.669 

0.748 

0.850 

0.834 

0.818 

0.778 

0.707 

0.685 

0.726 

0.698 

0.642 

8 

0.833 

0.883 

0.967 

0.967 

0.909 

0.905 

0.789 

0.730 

0.827 

0.763 

0.720 

9 

0.737 

0.796 

0.851 

0.801 

0.874 

0.668 

0.710 

0.712 

0.737 

0.663 

0.654 

10 

0.652 

0.718 

0.751 

0.749 

0.751 

0.688 

0.633 

0.656 

0.681 

0.657 

0.647 

11 

0.715 

0.785 

0.831 

0.822 

0.797 

0.700 

0.684 

0.694 

0.706 

0.722 

0.628 

Table B.12: ROC means across specific virulence classes, derived from six five-fold cross-

validations (corresponding to the significance tests). 

BioC 

C D D 

GN 

AG 

IPro 

KEGG 

TFAM 

P D B 

kNNB 

3mer 

BSVM 

1 

0.759 

0.749 

0.741 

0.743 

0.690 

0.731 

0.845 

0.827 

0.616 

0.594 

0.679 

2 

0.727 

0.900 

0.637 

0.589 

0.775 

0.568 

0.758 

0.980 

0.768 

0.568 

0.788 

3 

0.732 

0.744 

0.657 

0.672 

0.678 

0.715 

0.738 

0.836 

0.667 

0.585 

0.730 

4 

0.841 

0.868 

0.706 

0.653 

0.767 

0.779 

0.820 

0.915 

0.719 

0.702 

0.828 

5 

0.849 

0.836 

0.708 

0.751 

0.651 

0.741 

0.858 

0.870 

0.642 

0.625 

0.711 

6 

0.829 

0.952 

0.726 

0.725 

0.875 

0.910 

0.834 

0.927 

0.764 

0.738 

0.870 

7 

0.868 

0.856 

0.741 

0.745 

0.775 

0.873 

0.917 

0.923 

0.655 

0.530 

0.753 

8 

0.935 

0.919 

0.949 

0.947 

0.926 

0.955 

0.957 

0.970 

0.735 

0.706 

0.842 

9 

0.700 

0.818 

0.735 

0.699 

0.740 

0.618 

0.728 

0.730 

0.729 

0.595 

0.762 

10 

0.661 

0.719 

0.711 

0.623 

0.621 

0.686 

0.727 

0.817 

0.583 

0.592 

0.682 

11 

0.791 

0.793 

0.577 

0.654 

0.598 

0.666 

0.826 

0.850 

0.569 

0.593 

0.755 

Table B.13: ROC50 means across specific virulence classes, derived from six five-fold cross-

validations. 



BIBLIOGRAPHY 

Jmol: an open-source Java viewer for chemical structures in 3d, 2009. 

Ramasubramanian Sundaramoorthy, Paul K Fyfe, and William N Hunter. Structure of staphy­
lococcus aureus esxa suggests a contribution to virulence by action as a transport chaperone 
and/or adaptor protein. J Mol Biol, 383(3):603-14, Nov 2008. 

Healthmap, August 2009. 

Lawrence C Madoff. Promed-mail: an early warning system for emerging diseases. Clin Infect 
Dis, 39(2):227-32, Jul 2004. 

ProMED, August 2009. 

Eurosurveillance, August 2009. 

Kate E Jones, Nikkita G Patel, Marc A Levy, Adam Storeygard, Deborah Balk, John L Gittle-
man, and Peter Daszak. Global trends in emerging infectious diseases. Nature, 451(7181):990-
3, Feb 2008. 

A D Baxevanis. The molecular biology database collection: an updated compilation of biolog­
ical database resources. Nucleic Acids Res, 29(1):1-10, Jan 2001. 

Andreas D Baxevanis. The molecular biology database collection: 2002 update. Nucleic Acids 
Res, 30(1):1-12, Jan 2002. 

Andreas D Baxevanis. The molecular biology database collection: 2003 update. Nucleic Acids 
Res, 31(1):1-12, Jan 2003. 

Michael Y Galperin. The molecular biology database collection: 2004 update. Nucleic Acids 
Res, 32 (Database issue) :D3-22, Jan 2004. 

Michael Y Galperin. The molecular biology database collection: 2005 update. Nucleic Acids 
Res, 33(Database issue):D5-24, Jan 2005. 

Michael Y Galperin. The molecular biology database collection: 2006 update. Nucleic Acids 
Res, 34(Database issue):D3-5, Jan 2006. 

Michael Y Galperin. The molecular biology database collection: 2007 update. Nucleic Acids 
Res, 35(Database issue):D3-4, Jan 2007. 

Michael Y Galperin. The molecular biology database collection: 2008 update. Nucleic Acids 
Res, 36(Database issue):D2-4, Jan 2008. 

Michael Y Galperin and Guy R Cochrane. Nucleic acids research annual database issue and 
the nar online molecular biology database collection in 2009. Nucleic Acids Res, 37(Database 
issue) :D 1-4, Jan 2009. 

Gert R. G. Lanckriet, Minghua Deng, Nello Cristianini, Michael I. Jordan, and 
William Stafford Noble. Kernel-based data fusion and its application to protein function 
prediction in yeast. In Pacific Symposium on Biocomputing, pages 300-311, 2004. 



159 

[18] Hon Nian Chua, Wing-Kin Sung, and Limsoon Wong. An efficient strategy for extensive inte­
gration of diverse biological data for protein function prediction. Bioinformatics, 23(24) :3364-
3373, 2007. 

[19] Eithon Cadag, Brenton Louie, Peter J. Myler, and Peter Tarczy-Hornoch. BioMediator data 
integration and inference for functional annotation of anonymous sequences. In Altman et al. 
[264], pages 343-354. 

[20] Landon Detwiler, Wolfgang Gatterbauer, Brenton Louie, Dan Suciu, and Peter Tarczy-
Hornoch. Integrating and ranking uncertain scientific data. In ICDE [216], pages 1235-1238. 

[21] Terry H Shen, Christopher S Carlson, and Peter Tarczy-Hornoch. Evaluating the accuracy of 
a functional snp annotation system. BMC Bioinformatics, 10 Suppl 9:S11, 2009. 

[22] T M Wassenaar and W Gaastra. Bacterial virulence: can we draw the line? FEMS Microbiol 
Lett, 201(l):l-7, 2001 Jul 10. 

[23] Lihong Chen, Jian Yang, Jun Yu, Zhijian Yao, Lilian Sun, Yan Shen, and Qi Jin. Vfdb: a 
reference database for bacterial virulence factors. Nucleic Acids Res, 33(Database issue):D325-
8, Jan 2005. 

[24] Joy Scaria, Umamaheswaran Chandramouli, and Sanjay Kumar Verma. Antibiotic resistance 
genes online (argo): a database on vancomycin and beta-lactam resistance genes. Bioinforma-
tion, l(l):5-7, 2005. 

[25] Rainer Winnenburg, Thomas K Baldwin, Martin Urban, Chris Rawlings, Jacob Kohler, and 
Kim E Hammond-Kosack. Phi-base: a new database for pathogen host interactions. Nucleic 
Acids Res, 34(Database issue):D459-64, Jan 2006. 

