

Data-driven Methods and Models for Predicting Protein Structure using Dynamic
Fragments and Rotamers

Steven J. Rysavy

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2014

Reading Committee:

Valerie Daggett, Chair

James Brinkley

Ira Kalet

Program Authorized to Offer Degree:
Biomedical Informatics and Medical Education

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3618332

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3618332

© Copyright 2014
Steven J. Rysavy

University of Washington

Abstract

Data-driven Methods and Models for Predicting Protein Loop Structure using Dynamic
Fragments and Rotamers

Steven J. Rysavy

Chair of the Supervisory Committee:
Professor Valerie Daggett

Bioengineering

Proteins play critical roles in cellular processes. A protein’s conformation directly relates to its

biological function and, consequently, determination of such structure can provide great insight

into a protein’s function. Using a computational technique called molecular dynamics (MD), we

are able to simulate and observe protein dynamics at a much higher temporal and spatial resolution

than allowed by experimental methods. Dynameomics is a research endeavor that uses MD to

produce thousands of protein simulations, resulting in hundreds of terabytes of data. Using novel

visual analytics techniques, we have mined the Dynameomics data warehouse for data on protein

backbone segments and side-chain behavior, called fragments and rotamers, respectively.

Knowledge derived from these dynamic fragments and rotamers was used to improve the quality

of protein loop structure predictions. We have created novel data models to store, analyze and

compare fragments and side-chain rotamers, then developed methods to predict loop structures

with information inferred from these data models. Protein loop regions predicted from these

fragments and rotamers produce biologically relevant structures that improve upon current protein

loop prediction methods. In conjunction with the fragment and rotamer research, we produced a

novel visual analytics framework called DIVE, a Data Intensive Visualization Engine. This

software has been instrumental in advancing our bioinformatics research, but it is a general-

purpose framework applicable to a wide range of big data problems.

1

TABLE OF CONTENTS

Chapter 1: Protein Structure Prediction .. 7
1.1 Visual Analytics .. 9
1.2 Software Engineering.. 10
1.3 Protein Fragments ... 10
1.4 Amino Acid Side Chain Rotamers .. 11
1.5 Continuing Research ... 11
1.6 Conclusions ... 12

Chapter 2: DIVE: A Graph-Based Visual Analytics Framework for Big Data 14
2.1 Summary ... 14
2.2 Contributions... 14
2.3 Introduction ... 14
2.4 The DIVE Architecture ... 15
2.5 Object Parsing ... 22
2.6 Scripting .. 24
2.7 Data Streaming.. 25
2.8 Case Study .. 26
2.9 Discussion ... 28
2.10 Conclusions ... 30

Chapter 3: DIVE: A Data Intensive Visualization Engine ... 39
3.1 Summary ... 39
3.2 Contributions... 39
3.3 Introduction ... 39
3.4 System and Implementation .. 40
3.5 Results ... 41
3.6 Case Studies .. 43
3.7 Conclusions ... 45

Chapter 4: The Dynameomics API: An Application Programming Interface for Molecular
Dynamics Simulations .. 56

4.1 Summary ... 56
4.2 Introduction ... 56
4.3 An Object Oriented Design for MD Simulations and Experimental Structures 58
4.4 Analysis Libraries ... 65
4.5 Structural Libraries ... 65
4.6 Implementation Details ... 68
4.7 Conclusions ... 69

Chapter 5: Dynameomics: Data-Driven Methods and Models for Utilizing Large-Scale
Protein Structure Repositories for Improving Fragment-Based Loop Prediction 74

5.1 Summary ... 74

2

5.2 Introduction ... 75
5.3 Results ... 78
5.4 Discussion ... 82
5.5 Methods and Materials .. 85

Chapter 6: Dynameomics: Comparative Data-Driven Analysis of the Correlation Between
Rotameric States and Backbone Conformational Propensities and Improved Rotamer
Libraries... 109

6.1 Summary ... 109
6.2 Introduction ... 110
6.3 Results ... 113
6.4 Discussion ... 117
6.5 Methods and Materials .. 119

Chapter 7: Related and Continuing Work ... 133
7.1 Evaluation of Cross-Linking Distances using Dynameomics 133
7.2 Comparison of Native and Denatured State Protein Fold Space Coverage 134
7.3 Transition State Ensemble Prediction ... 135
7.4 Pentapeptide Structural Conformations .. 139
7.5 D-Amino Acid Rotamer Library Comparison .. 140

Appendix A: Molecular Dynamics .. 151
Appendix B: Provisional Patents Covering Methods for Efficient Streaming of Structured
Information .. 154

B.1 Efficient Data Streaming into a Structured Ontology ... 154
B.2 Automated Parsing of Object-Oriented Assemblies into Dynamically Linked
Ontologies ... 156

3

LIST OF FIGURES

Figure 2.1 An overview of DIVE (Data Intensive Visualization Engine), with screenshots. 33
Figure 2.2 The DIVE GUI with the Protein Dashboard pipeline loaded. 34
Figure 2.3 The DIVE architecture. ... 35
Figure 2.4 A mapping of a datanode ontology from a third-party .NET assembly. 36
Figure 2.5 SQL streaming in DIVE. ... 37
Figure 2.6 The Protein Dashboard case study. ... 38
Figure 3.1 Schematic of the data flow within DIVE. ... 46
Figure 3.2 Conceptual representation of DIVE modules and visual analytic processes. 47
Figure 3.3 Screenshot of the Protein Dashboard. ... 48
Figure 3.4 Interactive visualizations in DIVE. ... 49
Figure 3.5 Screenshot of DIVE displaying the Gene Ontology database. 50
Figure 3.6 Screenshot of DIVE showing the Gene Ontology species taxonomy. 51
Figure 3.7 Reusable DIVE components used to analyze professional baseball statistics. 52
Figure 3.8 Reusable DIVE charting plugins used for data exploration. 53
Figure 3.9 Conceptual representation of DIVE interactions among various plugins. 54
Figure 3.10 DIVE using the Chimera plugin .. 55
Figure 4.1 Visual description of the Dynameomics API’s object hierarchies. 70
Figure 4.2 UML diagram of residue and rotamer classes and abstract classes. 71
Figure 4.3 Sample code for PDB writer method call and delegate. .. 72
Figure 4.4 Sample code for backing store implementation. ... 73
Figure 5.1 Structural coverage comparison between PDB, DYNstart, and DYN298 100
Figure 5.2 Comparison of fragments sourced from various structure types. 101
Figure 5.3 Distribution of Lowest Scoring Fragments. .. 102
Figure 5.4 Predictions of loops in NMR structures. ... 103
Figure 5.5 Abstract depiction of fragment. ... 104
Figure 5.6 Schema of generic fragment library database. .. 105
Figure 5.7 Query execution time for fragment searches. .. 106
Figure 5.8 Anchor residue alignments for fragment attachment. ... 107
Figure 5.9 Overlay of Dynameomics starting structure fragments. .. 108
Figure 6.1 Dependent rotamer probabilities and example structures for valine. 131
Figure 6.2 Dependent probabilities per secondary structure for a selection of residues. 132
Figure A.1 Solvating and simulating a protein using molecular dynamics. 153
Figure B.1 Steps for streaming data into a structured ontology. .. 159
Figure B.2 Steps for parsing assemblies into dynamically linked ontologies. 160

4

LIST OF TABLES

Table 2.1 DIVE Inheritance Models ... 31
Table 2.2 Examples of μScripting .. 32
Table 5.1 Fragment library abbreviations and descriptions. ... 95
Table 5.2 Average RMSD of predicted values for 510 loop targets. .. 96
Table 5.3 PCA correlated distances. ... 97
Table 5.4 PCA correlated distances (continued)... 98
Table 5.5 PCA correlated distances (continued)... 99
Table 6.1 Comparison of backbone-dependent rotamer library statistics................................... 121
Table 6.2 Independent and dependent rotamer probabilities per secondary structure type. 122

5

ACKNOWLEDGEMENTS

 I would like to thank Dr. Valerie Daggett for the mentorship I received throughout my

graduate studies. I would also like to thank Drs. Jim Brinkley, Ira Kalet, and Jim Pfaendtner for

serving on my committee and providing advice throughout the dissertation process. Thanks goes

to the many members of the Daggett lab past and present, including Drs. David Beck, Noah

Benson, Gene Hopping, Amanda Jonsson, Michelle McCully, Erik Merkley, Dustin Schaeffer,

Tom Schmidlin, Alex Scouras, Andrew Simms, Rudesh Toofanny, and Clare Towse as well as

Denny Bromley, Jonathan Cheng, Peter Law, Sarah Nowakowski, and Robert Su. I would also

like to thank my cohort including Drs. Wynona Black, Daniel Capurro, Walter Curioso, and Rupa

Patel as well as Melissa Clarkson. I am also grateful for the financial support provided by the

National Library of Medicine and the National Institute of Health and administrative support

provided by the Division of Biomedical and Health Informatics and the Department of

Bioengineering.

6

DEDICATION

 I would like to thank my wife, Erin Cipolla, for the unending support and encouragement

as well as the constant reminders to get away from the computer and enjoy life. I would also like

to thank my dog Kai for bringing me a ball to play with during the tough times and my dog Benny

for always keeping his tail wagging.

7

Chapter 1

PROTEIN STRUCTURE PREDICTION

Proteins play a critical role in nearly every cellular process, including catalyzing chemical

reactions, transporting molecules, responding to environmental signals, and providing structural

support (Fetrow, 1995; Leszczynski & Rose, 1986; Smock & Gierasch, 2009; Wu & Dean, 1996).

A protein’s structure directly relates to its biological function and, consequently, determination of

a protein’s structure can provide great insight into a protein’s purpose (Branden & Tooze, 1991).

Current experimental methods for determining protein structures have several drawbacks. They

cannot determine structures for all proteins, often omitting certain regions within a protein due to

indeterminate data, and introduce experimental artifacts (Eicken et al., 2002; Wagner, Hyberts, &

Havel, 1992). Furthermore, these methods are expensive and time-consuming, resulting in low

overall sampling for certain aspects of the data such as the conformations of side-chains (rotamers)

and flexible loops. Experimental methods are also extremely limited in extracting dynamic

structural information, which can be critical to understanding a protein’s function (Glazer, Radmer,

& Altman, 2009; Karplus & Kuriyan, 2005).

Computational structure prediction is an evolving methodology that addresses short-

comings of experimental methods (Kryshtafovych et al., 2013). Fragment-based structure

prediction is one such computational approach that uses small peptides derived from known

protein structures to model backbone conformations of unknown structures (Baeten et al., 2008;

Choi & Deane, 2010; Verschueren et al., 2011). Backbone prediction methods are typically

combined with rotamer libraries, which provide side-chain conformations and propensities, to

refine the overall structure prediction (Dunbrack & Cohen, 1997; Lovell, Word, Richardson, &

8

Richardson, 2000; Shapovalov & Dunbrack Jr., 2011). Both of these methods rely heavily on pre-

determined structures, typically a subset of the best X-ray crystallography structures in the Protein

Data Bank (PDB) (Frances C. Bernstein et al., 1977). However, as mentioned, PDB structures can

be incomplete, incorrect, poorly sampled, and bereft of dynamic information. Additional structural

information is essential to improve state-of-the-art prediction methods and new approaches are

needed to access this information.

I propose that molecular dynamic (MD) protein simulations provide a diverse sampling of

biologically relevant protein structures that can improve the quality of structure predictions, and I

use Dynameomics (Beck et al., 2008; Day, Beck, Armen, & Daggett, 2003) to test this hypothesis.

The Dynameomics project has produced a repository of MD simulations that includes

representatives for 95% of all known autonomous protein folds (Day et al., 2003; Schaeffer,

Jonsson, Simms, & Daggett, 2011). The Dynameomics data warehouse (DDW) (Simms &

Daggett, 2012; Simms, Toofanny, Kehl, Benson, & Daggett, 2008; van der Kamp et al., 2010)

contains 104 times as many protein structures as the next largest protein structure repository, the

PDB. The data in the DDW, especially high-resolution dynamic structure information and

thorough sampling of rotameric states, are informative for protein structure prediction.

Using the DDW for protein structure prediction poses a number of significant informatics

challenges. First, current visualization and analysis tools are inadequate for interpreting the

complexity and size of data in the DDW. Second, no data representations exist for analyzing

Dynameomics fragments and rotamers in conjunction with the Dynameomics data model and other

structural repositories. Third, current fragment-based retrieval and prediction methods do not scale

to either the size or distributed architecture of the DDW. Fourth, new methods are required to

9

evaluate whether the knowledge contained in the fragment and rotamer representations is sufficient

for structure prediction. Here I present the novel contributions I have made to address these

challenges and I summarize the scientific findings produced from these contributions.

1.1 Visual Analytics

Chapter 2 describes the general visual analytics framework we developed, named the Data

Intensive Visualization Engine (DIVE) (Bromley, Rysavy, Su, Toofanny, et al., 2013; Rysavy,

Bromley, & Daggett, 2014). This framework contains general methods for programmatic

visualization and analysis of the DDW to improve scientific investigation. One novel method

highlighted in this chapter is streaming access to the DDW. Large amounts of data can now be

dynamically visualized and directly manipulated from the DDW for structure prediction. A second

important method, the automatic conversion of object-oriented (OO) structures to the DIVE graph

structure, is based on a set of rules to transform an OO system into a frame-like system. This

transformation allows for a more expressive representation of the DDW, fragment and rotamer

data and simplifies the interaction for ‘non-programmer’ scientists.

Chapter 3 further demonstrates the capabilities of the DIVE framework by showing

specific applications and case studies. These applications demonstrate the breadth of DIVE’s

visual analytics abilities, including the investigation of single nucleotide polymorphisms,

biomedical ontologies, and baseball statistics. The Protein Dashboard, a visual analytics interface

to the DDW, is a specific DIVE application that enables scientific research of our protein

simulations. Overall this chapter demonstrates the broad range of informatics challenges that

DIVE addresses.

10

1.2 Software Engineering

In Chapter 4 we present an application programming interface, the Dynameomics API,

which is a software package containing methods and models for protein structure research. The

Dynameomics API provides unified access to the DDW, the PDB, fragment repository, and

rotamer repository. It also exposes protein structure data models which enable predictions of both

protein backbone and side-chain conformations. Additional libraries are also included for general

protein structure analysis.

1.3 Protein Fragments

Chapter 5 describes the fragment data model and how it address the DDW scale and

integration challenges with respect to backbone structure prediction (Rysavy, Beck, & Daggett,

2014). This model evolved from an internal coordinate (IC) representation for fragment

comparison. The fragment data model reuses coordinate data already present in the DDW,

searches fragments several orders of magnitude faster than the traditional approach, and, through

the IC methods, provides accurate fragment structural comparisons. The model also integrates

with existing Dynameomics analyses, is incorporated into the Dynameomics API, and is amenable

to new fragment-based analysis. Now, for the first time, we can use the DDW for backbone

structure prediction.

To assess the applicability of these new models we also created new visualization and

analysis methods for evaluating the terabyte-scale results. For the fragment data, we used machine

learning methods to understand the fragment conformational space and explored this space using

DIVE. The computational analysis was performed using methods contained within the

11

Dynameomics API. We can now compare the conformational content of disparate structure

repositories and identify areas of interest to the structure prediction community.

1.4 Amino Acid Side Chain Rotamers

Chapter 6 covers the rotamer data model which supports side-chain conformation

prediction through the DDW. Unlike previous Dynameomics rotamer representations (Scouras &

Daggett, 2011), this organization takes into account backbone variability to provide more accurate

rotamer conformations. Here we present a histogram-based approach to compare backbone-

dependent and backbone-independent rotamers (Rysavy, Towse, & Daggett, 2014). The

comparison technique enables researchers to identify important variations in rotamer probabilities.

The techniques implemented to generate rotamer data use sparse matrices, linear running-

time circular statistics, and distributed computing to overcome limitations of previous methods.

Since the model is integrated into the DDW, we can generate rotamer statistics on any simulation

group specified in the Dynameomics dimensional model. All side-chain data were processed with

the Dynameomics API and the resulting rotamer data can be accessed through Dynameomics API

methods described in Chapter 4. DIVE was also used to visually analyze and investigate the

rotamer data. We now have dynamic backbone-dependent rotamer libraries for structure

prediction.

1.5 Continuing Research

We developed novel data models and methods to provide a complete framework for

structure prediction based on the DDW. However, the models and methods are designed to apply

to more generalized problems. In Chapter 7 we summarize ancillary and continuing research

12

ventures using the models and methods presented in earlier chapters. This research includes

investigation of cross-linker distances, evaluation of the protein fold space, identification of

transition states, characterization of pentapeptide structures, and comparison of D-amino acid

rotamer libraries. Overall these methods and data models improve protein structure prediction,

which is critical to understanding protein function, and provide a framework for future researchers.

1.6 Conclusions

Through these contributions we have produced results relevant to the protein structure

prediction problem, specifically loop structure prediction. The fragment research has identified

regions of protein conformational space where Dynameomics fragments are important for

improving structure prediction. We have shown how predicting loop regions with a consensus set

of Dynameomics and PDB fragments can improve prediction results over using PDB fragments

alone. We have also provided experimentally-validated cases where Dynameomics fragments

predict loop structures better than X-ray crystallography fragments. The rotamer research has

shown in which regions of backbone-conformational space it is important to use backbone-

dependent rotamer probabilities over backbone-independent rotamer probabilities for native state

structures. These results show that the data models and methods advance backbone structure

prediction and improve our understanding of preferred side-chain conformations. The revised

backbone-independent library has also been published in Chimera (Pettersen et al., 2004), a

popular protein visualization and editing software package.

Additionally, we provide two significant software packages. The Dynameomics API is a

general-purpose interface for modeling and transforming protein structures. DIVE is a general

13

purpose visual analytics tool built for informatics research. Both of these software packages

contain novel contributions for informatics research.

14

Chapter 2

DIVE: A GRAPH-BASED VISUAL ANALYTICS FRAMEWORK

FOR BIG DATA

2.1 Summary

The need for data-centric scientific tools is growing; domains such as biology, chemistry,

and physics are increasingly adopting computational approaches. So, scientists must deal with the

challenges of big data. To address these challenges, researchers built a visual-analytics platform

named DIVE (Data Intensive Visualization Engine). DIVE is a data-agnostic, ontologically

expressive software framework that can stream large datasets at interactive speeds. In particular,

DIVE makes novel contributions to structured-data-model manipulation and high-throughput

streaming of large, structured datasets.

2.2 Contributions

 This chapter is published in the journal IEEE Computer Graphics and Applications

(Rysavy, Bromley, et al., 2014). As joint First Authors, Dennis Bromley and I performed the

majority of the research in this chapter. My specific contributions presented here include the object

parser, the pass-through SQL, the integration of the Dynameomics API, and the shared design of

the DIVE framework.

2.3 Introduction

Bioinformatics research depends increasingly on high-performance computation and large-

scale data storage. Also, datasets are often complex, heterogeneous, or incomplete. These two

aspects make bioinformatics appropriate for visual analytics (VA). Many powerful scientific

15

toolsets are available, including software libraries such as SciPy (Jones, Oliphant, & Peterson,

2001) specialized visualization tools such as Chimera (Pettersen et al., 2004) and scientific

workflow tools such as Taverna (Wolstencroft et al., 2013), Galaxy (Goecks, Nekrutenko, &

Taylor, 2010), and the Visualization Toolkit (VTK) (Schroeder, Martin, & Lorensen, 1996). Some

of them can handle large datasets. Others—typically, those originally designed for small, local

datasets—haven’t been updated to handle recent advances in data generation and acquisition.

To help fill this technological gap, we developed DIVE (Data Intensive Visualization

Engine), which makes big-data VA approaches accessible to scientific researchers (see Figure 2.1).

DIVE employs an interactive data pipeline that’s extensible and adaptable. It encourages

multiprocessor, parallelized operations and high-throughput, structured data streaming. DIVE can

act as an object-oriented database by joining multiple disparate data sources. And, although we

present bioinformatics applications here, DIVE can handle data from many domains.

2.4 The DIVE Architecture

DIVE is an API whose primary component is the data pipeline, which can stream,

transform, and visualize datasets at interactive speeds. The pipeline can be extended with plug-ins;

each plug-in can operate independently on the data stream.

Data exploration is supported through command-line interfaces, GUIs, and APIs. Figure

2.2 shows an example DIVE application. All these interfaces support scripting interaction. DIVE

also supports typed events, letting users trigger targeted analyses from a point-and-click interface.

Programmatically, DIVE inherits much functionality from the .NET environment, as we discuss

later.

16

Finally, DIVE is domain independent and data-agnostic. The pipeline accepts data from

any domain, provided an appropriate input parser is implemented. Currently supported data

formats include SQL, XML, comma- and tab-delimited files, and several other standard file

formats (see Figure 2.3).

