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Abstract 

Reproducibility in human cognitive neuroimaging: a community-driven data sharing framework 

for provenance information integration and interoperability 

 

Boyce Nolan Nichols III 

 

Chair of the Supervisory Committee: 

Professor James F. Brinkley 

Biological Structure 

 

Access to primary data and the provenance of derived data are increasingly recognized as an 

essential aspect of reproducibility in biomedical research. While productive data sharing has 

become the norm in some biomedical communities, human brain imaging has lagged in open 

data and descriptions of provenance. The overarching goal of my dissertation was to identify 

barriers to neuroimaging data sharing and to develop a fundamentally new, granular data 

exchange standard that incorporates provenance as a primitive to document cognitive 

neuroimaging workflow. 

 For my dissertation research, I led the development of the Neuroimaging Data Model 

(NIDM), an extension to the W3C PROV standard for the domain of human brain imaging. NIDM 

provides a language to communicate provenance by representing primary data, computational 

workflow, and derived data as bundles of linked Agents, Activities, and Entities. Similar to the 

way a sentence conveys a standalone thought, a bundle contains provenance statements that 

parsimoniously express the way a given piece of data was produced. To demonstrate a system 

that implements NIDM, I developed a modern, semantic Web application platform that provides 

neuroimaging workflow as a service and captures provenance statements as NIDM bundles. The 

course of this work necessitated interaction with an international community, which adopted 
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and extended central elements of this work into prevailing brain imaging software. My 

dissertation contributes neuroinformatics standards to advance the current state of 

computational infrastructure available to the cognitive neuroimaging community. 
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Chapter 1: Introduction 

 
"We have to overthrow the idea that it's a diversion from 'real' work when scientists 
conduct high-quality research in the open. Publicly funded science should be open science. 
Improving the way that science is done means speeding us along in curing cancer, solving 
the problem of climate change and launching humanity permanently into space." 
 
- Michael Nielsen, Reinventing Discovery: the new era of networked science 
 

1.1 Overview 

 Access to primary data is increasingly recognized as an essential aspect of reproducibility in 

biomedical research (1). While widespread sharing is being adopted in some biomedical 

communities (2-4), it largely remains an exception in the field of human brain imaging, except 

for several progressive examples (5-10). The discussion of neuroimaging data sharing is not 

new (11-14), but the adoption of values that support a cultural shift embracing data sharing has 

yet to take place. Of particular concern is reproducibility in neuroimaging research, where 

openly available data can help to validate findings and eliminate confounds due to, for example, 

specific preprocessing or analysis methods, which are nearly as prevalent as the number of 

studies themselves (15). For the neuroimaging community to fully embrace open data sharing, 

tools and standards are needed to make the process and liabilities related to sharing as 

predictable as possible. Furthermore, the community itself needs a set of qualified individuals 

to take on the role of developing and maintaining these tools and standards by incorporating 

them into the everyday workflow of neuroimaging researchers. 

 This dissertation advances the current state of reproducibility in neuroimaging by 

contributing informatics approaches that can be applied to facilitate the broad adoption of 

open data exchange standards that capture provenance information for use in the brain 

imaging community. To accomplish this task, I proposed two specific aims to realize a 

community-driven framework for collaboratively improving the current state of neuroimaging 

data sharing and reproducibility, which are to 1) research and design a framework to represent, 

access, and query neuroimaging provenance information, 2) develop an information system of 

Web services to compute and discover data provenance from brain imaging workflow.  
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1.2 Motivation for research 

Human cognitive neuroimaging is a scientific discipline that investigates the relationship 

between brain structure and function in normal and neuropsychiatric conditions using a variety 

of medical imaging technologies. Additionally, most neuroimaging studies also collect cognitive 

and neuropsychological data that evaluate performance along cognitive dimensions, such as 

attention and memory. This broad spectrum of data leads to complex datasets that are difficult 

to manage and analyze, and, at nearly $1,000 per hour to operate medical imaging equipment 

(e.g., Magnetic Resonance Imaging, MRI), neuroimaging studies are expensive to conduct. While 

limited resources for funding make competition for grants in this domain hypercompetitive, 

there is great potential for researchers to provide insight into clinically relevant questions that 

may eventually improve human health. Those talented, and lucky enough, to be funded are 

afforded the opportunity to acquire rich phenotypic information from study participants to 

answer a diverse set of hypotheses. However, with so many open questions that can be tested 

with a given dataset, it is unlikely that any given lab will conduct every possible and valid 

analysis. To maximize the return on investment in neuroimaging research projects, it is clear 

that more can be done to ensure that these data are used to their greatest potential. 

 In order to maximize the amount of knowledge generated from neuroimaging datasets, it 

is vital to ensure that the data collected, from raw to post-processed to fully analyzed, along 

with the accompanying metadata, are made openly available to as many scientists as possible. 

This is particularly relevant for data aggregation, where large datasets can be used to reproduce 

results with an appropriate level of statistical power. Across the scientific biomedical research 

enterprise, there is concern about the reproducibility of discoveries (16), and, in neuroscience 

research, a lack of statistical power has been identified as a key issue in meta-analyses 

attempting to identify reproducible findings (17). Additionally meta-research on neuroimaging 

studies has indicated a reporting bias in studies of brain volume abnormalities (18) and 

functional MRI (fMRI) activation foci (19). To help address statistical power issues, massive and 

openly available datasets are needed, and may be aggregated, through data sharing initiatives 

that target multi-site research consortia, as well as individual investigations. 
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 While large-scale data sharing sounds like a logical step forward, there are a number of 

socio-technical barriers that prevent this paradigm from becoming routine. Part of the solution 

is to address limitations in informatics infrastructure, but these barriers cannot be addressed 

by information technology alone. At the root of the issue is a lack of resolve in the 

neuroimaging community to prioritize transparency and reproducibility. Instead, low powered 

studies exist in siloes that obscure the data and methods used to conduct research. Consensus 

for communicating scientific results is starting to emerge for some types of analyses (e.g., task-

based fMRI, (20)), but scientific communication norms are not necessarily compatible across 

analyses or software packages (e.g., due to fundamentally different statistical approaches or 

brain atlases). Research silos were partially fueled by competition between labs where rewards 

focused on scientific innovation and establishing local expertise rather than interoperability 

and collaboration. This hypercompetitive, "survival of the fittest," culture may have been 

necessary to build up the neuroimaging infrastructure that now provides robust analysis tools 

and data management applications; however, as brain imaging research has expanded in scope 

to include multi-site research consortia, the need for collaboration and application of a broad 

range of analysis methods has come to the fore. With this distributed and collaborative space in 

mind, three examples are provided below that highlight barriers to reproducibility caused by 

heterogeneous brain atlases, data management systems, and analysis methods.  

 Before I examine these examples in detail and their relationship to reproducibility, I will 

present my definition of reproducibility – a term with a more broad scope than is readily 

recognized. The spectrum of reproducibility can be divided into four subcategories that are 

defined below: 

• Repeatable: same researchers in the same lab can obtain consistent results using the same 

methodology 

• Replicable: different researchers from a different lab can obtain consistent results using 

the same methodology and data 
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• Reproducible: different researchers from a different lab can obtain consistent results 

using a different methodology and data 

• Reusable: different researchers from a different lab can confidently apply a methodology 

and/or access shared data from different researchers in a different lab 

 The union of these four subcategories constitutes the reproducibility spectrum (21). The 

motivations addressed below influence each of these stages, but my primary focus is on 

reusability. Reusable research must provide a description of the analysis methodology, as well 

as transparent access to the entire experimental environment (i.e., data and software). Ideally, 

the entire computational environment (e.g., a virtual machine image) would be deployable 

where a lab in a physically distinct location could reuse the same methodology and original 

data to make any findings repeatable. With the goal of achieving reusability, the next section 

continues with a discussion of specific research motivations. 

1.2.1 Digital brain atlas terminologies are not harmonized 

The diverse set of human brain structural and functional analysis methods represents a 

difficult challenge for reconciling multiple views of (functional) neuroanatomical organization. 

While different views of anatomical organization are expected and valid, no widely adopted 

approach exists to harmonize different views of neuroanatomical organization. In human brain 

imaging research, brain atlases are constructed using cortical parcellation protocols and 

terminologies that serve as spatial frameworks for representing complex neuroimaging 

datasets. However, each method used to create a brain atlas applies a specific set of terms that 

are based on different parcellation schemes (10,22-25). As a result, the anatomical entities from 

different parcellation schemes do not have a one-to-one mapping and are difficult to compare. 

Anatomical structure provides a natural organizing framework that can be used to correlate 

different terminologies, and thus a basic requirement for facilitating the integration of basic 

and clinical neuroscience data from diverse sources is a well-structured ontology that can 

incorporate, organize, and associate annotated neuroanatomical data (26). 
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 In research conducted by Dr. Brinkley's Structural Informatics Group (SIG), the 

Foundational Model of Anatomy (FMA) ontology was created to provide a computable 

representation of human anatomy (27). The structural framework provided by the FMA was 

extended to capture the variation across neuroanatomical labeling schemes and protocols, thus 

creating a mechanism to correlate labels from different atlases. As brain atlas labels are used to 

annotate the results of neuroimaging studies, the FMA can be used to enhance information 

retrieval of such annotated datasets or publications using these labels, as demonstrated by 

Turner et al (28). While the FMA was developed using Protégé Frames (29), efforts have been 

made to translate it into the Web Ontology Language (OWL, (30)), and these efforts have 

provided versions of the FMA using the OWL standard (31,32). With the FMA in OWL, I 

experimented with query-based data integration technologies (33) that enabled me to 

understand how the FMA could be used in a practical way to facilitate performing intelligent 

queries over neuroimaging datasets, thus providing additional features to data shared with 

annotations from the FMA. The intelligent query features provided by the FMA inspired me to 

pursue data sharing technologies and approaches that would readily facilitate the use of OWL 

and other semantic Web technologies, particularly for the integration of data from clinical data 

management systems. 

1.2.2 Neuroimaging data is stored in heterogeneous sources 

While individual clinical data management systems provide mechanisms to query and download 

information within a given software application (34-37), there is no simple way to integrate 

information across applications. Users seeking to aggregate data must access one system at a 

time, generally by visiting a web application where they can browse for datasets that match 

their research questions. After learning the unique user interface of each system, they then 

download relevant datasets and quickly discover heterogeneous file naming conventions and 

directory structures. Supporting information (e.g., data dictionaries that describe imaging 

parameters, demographics, neuropsychological tests etc.) from each clinical data management 

system must then be acquired to provide the context needed for analysis, which may or may 
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not be readily available. It is then up to the user to map the context from one system to 

another, which is a dauntingly time consuming and error prone process that is commonly 

avoided altogether. Only after working through these details can they start to evaluate data 

quality and determine which datasets are useable for their analysis.  

 After coming to understand this scenario, I wanted to study the socio-technical barriers 

that were limiting data integration efforts to aggregate and index metadata about the 

neuroimaging datasets that were coming available to the community. Following from my 

experience with the FMA and semantic Web technologies, it was clear that an approach and 

process was needed to capture data dictionaries and term definitions in a reusable and 

computable representation. Such a contribution would greatly improve the process of data 

integration and facilitate interoperability between clinical data management systems used for 

neuroimaging research; however, technology is only one piece of the puzzle. I learned that for 

data sharing to work it takes a community to drive the development of data exchange 

standards to encourage broad adoption, a finding also noted in the Synthetic Biology 

community (38). While community-driven data exchange standards meets the requirements for 

reusable data, it neglects the need to capture provenance information about the computational 

environment (e.g., software versions, parameters, etc.) that are constantly changing and 

necessary to track to make a given methodology transparent. 

1.2.3 Data acquisition and analysis methods evolve rapidly 

The past two decades of human brain imaging have witnessed a surge of innovations in 

Magnetic Resonance Imaging (MRI) acquisition and analysis technology. These advances have 

afforded cognitive neuroscientists with a much richer description of both normal and 

pathological brain structure and function. However, the rapid generation of new knowledge 

afforded by these advances has also increased the computational complexity by which 

knowledge is generated, thus undermining the scientific community's ability to replicate and 

reproduce results. This is an issue in many areas of science that face the problem of 

understanding and interacting with imaging data whose scale and scope is relentlessly 
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expanding. The challenge is particularly acute in brain imaging and cognitive neuroscience 

because the interplay between rapidly evolving instrumentation and analysis methods have 

outpaced the infrastructure for integrating and validating biologically meaningful 

interpretations of neuroimaging results. For example, the FreeSurfer data analysis package is 

used broadly to reconstruct the cerebral cortical surface and make measurements (e.g., brain 

region volume or cortical thickness) of segmented or parcellated structures (39); however, there 

are significant differences in these measures across software versions and compute platforms 

(i.e., operating systems) making it difficult to rely on quantified results (40). This variability in 

results influenced researchers to recommend guidelines for software evaluation using publicly 

available datasets that help to determine the reproducibility of computational algorithms (41). 

 As the neuroimaging field evolves, there is a growing need for neuroinformatics to 

provide technical solutions that facilitate replication studies and reusable computational 

workflow. Replication studies are a central tenet of the scientific method that values findings 

validated by an independent investigator using an independent sample; however, much of the 

neuroimaging literature is based on data that is difficult to collect due to time, finances, or 

specific participant populations – generally limiting the feasibility of replication studies. A data 

sharing framework may be developed to enhance reproducibility by capturing the 

computational environment, software tools, workflow, and data used to generate neuroimaging 

findings. With semantically annotated results using terms from a curated terminology source 

(e.g., the FMA) and data exchange standards that support annotations (e.g., semantic Web 

technologies), a platform could be developed capable of making all the components necessary 

for portable and reproducible research.  

1.3 Statement of the problem 

The human brain mapping field is producing a tremendous amount of medical imaging, clinical, 

and neuropsychological data through a broad range of research activities; however, there is 

little coordination across these research activities to develop standards and best practices that 

facilitate data integration and interoperability. The scarcity of coordination has led to overly 
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burdensome data management practices and a lack of provenance information that exacerbates 

data sharing barriers and limits the reproducibility of neuroimaging findings. In response to 

these issues, I took a leadership role in the neuroinformatics community to design a framework 

for data sharing that addresses the shortcomings of previous approaches. 

1.4 Scope of the study 

The overall scope of my dissertation is constrained to open access data sharing in the domain 

of human brain imaging. In the course of this work I demonstrate a neuroimaging data 

exchange framework that is capable of representing a full chain of provenance information, 

from dataset descriptors of acquired data to workflow that operates on the data and the 

derived results. My focus is to create a process that facilitates community-driven efforts to 

harmonize metadata descriptions across openly available neuroimaging data repositories and 

derived results. I provide software tools to access and query these metadata descriptors, as well 

as demonstrate a distributed computing system architecture that uses these metadata 

descriptors to perform analyses. The system is an informatics research project that serves as a 

prototype for future work. As such, I limit the scope of this project as follows: 

1. using publicly available human neuroimaging datasets 

2. using anatomical MRI and resting-state fMRI modalities  

3. an open and unsecured network architecture 

4. a prototype implementation of the system architecture 

5. the current state of an evolving data model  

1.5 Contributions 

Since starting my dissertation, I've had the unique opportunity to actively participate in a 

community effort to improve the state of data sharing in human brain imaging. I engaged this 

community, led by an organization called the International Neuroinformatics Coordinating 

Facility (INCF), with a project called NiQuery that aimed to provide a distributed computing 

framework for publicly accessible neuroimaging data. My effort with NiQuery was closely 

related to an ongoing activity within INCF called the Neuroimaging Data Sharing (NIDASH) task 
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force, where I was invited to contribute to a broad range of issues that became incorporated 

into my dissertation. As I worked on NiQuery, it became clear that the vision surrounding the 

project would require a community to bring to fruition. To that end, I took a leadership role in 

NIDASH by attending and presenting my work at data sharing satellite meetings and major 

conferences, as well as contributing to weekly videoconference calls - all focused on advancing 

the mission of inciting a cultural shift around neuroimaging data sharing. In the following 

sections I detail my specific contributions to the three fields that my dissertation work 

impacted - cognitive neuroimaging, neuroinformatics, and biomedical informatics. 

1.5.1 Contributions to cognitive neuroimaging 

As an informatician, my contributions to cognitive neuroimaging have had an impact on the 

availability and use of neuroscience information. I was a principal data architect of the 

community-driven Neuroimaging Data Model (NIDM) framework for developing metadata 

standards that intrinsically tracks data provenance. By designing this framework, I enabled 

interoperable specifications to model data exchange across neuroimaging databases and 

analysis methods. Additionally, I provided the community with the framework to build a 

repository of neuroimaging datasets described using NIDM, which encapsulate 

recommendations for best practices in neuroimaging data sharing. 

1.5.2 Contributions to neuroinformatics 

In the neuroinformatics community, particularly neuroimaging informatics, I worked closely 

with international experts in neuroimaging database development, workflow environments, and 

reporting of statistical results to guide the development of specifications that conform to the 

principles of Linked Open Data, and harmonize with existing data sharing initiatives beyond 

neuroimaging. I took a leadership role in developing the NIDM framework, which not only 

provides several example model representations, but also provides a process for community 

involvement in designing standard object models. Additionally, I created a prototype software 

library, called NiQuery, which provides developers and users with a set of queries to access and 
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validate NIDM components and to execute workflows that consume and produce NIDM Linked 

Open Data.  

1.5.3 Contributions to biomedical informatics 

Within the broader Biomedical Informatics community, my contributions can be viewed as a 

generalizable set of processes for engaging a community for developing interoperable data 

exchange standards. I also introduced the concept of using data provenance as a central 

component in biomedical data exchange standards. This approach enables transformations of 

data to be captured intrinsically within the data model, where a single document can describe a 

primary observation alongside computational workflow details, as well as statistical results 

reported in a manuscript. Within this context, I have described and demonstrated a general-

purpose system architecture for reproducible workflow environments that utilizes concepts 

from distributed and cloud computing. Finally, I developed an approach to deploying the 

prototype system architecture that is fully automated and overcomes many of the limitations of 

other informatics systems that are overly complicated to configure and deploy. 

1.6 Summary 

In this chapter, I introduced my dissertation by reviewing the motivation for research, the 

problem addressed, its scope, and contributions to basic and applied Biomedical Informatics. 

The motivation for my research broadly targets neuroimaging data sharing from the 

perspective of data and software interoperability. I described how interoperability issues 

manifest in datasets annotated with anatomical labels from diverse brain atlases, and in 

databases that use inconsistent vocabulary and heterogeneous data structures, as well as 

analysis methods that rapidly evolve and make analyses difficult to reproduce over time. I then 

provided a concise description of the problem I addressed and the scope of my research, which 

follows several constraints that I targeted to work within to provide structure to the breadth of 

topics I have covered. My contributions demonstrate the interdisciplinary approach that I have 

taken to not only develop a technology in isolation, but to work directly with the neuroimaging 
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and neuroinformatics communities to solve problems in neuroimaging data sharing in a real 

world setting. 

 This dissertation addresses the need for a cultural shift towards widespread 

neuroimaging data sharing that covers a broad range of topics. In Chapter 2, I provide 

background information on previous work that has shaped the current environment of 

neuroinformatics tools and identify their shortcomings. This assessment provides the 

foundation upon which innovative information systems can be developed that will accelerate 

the rate of scientific discoveries that advance our understanding of how brain structure and 

function explain cognition and neuropsychiatric disease. Towards this end, I outline my overall 

study design in Chapter 3 and then describe my approach and outcomes to Aim 1 in Chapter 4, 

providing several studies that address issues related to standardizing neuroimaging data 

exchange and representation. In Chapter 5, I discuss my approach and outcomes for Aim 2, 

which applies the standards I designed to develop an information system that executes 

computational workflow while tracking data provenance. Finally, I discuss my conclusions and 

contributions in Chapter 6, which advance the current state of neuroimaging data sharing and 

reproducibly. I start this discussion by providing a background on the biomedical and 

informatics disciplines that my dissertation has impacted.
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Chapter 2: Background 

 
"A wealth of information creates a poverty of attention and a need to allocate that 
attention efficiently among the overabundance of information sources that might 
consume it." 
 