[26] Leslie Klis McNeil, Claudia Reich, Ramy K Aziz, Daniela Bartels, Matthew Cohoon, Terry 
Disz, Robert A Edwards, Svetlana Gerdes, Kaitlyn Hwang, Michael Kubal, Gohar Rem Mar-
garyan, Folker Meyer, William Mihalo, Gary J Olsen, Robert Olson, Andrei Osterman, Daniel 
Paarmann, Tobias Paczian, Bruce Parrello, Gordon D Pusch, Dmitry A Rodionov, Xinghua 
Shi, Olga Vassieva, Veronika Vonstein, Olga Zagnitko, Fangfang Xia, Jenifer Zinner, Ross Over-
beek, and Rick Stevens. The national microbial pathogen database resource (nmpdr): a ge­
nomics platform based on subsystem annotation. Nucleic Acids Res, 35(Database issue):D347-
53, Jan 2007. 

[27] C E Zhou, J Smith, M Lam, A Zemla, M D Dyer, and T Slezak. Mvirdb-a microbial database 
of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. 
Nucleic Acids Res, 35(Database issue):D391-4, Jan 2007. 

[28] Jeremy D Selengut, Daniel H Haft, Tanja Davidsen, Anurhada Ganapathy, Michelle Gwinn-
Giglio, William C Nelson, Alexander R Richter, and Owen White. Tigrfams and genome 
properties: tools for the assignment of molecular function and biological process in prokaryotic 
genomes. Nucleic Acids Res, 35(Database issue):D260-4, Jan 2007. 

[29] In Seok Yang, Chunsun Ryu, Ki Joon Cho, Jin Kwang Kim, Swee Hoe Ong, Wayne P Mitchell, 
Bong Su Kim, Hee-Bok Oh, and Kyung Hyun Kim. Idbd: infectious disease biomarker 
database. Nucleic Acids Res, 36(Database issue):D455-60, Jan 2008. 

[30] C Nelson Hayes, Diego Diez, Nicolas Joannin, Wataru Honda, Minoru Kanehisa, Mats 
Wahlgren, Craig E Wheelock, and Susumu Goto, vardb: a pathogen-specific sequence database 
of protein families involved in antigenic variation. Bioinformatics, 24(21):2564-5, Nov 2008. 

[31] Bo Liu and Mihai Pop. Ardb-antibiotic resistance genes database. Nucleic Acids Res, 
37(Database issue):D443-7, Jan 2009. 



[32] E A Worthey and P J Myler. Protozoan genomes: gene identification and annotation. Int J 
Parasitol, 35(5):495-512, Apr 2005. 

[33] Sohrab P Shah, Yong Huang, Tao Xu, Macaire M S Yuen, John Ling, and B F Francis 
Ouellette. Atlas - a data warehouse for integrative bioinformatics. BMC Bioinformatics, 6:34, 
2005. 

[34] Sarah Cohen-Boulakia, Olivier Biton, Susan Davidson, and Christine Froidevaux. BioGu-
ideSRS: querying multiple sources with a user-centric perspective. Bioinformatics, 
23(10):1301-1303, 2007 May 15. 

[35] Loren Donelson, Peter Tarczy-Hornoch, Peter Mork, Cindy Dolan, Joyce A Mitchell, M Bar­
rier, and Hao Mei. The BioMediator system as a data integration tool to answer diverse 
biologic queries. Stud Health Technol Inform, 107(Pt 2):768-772, 2004. 

[36] Sarah Cohen-Boulakia, Susan Davidson, Christine Froidevaux, Zoe Lacroix, and Maria-Esther 
Vidal. Path-based systems to guide scientists in the maze of biological data sources. J Bioin-
form Comput Biol, 4(5):1069-1095, 2006 Oct. 

[37] Aaron Birkland and Golan Yona. Biozon: a system for unification, management and analysis 
of heterogeneous biological data. BMC Bioinformatics, 7:70, 2006. 

[38] Susan B. Davidson, Jonathan Crabtree, Brian P. Brunk, Jonathan Schug, Val Tannen, 
G. Christian Overton, and Christian J. Stoeckert Jr. K2/Kleisli and GUS: Experiments in 
integrated access to genomic data sources. IBM Systems Journal, 40(2):512-531, 2001. 

[39] I-Min A. Chen and Victor M. Markowitz. An overview of the object-protocol model (opm) 
and opm data management tools. Inf. Syst., 20(5):393-418, 1995. 

[40] T Etzold, A Ulyanov, and P Argos. Srs: information retrieval system for molecular biology 
data banks. Methods Enzymol, 266:114-128, 1996. 

[41] R Stevens, P Baker, S Bechhofer, G Ng, A Jacoby, N W Paton, C A Goble, and A Brass. 
Tambis: transparent access to multiple bioinformatics information sources. Bioinformatics, 
16(2): 184-185, 2000 Feb. 

[42] The World Health Report 2008: Now more than ever, 2008. 

[43] David M Morens, Gregory K Folkers, and Anthony S Fauci. Emerging infections: a perpetual 
challenge. Lancet Infect Dis, 8(11):710-719, 2008 Nov. 

[44] G H Cassell. Infectious causes of chronic inflammatory diseases and cancer. Emerg Infect Dis, 
4(3):475-87, 1998. 

[45] James I Garrels. Yeast genomic databases and the challenge of the post-genomic era. Fund 
Integr Genomics, 2(4-5):212-237, 2002 Sep. 

[46] Stephan Philippi and Jacob Kohler. Addressing the problems with life-science databases for 
traditional uses and systems biology. Nat Rev Genet, 7(6):482-488, 2006 Jun. 

[47] Lawrence Hunter. Artificial intelligence and molecular biology. AAAI Press, Menlo Park, 
Calif., 1993. 

[48] Richard Durbin. Biological sequence analysis: probabalistic models of proteins and nucleic 
acids. Cambridge University Press, Cambridge, UK, 1998. 

[49] Jens Meiler and David Baker. Rapid protein fold determination using unassigned nmr data. 
Proc Natl Acad Sci USA, 100(26): 15404-9, Dec 2003. 



161 

[50] Robert Service. Structural biology, structural genomics, round 2. Science, 307(5715): 1554-8, 
Mar 2005. 

[51] John-Marc Chandonia and Steven E Brenner. The impact of structural genomics: expectations 
and outcomes. Science, 311(5759):347-51, Jan 2006. 

[52] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local alignment search 
tool. J Mol Biol, 215(3):403-10, Oct 1990. 

[53] S F Altschul, T L Madden, A A Schaffer, J Zhang, Z Zhang, W Miller, and D J Lipman. 
Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic 
Acids Res, 25(17):3389-402, Sep 1997. 

[54] Joan C. Bartlett and Elaine G. Toms. Developing a protocol for bioinformatics analysis: 
An integrated information behavior and task analysis approach. J Am Soc Inform Sci Tech, 
56(5):469-482, Jan 2005. 

[55] K Karplus, C Barrett, and R Hughey. Hidden markov models for detecting remote protein 
homologies. Bioinformatics, 14(10):846-56, 1998. 

[56] T Jaakkola, M Diekhans, and D Haussler. A discriminative framework for detecting remote 
protein homologies. J Corn-put Biol, 7(l-2):95-114, 2000. 

[57] Deepak K Bhalla and David B Warheit. Biological agents with potential for misuse: a historical 
perspective and defensive measures. Toxicol Appl Pharmacol, 199(l):71-84, Aug 2004. 

[58] John M Greene, Frank Collins, Elliot J Lefkowitz, David Roos, Richard H Scheuermann, Bruno 
Sobral, Rick Stevens, Owen White, and Valentina Di Francesco. National institute of allergy 
and infectious diseases bioinformatics resource centers: new assets for pathogen informatics. 
Infect Immun, 75(7):3212-9, Jul 2007. 