2.4.1 Data Representation

Ontologies are gaining popularity as a powerful way to organize data. An ontology is a

semantically and syntactically formal structure for organizing information (Horrocks, 2008). As

organized datasets’ size and complexity have grown, so has the need for formal semantics and

syntax. In particular, the need for such formalisms is driven by the desire to handle these large,

complex datasets programmatically. Ontologies enforce a strict formalism that guarantees that

structured information is both meaningful and extensible. Once this is established, such

information can be clearly reasoned with, built on, and discussed. An ontology can be represented

as a graph in which nodes represent specific concepts and edges represent specific relationships.

We developed DIVE’s core data representation with ontologies in mind. The fundamental

data unit in DIVE is the datanode. Datanodes somewhat resemble traditional object instances from

object-oriented (OO) languages such as C++, Java, or C#. They’re typed, contain strongly typed

properties and methods, and can exist in an inheritance hierarchy.

However, datanodes extend that traditional model. They can exist in an ontological

network or graph; that is, multiple relationships beyond simple type inheritance can exist between

datanodes. DIVE implements these relationships with dataedges, which link datanodes. Dataedges

themselves are implemented by datanode objects and consequently might contain properties,

methods, and inheritance hierarchies. Because of this basic flexibility, DIVE can represent

17

arbitrary, typed relationships between objects, objects and relationships, and relationships and

relationships.

Datanodes are also dynamic; every method and property can be altered at runtime, adding

much flexibility to the system. (The DIVE pipeline contains various data integrity mechanisms to

prevent unwanted side effects, as we discuss later.) The inheritance model is also dynamic; as a

result, objects can gain and lose type qualification and other inheritance aspects at runtime. This

allows runtime classification schemes such as clustering to be integrated into the object model.

Finally, datanodes provide virtual properties. These properties are accessed identically to fixed

properties but store and recover their values through arbitrary code instead of storing data on the

datanode object. Virtual properties can extend the original software architecture’s functionality,

allowing data manipulation, as we describe later.

Dataedges implement multiple inheritance models. Besides the traditional is-a relationship

in OO languages, ontological relationships such as contains, part-of, and bounded-by can be

expressed. Each of these relationships can support varying levels of inheritance (see Table 2.1):

 With OO inheritance, which is identical to OO languages such as C++ and Java, subclasses

inherit the parent’s type, properties, and methods.

 With type inheritance, subclasses inherit only the type.

 With property inheritance, subclasses inherit only the properties and methods.

 Like OO language objects, property-inheritance subclasses can override superclass

methods and properties with arbitrary transformations. Similarly, type-inheritance subclasses can

18

be cast to superclass types. Because DIVE supports not only multiple inheritance but also multiple

kinds of inheritance, we implement casting by traversing the dataedge ontology. Owing to the

coupling of the underlying data structure and ontological representation, every datanode and

dataedge is implicitly part of a system-wide graph. This means we can use graph-theoretical

methods to analyze both the data structures and ontologies represented in DIVE. This approach

has already proved useful in structural biology (Bromley, Anderson, & Daggett, 2013).

 Because all data are represented by datanodes and dataedges, DIVE analysis modules are

presented with a syntactically homogenous dataset. Owing to this data-type independence, any

modules can be connected so long as the analyzed datanodes have the expected properties,

methods, or types, as we describe later. A module needn’t concern itself with the data’s origin or

access syntax. So, DIVE supports code and tool reuse.

 Data-type handling is a challenge in modular architectures. For example, Taverna uses

typing in the style of MIME (Multipurpose Internet Mail Extensions). The VTK uses strongly

typed classes. Python-based tools, such as Biopython (Cock et al., 2009) and SciPy, often use

Python’s dynamic typing.

 For DIVE, the datanode and dataedge ontological network is a useful blend of these

approaches. The dynamic typing of individual datanodes and dataedges lets us build arbitrary type

networks from raw data sources. (See the Gene Ontology (Ashburner et al., 2000) taxonomy

example described in the DIVE application note (Bromley, Rysavy, Su, Toofany, et al., 2013).)

The underlying strong typing of the actual data (doubles, strings, objects, and so on) facilitates

parallel processing, optimized script compilation, and fast, non-interpreted handling for operations

19

such as filtering and plotting. Furthermore, the fact that the datanodes and dataedges themselves

are strongly typed objects facilitates programmatic manipulation of the dataflow itself.

 Although each typing approach has its strengths, DIVE’s approach lends itself to fast, agile

data exploration and fast, agile updating of DIVE tools. The datanode objects’ homogeneity also

simplifies the basic pipeline and module development. The tool updating is a particularly useful

feature in an academic laboratory where multiple research foci, a varied spectrum of technical

expertise, and high turnover are all common.

2.4.2 Data Import

Data must be imported into DIVE before they are accessible to the DIVE pipeline. In many

cases, DIVE’s built-in functionality handles this import. In the case of tabular data or SQL data

tables, DIVE constructs one datanode per row, and each datanode has one property per column.

DIVE also supports obtaining data from Web services such as the Protein Data Bank (Frances C.

Bernstein et al., 1977). Once DIVE obtains the data, simple mechanisms establish relationships

between datanodes. Later, we describe a more sophisticated way to acquire structured data that

uses native object parsing.

2.4.3 The DIVE Pipeline

DIVE’s pipeline is comparable to Taverna, Pipeline Pilot

(http://accelrys.com/products/pipeline-pilot), Cytoscape (Shannon et al., 2003), Galaxy, and, most

similarly, the VTK. Although all these platforms are extendable, two factors led us to develop

DIVE. This first was platform considerations, which we discuss later. The second was our focus

on agile data exploration instead of remote, service-based workflows. Fortunately, all these

20

platforms have made interoperability a priority. So, we can leverage Cytoscape’s graph capabilities

or the VTK’s visualization capabilities while maintaining DIVE’s benefits by connecting their

respective pipelines.

In the DIVE pipeline, plug-ins create, consume, or transform data. These plug-ins are

simply compiled software libraries whose objects inherit from a published interface. The DIVE

kernel automatically provides subsequent plug-in connectivity, pipeline instantiation, scripting,

user interfaces, and many other aspects of plug-in functionality. Plug-ins move data through pins

much like an integrated circuit: data originate at an upstream source pin and are consumed by one

or more downstream sink pins. Plug-ins can also move data by broadcasting and receiving events.

Users can save pipeline topologies and state to a file and share them.

When DIVE sends a datanode object through a branching, multilevel transform pipeline, it

must maintain the datanode’s correct property value at every pipeline stage. Otherwise, a simple

plug-in that scaled incoming values would scale all data, everywhere in the pipeline. The naive

option is to copy all datanodes at every pipeline stage, but this is extremely CPU- and memory-

intensive and dramatically worsens the user experience.

To address this problem, DIVE uses read and write contexts. Essentially, this creates a

version history of each transformed value. We key the history on each pipeline stage such that

each plug-in reads only the appropriate values and not, for instance, downstream values or values

from another pipeline branch. This approach maintains data integrity in a branching transform

pipeline. It’s also parallelizable. In addition, it keeps an accurate account of the property value at

every stage in the pipeline, with a minimum of memory use. Finally, it’s fast and efficient because

the upstream graph traversal is linear and each value lookup occurs in constant time.

21

2.4.4 Software Engineering Considerations

We designed DIVE to provide a dynamic, scalable VA architecture. Although such an

architecture doesn’t require a specific platform, we built DIVE on the Microsoft Windows

platform and .NET framework because of several significant built-in capabilities. These

capabilities include the dynamic-language runtime, expression trees, and Language-Integrated

Query (LINQ). .NET also provides coding features such as reflection, serialization, threading, and

parallelism. Extensive documentation and details of these capabilities are at

www.microsoft.com/net.

Many of these capabilities directly affect DIVE’s functionality and user experience.

Support for dynamic languages allows flexible scripting and customization that would be difficult

in less expressive platforms. These components are crucial for both the data model we described

earlier and the scripting capabilities we describe later. Furthermore, LINQ is useful in a scripted

data-exploration environment. Expression trees and reflection provide the underlying object

linkages for the DIVE object parser (which we also describe later), and DIVE streaming heavily

uses the .NET framework’s threading libraries. Finally, since .NET supports 64-bit computations

and simple parallelism, DIVE is able to transparently scale with processor capabilities.

.NET also supports not only Microsoft-specific languages such as C#, Visual Basic, and

F# but also more general languages such as Python and C++. This lets us author DIVE plug-ins in

many languages. In addition, we can use these languages to develop command-line, GUI, and

programmatic tools that embed and drive the DIVE kernel (as our case study shows later). .NET’s

wide user base also provides multiple external libraries with which to jump-start our development

efforts, including molecular visualizers, clustering and analysis packages, charting tools, and

22

mapping software. In particular, one such library is the VTK, wrapped by the ActiViz .NET API

(see www.kitware.com/opensource/avdownload.php).

Finally, for our Dynameomics project (see Appendix A), we store data in a Microsoft SQL

Server data warehouse. So, it made sense to adopt a software platform with deep support for these

data services.

2.5 Object Parsing

Module-management systems such as the Java-based OSGi (OSGi Service Platform,

Release 3, 2003) support module life-cycle management and service discovery. However, module

authors often must be aware of the module-management system when creating a module. We

aimed to make .NET assemblies written without a priori knowledge of DIVE accessible to the

ontological data representation. We also didn’t require the life-cycle services of such module-

management systems. So, we developed the DIVE object parser.

The parser automatically generates datanodes and dataedges from any .NET object or

assembly (see Figure 2.4). Using reflection and expression trees, it consumes .NET object

instances and translates them into propertied datanodes and dataedges. Usage patterns typically

involve standard object creation by library-aware code, followed by automated object parsing and

injection into the DIVE pipeline.

Generic rules define the mapping between the .NET object hierarchy and DIVE data

structures. Generally, complex objects such as classes are parsed into datanodes, whereas built-in

.NET system objects, primitive fields, primitive properties, and methods with primitive return

types are translated into properties on those datanodes. Interfaces, virtual classes, and abstract

classes are all translated into datanodes. The .NET inheritance and member relationships are

23

interpreted as OO and property inheritance dataedges, respectively; these dataedges then connect

the datanode hierarchy.

Using this approach, the object parser recursively produces an ontological representation

of the entire .NET instance hierarchy in DIVE. Additional rules handle other program constructs.

For example, the parser translates static members into a single datanode. Multiple object instances

with the same static member all map to a single, static datanode instance in the DIVE data

structure. Public objects and members are always parsed, whereas private members, static objects,

and interfaces are parsed at the user’s discretion.

Throughout this process, no data values are copied to datanodes or dataedges. Instead,

dynamically created virtual properties link all datanode properties to their respective .NET

members. So, any changes to the runtime .NET object instances are reflected in their DIVE

representations. Similarly, any changes to datanode or dataedge properties propagate back to their

.NET object instance counterparts. This lets DIVE interactively operate on any runtime .NET

object structure.

With object parsing, users can import and use any .NET object without special handling.

Furthermore, as we discussed before, the.NET application’s architect doesn’t need to be aware of

DIVE to exploit its VA capabilities. For example, assume we have a nonvisual code library that

dynamically simulates moving bodies in space (this example is available with the DIVE program

download at www.dynameomics.org/dive). A DIVE plug-in, acting as a thin wrapper, can

automatically import the simulation library and add runtime visualizations and interactive

analyses. As the simulation progresses, the datanodes will automatically reflect the changing

property values of the underlying .NET instances. Through a DIVE interface, the user could

24

change a body’s mass. This change would propagate back to the runtime instance and immediately

appear in the visualization. This general approach is applicable to many specialized libraries,

taking advantage of their efficient data models. We describe an example of this later.

2.6 Scripting

To let users rapidly interact with the DIVE pipeline, plug-ins, data structures, and data,

DIVE supports two basic types of scripting: plug-in scripting and μscripting (microscripting). In

the DIVE core framework, C# is the primary scripting language. Externally, DIVE can host

components written in any .NET language and, conversely, can be hosted by any .NET

environment. Here we focus on C# scripting.

Both scripting types are controlled in the same way. The user script is incorporated into a

larger, complete piece of code, which is compiled during runtime using full optimization. Finally,

through reflection, the compiled code is loaded back into memory as a part of the runtime

environment. Although this approach requires time to compile each script, the small initial penalty

is typically outweighed by the resulting optimized, compiled code. Both scripting types,

particularly μscripting, can work on a per-datanode basis; optimized compilation helps create a

fast, efficient user experience.

Plug-in scripting is simpler and more powerful than μscripting and is the most similar to

existing analysis tools’ scripting capabilities. Through this interface, the user script can access the

entire .NET runtime, the DIVE kernel, and the specific plug-in.

We developed μscripting to give complete programmatic control to power users and

simple, intuitive control to casual users. Essentially, μscripting is an extension of plug-in scripting

25

in which DIVE writes most of the code. The user needs to write only the right-hand side of a C#

lambda function. Here’s a schematic of this function:

func(datanode dn) => ???;

The right-hand side is inserted into the function and compiled at runtime. The client can

provide any expression that evaluates to an appropriate return value. Table 2.2 shows μscripting

examples.

2.7 Data Streaming

DIVE supports the following two SQL data-streaming approaches.

2.7.1 Interactive SQL

This approach (see Figure 2.5a) handles the immediate analysis of large, nonlocal datasets;

it’s for impromptu, user-defined dynamic SQL queries.

2.7.2 Pass-through SQL

 This approach (see Figure 2.5b) handles interactive analysis of datasets larger than the

client’s local memory; it’s for streaming complex object models across a preset dimension.

 Pass-through SQL accelerates the translation of SQL data into OO structures by shifting

the location of values from the objects themselves to a backing store, an in-memory data structure.

A backing store is essentially a collection of tables of instance data; each table contains many

instance values for a single object type. Internally, object fields and properties have pointers to

locations in backing-store tables instead of local, fixed values. A backing-store collection

26

comprises all the tables for the object instances occurring at the same point, or frame, in the

streaming dimension.

 Once this approach creates a backing store, it generates copies of the backing-store

structure with a unique identifier for each new frame. It then inserts instance values for new frames

into the corresponding backing-store copy. This reduces the loading of instance data to a table-to-

table copy, bypassing the parsing normally required to insert data into an OO structure. This

approach also removes the overhead of allocating and de-allocating expensive objects by reusing

the same object structures for each frame in the streaming dimension.

 Pass-through SQL enables streaming through a buffered set of backing stores representing

frames over the streaming dimension. A set is initially populated client-side for frames on either

side of the frame of interest. Buffer regions are defined for each end of this set. Frames in the set

are immediately accessible to the client. When the buffer regions’ thresholds are traversed during

streaming, a background thread is spawned to load a new set of backing stores around the current

frame. If the client requests a frame outside the loaded set, a new set is loaded around the requested

frame. Loaded backing stores no longer in the streaming set are deleted from memory to conserve

the client’s memory.

2.8 Case Study

 A major research focus in the Daggett laboratory at the University of Washington is the

study of protein structure and dynamics through molecular dynamics (MD) simulations using the

Dynameomics data warehouse (see Appendix A). The Dynameomics project contains much more

simulation data than what typical, domain-specific tools can handle. Analysis of this dataset was

the impetus for creating DIVE.

27

 One of the first tools built on the DIVE platform was the Protein Dashboard, which

provides interactive 2D and 3D visualizations of the Dynameomics dataset. These visualizations

include interactive explorations of bulk data, molecular-visualization tools, and integration with

external tools such as Chimera.

 A tool implemented independently of DIVE and the Protein Dashboard is the

Dynameomics API. Written in C#, it establishes an object hierarchy, provides high-throughput

streaming of simulations from the Dynameomics data warehouse, contains domain-specific

semantics and data structures, and provides multiple domain-specific analyses. However, it’s

designed for computational efficiency and doesn’t specify any data visualizations or user

interfaces.

 We wanted to use the Dynameomics API’s sophisticated data handling and streaming while

keeping the Protein Dashboard’s interactive visualization and analysis, without reimplementing

DIVE’s API. Through the object parser, DIVE can integrate and use the Dynameomics API

structures without changing its own API. This process creates strongly typed objects, including

Structure, Residue, Atom, and Contact as datanodes, with each datanode containing properties

defined by the Dynameomics API. Semantic and syntactic relationships specified in the API are

similarly translated into dataedges. Once processed, these datanodes and dataedges are available

to the DIVE pipeline, indistinguishable from any other datanodes or dataedges. Figure 2.6

diagrams this dataflow.

 With the Dynameomics data and semantics available to the DIVE pipeline, we can apply a

VA approach to the Dynameomics data. As before, we can use the Protein Dashboard to interact

with and visualize the data. However, because the data flows through the Dynameomics API,

28

wrapped by DIVE datanodes and dataedges, we can load multiple protein structures from different

sources, including the Protein Data Bank (Frances C. Bernstein et al., 1977), align the structures,

and analyze them in different ways.

 Furthermore, because the Protein Dashboard has access to additional data from the

Dynameomics API, its own utility increases. For instance, it’s useful to color protein structures on

the basis of biophysical properties such as solvent-accessible surface area or deviation from a

baseline structure. By streaming the data through the pipeline, we can watch these properties

(many of which were accessed through the data’s inheritance hierarchy) change over time.

2.9 Discussion

 By necessity, most data analysis tools such as DIVE have some functional overlap; basic

visualization and data analysis routines are simply required for functionality. However, several

DIVE features are both novel and useful, particularly in a big-data, interactive setting. Here we

discuss these features, their benefits, and how we see them integrating with existing technologies.

2.9.1 Ontological Data Structure

 Besides simply representing the conceptual structure of the user’s dataset, DIVE’s graph-

based data representation can effectively organize data. For example, using DIVE’s object model,

we merged two ontology definitions from disparate sources. These two ontologies, represented as

DIVE datanodes and dataedges, were merged through property inheritance. This allowed the

second ontology to inherit definitions from the first, resulting in a new ontology compatible with

both data sources but amenable to new analysis approaches.

29

 Besides these structural benefits, the datanodes are software objects that can update both

their values and structures at runtime. Furthermore, the datanodes’ ontological context can also

update at runtime. So, DIVE can explore dynamic data sources and handle the impromptu user

interactions commonly required for visual analysis.

2.9.2 Object Parsing

As the case study showed, the ability to parse a .NET object or assembly distinct from the

DIVE framework circumvents the need to add DIVE-specific code to existing programs. In

addition, this lets us augment those programs with DIVE capabilities such as graphical interaction

and manipulation. For the Dynameomics API, we integrated the underlying data structures and the

streaming functionality into the Protein Dashboard without modifying the existing API code base.

This let us use the same code base in the DIVE framework and in SQL Common Language

Runtime implementations and other non-DIVE utilities.

2.9.3 Streaming Structured Data

The most obvious benefit of DIVE is big-data accessibility through data streaming.

Interactive SQL’s flexibility effectively provides a visualization front-end for the Dynameomics

SQL warehouse. However, for datasets not immediately described by the underlying database

schema or other data source, a more advanced method for streaming complex data structures is

desirable.

We developed pass-through SQL to make hundreds of terabytes of structured data

immediately accessible to users. These data are streamed into datanodes and can be accessed either

directly or indirectly through the associated ontology (for example, through property inheritance).

30

Furthermore, these data are preemptively loaded via background threads into backing stores; these

backing stores are populated using efficient bulk transfer techniques and predictively cache data

for user consumption. Finally, when the object parser is used with pass-through SQL, methods as

well as data are parsed. So, the datanodes can access native .NET functionality in addition to the

streaming data.

Preexisting programs also can benefit from DIVE’s streaming capabilities. For example,

Chimera can open a network socket to DIVE’s streaming module. This lets Chimera stream MD

data directly from the Dynameomics data warehouse.

2.10 Conclusions

 Large-scale data analysis will remain a pillar of scientific investigation; the challenge

facing investigators is how best to leverage modern computational power. DIVE and other VA

tools are providing insights into this challenge. Although it’s unlikely that any general tool will

ever supplant domain-specific tools, the concepts highlighted here—accessibility, extensibility,

simplicity of representation, integration, and reusability—will remain important.

31

Table 2.1 DIVE Inheritance Models

Inheritance
model

Inherits Example or
description

Type Properties Methods

Object-oriented
(OO)
inheritance

Yes Yes Yes Protein is a Molecule.

Type
inheritance

Yes No No Used with property
inheritance to implement
OO inheritance.

Property
inheritance

No Yes Yes Molecule contains Atom.

32

Table 2.2 Examples of μScripting

Argument Return
type

Code Comments

datanode dn double 3 This is the simplest case of

scripted numeric input.

dn.X This is a simple per-

datanode script.

Math.Abs(dn.X) he script is given access

to the full .NET library.

int dn.X > 0 ? 1 : -1; Simple syntax can be

powerful.

void bool {

 int hour = DateTime.Now.Hour;

 return hour < 12;

}

Any .NET code is allowed,

including complex,

multistatement functions.

datanode[] Dynamic

set

from dn in dns

group dn by Math.Round(dn.X, 2) into g

select new

{

 bin = g.Key, population = g.Count()

};

This creates a histogram

based on the datanode

objects’ “X” property.

from dn in dns

where dn.X > Math.PI

&& dn.is_Superclass

&& dn.Func() == true

select dn;

This filters a subset of

datanodes on the basis of

properties, methods, and

inherited type.

from dn1 in dnSet1

join dn2 in dnSet2 on dn1.X equals dn2.X

select new {X = dn1.X, Y = dn2.Y}

DIVE can act as an object-

oriented database by

joining multiple potentially

disparate datasets.