- Herbert A. Simon, Designing Organizations for an Information-Rich World 
 

2.1 Overview 

The previous chapter provided an executive summary of the motivations, problems addressed, 

and contributions of this dissertation that builds upon a broad and interdisciplinary body of 

work. This chapter is designed to provide the reader with a background on the topics covered in 

this dissertation. It begins with a discussion on a specific biomedical domain, the field of 

human cognitive neuroimaging, where the interdisciplinary nature of this field and the wide 

adoption of Magnetic Resonance Imaging (MRI) and brain atlases for reporting results are 

presented. Then, the discussion turns towards the influence that large-scale brain imaging 

initiatives, such as the Human Brain Project in the 1990's (42), have had on how everyday 

research is conducted, which has changed dramatically with the introduction of 

neuroinformatics software. After reviewing the current state of neuroinformatics, and 

neuroimaging informatics in particular, I discuss biomedical informatics (BMI) more generally 

by introducing the core methods and technologies that I applied and extended upon in my 

dissertation. The organization of this content follows the general framework provided by BMI, 

where a biomedical domain of interest (human cognitive neuroimaging) motivates applied 

informatics research and practice (neuroinformatics) that is then used to research and apply 

general BMI methods, techniques, and theories.  

2.2 Human cognitive neuroimaging 

Human cognitive neuroimaging is an interdisciplinary branch of neuroscience where 

researchers rely on multi-modal imaging technologies and analytical tools to study normal and 

diseased brain structure and function. The breadth of imaging devices available enables 

researchers to collect data that probe diverse aspects of neurobiology that include 

neuroanatomical structure, physiology, and chemical composition. Among the primary medical 
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devices used in neuroimaging is Magnetic Resonance Imaging (MRI), which has proven to be one 

of the most versatile of the imaging tools available to neuroscientists, particularly for creating 

brain maps based on anatomical structure and function. Additionally, the collected 

demographic and phenotypic data can be correlated with imaging-based measures. For example, 

standardized neuropsychological test batteries are administered to measure performance on 

tasks that range from facets of memory and attention to reaction time and impulsivity. These 

data can then be analyzed to reveal group differences in brain structure or function along a 

given behavioral or cognitive dimension. In the following sections I provide a brief overview of 

cognitive neuroimaging research that uses MRI and related acquisition modalities and then 

discuss the use of brain atlases for annotating analysis results with neuroanatomical labels. 

2.2.1 Magnetic resonance imaging 

MRI scanners are one of the most flexible data acquisition instruments available for cognitive 

neuroimaging research. This flexibility is afforded by the programmability of MRI using pulse 

sequences that detect magnetic properties of brain (or other) tissue that are specific to the 

given pulse sequence. For a review of different pulse sequences and the tissue properties they 

measure see (43). This enables an MRI to detect a variety of magnetic properties that are 

spatially localized and encoded as voxels (i.e., volumetric picture elements). The signal in each 

spatially encoded voxel is used to construct a contrast between different types of tissue. T1 and 

T2 weighted MRI scans construct contrasts that reveal purely anatomical features related to 

water and fat content, where one slice is acquired at a time along the sagittal, axial, or coronal 

axis; however, more recent pulse sequences can acquire a whole brain volume. Regardless of 

slice-by-slice images or whole brain acquisitions, each voxel in an anatomical MRI can be used 

to differentiate between tissue types, such as gray matter, white matter, and cerebrospinal 

fluid. As MRI is reconfigurable, additional pulse sequences are used to construct contrasts 

using other magnetic properties of tissues that can then be registered to anatomical scans.  

 For example, functional MRI (fMRI) uses a property of hemoglobin, referred to as the 

blood oxygenation level dependent (BOLD) signal, in which a contrast is constructed between 
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the differing magnetic properties of oxygenated and deoxygenated blood (44). Neural activity is 

linked to metabolic and blood flow demand, resulting in changes to hemoglobin oxygenation 

that are detectable with MRI. Cognitive neuroscientists and psychologists have used fMRI to 

examine a variety of cognitive processes ranging from understanding basic brain functions, 

such as language, attention, and memory, to neuropsychiatric disease, such as Alzheimer's 

disease, Attention Deficit Hyperactivity Disorder (ADHD), and Autism. Other imaging modalities 

have also emerged, such as Diffusion Weighted Imaging (DWI, (45)), which provides a measure 

of how water diffuses within the myelin encased axons of the brain (i.e., white matter) that can 

be used to construct measures of white matter integrity, as well as tractography streamlines 

that represent an abstraction of white matter bundles connecting brain regions and the broader 

central nervous system. While both fMRI and DWI provide complementary information about 

brain function and structural connectivity, respectively, the resolution they are acquired at (e.g., 

2-4 mm3) is typically much more coarse than anatomical T1 acquisitions (e.g., 1 mm3 isotropic). 

Therefore, anatomical images are used to provide the neuroanatomical and structural 

framework for interpreting and reporting the results of fMRI and DWI acquisitions, which is 

accomplished through a process called registration (46). 

 High resolution anatomical scans provide the basis for grounding more coarse grained 

imaging modalities to anatomical structure through the use of brain atlases and analysis 

techniques. The next section discusses issues related to brain atlas labels and how the diversity 

of brain atlas labels complicate data integration tasks, such as those approached in this 

dissertation.  

2.2.2 Brain atlas-based labeling 

One important component of cognitive neuroimaging research involves the development of 

digital brain atlases, which serve as the spatial framework for representing complex 

neuroimaging datasets. Brain atlases consist of a brain template and a labeling protocol. A brain 

template is an image in a standard coordinate system that is typically generated by registering 

the brains from one or more participants into an average brain. The average brain is then 
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delineated according to a protocol that specifies the boundaries for anatomical structures, 

which are each given a label (e.g., left hippocampus). Generally, anatomical imaging data from 

individual participants are aligned to brain templates in a standard spatial coordinate system 

that provides a set of anatomical labels used to interpret the anatomical location of an 

observation and annotate the results (e.g., a t-statistic for an activation foci from fMRI). Brain 

atlases can be based on manual or automatically labeled brain parcellations that are derived 

using volume-based or surface-based methods. Each method used to create a brain atlas applies 

a specific set of terms that are based on different parcellation schemes (10,22-25). As a result, 

the anatomical entities defined in different parcellation schemes do not directly correspond 

with a one-to-one mapping; therefore, data annotated with terms from disparate atlases are 

difficult to compare and integrate. 

 Brain atlas terminologies lack the multi-faceted hierarchical organization provided by an 

ontological framework, which is needed to explicitly declare the semantics of the terms used, 

both by providing definitions to terms and relationships to other structures. Neuroimaging data 

and information encoded by brain atlas terms alone cannot be accurately interpreted, 

compared, correlated and applied across different studies. This becomes particularly relevant 

during information retrieval tasks that require integrating datasets labeled with terms from 

different atlases. Similarly, white matter connectivity atlases are being developed (47,48), but 

only limited "ground truth" information is available about in vivo human brain connectivity. 

Different parcellation methods are represented in a growing number of white matter atlases 

designed to better segment and identify structures in clinical MRI research studies. To better 

grasp how each atlas or labeling scheme is structured, a summary of brain parcellation 

protocols is provided that each capture anatomical knowledge and spatial relationships 

including the Talairach Daemon, Desikan-Killiany (i.e., FreeSurfer), Anatomical Automatic 

Labeling (AAL), and NeuroLex. 

 The Talairach Daemon (TD) is an information system that provides a mapping between 

3D coordinates (i.e., Talairach coordinates) and specific brain structure labels (49). It is a digital 

representation of the original Talairach atlas (23) that is hierarchically organized into five 
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hierarchical levels: 1) Hemisphere, 2) Lobe, 3) Gyrus, 4) Tissue type, and 5) Cell type. For 

example, the label "Right Cerebrum.Temporal Lobe.Inferior Temporal Gyrus.Gray 

Matter.Brodmann area 20" represents a number of 3D coordinates in the Brodmann area 20 cell 

type-level, the gray matter tissue-type level and so on. While this approach has been broadly 

applied in human brain mapping, there are limitations when normalizing patient MRI scans due 

to natural morphological differences between individuals. Furthermore, the Talairach atlas 

brain was not analyzed microscopically to determine regional cell types, thus the accuracy of 

Brodmann area boundaries in this atlas are unknown. 

 The Desikan-Killiany (DK, (50)) atlas is a gyral-based parcellation scheme for labeling 

anatomical MRI scans. The parcellation scheme protocol was manually applied to 40 MRI scans 

to build an atlas with 34 cortical regions of interest (ROI) per hemisphere. This atlas is 

incorporated into the FreeSurfer MRI data analysis package (39) that provides researchers with 

access to a variety of image processing tools that includes labeling anatomical ROIs with a 

predefined set of terms. 

 The Automated Anatomical Labeling (AAL) brain atlas provides an anatomical 

parcellation of a single participant using magnetic resonance imaging (MRI) (24). The AAL 

provides the location and labels for 90 anatomical structures (45 per hemisphere) that were 

manually identified in a high-resolution MRI. The AAL Toolbox for the Statistical Parametric 

Mapping MatLab package (51,52) provides researchers with a method for labeling their data 

using the AAL protocol and vocabulary. 

 The Neuroscience Information Framework (NIF) standard ontologies (NIFSTD) are 

developed to provide a consistent source of terminology for neuroscience concepts (53). NIFSTD 

is neither an atlas, nor is it tied to a particular spatial arrangement of brain regions, but is a 

collection of brain region labels and inter-relationships. It represents a general mammalian 

hierarchy of brain parts, as opposed to the other primate-centered ontologies like the 

Foundational Model of Anatomy ((27), FMA). NIFSTD is a formal ontology constructed through 

the import of community ontologies with specific extensions for neuroscience, covering the 

major domains of neuroscience (53,54). For community contributions, NIF maintains the 
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NeuroLex lexicon. An important feature of this project was to explicitly define all of the terms 

that are used to describe data (e.g., anatomical terms, techniques, organism names).  The NIF 

gross anatomy module was largely based on the NeuroNames hierarchy (55-57) and recoded in 

the Web Ontology Language (OWL), but has been extensively modified through contributions to 

NeuroLex. NeuroLex serves as a community platform where those with minimal knowledge of 

building ontologies can still contribute their expertise.  

 Clearly, the diversity in the approaches discussed above is warranted, and even expected, 

in a field that advances as rapidly as neuroimaging. However, the need to interoperate with data 

labeled using these different approaches needs further investigation through both 

computational and ontological means. With the expectation that more such atlases will be 

constructed, it is also expected that new and existing software will implement the analytical 

framework(s) necessary to make use of new atlases. Aside from NIFSTD/NeuroLex, the 

aforementioned atlases are used as part of the every day research activities performed by 

neuroscientists, generally through the use of neuroimaging data analysis software. This 

software enables researchers to perform complex analyses with freely available open source 

software that makes it possible to reuse analysis methodologies that would otherwise need to 

be implemented by each lab conducting a given analysis. However, the results from these 

analyses are labeled with a heterogeneous set of neuroanatomical labels that makes correlating 

terms for information retrieval tasks challenging. Neuroinformatics can help mediate the 

correlation of terms across atlases, as well as address other information-related challenges. The 

next section provides an overview of neuroinformatics and issues related to the ever-evolving 

landscape of open source neuroimaging software and challenges with which researchers are 

faced. 
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2.3 Application of neuroinformatics 

The goal of neuroinformatics is to coordinate efforts to standardize data formats, meta-data 

representations, and to recommend best practices for data acquisition, storage, analysis, and 

sharing across all scales of neuroscience – from genes to behavior. This area of applied 

informatics stems from a two-decade lineage of neuroinformatics projects rooted in the efforts 

of the Human Brain Project (HBP) (42,58). The landscape carved out by the HBP set the stage for 

neuroscience advances at all levels of analysis by putting open source analytical tools into the 

hands of individual investigators. Neuroinformatics tools enabled the neuroscientist without a 

background in software development to perform analyses that would not otherwise be feasible. 

The informatics of human cognitive neuroimaging, and specifically issues related to data 

management, integration, and sharing, has great potential to facilitate collaborative and 

reproducible research. A number of large scale projects painted the current neuroinformatics 

landscape and provided solutions to many data analysis and data management issues, as well 

as demonstrated successes and failures in data integration and sharing. What emerged from 

these initiatives is a neuroinformatics community interested in conducting informatics research 

and developing software to help accelerate the rate of discovery in neuroscience. By providing 

scientists with tools that ensure more robust research practices, neuroinformaticians are also 

paving the way for reproducibility in neuroimaging. The following sections discuss how large-

scale initiatives shaped the current landscape of advanced neuroimaging informatics software 

and data management applications before turning towards community-based efforts to 

collaboratively coordinate the evolutions of the neuroscience cyberinfrastructure. 

2.3.1 Advances from large-scale initiatives 

Neuroscience research benefitted greatly from large-scale initiatives, such as the Human Brain 

Project (42), which helped to develop a vast assortment of informatics tools and 

cyberinfrastructure for the research community. By providing the resources to explore how 

information technology can facilitate neuroscience research, critical advances were made during 

the HBP that transformed our understanding of the brain and opened up a vast collection of 

new questions to explore. To answer questions about, for example, neuropsychiatric disorders 
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or cognitive functions using MRI technologies, it was necessary to enable a diverse set of 

researchers, that may or may not have a strong computational background (e.g., psychologists, 

clinicians), with neuroinformatics software that implements a set of analysis methodologies. 

For example, the FreeSurfer package is used widely to process anatomical scans by segmenting 

subcortical structures and parcellating the cortex into a number of regions using brain atlases 

like those discussed above (39). By proving an automated pipeline that provides a variety of 

statistics, such as anatomical structure volumes and cortical thickness, researchers can focus 

on biologically oriented science, rather than attempting to implement software themselves. 

There are many models of how to develop analysis tools for biomedical communities, such as 

human cognitive neuroimaging, that range from heavily funded and large-scale consortia to 

small grassroots efforts. Neuroinformaticians play an important role along the spectrum of 

projects and makes significant contributions to advancing the tools available to neuroscientists. 

Neuroinformatics software that is open-source and freely available further enhances adoption 

by users and provides a transparent view of how the code was implemented. 

 The development of tools can take time before they are ready to be released to the 

community, but when they are released the tools should be open source and freely available, 

particularly for publicly funded research. For example, CBRAIN (59) is a Canadian government 

initiative that provides access to high-performance computing facilities across Canada and the 

World. CBRAIN is also used to drive an online collaborative Web platform from which users 

control brain imaging data, compute, and visualize results using 2D and 3D Web browser 

applications. Currently, only pieces of the CBRAIN framework are open source (e.g., 

BrainBrowser is now open source, but was initially private), while the remaining platform is only 

available to collaborators. Similarly, The Laboratory Of NeuroImaging (LONI) offers a large 

selection of well-engineered data management (60), analysis (61), and visualization (62) tools 

that are free to the public, but not open source. The LONI infrastructure is also used to host the 

Alzheimer's Disease Neuroimaging Initiative ((7), ADNI), which is arguably the most successful 

data sharing effort in brain imaging. However, there is debate over whether or not the ADNI 

Data Use Agreement (DUA), which requires researchers to list the ADNI Consortium as the 
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senior author on any manuscripts, is the proper way to appropriate credit for data sharing (63). 

Both CBRAIN and LONI provide benefits to the community and many investigators rely on the 

tools they have created, but a lack of transparency may limit thorough evaluation and broad 

adoption. 

 The Allen Institute for Brain Science is another large-scale initiative that started out by 

working primarily on the mouse brain (64) and has recently made contributions to clinical 

research by developing an atlas of the human brain transcriptome (65). The Allen Institute 

demonstrated how wet lab science could be scaled up through the use of informatics tools that 

streamline workflow and add findings to a web accessible database. This institute is unique to 

neuroscience in that they make all of their data, including images, public through an 

Application Programming Interface (API) that supports a variety of queries and brain atlas 

functions. The human brain data available include microarray, anatomical MRI, and diffusion-

weighted MRI datasets. The underlying infrastructure implementation details, however, are not 

publicly available, but the resources necessary to produce this research are unprecedented. 

While the internal operations of the Allen Institute are not fully transparent (i.e., source code is 

unavailable), other large-scale initiatives have provided more complete transparency in their 

internal operations. 

 At the large-scale and open source level is the Human Connectome Project (HCP) (66). The 

HCP is a major endeavor to acquire and analyze functional and structural connectivity data plus 

other neuroimaging, behavioral, and genetic data from 1,200 healthy adults. It is already a key 

resource for the neuroscience research community with several data releases already available, 

enabling discoveries about structural and functional connectivity. The HCP consortium 

developed an informatics platform that handles: 1) primary and processed data storage, 2) 

systematic data processing and analysis, 3) open-access data sharing, and 4) mining and 

exploration of the data. This informatics platform includes ConnectomeDB and the Connectome 

Workbench. ConnectomeDB is based on the eXtensble Neuroimaging Archive Toolkit (XNAT), 

which provides a database for storing and distributing the data, and executing data analysis 

pipelines. The Connectome Workbench provides visualization and exploration capabilities (67).  
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 The projects discussed above provide only a small sample of efforts that have shaped the 

current landscape of neuroimaging cyberinfrastructure. With such a variety of implementation 

details in each of these projects, it is not hard to imagine why interoperability remains an 

important issue to overcome. While it is important for neuroinformatics developers and 

scientists to harness creativity and build novel solutions to complex problems, each of the 

solutions provided only offers a glimpse into the goal of understanding the human brain. If we 

are to put the pieces back together and form a holistic model of human brain structure and 

function, there needs to be a community that complements the efforts of scientists to integrate 

and interoperate across data and software. 

2.3.2 Facilitating open collaboration and coordination 

Advocates of open neuroscience who value methodological transparency and maximizing 

efficient access and exchange of information though collaboration, are actively contributing to 

the vision of Neuroinformatics, including many from the groups listed above. One organization 

that seeks to facilitate communication across borders and break down barriers to collaboration 

is the International Neuroinformatics Coordinating Facility (INCF). The role of INCF is to bring 

scientists, software engineers, and informaticians together to work on cyberinfrastructure 

projects that catalyze the integration and interoperability of neuroscience data across spatial 

scales. The INCF defines several programs that tackle crosscutting issues in neuroscience by 

targeting specific task force teams on a domain specific given topic. For example, the Program 

on Standards for Data Sharing includes a task force for Electrophysiology and Neuroimaging. By 

drawing on a growing number of member countries, currently sixteen, the INCF engages experts 

to volunteer in each task force by organizing satellite events at international congresses, as well 

at the Neuroinformatics Congress each year. In this way, INCF interacts with many of the 

initiatives discussed in the previous section to help mediate communication over specific 

issues. With regards to reproducibility in neuroimaging and the motivations listed above, there 

are three relevant INCF programs:  

1. Program on Ontologies of Neural Structures (PONS) 
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2. Digital brain atlasing 

3. Standards for data sharing 

 The PONS task force facilitates the development of ontologies and vocabularies of 

neuroanatomy terms. PONS task force members collaborate to define properties and 

hierarchical relationships between neurons and brain structures, which are then captured in 

either the Neuron Registry (68), NeuroLex (69), or the Common Upper Mammalian Brain 

Ontology (CUMBO) (70). Much of this work is directly related to the brain atlas labeling section 

above; however, their mission is to focus on the lexical, rather than spatial, organization of 

structures and does not address the mapping of terms from one brain atlas to another. 

 The digital brain atlasing group addresses the spatial concordance issue related to brain 

normalization (71), as well as to integrate brain atlas resources. Neuroinformatics tools 

increasingly rely on brain atlases and standard coordinate systems in order to compare across 

subjects and investigate normal and abnormal brain structure and function. In particular, this 

INCF program developed a distributed query and image integration system to access several 

mouse brain resources, called the Digital Atlasing Infrastructure ((72), DAI). This program 

primarily focuses on web services for the mouse brain by providing a middleware layer to 

access a series of mouse brain atlases. The mouse brain atlases integrated into the DAI are 

accessible from an API that handles queries about the given atlas. The DAI provides a way to 

map each database API into a common object model, and register a set of services. An atlas 

with web services that conform to the INCF Digital Atlasing specifications is called a "hub", and 

currently there are four hubs in the DAI network. The Web service infrastructure proposed by 

the DAI provides one model for integrating atlas resources that may eventually be applicable to 

human neuroimaging data sharing. 