[59] International travel and health: Situation as on 1 January 2003. Technical report, World 
Health Organization, January 2003. 

[60] Steven R Gill, Derrick E Fouts, Gordon L Archer, Emmanuel F Mongodin, Robert T De-
boy, Jacques Ravel, Ian T Paulsen, James F Kolonay, Lauren Brinkac, Mauren Beanan, 
Robert J Dodson, Sean C Daugherty, Ramana Madupu, Samuel V Angiuoli, A Scott Durkin, 
Daniel H Haft, Jessica Vamathevan, Hoda Khouri, Terry Utterback, Chris Lee, George Dim-
itrov, Lingxia Jiang, Haiying Qin, Jan Weidman, Kevin Tran, Kathy Kang, Ioana R Hance, 
Karen E Nelson, and Claire M Fraser. Insights on evolution of virulence and resistance from 
the complete genome analysis of an early methicillin-resistant staphylococcus aureus strain 
and a biofilm-producing methicillin-resistant staphylococcus epidermidis strain. J Bacterial, 
187(7):2426-38, Apr 2005. 

[61] Joao C Setubal, Marcelo Reis, James Matsunaga, and David A Haake. Lipoprotein computa­
tional prediction in spirochaetal genomes. Microbiology, 152(Pt 1):113—21, Jan 2006. 

[62] D N Fredericks and D A Relman. Sequence-based identification of microbial pathogens: a 
reconsideration of koch's postulates. Clin Microbiol Rev, 9(l):18-33, Jan 1996. 

[63] Kelly Paine and Darren R Flower. Bacterial bioinformatics: pathogenesis and the genome. J 
Mol Microbiol Biotechnol, 4(4):357-365, Jul 2002. 

[64] A Casadevall and L A Pirofski. Host-pathogen interactions: redefining the basic concepts of 
virulence and pathogenicity. Infect Immun, 67(8):3703-3713, 1999 Aug. 

[65] Nat F Brown, Mark E Wickham, Brian K Coombes, and B Brett Finlay. Crossing the line: 
selection and evolution of virulence traits. PLoS Pathog, 2(5):e42, May 2006. 



[66] David M Raskin, Rekha Seshadri, Stefan U Pukatzki, and John J Mekalanos. Bacterial ge­
nomics and pathogen evolution. Cell, 124(4):703-714, 2006 Feb 24. 

[67] L E Alksne and S J Projan. Bacterial virulence as a target for antimicrobial chemotherapy. 
Cum Opin Biotechnol, ll(6):625-636, 2000 Dec. 

[68] Guy R Cornelis. The type iii secretion injectisome. Nat Rev Microbiol, 4(11):811—25, Nov 
2006. 

[69] B B Finlay and S Falkow. Common themes in microbial pathogenicity revisited. Microbiol 
Mol Biol Rev, 61(2):136-169, Jun 1997. 

[70] Cristina Paiva de Souza. Pathogenicity mechanisms of prokaryotic cells: an evolutionary view. 
Braz J Infect Dis, 7(1):23-31, Feb 2003. 

[71] J.W. Wilson, M.J. Schurr, C.L. LeBlanc, R. Ramamurthy, K.L. Buchanan, and C.A. Nickerson. 
Mechanisms of bacterial pathogenicity. Postgrad Med J, 78:216-224, 2002. 

[72] Steven J Projan. New (and not so new) antibacterial targets - from where and when will the 
novel drugs come? Curr Opin Pharmacol, 2(5):513-22, Oct 2002. 

[73] Hiroaki Suga and Kristina M Smith. Molecular mechanisms of bacterial quorum sensing as a 
new drug target. Curr Opin Chem Biol, 7(5):586-91, Oct 2003. 

[74] J Hacker, G Blum-Oehler, I Miihldorfer, and H Tschape. Pathogenicity islands of virulent 
bacteria: structure, function and impact on microbial evolution. Mol Microbiol, 23(6):1089-
97, Mar 1997. 

[75] J J Mecsas and E J Strauss. Molecular mechanisms of bacterial virulence: type iii secretion 
and pathogenicity islands. Emerg Infect Dis, 2(4):270-88, 1996. 

[76] E Carniel. The yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect, 
3(7):561-9, Jun 2001. 

[77] Ryszard Koczura and Adam Kaznowski. The yersinia high-pathogenicity island and iron-
uptake systems in clinical isolates of escherichia coli. J Med Microbiol, 52(Pt 8):637-42, Aug 
2003. 

[78] A Vazquez-Torres, Y Xu, J Jones-Carson, D W Holden, S M Lucia, M C Dinauer, P Mastroeni, 
and F C Fang. Salmonella pathogenicity island 2-dependent evasion of the phagocyte nadph 
oxidase. Science, 287(5458): 1655-8, Mar 2000. 

[79] A M Berry and J C Paton. Additive attenuation of virulence of streptococcus pneumoniae 
by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence 
proteins. Infect Immun, 68(l):133-40, Jan 2000. 

[80] David J Payne, Michael N Gwynn, David J Holmes, and David L Pompliano. Drugs for bad 
bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov, 6(l):29-40, 
Jan 2007. 

[81] M Y Galperin and E V Koonin. Searching for drug targets in microbial genomes. Curr Opin 
Biotechnol, 10(6):571-578, 1999 Dec. 

[82] DB Searls. Using bioinformatics in gene and drug discovery. Drug Discov Today, 5(4): 135-143, 
2000 Apr. 

[83] R E Bruccoleri, T J Dougherty, and D B Davison. Concordance analysis of microbial genomes. 
Nucleic Acids Res, 26(19):4482-6, Oct 1998. 



163 

B W Wren. Microbial genome analysis: insights into virulence, host adaptation and evolution. 
Nat Rev Genet, l(l):30-39, 2000 Oct. 

M G Surette, M B Miller, and B L Bassler. Quorum sensing in escherichia coli, salmonella 
typhimurium, and vibrio harveyi: a new family of genes responsible for autoinducer production. 
Proc Natl Acad Sci USA, 96(4):1639-44, Feb 1999. 

S K Mazmanian, G Liu, H Ton-That, and O Schneewind. Staphylococcus aureus sortase, an 
enzyme that anchors surface proteins to the cell wall. Science, 285(5428):760-3, Jul 1999. 

L W Cheng and O Schneewind. Type iii machines of gram-negative bacteria: delivering the 
goods. Trends Microbiol, 8(5):214-20, May 2000. 

R Nordfelth, A M Kauppi, H A Norberg, H Wolf-Watz, and M Elofsson. Small-molecule 
inhibitors specifically targeting type "iii" secretion. Infect Immun, 73(5):3104-3114, 2005 
May. 

Chi-Tai Fang, Yi-Ping Chuang, Chia-Tung Shun, Shan-Chwen Chang, and Jin-Town Wang. A 
novel virulence gene in klebsiella pneumoniae strains causing primary liver abscess and septic 
metastatic complications. J Exp Med, 199(5):697-705, 2004 Mar 1. 

A. Marra. Targeting virulence for antibacterial chemotherapy: identifying and characterizing 
virulence factors for lead discovery. Drugs in Research and Design, 7(1):1—16, 2006. 

Jian Yang, Lihong Chen, Lilian Sun, Jun Yu, and Qi Jin. Vfdb 2008 release: an enhanced web-
based resource for comparative pathogenomics. Nucleic Acids Res, 36(Database issue) :D539-
42, Jan 2008. 