33

Figure 2.1 An overview of DIVE (Data Intensive Visualization Engine), with screenshots.

Users can access and structure data in various ways, including interactive and real-time data
streaming. DIVE allows various types of interoperability, including interoperability with
existing software libraries, interoperability with existing software tools, and interoperability
among DIVE plug-ins. Interactive DIVE visualizations have included a 2D chart of baseball
statistics, a 3D rendering of a protein molecule, and a taxonomy from the Gene Ontology.
Interaction scenarios include scripted data manipulation, GUI interaction via charts and graphs,
and event-driven data loading.

34

Figure 2.2 The DIVE GUI with the Protein Dashboard pipeline loaded.

At the top is a data loader with which users can load and interact with protein structures and
molecular-dynamics trajectories (see Appendix A) from different sources. On the lower left is
an interactive 3D rendering of a protein molecule, rendered using a cartoon representation for
the protein backbone and a ball-and-stick representation for a subset of atoms selected through
the scripting window at the bottom. On the lower right is one of many linked interactive charts
that stream synchronized data from the Dynameomics database.

35

Figure 2.3 The DIVE architecture.

The DIVE kernel acts as both a software library and runtime environment. In both cases, DIVE
can import and export data and functionality from a variety of sources. Pipeline plug-ins use
DIVE primarily as a software library, exploiting DIVE’s data-handling capabilities. DIVE tools
are applications that instantiate and launch a DIVE pipeline for a specific analysis task. DIVE
supports multiple types of interfaces.

36

Figure 2.4 A mapping of a datanode ontology from a third-party .NET assembly.

On the left, a generic .NET class hierarchy contains interfaces; class inheritance; and member
fields, properties, and methods. On the right, the automatically generated ontology replicates the
strongly typed objects and relationships from the .NET assembly. Instance-specific data are
maintained on the subclass datanode object (that is, data aren’t stored in superclass datanodes).
The original .NET object’s fields, properties, and methods are accessible through the datanodes
by virtual properties.

37

Figure 2.5 SQL streaming in DIVE.

(a) Interactive SQL. On the left is an SQL template with tags for time_step and atom. This
approach replaces the tags with input from GUI elements, and the final query calculates the
distances between all user-selected atoms at the specified time. (b) Pass-through SQL. On the
initial frame request, this approach constructs a datanode hierarchy around the .NET objects and
then creates backing stores. On all subsequent frame requests, DIVE buffers SQL data directly
into the backing stores using multiple threads. This approach then propagates large amounts of
complex data through DIVE at interactive speeds by bypassing object-oriented parsing.

38

Figure 2.6 The Protein Dashboard case study.

First, data are parsed in from the Dynameomics SQL warehouse or the Protein Data Bank (PDB),
populating the Dynameomics API’s backing stores. DIVE then parses these data structures and
creates corresponding datanodes and dataedges available to the DIVE pipeline. The molecular-
visualizer plug-in uses a μscript to select the atoms to display and their color. Finally, the user
interacts with the data in the Protein Dashboard. In this example, residues in helical structures
(the Selection μscript) are red if at least 50 percent of their maximum surface area is exposed to
solvent (the Color μscript). With the Protein Dashboard, the user can access multiple interactive
simulations simultaneously.

39

Chapter 3

DIVE: A DATA INTENSIVE VISUALIZATION ENGINE

3.1 Summary

Modern scientific investigation is generating increasingly larger datasets, yet analyzing

these data with current tools is challenging. DIVE is a software framework intended to facilitate

big data analysis and reduce the time to scientific insight. Here we present features of the

framework and demonstrate DIVE’s application to the Dynameomics project, looking specifically

at two proteins.

3.2 Contributions

 This chapter is published in the journal Bioinformatics (Bromley, Rysavy, Su, Toofanny,

et al., 2013). As joint First Authors, Dennis Bromley and I performed the majority of the research

in this chapter. My specific contributions presented here include the shared design of the DIVE

framework and components as specified in Chapter 2, much of the research and development

behind the Protein Dashboard, and the application of the DIVE framework for biophysical analysis

of the human Cu-Zn superoxide dismutase 1 (SOD1) mutations.

3.3 Introduction

The advent of massive networked computing resources has enabled virtually unlimited data

collection, storage and analysis from low-cost genome sequencing, high-precision molecular

dynamics simulations, and high-definition imaging data for radiology, to name just a few

examples. This explosion of ‘big data’ is changing traditional scientific methods; instead of relying

on experiments to output relatively small, targeted datasets, data mining techniques are being used

40

to analyze data stores with the intent of learning from the data patterns themselves. Unfortunately,

data analysis and integration in large data storage environments is challenging even for

experienced scientists. Furthermore, most existing domain-specific tools designed for complex,

heterogeneous datasets are not equipped to visually analyze big data.

DIVE is a software framework designed for exploring large, heterogeneous, high-

dimensional datasets using a visual analytics approach (Figure 3.1). Visual analytics is a big data

exploration methodology emphasizing the iterative process between human intuition,

computational analyses, and visualization. DIVE’s visual analytics approach integrates with

traditional methods, creating an environment that supports data exploration and discovery.

3.4 System and Implementation

DIVE provides a rich, ontologically expressive data representation and a flexible, modular

streaming-data architecture, or pipeline (Figure 3.2). It is accessible through an application

programming interface (API), command line interface or graphical user interface. Applications

built on the DIVE framework inherit features such as a serialization infrastructure, ubiquitous

scripting, integrated multithreading and parallelization, object-oriented data manipulation, and

multiple modules for data analysis and visualization. DIVE can also interoperate with existing

analysis tools to supplement its capabilities, such as the Visualization Toolkit (Schroeder et al.,

1996), Cytoscape (Shannon et al., 2003) and Bing maps (http://bing.com) by either exporting data

into known formats or by integrating with published software libraries. Furthermore, DIVE can

import compiled software libraries and automatically build native ontological data representations,

reducing the need to write DIVE-specific software. From a data perspective, DIVE supports the

joining of multiple heterogeneous data sources, creating an object-oriented database capable of

41

showing inter-domain relationships. And while DIVE currently focuses on bioinformatics, DIVE

itself is data-agnostic; data from any domain may enter the DIVE pipeline.

A core feature of DIVE’s framework is the flexible, graph-based data representation. DIVE

data are stored as nodes in a strongly-typed, ontological network defined by the data. These data

can be a simple set of numbers or a complex object hierarchy with inheritance and well-defined

relationships. Data flow through the system explicitly as a set of data points passed down the DIVE

pipeline or implicitly as information transferred and transformed through the data relationships

(Figure 3.3e). A thorough description of the novel technical contributions of DIVE is provided

elsewhere (Rysavy, Bromley, et al., 2014).

3.5 Results

The impetus for DIVE was data mining the Dynameomics dataset (van der Kamp et al.,

2010). Dynameomics is a large, data-intensive project that contains atomistic molecular dynamics

(MD) simulations of the native state and unfolding pathways of representatives of essentially all

protein folds (van der Kamp et al., 2010). These protein simulations and associated biophysical

analyses are stored in a mixed data warehouse (Simms & Daggett, 2012) and file system

environment distributed over multiple servers containing hundreds of terabytes of data and over

104 times as many structures as the Protein Data Bank (PDB) (Bernstein et al., 1977), representing

the largest collection of protein structures and protein simulations in the world.

 In the domain of structural biology, Dynameomics exemplifies the challenges of big data.

Here we present DIVE applications involving two proteins where specialized modules built on the

DIVE framework are used to accelerate biophysical analysis. The first protein is the transcription

factor p53, mutations in which are implicated in cancer. The second protein is human Cu-Zn

42

superoxide dismutase 1 (SOD1), mutations in which are associated with amyotrophic lateral

sclerosis (Rakhit and Chakrabartty, 2006).

The Y220C mutation of p53 is responsible for destabilizing the core domain (Joerger et al.,

2006), leading to approximately 75,000 new cancer cases annually (Boeckler et al., 2008). We

have used the DIVE framework to analyze the structural and functional effects of the Y220C

mutation through a module called ContactWalker (Bromley et al., 2013), which identifies amino

acids’ interatomic contacts disrupted significantly as a result of mutation. The contact pathways

between disrupted residues are identified using DIVE’s underlying graph-based data

representation.

Figure 3.4a shows the most disrupted contacts in the vicinity of the Y220C mutation.

Specific residues, contacts and simulations were identified for more focused analysis. Interesting

interatomic contact data are isolated and then specific MD time points and structures are selected

for further investigation. For example, see the contact data mapped onto a structure containing a

stabilizing ligand, which docks closely to many of the disrupted residues, suggesting a correlation

between the mutation-associated effects and the observed stabilizing effects of the ligand (Figure

3.4a).

As another example of the use of DIVE, we have over 300 simulations of 106 disease-

associated mutants of SOD1 (Schmidlin et al., 2009). Through extensive studies of A4V mutant

SOD1 simulations, Schmidlin et al. (2009) previously noted the instability of two β-strands in the

SOD1 Greek Key β-barrel structure. However, that analysis took several years to complete and

such manual interrogation of simulations does not scale to allow us to search for general features

linked to disease across hundreds of simulations. Using DIVE, we were able to further explore the

43

formation and persistence of the contacts and packing interactions in this region across multiple

simulations of mutant proteins. DIVE facilitates isolation of specific contacts, rapid plotting of

selected data, easy visualization of the relevant structures, and geographic locations of specific

mutations while providing intuitive navigation from one view to another (Figure 3.1 and Figure

3.4).

The top panel of Figure 3.4b maps secondary structure for different variants as an example

of DIVE’s charting tools. This chart is quickly generated, contains results for over 300 SOD1

mutant simulations, is customizable, and links to the protein structure property data (in this case

the change in the structure over time) with a single mouse click (Figure 3.4b). These data are in

turn linked to protein structure modules, allowing interactive visualization of over 60,000

structures from each of the 300 simulations, all streamed from the SQL data warehouse (Figure

3.4b). With DIVE, we simplified the transition between high-level protein views and atomic level

details, facilitating rapid analysis of large amounts of data. DIVE can also show the context of the

detailed results on other levels, such as worldwide disease incidence (Figure 3.1).

DIVE’s utility is not limited to protein simulations. To demonstrate its versatility, usability

and data-agnostic nature, we applied it to additional domains. Brief details of these applications

are provided in the Case Studies Section. One example shows an interaction with the Gene

Ontology (Ashburner at al., 2000) and another example explores professional baseball statistics.

3.6 Case Studies

3.6.1 Protein Dashboard

The protein dashboard (Figure 3.3) is a data exploration application that uses the DIVE

framework and Dynameomics Application Programming Interface (Rysavy et al., DIVE – A

44

Graph-Based Visual Analytics Framework for Big Data, 2013, submitted for publication) to

visually and interactively present the Dynameomics data. Through the DIVE object model, the

protein dashboard organizes these data and renders them in multiple, linked modules at once;

interaction with one module can update connected modules. For example, an ontological

relationship exists between interatomic contacts and protein residues: a contact connects two atoms

and therefore, through the protein dashboard’s structural hierarchy, two residues. In Figure 3.3,

the protein dashboard depicts a pair of aligned 3D protein structures and 2D contact map. Selecting

a contact in the contact map will highlight the associated residues and metadata in the 3D structure.

Furthermore, these structured data and relationships persist while streaming from the data

warehouse and they are also available to DIVE’s scripting engine. In this way, the protein

dashboard uses the DIVE framework to bring an additional level of navigable order to the

Dynameomics data warehouse. The protein dashboard and associated documentation are included

in the DIVE software download.

3.6.2 Gene Ontology

DIVE is a versatile framework that can be useful for a variety of scientific domains. We

created a DIVE pipeline to explore an area of bioinformatics not typically used for research in the

Daggett lab, specifically the Gene Ontology (GO) database (Ashburner et al., 2000). We wrote a

simple script to generate an interactive taxonomy of species contained in the GO database (Figure

3.5). A more complex example that selects sections of the taxonomy in order to chart groups of

interest is shown in Figure 3.6. This illustrates DIVE’s ability to operate in other areas of the

bioinformatics domain as well as shows DIVE’s support for ontologies. This pipeline took

approximately one hour to build by a person unfamiliar with the GO database.

45

3.6.3 Professional Baseball Statistics

To illustrate the domain-independence of DIVE, we analyzed approximately 200 years of

baseball statistics (http://seanlahman.com/). These data were contained in several comma-

separated value (CSV) files (Figure 3.7). Because DIVE is data-independent, we were able to load,

explore, chart, and interact with the baseball data using the same tools and techniques that were

used to explore protein structure data. In addition to the general-purpose analysis and visualization

plugins, we also used the general-purpose analysis functionality in the DIVE kernel to perform

edge-detection filtering on each player’s year-to-year earned-run-average (ERA). By sorting the

players on their average year-to-year ERA differences (left-to-right, Figure 3.8), we were able to

identify those pitchers with the most-consistent and least-consistent pitching histories.

Furthermore, by using DIVE to integrate free-form data sources such as web searching (Figure

3.9), data anomalies were easily explained. For example, Whitey Ford, one of the most consistent

baseball pitchers, missed the 1951 season due to military service.

3.7 Conclusions

Overall, DIVE provides an interactive data-exploration framework that expands upon

conventional analysis paradigms and self-contained tools. We provided analytic examples in the

protein simulation domain, but the DIVE framework is not limited to this field. DIVE can adapt

to existing data representations, consume non-DIVE software libraries, and import data from an

array of sources. As research becomes more data-driven and reliant on data mining and

visualization, big data visual analytics solutions should provide a new perspective for scientific

investigation.

46

Figure 3.1 Schematic of the data flow within DIVE.

Data enter DIVE from a variety of sources and are processed, analyzed and visualized by
specific DIVE modules. The user interacts with these modules, iteratively refining the
investigation as scientific insights develop. Analyses, visualizations, and data organization can
all be controlled by the user, and changes are saved for future work. Visualization and analysis
options include charting and graphing, specialized representations, clustering and filtering,
arbitrary script interactions, and domain-specific analyses such as interatomic contact
occupancy. The DIVE framework can be extended with custom functionality.

47

Figure 3.2 Conceptual representation of DIVE modules and visual analytic processes.

Each module has multiple pins that send output or receive input using data points, creating
individual data pipelines. Data points can be transformed with μScripting as they flow through
the pipelines. Three separate processes are portrayed: SOD1 analysis (green), p53 analysis
(purple), and the protein dashboard (orange). In the SOD1 analysis, data points flow to the SNP
comparer module for secondary structure assessment. Simulations of interest are then routed to
another module to display the trend of secondary structure over time. Data points for these same
simulations are then streamed directly from the data warehouse, aligned on Cα root-mean-square
deviation, and visually analyzed in a molecular viewer. In the p53 analysis, ContactWalker
reads data from the file system and calculates occupancy differences between the wild type and
mutant simulations. These data are then used to create a contact graph. This graph is searched
and contact pathways between significantly disrupted residues are identified. Additionally, the
occupancy data are mapped onto a protein structure and visualized. From here, further analysis
can involve analyzing specific contact distances or viewing the full trajectory in the Protein
Dashboard.

48

Figure 3.3 Screenshot of the Protein Dashboard.

(a) 3D molecular visualization module depicting two aligned structures of p53 with the mutated
residue highlighted in black. (b) Interactive residue-residue contact maps of the two p53
structures. The crossbar indicates a contact of the mutated residue. (c) μScript specifying the
explicit display of the atoms contained in the mutated residue. (d) Streaming module used to
access Dynameomics simulations. This figure depicts two separate simulations of p53
simultaneously streaming from the data warehouse. (e) Interactive view of the simulation
hierarchies and associated strongly typed fields and methods.

49

Figure 3.4 Interactive visualizations in DIVE.

(a) p53 analysis visualizations. Top, Contact-Walker summary of contact differences between
wild-type and Y220C simulations. The colored residues have contacts with a ≥ 50% occupancy
change. Middle, distances between P151 and L257, outlined in black in the map above. Bottom,
p53 with ligand (gold) (PDB code 4AGQ) in close proximity to disrupted colored residues. (b)
SOD1 analysis visualizations. Top, aggregated secondary structural data from mutant
simulations. Middle, plot of the Cα RMS deviation of the wild type and A4V mutant simulations.
Bottom, MD structures. (c) Protein dashboard application showing a viewer and interactive
contact map.

50

Figure 3.5 Screenshot of DIVE displaying the Gene Ontology database.

Two generic DIVE plugins were used to create this view. (a) Interactive view of the Gene
Ontology species taxonomy. (b) Script (written in C#) to create taxonomy from the Gene
Ontology species table.

51

Figure 3.6 Screenshot of DIVE showing the Gene Ontology species taxonomy.

This demonstration is included in the downloadable DIVE software package. (a) Chart showing
various types of carnivores. (b) Script to create histogram of carnivore subspecies from the
species taxonomy. (c) Interactive view of raw data included in the taxonomy. This specific table
was created by selecting the ‘Caniformia’ group in (a).

52

Figure 3.7 Reusable DIVE components used to analyze professional baseball statistics.

(a) Data loading requires one line per data file and one line to begin the load process. (b) Data
loading is automatically parallelized across local processors. (c) Example plugin pipeline used
for analyzing the professional baseball statistics.

53

Figure 3.8 Reusable DIVE charting plugins used for data exploration.

(a) Pie chart showing distribution of right-hand and left-hand pitchers. (b) Scatter plot of players’
height and weight. Outlier identifies Edward Carl Gaedel, a major league player with dwarfism
who played in 1951. (c) A more sophisticated DIVE chart illustrating relationships among career
timespan, pitching handedness, and earned run average (ERA) consistency.

54

Figure 3.9 Conceptual representation of DIVE interactions among various plugins.

This investigation used various data sources to identify a player’s absence due to military
service. (a) DIVE chart illustrating relationships among career timespan, pitching handedness,
and ERA consistency. (b) Close-up of chart shown in (a). DIVE supports interactive zooming
of chart data. (c) Bar chart linked to chart in (b) through DIVE pipeline. Double-clicking on
player data in (b) displays yearly ERA and launches a web search with the player’s name. (d)
Screenshot of web search automatically launched by DIVE.

55

Figure 3.10 DIVE using the Chimera plugin (Pettersen et al., 2004).

Chimera is one of the major protein visualizers in use today. DIVE is able to incorporate tools
like Chimera into a pipeline for scientific investigation.

56

Chapter 4

THE DYNAMEOMICS API: AN APPLICATION

PROGRAMMING INTERFACE FOR MOLECULAR

DYNAMICS SIMULATIONS

4.1 Summary

Data intensive scientific investigations often require the development of complex

structures and relationships to interpret the large volumes of scientific data. These structures and

relationships can be characterized in a variety of resources, including databases, standardized file

formats, and ontologies. Application programming interfaces (APIs) provide specifics of how

software components interact with these various resources as well as methods to operate on and

manage these data. However, a significant development effort is required to design an efficient

and useable API. Development of an API for protein simulation data presents a variety of

challenges, including modeling multi-dimensional simulations and experimental data from

multiple sources, addressing problems inherent in large data projects, and developing methods

appropriate for researchers. Here we present the Dynameomics API, a software library developed

to interface with the Dynameomics data warehouse and the Protein Data Bank, and to provide a

variety of methods to access large volumes of protein related data.

4.2 Introduction

Many scientific disciplines are generating exceptional amounts of data due to advances in

computer storage, increased processing power, and the greater availability of supercomputing

resources. These vastly enlarged volumes of data bring a multitude of informatics challenges,

57

including data organization, accessibility, management, mining and analysis. Unfortunately, no

one solution generally addresses all of these issues; it is often necessary to approach these

challenges with a number of techniques and tools.

Databases, in many cases, offer an excellent mechanism to deal with the complexity of the

data organization and management. For example, molecular dynamic (MD) simulation data have

been organized into a data warehouse using a dimensional model for the Dynameomics project

(van der Kamp et al., 2010). This data warehouse contains well-defined schemas representing

protein simulations that define semantic structures, provide constraints to reduce the occurrences

of erroneous data, and enforce policies to ensure new data is correctly inserted (Simms & Daggett,

2012; Simms et al., 2008). However, issues of data mining and analysis are still challenging,

especially for non-expert scientists. Additionally, it can be difficult to undertake research

endeavors that require multiple data sources, such as a data warehouse and a web service.

Application programming interfaces (APIs) can facilitate data mining and analysis and

further address some of the informatics issues inherent in data intensive scientific investigations.