 The program on standards for data sharing is divided into the electrophysiology and 

neuroimaging task forces. The overall goal for this program is to capture metadata that 

represents the information needed to facilitate data integration and interoperability for easy 

data sharing. Of particular interest is the Neuroimaging Data Sharing (NIDASH) task force that 

works in the applied informatics space to identify barriers to data sharing and to propose 
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technical solutions that overcome these barriers. In an evaluation of the current state of 

neuroimaging data sharing, the NIDASH task force identified four projects targeted at easing 

the burden of data sharing, including 1) a "One-Click Share Tool" that allows researchers to 

make their data publicly available, 2) a common data model and API to facilitate data exchange 

and database interoperability, 3) a mechanism to capture data within a single data container, 

and 4) a means to automatically store metadata and processing stream results to a database 

(13). The overall NIDASH vision is to make data sharing a straightforward process that 

investigators would have no choice but to share; however, these ambitious projects do not 

address the many socio-technical issues that arise during deployment, such as community 

involvement and competing efforts. 

 This overview of INCF, particularly the NIDASH task force, provides a description of how 

applied informatics in neuroscience is conducted in a community-driven fashion. The methods 

employed by NIDASH and other INCF programs are not all specific to neuroscience, rather they 

draw heavily from core technologies and methods developed by other disciplines. For example, 

the ontology work on the Common Upper Mammalian Brain Ontology (CUMBO) also drew on 

efforts from more general human anatomy ontologies, such as the Foundational Model of 

Anatomy (27), thus highlighting the need for interaction with a broader community outside of 

neuroscience with mode general solutions. The following section discusses the crosscutting 

methods from biomedical informatics that neuroinformatics draws upon and contributes to by 

examining the areas of data integration and interoperability, the semantic Web, and data 

provenance. 

2.4 Biomedical informatics methods 

Biomedical informatics (BMI) provides an interdisciplinary framework for integrating methods 

from a variety of disciplines and then specializing those methods for problems in a given 

biomedical domain of interest, such as neuroscience. The American Medical Informatics 

Association (AMIA) defines BMI as "the interdisciplinary field that studies and pursues the 

effective uses of biomedical data, information, and knowledge for scientific inquiry, problem 
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solving, and decision making, motivated by efforts to improve human health" (73), which 

eloquently captures a domain agnostic version of many goals articulated by INCF and the 

discipline of Neuroinformatics. As its defining characteristic, Charles Friedman put forth a 

"fundamental theorem" of BMI (Figure 2.1), which can be interpreted as "a person working in 

partnership with an information resource is 'better' than that same person unassisted" (74).  

Along these lines, neuroscientists use a variety of information resources to augment their 

interaction with data using much of the cyberinfrastructure discussed in the sections above, 

thus working within the context of the BMI fundamental theorem. Whether it is the use of brain 

atlases, data management and integration technologies, or data analysis software packages, the 

methods employed by BMI work to enhance researchers' ability to communicate research 

findings, streamline research processes, and extract information and knowledge from 

biomedical data. The sections below discuss the BMI methods and component disciplines that I 

build upon in this dissertation, with the goal of providing the reader with a technical 

background in several relevant areas. 

 

Figure 2.1 Fundamental Theorem of Biomedical Informatics. An individual performing a task in concert 
with an information resource, depicted as a world with people circling it, will perform a better job than the 
same individual acting alone. 

2.4.1 Data management and integration 

Biomedical data management evolution follows a trajectory of scale that starts with the use of 

readily available applications (e.g., spreadsheets) and may then progress to produce one-off 

solutions to meet their functional needs. While homegrown systems are perceived to be 
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beneficial, many of the researchers who create their own method for organizing information 

readily recognize the shortcomings for certain tasks, such as data retrieval or exchange 

between labs, and are not well equipped with technical expertise or finances to adopt more 

robust data management practices (75). Neuroimaging data management and integration 

solutions evolve out of a need for more streamlined approaches to doing high-quality scientific 

research.  

 Streamlining workflow helps to address quality control and scalability issues, where labs 

will generally start off using Microsoft Excel and eventually need to implement special macros 

to, for example, validate data entry before moving on to something more robust, such as 

Microsoft Access. However, the resources that labs spend on scaling up operations organically 

will eventually become unmanageable, particularly in the context of multi-site research 

consortia that require data to be integrated from each site. A more practical approach would be 

to use an open source data management system from the start and eliminate scalability issues 

up front. For example, in a review of clinical data management systems by Franklin et al., the 

REDCap system (37) was found to be preferred by users among several other systems with 

similar features (76), which would suggest to knowledgeable researchers to utilize a proven 

data management solution rather than expend resources developing a new system. Similarly, 

managing medical imaging data can hit scalability barriers; however, implementing a broadly 

used research Picture Archiving and Communications System (PACS), such as the extensible 

Neuroimaging Archive Toolkit ((34), XNAT) may alleviate these issues. Consequently, the 

overhead for such systems may only be warranted if a lab is expecting to grow rapidly or if the 

institution where the research is being conducted administers the system. Although adopting 

such systems may alleviate scalability issues, no open source clinical or imaging data 

management system exists that provides a combination of support for Digital Imaging and 

Communications in Medicine (DICOM), a medical imaging standard, and easy-to-use data entry 

forms, nor do any two systems interoperate seamlessly.  

 Achieving a seamless level of interoperability between information systems necessitates a 

data exchange format, particularly when data are shared across labs. A common misconception 
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is that information residing in a database with a defined schema and a set of terms is 

unambiguous. Without a data catalog or dictionary of each term and data structure, it becomes 

impossible for users to ascertain the precise meaning of information exported from a data 

management system, thus limiting the data's overall utility and ease of reuse and integration. It 

is also common for the same term to have multiple definitions that depend on context. For 

example, handedness can refer to a simple "right/left/ambidextrous" checkbox or a structured 

assessment that provides a handedness score, such as the Edinburgh Handedness Scale (77). To 

make data sharing meaningful the distinction between such concepts needs to be made explicit 

by providing precise definitions for terms, ideally accessible at a URL on the Web. Biomedical 

data integration approaches commonly apply standard vocabularies or ontologies and data 

models to harmonize disparate databases (78,79), including examples from brain imaging 

(28,80,81). However, these proposed solutions are not as widely adopted in cognitive 

neuroimaging as they are in fields like genomics, possibly because the data sharing culture in 

human neuroscience is lacking. Fortunately data sharing is starting to take hold by the virtue of 

early advocates demonstrating the utility of sharing and large scale data aggregation (6,82). 

With more brain images available and growing interest in the research community, the time 

seems ripe to push initial data integration efforts forward and fill in the missing gaps with tools 

and services researchers are now keen on using.  

 With access to more robust tooling, secondary use of research data can be made more 

efficient through the use of standards or recommendations. Many examples exist that 

demonstrate how standards have enabled neuroimaging researchers to conduct their work in 

more streamlined fashion. One successful example from neuroimaging is the Neuroimaging 

Informatics Technology Initiative (NIfTI) standard for representing binary imaging data along 

with minimal metadata. The NIfTI developers implemented this standard in several data 

analysis packages, which enabled researchers to load the same files into multiple software 

packages for interoperable analysis and visualization of medical images. From a users 

perspective, interoperability is a key component that enables flexibility in the choice of 

software, where some software outperforms others for a given task. In a field with rapidly 
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evolving methods, such as neuroimaging, it is crucial for investigators to move seamlessly 

between software applications and choose the optimal tool for the task at hand. An analogy can 

be seen in the use of workflow/pipeline tools (e.g., Nipype (83), PSOM (84), LONI Pipeline (85)) 

that provide a common interface between analysis software, some of which even converts 

between formats at runtime to enable interoperability. Similarly, agreed upon standards for 

representing metadata about datasets and derived data can enable interoperable data 

management systems. 

 To date, the data models used in data management systems have focused on a 

hierarchical syntax that maps well to the relational database world; however, the heterogeneous 

schemas utilized by leading neuroimaging databases have required significant data integration 

efforts. For example, Ashish et al. developed a database mediator to integrate XNAT and the 

Human Imaging Database ((86), HID) and provide a harmonized view of the data (81). Their 

system used a series of complex rules to rewrite database specific queries that were shipped 

out to each database. The query results were returned as XML documents consistent with the 

XML-based Clinical Experiment Data Exchange ((87), XCEDE) schema. XCEDE served as a data 

model standard/specification for the exchange of scientific data between databases, and it 

provided a structured metadata hierarchy for storing information relevant to various aspects of 

an experiment (e.g., project, subject, etc.). While the Ashish et al. approach demonstrated the 

utility of XCEDE, the extensive configuration details made it impractical for wide spread 

adoption, thus not scalable. However, the XCEDE schema demonstrated several key components 

for effective data exchange in neuroimaging.  

 XCEDE provides an extensible core structure for describing a hierarchy relevant to clinical 

experiments. By using these features, XCEDE enables the representation of metadata that spans 

the experimental process from project titles and subject demographics to data acquisition, 

image header information, and data provenance. The XCEDE Experiment Hierarchy represents a 

set of information common to many brain imaging studies, which is also reflected in other 

neuroimaging data management systems, such as those mentioned above. In particular, 

information about Projects, Subjects, Studies, and Acquisitions are prevalent pieces of 
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information that are captured across neuroimaging databases and ripe for metadata 

harmonization efforts. Although XCEDE was never as broadly implemented as the NIfTI image 

format, it demonstrated the capabilities and shortcomings of information modeling with XML 

Schema. While effective at describing the syntax and structure of data, XML Schema was not 

designed to capture the semantics, or meaning, of data elements in a format that readily 

facilitates data integration. Semantic Web technologies were designed to extend XML in order to 

address these shortcomings and now mature tools are now available that make their use 

practical in a research setting. 

2.4.2 Semantic Web technologies 

The Semantic Web is a vision originally articulated by the inventor of the World Wide Web, Tim 

Berners-Lee. The semantic Web provides a framework for a Web of both machine-readable data 

and knowledge, as well as in addition to human readable documents (88). The technology stack 

to support this vision builds upon XML with a standard data model (Resource Description 

Framework, RDF, http://www.w3.org/RDF/), query language (SPARQL Protocol And RDF Query 

Language, SPARQL (89) and ontology language (Web Ontology Language, OWL (30)) that are 

designed for loosely coupled, distributed systems that intrinsically support data sharing. 

However, these tools are designed to be flexible and general, thus they do not provide the 

solution to any specific problem alone, rather they provide a toolkit on which to build modern 

and scalable systems. By adopting Semantic Web standards as a base framework and working 

from the conceptual foundation provided by XCEDE, a next generation specification suite can be 

defined for neuroimaging that captures elements from the experimental process in a fashion 

that facilitates data exchange and models provenance in a reproducible fashion. From the RDF 

specification (http://www.w3.org/TR/2002/WD-rdf-concepts-20020829), the following quote 

provides a provocative statement about the potential that this technology stack enables: 

 

"The real value of RDF comes not so much from any single application, but from the 
possibilities for sharing data between applications. The value of information thus increases 
as it becomes accessible to more and more applications across the entire Internet."  
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 Tracking data provenance and capturing structured metadata only enhances the utility of 

shared neuroimaging data if it can be indexed and discovered. Linked Open Data (LOD) refers to 

a set of rules that describe how data behaves when the Semantic Web is "done right," thus 

allowing data to be traversed in much the same way as one following links while browsing the 

Web (90). The W3C Design Issues page itemizes the four rules for LOD 

(http://www.w3.org/DesignIssues/LinkedData.html) as follows: 

1. Use URIs as names for things. 

2. Use HTTP URIs so that people can look up those names. 

3. When someone looks up a URI, provide useful information, using the standards (RDF, 

SPARQL) 

4. Include links to other URIs, so that they can discover more things. 

 Each rule adds an additional layer of accessibility and interconnectedness that is 

designed to broadly link structured data, which can then go on to be used in unexpected ways. 

Additionally, the W3C developed a 5-Star LOD rating scale that describes how well a given 

dataset conforms to the above rules (Table 2.1), as well as other necessary requirements (e.g., 

an open license and non-proprietary formats). In the context of provenance information, the 

LOD principles are foundational to representing scientific information in a transparent way that 

facilitates reproducibility, which can be extended by a data model for describing provenance on 

the Web. 

Number of Stars Expected Behavior 

 
Available on the web (whatever format) but with an open license, 
to be Open Data 

 
Available as machine-readable structured data (e.g. excel instead 
of image scan of a table) 

 As (2) plus non-proprietary format (e.g. CSV instead of excel) 
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All the above plus, Use open standards from W3C (RDF and 
SPARQL) to identify things, so that people can point at your stuff 

 
All the above, plus: Link your data to other people's data to 
provide context 

Table 2.1. 5-Star Linked Open Data rating system (http://www.w3.org/DesignIssues/LinkedData.html). 

2.4.3 Data provenance information 

Data provenance provides an explicit record of events or activities that lead to the generation of 

a new piece of data, information, or knowledge. With workflow tools, a provenance record can 

include details about software versions, computational environment, and specific parameters 

used during an analysis. Analysis tools take time to mature, and it is not uncommon for errors 

or bugs to be discovered in software that impact the measures scientists use to publish findings 

(40,91). When these kinds of errors are identified, a structured provenance record provides a 

computational way of identifying impacted research. The need to capture structured data 

provenance arises from complications in reproducing research findings, particularly as the 

complexity of analyses has increased in recent years. The W3C designed the PROV 

specifications to capture provenance information on the Web and interoperate with semantic 

Web technologies discussed in the sections above. Among the PROV specifications is the PROV 

Data Model (PROV-DM, (92)) that defines a core set of high-level structures for capturing 

provenance information that bolsters trust in how a given piece of information was generated. 

 The PROV specification details three core objects that are used to describe provenance, 

which are Entities, Activities, and Agents (Figure 2.2). These core objects are related to each 

other with a set of defined relations. Entities are used to capture information that tends to 

persist over time, for example, a dataset or spreadsheet file, which can be modified or derived 

from other entities. For an Entity to be created (e.g., a file), an Activity is needed to describe 

how the Entity came into existence, and an Agent is needed to describe who (e.g., a person) or 

what (e.g., an organization or software) is responsible for generating an Entity. The binding of 

these three objects provides the structure needed to trust how and who created the file, 

dataset, or analysis. As a standard model for tracking provenance, PROV is more constrained 
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than RDF, yet too generic to represent the specific types of information common to 

neuroimaging in a meaningful way. By augmenting the basic types provided by PROV with 

domain-specific brain imaging terms, the PROV standard can be extended to meet the needs of 

the brain imaging community for representing provenance.  

 

Figure 2.2. PROV Data Model core constructs. The three core PROV structures are Entity, Activity, and 
Agent, as well as a set of directional relationships. 

2.5 Summary 

To summarize, the computational landscape within cognitive neuroimaging is rapidly changing. 

As the neuroimaging community advances knowledge about the brain, it also identifies 

methodological flaws in how data is analyzed and software implementation errors. With no 

signs of slowing down, this rapidly changing scientific environment calls for agile approaches 

to data analysis that need to be constantly refactored, which greatly impacts the efficiency in 

which research can be done. Neuroinformatics offers relief to some of these challenges, while 

introducing the burden of learning new software tools. The area of data sharing shows great 

promise as one area that neuroinformatics can offer more relief than burden by providing 

standards that can help software developers make design decisions that facilitate 

interoperability. Biomedical informatics provides the organizing framework around which 

neuroimaging can interact with the broader biomedical community and incorporate general 

informatics methods. The next chapter describes the study design for building a data sharing 

framework that enables a community to collaborate in the development of a data exchange 

standard, and then use that standard as part of a scientific workflow.
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Chapter 3: Study design 

 
"I think IT projects are about supporting social systems-about communications between 
people and machines. They tend to fail due to cultural issues. " 
 
- Tim Berners-Lee 
 

3.1 Overview 

In Chapter 1, the challenges of heterogeneous brain atlas terminologies, data management 

schemas, and computational analysis software were introduced as motivating factors behind 

this investigation into reproducible research. Chapter 2 provided background information on 

these challenges by examining specific cases in a biomedical domain of interest (i.e., cognitive 

neuroimaging), as well as in applied and basic informatics disciplines. Chapter 2 also 

introduced the "Fundamental Theorem" of biomedical informatics that states "a person working 

in partnership with an information resource is 'better' than that same person unassisted," which 

forms a basis for defining informatics research goals and evaluation (74). In this chapter, the 

discussion turns toward research goals and evaluation by introducing the general research 

approach and study design of two specific aims 1) to research and design a framework to 

represent, access, and query neuroimaging provenance information and 2) to develop an 

information system of Web services to compute and discover data provenance from brain 

imaging workflow. To achieve these aims, three communities of stakeholders participated in a 

research process that took place over two phases through a series of workshops and weekly 

meetings. The work completed during the first phase provided the preliminary results and 

insight necessary to address the specific aims in the second. The general research approach 

used to organize these two research phases is presented in the following section, followed by 

the study design details for each specific aim. I was a major instigator in all of the following 

activities, and my specific contributions are described in Chapter 6. 

3.2 General research approach 

To investigate the design and implementation of a framework for reproducible research, a 

mixed approach was chosen that engages stakeholders from three interdisciplinary scientific 
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communities: cognitive neuroimaging, neuroinformatics, and biomedical informatics. Each 

stakeholder community has a unique set of skills, information needs, and available resources 

that needed to be identified and incorporated into the development lifecycle of this framework. 

Without direct interaction with each stakeholder community there is an increased risk that 

previously identified solutions would overlook or that use cases would not reflect the needs of 

system users. Conceptually, Figure 1 captures the general contributions and dependencies 

between each community-stakeholder pair, which is modeled after a guide developed by leaders 

in the biomedical informatics community to clarify synergistic interactions among stakeholders 

in biomedical informatics research (73). With this model in mind, partnerships were established 

with stakeholders in representative labs and organizations in order to iteratively identify 

requirements for the framework design and implementation over two phases. In phase one, 

partnerships were formed a priori to address the need for image-specialized database tools 

through a collaboration between basic informatics in the Structural Informatics Group (SIG, 

http://sig.biostr.washington.edu) at the University of Washington (UW) and cognitive 

neuroimaging experts located in the Integrated Brain Imaging Center (IBIC, 

https://www.ibic.washington.edu), also at UW, and the Center for Cognitive and Neurobiological 

Imaging (CNI, https://cni.stanford.edu) at Stanford University. The phase two partnerships were 

formed ad hoc with applied informatics experts at the International Neuroinformatics 

Coordinating Facility (INCF), which shared the common vision of a reproducible research 

framework. Given a climate of constrained resources, there was a pragmatic need to work 

collaboratively towards a mutual goal of a standards-driven framework of interoperable tools 

for data sharing and reproducibility. 
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Figure 3.1. Biomedical Informatics Perspective. A conceptual framework to organize the interaction 
between cognitive neuroimaging, neuroinformatics, and biomedical informatics biomedical informatics 
stakeholders from the, respective, biomedical domain of interest (IBIC), applied informatics research and 
practice (INCF), and biomedical informatics (SIG) organizations and labs. 
  

 The partnerships with stakeholder communities took place over three years and are 

divided into two overlapping phases: 1) Scalable Neuroimaging Initiative (SNI) and 2) INCF 

Neuroimaging Data Sharing (NIDASH). During each phase, a series of weekly meetings and 

workshops were completed to facilitate the framework development lifecycle. The key events 

are summarized as a timeline in Figure 3.2. The SNI research phase was an initial effort to 

integrate the expertise of stakeholders in two representative human cognitive neuroimaging 

research centers with a biomedical informatics lab to assess the need for image-specialized 

database tools and a develop prototype application. A National Academies Keck Futures 

Initiative (NAKFI) conference on Imaging Science in 2010, where Dr. Thomas Grabowski worked 

with an interdisciplinary team challenged to “develop image-specialized database tools for data 

stewardship and system design in large-scale applications,” catalyzed this phase. The team 

identified Neuroimaging and Cognitive Neuroscience as areas ripe for innovation, where 

evolving instrumentation, evolving conceptualization of brain systems, and differentiation of 

modalities and analysis approaches promised to be disruptive factors for the foreseeable 
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future. While the team concluded that basic informatics concepts are available, they indicated a 

lack of interdisciplinary interaction between those with specialized scientific knowledge and 

those with specialized informatics knowledge. Pilot funding for SNI was provided by NAKFI to 

design and develop a system architecture prototype that addressed the expertise gap, which 

was then evaluated and redesigned as phase 2.  

Figure 3.2. Research Phases and Events Timeline. Highlights the key workshops and meetings for the SNI 
and NIDASH research phases. 
  