Gaurav Sachdeva, Kaushal Kumar, Preti Jain, and Srinivasan Ramachandran. Spaan: a 
software program for prediction of adhesins and adhesin-like proteins using neural networks. 
Bioinformatics, 21(4):483-491, 2005 Feb 15. 

Christina Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: a string 
kernel for svm protein classification. Pac Symp Biocomput, pages 564-75, 2002. 

Sudipto Saha and G P S Raghava. Vicmpred: an svm-based method for the prediction of 
functional proteins of gram-negative bacteria using amino acid patterns and composition. 
Genomics Proteomics Bioinformatics, 4(l):42-7, Feb 2006. 

Aarti Garg and Dinesh Gupta. Virulentpred: a svm based prediction method for virulent 
proteins in bacterial pathogens. BMC Bioinformatics, 9:62, 2008. 

P Bork and E V Koonin. Predicting functions from protein sequences-where are the bottle­
necks? Nat Genet, 18(4):313-318, 1998 Apr. 

Zoe Lacroix and Terence Critchlow. Bioinformatics: managing scientific data. Morgan Kauf-
mann Publishers, San Francisco, CA, 2003. 

William A. Baumgartner Jr., K. Bretonnel Cohen, Lynne M. Fox, George Acquaah-Mensah, 
and Lawrence Hunter. Manual curation is not sufficient for annotation of genomic databases. 
In ISMB/ECCB (Supplement of Bioinformatics), pages 41-48, 2007. 

Takeya Kasukawa, Masaaki Furuno, Itoshi Nikaido, Hidemasa Bono, David A Hume, Carol 
Bult, David P Hill, Richard Baldarelli, Julian Gough, Alexander Kanapin, Hideo Matsuda, 
Lynn M Schriml, Yoshihide Hayashizaki, Yasushi Okazaki, and John Quackenbush. Devel­
opment and evaluation of an automated annotation pipeline and cdna annotation system. 
Genome Res, 13(6B):1542-51, Jun 2003. 



[100] Simon C Potter, Laura Clarke, Val Curwen, Stephen Keenan, Emmanuel Mongin, Stephen 
M J Searle, Arne Stabenau, Roy Storey, and Michele Clamp. The ensembl analysis pipeline. 
Genome Res, 14(5):934-41, May 2004. 

[101] Philippe Gouret, Verane Vitiello, Nathalie Balandraud, Andre Gilles, Pierre Pontarotti, and 
Etienne G J Danchin. Figenix: intelligent automation of genomic annotation: expertise inte­
gration in a new software platform. BMC Bioinformatics, 6:198, 2005. 

[102] M Ashburner, C A Ball, J A Blake, D Botstein, H Butler, J M Cherry, A P Davis, K Dolinski, 
S S Dwight, J T Eppig, M A Harris, D P Hill, L Issel-Tarver, A Kasarskis, S Lewis, J C 
Matese, J E Richardson, M Ringwald, G M Rubin, and G Sherlock. Gene ontology: tool for 
the unification of biology, the gene ontology consortium. Nat Genet, 25(l):25-9, May 2000. 

[103] Steffen Hennig, Detlef Groth, and Hans Lehrach. Automated gene ontology annotation for 
anonymous sequence data. Nucleic Acids Res, 31(13):3712-5, Jul 2003. 

[104] Brenton Louie, Landon Detwiler, Nilesh N. Dalvi, Ron Shaker, Peter Tarczy-Hornoch, and 
Dan Suciu. Incorporating uncertainty metrics into a general-purpose data integration system. 
In SSDBM [263], page 19. 

[105] Peter Karp. What we do not know about sequence analysis and sequence databases. Bioin­
formatics, 14(9):753-754, 1998. 

[106] S E Brenner. Errors in genome annotation. Trends Genet, 15(4):132-133, 1999 Apr. 

[107] Walter R Gilks, Benjamin Audit, Daniela De Angelis, Sophia Tsoka, and Christos A Ouzounis. 
Modeling the percolation of annotation errors in a database of protein sequences. Bioinfor­
matics, 18(12):1641-9, Dec 2002. 

[108] Heiko Miiller. Semantic data cleansing in genome databases. In Scholl and Grust [217]. 

[109] Xiaotu Ma, Hyunju Lee, Li Wang, and Fengzhu Sun. Cgi: a new approach for prioritizing 
genes by combining gene expression and protein-protein interaction data. Bioinformatics, 
23(2):215-21, Jan 2007. 

[110] Brenton Louie, Peter Mork, Fernando Martin-Sanchez, Alon Halevy, and Peter Tarczy-
Hornoch. Data integration and genomic medicine. J Biomed Inform, 40(1):5-16, Feb 2007. 

[Ill] Limsoon Wong. Technologies for integrating biological data. Brief Bioinform, 3(4):389-404, 
Dec 2002. 

[112] Oliver D King, Rebecca E Foulger, Selina S Dwight, James V White, and Frederick P Roth. 
Predicting gene function from patterns of annotation. Genome Res, 13(5):896-904, May 2003. 

[113] Oliver D King, Jeffrey C Lee, Aimee M Dudley, Daniel M Janse, George M Church, and 
Frederick P Roth. Predicting phenotype from patterns of annotation. Bioinformatics, 19 
Suppl l:il83-9, 2003. 

[114] Olga G Troyanskaya, Kara Dolinski, Art B Owen, Russ B Altman, and David Botstein. A 
bayesian framework for combining heterogeneous data sources for gene function prediction (in 
saccharomyces cerevisiae). Proc Natl Acad Sci USA, 100(14):8348-53, Jul 2003. 

[115] Minghua Deng, Ting Chen, and Fengzhu Sun. An integrated probabilistic model for functional 
prediction of proteins. J Comput Biol, ll(2-3):463-75, 2004. 

[116] Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal 
margin classifiers. In COLT, pages 144-152, 1992. 

[117] Christopher M Bishop. Pattern recognition and machine learning. Springer, New York, 2006. 



165 

[118] Trevor Hastie, Robert Tibshirani, and J. H Friedman. The elements of statistical learning: 
data mining, inference, and prediction. Springer, New York, 2001. 

[119] M P Brown, W N Grundy, D Lin, N Cristianini, C W Sugnet, T S Furey, M Ares, Jr, and 
D Haussler. Knowledge-based analysis of microarray gene expression data by using support 
vector machines. Proc Natl Acad Sci USA, 97(l):262-7, Jan 2000. 

[120] S Hua and Z Sun. A novel method of protein secondary structure prediction with high segment 
overlap measure: support vector machine approach. J Mol Biol, 308(2):397-407, Apr 2001. 

[121] Christina S Leslie, Eleazar Eskin, Adiel Cohen, Jason Weston, and William Stafford Noble. 
Mismatch string kernels for discriminative protein classification. Bioinformatics, 20(4):467-76, 
Mar 2004. 

[122] Paul Pavlidis, Jinsong Cai, Jason Weston, and William N. Grundy. Gene functional clas­
sification from heterogeneous data. In Proceedings of the Fifth International Conference on 
Computational Molecular Biology, number 5 in RECOMB. ISCB, April 2001. 

[123] Bernhard Scholkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel methods in computational 
biology. MIT Press, Cambridge, Mass., 2004. 

[124] Anneleen Daemen, Olivier Gevaert, and Bart De Moor. Integration of clinical and microarray 
data with kernel methods. Conf Proc IEEE Eng Med Biol Soc, 2007:5411-5, 2007. 