An API can be comprised of standards, documentation or software libraries, either individually or

in combination with one another. In all cases, these APIs programmatically specify how software

components interact with one another. Specifically in the context of data-intensive scientific

research, APIs can provide mechanisms to efficiently interact with these data resources as well as

provide methods to operate on these data.

We have developed an API, called the Dynameomics API, to enable scientific research on

protein data contained in the Dynameomics data warehouse (DDW) and Protein Data Bank (PDB)

(Frances C. Bernstein et al., 1977). The Dynameomics API contains an object-oriented (OO)

58

hierarchy that maps to specific facts (metrics or facts about the entities) and dimensions (discrete

values used for classification of facts) of both the DDW and PDB. Protein-related methods are

also contained in the core software library of the Dynameomics API to handle many aspects of

protein-related research. Additionally, the API is designed for reading, writing, and updating the

information whereas the DDW is generally for read-only access.

The Dynameomics API is central to several novel data access and analysis methods

described in detail in Chapters 2, 5, and 6, covering simulation streaming, object parsing, protein

fragments and rotamers. Additional research efforts that benefit from the Dynameomics API are

outlined in Chapter 7. The following sections describe the Dynameomics API object hierarchy,

methods and implementation. Supplemental technical information to the topics in Chapters 2 and

6, specifically simulation streaming and rotamer analysis, are also provided in detail here.

4.3 An Object Oriented Design for MD Simulations and Experimental Structures

OO software is intended to characterize concepts using data fields to represent properties

or attributes, methods to represent procedures, and inheritance and membership to represent

relationships. In the case of MD, we use OO design to model molecular simulations and their

associated analyses. Here we describe the major components of the Dynameomics API OO design

and implementation, including the molecular structure representation, integration of the Molecular

Mechanics Parameter markup Language (MMPL), data input and output, repository navigation,

structural repositories, and data streaming optimizations.

 The Dynameomics API contains an OO model and methods for representing and

interacting with protein data. The model defines a unified semantic context for interpreting,

analyzing, and modifying protein simulations and structures from either Dynameomics or the

59

PDB. The object hierarchy is generalized to represent both the simulation and structure

dimensions and facts from the DDW and the experimental model and structure dimensions and

facts from the PDB (Figure 4.1). This generalization uses a frame dimension to represent both the

simulation dimension and experimental model dimension. We are able to make this generalization

because both the simulation and experimental model dimensions represent a collection of instances

of structures. Similarly, fragments, described in detail in Chapter 5, conform to this generalization

via abstract interfaces with the frame dimension representing a collection of fragment search

results.

4.3.1 Molecular Structure Representation

Figure 4.1 depicts the OO model the Dynameomics API uses to represent molecular

simulations and structures. The OO elements portrayed in the figure have been simplified for

presentation here, but convey the necessary overview of the interfaces and classes in the actual

codebase. There are three distinct top-level branches to the hierarchy highlighted by the dotted

line: Dynameomics, PDB, and fragments. The light grey boxes represent interfaces, which define

the common properties and methods of the distinct classes at that level of the hierarchy. Classes

defining specific object implementations for each hierarchy are shown in green. Memberships are

depicted by the arrows with the associated text showing cardinality of the relationship.

An IFrame is an OO interface that defines properties and methods that are shared between

the simulation dimension, experimental model dimension, and fragment search dimension, such

as the number of frames, the starting frame, and functions to navigate to specific frames within the

dimension. This interface is implemented by a Simulation class for Dynameomics simulations, a

PDBModel class for PDB records, and a FragmentSearch class for the fragment results. These

60

classes contain simulation, PDB model, or fragment specific properties and methods, such as the

simulation ID or time step resolution for a simulation, a model to frame mapping for a PDB record,

or the fragment search result ordering.

Similarly, an IStructure is an interface that defines general properties and methods common

between Dynameomics and PDB structures. This interface defines properties such as the number

of residues within a structure and the chain identifier. Common methods between the different

types of structures include enumerating the member residues or adding individual atoms. The

IStructure interface is implemented through separate classes for the Dynameomics and PDB

structures, with the Dynameomics or PDB specific properties and methods defined in the classes

themselves. Individual fragments are not considered complete protein structures, so they are not

represented at this level of the hierarchy.

The next level of the hierarchy is defined by the IPeptide interface. Both Dynameomics

and the PDB use the same class to implement the IPeptide interface and all levels of the hierarchy

below the peptide interface. For Dynameomics and PDB structures, there is no significant

distinction between the IPeptide and IStructure interfaces. On the other hand, the fragment

hierarchy contains a unique class implementing the IPeptide interface which models short peptide

structures for predictions and protein model building. Fragments are defined as small sections of

structures and therefore are conceptually significantly different objects. A Structure can contain

many Fragments, which is shown through the relationship between the Fragments class and

IStructure interface.

The remaining interfaces and classes contain the same property and method definitions for

each of the Dynameomics, PDB and fragment hierarchies. These represent the fundamental

61

components of a protein structure, including the amino acid (residue), atoms and contacts.

Residues, which usually correspond to amino acids but can represent other small molecules,

contain a specific collection of atoms. A sample Unified Modeling Language (UML) diagram of

the Residue and Rotamer classes is provided in Figure 4.2. Atoms are the smallest object analyzed

in both Dynameomics and the PDB and each contains a Coordinate object, from which most

analyses are calculated. We provide an IVector interface to the Coordinate object to simplify

mathematical operations, which are common when dealing with protein structures. Finally, the

Contact object represents an atomic contact between a pair of atoms.

Although the implementations of these remaining classes are the same for all hierarchies,

the available data for the instantiated objects may differ between the data sources. Therefore, the

way in which the information is populated into the instantiated objects may differ. For example,

a Residue property specifies the φ and ψ angles of the peptide’s backbone structure. The DDW

stores these pre-calculated values in a relational table, so these properties are populated from the

database for a Dynameomics residue. A PDB record does not contain pre-calculated φ and ψ

angles, so these properties are calculated at runtime by Dynameomics API methods.

Interfaces are a powerful tool in this hierarchy because it allows objects in the different

hierarchies to be used in the same way. Code can be written for a general structure interface, and

work for both Dynameomics structures and PDB structures. Cross-hierarchy comparisons are also

much more easily implemented, which is essential for analyzing data from multiple data sources.

4.3.2 MMPL Integration

MMPL is a markup language for describing molecular structure. The components for

generating MMPL code are integrated into the DDW and used by our in-house simulation

62

software, ilmm (Beck, Alonso, & Daggett, 2000). The Dynameomics API is designed to also use

MMPL in conjunction with a spatial hashing function (Toofanny, Simms, Beck, & Daggett, 2011)

to automatically generate the connectivity of protein structures. Using the shared object hierarchy

described above and custom MS SQL stored procedures, the Dynameomics API is able to use

MMPL for structures sourced from either the DDW or from the PDB. Fragments can also

implement the MMPL functionality due to the shared peptide interface.

4.3.3 Data Input, Output and Persistence

As previously stated, the Dynameomics API is designed to read, write and transform data

stored within its instantiated objects. Several parsers are integrated into the Dynameomics API to

facilitate the population of the object hierarchies by reading data from either Dynameomics

databases, the PDB online repository, or fragment libraries. These parser rules are based on both

the syntax and semantics of the source data to appropriately populate the object hierarchies in the

Dynameomics API. The parsers handle an array of source formats, including SQL databases, web

services, and flat files.

 Unlike the DDW and the PDB repository, data stored in the Dynameomics API is not

inherently persistent. Objects are instantiated at runtime from the class definitions described

above, but data in these objects do not remain in memory after the program is terminated. In order

to persistently store object data, the Dynameomics API contains functionality to write to the

standardized PDB file format (F. C Bernstein et al., 1977). This format is capable of recording

much of the object state information and the majority of the semantic structure from each of the

hierarchies.

63

The type of data in each of the instantiated objects will often differ from instance to instance

due to the shared interfaces between the contrasting protein hierarchies. To address this issue, the

PDB writer methods support customizable outputs at runtime with delegate. A delegate is a

reference to a method encapsulated inside an object, which can be passed through a reference,

much like a function pointer in C++. This allows the user to programmatically specify what data

is written into the PDB file output. Figure 4.3 shows sample code for the peptide’s PDB writer

method and associated call to write only heavy atoms (N, O, C, Cα), sorted by atom number.

The Dynameomics API contains specialized output methods specifically designed to work

with the DDW. These output methods include writing directly to structural repositories, as

described below, or generating customized analysis data, such as the results for topics presented

in Chapter 7.

4.3.4 Repository Navigation

The Dynameomics API contains libraries to navigate the DDW, the PDB online repository,

the fragment repositories, and the rotamer repositories. The Dynameomics navigation library

provides a number of search functions to identify the location of simulation data, simulation

metadata, and associated properties. Simulations can be retrieved individually or in groups using

simulation identifiers, PDB codes, structure identifiers, or keyword searches. Fragments and

rotamers are retrieved using their respective identification systems, described below. The PDB

navigation library searches the PDB repository with standardized PDB codes only.

Both of the navigation libraries expose the necessary metadata to initialize protein object

hierarchies. The Dynameomics navigation library directs the Dynameomics API parsers to the

correct SQL server and database locations within the DDW. This is automated for simulations,

64

simulation properties, fragments and rotamers alike. The PDB navigation library directs the

Dynameomics API either to a local copy of the repository to minimize internet traffic, or to the

online PDB web service if necessary.

4.3.5 Backing Stores

Backing stores are a novel concept implemented in the Dynameomics API that replace the

conventional location of object data with an in-memory database. Although the implementation

adds a layer of complexity to certain objects within the Dynameomics API, it enables several useful

technologies. First, it allows SQL-like queries to operate across objects which simplifies some

commonly used protein analysis techniques. Second, it is fundamental to Pass-through SQL,

which we describe in detail in Chapter 5. Here we provide a brief overview of the backing store

implementation.

A backing store is a collection of tables that stores instance data for a set of related objects.

Each table contains instance data for a homogeneous set of objects, and the table relations are

defined by the object relations. The table structure, including unique row identifiers and column

definitions, are specified for an object within that object’s class definition at compile time. A row

of data within a table maps to a single instance of an object. Data in the tables can be accessed for

individual objects via conventional OO properties such as accessors, or for many objects

simultaneously by querying the table data directly.

Technically the use of a backing store redirects the object property’s pointer from a variable

stored directly in memory to a specific cell within a backing store table. This cell is identified by

a unique column (the property name), row (the object instance identifier), table (the object type),

65

and store (the backing store identifier for the collection of objects). Sample code for the pointer

redirection of the X coordinate on an atom object is provided in Figure 4.4.

4.4 Analysis Libraries

The Dynameomics API supports a number of methods to analyze and transform protein

structures. These include a math library, root mean square deviation (RMSD) library, φ-ψ library,

secondary structure library, steric library, and sequence library. The math library handles the

majority of geometric transformations and angle calculations. The RMSD is a specialized library

to deal with protein structure alignment and makes heavy use of delegates for flexible method

calls, much like the PDB writing method shown in Figure 4.3. The φ-ψ library contains methods

to handle backbone angle analysis, while the secondary structure library translates between

different secondary structure definitions such as DSSP (Wolfgang Kabsch & Sander, 1983) and φ-

ψ. Finally, the sequence library provides methods to compare and score structural sequences using

BLOSUM (Henikoff & Henikoff, 1992) and PAM (Dayhoff & Schwartz, 1978; Schwartz &

Dayhoff, 1978) matrices. The math, RMSD and steric libraries make heavy use of the vector

interface of atoms to perform functions like geometric transformations and angle calculations.

4.5 Structural Libraries

The Dynameomics API generates and interfaces with two collections of structural

repositories that are integrated into the DDW: the fragment libraries (Chapter 5) and the rotamer

libraries (Chapter 6). Since fragment and rotamer libraries can be generated for different sets of

protein structures, a repository is defined as a collection of these individual libraries. For each of

these repository types, the Dynameomics API contains methods to automatically generate database

66

schemas, populate the repositories using the API object hierarchies, search the resulting

repositories, and incorporate the final data into other protein instances.

The schema for both repository types is automatically generated by the Dynameomics API.

In the case of a fragment library, the schema is customized based on the protein structure data

source, the range of fragment lengths in residues, and the server that will ultimately store the data.

All table definitions, relationships, constraints, indexes, stored procedures and functions are

generated and installed to a SQL server instance through a series of API calls.

SQL stored procedures and functions control the population of the data into the individual

libraries, any necessary updates, and all search and retrieval operations. Access to these methods

are available programmatically through the Dynameomics API and a subset is also exposed

through Microsoft SQL server and web services. Using the Dynameomics navigation library

previously mentioned, the Dynameomics API automatically distributes the operations across the

servers within the DDW. Software engineering details of the rotamer library generation are

provided below.

4.5.1 Rotamer Libraries

Rotamer libraries are generated by collecting statistics of similar side-chain structures.

These rotamers are divided into bins based on their dihedral angle measurements. Each dihedral

angle is dependent on the previous angle, so the bins are nested within one another. Each

additional bin causes a combinatorial increase in the number of bins necessary to complete the

calculation. Due to the large number of rotamers in Dynameomics, this calculation can become

very memory intensive. Previous efforts have produced backbone-independent rotamer libraries

(Scouras & Daggett, 2011) but, due to the combinatorial increase in dihedral bins required for

67

backbone-dependent libraries, memory limitations caused the generation of backbone-dependent

rotamer libraries to fail. The Dynameomics API implements new methods to support the

generation of backbone-dependent rotamer libraries.

To overcome memory allocation issues previously experienced, we implemented a nested,

sparse hashing function to store the metrics for each rotamer bin as needed. Each dihedral bin

implements a hashed data structure instead of a pre-allocated array, meaning it is necessary to only

allocate memory for bins with data. This data structure is accessible in constant time and, when

fully populated, requires marginally more allocated memory than a conventional multi-

dimensional array. However, due to the sparse nature of the rotamer library, the nested hash

structure uses significantly less overall memory.

 As mentioned above, rotamer library generation is distributed across the DDW but

collection of the side-chain metrics is still a lengthy and server-intensive process. A standard

deviation value is necessary for each rotamer calculation, but conventional standard deviation

calculations require two passes over the data. In order to avoid collecting the side-chain metrics

twice, we used an alternative standard deviation calculation described below.

 The summary statistics consist of the average angle, the standard variance, the total count

for each χ bin, and the probability of rotamer occurrence. A directional statistics approach (Gaile

& Burt, 1980) was needed to properly assess angles by accumulating the sin and cos averages

independently using the Equations 4.1, 4.2 and 4.3,

 4.1

68

 4.2

4.3

where xi is the rotamer sample and N is the number of samples. All angle metrics were converted

to the range (0°, 360°] to properly use the equations. The standard deviation was calculated using

Equations 4.4 and 4.5:

 4.4

 4.5

where R is the resultant vector and V is the standard deviation (Gaile & Burt, 1980). Due to the

large number of samples, 64-bit primitives were used for calculations in conjunction with iterative

equation updates to minimize floating point errors.

4.6 Implementation Details

The Dynameomics API is intended to be used in a variety of programmatic interfaces. The

assembly can be used in conjunction with command line interfaces, graphical user interfaces,

standalone processes, and web services. In order to work closely with the DDW, the software was

developed on the Windows Platform (Microsoft Corporation, 2007c) using the Microsoft .NET

framework (Microsoft Corporation, 2007a) using mostly the C# and SQL programming languages.

A major benefit of this platform is that the Dynameomics API can be deployed directly to

Microsoft SQL server instances (Microsoft Corporation, 2007b) for improved computational

69

performance at the point of data using Microsoft Common Language Runtime (CLR), reducing

the necessity for data transfer over a network and exploiting the more powerful server hardware.

Beyond the tight integration with the DDW, the use of the Microsoft .NET platform also allows

the compiled Dynameomics API assembly to be used with a variety of additional languages

(Gough & Gough, 2001).

4.7 Conclusions

We have presented details of how MD simulations and experimental structures are modeled

within the Dynameomics API. The API’s methods operate seamlessly on both the DDW and the

PDB, and its functionality extends to many types of analyses and applications. One example of

this extension is the integration of the Dynameomics API into our Data Intensive Visualization

Engine (DIVE), described in detail in Chapters 2 and 3. More generalized extensions of the

Dynameomics API are presented in Chapter 7.

70

Figure 4.1 Visual description of the Dynameomics API’s object hierarchies.

This graphic summarizes the object hierarchies within the Dynameomics API for modeling
Dynameomics, PDB and Fragment protein simulations, records, and peptides. Interfaces are
shown in light grey and classes (including abstract classes) are shown in green. The hierarchies
are outlined with the dotted lines, which merge near the bottom as the hierarchies converge.
Membership relationships and cardinalities are shown with arrows. This view represents a
simplified version of the Dynameomics API to improve clarity.

71

Figure 4.2 UML diagram of residue and rotamer classes and abstract classes.

The UML diagram shows the fields, properties, methods and constructor definitions for each of
the classes. The ResidueBase class is an abstract class that contains definitions shared between
the Rotamer and Residue classes. The StorableBase class is an abstract class providing backing
store functionality.

72

Figure 4.3 Sample code for PDB writer method call and delegate.

This is sample code for writing a peptide structure to a PDB file format using the Dynameomics
API methods and delegates. The delegate here specifies that only backbone atoms (N, O, C,
Cα) be included in the PDB output.

73

Figure 4.4 Sample code for backing store implementation.

This figure shows the methods necessary to add a backing store reference to the X coordinate of
the atom class. Most of the functional code for the backing store is located inside the try blocks
for both the set and get methods. The remaining code is predominantly for error handling.

74

Chapter 5

DYNAMEOMICS: DATA-DRIVEN METHODS AND MODELS

FOR UTILIZING LARGE-SCALE PROTEIN STRUCTURE

REPOSITORIES FOR IMPROVING FRAGMENT-BASED

LOOP PREDICTION

5.1 Summary

Protein function is intimately linked to protein structure and dynamics yet experimental

methods currently cannot determine structures for all proteins and often omit certain regions within

a protein due to indeterminate data. Detailed experimental characterization of protein dynamics is

even more challenging. We propose that atomistic molecular dynamics simulations provide a

diverse sampling of biologically relevant structures that can improve structural modeling and

structure prediction. Here we make use of the Dynameomics data warehouse containing

simulations of representatives of essentially all known protein folds. We developed novel

computational methods to efficiently identify, rank and retrieve small peptide structures, or

fragments. We also created a novel data model to analyze and compare large repositories of

structural data, such as contained within the Protein Data Bank and the Dynameomics data

warehouse. Our evaluation compares these structural repositories for improving loop predictions

and analyzes the utility of our methods and models. We find that the inclusion of Dynameomics

structures in fragment-based methods improves the quality of loop predictions without being

dependent on sequence homology. We provide cases where Dynameomics fragments provide

better predictions for NMR loop structures than fragments from crystal structures. Online access

to these fragment libraries is available at http://www.dynameomics.org.

75

5.2 Introduction

Proteins play a critical role in nearly every cellular process. Protein structure and dynamics

are critical to biological function. Loops constructing secondary structure segments are frequently

essential to mediating biological function by forming the active sites and epitope binding sites of

proteins. Specifically, the conformation and dynamics of loops are crucial in molecular

recognition, protein-protein interaction, and ligand binding mechanisms (Fetrow, 1995;

Leszczynski & Rose, 1986; Wu & Dean, 1996).

The intrinsic flexibility and mobility of loops makes these structures difficult to determine

experimentally because they often adopt a multitude of conformations. Crystal structures

commonly omit loop regions and, even though these structures are considered the gold standard

(Spronk, Nabuurs, Krieger, Vriend, & Vuister, 2004). they can contain indeterminate experimental

data (Eicken et al., 2002) and artifacts introduced from the crystallization process (Wagner et al.,

1992). NMR spectroscopy can provide structural ensembles of loops in some cases, but this is

generally only performed on smaller protein targets due to the method’s size limitations.

Additional structural information is needed to accurately model loops as they exist in their natural,

solvated environments.

We propose that atomistic molecular dynamics (MD) simulations provide a diverse

sampling of biologically relevant protein structures that can improve the quality of structural

modeling in general and loop predictions in particular. To this end, we have developed novel

computational methods to efficiently identify, rank and retrieve peptide fragments from structural

databases using internal coordinates (IC). We also created novel data models to analyze and

compare large repositories of structural data, namely the Protein Data Bank (PDB) (Berman et al.,

2000) and the Dynameomics data warehouse (van der Kamp et al., 2010). Our evaluation analyzes

76

and compares these structural repositories, identifies our contributions to improving loop

predictions, and shows the utility of our methods and models.