 The NIDASH phase was motivated by feedback on the prototype software developed 

during the SNI phase, which was presented at the 2012 Neuroinformatics Congress (93)and 

garnered interest from the INCF Data Sharing Program. The SNI team decided to engage the 

broader Neuroinformatics community and leverage the limited resources afforded by the grant 

from NAKFI with those of INCF. By working with fellow Neuroinformatics researchers and 

software developers in a grassroots fashion, the SNI vision and prototype software were 

refactored and harmonized with community-based efforts to accomplish similar goals with a 

broader set of expertise. Further, INCF made resources available to participants working on 

standards related efforts to present work at conferences and attend workshops. These 
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contributions made it possible to bring community members together to extend and refine the 

work completed during the SNI phase, and make a real world impact by encouraging adoption 

of SNI concepts in the field of cognitive neuroimaging. The specific aims are tailored to a 

participatory design and development process that builds on the preliminary results 

established by SNI by encouraging iterative and agile methods that favor a motto of "fail early, 

fail fast, fail often." 

 The specific aims in this dissertation are driven by the needs of stakeholders in the 

human cognitive neuroimaging community, which were initially established during the SNI 

phase. There was also a need for participation from stakeholders in the neuroinformatics 

community with expertise in addressing reproducibility in neuroimaging research. To address 

this broad issue, research questions were identified to climb the so called "tower of 

achievement in biomedical informatics", which progresses from "Model Formulation" and 

"System Development" to "System Installation" and "Study of Effects" (94). The first aim 

addresses the question, "What are the requirements and design of an information resource that 

improves the ability of a cognitive neuroimaging scientist to conduct reproducible research?" By 

investigating this question and identifying the specific "reproducibility needs" of this research 

community, an information resource could be designed to meet those needs. Aim 1 also 

addresses the design question, "What processes, models, and/or systems can be designed to 

meet the needs identified." Aim 2 turns towards the system development and installation levels 

of the "tower of achievement" to create an information resource artifact that answers the 

question of "what open source software and services are available and appropriate to 

implement prototypes of the framework design?" 

  These aims follow an approach modeled after agile software development (95), where 

incremental progress is used to provide feedback that may change the course and direction of 

previous aims. The intention of this design is to facilitate vertical integration across each "tower 

of achievement" level and incorporate best practices that have emerged from the bioinformatics 

community's use of agile approaches in other contexts (96,97). Each specific aim also 

incorporates an evaluation sub-aim that addresses the "Study of Effects" level and is designed 
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to address questions such as, "Does the framework design meet the specified requirements and 

will it function as expected?" and "What is the overall impact that the framework has had on 

being able to conduct reproducible neuroimaging research?" This general approach is designed 

to enrich shared brain imaging datasets with structured provenance information that will lower 

barriers to new explorations of neuroimaging data on the Web. 

 To advance the progress being made in the neuroimaging data sharing space, working 

examples needed to be developed and distributed in an open and community -driven way. The 

scope was structured to provide prototype standards and applications using open access 

datasets, databases, knowledge bases, and computational services to demonstrate novel data 

sharing standards and resources. The following specific aims sections provide further details 

about these aims and their sub-aims.  

3.2 Specific Aim 1: Research and design a framework to represent, access, and query 
neuroimaging provenance information 

The goal of this aim was to form a bridge between scientific and informatics disciplines to 

lower data reuse barriers.  A specifications suite was designed to provide the data structures 

and terminologies necessary to aggregate and enrich public brain imaging metadata with 

provenance information. Standardized provenance information is not supported by present-day 

neuroimaging databases. Such provenance information is an essential component of 

reproducibility that ties together a range of information from different research stages such as 

raw experimental data, analysis workflow, and statistical results. By identifying the terms used 

in each research stage, a model can be constructed that captures relevant information as an 

extension of the PROV Data Model discussed in Chapter 2. The model for each research stage 

can then be linked together as a single flow of information, where apps can be designed 

specifically for each research stage. If the apps use this same provenance model and 

vocabulary, they would then be interoperable and able to exchange common sets of 

information. 

 To enable the generation, aggregation, and query of provenance information from 

neuroimaging data management systems and computational workflows, four sub-aims were 
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proposed that led to the design and demonstration of specifications for 1) a vocabulary of 

terms for cognitive neuroimaging metadata, 2) extensions to the PROV Data Model that 

correspond to the vocabulary of terms, 3) the design of an API to access and query a 

provenance information repository, and 4) evaluation of each specification with use-case driven 

demonstrations. These specifications provide the design blueprint for developing an 

information system of Web services to compute and discover provenance information from 

brain imaging workflow, as well as a process for community feedback and contribution. 

3.2.1 Design and methods 

To successfully design the specifications in Aim 1, an interdisciplinary working group of 

individuals with necessary technical expertise and experience was assembled. Oversight of the 

working group was provided by INCF, which was comprised of members from SNI, INCF NIDASH 

Task Force, and the biomedical informatics Research Network (BIRN) Derived Data Group. 

Working group members during eleven in-person workshops and forty remote weekly meetings, 

as well as informal discussions between team members, designed the specifications for each 

sub-Aim. A model and process were defined to enable distributed collaboration and to track 

contributions from team members as the data modeling and specifications were developed. The 

outcomes for each sub-Aim indicate specific deliverables and expected results. 

 Outcomes for the four sub-Aims were split into two types of deliverables. The first type 

of deliverable consisted of draft specification documents to capture cognitive neuroimaging 

metadata terms, related PROV extensions, and an API for access and query. The working group 

priorities and resources drove which terms were identified, vetted, and incorporated into 

specification documents. The second type of deliverable was an evaluation of the specifications 

based on specific use-cases that were identified by the working group to fulfill sub-aim 4. The 

evaluation includes descriptive statistics on the number of metadata terms, classes, and 

properties defined for each use case, as well as demonstrations of how the terms are used with 

PROV extensions. The API specification was evaluated with a prototype web application 

developed in specific Aim 2. 
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 This specific Aim had a number of limitations. Modeling neuroimaging metadata required 

a deep understanding of the problem domain and priorities needed to follow use-cases defined 

by domain experts. The decentralized, grass-roots nature of the working group explicitly 

allowed for flexibility in pursuing new metadata terms, access and query requirements, and 

brain atlas vocabularies as necessary, making it difficult to predict modeling priorities. The 

PROV Data Model was chosen because it is general, flexible, and extensible, and thus allowed 

for an ongoing and iterative development approach amenable to changing priorities. This 

includes an expectation that the working group may change use-cases in the event of new 

contributors with additional resources, which is an unavoidable consequence of any grassroots 

effort.  

3.4 Specific Aim 2: Develop an information system of Web services to compute and discover 
data provenance from brain imaging workflow 

The second aim of this dissertation was to build software tools that implemented the 

specifications designed in Aim 1 and to use these components to develop a data management 

system architecture to compute and discover data provenance from brain imaging workflow. 

While the products of Aim 1 included specifications for terms, data model extensions, and an 

API, this aim turned to the system architecture level to develop an information resource that 

can be evaluated using feedback from the neuroimaging and neuroinformatics communities. 

The preliminary feedback received on the framework components (e.g., design process, data 

model, system architecture, etc.) from the SNI Phase were used to prioritize and evolve system 

components to meet the needs of stakeholders, including INCF. 

 To refine the initial framework components from the SNI Phase into an information 

system for executing and tracking the provenance of neuroimaging workflow four sub-aims 

were proposed: 1) Create a reference implementation of the vocabulary, data model, and API 

specifications; 2) Develop an updated data management architecture of the NiQuery system; 3) 

Implement a prototype Web application to demonstrate system features for query, workflow 

execution, and provenance discovery; and 4) Evaluate the overall positive and negative 
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outcomes of the framework implementation. The next section describes the design and 

methods used to implement and evaluate the framework components. 

3.4.1 Design and methods 

To fulfill the above sub-aims, an evaluation was conducted of a prototype data management 

system developed during the SNI Phase. The system was evaluated from the experimental 

research perspective of biomedical informatics, where an experiment is the development and 

demonstration of a biomedical information resource that is assessed to identify positive and 

negative outcomes of deploying the system (98,99). The outcomes are then used in a 

subsequent redesign of the resource, which then becomes another experiment, thus resulting in 

continued improvement. The evaluation was conducted based on requirements distilled from 

meetings and workshops with members from the neuroimaging and neuroinformatics 

communities, in parallel with those discussed above in Aim 1. The requirements were assessed 

in the context of emerging technologies that were used to redesign the original prototype 

system architecture, called NiQuery (93), and fulfill the four sub-aims. 

  Outcomes for the four sub-aims were split into three categories including features, 

applications, and an evaluation of the implemented system. The feature outcomes were defined 

as a demonstration of the vocabulary, data model, and API specifications for a neuroimaging 

data sharing scenario discussed in Chapter 4. The application outcomes were defined as an 

updated system architecture diagram and a working prototype for example use-cases. Members 

of the working group collaboratively defined use-cases to demonstrate system features for 

query, workflow execution, and provenance discovery. To evaluate the overall positive and 

negative outcomes of the framework implementation, the system is compared to the set of 

requirements necessary to fulfill the use-cases. 

 The components of this aim are implementation heavy and have several limitations. Re-

design and implementation of a project using open-source and novel technologies takes 

significant technical expertise to execute in a timely fashion. To address the amount of effort 

needed to complete the overall framework, a minimal set of functionality may need to be 
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identified such that it would yield a working system. By specifying a minimally sufficient set of 

features, the full set of specification can be pending even as a working system with 

demonstrable features that can be evaluated. Additionally, it is reasonable to expect 

contributions from working group members and stakeholders seeking to leverage or influence 

the direction of the framework and system architecture.  

3.5 Summary 

This chapter presented the general approach and specific aims of the dissertation project. The 

general approach outlined a framework for biomedical informatics designed to facilitate 

collaboration among key stakeholders, which took place in weekly meetings and face-to-face 

workshops summarized in Figure 2. The goals, design, and methods for two specific aims were 

then discussed, including a brief description of the sub-aims that will be elaborated in the 

respective research approach sections in Chapter 4. The focus of Aim 1 was to produce 

specifications for cognitive neuroimaging terms, term mappings to the PROV standard for 

representing data provenance, and an API for access and query of each data model component. 

The focus of Aim 2 was to evaluate a system prototype and re-design the system to incorporate 

the specifications from Aim 1 and implement a working prototype. Successful realization of 

these aims will lead to tools and standards that will accelerate the meaningful reuse of brain 

imaging data by providing methods to capture, access, and query previously unavailable 

provenance information, as well as preserving the computational details and environment 

necessary for reproducible research in cognitive neuroimaging. The next chapter describes the 

studies and research outcomes for each of these aims and their corresponding sub-aims.
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Chapter 4: Neuroimaging data model framework 

 
"Just as bioinformatics has profoundly impacted molecular biology and related fields, 
neuroinformatics has the potential for a transformative impact on neuroscience 
research." 
 
- David van Essen, Washington University 
 

4.1 Overview 

In Chapter 3, the general research approach for this dissertation was discussed in the context 

of a system for collaborative Biomedical Informatics research. The study design was introduced 

as a collaborative endeavor that engaged stakeholders from cognitive neuroimaging, 

neuroinformatics, and biomedical informatics through a series of workshops and meetings to 

address two specific aims during two research phases. The first research phase provided the 

preliminary results that phase two expanded upon, in order to produce specifications for 

neuroimaging data sharing and a prototype system that implements these specifications. In this 

chapter, a study is presented that builds upon the phase one results, reported in the research 

approach section, t improve the reproducibility of cognitive neuroimaging research through 

adoption of shared data models. A neuroimaging data sharing scenario is presented to describe 

the vision for how a scientist may interact with neuroinformatics resources that are enabled by 

the overall data sharing framework. This data sharing scenario is used to provide context when 

reporting outcomes and to demonstrate progress on key components of the vision. 

4.2 A neuroimaging data sharing scenario 

A vision for reproducible human cognitive neuroimaging research is emerging through a 

growing number of neuroinformatics resources designed to streamline scientific workflow. A 

data sharing scenario is presented that embodies this vision to enable neuroimaging 

researchers with neuroinformatics applications using a new data interchange standard called 

the Neuroimaging Data Model (NIDM) and a new computing platform, NiQuery. In this scenario, 

a second-year graduate student in cognitive neuroscience is rotating through a lab that 

investigates the functional neuroanatomy of auditory systems in the human brain. After 
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meeting with the lab's principal investigator (PI), the student identifies a project that will 

introduce them to neuroimaging data analysis methods starting with anatomical MRI and later 

moving on to functional MRI. In the first stage, the student is tasked by the PI to conduct a 

review of brain imaging literature, identify an open access dataset with anatomical and 

functional scans, process the anatomical data using FreeSurfer (100), and present the resulting 

derived data in the weekly lab meeting.  

 The student first visits PubMed to conduct a search on auditory system studies that 

returns over a thousand manuscripts. Even after filtering for studies based on specific interests, 

the student recognizes the need to further consolidate the literature. Luckily, a postdoctoral 

fellow in the lab recommends that the student explore Neurosynth (101), a neuroinformatics 

application that extracts activation foci from task-based fMRI manuscripts and performs an 

automated meta-analysis for different types of studies (e.g., auditory studies). The student then 

follows a link from the Neurosynth application to Brainspell (http://brainspell.org) where they 

are able to manually curate and annotate the studies in their literature review with terms from 

the Cognitive Atlas (102). With literature review complete, the student moves on to identify 

open access datasets and follows a link from Brainspell to NeuroVault (http://neurovault.org), 

an application for hosting unthresholded statistical maps that result from fMRI analysis. 

NeuroVault enables the student to explore the results from individual studies in their literature 

review and to identify studies that provide access to raw data they will need to run FreeSurfer. 

Of particular interest to the student are studies with an accompanying "data paper" that 

provides a detailed account of the methods used for data acquisition, which go beyond the level 

of detail typically covered in the methods section of a manuscript (103,104). 

 The student became familiar with the concept of data papers from their cognitive 

neuroscience training, which included a course on reproducibility that emphasized the 

importance of publishing data papers and using open access data. One relevant study on 

NeuroVault provided the student with a link to a Nature Publishing Group's open source 

publication journal called "Scientific Data" (http://www.nature.com/sdata) where the primary 

article type is a "Dataset Descriptor" that allows public description of valuable scientific 
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datasets and is intended maximize the utility such datasets. The Dataset Descriptor manuscript 

the student found was carefully curated with metadata represented in the ISA-Tab format (105), 

which is organized into files that represent three levels: Investigation, Study, and Assay. While 

ISA-Tab provides a standardized, machine-readable format for describing the layout and 

organization of a study, it does not provide many of the details expected to accurately curate 

neuroimaging research, such as an fMRI study (20). The fMRI Dataset Descriptor manuscript 

found by the student was published in Scientific Data and called the "Study Forrest Project" (8), 

which includes an auditory paradigm. The manuscript provided human-readable text that 

fulfilled the majority of the guidelines proposed by Poldrack et al. (20); however, the machine-

readable ISA-Tab representation was not designed to capture the necessary details for 

neuroimaging.  

 To gain access to these additional details, the student follows a link to the Study Forrest 

dataset hosted on the OpenfMRI database (106). In addition to an ISA-Tab description, 

OpenfMRI provides a neuroimaging specific format called NIDM that captures detailed metadata 

the student will need for processing, particularly downstream fMRI analysis. Unbeknown to the 

student to this point, each of the links between Neurosynth, Brainspell, NeuroVault, and 

OpenfMRI were all created using NIDM in the background to seamlessly exchange information 

between the systems. Given the student's limited experience with computing environments 

such as Linux and command line tools, the same clever postdoctoral fellow recommends the 

student to use NiQuery, a neuroinformatics computing platform that can use NIDM to automate 

many data management and computational tasks. By accessing NiQuery, the student is able to 

chose the Study Forrest project on OpenfMRI and select the option to run FreeSurfer. Without 

the student needing to think about how the data is accessed or where the computation will take 

place, NiQuery reads the NIDM description hosted on OpenfMRI and automatically identifies the 

correct anatomical scans needed as input and triggers a FreeSurfer task for each scan. The 

student is informed that the task will take approximately one day to complete, based upon the 

time the task has taken to run previously, and then subscribes to a notification system that will 

send them an email when the task completes. When the student checks their email the next 
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morning, there is a message waiting from NiQuery indicating that their task is complete. After 

clicking on a link, they are presented with a webpage view of a NIDM Results document with 

several buttons to open NIDM-compliant data visualization environments, for example an 

IPython Notebook (http://ipython.org/notebook.html). 

 The student clicks the IPython Notebook button, which opens the application and loads 

the NIDM document. The student is free to explore interactive plots and 3D rendering of the 

FreeSurfer derived data. For example, the NiQuery FreeSurfer workflow generates statistics for 

brain regions annotated with terms from the Foundational Model of Anatomy (FMA) ontology 

(107). The semantic annotations provided by the FMA enables the student to perform intelligent 

queries of the data (28). The student explores several interesting queries and generates a few 

figures using the tools provided in the visualization environment. During the next weekly lab 

meeting, the student is able to present findings and get suggestions on the next steps to take 

when moving from anatomical to functional MRI data analysis with the Study Forrest Project. 

The NIDM data interchange standard and NiQuery platform are two essential components to 

enable this vision of workflow for students and researchers alike. The studies presented here 

and in Chapter 5 explore the requirements and implementation details of a framework that 

realizes this vision. 

4.3 Framework research and design study 

In this study, the goals of Specific Aim 1 were addressed to research and design a framework to 

represent, access, and query neuroimaging provenance information. The four sub-aims 

proposed in Chapter 3 were pursued and led to the design and demonstration of specifications 

for 1) a vocabulary of terms for cognitive neuroimaging metadata, 2) extensions to the PROV 

Data Model that correspond to the vocabulary of terms, 3) the design of an API to access and 

query a provenance information repository, and 4) evaluate each specification with use-case 

driven demonstrations. The work supporting these sub-aims was completed during the Scalable 

Neuroimaging Initiative (SNI) Phase, which is described in the following section on research 

approach. The outcomes of these preliminary studies informed the development of the 
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Neuroimaging Data Model (NIDM) data interchange framework that was alluded to in the above 

data sharing scenario. In the outcomes and design section, the details of the NIDM framework 

are presented with examples that follow from the data sharing scenario with a use-case driven 

demonstration of modeling OpenfMRI and the Study Forrest project. This description of the 

NIDM framework provides an overview of the standards used for data interchange in the 

second study to develop a prototype information system called NiQuery. 

4.3.1 Research approach 

This section elaborates on the study design introduced Chapter 3, Aim 1. It is organized by sub-

Aim, according to metadata terms, PROV extensions, and the API. The section on metadata 

terms describes 1) a method to represent and harmonize different views of neuroanatomy 

using the Foundational Model of Anatomy (FMA) (27) and 2) a method to capture MRI 

acquisition parameters using the controlled vocabulary of the DICOM standard (108). The 

section on PROV extensions describes initial work to harmonize the XML-based Clinical and 

Experimental Data Exchange (XCEDE) (87) with the PROV XML Schema for representing data 

provenance. This endeavor provided the key insight that all experimental data could be 

modeled as a provenance information flow in NIDM. Finally, the section on the API presents 

initial experiments with Web service API's for voxel-level access to brain imaging data that are 

annotated with terms from the FMA. The outcomes reported in each section provide a summary 

of the lessons learned and requirements determined to be important for the NIDM framework 

that is subsequently described in the outcomes and design section.  

4.3.1.1 Cognitive neuroimaging metadata terms 

A basic requirement for interoperability between biomedical information systems is a 

controlled vocabulary of terms that provides a common meaning for data. Two categories of 

terms in neuroimaging research that need to be captured unambiguously are MRI acquisition 

metadata and neuroanatomical labels. Acquisition metadata for MRI studies is captured using 

the DICOM standard, which has been implemented by all major medical imaging vendors. 
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However, perhaps surprisingly, there is no machine-readable resource providing a dictionary of 

all DICOM terms that includes definitions and datatype information. Similarly, the proliferation 

of brain atlas terminologies poses a considerable challenge for reconciling datasets annotated 

with terms from different atlases, as discussed in Chapter 2, and there is no online resource 

that provides an anatomical framework with lexical mappings between atlas terms. To fill these 

terminology gaps for cognitive neuroimaging research, two preliminary studies were completed 

during the SNI phase to deliver 1) machine-readable MRI acquisition terms and 2) brain atlas 

mappings for use in the NIDM framework. 