[125] Gert R G Lanckriet, Tijl De Bie, Nello Cristianini, Michael I Jordan, and William Stafford 
Noble. A statistical framework for genomic data fusion. Bioinformatics, 20(16):2626-2635, 
2004 Nov 1. 

[126] Kosuke Fujishima, Mizuki Komasa, Sayaka Kitamura, Haruo Suzuki, Masaru Tomita, and 
Akio Kanai. Proteome-wide prediction of novel dna/rna-binding proteins using amino acid 
composition and periodicity in the hyperthermophilic archaeon pyrococcus furiosus. DNA 
Res, 14(3):91-102, Jun 2007. 

[127] Anneleen Daemen, Olivier Gevaert, Fabian Ojeda, Annelies Debucquoy, Johan Ak Suykens, 
Christine Sempoux, Jean-Pascal Machiels, Karin Haustermans, and Bart De Moor. A kernel-
based integration of genome-wide data for clinical decision support. Genome Med, 1(4):39, 
2009. 

[128] Guillaume Obozinski, Gert Lanckriet, Charles Grant, Michael I Jordan, and William Stafford 
Noble. Consistent probabilistic outputs for protein function prediction. Genome Biol, 9 Suppl 
1:S6, 2008. 

[129] Lincoln D Stein. Integrating biological databases. Nat Rev Genet, 4(5):337-45, May 2003. 

[130] Maurizio Lenzerini. Data integration: A theoretical perspective. In Popa [248], pages 233-246. 

[131] Kelan Wang. Validating generalizability and extensibility of the BioMediator system for data 
integration in life science. Master's thesis, University of Washington, 2005. 

[132] P Mork, A Halevy, and P Tarczy-Hornoch. A model for data integration systems of biomedical 
data applied to online genetic databases. Proc AMIA Symp, pages 473-477, 2001. 

[133] Zoe Lacroix, Hyma Murthy, Felix Naumann, and Louiqa Raschid. Links and paths through 
life sciences data sources. In Rahm [245], pages 203-211. 

[134] Zoe Lacroix, Louiqa Raschid, and Maria-Esther Vidal. Efficient techniques to explore and 
rank paths in life science data sources. In Rahm [245], pages 187-202. 



166 

[135] Peter Mork. Peer Architectures for Knowledge Sharing. PhD thesis, University of Washington, 
2005. 

[136] H Mei, P Tarczy-Hornoch, P Mork, A J Rossini, R Shaker, and L Donelson. Expression array 
annotation using the biomediator biological data integration system and the bioconductor 
analytic platform. AMIA Annu Symp Proc, pages 445-449, 2003. 

[137] K Wang, P Tarczy-Hornoch, R Shaker, P Mork, and J F Brinkley. Biomediator data in­
tegration: beyond genomics to neuroscience data. AMIA Annu Symp Proc, pages 779-783, 
2005. 

[138] Zoe Lacroix, Kaushal Parekh, Maria-Esther Vidal, Marelis Cardenas, and Natalia Marquez. 
Bionavigation: Selecting optimum paths through biological resources to evaluate ontological 
navigational queries. In Ludascher and Raschid [252], pages 275-283. 

[139] Jeffrey D. Ullman. Information integration using logical views. In Afrati and Kolaitis [246], 
pages 19-40. 

[140] Richard Hull. Managing semantic heterogeneity in databases: A theoretical perspective. In 
PODS [247], pages 51-61. 

[141] Guido Van Rossum. Python programming language. 

[142] Eithon Cadag and Peter Tarczy-Hornoch. Supporting retrieval of diverse biomedical data 
using evidence-aware queries. AMIA Annu Symp Proc, (To appear), November 2009. 

[143] Seth Carbon, Amelia Ireland, Christopher J Mungall, ShengQiang Shu, Brad Marshall, and 
Suzanna Lewis. Amigo: online access to ontology and annotation data. Bioinformatics, 
25(2):288-289, 2009 Jan 15. 

[144] Peter D Karp, Christos A Ouzounis, Caroline Moore-Kochlacs, Leon Goldovsky, Pallavi Kaipa, 
Dag Ahren, Sophia Tsoka, Nikos Darzentas, Victor Kunin, and Nuria Lopez-Bigas. Expansion 
of the biocyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res, 
33(19):6083-6089, 2005. 

[145] Aron Marchler-Bauer, John B Anderson, Farideh Chitsaz, Myra K Derbyshire, Carol DeWeese-
Scott, Jessica H Fong, Lewis Y Geer, Renata C Geer, Noreen R Gonzales, Marc Gwadz, Siqian 
He, David I Hurwitz, John D Jackson, Zhaoxi Ke, Christopher J Lanczycki, Cynthia A Liebert, 
Chunlei Liu, Fu Lu, Shennan Lu, Gabriele H Marchler, Mikhail Mullokandov, James S Song, 
Asba Tasneem, Narmada Thanki, Roxanne A Yamashita, Dachuan Zhang, Naigong Zhang, and 
Stephen H Bryant. Cdd: specific functional annotation with the conserved domain database. 
Nucleic Acids Res, 37(Database issue):D205-10, 2009 Jan. 

[146] Sarah Hunter, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Alex Bateman, David Binns, 
Peer Bork, Ujjwal Das, Louise Daugherty, Lauranne Duquenne, Robert D Finn, Julian Gough, 
Daniel Haft, Nicolas Hulo, Daniel Kahn, Elizabeth Kelly, Aurelie Laugraud, Ivica Letunic, 
David Lonsdale, Rodrigo Lopez, Martin Madera, John Maslen, Craig McAnulla, Jennifer 
McDowall, Jaina Mistry, Alex Mitchell, Nicola Mulder, Darren Natale, Christine Orengo, 
Antony F Quinn, Jeremy D Selengut, Christian J A Sigrist, Manjula Thimma, Paul D Thomas, 
Franck Valentin, Derek Wilson, Cathy H Wu, and Corin Yeats. Interpro: the integrative pro­
tein signature database. Nucleic Acids Res, 37(Database issue):D211-5, 2009 Jan. 

[147] Kiyoko F Aoki and Minoru Kanehisa. Using the kegg database resource. Curr Protoc Bioin­
formatics, Chapter l:Unit 1.12, 2005 Oct. 

[148] J.L. Sussman, D. Lin, J. Jiang, N.O. Manning, J. Prilusky, O. Ritter, and E.E. Abola. Pro­
tein Data Bank (PDB): Database of three-dimensional structural information of biological 
macromolecules. Acta Crystallographies, 54(1):1078-1084, Nov 1998. 



167 

[149] Daniel H Haft, Jeremy D Selengut, and Owen White. The tigrfams database of protein families. 
Nucleic Acids Res, 31(l):371-373, 2003 Jan 1. 

[150] Donna Maglott, Jim Ostell, Kim D Pruitt, and Tatiana Tatusova. Entrez gene: gene-centered 
information at ncbi. Nucleic Acids Res, 35(Database issue):D26-31, 2007 Jan. 

[151] Dennis A Benson, Ilene Karsch-Mizrachi, David J Lipman, James Ostell, and Eric W Sayers. 
Genbank. Nucleic Acids Res, 37(Database issue):D26-31, 2009 Jan. 

[152] Emmanuel Boutet, Damien Lieberherr, Michael Tognolli, Michel Schneider, and Amos Bairoch. 
Uniprotkb/swiss-prot. Methods Mol Biol, 406:89-112, 2007. 