Computational methods are an established mechanism for supplementing missing or poorly

modeled loop regions in experimental data. In particular, database-driven methods are commonly

used to predict loop regions in proteins using small peptide backbones, or fragments (Verschueren

et al., 2011). These methods, considered fragment-based methods, produce excellent results

(Baeten et al., 2008; Choi & Deane, 2010; Vanhee et al., 2011) but are often dependent on sequence

homology, which underperforms when similar sequences are not available, or cluster

representatives, which potentially eliminates specific loop conformations. Furthermore, most

methods rely on relevant related structures being present in the PDB. However, PDB structures

may be biased due to experimental methods (Jacobson, Friesner, Xiang, & Honig, 2002;

Søndergaard, Garrett, Carstensen, Pollastri, & Nielsen, 2009) or be missing fragment

conformations altogether. Fragment-based methods that use sequence similarity to bolster their

performance also depend on matching sequences in the PDB, but matches are unlikely for longer

loop regions. Many of these methods operate on relatively small repositories of structural data,

such as subsets of the PDB, artificially limiting conformational diversity.

MD simulations can provide a plethora of structures to supplement information collected

from the PDB (Beauchamp, Lin, Das, & Pande, 2012; Cino, Choy, & Karttunen, 2012). Structure

variability in MD arises from dynamic motion instead of sequence variability. The Dynameomics

project (Beck et al., 2008) in particular is well suited to structure prediction as it is a repository of

MD simulations that includes representative structures from nearly all known protein fold families

(Day et al., 2003; Schaeffer et al., 2011) and contains 104 times as many protein structures than

77

the entire PDB. Current fragment-based methods are unable to scale to this amount of data, nor

are they able to access the diverse metadata in the Dynameomics data warehouse.

Our findings show that Dynameomics fragments improve conventional loop predictions

that use fragments from crystal structures without being dependent on sequence homology. While

Dynameomics fragments provide similar predictions of crystal loop targets as crystal fragments,

overall predictions are improved when both types of fragments are employed in a consensus set.

We also show that Dynameomics fragments can provide better predictions for dynamic, solvated

loop structures.

Here we present a variety of results demonstrating how the Dynameomics fragments

supplement the structural coverage of the PDB fragments. We highlight where there are

improvements in predicting loop structures using the Dynameomics fragments and present several

instances where Dynameomics fragments provide better loop predictions than fragments sourced

from crystal structures. In the Methods Section, we present the general architecture of our

fragment data model, called a library, and describe the associated search method to operate on

large protein structure repositories. This search method integrates into the distributed data

warehouse architecture of the Dynameomics project (Simms et al., 2008; van der Kamp et al.,

2010) to efficiently retrieve relevant fragment structures and is central to our data model. We also

elucidate a computationally efficient method to compare the structural coverage of the individual

fragment libraries. Online access to these fragment data and models is available at

http://www.dynameomics.org.

78

5.3 Results

We assessed the utility of the Dynameomics fragment libraries in providing structures for

improved loop prediction directly from the Dynameomics data warehouse by evaluating numerous

fragment libraries generated using our methods and data models. These libraries are labeled and

described in Table 5.1. First, we provide a comparison of the structural coverage of each of the

fragment libraries. Second, we show how a consensus between PDB and Dynameomics fragment

libraries can inform prediction algorithms to improve the overall results for crystal structure

predictions. Finally, we present examples where fragments from the Dynameomics library better

predict loops in NMR structures than fragments from the PDB library.

 Our results are based on an internal coordinate (IC) method we developed for efficiently

searching, ranking and comparing fragment structures. When comparing fragment structures

against one another or a gap, the peptides were aligned using only the end, or anchor, residues of

the fragment or gap. Detailed information on all aspects of these methods and evaluations are

provided in the Methods Section.

5.3.1 Comparison of Fragment Libraries

The Dynameomics project contains native MD simulations of 807 fold representatives

which, as determined during the development of our consensus domain dictionary,(Schaeffer et

al., 2011) represent 95% of all known autonomous protein folds. In addition, we have multiple

thermal unfolding simulations for each of the 807 proteins. By capturing the dynamics of these

proteins using simulations, fragments generated from the relatively small number of 807 proteins

can represent nearly all fragment structures in the PDB. To confirm, we first compared the library

of Dynameomics starting structures (DYNstart, which is comprised of 576 crystal structures and

79

231 NMR structures) to the library generated from a broad subset of crystal structures in the PDB

(PDBxtal), detailed in Table 5.1. We represented each of the fragment libraries as a histogram and

calculated statistics for the intersections and unions of the overlapping histograms as described in

the Methods Section.

 The fragments generated from the 807 static starting structures cover a small portion of the

overall fragment conformational space of the 23,144 proteins in the PDBxtal fragment library

(Figure 5.1). Aside from very short peptides comprised of a few residues, the DYNstart set captured

little of the structural diversity of fragments in the PDBxtal library. The DYN298 set contains the

structures for the 807 proteins simulated over time at 298K. The coverage of the DYN298 fragment

library was much more comprehensive due to the incorporation of native state dynamics. As

shown in Figure 5.1, the coverage for the DYN298 and PDBxtal libraries was very similar. This

confirms that the simulations of Dynameomics domain representatives provided excellent

coverage of PDB structures despite using only 1/30th of the number of unique experimental

structures.

 The next analysis we performed was to compare fragment structural coverage between the

PDBxtal, PDBnmr, and DYNall fragment libraries. The DYNall library contains the DYN298 set as

well as structures from high temperature (498K) unfolding simulations of the 807 proteins, referred

to as the DYN498 set. As shown in Figure 5.2, most of the conformational space was shared

between the three libraries for all residue lengths. The majority was comprised of the unique

DYNall conformations and conformations shared between the PDBnmr and the DYNall fragment

libraries. On average, 12.8% of the known conformational space was represented only in the

80

DYNall and PDBnmr fragment libraries, meaning these experimentally derived conformations are

modeled by Dynameomics but are not contained within the crystal structures in the PDB.

5.3.2 Evaluation of MD Fragments for Improving Prediction

To compare the quality of loop structure predictions between different fragment sources,

we made structure predictions using each of the PDBxtal, DYN298 and DYN498 libraries. Predictions

were scored by heavy-atom (N, O, C, Cα) RMSD and all predictions using homologous structures

were removed using a sequence similarity metric, as described in the Methods Section. We used

a standard loop test set provided by Choi and Deane that consists of 510 target loop regions.(Choi

& Deane, 2010) These loop regions are located between two secondary structure regions and

range in length from 4 to 20 residues. There are 30 sample loops for each loop length. Table 5.2

shows the average heavy-atom RMSD and standard deviation of the best predictions for each loop

length. The best prediction is the fragment with the lowest heavy-atom RMSD in the search result

set generated for each target.

We performed this test individually on the PDBxtal, DYN298, and DYN498 fragment

libraries, as well as a consensus test between all three fragment libraries. The PDBxtal fragment

library on average had the lowest RMSD scores for the best prediction metrics. However, this

average was not representative of each individual predicted loop structure. A substantial number

of the 510 loop structures were best predicted with one of the two Dynameomics-based fragment

libraries. Figure 5.3 shows how many of the 30 best-performing predictions originated from each

repository. Over the entire set of 510 loop structures, 47% originated from Dynameomics

fragment libraries and 53% originated from the PDBxtal fragment library. The average

improvement in RMSD from the Dynameomics fragment libraries is listed in the bottom-right of

81

Figure 5.3. Loops with a length of 20 residues had the highest proportion of best predictions

originating from Dynameomics, with 73% originating from Dynameomics fragment libraries

(27% from DYN298 and 47% from DYN498) and 27% originating from the PDBxtal fragment library.

Predictions for 20 residue loops had an average improved RMSD of 2.53Å over their counterparts

originating from the PDBxtal library.

Searching across all three repositories simultaneously results in a consensus set. The

PDBxtal, DYN298, and DYN498 repositories first provide a result set for each target loop using the

IC method, then these result sets are combined to provide a best overall prediction. The average

heavy-atom RMSD and standard deviation is shown in the last two columns of Table 5.2. Due to

the contributions of the DYN298, and DYN498 libraries, the consensus set outperforms all other

libraries for every loop length. This improvement is quantified in Figure 5.3.

5.3.3 Case Studies of Improved Prediction

 To investigate the quality of our prediction methods for solvated structures, we identified

loops in NMR ensembles with a large number of experimental Nuclear Overhauser Effect (NOE)

crosspeaks so we could quantitatively evaluate our predictions. Here we present several instances

of NMR loop structures that were best modeled by fragments in the DYN298 fragment library. Two

of these loop structures and associated predictions are shown in Figure 5.4. The NMR structure is

in grey, the fragment sourced from the PDBxtal library is in red, and the fragment sourced from the

DYN298 library is in blue. A loop structure of 12 residues is shown in Figure 5.4a. Here the PDBxtal

fragment had an RMSD of 3.4 Å and NOE fulfillment of 61% while the DYN298 fragment had an

RMSD of 1.9 Å and NOE fulfillment of 79%. Similarly, in Figure 5.4b depicting a loop structure

of 15 residues, the PDBxtal fragment had an RMSD of 4.5 Å and NOE fulfillment of 66% while

82

the DYN298 fragment had an RMSD of 1.3 Å and NOE fulfillment of 91%. The DYN298 predicted

fragment fulfils the same percentage of NOEs as the NMR derived structure. Notably, for NOEs

that were not satisfied, the PDBxtal structures have much larger average violations. In both cases,

the DYN298 prediction outperforms the PDBxtal prediction in both heavy-atom RMSD and NOE

satisfaction.

5.4 Discussion

We have evaluated the utility of Dynameomics structural fragments in predicting loop

regions of proteins. Our primary goal was to develop methods and data models to efficiently

access and analyze the large numbers of fragments in both the MD and experimental structure

repositories. We desired to identify the underlying differences in fragment conformations between

the Dynameomics and PDB repositories and in what contexts the Dynameomics fragments are

applicable to loop prediction.

From Figure 5.1 it follows that the collection of native state Dynameomics structures

contain fragments with conformational coverage similar to that of the crystal derived fragments

from the PDB. It is important to note that the fragments generated only from the Dynameomics

starting structures have extremely poor coverage as compared to the PDBxtal fragment library.

Although these structures are representative of most of the known protein folds, it is only through

MD that the resulting fragments exhibit a wide range of relevant conformations. Since the

sequence variability in Dynameomics fragments is low relative to the PDBxtal fragments, sequence

similarity is not needed in order to make accurate structure predictions with Dynameomics

fragments.

83

We established that Dynameomics contains fragment conformations that are also found in

solvated NMR structures, but are not commonly identified through X-ray crystallography methods.

This is apparent from the overlapping PDBnmr and DYNall regions colored in magenta on Figure

5.2, representing multidimensional histogram bin overlaps as described in the Methods Section.

After investigating the locality of these regions in conformational space, we found that they occur

in the outer layers and extended tail of the multidimensional histograms. These bins may contain

more transient and flexible conformations, which is characteristic of solvated loops. This implies

that Dynameomics structures capture flexible conformations, which are observed in NMR

structures, that X-ray crystallography methods cannot currently capture.

Predictions from the consensus set of PDBxtal and Dynameomics fragment libraries are

better than predictions from either individual library, as shown in Figure 5.3 and Table 5.2.

Dynameomics fragments can therefore provide additional structure information for fragment-

based methods and improve loop structure predictions. One interesting observation is that all

results have overall high standard deviations. This is due to the spread between good predictions

and bad predictions; predictions are either extremely similar to the actual loop or fall into a broad

distribution of high-scoring predictions, causing the high deviation from the average RMSD.

Finally, we show that Dynameomics outperforms predictions from the PDBxtal for both

NMR structures in Figure 5.4. The DYN298 predictions deliver lower RMSD scores and higher

NOE satisfaction rates as compared to the PDBxtal predictions. Furthermore, the average violation

for unsatisfied NOEs is much higher for the PDBxtal predictions.

The methods and data models we developed, detailed in the Methods Section, work for

either MD or experimental structure repositories. There are several advantages to these methods

84

and models that make them advantageous for big data architectures. First, internal coordinates,

unlike Cartesian coordinates, do not require alignment calculations as they are already intrinsically

aligned. The necessary computational power for large-scale comparisons is therefore vastly

reduced. Second, internal coordinates naturally work with Structured Query Language (SQL)

filters to obtain small, relevant result sets quickly and efficiently instead of performing the all-by-

all matrix used in conventional methods. Third, the data model does not require explicit storage

of Cartesian coordinates, but only the pre-calculated distances between atoms required for the

internal coordinate method. This lends itself well to distributed architectures such as

Dynameomics and is easily applied to repositories such as the PDB. Due to the flexibility of these

approaches, fragment libraries can be created from any structure repository and searches can be

run on one or many of the libraries simultaneously.

 It is noteworthy that the Dynameomics fragment library is explicitly linked to the

Dynameomics data warehouse. As such, a variety of analyses described in detail by van Der Kamp

et al (van der Kamp et al., 2010) are also easily accessible. Of particular interest may be the

solvent accessible surface area analysis, which provides additional context-specific information

for generation of protein surface loop ensembles (Shehu & Kavraki, 2012). Flexibility analysis

(Benson & Daggett, 2008) may prove beneficial for predicting highly flexible protein structures

such as intrinsically disordered regions. Side-chain conformations for fragment backbones can be

predicted using the linked Dynameomics rotamer libraries (Rysavy, Towse, et al., 2014; Scouras

& Daggett, 2011). Furthermore, additional high-resolution dynamic structures in the

Dynameomics data warehouse are readily accessible to the fragment data model, providing an

expedient method for fine-tuning of fragment structures.

85

5.5 Methods and Materials

5.5.1 Protein Structure Collections and Fragment Libraries

We created six libraries of fragment structures for analysis. These libraries originated from

two distinct sources of protein structures: experimentally derived structures and molecular

dynamics (MD) derived structures. Two of the libraries were generated from the largest repository

of experimentally derived structures, the PDB. The remaining four libraries, representing MD

structures, were generated from the Dynameomics data warehouse. Descriptions and statistics for

each of the resulting fragment libraries are shown in Table 5.2. Fragments of length 3 to 22

residues were generated for each library to support structure predictions of 1 to 20 residues in

length.

The first library of experimental fragments, abbreviated PDBxtal, was extracted from the

majority of crystal PDB structures using a PISCES (Guoli Wang & Dunbrack Jr., 2003) query to

filter out low-quality structures. The query specified a sequence identity of 95% or less, a

resolution better than 2.7Å, and an R-factor of 0.3, resulting in approximately 23.1 x 103 protein

structures. The second set, abbreviated PDBnmr, was extracted from the majority of NMR

spectroscopy derived PDB structures using similar constraints of sequence identity of 95% or less,

a minimum length of 40 residues, and deposits had to include experimental data. All models for

each NMR structure were included. This query resulted in approximately 100.9 x 103 NMR

structures.

The Dynameomics project, which was created to represent the dynamic ensembles of a vast

diversity of structural folds in proteins (Day et al., 2003), was used as the source repository of MD

structures (Simms & Daggett, 2012; Simms et al., 2008). For this specific analysis we used the

86

Dynameomics v2009 Release Set (Schaeffer et al., 2011) which contains structural representatives

of 95% of the known autonomous protein folds. This set contains 807 distinct protein targets

(http://www.dynameomics.org). These proteins were simulated using ilmm (in lucem molecular

mechanics) (Beck & Daggett, 2004), which employs the Levitt et al. force field (Levitt, Hirshberg,

Sharon, & Daggett, 1995) and uses explicit water molecules (Beck, Alonso, & Daggett, 2003;

Levitt, Hirshberg, Sharon, Laidig, & Daggett, 1997) in the simulation. All Dynameomics target

structures were simulated a minimum of one time at 298K and twice at 498K, with each simulation

running for at least 51 ns. The atomic coordinates of these structures were recorded at 1 ps

granularity and stored in the Dynameomics data warehouse (van der Kamp et al., 2010). More

details regarding the simulation protocols can be found elsewhere (Beck & Daggett, 2004; Beck

et al., 2008).

We generated four fragment libraries from Dynameomics. The DYN298 library contains

fragments from the native state simulations run at 298K and is used as a direct comparison to the

PDBxtal library. The DYN498 library contains fragments from the unfolding simulations run at

498K and is used to capture more conformational variety. The DYNstart library contains fragments

from the minimized starting structures of the 807 Dynameomics targets. Finally, the DYNall is the

combination of both the DYN298 and DYN498 libraries.

Since Dynameomics structures within a simulation are time-dependent, we did not generate

fragments from every structure. Sampling fragments at every time point is largely redundant for

the applications presented in this manuscript since little structural variation occurs within a

fragment for short sampling intervals. For the native state simulations, we generated fragments

from structures at 1 ns intervals to optimize conformational variability while minimizing computer

87

resources. For the unfolding simulations, we sampled at a higher rate of 100 ps due to the increased

motion of the proteins in high-temperature simulations, and the structures were retrieved from the

last 15 ns of the unfolding simulations.

5.5.2 Internal Coordinate Scoring

To scale fragment search, retrieval, and matching to a large, distributed structural

repository, it is advantageous to pre-process the coordinate data of protein structures and represent

the fragment conformations with minimal information loss. We characterized the structure of

protein backbone fragments and gaps using internal coordinates (IC). This method is derived from

a Cartesian coordinate representation instead of the commonly used torsion angle representation,

as suggested by Holmes and Tsai (Holmes & Tsai, 2004). Using an IC representation that we

previously briefly introduced (van der Kamp et al., 2010), the inter-residue and intra-residue

distances between the five heavy atoms of each terminal residue of the fragment or gap represent

a unique structural identifier. More explicitly, this identifier is comprised of 45 distances between

each residue’s N, O, C, Cα, and Cβ atoms as shown in Figure 5.5. Specific distances are referred

to using the convention Xs-to-Xe, where Xs represents the starting residue’s X atom and Xe

represents the ending residue’s X atom. Starting and ending residues are determined using a

backbone’s N-Terminus to C-Terminus directionality.

A single-valued IC score was used to evaluate the similarity between two fragments or the

fit of a fragment to a gap in a protein structure. This IC score was calculated using a root-mean-

square deviation calculation (RMSD)

88

 (1)

where xi and yi are equivalent IC atom-atom distance pairs from the fragment and gap being

compared and D is the number of distance in each fragment or gap. Since the distances are relative

to the end residues, no alignment is necessary before calculating the IC score between fragments

or gaps.

5.5.3 Fragment Database Schema

The fragment database schema was designed to integrate into the Dynameomics data warehouse

architecture while supporting efficient fragment searching and filtering using the IC distances and

the IC score. A simplified schema for a Dynameomics-based fragment collection is shown in

Figure 5.6. The Fragments table stores metadata about the source protein structure for retrieval of

the original PDB file or Dynameomics simulation. The fragments themselves are defined with a

combination of two table types, Fragments_X and FragmentsFrame_X, where X denotes the length

of fragments contained in the respective table combination. The Fragments_X table defines a

unique fragment per individual protein structure. The FragmentsFrame_X table defines a unique

instance of each structural fragment (i.e. individual conformations of an individual fragment’s

dynamic motion) along with each fragment instances’ IC distances. The fragment frame unique

identifier is unique among all fragment lengths within a fragment repository. Additional,

fragment-specific analysis can be easily added through the generic, extensible

Fragments_Analysis table definition.

89

 Fragments can be filtered on any combination of or all individual IC distances. This

filtering is implemented by including a range of desired distance thresholds in the SQL query

WHERE clause per individual IC distances. The IC score is calculated per result row using an

inline SQL function. Every IC distance is indexed within each FragmentsFrame_X table to

accelerate the filtering process.

5.5.4 Fragment Identification and Retrieval

 Our fragment libraries were designed to provide structurally relevant fragments based on

their IC profile. Anchor residues are first identified in the protein structure of interest and the

corresponding IC profile of those anchor residues is calculated. A query is then generated for a

fragment repository, calculating the RMSDIC for all fragments of a specified length that also

contain IC distances within the specified distance threshold. The default threshold is 1.5 Å to

accommodate common bond variance, but can be specified at query time. The number of results

is adjustable; we specified 200 fragments for all results presented in this paper. This query runs

several orders of magnitude faster than the naïve approach, as is shown in Figure 5.7.

 The query provides a collection of fragments enumerated by unique fragment

identifications as defined in the fragment repository schema. For Dynameomics fragments, this

unique identifier corresponds to a unique tuple consisting of a simulation identifier, structure

identifier, structure instance, time step, starting residue and length. In the case of a PDB fragment,

the unique tuple consists of a PDB code, chain identifier, model number, starting residue and

length. In both cases, this information is sufficient to retrieve a unique fragment structure from

either the Dynameomics data warehouse or PDB, respectively.

90

 The fragment retrieval operation returns the coordinates of the heavy atoms (N, O, C, Cα,

and Cβ) in a polyalanine peptide representation generated from the backbone of the source

structure. Alanines are used to retain the Cβ coordinate information and first chi dihedral angle

for improved side-chain attachment. In the case of Glycine residues, the Cβ coordinates are

estimated using the chiral-appropriate hydrogen atom attached to the Cα.

5.5.5 Fragment Insertion

Two related but distinct methods can be used for the insertion of fragment structures into

the protein structure of interest as shown in Figure 5.8. The first method is intended to fill a gap

in an existing structure with a relevant fragment or collection of relevant fragments. The second

method was developed to extend the termini of existing protein structures. Both methods take

advantage of the IC profile to search existing fragment structures in the fragment repositories.