 To fill the DICOM terminology gap, a study was conducted to develop a resource of 

unambiguously defined terms accessible on the Web. This resource would enable MRI 

acquisition metadata to be represented independently of the DICOM header (109). Once an MRI 

dataset is acquired in DICOM format it is typically converted to NIfTI format for data analysis 

and the original data acquisition metadata from the DICOM header is lost. This conversion is 

lossy and omits metadata that is essential for secondary data use, thus undermining the 

potential of shared NIfTI data. To develop a DICOM terminology, the INCF NIDASH task force 

extracted DICOM terms from natural language specification documents and imported them into 

a shared spreadsheet where terms and definitions were reviewed during weekly meetings. The 

outcomes of this study provides 1,757 DICOM terms that are now available through NeuroLex 

(69), where each term is assigned a unique identifier and URI that can be accessed on the 

NeuroLex DICOM terms webpage (http://uri.neuinfo.org/nif/nifstd/nlx_149624).  

 To address the need for harmonized brain atlas terms, a study was conducted to 

augment the FMA with the spatio-structural properties needed to represent different brain 

labeling schemes within a coherent framework (26). By accommodating different views of 

neuroanatomical organization within the same framework, the Structural Informatics Group 

enhanced the FMA properties to correlate disparate brain labeling schemes and to annotate 

brain imaging datasets, such as those produced by FreeSurfer in the data sharing scenario that 

introduced this chapter. Figure 4.1 demonstrates how the FMA provides a formalized structure 

to lexically map the disparate terminologies discussed in Chapter 2. As reported in Turner et 
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al., the FMA was used to annotate a large dataset of task-based fMRI signal activations both in 

participants with schizophrenia and healthy controls. This was then used to demonstrate how 

the enhanced FMA properties could be used to answer novel questions about the data with 

"intelligent" queries, such as "What are all the brain regions connected by the dorsal segment of 

the right superior longitudinal fasciculus?" 

  

Figure 4.1. FMA Brain Atlas Mapping. An example of how terms from brain atlases and vocabularies can be 
correlated by mapping to the corresponding class in the FMA hierarchy. 
  

The outcomes from the SNI phase for these two preliminary studies provided terms to 

annotate MRI acquisition metadata and neuroanatomical assays (e.g., FreeSurfer anatomical 

parcellation and segmentation statistics). Additionally, annotations from the FMA were shown 

to enhance information retrieval tasks by providing a computable set of relations for linking 

levels of anatomical granularity, connectivity, and correlating across brain atlas terminologies. 

By incorporating these terminologies, as well as others, into the NIDM framework, extensions to 

the PROV standards can be further linked into a broad set of online information resources.  
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 The two requirements that emerged from these studies are: 1) to develop domain 

specific reference terminologies or ontologies and 2) to reuse terms by importing them in 

specific applications. By providing a common vocabulary of terms, these requirements enable 

applications using NIDM to fulfill the data exchange and interoperability envisioned in the 

neuroimaging data sharing scenario that introduced this chapter. 

4.3.1.2 PROV data model extensions 

A basic requirement for reproducing the experimental conditions, under which data were 

acquired and processed, is a record of provenance. Provenance information is used to capture 

detailed metadata about the original state of a piece of data, as well as the computational 

environment used to transform the data in any way. In biomedical and neuroimaging research, 

provenance information is best recorded in context with links to project information that 

include metadata about the study participants, principal investigator, experimental design, etc. 

The XCEDE XML Schema, introduced in Chapter 2, provides an Experimental Hierarchy used to 

model information at the levels of Project, Subject, Visit, Study, Episode, and Acquisition 

information, as well as data provenance. Thus, XCEDE can capture data provenance in the 

context of project information; however, PROV (110), a W3C standard, has emerged as the gold 

standard for representing provenance on the Web. To facilitate data exchange between 

neuroimaging systems and to capture provenance information with the terms discussed above, 

two preliminary studies were conducted during the SNI Phase to 1) identify the advantages and 

disadvantages of using XCEDE standard for data exchange and 2) harmonize the XCEDE and 

PROV XML Schemas to enable provenance tracking in the context of an experimental project. 

 To evaluate the XCEDE format for standardized data exchange, a study was conducted 

to integrate data from two neuroimaging data management systems using XCEDE as a common 

schema (93). Data was extracted from XNAT (34) and the Neurobiological Imaging Management 

System (NIMS, https://github.com/cni/nims) and was transformed into XCEDE before being 

loaded into a Web accessible location. XCEDE provided the necessary data structures to 

conceptually map information from both XNAT and NIMS into a common XML format; however, 
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both systems contained additional information that would not validate with the XCEDE XML 

Schema without additional modeling effort. The rigid structure of XML Schema did not fit well 

with the rapidly evolving set of terminologies and concepts found in neuroimaging. In contrast, 

the Open World assumptions provided by semantic Web standards, such as RDF and OWL, were 

found to provide the additional flexibility necessary for the dynamic landscape of metadata in 

neuroimaging, albeit at the cost of the robust validation provided by XML Schema. The 

outcomes of this study indicate the need for a flexible modeling environment that assumes 

incomplete and complementary information from external terminologies found on the Web. 

 To harmonize the XCEDE and PROV XML Schemas, a study was conducted to extend 

XCEDE with the formalized notion of provenance provided by the W3C PROV specifications 

(111). XCEDE specifies an XML Element for provenance that can express an ordered sequence of 

actions performed on data including command line executable programs, parameters, and 

associated metadata. While this matches with traditional notions of provenance, it lacks the 

PROV notion of "views" that provide different provenance perspectives including a "data flow 

view," "process flow view," and "responsibility flow view." The PROV Entity, Activity, and Agent 

concepts, detailed in Chapter 2, endow each of these views with specific properties. In XCEDE, 

all XML elements are considered to be containers of information that roughly map to the PROV 

concept of Entity, which neglects the richness provided by the additional PROV concepts. To 

harmonize these two schemas, the PROV XML Schema was imported and mapped into an XCEDE 

XML Schema document. Instances of the schema were manually generated to capture the 

richness of PROV within the experimental project context of XCEDE. While it was possible to 

map, for example, an XCEDE Project element to a PROV Entity and an XCEDE Subject Element to 

a PROV Agent, it became clear that doing so resulted in redundant information and the 

additional complexity did not provide significant benefit. However, the outcomes of this study 

generated a key insight into the generic nature of the PROV model, namely that it could be 

extended to capture the same information expressed by XCEDE, but entirely within the 

framework of provenance information. 
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4.3.1.3 Access and query application programming interface 

A basic requirement for a decentralized, Web-based application framework is an application 

programming interface (API) that provides access and query functionality. In the data sharing 

scenario section, several neuroinformatics applications were described that operate on 

overlapping, yet distinct sets of information. For example, the OpenfMRI database contains the 

type of information modeled by the XCEDE Experiment Hierarchy, while the NiQuery application 

requires additional provenance information to record the FreeSurfer workflow environment. 

The information requirements for a given application can be considered a "view" over a 

common data model, where the data model contains more information than any single 

application may require. To explore the types of data model "views" that would provide 

applications with useful information, two preliminary studies were conducted during the SNI 

Phase to 1) evaluate the Annotation Image Markup (AIM) standard (112) for semantic annotation 

of brain images, and 2) design an initial API specification based on the XCEDE Experiment 

Hierarchy to access information common to neuroimaging data management systems. 

 To evaluate the Annotation Image Markup (AIM) standard for the semantic annotation of 

brain images, a study was conducted to apply the brain atlas mappings provided by the FMA to 

generate an AIM document that represents voxel-wise activation in a statistical fMRI dataset 

(113). AIM is an information model for describing regions of interest in images by labeling 

voxels with semantic information, such as anatomical labels or clinical findings. The AIM 

standard was designed to work with the Digital Imaging and Communications in Medicine 

(DICOM) standard, which is ubiquitous in medical imaging systems, but does not provide a 

mechanism for annotation. Brain atlases are used to identify brain regions in images by using 

numerical labels and a lookup table that maps the number to a given anatomical structure. In a 

statistical fMRI map, the value at a given coordinate corresponds to an activation level, but the 

coordinate lacks an anatomical label. By registering the statistical map into the same coordinate 

system as a brain atlas, a lookup table can be used to label a given statistical value with a brain 

region label. AIM provides a standard mechanism to represent the coordinates, statistical value, 
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and anatomical region in an XML document. An AIM XML document can then be transferred 

over the Web and used to exchange images that are semantically annotated with terms from an 

ontology, such as the FMA. To assess the feasibility of using AIM as a data exchange format for 

fMRI datasets annotated with brain atlas labels from the FMA, an Image Annotation Service 

(IAS) was developed to generate AIM XML documents that captured annotated brain activation 

measures. 

 The IAS system architecture is outlined in Figure 4.2, which provides an API to annotate 

fMRI datasets on a voxel-by-voxel basis with FMA identifiers. As an initial experiment for 

defining an API, the system revealed several limitations of using the AIM standard for brain 

imaging. First, much of the shared brain imaging data is stored in NIfTI format, but AIM 

requires the use of DICOM. While a mock DICOM header can be generated, it is considered bad 

practice to generate fake DICOM identifiers. Second, the AIM standard is much more verbose 

than the compact binary representation provided by NIfTI. For example, a compressed NIfTI file 

may be 2.3 megabytes, whereas the same information modeled in AIM for the whole brain is 

over 500 megabytes and is not scalable. The outcomes of this study indicate that a voxel-by-

voxel XML representation is unnecessarily verbose and that a lighter weight solution consisting 

of summary information and a link to the original file would be preferable, such as the 

approach taken by NeuroVault in the data sharing scenario. 
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Figure 4.2. Image Annotation Service. A researcher can 1) use a query management application to 2) 
execute a query over the FMA to retrieve a mapping of brain atlas identifiers that can be 3) submitted to 
the IAS where 4) an AIM representation is generated for all of the brain regions identified in the initial 
FMA query and returned to the user. The code is open source and available at: 
https://github.com/nicholsn/pyAIM 
  

To design an initial API specification based on the XCEDE Experiment Hierarchy, a study 

was conducted to specify a data exchange layer between neuroimaging databases with a 

common interface to access and query shared brain imaging data (114). A large number of 

databases are developed to store and manage human neuroimaging data. While individual 

neuroscience databases provide mechanisms to query and download information within a given 

framework (34-36,86,115) there is no standardized way to programmatically access related 

information stored in these heterogeneous systems. Creating a data exchange layer with a 

common interface to access and query shared brain imaging data would enable the 

development of interoperable client applications capable of consuming resources available 

across disparate brain imaging data management systems. 

 The initial API design focused on providing uniform access to neuroimaging databases. 

Conceptually, the API was defined as a service for accessing common entity types (e.g., 

'nidm:Project', 'nidm:Participant') and their relationships (e.g., ':subject' 

'prov:wasAssociatedWith' ':project') specified by the metadata terms and XCEDE-based PROV 

extensions discussed in the previous two sections. Neuroimaging databases conforming to the 
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API would implement a mapping of their local resources to XCEDE entities and provide a 

mechanism to request resources. The API is not tied to a specific language or technology, but 

for web-accessible databases the Representational State Transfer (REST) pattern (116) fit the 

system requirements. The initial REST API would respond to an Hypertext Transfer Protocol 

(HTTP) request for a Subject URI (e.g., 

http://www.example.com/xcede_query/subject?uri=<uri:string>) by listing the relationship and 

Uniform Resource Identifier (URI) of related entities (e.g., ':subject' 'prov:wasAssociatedWith' 

':project_id'). The specified HTTP resources are listed in Figure 4.3. The response to an API 

request at a given URI would return XCEDE XML or another serialization (e.g., Turtle) 

conforming to the XCEDE data model. The API design was discussed with the developers of 

many neuroimaging databases to identify limitations of this approach. The outcomes of this 

study provided a prototype common API specification to use for further refinement in Phase 2 

of this dissertation. 
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Figure 4.3. XCEDE API. The initial common API specification provides resources to access the base PROV 
types, as well as extensions based on XCEDE. 
  

These two SNI phase preliminary studies from the SNI Phase provided an assessment of 

the AIM standard for representing voxel-level semantic annotations and a specification for the 

initial set of API resources for accessing XCEDE-based extension to PROV. While AIM was 

capable of modeling fMRI statistical images and annotating values with terms from the FMA, 

the requirement to use DICOM and the verbosity of AIM were not a good for match for brain 

imaging use cases. The voxel-by-voxel annotation method was found to be unnecessary, as 

access to full image files was sufficient. The IAS system also provided an initial example of a 

computational Web service, which is explored further in the prototype system study. The initial 

API specification was used to gather feedback from neuroimaging database developers, who 
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were generally supportive; however, these developers had limited resources to implement the 

API as part of their system and were unable to add this feature request to their software 

development roadmap. It was suggested that a separate server be used to extract, transform, 

and load information from each neuroimaging system and expose an API as a separate server. 

The results of these two studies identified key limitations of AIM and provided a starting point 

for further development of a common API. 

 The research approach discussed in this section outlined the preliminary studies 

guiding the development of a neuroimaging data sharing framework. These initial studies 

demonstrated vocabularies useful for annotating MRI data with DICOM terms and brain atlas 

labels, which can be used in conjunction with a data model that intrinsically captures data 

provenance. 

4.3.2 Outcomes and design 

 This approach captures provenance not as an afterthought but as explicitly modeled 

relationships between Entities, Activities and Agents that support modeling research as a 

process. This section reports the outcomes and design of a community-driven framework that 

emerged from these initial studies by following the data sharing scenario as a use-case to 

introduce the Neuroimaging Data Model (NIDM). First, a conceptual overview of NIDM is 

presented to familiarize the reader with the framework components before tying these 

components back to the use-case of a student accessing data from the OpenfMRI database. Each 

of the subsections continue with this use-case by examining two key NIDM components for data 

management, the Dataset Descriptor and Experiment Components, using detailed examples 

from OpenfMRI and the Study Forrest project (8). The section concludes with a description of 

the data modeling process used to develop these data sharing standards. 

 At its core, NIDM builds upon semantic Web technologies to extend existing vocabulary 

and ontology standards that support reproducibility and data reuse in the domain of cognitive 

neuroimaging. By extending the generic concept of a provenance data model, specialized 

components were defined to model information from each stage of the research process 
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starting with project-level information about participants and acquired data, to information 

about computational workflow, as well as derived statistical results. By incorporating each of 

these elements within the same conceptual framework (i.e., provenance information), a rich 

description of research processes can be captured in a machine-readable form and investigated 

computationally. Figure 4.4 provides a set of four conceptual layers and five NIDM Components 

that are introduced here and detailed in the sections below.  

 Figure 4.4. NIDM Layer Cake. NIDM is organized into a set of layers that each build upon the layers 
beneath. The NIDM Components include 1) 'NIDM Dataset Descriptor' information to provide an overall 
description of available documents, 2) 'NIDM Experiment' information to model the XCEDE Experiment 
Hierarchy, 3) 'NIDM Workflow' information implemented by processing tools that transform data, 4) 'NIDM 
Results' information to model essential details of derived data, and 5) 'NiQuery API' to access and query 
views of information modeled in other components. 

  Each NIDM Component is defined by a specification that includes terms with definition 

and an information scope. The three components in level 3 (i.e., NIDM Experiment, NIDM 

Workflow, and NIDM Results) relate directly to information that is generated during a scientific 

investigation, while level 4 (i.e., NIDM Dataset Descriptor) is a meta-layer to describe additional 

information about how a given dataset, or NIDM bundle, is distributed. The NiQuery API 

Component specifies how information can be retrieved from the Object Models that are defined 

by each Component, where an Object Model is a particular "view" of the underlying PROV data 
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model designed for a specific application. To transition into how NIDM relates to the data 

sharing scenario, Figure 4.5 provides an example of how the Entities, Activities, and Agents 

defined by PROV are extended to represent Object Models for an experimental project 

information (e.g., OpenfMRI and Study Forrest), workflow information (e.g., FreeSurfer), and 

derived data information (e.g., FreeSurfer statistics). Each of the following sections provides a 

detailed account of each NIDM Component, starting with the Dataset Descriptor that the 

student in the data sharing scenario would pull into their workspace to identify scans with 

which to run FreeSurfer. 

 
 
Figure 4.5. NIDM Information Domains. Provenance data model extensions showing how the relationships 
between experiment, workflow, and results information can be described in the context of provenance 
using the core Agent, Activity, and Entity elements of the W3C PROV data model. 

4.3.2.1 NIDM dataset descriptor component 

The data sharing scenario describes how a student identified the Study Forrest data paper 

during a literature review and found that the data for this study was available on the OpenfMRI 

database. One goal of publishing a data paper is to encourage the reuse and reanalysis of a 

given biomedical dataset, which NIDM can facilitate. As more datasets become available from 

different biomedical domains it will be essential to aggregate heterogeneous data in meaningful 

ways. Interdisciplinary collaboration is necessary to develop a common, high-level dataset 

descriptor that provides a generic representation of a dataset's attributes. The NIDM Dataset 

Descriptor Component (NDDC) is modeled after an effort to produce such a harmonized 
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dataset descriptor, which was developed by the Health Care and Life Sciences (HCLS, 

http://www.w3.org/blog/hcls) Interest Group at the W3C. HCLS created a generic dataset 

descriptor specification that captures a general set of metadata that is applicable across 

biomedical domains. Particular focus is given to representing information at three distinct 

levels; Summary, Version, and Distribution, which represent static, version specific, or format 

specific information about a dataset, respectively. By adopting the HCLS recommendations and 

extending them, NDDC can remain harmonized with HCLS, and interoperable with dataset 

descriptors from other domains, while providing the additional structure and vocabulary 

necessary for neuroimaging. To provide an intuitive introduction to the HCLS Dataset 

Descriptors and to demonstrate how NDDC extends this effort, information from the OpenfMRI 

website is used to create a dataset descriptor of the Study Forrest project (Figure 4.6). 

 
Figure 4.6. OpenfMRI and Study Forrest Mapping to NIDM. A Screenshot of the OpenfMRI datasets page 
(left) and the Study Forrest dataset page (right). Each red box highlights information that is extracted and 
converted to attributes in the NIDM Dataset Descriptor Component. A) The database title and logo are 
mapped to 'dct:title' and 'schemaorg:logo', B) the investigator is mapped to 'dct:creator', C) the accession 
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number is mapped to 'dct:hasPart', D) the title of the Study Forrest paper is mapped to 'dct:title', E) the 
abstract is mapped to 'dct:description', and F) additional attributes about the dataset could also be mapped 
to NIDM, but are not currently. 
 NDDC extends HCLS Dataset Descriptors by introducing two Summary-level descriptions, 

which are split into Database and Project parts. This split allows a database, such as OpenfMRI, 

to include static details about the overall database and then provide links to its specific parts 

(i.e., projects). This style of organization is ubiquitous with data sharing websites, where there 

is generally more than one project available. The information denoted on these websites 

contains features that are consistently represented across databases, although each database 

may use their own vocabulary for representing them. For example, OpenfMRI refers to each 

collection as a "dataset," while an XNAT database refers to each collection as a "Project" (34) - in 

NIDM the latter is adopted. In Figure 4.6, we highlight a few pieces of information that can be 

captured and converted into a Summary-level dataset descriptor with two levels - the Database 

Level (left) and the Project Level (right), which are NDDC extensions to HCLS.  

 The two Summary-level dataset descriptors in Figure 4.6 can be extracted and converted 

into a harmonized Linked Data representation that simplifies aggregating datasets. Figure 4.7 

provides a detailed example of a NDDC Database Summary-level document as RDF, using Turtle 

syntax (http://www.w3.org/TR/rdf-sparql-query/), which captures the minimal information 

necessary to be compliant with HCLS, as well as NDDC specific extensions. For example, NIDM 

includes two additional types that declare OpenfMRI to be a 'prov:Collection' and a 

'nidm:Database', and requires the 'dct:hasPart' attribute. An important distinction between the 

OpenfMRI webpage and RDF representations is that RDF uses standard terms with definitions 

to represent the underlying data, rather than the purely textual representation provided by 

HTML. In this way, the data and presentation layers are distinct, enabling the RDF data to be 

portable and reusable, while the HTML alone does not readily facilitate reuse. Within the 

Database Summary-level is the 'dct:hasPart'  attribute, which provides an entry point to the 

Project Summary-level where project specific details are available for each of the OpenfMRI 

datasets, such as ':ds000113' (i.e., the Study Forrest project), as well as the Version level, and 

Distribution levels of NDDC (Figure 4.8).  
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Figure 4.7. Database Descriptor Element. Provides a structured RDF representation of the OpenfMRI 
Database that includes corresponding namespaces, as well as links its dct:parts, such as the :ds000113 - 
the Study Forrest Project. 