[153] P Mork, R Shaker, A Halevy, and P Tarczy-Hornoch. Pql: a declarative query language over 
dynamic biological schemata. Proc AMIA Symp, pages 533-537, 2002. 

[154] Peter Tarczy-Hornoch, Peter Mork, and Ron Shaker. BioMediator data integration system. 

[155] Larry Wall. Perl programming language. 

[156] James Gosling. Java programming language. 

[157] Todd J. Green, Gregory Karvounarakis, Nicholas E. Taylor, Olivier Biton, Zachary G. Ives, 
and Val Tannen. Orchestra: facilitating collaborative data sharing. In Chan et al. [205], pages 
1131-1133. 

[158] Eithon Cadag, Peter Tarczy-Hornoch, and Peter J. Myler. On the reachability of trustworthy 
information from integrated exploratory biological queries. In Paton et al. [219], pages 55-70. 

[159] R Albert, H Jeong, and AL Barabasi. Error and attack tolerance of complex networks. Nature, 
406(6794):378-382, 2000 Jul 27. 

[160] L A Amaral, A Scala, M Barthelemy, and H E Stanley. Classes of small-world networks. Proc 
Natl Acad Sci USA, 97(21):11149-11152, 2000 Oct 10. 

[161] David B Searls. Data integration-connecting the dots. Nat Biotechnol, 21(8):844-845, 2003 
Aug. 

[162] Krishna Bharat and Monika Rauch Henzinger. Improved algorithms for topic distillation in a 
hyperlinked environment. In SIGIR [208], pages 104-111. 

[163] Koji Tsuda and William Stafford Noble. Learning kernels from biological networks by maxi­
mizing entropy. Bioinjormatics, 20 Suppl l:i326-33, 2004 Aug 4. 

[164] Jason Weston, Andre Elisseeff, Dengyong Zhou, Christina S Leslie, and William Stafford Noble. 
Protein ranking: from local to global structure in the protein similarity network. Proc Natl 
Acad Sci USA, 101(17):6559-6563, 2004 Apr 27. 

[165] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. 
Computer Networks, 30(1-7):107-117, 1998. 

[166] Olivier Bodenreider. Gennav: Visualizing gene ontology as a graph. Proc AMIA Ann Symp, 
2002. 

[167] Tom Fawcett. Roc graphs: Notes and practical considerations for data mining researchers. 
Technical report, Helwett Packard Laboratories, March 2004. 

[168] Foster J. Provost and Tom Fawcett. Robust classification for imprecise environments. Machine 
Learning, 42 (3): 203-231, 2001. 

[169] AE Hoerl. Application of ridge analysis to regression problems. Chem. Eng. Progr., 1962. 



168 

[170] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans. Inform. Th., 
13(l):21-27, Jan 1967. 

[171] Pseudomonas Genome Database, Jan 2009. 

[172] Comprehensive Microbial Resource (JVCI), Jan 2009. 

[173] B B Finlay and S Falkow. Common themes in microbial pathogenicity revisited. Microbiol 
Mol Biol Rev, 61 (2): 136-169, 1997 Jun. 

[174] Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and comparing large 
sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658-9, Jul 2006. 

[175] Tonia Korves and Marc E Colosimo. Controlled vocabularies for microbial virulence factors. 
Trends Microbiol, 17(7):279-85, Jul 2009. 

[176] D A Lindberg, B L Humphreys, and A T McCray. The unified medical language system. 
Methods Inf Med, 32(4):281-91, Aug 1993. 

[177] Cornelius Rosse and Jose L V Mejino, Jr. A reference ontology for biomedical informatics: the 
foundational model of anatomy. J Biomed Inform, 36(6):478-500, Dec 2003. 

[178] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching with 
cupid. In Apers et al. [207], pages 49-58. 

[179] Songmao Zhang and Olivier Bodenreider. Experience in aligning anatomical ontologies. Int J 
Semant Web Inf Syst, 3(2):l-26, 2007. 

[180] Li Liao and William Stafford Noble. Combining pairwise sequence similarity and support 
vector machines for remote protein homology detection. In RECOMB, pages 225-232, 2002. 

[181] Asa Ben-Hur and Douglas Brutlag. Remote homology detection: a motif based approach. 
Bioinformatics, 19 Suppl l:i26—33, 2003. 

[182] Yi-Wei Chen and Chih-Jen Lin. Combining svms with various feature selection strategies. 
In Feature Extraction: Foundations and Applications, volume 207 of Studies in Fuzziness and 
Soft Computing. Springer, November 2006. 

[183] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. 

[184] P Bork. Powers and pitfalls in sequence analysis: the 70% hurdle. Genome Res, 10(4):398-400, 
2000 Apr. 

[185] M Gribskov and N L Robinson. Use of receiver operating characteristic (roc) analysis to 
evaluate sequence matching. Comput Chem, 20(l):25-33, Mar 1996. 

[186] Volker Roth and Bernd Fischer. Improved functional prediction of proteins by learning kernel 
combinations in multilabel settings. BMC Bioinformatics, 8 Suppl 2:S12, 2007. 

[187] Terry Hsin-Yi Shen. Determining the Feasibility and Value of Federated Data Integration 
with Combinations of Logical and Probabilistic Inference for SNP Annotation. PhD thesis, 
University of Washington, 2009. 

[188] N J White. Melioidosis. Lancet, 361(9370):1715-1722, 2003 May 17. 

[189] Apichai Tuanyok, H Stanley Kim, William C Nierman, Yan Yu, John Dunbar, Richard A 
Moore, Patricia Baker, Marina Tom, Jessmi M L Ling, and Donald E Woods. Genome-wide 
expression analysis of iron regulation in burkholderia pseudomallei and burkholderia mallei 
using dna microarrays. FEMS Microbiol Lett, 252(2):327-35, Nov 2005. 



169 

Matthew D Dyer, T M Murali, and Bruno W Sobral. The landscape of human proteins 
interacting with viruses and other pathogens. PLoS Pathog, 4(2):e32, Feb 2008. 

Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A compar­
ison of logistic regression and naive bayes. In Dietterich et al. [193], pages 841-848. 

Alexander R. Statnikov, Lily Wang, and Constantin F. Aliferis. A comprehensive comparison 
of random forests and support vector machines for microarray-based cancer classification. BMC 
Bioinformatics, 9, 2008. 

Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors. Advances in Neural 
Information Processing Systems 14 [Neural Information Processing Systems: Natural and Syn­
thetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada]. MIT Press, 
2001. 

Protege. 

Baolin Wu, Tom Abbott, David Fishman, Walter McMurray, Gil Mor, Kathryn Stone, David 
Ward, Kenneth Williams, and Hongyu Zhao. Comparison of statistical methods for classifica­
tion of ovarian cancer using mass spectrometry data. Bioinformatics, 19(13):1636-1643, 2003 
Sep 1. 

James A Casbon and Mansoor A S Saqi. On single and multiple models of protein families for 
the detection of remote sequence relationships. BMC Bioinformatics, 7:48, 2006. 

A Biegert and J Soding. Sequence context-specific profiles for homology searching. Proc Natl 
Acad Set USA, 106(10):3770-3775, 2009 Mar 10. 

Philip E. S Palmer, Maurice M Reeder, and Maurice M Reeder. Imaging of tropical diseases: 
with epidemiological, pathological, and clinical correlation. Springer, Heidelberg, Germany, 2nd 
ed., rev edition, 2001. 

Cdc: Melioidosis general information. 

Allen C Cheng and Bart J Currie. Melioidosis: epidemiology, pathophysiology, and manage­
ment. Clin Microbiol Rev, 18(2):383-416, 2005 Apr. 