 Gap-filling fragment queries use the IC profile of the gap anchor residues. Fragment results

are aligned by matching the fragment anchor residues with the gap anchor residues using a heavy

atom alignment of the five heavy atoms in each end-residue (N, O, C, Cα, and Cβ). Extension

fragment queries use the IC profile of the terminal three residue fragment of the N- or C-terminus.

Fragments retrieved for extending a C- or N-terminus were aligned using the three end residues of

the protein structure of interest and the corresponding side-chain conformations can optionally be

included using the Dynameomics rotamer libraries (Scouras & Daggett, 2011).

5.5.6 Fragment Evaluation

 All RMSD values presented in the results were obtained by calculating the RMSD over all

backbone heavy atoms (N, O, C, Cα) contained in the internal residues of the fragment. The anchor

91

residues were not included in these metrics. All backbone heavy atoms were checked for steric

clashes with the destination structure atoms. Side-chain conformations were not incorporated in

the evaluations in this manuscript as we were focused solely on backbone conformations. In all

instances, predictions are never made using fragments sourced from the same structure as the target

structure or any MD-generated derivative structure of the target structure.

 All fragments sourced from structures with high sequence similarity to the target structure

were eliminated from consideration for predictions. This evaluation was done on a per-target basis

and was to ensure that no homologous structures were used in the prediction results. Structures

containing 50% or greater sequence similarity to the target loop’s originating structure were

eliminated from the search results for that target loop. We used the .NET Bio software package to

perform the alignments and calculate the sequence similarity metric (Outercurve Foundation,

2013).

 Evaluations of loop structure predictions were also performed against NMR ensembles

using Nuclear Overhauser Effect (NOE) data. In these instances, we only considered NOEs

containing at least one atom within the backbone of the target range. NOEs between side-chain

atoms in this range and atoms outside of the target range were not considered. NOEs between

atom-pairs altogether outside of the target range were also not considered as these would evaluate

identically between candidates.

5.5.7 Representing Structural Diversity in Fragment Libraries

In order to analyze the structural distribution of the fragment populations in each library,

we needed a method to programmatically represent the conformational space. To do this, we used

multidimensional histograms as a computationally efficient method of clustering. These also lend

92

themselves well to comparison due to the common bin definitions between different histograms.

Fragments were binned using a subset of the end-to-end distances, which were selected to

maximize the overall fragment structure representation while keeping correlation between the

selected distances to a minimum. These distances were identified using principal component

analysis (PCA). The resulting histogram bins contain clusters of similarly-structured fragments.

The specific distances we used in our histograms were Cβs-to-Cβe, Os-to-Ne, and CBs-to-

CAe. As shown in Table 5.3 through Table 5.5, these distances most often had the highest

correlation with the first three principal components and the percentage of variance captured was

84.4% to 99.4% so no additional distances were needed. This finding was consistent across the

majority of fragment lengths in each repository. We used a histogram bin size of 0.1 Å as this

results in computationally manageable histogram sizes while maintaining a valid representation of

the structural diversity in the fragments.

5.5.8 Comparison of Fragment Libraries

We compared the histogram data for pairs or triplets of fragment repositories to evaluate

the coverage of fragment structures in each repository. Since each histogram bin represents a

cluster of similarly structured fragments, we were able to simplify each histogram bin

representative to a binary value. A bin containing two or more fragments was considered to be

filled while a bin containing one or fewer representative fragments was considered empty.

The sets of binary histogram bins from different repositories were aligned to complete the

comparison. Bins with the same distance thresholds were considered to be in alignment between

datasets. Four outcomes were possible for each bin when comparing two repositories: both

repositories contain a representative fragment, only the first repository contains a representative

93

fragment, only the second repository contains a representative fragment, or neither repository

contains a representative fragment. When comparing three repositories, eight outcomes are

possible for each bin. In this way we can quickly ascertain which fragment structures exist in each

of the fragment collections. This technique was used for the repository comparisons in the results

section.

5.5.9 Internal Coordinate Performance

We first evaluated the ability of the IC algorithm and fragment database schema to recover

specific fragment structures. We selected fragment structures of length 3, 13 and 22 each of

secondary structure type α-helix, β-strand and loop from crystal structures below 2.0Å resolution.

The end residues of these fragment structures were then used to query both the PDBxtal fragment

library and the DYN298 library. Each of the nine fragment searches in the PDBxtal fragment

database resulted in an exact match from the PDB. Similarly, the nine fragment searches in the

DYN298 fragment library resulted in a match of the closest fragment match. Although the search

structures do not exist in the DYN298 fragment library, the minimized starting structures of

simulations generated from the respective crystal structures were identified as the top match.

These recovered Dynameomics structures and search fragments are shown in Figure 5.9.

A simple benchmark was also run to assess the query time of the IC fragment search and

retrieval. Searches requesting 200 results were performed for each fragment length of 3 to 22

residues. The time was calculated, from start to completion, for three iterations of each search and

averaged for each fragment length. This process was repeated for results containing just fragment

metadata (IC without retrieval) and results containing the full fragment backbone structures (IC

with retrieval). We also estimated the running time of a naïve approach which would consist of

94

the heavy-atom RMSD of the end residues between the target fragment and all fragment instances

of the same length. As is shown in Figure 5.7, the IC search algorithm is several orders of

magnitude faster than the naïve approach.

5.5.10 Principal Component Analysis

We applied principal components analysis (PCA) to define a common set of representative

distances between each fragment library for the comparison of the fragment structural space. The

heavy-atom-pair distances between the terminal residues of each fragment were used to inform the

analysis. This process identified the atom-pair distances which best represent the overall fragment

structures and have minimal correlation with one another. A summary of the PCA analysis over

all fragment lengths is provided in Table 5.3 through Table 5.5. We found that 84.4% to 99.4%

of the structural variance was captured in the first three principal components for all of the sampled

fragment lengths from all fragment libraries.

Due to the large size of our fragment library data and the memory requirements of the PCA

algorithm, we used a subset of the total fragment library populations for analysis. A random

sampling of 1x106 fragments were chosen from each library, at each length, for PCA analysis. We

did not experience any significant difference between this size of a sample set and the larger sets

we evaluated.

95

Table 5.1 Fragment library abbreviations and descriptions.

Fragment Libraries

Abbreviation
Number of

Unique Chains
Number of
Structures

Number of
Fragments

Description

DYN298 807 42,068 105,112,513
Dynameomics simulations run at 298K.
Structures sampled at 1ns intervals for
entire duration of each simulation.

DYN498 807 240,814 603,915,700
Dynameomics simulations run at 498K.
Structures sampled at 100ps intervals
for last 15ns of each simulation.

DYNall 807 282,882 709,028,213
This is a virtual library comprised of
the DYN298 and DYN498 libraries.

DYNstart 807 807 1,996,160
Starting structure of each
Dynameomics simulation. Structures
are solvated and minimized.

PDBxtal 23,144 23,144 99,193,499
Crystal structures from the PDB.
Structures were chosen using a PISCES
query as described in the text.

PDBnmr 5,412 100,973 180,437,054
NMR spectroscopy structures from the
PDB. Structures were chosen using
parameters described in the text.

96

Table 5.2 Average RMSD of predicted values for 510 loop targets.

This table represents averages and standard deviations for 30 samples at each fragment length.
The best fragment is the fragment with the lowest heavy-atom (N, O, C, Cα) RMSD in the IC
search result set. The best average score is emphasized with an underline and italics. The
consensus set, which is a combination of the best predictions from each fragment library’s IC result
set, outperforms any individual fragment library.

 PDB DYN298 DYN498 Consensus

Length Average
Standard
Deviation Average

Standard
Deviation Average

Standard
Deviation Average

Standard
Deviation

4 0.52 0.42 0.68 0.37 0.73 0.38 0.47 0.30
5 0.71 0.62 1.10 0.58 1.10 0.56 0.62 0.44
6 0.98 0.74 1.55 0.74 1.70 0.53 0.86 0.59
7 1.47 1.19 2.27 0.93 2.08 0.69 1.19 0.71
8 1.92 1.35 2.50 1.09 2.80 1.06 1.67 1.00
9 2.25 1.68 3.34 1.38 2.86 0.71 1.84 1.03

10 3.06 2.20 4.08 1.59 4.00 1.88 2.65 1.85
11 2.66 1.54 3.90 0.94 3.69 0.84 2.48 1.16
12 3.41 1.95 3.92 1.19 3.48 0.74 2.78 1.28
13 4.05 2.74 5.39 2.26 4.90 2.26 3.39 1.75
14 5.04 2.22 5.73 2.59 4.58 1.09 4.24 1.77
15 4.80 2.75 6.53 3.01 5.58 1.97 4.20 2.17
16 5.83 2.81 6.91 2.61 6.68 2.59 5.39 2.59
17 6.58 3.24 6.93 2.52 6.85 2.49 5.27 2.57
18 5.29 3.23 5.96 1.53 6.37 2.32 4.67 1.91
19 6.68 3.09 7.38 2.20 7.15 2.25 5.79 2.32
20 7.49 4.01 8.54 3.04 7.92 2.72 6.66 3.48

97

Table 5.3 PCA correlated distances.

Distances that best correlate with first three principal components, per fragment library. The
percentage of variance captured by the first three principal is listed on the right.

Library
Correlated
Distance 1

Correlated
Distance 2

Correlated
Distance 3

Percentage of
Variance

D
Y

N
29

8

CBs_to_Ce Cs_to_Oe CBs_to_CAe 87.7
CBs_to_CAe Cs_to_Oe CAs_to_CAe 96.4
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.4
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.5
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.9
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.3
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.5
CBs_to_CBe Os_to_Ne CBs_to_CAe 98.6
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.7
CBs_to_CBe Os_to_Ne CBs_to_CAe 98.8
CBs_to_CBe Os_to_Ne CBs_to_CAe 98.9
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.0
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.0
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.1
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.1
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.3
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.3

D
Y

N
49

8

CBs_to_Ce Cs_to_CAe CBs_to_CBe 84.4
CBs_to_CAe Os_to_CAe CAs_to_CAe 93.3
CBs_to_CBe Os_to_CAe CBs_to_CAe 95.7
CBs_to_CBe Os_to_Ne CBs_to_Ne 96.0
CBs_to_CBe Os_to_Ne CBs_to_Ne 96.4
CBs_to_CBe Os_to_Ne CBs_to_Ne 96.9
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.3
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.5
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.8
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.0
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.2
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.4
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.6
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.7
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.8
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.9
CBs_to_CBe Os_to_Ne CBs_to_Ne 99.0
CBs_to_CBe Os_to_Ne CBs_to_Ne 99.1
CBs_to_CBe Os_to_Ne CBs_to_Ne 99.1
CBs_to_CBe Os_to_Ne CBs_to_Ne 99.2

98

Table 5.4 PCA correlated distances (continued).

Library Correlated

Distance 1
Correlated
Distance 2

Correlated
Distance 3

Percentage of
Variance

P
D

B

CBs_to_CBe Cs_to_Oe Ns_to_Ce 91.0
CBs_to_Ne Cs_to_Oe CAs_to_CAe 97.3

CBs_to_CAe Os_to_Ne CBs_to_Ne 97.8
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.8
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.2
CBs_to_CBe Os_to_Ne Ns_to_Oe 98.6
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.7
CBs_to_CBe Os_to_Ne CBs_to_CAe 98.8
CBs_to_CBe Os_to_Ne Ns_to_Oe 98.9
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.0
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.1
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.1
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.3
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.3
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.3
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.4
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.4
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.4

N
M

R

CBs_to_CBe Os_to_Ne CAs_to_Ce 90.6
CBs_to_Ne Cs_to_Oe CAs_to_CAe 96.7
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.6
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.8
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 98.5
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.7
CBs_to_CBe Os_to_Ne CBs_to_CAe 98.8
CBs_to_CBe Os_to_Ne Ns_to_Oe 99.0
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.0
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.1
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.3
CBs_to_CBe Cs_to_Oe CBs_to_CAe 99.3
CBs_to_CBe Cs_to_Oe CBs_to_CAe 99.3
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.3
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.4
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.4

99

Table 5.5 PCA correlated distances (continued).

Library Correlated
Distance 1

Correlated
Distance 2

Correlated
Distance 3

Percentage of
Variance

D
Y

N
St

ar
t

CBs_to_CBe Cs_to_Oe Ns_to_Ce 90.5
CBs_to_Ne Cs_to_Oe CAs_to_CAe 97.1
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.7
CBs_to_CBe Os_to_Ne CBs_to_Ne 97.8
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.1
CBs_to_CBe Os_to_Ne Ns_to_Oe 98.5
CBs_to_CBe Os_to_Ne CBs_to_Ne 98.6
CBs_to_CBe Os_to_Ne CBs_to_CAe 98.7
CBs_to_CBe Os_to_Ne Ns_to_Oe 98.9
CBs_to_CBe Os_to_Ne CBs_to_CAe 98.9
CBs_to_CBe Os_to_Ne CBs_to_CAe 99
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.1
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.1
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.2
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.3
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.3
CBs_to_CBe Os_to_Ne CBs_to_CAe 99.3
CBs_to_CBe Cs_to_Oe CBs_to_CAe 99.4

100

Figure 5.1 Structural coverage comparison between PDB, DYNstart, and DYN298

Comparison of structural coverage between fragments generated from crystal structures and
native state Dynameomics structures. The colors in the chart correspond to the Venn diagrams
on the right. (a) This chart shows the percentage of conformational space shared between the
DYNstart fragment library and the PDBxtal fragment library. The DYNstart library only contains a
significant number of representatives at short fragment lengths. (b) This chart shows the
percentage of conformational space shared between the DYN298 fragment library and PDBxtal
fragment library. For all fragment lengths, roughly 80% of the conformational space is shared
by the two fragment libraries.

101

Figure 5.2 Comparison of fragments sourced from various structure types.

Comparison of structural coverage between fragments generated from crystal structures, NMR
structures, and Dynameomics structures. We show the DYNall library here because fragments
from both native-state and unfolding simulations provide informative conformations for loop
predictions. The colors in the chart correspond to the Venn diagram on the right. The magenta
area corresponds to the percentage of histogram bins that are shared between the PDBnmr and
DYNall fragment libraries, but do not contain representatives from the PDBxtal fragment library.

102

Figure 5.3 Distribution of Lowest Scoring Fragments.

Distributions of the lowest scoring fragment predictions for all target loops in the 510 standard
set. The top histogram shows the percentage of best predictions that are sourced from the
PDBxtal, DYN298 and DYN498 fragment libraries for each loop length. The total distribution for
all 510 targets is shown in the pie chart. The average heavy-atom RMSD improvement per
fragment length, in Å, is provided for the Dynameomics fragments on the bottom-right.

103

a

P
D

B
nm

r

 Target Structure 1NWD, Model 1
Residue Range 55 to 66
Length 12 Residues
NOE Fulfillment 118 of 131 (90.1%)
Average NOE
Violation

0.481 Å

P
D

B
xt

al

 Source Structure 3MEM
Residue Range 81-92
RMSD 3.403 Å
NOE Fulfillment 80 of 131 (61.1%)
Average NOE
Violation

3.158 Å

D
Y

N
29

8

 Source Structure 1K19 @ 40ns
Residue Range 14-27
RMSD 1.873 Å
NOE Fulfillment 103 of 131 (78.6%)
Average NOE
Violation

1.060 Å

b

P
D

B
nm

r

 Target Structure 1PS2, Model 1
Residue Range 30 to 44
Length 15 Residues
NOE Fulfillment 119 of 131 (90.8%)
Average NOE
Violation

0.523 Å

P
D

B
xt

al

Source Structure 3LD1
Residue Range 328-342
RMSD 4.474 Å
NOE Fulfillment 86 of 131 (65.6%)
Average NOE
Violation

2.242 Å

D
Y

N
29

8

 Source Structure 1E9T @ 34ns
Residue Range 34-48
RMSD 1.326 Å
NOE Fulfillment 119 of 131 (90.8%)
Average NOE
Violation

0.651 Å

Figure 5.4 Predictions of loops in NMR structures.

The NMR structures are depicted in grey, the X-ray predictions in red, the Dynameomics
predictions in blue, and anchor residues in black. RMSD and NOE results do not include anchor
residues in the calculations. (a) A 12 residue structure in 1NWD, not including anchor residues.
(b) A 15 residue loop structure in 1PS2, not including anchor residues

104

Figure 5.5 Abstract depiction of fragment.

Ten heavy atoms are involved in the end-to-end distance definitions. There are 20 intra-residue
distances (a) and 25 inter-residue distances (b). One or more amino acids can exist as
intermediate residues in the peptide structure.

105

Figure 5.6 Schema of generic fragment library database.

Tables are represented as boxes and foreign key (FK) to primary key (PK) relationships are
represented as arrows. Unique identifiers (Ux) and indexes (Ix) are also listed. The X term
denotes fragment length.

106

Figure 5.7 Query execution time for fragment searches.

Each query was run three times for each fragment length. The times shown for the naïve
approach are approximations based on the running time of RMSD calculations for smaller sets
of fragments.

107

a

b

Figure 5.8 Anchor residue alignments for fragment attachment.

(a) Two anchor residues are used for gap-filling fragment insertions. (b) Three anchor residues
are used for extension fragments.

108

a

b

c

Figure 5.9 Overlay of Dynameomics starting structure fragments.

Depicted here is an overlay of minimized Dynameomics starting structure and X-ray
crystallography fragment used for evaluation. The Dynameomics structures are shown in white
and the X-ray fragments are shown in black. (a) β-strand structure of 22 residues in length. (b)
α-helix structure of 22 residues in length. (c) loop structure of 22 residues in length.

109

Chapter 6

DYNAMEOMICS: COMPARATIVE DATA-DRIVEN ANALYSIS

OF THE CORRELATION BETWEEN ROTAMERIC STATES

AND BACKBONE CONFORMATIONAL PROPENSITIES AND

IMPROVED ROTAMER LIBRARIES

6.1 Summary

Protein side-chain and backbone conformations and dynamics are intimately linked.

Understanding the relationship between the two constituent parts is crucial to improving protein

structure refinement, modeling and prediction. In particular, side-chain conformations, or

rotamers, are important for protein binding and enzyme activity. Identifying rotamers and their

relationship to backbone structure is key to this process; this knowledge can be captured in rotamer

libraries. Backbone-dependent libraries provide statistical rotamer representatives based explicitly

on backbone φ/ψ angles. However, most popular rotamer libraries are generated from subsets of

the Protein Data Bank (PDB), which may contain poorly selected side-chain positions and

incorrect side-chain flips, often expressly filter out dynamic side-chain samples with B-factor

cutoffs, and overall do not fully represent the conformational scope of protein side-chains. This

limits their utility in refining new experimental structures, understanding intrinsically disordered

structure conformations, and predicting protein structures in solution at ambient temperatures. To

address this limitation, we look to the physics-based approach of molecular dynamics (MD)

simulations to investigate the true frequency of rotameric states. Here we present an analysis of

the correlation between rotameric states and backbone conformational propensities based on MD

simulation data from the Dynameomics project. We propose a backbone-dependent rotamer

110

library derived from Dynameomics using 4.8 x 109 rotamers, sampled from at least 51,000

occurrences of each of 93,642 residues. Since our dataset has increased over 40% in size since the

publication of our backbone-independent library, we provide both the backbone-dependent and

updated backbone-independent libraries online at http://www.dynameomics.org.

6.2 Introduction

Protein backbones have long been acknowledged for their role in forming repeating

patterns of secondary structure. In contrast, side-chain orientation and dynamics are crucial for

binding and enzyme activity. Together these parts are critical to improving protein structure

refinement, modeling and prediction. There is a real need to predict accurate side-chain rotamers

as part of structure calculation and refinement. Often the side-chain detail can be missing,

incomplete, or completely absent in many PDB structures, depending on how extensive structural

validation has been prior to deposition (Chang et al., 2006; Gore, Velankar, & Kleywegt, 2012).

Characterizing the conformational and dynamical relationship between the two components,

backbone and side-chain, is vital for our continued progression in understanding protein chemistry

and structural biology. To this end, a comprehensive assessment of amino acid side-chain

conformations, or rotamers, will improve the accuracy in predicting protein structure, refinement

of experimentally derived structures, and the engineering of new proteins.

The orientations and sampling of the side-chain dihedral angles is not random and

propensities for certain angles have been observed (Bahar & Jernigan, 1996). Rotamer libraries

are used to select appropriate side-chain conformations by capitalizing on this knowledge.