 
Figure 4.8. Details of NIDM Dataset Descriptor shown in Figure 4.4. Colors correspond to HCLS Dataset 
Descriptor levels. The Database Descriptor and Project Descriptor elements provide static details about 
one or more datasets. The Release Descriptor element provides version-specific information. The HCLS 
Distribution level Descriptor is represented by an Aggregate Descriptor, which bundles together the 
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Component Descriptor that describes how to access data, and the optional Linkset Descriptor describe 
how Components are linked together. 
  

 The Project Descriptor captures static details about the Study Forrest project (Figure 4.9). 

The structure of this descriptor is similar to that of the Database Descriptor (Figure 4.7), which 

shares several common attributes; however, it is differentiated by additional type information 

(i.e., 'prov:Entity' and 'nidm:Project'), a link to the current HCLS Version level description of the 

project's data (i.e., 'nidm:hasCurrentVersion'), and a link to the OpenfMRI database (i.e., 

'prov:specializationOf'). Figure 4.9 features a basic set of required attributes, but additional 

elements can be included as long as they are not likely to change over time (e.g., fMRI 

paradigm(s) used or scanner type). The Version-level descriptor affords those attributes that 

fluctuate over time.  

 
Figure 4.9. Project Descriptor Element. Contains the core set of static attributes for a project that are used 
in the Version and Distribution levels. 
  

 At the HCLS Version-level, as represented by the Release Descriptor in Figure 4.8, NIDM 

only extends the HCLS recommendations to include additional types and attributes (Figure 

4.10). As the Version-level is meant to capture information that changes from one data release 

to the next, an additional NIDM type called 'nidm:Release', which is a 'prov:Entity', is also 

included. Also included is the 'prov:specializationOf' attribute, which keeps an upstream 

provenance link to the Project Descriptor, as opposed to 'prov:wasDerivedFrom' attribute that 

links to the HTML version of the project information. While not listed here explicitly, the 

Release Descriptor (Figure 4.8) has several repeated pieces of information from the Project 
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Descriptor (i.e., 'dct:title', 'dcat:accessURL', etc.) that allow this resource to be listed in a separate 

document from the Project Descriptor and remain interpretable. The Distribution Descriptor 

figures also omit these repeated attributes that exist for the same purpose. The 

'dcat:distribution' link points to the Distribution-level dataset descriptor, which delivers a 

specific data format that represents a given data release - in the case of NIDM it is 

recommended to be RDF, but could also include a database, CSV file, etc. 

 
Figure 4.10. Release Descriptor Element. Describes a data release that includes a version number and a 
link to a format-specific distribution of the data. 
  

 The elements of the HCLS Distribution-level (blue boxes in Figure 4.8) are intended to 

inform a user or application where NIDM Components can be accessed on the Web. A 

distribution can come in one or more formats (e.g., relational database, tarball, or RDF) - with 

NIDM, the Turtle serialization of RDF is recommended. For RDF datasets, HCLS recommends 

using the VoiD vocabulary (117) that focuses on describing RDF graphs and includes features 

to, for example, split large graphs into more manageable chunks and describe how they are 

interconnected. NIDM documents are generally represented as RDF, thus NIDM uses a hybrid of 

VoiD and HCLS to specify additional structure and vocabulary extensions amenable to 

neuroimaging. 

 As shown in Figure 4.8, NIDM extends the HCLS notion of a Distribution-level dataset 

descriptor by providing three descriptor elements - Aggregate, Component, and Linkset 

(optional). The Aggregate Descriptor is intended to capture the overall organization of a data 

release. An Aggregate Descriptor provides links to one or more RDF datasets using the 

'void:subset' relationship (Figure 4.11), where each 'void:subset' conforms to a model defined in a 
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NIDM specification. The primary 'void:subset' links belong to the Component Descriptor (Figure 

4.12); however, it can also include an optional Linkset. NIDM uses VoiD Linksets as a virtual 

collection of relationships between components, where the object for a given triple in one 

dataset links to the subject in another dataset. This allows the data publisher to attach 

additional metadata about, for example, how many links there are between datasets and what 

predicate to use when querying across them (e.g., 'prov:used'). Finally, the Component 

Descriptor defines the type of component a given dataset conforms to (e.g., 'nidm:Experiment'), 

as well as the format and location from where that RDF file can be downloaded. 

 
Figure 4.11. Aggregate Descriptor and Linkset Descriptor Elements. Provides a link to where NIDM RDF 
datasets can be downloaded and includes one or more Linksets that capture how NIDM components are 
interlinked.  
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Figure 4.12. Component Descriptor Element. Provides a description and data format details, as well as a 
download link for each of the metadata files that conform to NIDM. 
  

 The NIDM Dataset Descriptor Component (level 4 of the NIDM Layer Cake shown in 

Figure 4.4) provides a high-level overview of the database contents and acts as the entry point 

into a set of NIDM documents. As such, it is agnostic to a given biomedical domain, which 

facilitates data aggregation and interoperability. However, this level of abstraction does not 

represent the details of an investigation in any meaningful way. In the next section the NIDM 

Experiment Component (left box in level 3 of Figure 4.4) is discussed, which is used to capture 

fine-grained information about the actual data acquired during a study, such as the anatomical 

MRI scans that the student in the data sharing scenario will need to import into the NiQuery 

application. A description of the remaining NIDM Workflow and Results Components from level 

3 of Figure 4.4 is postponed until Chapter 6, where they are introduced in an example of the 

NiQuery system for tracking provenance and reporting results. 

4.3.2.2 NIDM experiment component 

Before collecting data for a research project, an important task is to decide how the acquired 

data will be organized on a file system or database and prepared for analysis. The best 

practices for how this preparation is accomplished vary greatly from one lab to the next, where 

some labs use a data management system (34-36,86) and others simply use a directory 
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structure on a file system. While specific layouts and naming conventions are rarely 

standardized across labs, there are common types of information that are monitored. Most labs 

will have one or more projects with associated files and data collated within a given directory, 

which in turn contain directories for data that is collected from each of the study participants. 

The goal of the NIDM Experiment Component (NEC) is to deliver a flexible representation of 

project metadata and data provenance that can be layered on top of any organizational scheme. 

The NEC accomplishes this by modeling acquired data as part of an ongoing research process 

expressed using PROV. The OpenfMRI standard directory structure was used as an example to 

construct a NEC Object Model that is detailed using the Study Forrest Project as an example. 

Figure 4.13 presents a simplified overview of the OpenfMRI directory structure for the Study 

Forrest project, where the project directory contains participant directories and summary files 

for the whole project. Each participant directory contains folders for a certain modality of data 

acquisition, and, if that modality has more than one acquisition, a folder is included for each 

run; otherwise the directory contains raw data and metadata files. 

 

Figure 4.13. OpenfMRI Data Organization. Project Directory (red), Participant Directories (orange), Project 
Summary Files (yellow), Data Acquisition Modality Directories (green) Data Acquisition Protocol Directories 
(blue), Raw Data and Metadata files (purple). 
  

 To extract a NIDM representation of the directory structure, each directory and file was 

defined as an extension of the core PROV model described in Figure 2.2. A modeling pattern 

was defined to capture information within the scope of Project Information from 4.5. This 
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modeling pattern mirrors PROV with the 'nidm:ExperimentObject', 'nidm:ExperimentProcess', 

and 'nidm:ExperimentAgent' class depicted in Figure  4.14. A 'nidm:ExperimentObject' 

provides a mechanism to capture metadata and links to files in the OpenfMRI directory, while 

an 'nidm:ExperimentProcess' explicitly models an investigation as an activity with a starting 

and ending point. A 'nidm:ExperimentAgent' defines the person, organization, or software 

responsible for creating a file or acquiring data, for example. These three classes were further 

refined into NIDM Experiment Elements that map directly to XCEDE Experiment Hierarchy (87). 

 

Figure 4.14. NIDM Experiment Modeling Pattern. The basic set of resources and relations that are used to 
capture the provenance of data acquired during a scientific investigation and to assign responsibility to 
individuals or software with specific roles and plans. 
  

 These extensions are grouped into the Project, Study, and Acquisition elements depicted 

in Figure 4.15 and follow the modeling pattern above. The element levels are linked using the 
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'dct:hasPart', and, inversely, 'prov:specializationOf' relations to form a part and specialization 

hierarchy, respectively. Each element represents a level from the XCEDE Experiment Hierarchy, 

where additional XCEDE concepts, such as Visit, Subject, and Episode, are captured by other 

PROV constructs, such as 'prov:role' and 'prov:plan.' The type of project information modeled 

across each element is distinct and follows several rules to limit the scope of what is expressed. 

Examples from the Study Forrest project are modeled for each element, starting with the 

Project element. 

 

Figure 4.15. NIDM Experiment Elements. Project Element (red), Study Element (orange), Acquisition 
Element (blue). 
  

 The NEC Project Element is intended to capture high-level details about a project and to 

provide an entry point to the provenance of acquired data. On the surface, the Project element 

has similar features to the Project Summary-level dataset descriptor (Figure 4.9); however, it 

includes additional provenance structures that break from the HCLS recommendations to 

provide finer granularity about a project and provenance. By using the modeling pattern, a 

'nidm:ProjectAgent' can be assigned responsibility for initiating a 'nidm:ProjectProcess' (i.e., 

the implied activity of doing research) and creating a 'nidm:ProjectObject' (i.e., details about 

the project) (Figure 4.16). These three resources are then bound together by attributing the 
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'nidm:ProjectAgent' with a specific role during the project (e.g., a principle investigator) and 

associating a protocol to which the Project conforms. 

 

Figure 4.16. NIDM Project Element. Consists of three core named resources – ‘:ds000113-project-object’, 
‘:ds00013-project-process’, and ‘:principle-investigator-project–agent.’ 
  

 In Figure 4.16, a key feature of PROV called the Qualification Pattern (118) is highlighted, 

which allows attributes, such as 'prov:role' and 'prov:plan', to be assigned to a relationship. For 

example, Figure 4.16 states that the ':ds000113-project-process' 'prov:wasAssociatedWith' 
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':principle-investigator-project-agent'; however, this relation alone does not provide the 

necessary context for a 'prov:Agent' to be qualified with the 'prov:role' of 

'nidm:PrincipleInvestigator'. To capture the context of both the 'prov:role' and 'prov:plan' used 

by the principle investigator to initiate the Study Forrest 'nidm:ProjectProcess', a 

'prov:qualifiedAssociation' link to an RDF blank node is used to bind 'prov:agent', 'prov:role', and 

'prov:plan' to the activity. This approach enables us to model people independently of the 

role(s) they may play throughout the research process, which may range from grant writer or 

research assistant to participant, data curator, or author. Once the Project Element is in place, 

Study Elements can be listed using 'dct:hasPart', which are used to represent types of data 

collected during the Study Forrest Project. 

 The NEC Study Element is used to model a set of observations using a related protocol 

and to reference specific Acquisition Elements. For example, a Study Element captures 

questionnaires, a neuropsychological test battery, or serially collected MRI series, while an 

Acquisition Element models the individual questionnaire items, neuropsychological test values, 

or MRI series modalities. Figure 4.17 details how a Study Element captures the provenance of a 

'nidm:StudyQuestionnaire' and binds it a 'prov:Person' in the role of 'nidm:Participant' using 

the same modeling approach as above. Similarly, Figure 4.18 demonstrates the representation 

of an MRI study with three Acquisition Elements listed under 'dct:hasPart', where each 

corresponds to a different imaging modality. 



 

71  

 

Figure 4.17. Questionnaire Study Element. NIDM representation of a questionnaire at the study level. 
 

 

Figure 4.18. MRI Study Element. NIDM representation of an MRI scanning session at the study level with 
the ‘prov:Activity,’ ‘prov:Person’, and ‘prov:Role’ omitted. 
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 To capture example questionnaire items and MRI metadata, Figure 4.19 demonstrates 

how demographic information, DICOM parameters, and file download locations are modeled. 

For clarity, the additional details related to 'prov:Activity' and 'prov:Agent' from the above 

examples were omitted. The 'nidm:DemographicsQuestionnaire' is a direct mapping from the 

CSV file listed for 'dat:downloadURL', where the column name is used as a predicate and the 

values for each cell are used as literals (e.g., ':gender'). While this representation is not currently 

harmonized with external terminologies, each column from the CSV file would ideally provide 

both a mapping to an external source and a range of appropriate value sets. For example, 

':gender' would link to a URI for "male", rather than simply link to the string "m", thereby 

reducing ambiguity and adding precision. The 'nidm:MRIAnatomicalT1' applies the DICOM 

terms developed in Section 4.3.1.1, which are dereferencable URIs with precise definitions that 

eliminate ambiguity and facilitate data integration tasks. 
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Figure 4.19. Acquisition Element. NIDM representation of the acquisition-level for a demographics 
questionnaire and MRI scan. 
  

 In summary, the NIDM Experiment Component was developed to model information 

about an experimental investigation during the data acquisition stage, such as in the OpenfMRI 

directory structure. It consists of three levels designed to model Project, Study, and Acquisition 

Information in the context of data provenance. Where possible, standardized terms are applied 

to facilitate semantic interoperability and reduce ambiguity. The Qualification Pattern was 

introduced as a means to add contextual information to the links between activities and agents, 

thus enabling the use of roles and plans. By providing links to acquired demographics and MRI 

data, this component is the starting point from which analysis tools can query for the data 

necessary for processing. In the context of the data sharing scenario, the information provided 

here will be used as the input into the NiQuery system, which is used by the student to run the 

FreeSurfer reconstruction process.  

4.3.2.3 NIDM workflow and results components 

For this dissertation, the primary focus was on designing the overall NIDM Framework and on 

the NIDM Dataset Descriptor and NIDM Experiment Components. Work on the remaining NIDM 

Workflow and NIDM Results Components is the subject of ongoing and future work, which is 

being pursued through the INCF NIDASH task force. Examples of the Workflow, Results and API 

Components are presented in Chapter 5, where a prototype of the NiQuery application 

framework is discussed to provide details about the computational environment and analysis 

tools used for data processing. 

4.3.2.4 NIDM framework design process 

The NIDM Components discussed above were and are being designed using a community-driven 

process that engages stakeholders to participate in the identification of use-cases in need of 

data sharing standards. Initially, the NIDASH task force leadership identified a set of use-cases 

to drive development efforts and a process for collaboration was designed that made use of 

freely available software platforms and tools. The INCF initiated communication among 
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stakeholders and an in-person workshop was organized, where task force members agreed to 

coordinate NIDM development through a series of weekly videoconferences. A distributed 

version control system and the GitHub Web application were used by task force members to 

track progress and communicate technical aspects of the project, such as example files, code, 

and specifications.  

 The meeting minutes for weekly workshops were recorded during each in-person 

workshop and videoconference, which were circulated to the group for comments before being 

finalized and are available on the NIDASH Wiki (http://purl.org/nidash/wiki). The decisions 

made during each meeting were codified in the examples and checked into version control, 

which was then submitted for review to the group. Before changes were merged into the main 

code repository, an effort was made to form consensus through a public, online discussion 

forum where working group members reviewed, commented on, and verified the changes. Once 

any open questions were resolved, the changes were merged and the issue was closed. Working 

group members automatically received emails that kept them apprised of the ongoing 

conversation, which helped members to contribute to pieces they were interested or had 

expertise in. 

 In Figure 4.20, the modeling process used by the NIDM working group is depicted. In this 

process, working group members manually mock up an example instance of a NIDM document, 

which is used to capture how concepts are linked together using the PROV standard. The 

example NIDM document, a text file in Turtle format, is checked a distributed version control 

system (i.e., GitHub) that enables working group members to discuss the document in an online 

forum, called a Pull Request. The Pull Request mechanism creates an issue that allows the 

example(s) to be discussed online, as well as during weekly videoconferences where issues are 

resolved and modeling decisions are made. After a decision is made the corresponding Google 

spreadsheet is updated and any additional issues are submitted to GitHub for discussion 

during the next weekly videoconference. This process continues as a given model matures until 

it stabilizes enough to be captured in an OWL file that is generated using Protégé and checked 

into GitHub.  
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 Currently, the OWL file is populated with simple class and property hierarchies that map 

to PROV classes/properties. As changes are made to the OWL files in Protégé, a similar process 

takes place using Github Pull Requests with online/videoconference discussions. When a NIDM 

release occurs, the OWL files can be extracted, transformed, and loaded into NeuroLex. Still 

open is the question about how modifications and discussions that take place on NeuroLex can 

be incorporated into the general data modeling workflow. Additionally, the group has mostly 

moved away from using Google Spreadsheets at the current time, and is focusing on terms and 

definitions using Protégé only. 

 

Figure 4.20. NIDM Modeling Process. The NIDM Working Group follows an iterative process to guide their 
data modeling efforts. The first stage is to clarify the general scope for an object model (e.g., reporting 
fMRI results) and then gather an initial set of concepts and relationships using the CMAP concept 
modeling tool. The initial CMAP diagram is then used to populate a Google spreadsheet with the concept 
terms and corresponding attributes, as well as an initial set of definitions and mappings to PROV ontology 
classes.  

4.4 Conclusions 

In this chapter, the preliminary studies completed during the SNI Phase were presented as the 

foundation for developing NIDM, a data modeling and standards development process 

completed during the NIDASH Phase. During the SNI Phase, the studies completed fulfilled the 
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first three sub-aims for Aim 1 to develop terms, data model extensions, and API specification. 

The NIDM framework emerged during the NIDASH Phase as a collection of conceptually distinct 

components linked together with provenance information. The NIDM Dataset Descriptor 

Component was introduced as mechanism to harmonize the NIDM Experiment, Workflow, and 

Results Components with the W3C Healthcare and Life Sciences working group efforts. The 

NIDM Experiment Component was then described with examples from the data sharing scenario 

that provides the use-case for developing NIDM and NiQuery. Finally, a description of the data 

modeling process to develop NIDM was presented. In the next chapter, the vision described in 

this scenario is pursued in the context of a neuroimaging Web application framework that 

facilitates tracking provenance and reproducible computational workflow.
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Chapter 5: Neuroimaging application framework 

 
"We're drowning in information and starving for knowledge"  
 
- Rutherford D. Rogers, American librarian 
 

5.1 Overview 

In Chapter 4, a vision for how future graduate students will learn about brain imaging analysis 

was presented using a data sharing scenario. In the scenario, a second year PhD student needed 

to complete a number of tasks while rotating through a cognitive neuroimaging lab. The 

student was able to seamlessly transition between neuroimaging databases while conducting 

research because the databases and analysis tools each used the Neuroimaging Data Model 

(NIDM), a metadata and provenance exchange standard. Chapter 4 also reported the Aim 1 

research outcomes by demonstrating how the data exchange standard described in the scenario 

came to fruition through research and development conducted by the INCF NIDASH task force. 

In this chapter, preliminary work completed during the SNI phase is reported in Section 5.2.1 

before presenting a neuroimaging application framework that was developed to enable 

reproducible data analysis and provenance tracking. As in the previous chapter, the data 

sharing scenario will be the use-case to report study outcomes in the context of automated 

FreeSurfer analysis, where NIDM will be used as the underlying data model in a platform for 

neuroimaging software as a service. 

5.2 Prototype information system study 

In this study, the goals of Specific Aim 2 were addressed to develop an information system of 

Web services to compute and discover data provenance from brain imaging workflow. Four sub-

aims were proposed for 1) creating a reference implementation of the vocabulary, data model, 

and API specifications; 2) developing an updated data management architecture of the NiQuery 

system; 3) implementing a prototype Web application to demonstrate system features for 

query, workflow execution, and provenance discovery; and 4) evaluating the overall positive and 

negative outcomes of the framework implementation. The work supporting these sub-aims was 

completed during the Scalable Neuroimaging Initiative (SNI) Phase, which is described in the 
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following section on research approach. The outcomes of these preliminary studies informed 

the system architecture design and implementation of the Web application framework 

referenced in the data sharing scenario in Chapter 4. In the outcomes and information system 

section, the details of the NiQuery framework are presented with examples that follow from the 

data sharing scenario. In this demonstration, a use-case follows how a user can submit a NIDM 

input document to a Web service that executes a FreeSurfer analysis. This description of the 

NiQuery framework provides an overview of the system components and their configuration for 

offering neuroimaging processing as a service. 