Niaid category a, b, and c priority pathogens, Sept 2009. 

Jung-Hsien Chiang and Hsu-Chun Yu. Meke: discovering the functions of gene products from 
biomedical literature via sentence alignment. Bioinformatics, 19(11):1417-1422, 2003 Jul 22. 

Evelyn Camon, Michele Magrane, Daniel Barrell, David Binns, Wolfgang Fleischmann, Paul 
Kersey, Nicola Mulder, Tom Oinn, John Maslen, Anthony Cox, and Rolf Apweiler. The gene 
ontology annotation (goa) project: implementation of go in swiss-prot, trembl, and interpro. 
Genome Res, 13(4):662-672, 2003 Apr. 

J A Mitchell, A T McCray, and O Bodenreider. From phenotype to genotype: issues in 
navigating the available information resources. Methods Inf Med, 42(5):557-563, 2003. 

Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors. Proceedings of the ACM SIGMOD 
International Conference on Management of Data, Beijing, China, June 12-14, 2007. ACM, 
2007. 

Brigitte Boeckmann, Amos Bairoch, Rolf Apweiler, Marie-Claude Blatter, Anne Estreicher, 
Elisabeth Gasteiger, Maria J Martin, Karine Michoud, Claire O'Donovan, Isabelle Phan, San-
drine Pilbout, and Michel Schneider. The swiss-prot protein knowledgebase and its supplement 
trembl in 2003. Nucleic Acids Res, 31(l):365-70, Jan 2003. 



170 

[207] Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamohanarao, 
and Richard T. Snodgrass, editors. VLDB 2001, Proceedings of 27th International Conference 
on Very Large Data Bases, September 11-14, 2001, Roma, Italy. Morgan Kaufmann, 2001. 

[208] SIGIR '98: Proceedings of the 21st Annual International ACM SIGIR Conference on Research 
and Development in Information Retrieval, August 24-28 1998, Melbourne, Australia. ACM, 
1998. 

[209] Alfonso Valencia. Automatic annotation of protein function. Curr Opin Struct Biol, 15(3):267-
74, Jun 2005. 

[210] Luis Marenco, Tzuu-Yi Wang, Gordon Shepherd, Perry L Miller, and Prakash Nadkarni. Qis: 
A framework for biomedical database federation. J Am Med Inform Assoc, ll(6):523-534, 
2004 Nov-Dec. 

[211] Nathan Bales, James Brinkley, E. Sally Lee, Shobhit Mathur, Christopher Re, and Dan Suciu. 
A framework for xml-based integration of data, visualization and analysis in a biomedical 
domain. In Bressan et al. [212], pages 207-221. 

[212] Stephane Bressan, Stefano Ceri, Ela Hunt, Zachary G. Ives, Zohra Bellahsene, Michael Rys, 
and Rainer Unland, editors. Database and XML Technologies, Third International XML 
Database Symposium, XSym 2005, Trondheim, Norway, August 28-29, 2005, Proceedings, 
volume 3671 of Lecture Notes in Computer Science. Springer, 2005. 

[213] Richard M. Karp and Michael Luby. Monte-carlo algorithms for enumeration and reliability 
problems. In FOCS [214], pages 56-64. 

[214] 24th Annual Symposium on Foundations of Computer Science, 1-9 November 1983, Tucson, 
Arizona, USA. IEEE, 1983. 

[215] Thomas Hernandez and Subbarao Kambhampati. Integration of biological sources: Current 
systems and challenges ahead. SIGMOD Record, 33(3):51-60, 2004. 

[216] Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, March 29 
2009 - April 2 2009, Shanghai, China. IEEE, 2009. 

[217] Marc H. Scholl and Torsten Grust, editors. Proceedings of the VLDB 2003 PhD Workshop. 
Co-located with the 29th International Conference on Very Large Data Bases (VLDB 2003). 
Berlin, September 12-13, 2003, volume 76 of CEUR Workshop Proceedings. CEUR-WS.org, 
2003. 

[218] D Devos and A Valencia. Intrinsic errors in genome annotation. Trends Genet, 17(8):429-31, 
Aug 2001. 

[219] Norman W. Paton, Paolo Missier, and Cornelia Hedeler, editors. Data Integration in the 
Life Sciences, 6th International Workshop, DILS 2009, Manchester, UK, July 20-22, 2009. 
Proceedings, volume 5647 of Lecture Notes in Computer Science. Springer, 2009. 

[220] Sebastien Rey, Jennifer L Gardy, and Fiona S L Brinkman. Assessing the precision of high-
throughput computational and laboratory approaches for the genome-wide identification of 
protein subcellular localization in bacteria. BMC Genomics, 6:162, 2005. 

[221] U Dobrindt and J Hacker. Whole genome plasticity in pathogenic bacteria. Curr Opin Micro­
biol, 4(5):550-7, Oct 2001. 

[222] Eugene Rosenberg. The diversity of bacterial pathogenicity mechanisms. Genome Biol, 
6(5):320, 2005. 

http://CEUR-WS.org


171 

Quan-Yuan He, Quan-Ze He, Xing-Can Deng, Lei Yao, Er Meng, Zhong-Hua Liu, and Song-
Ping Liang. Atdb: a uni-database platform for animal toxins. Nucleic Acids Res, 36(Database 
issue) :D293-7, Jan 2008. 

Asa Ben-Hur and William Stafford Noble. Kernel methods for predicting protein-protein 
interactions. Bioinformatics, 21 Suppl l:i38-46, Jun 2005. 

Carol L Ecale Zhou, Marisa W Lam, Jason R Smith, Adam T Zemla, Matthew D Dyer, 
Thomas A Kuczmarski, Elizabeth A Vitalis, and Thomas R Slezak. Manndb - a microbial 
database of automated protein sequence analyses and evidence integration for protein charac­
terization. BMC Bioinformatics, 7:459, 2006. 

Rainer Winnenburg, Martin Urban, Andrew Beacham, Thomas K Baldwin, Sabrina Holland, 
Magdalen Lindeberg, Hilde Hansen, Christopher Rawlings, Kim E Hammond-Kosack, and 
Jacob Kohler. Phi-base update: additions to the pathogen host interaction database. Nucleic 
Acids Res, 36(Database issue):D572-6, Jan 2008. 

Sudipto Saha and Gajendra P S Raghava. Predicting virulence factors of immunological 
interest. Methods Mol Biol, 409:407-15, 2007. 

Yang Zhang. Progress and challenges in protein structure prediction. Curr Opin Struct Biol, 
18(3):342-8, Jun 2008. 

C A Wilson, J Kreychman, and M Gerstein. Assessing annotation transfer for genomics: 
quantifying the relations between protein sequence, structure and function through traditional 
and probabilistic scores. J Mol Biol, 297(1):233-49, Mar 2000. 

D Eisenberg, E M Marcotte, I Xenarios, and T O Yeates. Protein function in the post-genomic 
era. Nature, 405(6788):823-6, Jun 2000. 

Mickael Desvaux, Nicholas J Parham, Anthony Scott-Tucker, and Ian R Henderson. The 
general secretory pathway: a general misnomer? Trends Microbiol, 12(7):306-309, Jul 2004. 

Raphael Hoffmann. Model Selection for Support Vector Machines. Master's thesis, Universitat 
Passau, Passau, Germany, August 2005. 

Iain Melvin, Jason Weston, Christina S Leslie, and William S Noble. Combining classifiers for 
improved classification of proteins from sequence or structure. BMC Bioinformatics, 9:389, 
2008. 