Furthermore, since the population of some rotameric states appear highly correlated with protein

backbone conformations (Hagarman et al., 2011; Otzen & Fersht, 1995), it is increasingly

111

important that more accurate backbone-dependent rotamer libraries are available. Currently, there

are a few rotamer libraries widely used today (Lovell et al., 2000; Scouras & Daggett, 2011;

Shapovalov & Dunbrack Jr., 2011). These libraries include rotamers independent of the backbone

conformation, dependent on secondary structure, or dependent on the backbone conformation. The

most popular backbone-dependent library available is provided by the Dunbrack laboratory, which

has continually improved the coverage and quality of their library over the last two decades

(Dunbrack & Cohen, 1997; Dunbrack & Karplus, 1994; Shapovalov & Dunbrack Jr., 2011). The

Dunbrack rotamer library was generated by analyzing select residues, filtered for steric clashes

and low B-factors, from high-quality sets of crystal structures in the Protein Data Bank (PDB)

(Berman et al., 2000).

Most rotamer libraries rely on such statistical analysis of the PDB (Larriva & Rey, 2014;

Lovell et al., 2000; Shapovalov & Dunbrack Jr., 2011; Xiang & Honig, 2001). Rotamer

probabilities derived from the PDB are used to both replace, predict and refine side-chains in

experimental structures. However, rotamer libraries generated from the PDB have their limitations

(Berman, Kleywegt, Nakamura, & Markley, 2013; Davis et al., 2007; Montelione et al., 2013).

Although the PDB is the largest repository of experimental structures, some rotamers have

extremely low or non-existent sampling for regions of φ/ψ space. Hence, refining experimental

structures with statistically derived probabilities from already solved experimental structures is

flawed; since the PDB does not necessarily reflect all rotameric possibilities it may not accurately

depict the conformational landscape for side-chains of new structures.

Furthermore, due to difficulties in crystallization of or gaining NMR observables from

highly flexible regions, we know that the full range of rotamers is underestimated. This is

112

especially true given that a large percentage of the PDB consists of crystal structures, which depict

a single structure averaged across an ensemble of crystallized protein instances (Wagner et al.,

1992). These crystal structures do not capture the highly dynamic nature commonly observed in

amino acid side-chains. B-factors offer some indication of side-chain mobility but many rotamer

libraries implement a B-factor cutoff. As a result of the bias towards low B-factor targets, dynamic

rotamer conformations are expressly excluded. Crystal structures may also contain artifacts from

experimental procedures, such as crystal contacts or general misrepresentation of the native

environment due to the extremely low temperatures required by the technique. Overall, these

factors may provide an unfavorable bias that is incorporated directly in many of the existing

rotamer libraries, which is not ideal for modeling and predicting protein structures in solution at

ambient temperatures.

Although the rate at which novel folds are being identified has slowed significantly

(Skolnick, Zhou, & Brylinski, 2012), the rate of disordered protein discovery is accelerating

(Dyson, 2011). This confirms that the PDB does not yet represent the true extent of protein fold

space. This issue has been previously highlighted; statistical techniques exist to predict the missing

data and attempts have been made to interpolate rough transitions between sampled areas.

However, these estimations may miss fine-details or misrepresent the true distribution of side-

chain conformations.

Molecular dynamic (MD) simulations provide a platform from which a more extensive

sampling of rotameric states can be investigated that, by using a physics based approach (Levitt et

al., 1995, 1997), reflects the rate of all possible rotamers for folded proteins. Here, we address the

shortcomings of PDB-based rotamer libraries with a backbone-dependent library by making use

113

of extensive atomistic MD simulations from our Dynameomics project (van der Kamp et al., 2010).

We provide an analysis of our data-driven approach to generating a backbone-dependent library

by showing a selection of interesting rotameric features. This work extends our previously

published backbone-independent statistics of the amino acid rotameric states, also determined

from our Dynameomics dataset (Scouras & Daggett, 2011). Since the raw Dynameomics data has

nearly doubled in size since the previous publication, we provide an updated backbone-

independent rotamer library along with the new backbone-dependent library. Both libraries are

available online at http://www.dynameomics.org.

6.3 Results

6.3.1 Conformational Analysis: Generation of Backbone Independent and Backbone
Dependent Rotamer Libraries

 Our analyses of side-chain conformations were performed on simulations from the

Dynameomics 2009 Release set (Schaeffer et al., 2011; van der Kamp et al., 2010). Each of the

simulation targets represents a unique fold representative, and together these targets represent 95%

of the known protein fold space (Schaeffer et al., 2011). Each Dynameomics structure has

undergone thorough validation, both prior to and after simulation, and has been simulated for a

minimum of 51 ns at 25° C to capture native state dynamics (van der Kamp et al., 2010). Due to

a 47% increase sample size since our previous rotamer publication (Scouras & Daggett, 2011), we

provide both an updated backbone-independent rotamer library as well as our first backbone-

dependent rotamer library. The updated backbone-independent library is consistent with our

previous findings. Although the sample size has increased by 47%, the variance in the probability

distribution was minimal. There was an average variance of 0.12% with a standard deviation of

114

0.30% for all backbone-independent rotamer representatives. The maximum change to any

individual rotamer probability was 2.9%.

 Although the larger number of side-chain samples had a minimal impact on the backbone-

independent statistics, the Dynameomics backbone-dependent library benefited from the increased

information due to the number of discretized backbone conformations. Backbone conformations

were assigned to 10° x 10° bins based on their ψ/φ angles in the range [-180,180). The backbone-

dependent library, on average, contained 221,668 side-chain samples for each of the 282,017 bins.

The bin counts range from 1 sample to 3.1 x 107 samples per bin with a median count of 130

samples. Overall, the data presented in each of the Dynameomics rotamer libraries represent

4.8x109 side-chain samples. The sampling in the Dynameomics backbone-dependent rotamer

library was compared to sampling of the PDB-based Dunbrack backbone-independent library

Table 6.1.

6.3.2 Dependent versus Independent Probabilities

 To illustrate the difference between the backbone-dependent and backbone-independent

rotamer probabilities, we present an analysis of valine in Figure 6.1. The φ/ψ plots show the

independent versus dependent probabilities of each the three valine rotamers. The plots range

from 0% to 100% backbone-dependent probabilities and are colored by the factor of change in

comparison to the independent probability. The pink color represents a dependent probability of

0%. The blue color represents an increase in the dependent probability over the independent

probability by a factor of one. Sample side-chain structures are highlighted on the right for areas

of interest. The overall distribution of valine residues is shown in the upper-right hand corner with

an overlay of secondary structure regions for reference.

115

 The trans rotamer was the most common rotamer of valine with an overall independent

probability of 55.5%. As Figure 6.1B shows, this rotamer most frequently occurred in clusters

around φ angles of [-140°,-60°] and [30°,120°] and ψ angles of [-30°,-90°] and [90°,120°]. The

gauche- rotamer occurred in the inverted regions of φ/ψ space with an independent probability of

43.1% (Figure 6.1C). Overall, the trans and gauche- rotamers commanded 98.4% of the

independent probability. Although the gauche+ rotamer occurs in only 1.7% of the overall side-

chain samples, it can be the predominant rotamer in the φ angle region of [-180°,-150°] and

[150°,180°] with up to 100% dependent probability. In other words, the gauche+ rotamer was the

only side-chain conformation sampled over a very small region of ψ/φ space where the backbone

was almost completely extended (see Figure 6.1).

 The right portion of A,B and C in Figure 6.1 provides specific instances of the side-chain

conformations identified by number in the φ/ψ plots on the left. Each instance shows the residue

of interest highlighted in red within its local context of seven residues as well as its location within

its host protein.

 The gauche+ conformation of valine has a region near [-180°,110°] which was nearly 103

times more likely to occur than what the backbone-independent probability suggests. There are

32 individual bins for valine where the gauche+ conformation was the predominant rotamer. For

these 32 bins, a total of 90,034 side-chain samples occurred in the guache+ conformation out of

167,099 total samples. Of note, this change in probability distribution is not observed in the

Dunbrack rotamer library (Shapovalov & Dunbrack Jr., 2011).

116

6.3.3 Secondary Structure Specific Differences

 Figure 6.2 shows the side-chain distributions and the relationship between rotameric states

and secondary structure for a representative set of residues: isoleucine, serine, and threonine. The

behavior of the residues varied from exhibiting consistent secondary structure probability with the

backbone-independent ranking (serine) to where large departures from the backbone-independent

rankings (threonine) were observed. For each residue the Ramachandran plot on the left shows

the overall side-chain distributions and secondary structure regions with secondary-structure-

dependent probabilities shown on the right. For simplicity, we present probabilities for only the

top three rotamers from each residue. The complete secondary structure probabilities for all

residues are provided in Table 6.2.

 Isoleucine showed a fairly consistent ordering of the top three rotamers for all secondary

structure regions. There are two exceptions for the guache+,trans conformation. The first

exception is the αR region, which had a much lower dependent probability of 22.7% versus a

43.3% independent probability for the gauche+,trans conformation. The second exception is the

αL region also showed a significant change from independent probability, with the gauche+,trans

conformation decreasing to 14.4% and the gauche-,trans conformation increasing to 50.0%. For

both the αR and near αR regions, the side-chain had an increased propensity for the gauche-

,guache- conformation.

 The dependent probabilities for Serine were consistent with the independent probabilities

for all secondary structure types. However, the ratio between the probabilities shifted significantly

for some regions. In particular, the αL region had an increased propensity for the gauche-

conformation, while the gauche+ conformation shifted from a 22.7% backbone-independent

probability to a 1.9% probability.

117

 Threonine showed a large departure from the independent rotamer probabilities for a

number of secondary structures. The near αR, β, PIR and PIIL regions all shifted to a dominant

gauche- rotameric state. In contrast, the αL and αR regions had a significantly increased

probability for the gauche+ rotamer in comparison to the backbone-independent probabilities.

6.4 Discussion

We have presented an analysis of side-chain conformations and dynamics along with their

correlation to backbone propensities using Dynameomics. Our primary intent was to analyze these

correlations and identify aspects of side-chain dynamics that are not available through methods

based on PDB crystal structures. Furthermore, we provide an extension of the backbone-

independent work presented by Scouras and Daggett (Scouras & Daggett, 2011) as well as provide

a new backbone-dependent rotamer library. The information presented here, along with these

rotamer libraries, should further our understanding of side-chain behavior and application to

protein structure problems, such as model refinement, intrinsically disordered structure

assessment, and structure prediction for proteins in solution at ambient temperatures.

In agreement with others, we have demonstrated a backbone dependent preference for

certain rotameric states. What we highlight here is the necessity to incorporate dynamics to

determine what the more likely probability is for a selection of side-chain rotamers. Other rotamer

libraries are based on data from the PDB, which can be unreliable. The PDB is limited in both the

extent of what conformations side-chains can assume and by the errors that we know to exist

(Davis et al., 2007).

Structure validation is a necessity, whether it pertains to corrections or refinement prior to

using a PDB model in simulations or computer aided design tools. Gore et al. remind us that “the

118

structures in the PDB are based on a subjective interpretation of experimental data” (Gore et al.,

2012). Just recently there has been a push to improve the structural validation of both NMR and

crystal structures upon deposition to the PDB (Montelione et al., 2013; Read et al., 2011).

Retractions and fraudulent structures have been found in the PDB (Berman et al., 2013; Chang et

al., 2006).

Our Dynameomics dataset has two strengths. First, as shown from a consensus view of

protein fold space, our selected targets cover 95% of known folds. Given the slow rate at which

novel folds are being discovered, our coverage is unlikely to significantly decrease over time.

Second, the targets chosen were assessed for quality both before and after simulations. To

maintain the validity of our dataset, certain targets have been rejected on the basis of low quality

or where the simulations did not agree with experimental data and were removed from our dataset

(Towse & Daggett, 2012).

Furthermore, even if the PDB was free from errors, the sample size is dramatically lower

than the Dynameomics rotamer libraries (see Table 6.1). The relatively small sample size means

that in using the PDB alone many bins can contain fewer samples than there are rotameric states.

This estimation bias can affect the distributions of side-chain conformations across φ/ψ space.

This data limitation does not present a problem for our Dynameomics dataset.

 The results presented here are available online as part of our Structural Library of Intrinsic

Residue Propensities (SLIRP) at http://www.dynameomics.org. Both the backbone-dependent and

an update to the backbone-independent (Scouras & Daggett, 2011) rotamer libraries are available

for download. The updated backbone-independent library is also included in the most recent

119

release of Chimera (Pettersen et al., 2004), a popular molecular visualization and analysis software

package.

6.5 Methods and Materials

6.5.1 Side-chain Dataset

The backbone dependent rotamer library was generated from native state simulations in

the Dynameomics Project (Simms & Daggett, 2012; Simms et al., 2008), which represents the

diversity of structural folds in proteins (Day et al., 2003). Here we used the Dynameomics v2009

Release Set (Schaeffer et al., 2011) (http://www.dynameomics.org), which contains 807 unique

protein structures representative of 95% of known protein folds. We used ilmm (Beck & Daggett,

2004) (in lucem molecular mechanics) for all simulations in Dynameomics using explicit water

molecules (Beck et al., 2003; Levitt et al., 1997) and the Levitt et al. force field (Levitt et al.,

1995). Each structure was solvated and simulated for at least 51 ns at 25° C. Atom coordinates

were recorded in the Dynameomics data warehouse at every 1 ps (van der Kamp et al., 2010),

resulting in over 51,000 instances for each of the 93,642 residues and totaling over 4.8x109

samples. Additional details on the simulation protocols are available elsewhere (Beck & Daggett,

2004; Beck et al., 2008).

Rotamer populations, average dihedral angles, and standard deviations of those averages

were generated in 10° bins for each of the φ and ψ backbone angles. This resulted in a grid over

the backbone angles of 1296 bins, each 10° x 10° in size. The first nanosecond of simulation time

was not included in the calculations to allow for equilibration of the individual simulation systems.

We used the same rotamer definitions created for the Dynameomics backbone-independent library

(Scouras & Daggett, 2011).

120

6.5.2 Ramachandran Maps

 Ramachandran maps show the sample populations per backbone conformation of

individual residue types in Dynameomics. We used 180 x 180, 2° x 2° bins for pairs of φ and ψ

angles to emphasize the high-resolution sampling of our dataset. Secondary structure regions are

defined as αR (-100° ≤ φ ≤ -30°; (-80° ≤ ψ ≤ -5°), near-αR (-175° ≤ φ ≤ -100°; (-55° ≤ ψ ≤ -5°),

αL (5° ≤ φ ≤ 75°; (25° ≤ ψ ≤ 120°), β (-180° ≤ φ ≤ -50°; (80° ≤ ψ ≤ -170°), PIR (-180° ≤ φ ≤ -115°;

(50° ≤ ψ ≤ 100°), and PIIL(-110° ≤ φ ≤ -50°; (120° ≤ ψ ≤ 180°).

121

Table 6.1 Comparison of backbone-dependent rotamer library statistics.

Comparison of statistics for a PDB-based backbone-dependent library (Shapovalov & Dunbrack
Jr., 2011) and the Dynameomics backbone dependent library. A sample is defined as one instance
of a side-chain. Dynameomics has a much larger sampling of rotameric states and more thorough
coverage of φ/ψ space.

 PDB Dynameomics

Total samples 6.3 x 105 4.8 x 109

Average samples per
residue

2.9 x 104 2.4 x 108

Average number of bins
per residue

526 1128

Percentage of φ/ψ
coverage

40.5% 87.0%

Average Samples per
bin

55 221,668

Median Samples per
bin

5 125

122

Table 6.2 Independent and dependent rotamer probabilities per secondary structure type.

Residue χ1 χ2 χ3 χ4 Ind.
Dep.

α-Helix
R

Dep.
Near α-
Helix R

Dep.
α-Helix

L

Dep.
β-

Strand

Dep.
PIIL

Dep.
PIR

ARG g+ g+ g+ g+ 0.02% 0.02% 0.00% 0.00% 0.03% 0.00% 0.00%
ARG g+ g+ g+ t 0.03% 0.02% 0.00% 0.00% 0.03% 0.12% 0.01%
ARG g+ g+ g+ g- 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00%
ARG g+ g+ t g+ 0.01% 0.00% 0.00% 0.00% 0.01% 0.06% 0.00%
ARG g+ g+ t t 0.08% 0.01% 0.07% 0.00% 0.24% 0.18% 0.01%
ARG g+ g+ t g- 0.01% 0.00% 0.08% 0.00% 0.02% 0.02% 0.00%
ARG g+ g+ g- g+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ARG g+ g+ g- t 0.02% 0.00% 0.17% 0.01% 0.01% 0.01% 0.00%
ARG g+ g+ g- g- 0.01% 0.00% 0.01% 0.00% 0.01% 0.01% 0.00%
ARG g+ t g+ g+ 0.48% 0.10% 0.58% 0.03% 1.17% 0.77% 1.51%
ARG g+ t g+ t 0.86% 0.15% 0.98% 0.05% 1.75% 1.72% 1.65%
ARG g+ t g+ g- 0.08% 0.01% 0.10% 0.00% 0.24% 0.12% 0.07%
ARG g+ t t g+ 0.68% 0.24% 1.11% 0.01% 1.35% 1.15% 0.45%
ARG g+ t t t 0.64% 0.13% 0.72% 0.00% 1.86% 1.16% 0.76%
ARG g+ t t g- 0.39% 0.11% 0.25% 0.01% 0.96% 0.81% 0.22%
ARG g+ t g- g+ 0.08% 0.03% 0.05% 0.00% 0.20% 0.18% 0.01%
ARG g+ t g- t 0.70% 0.15% 0.69% 0.02% 1.70% 1.46% 0.71%
ARG g+ t g- g- 0.44% 0.25% 0.40% 0.01% 0.76% 0.87% 0.35%
ARG g+ g- g+ g+ 0.01% 0.00% 0.01% 0.00% 0.00% 0.01% 0.00%
ARG g+ g- g+ t 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ARG g+ g- g+ g- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ARG g+ g- t g+ 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00%
ARG g+ g- t t 0.01% 0.00% 0.02% 0.00% 0.05% 0.01% 0.04%
ARG g+ g- t g- 0.01% 0.00% 0.00% 0.00% 0.03% 0.01% 0.00%
ARG g+ g- g- g+ 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00%
ARG g+ g- g- t 0.02% 0.00% 0.01% 0.00% 0.03% 0.07% 0.00%
ARG g+ g- g- g- 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00%
ARG t g+ g+ g+ 0.31% 0.34% 0.31% 0.18% 0.33% 0.11% 0.36%
ARG t g+ g+ t 0.75% 0.89% 1.04% 0.73% 0.65% 0.34% 0.52%
ARG t g+ g+ g- 0.05% 0.06% 0.03% 0.00% 0.06% 0.02% 0.09%
ARG t g+ t g+ 0.58% 0.85% 0.64% 0.01% 0.38% 0.18% 0.64%
ARG t g+ t t 1.26% 1.87% 0.86% 0.36% 0.91% 0.44% 0.33%
ARG t g+ t g- 0.47% 0.59% 0.66% 0.18% 0.31% 0.36% 0.20%
ARG t g+ g- g+ 0.08% 0.14% 0.01% 0.00% 0.02% 0.00% 0.00%
ARG t g+ g- t 0.11% 0.14% 0.06% 0.12% 0.11% 0.05% 0.04%
ARG t g+ g- g- 0.27% 0.38% 0.60% 0.01% 0.09% 0.08% 0.17%
ARG t t g+ g+ 2.75% 4.36% 1.15% 0.27% 1.21% 1.07% 1.18%
ARG t t g+ t 3.37% 4.08% 1.45% 2.18% 3.43% 2.59% 2.49%
ARG t t g+ g- 0.62% 1.06% 0.17% 0.05% 0.23% 0.13% 0.07%
ARG t t t g+ 0.71% 0.70% 0.72% 0.38% 1.05% 0.58% 0.68%
ARG t t t t 1.92% 1.68% 1.34% 0.95% 3.43% 1.93% 2.36%
ARG t t t g- 1.05% 1.17% 0.40% 0.17% 1.53% 0.67% 2.23%
ARG t t g- g+ 0.45% 0.71% 0.25% 0.04% 0.21% 0.14% 0.13%

123

Residue χ1 χ2 χ3 χ4 Ind.
Dep.