5.2.1 Research approach 

This section elaborates on the study design introduced in Section 3.4, Aim 2. It is organized, by 

sub-Aim, according to the specifications, system architecture, and prototype application. The 

section on specifications describes an overview and evaluation of the initial SNI protocol to 

enable remote, voxel-level access to neuroimaging data in a distributed context. The section on 

system architecture describes the technical implementation of the SNI protocol, while the 

section on a prototype application demonstrates the implemented system on a neuroimaging 

use-case for remotely interacting with neuroimaging time series data. The outcomes reported in 

each section provide a summary of the lessons learned and system requirements that emerged 

from the SNI research project, which took place over sixteen working group meetings, including 

two in-person workshops. The insights provided by this work guided the framework redesign 

and implementation reported in the outcomes and information system section. 

5.2.1.1 Specification implementation 

A basic requirement for any computational resource is a protocol that defines system 

requirements and behavior. In neuroimaging, resources are widely distributed across 

geographic areas, which requires researchers be provided with access to integrated imaging 

data with corresponding demographic and data acquisition information. Aside from textual 

data, the protocol must also define how to access binary images, or subsamples of images, 

using computational services. This adds a layer of abstraction where researchers need not visit 
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each database separately nor download whole datasets. To enable such distributed interaction 

with data, a study was conducted during the SNI phase to design a protocol that enables a 

scalable architecture by keeping computation close to the data and only transferring necessary 

data. 

 To define a protocol for distributed neuroimaging data access, a workshop and working 

group meetings were held to develop a conceptual model and identify key system requirements. 

Conceptually, the protocol consists of a collection of remote procedure calls (RPCs) to a 

neuroimaging database (e.g., XNAT). The server maps the objects specified in the RPC calls to a 

database wrapper layer that each individual database uses to provide access to its contents and 

services. A registry service provides an index of available database wrappers and methods to 

access additional objects. Data processing can take place at the data source or copied to a cache 

location (e.g., cloud) where additional computational services are supported. Only relevant 

results are transferred back to a client (e.g., single slice, voxel time series), which improves 

scalability when operating over many files. The protocol consists of three types of objects 

described in a draft specification and summarized below 

(https://www.ibic.washington.edu/wiki/display/sni/Protocol): 

• Session object - wraps a neuroimaging database and exposes an API that acts as the 

primary interface to a given server and provides a mechanism to interrogate databases 

with user defined and/or predefined Web-accessible queries using a query management 

application (33). Results are parsed into 'DataContainer' objects. 

• DataContainer object - conforms to an 'image' data model as the primary interface to 

voxel-level data and related metadata, providing a mechanism to exercise methods 

remotely. 

• Workflow object - a computational service on a 'DataContainer' object that acts as the 

primary interface to computational tools that go beyond simple voxel retrieval and 

implements a workflow plugin type that is automatically attached to appropriate data 

containers. 
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 In addition to defining these four objects, a key feature of the framework was to use 

Globally Unique Identifiers (GUID) for all resources available on the network. Each GUID is 

bound to a given object and provides a unique address to reference a given object and its 

provenance. For example, a 'Session' GUID maintains a connection to a database server and, 

before expiring, can be used to construct 'DataContainer' objects or execute 'Workflow' 

objects, which would each be assigned a persistent GUID during initialization. 

 The SNI protocol provided the initial conceptual model used to pursue implementation 

ideas that reuse vocabularies, data exchange languages, and imaging data models. A literature 

review was conducted to identify open source projects that fulfilled these requirements and 

could aid rapid prototyping. Given the active role of the Python programming language in the 

neuroimaging community, preference was initially given to pursue Python libraries to 

implement this infrastructure. The outcomes of this study were used to design the prototype 

system architecture discussed in the next section. 

5.2.1.2 Re-design of system architecture 

To investigate the feasibility of the SNI protocol for providing distributed, voxel-level access to 

neuroimaging data, a prototype system architecture was designed and implemented (93). Open 

source software was evaluated to identify tools suitable for rapid prototyping the system 

requirements. This project aimed to 1) construct a 'Session' object, 2) retrieve a listing of 

'DataContainer' objects from two or more databases, and 3) execute one 'Workflow' RPC 

method to retrieve the time series from a single fMRI voxel from each 'DataContainer' object. 

These core components will be used to enable the Web application described in Section 5.2.1.3.  

 The system architecture in Figure 5.1 depicts the additional services necessary to 

implement the SNI Protocol. A review of available distributed computing software identified the 

Python Remote Objects (Pyro4, http://pythonhosted.org/Pyro4/) library as a simple framework 

for transferring Python objects over the network, while also supporting GUIDs and a centralized 

registry. The Pyro4 library was used to implement the NiQuery Registry, which provides a 

'Session' object to the Pyro4-based Web application client. The 'Session' object contains a list of 
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resources that represent the metadata in each common API endpoint. The Query Integrator (33) 

provides a number of queries that operate over this metadata to return 'DataContainer' proxy 

objects. These proxy objects can manipulate data via the Common API implemented by each 

neuroimaging database. 

 

Figure 5.1. SNI System Architecture. Users can access a database registry that provides an index of 
neuroimaging databases exposing a common data exchange layer that can be queried using the query 
processing engine. 
  

 A Common Data Exchange Layer was needed to implement the Common API for the two 

databases in this study. XCEDE was used as a common schema to represent demographic and 

imaging information from both XNAT and the Neurobiological Imaging Management System 

(NIMS, https://github.com/cni/nims). The Common API wrapper was also implemented with 

Pyro; however, NiBabel (http://nipy.org/nibabel/) provided basic image manipulation of 

'DataContainer' objects. Plans were made to use Nipype for 'Workflow' objects, but this was 

out of the scope for the initial prototype, as the requirements could be fulfilled with indexing in 

NiBabel. The outcomes of this study provided the necessary features to demo a prototype Web 

application and gather feedback for future development. 

5.2.1.3 Prototype application 

Prototype Web applications provide a meaningful way to assess the functionality of a protocol 

and system architecture. As discussed in Chapter 3, such information systems can be 



 

82 

considered experiments that indicate the strengths and weaknesses of a system and can be 

used to make incremental progress. To assess the impact and potential of the SNI Protocol and 

system architecture developed during the SNI Phase, two studies were conducted by designing 

and gathering feedback on prototype user interfaces that enable a researcher to 1) run a 

metadata-level query across two neuroimaging systems based on demographic information and 

2) select coordinates from a brain template in standardized space and retrieve the time series 

of a single fMRI voxel. 

 To evaluate the framework for distributed metadata access, a study was conducted that 

attempted to answer the use-case query "Find all images from resting state fMRI studies where 

the participant is Female and 14 or older?" Figure 5.2. This simple query exercised the 

prototype NiQuery framework (Figure 5.1) by requiring the Web application to 1) create a 

'Session' object, 2) access XCEDE metadata representation of two neuroimaging databases, 3) 

submit a 'gender' and 'age' parameter to query processing, and 4) return the server location, 

sex, age, data, and viewer links. The framework successfully met the requirements to completed 

each of these tasks; however, there were a number of notable limitations: 

1. The Pyro4 framework was difficult to configure when the Query Integrator (QI) was 

sufficient. 

2. The query response was slower than direct QI execution due to creation of additional 

'Session' objects.  

3. The XCEDE XML documents only supported a limited amount of metadata and would not 

validate if additional information was included from source schemas. 



 

83  

 

Figure 5.2. NiQuery Prototype. The initial NiQuery prototype to demonstrate distributed metadata query 
using the SNI Protocol. 
  

 To evaluate the SNI protocol and system architecture for distributed, 'image-level' access, 

a study was conducted to provide researchers with a Web application (Figure 5.3). The 

requirements of this application were to use the NiQuery prototype system architecture to 1) 

create a 'Session' object, 2) access XCEDE metadata representation of two neuroimaging 

databases, 3) provide a 3-plane browser to select voxel coordinates in standardized space, 5) 

construct a 'DataContainer proxy object via query processing for each fMRI scan in the XCEDE 

files, and 5) return and plot the time series for a single voxel in each scan (Figure 5.2). The 

outcomes of this study demonstrated an application that fulfilled all but one requirement. 

Requirement three had a technical limitation in the viewer that prevented voxels from being 

selected directly, requiring the use of form-based coordinate entry tools. The study also 

identified limitations in the overall approach as the Pyro4 framework Illuminated scalability 

issues for computational tasks due to the slow serialization and deserialization of Python 

objects. These scalability issues are also noted in the use of XCEDE XML Schema at the 

metadata level, which was too rigid to exchange information in an academic setting with 

frequently changing or sparsely populated schema. 
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Figure 5.3. NiQuery Time series Demo. A Web application enables users to submit the coordinates of a 
voxel in standardized space and retrieve the time series from fMRI scans from distributed neuroimaging 
data sources. 
  

 The outcomes of these two preliminary studies from the SNI Phase provided an 

assessment of the XCEDE XML Schema as a data exchange standard and Pyro4 as a distributed 

computing platform for 'image-based' query. This prototype application and NiQuery's 

distributed architecture was demonstrated at the following meetings in order to gather 

feedback from stakeholders: the Allen Institute for Brain Science Hackathon 2012, 

Neuroinformatics 2012, Neuroscience 2012, and National Academy Keck Futures Initiative 2012. 

The feedback received was supportive of the vision for distributed computing in neuroimaging 

and SNI was encouraged to interface with other community efforts. At the metadata level, it was 

suggested to migrate from the XCEDE XML Schema to the INCF Neuroimaging Data Model 

(NIDM) detailed in Section 4.3.2, which is based on the semantic Web architecture discussed in 

Sections 2.4.2. It was also suggested to adopt a language agnostic computational infrastructure 

by using Web services and RESTful APIs, rather than the Python-centric Pyro4 framework. These 

lessons learned from community engagement, and the next generation of the NiQuery 

framework, are discussed in the following section on the NIDASH Phase outcomes. 
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5.2.2 Outcomes and information system 

The research approach discussed in the previous section outlined the preliminary studies 

guiding the development of the initial NiQuery distributed computing prototype that was 

implemented and evaluated during the SNI Phase. The primary outcome of the SNI Phase 

indicated that the neuroimaging and neuroinformatics communities were interested in working 

collaboratively to identify a truly scalable set of technologies upon which to build. The 

scalability limitations raised during the initial NiQuery framework evaluation required a 

redesign of the vocabulary, data model, and system architecture to meet the requirements of 

the original SNI vision. The redesign of the vocabulary and data model was presented in 

Chapter 4, which described the Neuroimaging Data Model (NIDM) framework and provided 

examples of the NIDM Dataset Descriptor and NIDM Experiment Components. The outcomes 

discussed in the sections below describe the redesigned NiQuery system architecture and 

demonstrates an example of how NIDM is used during computational NiQuery tasks to track 

data provenance. 

 During the course of the SNI Phase, several disruptive technologies emerged as a 

dominant force of change for future scalable neuroimaging initiatives, including freely available 

applications for collaborative coding, continuous integration, automated system configuration, 

virtualized Linux containers, and on-demand computational infrastructure. These tools 

emerged as the communication between software developers and information technology 

operators was increasingly recognized as an essential component in any networked application 

infrastructure. A portmanteau of "development" and "operations," the DevOps software 

development method emerged in industry as an approach focusing on communication and the 

optimal use of tools for automation and virtualization of application components. From the 

perspective of biomedical informatics and academic software development, system deployment 

and configuration are major barriers to adoption by a given scientific community. Recognizing 

the importance of this emerging ecosystem of applications, with the goal of bringing Google-

level scalability and availability to everyone, the NiQuery software development environment 

and system architecture adopted the DevOps method. 
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5.2.2.1 NiQuery system architecture 

 In this section, the redesigned NiQuery approach to software development is presented in 

the context of the data sharing scenario from Section 4.2. Each component in Figure 5.4 is 

discussed and the design and implementation perspectives are outlined. This provides the 

reader with a general notion of how information flows through the system, how neuroimaging 

workflows are configured, and how data provenance is tracked. In the next section, a specific 

example is used to demonstrate how a user would interact with the API to run FreeSurfer and 

view the results in prototype user interface that uses the NIDM Workflow and NIDM Results 

Components. 

  The system architecture diagram in Figure 5.4 provides an overview of the system 

components. These components enable a fully reproducible workflow engine that supports 

NIDM as an information retrieval and messaging protocol. The framework incorporates the 

DevOps methods discussed in the previous section and provides a fully automated deployment 

strategy that enables the system to scale from running on a laptop to a compute cluster in the 

cloud seamlessly. Following each letter in Figure 5.4, the student from the data sharing scenario 

in Section 4.2 could interact with the system by browsing NIDM documents as Linked Open 

Data (LOD) (Figure 5.4.A) to identify interesting datasets using a "follow your nose" approach by 

clicking on links in the user interface provided by the Virtuoso Universal Server 

(http://virtuoso.openlinksw.com/). 
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Figure 5.4. NiQuery System Architecture. High-level overview of the system components and products 
used to deploy NiQuery. 
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 After identifying a relevant NIDM document, the student could open a Web application 

that provides access to a repository of computational workflows. By entering the Web accessible 

location of the NIDM document, the Web application downloads it, determines what workflows 

are compatible, and provides the student with a list. The student selects the FreeSurfer 

workflow from the list and clicks 'submit' (Figure 5.4.B). The browser app passes along the 

NIDM document and workflow type to NiQuery, and a SPARQL query is executed over the 

document to gather input files for this task (Figure 5.4.C). 

 The NiQuery API then submits the FreeSurfer job to a task queue that manages the 

distribution of incoming workflow requests and makes the results of completed or failed 

workflows available to NiQuery (Figure 5.4.C). The workflow messaging infrastructure is 

implemented with Celery (http://www.celeryproject.org), which uses RabbitMQ 

(https://www.rabbitmq.com/) as a message broker that keeps track of task status and provides 

monitoring information to Flower (http://flower.readthedocs.org), a graphical task monitoring 

utility (Figure 5.4.D). 

 To perform a given workflow task, a worker node or full worker cluster listens for 

messages posted to the message broker (Figure 5.4.E). Each worker is configured to perform 

specific tasks and will only consume a task from the queue that it is able to perform. The 

workflow tasks configured on each worker node are implemented using Nipype (83), which 

captures detailed information about the computational environment by producing provenance 

documents that conform to the NIDM Workflow Component. After a task finishes running on a 

worker, the NIDM document and provenance is passed back to the message broker, where 

NiQuery is notified the task is complete and then persists the NIDM provenance document to a 

Named Graph (119) in Virtuoso, where it is then made available as Linked Open Data (LOD). 

 The entire infrastructure described here is captured using a DevOps methodology that 

can be automatically tested, deployed, and scaled as necessary. The platform is implemented 

using Panamax (http://panamax.io, Figure 5.4.F), an open source application that allows 

developers to abstract away from physical hardware and virtual machines by enabling them to 

deploy services that can be composed into applications and captured as a preconfigured 
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template. In many ways, this enables a full application stack to be deployed as though it were a 

binary package. 

 This additional layer of abstraction is accomplished by enabling developers to build 

Linux containers that encapsulate individual services (Figure 5.4.G Right). Docker 

(https://registry.hub.docker.com/) popularized this approach by providing a simple file format 

that can import a base machine image (e.g., Ubuntu Linux) and install just the components 

necessary for an individual service. In this way, any Linux machine running Docker can attach a 

container to a running kernel and start a service within milliseconds, rather than start an entire 

virtual machine with the additional overhead of an operating system. Further, by checking the 

configuration files into a version control system (e.g., GitHub, https://github.com, Figure 5.4.g 

Left), Webhooks (https://en.wikipedia.org/wiki/Webhook) can be configured to trigger re-

building Docker Containers and even entire Panamax templates. In this way, the NiQuery 

infrastructure provides a modern and scalable framework to develop and offer neuroimaging 

data analysis as a service. 

5.2.2.2 Data sharing scenario requirements 

In Chapter 4, NIDM was introduced as a framework for representing information about the 

neuroimaging research process as a flow of provenance information from data acquisition and 

analysis, to reporting statistical results. Chapter 4 also introduced a data sharing scenario to 

guide the NIDM Dataset Descriptor and NIDM Experiment examples, which provided detailed 

information about the Study Forrest project (8) hosted on OpenfMRI (106). In the following 

section, the data sharing scenario continues where it left off with a description of the NIDM 

Experiment Acquisition Element (Figure 4.19) to provide a specific example of interacting with 

the NiQuery application framework to run FreeSurfer. The requirements enabling this scenario 

are:  

1. NIDM Acquisition object with an anatomical T1 MRI 

2. SPARQL query that defines the interface to run FreeSurfer 

3. NIDM Workflow object generated by Nipype 
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4. NIDM Results object of annotated FreeSurfer statistics 

5. Prototype Web application to view the FreeSurfer results 

5.2.2.3 NIDM workflow component 

Each workflow interface in NiQuery is defined as a 'view' over one or more NIDM documents 

that returns a set of inputs and the name of a workflow task. To discover the workflow 

interfaces available, the NiQuery API provides a query library with metadata that is useful for 

query discovery. For example, Figure 5.5 shows the metadata describing the FreeSurfer 

workflow interface. To implement the interface to FreeSurfer, a query was written that searches 

for a NIDM Acquisition Object with a 'dct:downloadURL' link to an anatomical T1 MRI, as 

illustrated by the NIDM document in Figure 4.23. When executed against a NIDM document, the 

workflow query in Figure 5.6 will return list of all 'nidm:MRIAnatomicalT1' images available, 

along with the NiQuery task to process  the images with. 

 
Figure 5.5. Query Metadata for FreeSurfer. (http://purl.org/niquery/id/meta.ttl) 
 

 
Figure 5.6. FreeSurfer Workflow Interface Query. (http://purl.org/niquery/id/2c5782ea-7b30-11e4-b2ce-
67e96e88432a) 
  

 After the workflow interface query returns the download link and interface name, 

NiQuery submits a job to the task queue and a worker with FreeSurfer installed downloads the 
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T1 MRI file. Before starting to process the data with Nipype, a checksum is calculated and a 

query checks for previously computed results and only continues if there is no match (Figure 

5.7). When the task completes, Nipype generates a NIDM Workflow object (Figure 5.8) with 

Entities, Activities, and Agents representing the computational environment and the files 

produced during analysis.  

 

Figure 5.7. Check cache for previously computed results. (http://purl.org/niquery/id/E0921842-1EDB-
49F8-A4B3-BA51B85AD407) 
  

 For example, Figure 5.8 shows the Nipype representation of such a Workflow object. The 

first object ('niiri:df946b...') describes the T1 MRI file that was used as input as a 'prov:Entity' 

that includes the shasum attribute used in Figure 5.7. The second object ('niiri:fe69e60...') 

showing the Nipype interface to FreeSurfer is captured as a 'prov:Activity' with a variety of 

attributes that detail the computational environment the interface was executed on. For 

example, the command line arguments (i.e., 'nipype:command') and version of the command 

line executable (i.e., 'nipype:version') are captured. Also included are links to the input files (i.e., 

'prov:used' 'nirri:df946b...') and the third object, 'prov:SoftwareAgent'  ('niiri:0e3b89'), is 

responsible for execution (i.e., 'prov:wasAssociatedWith' 'nirii:0e3b89...'), which includes the 

versions of software dependencies and platform information. 
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Figure 5.8. Nipype Entity, Activity, and SoftwareAgent. 

 While an implementation of NIDM Workflow exists in Nipype, it is still an early 

implementation and will require additional standardization. Currently, all of the terms in the 

Nipype namespace are undefined and are not captured in a controlled vocabulary; rather they 

are artifacts of the underlying Nipype workflow engine. However, the level of detail captured in 

this provenance document provides computational access to the conditions under which data 

was processed. Even without standardization, NIDM Workflow objects can enable applications 
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to gain access to information that facilitates reproducibility and helps drive the creation of 

NIDM Results models. 

5.2.2.4 NIDM results component 

The NIDM Results Component captures the output of computational processes by defining 

object models for specific applications. An object model can be considered a 'view' over an 

underlying data model, in this case a NIDM. In the data sharing scenario, the driving need is for 

the student to generate a report for a lab meeting based on the analysis generated by 

FreeSurfer. The outputs from this process include a standard directory structure that contains 

brain surface reconstructions, parcellated and segmented brain imaging label maps, and 

statistical measures of anatomical structures. One approach would be to create a NIDM 

representation of the directory structure and extract statistical data from text files that can be 

displayed in a Web application. 