Doina Caragea, Jun Zhang 0002, Jyotishman Pathak, and Vasant Honavar. Learning classifiers 
from distributed, ontology-extended data sources. In Tjoa and Trujillo [235], pages 363-373. 

A. Min Tjoa and Juan Trujillo, editors. Data Warehousing and Knowledge Discovery, 8th 
International Conference, DaWaK 2006, Krakow, Poland, September 4-8, 2006, Proceedings, 
volume 4081 of Lecture Notes in Computer Science. Springer, 2006. 

Doina Caragea, Jie Bao, Jyotishman Pathak, Adrian Silvescu, Carson M. Andorf, Drena 
Dobbs, and Vasant Honavar. Information integration from semantically heterogeneous bio­
logical data sources. In DEXA Workshops [237], pages 580-584. 

16th International Workshop on Database and Expert Systems Applications (DEXA 2005), 
22-26 August 2005, Copenhagen, Denmark. IEEE Computer Society, 2005. 

Anton J Enright, Victor Kunin, and Christos A Ouzounis. Protein families and tribes in 
genome sequence space. Nucleic Acids Res, 31(15):4632-4638, 2003 Aug 1. 

T M Murali, Chang-Jiun Wu, and Simon Kasif. The art of gene function prediction. Nat 
Biotechnol, 24(12):1474-1475, 2006 Dec. 



172 

[240] Paul Pavlidis, Jason Weston, Jinsong Cai, and William Noble Grundy. Gene functional clas­
sification from heterogeneous data. In RECOMB, pages 249-255, 2001. 

[241] M.E.J. Newman. The structure and function of complex networks. SIAM Rev, 45(2): 167-256, 
2003. 

[242] Gerard Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. 
Commun. ACM, 18(ll):613-620, 1975. 

[243] Jason Weston, Rui Kuang, Christina Leslie, and William Stafford Noble. Protein ranking by 
semi-supervised network propagation. BMC Bioinformatics, 7 Suppl 1:S10, 2006. 

[244] Eithon Cadag, Peter Tarczy-Hornoch, and Peter J Myler. Learning pathogenic proteins across 
fractured and heterogeneous data. AMIA Annu Syrup Proc, page 889, 2008. 

[245] Erhard Rahm, editor. Data Integration in the Life Sciences, First International Workshop, 
DILS 2004, Leipzig, Germany, March 25-26, 2004, Proceedings, volume 2994 of Lecture Notes 
in Computer Science. Springer, 2004. 

[246] Foto N. Afrati and Phokion G. Kolaitis, editors. Database Theory - ICDT '97, 6th International 
Conference, Delphi, Greece, January 8-10, 1997, Proceedings, volume 1186 of Lecture Notes 
in Computer Science. Springer, 1997. 

[247] Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of 
Database Systems, May 12-14, 1997, Tucson, Arizona. ACM Press, 1997. 

[248] Lucian Popa, editor. Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Sym­
posium on Principles of Database Systems, June 3-5, Madison, Wisconsin, USA. ACM, 2002. 

[249] Zoe Lacroix, Tiffany Morris, Kaushal Parekh, Louiqa Raschid, and Maria-Esther Vidal. Ex­
ploiting multiple paths to express scientific queries. In SSDBM [250], pages 357-. 

[250] Proceedings of the 16th International Conference on Scientific and Statistical Database Man­
agement (SSDBM 2004), 21-23 June 2004, Santorini Island, Greece. IEEE Computer Society, 
2004. 

[251] Sarah Cohen Boulakia, Susan B. Davidson, and Christine Froidevaux. A user-centric frame­
work for accessing biological sources and tools. In Ludascher and Raschid [252], pages 3-18. 

[252] Bertram Ludascher and Louiqa Raschid, editors. Data Integration in the Life Sciences, Second 
InternationalWorkshop, DILS 2005, San Diego, CA, USA, July 20-22, 2005, Proceedings, 
volume 3615 of Lecture Notes in Computer Science. Springer, 2005. 

[253] Christos A Ouzounis and Peter D Karp. The past, present and future of genome-wide re-
annotation. Genome Biol, 3(2):COMMENT2001, 2002. 

[254] C Sansom. Database searching with dna and protein sequences: an introduction. Brief Bioin-
form, l(l):22-32, 2000 Feb. 

[255] D. James Harris. Can you bank on genbank? Trends in Eco and Evo, 18(7):317-319, July 
2003. 

[256] Laura S Burrack and Darren E Higgins. Genomic approaches to understanding bacterial 
virulence. Curr Opin Microbiol, 10(l):4-9, 2007 Feb. 

[257] Paul Stothard and David S Wishart. Automated bacterial genome analysis and annotation. 
Curr Opin Microbiol, 9(5):505-510, 2006 Oct. 



173 

[258] H B Tang, E DiMango, R Bryan, M Gambello, B H Iglewski, J B Goldberg, and A Prince. Con­
tribution of specific pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia 
in a neonatal mouse model of infection. Infect Immun, 64(l):37-43, 1996 Jan. 

[259] M H Serres, S Gopal, L A Nahum, P Liang, T Gaasterland, and M Riley. A functional update 
of the escherichia coli k-12 genome. Genome Biol, 2(9):RESEARCH0035, 2001. 

[260] G H Thomas. Completing the e. coli proteome: a database of gene products characterised 
since the completion of the genome sequence. Bioinformatics, 15(10):860-861, 1999 Oct. 

[261] The world health report 2007 - a safer future: global public health security in the 21st century, 
2008. 

[262] Colin D Mathers and Dejan Loncar. Projections of global mortality and burden of disease 
from 2002 to 2030. PLoS Med, 3(ll):e442, 2006 Nov. 

[263] 19th International Conference on Scientific and Statistical Database Management, SSDBM 
2007, 9-11 July 2007, Banff, Canada, Proceedings. IEEE Computer Society, 2007. 

[264] Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany Murray, and Teri E. Klein, 
editors. Biocomputing 2007, Proceedings of the Pacific Symposium, Maui, Hawaii, USA, 3-7 
January 2007. World Scientific, 2007. 

[265] Paul Pavlidis, Jason Weston, Jinsong Cai, and William Stafford Noble. Learning gene func­
tional classifications from multiple data types. J Comput Biol, 9(2):401-411, 2002. 

[266] David M Morens, Gregory K Folkers, and Anthony S Fauci. The challenge of emerging and 
re-emerging infectious diseases. Nature, 430(6996):242-249, 2004 Jul 8. 

[267] Aaron Clauset, Cosma R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical 
data. arXiv:0706.1062vl, 2007. 

[268] Vanessa DCosta, Katherine M. McGrann, Donald W. Hughes, and Gerard D. Wright. Sampling 
the antibiotic resistome. Science, 311 (5759):374-377, 2006. 



174 

Vita 

Eithon Cadag was born in Seattle, Washington, and completed his Bachelor of Science 

in Informatics and Bachelor of Arts in Management Information Systems at the University 

of Washington. He stayed on at the university, further completing a Masters of Science in 

Biomedical and Health Informatics while working with Drs. Peter Myler and Peter Tarczy-

Hornoch. His research activities have included ubiquitous computing for both scientific 

and contextual localization purposes, gene identification and annotation, presenting and 

visualizing clinical drug compliance data and natural language processing over medical 

notes. Eithon's current research interests lay at the intersections between biomedicine and 

large-scale data management, integration and knowledge discovery. 