 To create a NIDM results object model that represents a directory structure, directories 

can be represented as a 'prov:Collection' and files can be represented  as a 'prov:Entity' Each of 

the files are then related to a directory using 'prov:hadMember'. This pattern can be used 

recursively to gather up all the files in the FreeSurfer directory structure to be further 

annotated with attributes and type information. In the case of statistical text files, a NIDM 

representation can be constructed that models the files contents by anatomical structure. For 

example, Figure 5.9 demonstrates a representation of statistical measures, such as surface area 

(i.e., "fs:SurfArea") and gray matter volume ("fs:GrayVol"), that can be captured along with an 

anatomical annotation. As discussed in Section 4.3.1.2, annotating data with terms from an 

ontology (e.g., the FMA) enables developers to explore relationships and mappings between 

terminologies. In this case, the 'nidm:AnatomicalAnnotation' is linked to a term from FreeSurfer, 

but the mappings in the FMA would allow exploration of the statistics calculated on other 

connected structures. 
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Figure 5.9. NIDM Results representation of FreeSurfer statistics files. 

 The structured and annotated information made available by NIDM and generated by the 

NiQuery application framework provides developers with a rich toolset. Using an application 

like the prototype in Figure 5.10 (120), the student in the data sharing scenario would be able to 

1) query NIDM documents for T1 MRI scans that describe the Study Forrest Project hosted by 

OpenfMRI, 2) remotely process the scans using FreeSurfer, and 3) analyze or review the results 

and report findings during the weekly lab meeting. This particular Web application was 

developed using different system architecture than the NiQuery application framework; 

however, a similar application could be developed using the NiQuery API to perform the same 

tasks.  

 For example, the "Query" tab in Figure 5.10 could access the NiQuery API and render a list 

of queries from the query library using the metadata illustrated in Figure 5.5. By uploading a 

NIDM Experiment document (e.g., Figure 4.19) the application could validate which workflows 

are compatible with the document by verifying that a compute query returns all of the 

necessary inputs (e.g., by executing the query in Figure 5.6 against the NIDM document). Then a 

list of compatible workflows could be displayed under the "Process" tab in Figure 5.10, which 

could be triggered to run the workflow and return a NIDM Workflow object (e.g., Figure 5.8). 

Finally, the "Analyze / Review" tab could automatically extract and display a NIDM Results 

object (e.g., Figure 5.9) and retrieve any surface or volumetric data generated by the workflow 

to display in the "DataView" tab. 
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Figure 5.10. Prototype App to work with NIDM and NiQuery. (https://github.com/richstoner/incf_engine) 

5.3 Conclusions 

In this chapter, the preliminary studies completed during the SNI Phase were presented as the 

foundation for developing the NiQuery application Framework, a modern computational 

platform built on top of NIDM and completed during the NIDASH Phase. During the SNI Phase, 

the studies completed identified the limitations of the XCEDE XML Schema for modeling 

metadata and Pyro4 python remote objects library for distributed computing. The redesigned 

NiQuery application framework emerged during the NIDASH Phase due to the rapid 

development and availability of open source tools for Big Data management and maturing 

semantic Web technologies. The data sharing scenario introduced in Chapter 4 was used to 

demonstrate how the NiQuery application framework enabled a workflow to be configured 
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using NIDM as a data source, which produced provenance as NIDM representing the 

computational environment. Finally, a NIDM Results object model was described that captures 

statistical measures annotated with terms from an ontology, which was used in a prototype 

Web application to show summary statistics and 3D surfaces from the FreeSurfer analysis. In 

the next and final chapter, a summary of this dissertation is presented that focuses on my 

specific contributions and impact, as well as the limitations and future directions of the 

research I have completed.
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Chapter 6: Conclusions and summary 

 
"Making something and sending it out into the world and then people not only responding 
to it but adopting it for their own and making a separate thing for it, that's beautiful. It 
just shows you how much you can affect other people... the butterfly effect of everything 
you put out into the world." 
 
– Marketa Iglova, Czech singer-songwriter, musician and actress 
 

6.1 Dissertation summary 

In this dissertation I pursued a vision for reproducible human cognitive neuroimaging   

research that captures the scientific process as provenance information. I presented the 

Neuroimaging Data Model (NIDM) and NiQuery as components that enable representing and 

tracking information from data acquisition to workflow and results. This framework is the start 

of an international, community-driven effort to address the growing concerns that brain 

imaging is in a reproducibility crisis. 

 In Chapter 2, I provide an introduction to interoperability challenges and data sharing 

barriers germane to cognitive neuroimaging, neuroinformatics, and biomedical informatics. In 

cognitive neuroimaging, scientists experience ever-evolving instrumentation and data analysis 

methods that make standardization and reproducibility a moving target. At the same time, 

neuroinformatics strives to develop software applications that adopt the crosscutting 

technologies and approaches provided by the many application domains of biomedical 

informatics. My review of these issues highlight a variety of previous approaches in the 

literature and casts light on emerging and maturing technologies that I apply in my dissertation 

to overcome barriers to data sharing. 

 In Chapter 3, I introduce the overarching framework of evaluation in biomedical 

informatics and identify three representative stakeholder communities that I work 

collaboratively with throughout my dissertation. In the evaluation component, I discuss how the 

implementation of an information system is considered part of the experimental design in 

informatics, where the positive and negative outcomes of deploying a system lead to a system 

redesign. This redesign then becomes another experiment and contributes to incremental 
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progress. Throughout my dissertation, I followed this pattern of design, deploy, evaluate, and 

redesign with both the data model and application framework I developed. This chapter also 

describes my interaction with the Integrated Brain Imaging Center and Structural Informatics 

Group at UW, as well as the International Neuroinformatics Coordinating Facility (INCF). The 

feedback and guidance I received from these three organizations and research groups were 

instrumental in the successful completion of my research. 

 In Chapter 4, I introduce a data sharing scenario that provides a vision of the future I 

would like to enable using NIDM as a data exchange mechanism. While developing NIDM, my 

contributions were evident in my leadership role during meetings, and I was one of the original 

advocates of moving away from the XCEDE XML Schema, along with Satra Ghosh. It was my 

research, attempting to harmonize the XCEDE and PROV XML Schemas, which provided the 

insight to rethink our data modeling efforts and envision PROV as a primitive from which to 

design NIDM. I also organized weekly NIDM Experiment calls, where I proposed and garnered 

support for the NIDM Dataset Descriptor and NIDM Experiment data structures reported in this 

dissertation.  

 In Chapter 5, I provide a detailed discussion about the evolution of the NiQuery 

application framework, which evolved from a simple system to a modern architecture designed 

for Web scale. During the SNI project, I held a leadership role by organizing each meeting and 

making implementation decisions, which ultimately led to the redesign. By presenting the initial 

NiQuery prototype to the INCF and neuroinformatics communities, I was able to identify 

experts in distributed cloud computing and educate myself in this rapidly changing field. With 

this experience, I was able to redesign NiQuery with a sophisticated, semantic Web-based 

system architecture that applies scalable components that are generally only available in an 

industry setting. 

 I lend my success in evolving both the data exchange and application frameworks to the 

community of volunteers who participate in the INCF Neuroimaging Data Sharing task force and 

openly contribute their ideas to the betterment of informatics in cognitive neuroimaging. The 

support of this community has led to NIDM being incorporated into the three top fMRI analysis 
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packages and will likely emerge as the standard for data exchange and representing data 

provenance in the domain of cognitive neuroimaging. 

6.2 Implications for cognitive neuroimaging 

The work that I have presented in this dissertation provides a foundation upon which the next 

generation of databases and analytical tools will be built for the field of human cognitive 

neuroimaging. The Neuroimaging Data Model (NIDM) I designed is a crucial innovation for 

reproducible brain science that not only overcomes technological barriers to data sharing, but 

has ignited a grassroots and community-driven effort engaging scientists to participate in the 

standards development process. The NiQuery application platform I developed provides a proof 

of concept system architecture that enabled neuroimaging data analysis as a service, where 

NIDM is the underlying representation, capturing provenance, to furnish a complete picture of 

the research process. My work also lends to a vision for the future of human brain imaging with 

the data sharing scenario I use to describe NIDM and NiQuery. Coupled with my leadership role 

that I took in developing of these products, my work has and will speed along the field of 

neuroimaging towards a future of interoperable neuroinformatics resources that will accelerate 

and streamline research objectives for discovery. 

6.2 Implications for biomedical informatics 

My dissertation research investigated the underrepresented role of provenance in biomedical 

informatics methods and demonstrated a vision for how informatics infrastructure can provide 

reproducible, computational services for biomedical researchers. I applied existing biomedical 

informatics methods in knowledge representation and standards development to incorporate 

the Foundational Model of Anatomy ontology into the Neuroimaging Data Model (NIDM) for 

annotating measures of neuroanatomy. I also took a leadership role in the INCF NIDASH task 

force by evaluating existing data exchange standards, researching emerging technologies, and 

experimenting with novel representations of data that led me to invent NIDM. I brought the 

biomedical informatics framework I received in my training to the neuroinformatics 
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community, consisting of primarily neuroscientists with computer science or engineering 

backgrounds, rather than formal doctoral training in biomedical informatics. 

6.4 Limitations 

In this dissertation, I demonstrated NIDM and NiQuery using a data sharing scenario that 

describes a vision for interoperable databases and reproducible neuroimaging data analysis as a 

service. The data sharing scenario describes a set of use cases to be completed by a student 

who used a combination of NIDM and NiQuery to 1) access anatomical MRI scans from 

OpenfMRI, 2) process the scans with FreeSurfer while tracking provenance, and 3) retrieve an 

annotated listing of brain region measures. These use cases only represent one imaging 

modality, analysis software, and set of measures, whereas in a real neuroimaging laboratory 

there may be many more use cases possible. Working with collaborators in the INCF NIDASH 

task force, I chose these use cases because of their simplicity in comparison to more advanced 

analyses and to highlight the role of provenance in NIDM. While the work I completed provides 

a proof of concept, I did not create a complete collection of Object Models to fully implement 

the vision of reproducible, standards-driven neuroimaging as a service. The grand vision of 

interoperable, standards driven data science in human brain imaging was beyond the scope of a 

single dissertation; however, the demonstrated adoption of NIDM by the neuroimaging 

community, and ongoing development by the INCF NIDASH task force, make the likelihood of 

additional NIDM extensions likely.  

6.4.1 Data model limitations 

My leadership role in developing NIDM provided me with the opportunity to engage the NIDASH 

task force members with use cases and development approaches. However, the grassroots and 

volunteer basis of task force members meant that the task force priorities and membership 

were subject to change according to available resources. The use cases I pursued for my 

dissertation were a high priority when I designed the NIDM framework, but, after presenting the 

work at the annual meeting of the Organization for Human Brain Mapping (OHBM) and the 

Neuroinformatics congress in 2013, additional contributors joined the task force to pursue the 
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specific use case of automating neuroimaging meta-analysis. This use case required a 

standardized machine-readable format for fMRI results that was captured by extending the 

NIDM Results Component for task-based fMRI.  

 The initial charter for NIDM was defined as a data interchange format to model raw 

experiment metadata from neuroimaging data management systems that are capable of also 

describing data provenance and derived data. By pursuing meta-analysis and minimum 

information reporting for task-based fMRI as a clear-cut use case, the priorities and time 

allocation of the working group shifted towards the newly available resources. Although there 

was a departure from the initial NIDM approach, the concept of applying the NIDM framework 

to meta-analysis engaged additional stakeholders and community involvement, as well as a 

number of unforeseen use cases where NIDM could be used as a data interchange between 

databases hosting neuroimaging results (e.g., activation loci), rather than the raw data and 

acquisition parameters. While this change in direction impacted the relative maturity of my 

contributions to NIDM in comparison to the fMRI results use case, it demonstrates the 

generalizability of my approach and of NIDM as a whole. 

 The technologies I used to develop NIDM also presented some limitations.  Contributors 

working with the Git version control system (http://www.git-scm.com) for the first time 

experienced a steep learning curve. This learning curve limited the level of involvement for 

some individuals when working directly with NIDM documents that were checked into version 

control. This effect was notable for both programmers (e.g., statisticians) and non-programmers 

(e.g., psychologists) in the working group; however, these same individuals contributed 

effectively to discussions by using online comment threads (e.g., GitHub Issues and Google 

SpreadSheets). 

 A key limitation of the research I presented on NIDM is the lack of a formal evaluation 

that measures the impact of this data sharing standard in support of reproducibility. I took a 

participatory role in the international neuroinformatics and neuroimaging communities while 

developing NIDM, and I did not perform any observational studies or make any specific 

measurements that would indicate the impact of this work. However, the work I completed with 
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NIDM catalyzed the neuroimaging community's involvement with standards development and 

neuroinformatics tools can now adopt NIDM. With NIDM now in place, it will be possible to 

measure the impact on data exchange efforts and provenance tracking. 

6.4.2 Application framework limitations 

When I developed the NiQuery application platform, the evolving landscape of information 

technology, in combination with an agile software development approach, made implementing a 

robust system difficult. As I identified flaws in the system design, newly available open source 

technologies emerged that solved my technical requirements for NiQuery. While I found it 

convenient that these novel approaches were available, they were also disruptive to my 

collaborative approach. Each time the developers working on the system infrastructure came up 

to speed with a given technology, it was ready to move on to the next platform, framework, or 

service. For example, the three most disruptive technologies were from the DevOps (i.e., 

software development and IT operations) industry, which provided novel open source tools for 

automated system provisioning (e.g., Puppet, Chef, Ansible), virtual machine configuration (e.g., 

Vagrant), and Linux containers (e.g., Docker). These technologies dramatically improve how 

systems are developed and deployed, but come with a steep learning curve that changed the 

way the NiQuery platform was conceptualized. From a long-term perspective, I welcomed these 

disruptive technologies, but I found it difficult to develop anything beyond a proof of concept 

within the timeframe of my dissertation. 

 As with NIDM, a limitation of this work is the lack of a formal evaluation that identifies 

the impact of the NiQuery application framework on scientists' ability to perform reproducible 

research. The current technology stack that I used to deploy NiQuery is stable and ready for 

further development with specific use cases that could be formally studied. For example, the 

recent work on a NIDM Results model for task-based fMRI could be incorporated into NiQuery 

to produce a summary of an fMRI analysis. As use cases are identified, NiQuery can be extended 

in a problem-driven manner.  
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6.5 Future directions 

My dissertation research introduced an extensible, new data exchange standard and computing 

platform designed for members of the human cognitive neuroimaging community. Within this 

community, individuals have already demonstrated that NIDM can be extended through the 

ongoing development of an Object Model for reporting task-based fMRI results. The vision 

behind this extension is to enable automated meta-analysis by encoding all of the information 

necessary to aggregate the statistical results from fMRI studies. There is a need to identify 

additional use cases for both NIDM and NiQuery with specific applications in mind, such as 

automated meta-analysis, to drive future development. There is also a need to evaluate similar 

data models, semantic Web frameworks, and computational infrastructures to ensure that 

NIDM and NiQuery remain harmonized with similar efforts. 

6.5.1 NIDM object model extensions 

The use of domain object models in NIDM provides a mechanism to continually evaluate and 

evolve the vocabulary used to describe the provenance of neuroimaging analyses. As the 

neuroimaging community moves towards more structured methods of reporting, there will be a 

need for new methods to be incorporated into the NIDM framework, which will require an 

approach to manage the provenance of NIDM terms that change. The collaborative data 

modeling framework I developed solves part of this problem by using the Git version control 

system and GitHub web application, particularly Pull Requests; however, a more detailed 

representation will be needed to capture versions of new models as they arise. Vocabulary and 

ontology versioning and migration will become increasingly necessary and although some tools 

do exist to address this issue (e.g., see the simple-virtuoso-migrate tool: 

https://github.com/globocom/simple-virtuoso-migrate), none are mature enough for use in a 

production environment. Thus, future research should address how communities that 

collaboratively develop data models and ontologies for describing their research can accurately 

capture the provenance of these information artifacts in a meaningful way. 

 Funding is needed to support collaborative modeling efforts to develop the standards 

needed for NIDM to work in the long term though continued efforts with organizations like 
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INCF. Additionally, it should be required that all NIH funded research provide a listing of 

standard data elements used in their research in advance of study initiation, perhaps as part of 

the grant application, unless the research aims to create novel measures. For the latter, 

researchers should be required by funding and publishing bodies to register any novel data 

elements in a community-vetted data element repository before publication. A registry of 

common data elements is necessary for any standards driven data integration efforts. This is 

similar to how the molecular biology community is required to register new compounds that 

are discovered. NIDM could provide the framework for registering such data type information 

in a community-driven way. 

 While I was developing NIDM, there were several similar efforts that emerged in other 

domains. In molecular biology the Investigation, Study, Assay (ISA) approach gained popularity 

and was adopted by Nature Publishing (105); however, ISA is not tailored for neuroimaging and 

lacks a deep representation of data provenance. In computer science, the concept of a "Research 

Object" (121) provides a collection of all the files and metadata associated with a study and 

shares many of the core ideas behind NIDM Components. Micropublications are another 

emerging approach to capturing "claim" networks (122) that model hypotheses and supporting 

research. Related to micropublications is the Semanticscience Integrated Ontology (SIO, (123)), 

which enables the capture of biomedical knowledge, as well as the integration of semantically 

annotated datasets and Web service discovery. As NIDM matures there is an opportunity to 

incorporate and harmonize the approaches taken by these similar, yet distinct projects. 

6.5.2 NiQuery software development 

To realize the vision for neuroimaging data analysis as a service, future software development 

on the NiQuery application framework is necessary. The current prototype I demonstrated is a 

proof-of-concept for using computational, semantic Web services in a standards-driven, 

scalable, and extensible information system for neuroimaging data analysis. While the core 

components of this framework are in place, the next iteration of software development will 

focus on incorporating emerging standards for describing semantic Web services, expanding to 
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additional workflow systems, and introducing security measures. I chose the previous use cases 

to explore the use of NIDM in a computational infrastructure, but, moving forward, scenarios 

should be identified by stakeholders with real tasks that need to be competed during their daily 

research. Moving development out of the informatics lab and into practice will provide more 

accurate ongoing feedback about the NiQuery application framework. 

 Semantic Web services and software tools for managing linked data are increasingly 

available and need to be evaluated for potential incorporation into NiQuery. The Semantic 

Automated Discovery and Integration (SADI) framework (124) provides an ontology and 

software tools that can be used to describe a computational service as an RDF triple, where the 

"Subject" is the input, the computational workflow is the "Predicate," and the output is the 

"Object." Another emerging technology is the W3C Linked Data Platform 

(http://www.w3.org/TR/ldp/), which provides an HTTP-based protocol for read/write linked 

data management that allows files and RDF metadata to be stored on the same server and 

browsed in a similar way as linked Web pages. By incorporating these approaches into NiQuery, 

the system will become more accessible to the research community and to application 

developers. 

 Currently, NiQuery only supports Nipype as a workflow engine. Generalizing the PROV 

workflow model to systems beyond Nipype will be essential for broad adoption in the research 

community. For example, labs that use Make to compile their workflow   could include a script 

that converts Makefile targets into RDF (e.g., 

http://www.w3.org/2000/10/swap/util/make2n3.py) and mapped to a similar format as 

Nipype. By using PROV as a core model, this would make it possible for provenance-focused 

queries to be interoperable across workflow systems, but further work is needed to standardize 

the representation of workflow code. 

 By working with openly available data, I did not need to address security concerns within 

the NiQuery system design. A future version of NiQuery will need to achieve better 

accountability using authentication and authorization mechanisms. Using security protocols, 

such as HTTPA (Accountable HTTP, (125))  will enable NiQuery to be used in applications that 
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include both public and private data collections. This approach will help to realize the vision of 

the read-write Linked Data Web (126) that requires authentication and authorization using the 

WebID Protocol (http://www.w3.org/TR/webid). 

6.6 Final conclusion 

My dissertation research produced informatics standards and infrastructure in order to 

overcome socio-technical barriers to neuroimaging data sharing and threats to reproducibility. I 

developed the Neuroimaging Data Model (NIDM), a fundamentally new, granular data exchange 

standard that provides a language to communicate provenance by representing primary data, 

computational workflow, and derived data. By incorporating provenance as a primitive to 

document cognitive neuroimaging workflow, I introduced an informatics method to make 

statements that parsimoniously express the way a given piece of data is produced. I conducted 

this research in partnership with international neuroinformatics and brain imaging 

communities, which adopted and extended central elements of my work into prevailing brain 

imaging software. 
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