α-Helix
R

Dep.
Near α-
Helix R

Dep.
α-Helix

L

Dep.
β-

Strand

Dep.
PIIL

Dep.
PIR

ARG t t g- t 2.22% 2.65% 2.31% 1.16% 2.49% 0.98% 2.23%
ARG t t g- g- 1.17% 1.24% 1.29% 0.99% 1.44% 0.82% 0.84%
ARG t g- g+ g+ 0.03% 0.02% 0.07% 0.00% 0.01% 0.00% 0.41%
ARG t g- g+ t 0.03% 0.03% 0.02% 0.03% 0.04% 0.01% 0.10%
ARG t g- g+ g- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ARG t g- t g+ 0.11% 0.12% 0.06% 0.10% 0.11% 0.10% 0.08%
ARG t g- t t 0.32% 0.28% 0.17% 0.05% 0.62% 0.36% 0.69%
ARG t g- t g- 0.05% 0.06% 0.08% 0.00% 0.07% 0.01% 0.11%
ARG t g- g- g+ 0.09% 0.07% 0.02% 0.33% 0.17% 0.04% 0.11%
ARG t g- g- t 0.41% 0.61% 0.40% 0.09% 0.19% 0.18% 0.09%
ARG t g- g- g- 0.06% 0.07% 0.05% 0.11% 0.08% 0.02% 0.19%
ARG g- g+ g+ g+ 0.17% 0.17% 0.39% 0.13% 0.11% 0.22% 0.06%
ARG g- g+ g+ t 0.44% 0.48% 0.75% 0.76% 0.33% 0.25% 0.29%
ARG g- g+ g+ g- 0.04% 0.00% 0.01% 0.03% 0.02% 0.02% 0.02%
ARG g- g+ t g+ 0.10% 0.04% 0.23% 0.11% 0.18% 0.09% 0.47%
ARG g- g+ t t 0.39% 0.30% 0.70% 0.54% 0.49% 0.45% 0.49%
ARG g- g+ t g- 0.11% 0.08% 0.16% 0.14% 0.18% 0.09% 0.14%
ARG g- g+ g- g+ 0.01% 0.00% 0.00% 0.00% 0.01% 0.02% 0.00%
ARG g- g+ g- t 0.11% 0.19% 0.03% 0.04% 0.04% 0.04% 0.01%
ARG g- g+ g- g- 0.03% 0.03% 0.04% 0.01% 0.02% 0.05% 0.05%
ARG g- t g+ g+ 4.67% 4.60% 4.29% 7.68% 4.41% 4.63% 4.24%
ARG g- t g+ t 11.72% 11.58% 11.42% 12.40% 10.64% 13.00% 13.00%
ARG g- t g+ g- 0.75% 0.54% 0.75% 0.82% 0.97% 1.12% 1.44%
ARG g- t t g+ 3.48% 3.01% 3.42% 4.45% 3.89% 4.42% 3.80%
ARG g- t t t 11.68% 13.08% 9.68% 11.80% 9.63% 10.09% 11.63%
ARG g- t t g- 4.00% 3.53% 4.12% 4.76% 4.46% 5.15% 3.25%
ARG g- t g- g+ 2.17% 2.70% 2.16% 1.40% 1.28% 1.26% 1.94%
ARG g- t g- t 10.92% 7.28% 13.41% 21.19% 13.18% 15.14% 15.87%
ARG g- t g- g- 11.06% 13.61% 9.02% 12.80% 6.36% 8.14% 8.45%
ARG g- g- g+ g+ 0.69% 1.00% 0.39% 0.28% 0.32% 0.43% 0.11%
ARG g- g- g+ t 0.83% 0.69% 2.04% 0.37% 0.90% 0.97% 0.82%
ARG g- g- g+ g- 0.13% 0.17% 0.13% 0.11% 0.09% 0.13% 0.03%
ARG g- g- t g+ 1.30% 1.08% 1.57% 1.75% 1.45% 1.52% 1.34%
ARG g- g- t t 3.76% 3.41% 5.46% 3.38% 3.46% 4.58% 2.67%
ARG g- g- t g- 2.16% 1.39% 4.65% 1.83% 3.79% 1.73% 3.60%
ARG g- g- g- g+ 0.40% 0.54% 0.20% 0.05% 0.21% 0.32% 0.06%
ARG g- g- g- t 3.64% 3.87% 3.67% 3.42% 2.64% 4.00% 2.32%
ARG g- g- g- g- 1.41% 1.23% 1.85% 1.12% 1.32% 2.19% 1.75%
ASN g+ Ng+ 0.15% 0.05% 0.10% 0.01% 0.39% 0.22% 0.11%
ASN g+ Og- 1.01% 0.22% 0.41% 0.02% 1.97% 3.25% 0.39%
ASN g+ Nt 0.87% 0.08% 0.23% 0.00% 1.65% 2.56% 0.34%
ASN g+ Og+ 2.38% 0.33% 1.14% 0.12% 4.00% 8.38% 1.32%
ASN g+ Ng- 0.25% 0.07% 0.23% 0.02% 0.38% 0.55% 0.40%
ASN g+ Ot 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

124

Residue χ1 χ2 χ3 χ4 Ind.
Dep.

α-Helix
R

Dep.
Near α-
Helix R

Dep.
α-Helix

L

Dep.
β-

Strand

Dep.
PIIL

Dep.
PIR

ASN t Ng+ 25.68% 16.67% 18.33% 46.06% 35.35% 26.84% 42.35%
ASN t Og- 20.39% 16.14% 18.43% 28.71% 24.46% 24.14% 24.29%
ASN t Nt 11.18% 15.45% 14.84% 6.76% 6.97% 4.76% 8.96%
ASN t Og+ 25.14% 39.03% 37.30% 7.15% 12.01% 11.21% 9.14%
ASN t Ng- 1.05% 0.95% 1.07% 0.95% 1.38% 1.02% 1.45%
ASN t Ot 0.19% 0.17% 0.14% 0.19% 0.29% 0.08% 0.45%
ASN g- Ng+ 0.62% 0.80% 0.41% 0.26% 0.59% 0.58% 0.39%
ASN g- Og- 5.27% 5.26% 3.17% 3.29% 4.72% 7.42% 5.27%
ASN g- Nt 2.09% 2.85% 0.82% 0.70% 1.42% 2.98% 0.80%
ASN g- Og+ 1.85% 1.12% 1.76% 1.93% 2.30% 3.11% 1.94%
ASN g- Ng- 1.83% 0.76% 1.54% 3.78% 2.08% 2.86% 2.36%
ASN g- Ot 0.05% 0.06% 0.07% 0.04% 0.04% 0.05% 0.04%
ASP g+ g+ 1.40% 0.16% 0.22% 1.16% 3.60% 3.69% 1.61%
ASP g+ t 0.30% 0.07% 0.00% 0.00% 0.84% 0.62% 0.45%
ASP g+ g- 2.56% 0.32% 0.36% 1.18% 5.48% 7.27% 3.57%
ASP t g+ 66.45% 74.31% 75.36% 75.20% 46.99% 39.72% 65.41%
ASP t t 7.38% 6.71% 7.48% 5.94% 8.41% 5.35% 11.24%
ASP t g- 12.81% 10.23% 10.67% 11.97% 19.14% 22.33% 11.95%
ASP g- g+ 2.10% 1.62% 1.09% 1.22% 3.97% 6.09% 1.41%
ASP g- t 1.48% 1.81% 0.67% 0.40% 1.78% 4.09% 0.33%
ASP g- g- 5.51% 4.77% 4.15% 2.92% 9.78% 10.84% 4.02%
CYH g+ 14.00% 2.83% 13.44% 1.69% 25.15% 20.62% 25.15%
CYH t 16.97% 23.23% 20.05% 13.83% 13.39% 10.25% 17.16%
CYH g- 69.03% 73.94% 66.51% 84.48% 61.46% 69.13% 57.69%
CYS g+ 13.64% 3.36% 17.44% 3.18% 18.21% 18.80% 15.92%
CYS t 30.17% 43.79% 29.08% 34.61% 28.03% 17.34% 39.64%
CYS g- 56.19% 52.85% 53.48% 62.21% 53.76% 63.86% 44.43%
GLN g+ g+ Ng+ 0.01% 0.00% 0.01% 0.00% 0.02% 0.03% 0.01%
GLN g+ g+ Og- 0.01% 0.00% 0.00% 0.00% 0.01% 0.02% 0.00%
GLN g+ g+ Nt 0.00% 0.00% 0.00% 0.00% 0.02% 0.02% 0.00%
GLN g+ g+ Og+ 0.01% 0.00% 0.00% 0.00% 0.04% 0.03% 0.00%
GLN g+ g+ Ng- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GLN g+ g+ Ot 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GLN g+ t Ng+ 0.52% 0.08% 0.60% 0.02% 1.46% 0.94% 1.39%
GLN g+ t Og- 0.51% 0.10% 0.61% 0.02% 1.41% 0.98% 1.27%
GLN g+ t Nt 0.29% 0.03% 0.26% 0.02% 0.98% 0.69% 0.66%
GLN g+ t Og+ 0.58% 0.09% 0.53% 0.03% 1.78% 1.29% 1.10%
GLN g+ t Ng- 0.42% 0.06% 0.34% 0.02% 1.29% 1.02% 0.57%
GLN g+ t Ot 0.08% 0.01% 0.08% 0.00% 0.28% 0.18% 0.16%
GLN g+ g- Ng+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GLN g+ g- Og- 0.01% 0.00% 0.00% 0.00% 0.04% 0.01% 0.01%
GLN g+ g- Nt 0.01% 0.00% 0.00% 0.00% 0.02% 0.01% 0.00%
GLN g+ g- Og+ 0.04% 0.02% 0.01% 0.00% 0.06% 0.13% 0.03%
GLN g+ g- Ng- 0.03% 0.01% 0.01% 0.00% 0.07% 0.07% 0.03%

125

Residue χ1 χ2 χ3 χ4 Ind.
Dep.

α-Helix
R

Dep.
Near α-
Helix R

Dep.
α-Helix

L

Dep.
β-

Strand

Dep.
PIIL

Dep.
PIR

GLN g+ g- Ot 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GLN t g+ Ng+ 0.45% 0.52% 0.36% 0.23% 0.55% 0.30% 0.38%
GLN t g+ Og- 0.20% 0.19% 0.13% 0.09% 0.33% 0.31% 0.15%
GLN t g+ Nt 0.12% 0.15% 0.10% 0.05% 0.11% 0.07% 0.09%
GLN t g+ Og+ 0.65% 0.86% 0.45% 0.26% 0.61% 0.26% 0.27%
GLN t g+ Ng- 0.04% 0.05% 0.03% 0.01% 0.02% 0.02% 0.02%
GLN t g+ Ot 0.01% 0.01% 0.01% 0.00% 0.01% 0.01% 0.00%
GLN t t Ng+ 1.45% 1.38% 1.19% 1.20% 2.32% 1.28% 1.94%
GLN t t Og- 1.74% 1.66% 1.70% 1.42% 2.67% 1.59% 2.21%
GLN t t Nt 1.10% 1.10% 1.07% 0.62% 1.53% 1.11% 1.30%
GLN t t Og+ 2.09% 2.05% 1.93% 1.11% 3.31% 1.68% 2.85%
GLN t t Ng- 1.43% 1.49% 1.41% 1.02% 1.91% 0.95% 1.88%
GLN t t Ot 0.26% 0.25% 0.22% 0.22% 0.45% 0.19% 0.37%
GLN t g- Ng+ 0.01% 0.01% 0.01% 0.00% 0.01% 0.00% 0.01%
GLN t g- Og- 0.14% 0.17% 0.13% 0.06% 0.16% 0.07% 0.21%
GLN t g- Nt 0.04% 0.04% 0.06% 0.02% 0.04% 0.03% 0.04%
GLN t g- Og+ 0.06% 0.04% 0.03% 0.04% 0.13% 0.08% 0.05%
GLN t g- Ng- 0.10% 0.11% 0.09% 0.07% 0.17% 0.07% 0.10%
GLN t g- Ot 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GLN g- g+ Ng+ 0.43% 0.48% 0.48% 0.47% 0.28% 0.40% 0.22%
GLN g- g+ Og- 0.83% 1.04% 0.32% 0.27% 0.42% 1.08% 0.16%
GLN g- g+ Nt 0.34% 0.39% 0.19% 0.09% 0.21% 0.56% 0.15%
GLN g- g+ Og+ 0.45% 0.39% 0.48% 0.63% 0.57% 0.52% 0.50%
GLN g- g+ Ng- 0.01% 0.01% 0.01% 0.01% 0.02% 0.01% 0.01%
GLN g- g+ Ot 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GLN g- t Ng+ 10.84% 10.87% 11.33% 11.81% 10.14% 11.29% 9.94%
GLN g- t Og- 17.59% 16.77% 18.73% 18.75% 17.49% 19.16% 18.26%
GLN g- t Nt 10.62% 10.96% 10.28% 11.12% 9.10% 10.43% 9.79%
GLN g- t Og+ 20.10% 22.67% 17.62% 21.51% 15.16% 15.54% 18.49%
GLN g- t Ng- 15.39% 14.85% 15.29% 20.08% 15.06% 15.71% 16.29%
GLN g- t Ot 2.22% 2.15% 2.05% 2.65% 2.30% 2.45% 2.11%
GLN g- g- Ng+ 0.20% 0.15% 0.40% 0.21% 0.23% 0.21% 0.26%
GLN g- g- Og- 3.83% 3.53% 6.54% 2.07% 3.89% 4.14% 4.13%
GLN g- g- Nt 0.93% 0.91% 1.23% 0.41% 1.01% 1.05% 0.84%
GLN g- g- Og+ 1.26% 1.44% 1.04% 1.25% 0.77% 1.23% 0.53%
GLN g- g- Ng- 2.54% 2.86% 2.57% 2.11% 1.50% 2.74% 1.19%
GLN g- g- Ot 0.04% 0.04% 0.06% 0.02% 0.02% 0.02% 0.02%
GLU g+ g+ g+ 0.09% 0.06% 0.10% 0.00% 0.08% 0.17% 0.02%
GLU g+ g+ t 0.01% 0.01% 0.00% 0.00% 0.00% 0.01% 0.00%
GLU g+ g+ g- 0.03% 0.01% 0.11% 0.00% 0.07% 0.04% 0.00%
GLU g+ t g+ 1.31% 0.35% 1.41% 0.12% 3.22% 2.54% 4.01%
GLU g+ t t 0.32% 0.06% 0.34% 0.02% 1.02% 0.65% 0.70%
GLU g+ t g- 1.12% 0.30% 1.12% 0.15% 2.70% 2.51% 2.80%
GLU g+ g- g+ 0.19% 0.12% 0.12% 0.00% 0.13% 0.58% 0.04%

126

Residue χ1 χ2 χ3 χ4 Ind.
Dep.

α-Helix
R

Dep.
Near α-
Helix R

Dep.
α-Helix

L

Dep.
β-

Strand

Dep.
PIIL

Dep.
PIR

GLU g+ g- t 0.03% 0.02% 0.01% 0.00% 0.02% 0.08% 0.00%
GLU g+ g- g- 0.16% 0.06% 0.28% 0.01% 0.16% 0.45% 0.11%
GLU t g+ g+ 1.69% 2.31% 1.00% 0.09% 1.06% 1.16% 0.44%
GLU t g+ t 0.34% 0.53% 0.19% 0.01% 0.12% 0.05% 0.04%
GLU t g+ g- 0.35% 0.37% 0.19% 0.13% 0.43% 0.43% 0.14%
GLU t t g+ 5.47% 6.50% 4.44% 2.64% 6.03% 2.92% 5.47%
GLU t t t 1.59% 1.85% 1.22% 0.62% 1.92% 0.96% 1.49%
GLU t t g- 6.06% 7.65% 4.73% 3.02% 5.65% 2.83% 4.55%
GLU t g- g+ 0.08% 0.08% 0.02% 0.07% 0.13% 0.10% 0.04%
GLU t g- t 0.05% 0.05% 0.04% 0.00% 0.08% 0.04% 0.00%
GLU t g- g- 0.71% 0.98% 0.30% 0.32% 0.48% 0.34% 0.17%
GLU g- g+ g+ 1.22% 1.06% 1.05% 1.82% 0.85% 1.96% 0.90%
GLU g- g+ t 0.48% 0.51% 0.45% 0.03% 0.28% 0.71% 0.19%
GLU g- g+ g- 1.12% 1.12% 0.61% 0.66% 0.61% 1.96% 0.30%
GLU g- t g+ 25.45% 22.78% 30.66% 35.60% 26.51% 28.18% 29.13%
GLU g- t t 12.73% 14.07% 10.60% 12.16% 11.47% 10.04% 11.02%
GLU g- t g- 29.69% 26.24% 35.19% 39.41% 31.70% 33.47% 34.64%
GLU g- g- g+ 1.48% 1.96% 0.86% 0.76% 0.78% 1.23% 0.78%
GLU g- g- t 1.28% 1.45% 0.95% 0.20% 1.27% 1.43% 0.80%
GLU g- g- g- 6.97% 9.51% 4.03% 2.18% 3.22% 5.16% 2.18%
HID g+ Ng+ 2.31% 0.57% 2.20% 0.12% 4.74% 3.30% 1.79%
HID g+ Cg- 1.46% 0.34% 1.82% 0.04% 3.52% 1.85% 0.37%
HID g+ Nt 0.04% 0.00% 0.00% 0.00% 0.03% 0.18% 0.01%
HID g+ Cg+ 2.59% 0.80% 3.08% 0.43% 5.61% 3.43% 0.74%
HID g+ Ng- 1.78% 0.49% 2.96% 0.32% 3.87% 2.23% 0.75%
HID g+ Ct 0.17% 0.00% 0.00% 0.01% 0.23% 0.72% 0.02%
HID t Ng+ 14.91% 20.48% 11.88% 11.56% 12.07% 12.35% 11.66%
HID t Cg- 3.48% 4.79% 3.13% 2.48% 3.22% 2.28% 3.62%
HID t Nt 0.90% 1.11% 0.61% 0.85% 0.89% 0.45% 1.70%
HID t Cg+ 9.56% 12.60% 9.20% 6.60% 7.83% 9.32% 4.80%
HID t Ng- 3.50% 4.00% 3.93% 4.53% 3.63% 2.53% 3.50%
HID t Ct 2.88% 3.66% 2.83% 2.84% 2.86% 1.17% 4.25%
HID g- Ng+ 7.93% 8.75% 8.04% 5.62% 7.84% 7.03% 9.46%
HID g- Cg- 16.32% 14.86% 19.19% 21.20% 12.69% 16.47% 18.85%
HID g- Nt 2.00% 2.99% 1.19% 1.15% 1.10% 1.90% 0.74%
HID g- Cg+ 4.51% 3.31% 4.24% 5.00% 5.95% 5.87% 5.71%
HID g- Ng- 20.04% 14.89% 19.85% 31.65% 19.26% 23.93% 26.37%
HID g- Ct 5.62% 6.35% 5.84% 5.59% 4.66% 4.98% 5.67%
HIE g+ Ng+ 2.62% 1.76% 6.11% 0.01% 3.85% 1.79% 2.01%
HIE g+ Cg- 0.81% 0.21% 2.19% 0.02% 2.35% 0.38% 0.51%
HIE g+ Nt 0.01% 0.00% 0.00% 0.00% 0.04% 0.01% 0.04%
HIE g+ Cg+ 2.58% 1.10% 2.38% 0.02% 4.19% 5.21% 3.65%
HIE g+ Ng- 4.68% 5.15% 6.54% 0.01% 3.50% 4.85% 4.32%
HIE g+ Ct 0.31% 0.25% 0.35% 0.00% 0.35% 0.16% 0.13%

127

Residue χ1 χ2 χ3 χ4 Ind.
Dep.

α-Helix
R

Dep.
Near α-
Helix R

Dep.
α-Helix

L

Dep.
β-

Strand

Dep.
PIIL

Dep.
PIR

HIE t Ng+ 13.17% 16.08% 8.79% 11.18% 13.62% 9.54% 11.11%
HIE t Cg- 3.04% 4.39% 2.18% 1.65% 2.71% 1.48% 2.20%
HIE t Nt 0.78% 1.06% 0.94% 0.44% 0.75% 0.11% 1.67%
HIE t Cg+ 12.90% 15.17% 12.68% 4.10% 10.70% 15.45% 5.34%
HIE t Ng- 6.73% 5.73% 4.09% 3.69% 9.45% 10.19% 5.57%
HIE t Ct 4.20% 2.85% 2.40% 5.88% 7.09% 4.52% 10.00%
HIE g- Ng+ 5.66% 6.31% 5.33% 5.58% 3.97% 6.41% 2.00%
HIE g- Cg- 16.20% 14.33% 24.23% 21.30% 13.42% 17.77% 18.41%
HIE g- Nt 1.98% 2.82% 2.19% 1.35% 1.01% 1.26% 1.20%
HIE g- Cg+ 4.02% 2.94% 4.66% 6.66% 5.92% 3.21% 8.56%
HIE g- Ng- 16.03% 13.90% 13.16% 34.39% 15.18% 13.64% 22.04%
HIE g- Ct 4.29% 5.96% 1.77% 3.72% 1.90% 4.01% 1.26%
ILE g+ g+ 0.75% 0.55% 0.71% 0.01% 0.55% 1.51% 0.08%
ILE g+ t 43.32% 22.67% 64.45% 14.42% 44.48% 71.16% 51.90%
ILE g+ g- 0.10% 0.02% 0.10% 0.02% 0.14% 0.22% 0.11%
ILE t g+ 0.98% 0.88% 1.56% 0.84% 1.25% 0.84% 1.09%
ILE t t 2.77% 1.20% 2.99% 0.19% 5.54% 2.81% 3.59%
ILE t g- 0.05% 0.05% 0.07% 0.01% 0.07% 0.04% 0.03%
ILE g- g+ 0.36% 0.15% 0.29% 1.09% 0.78% 0.28% 0.84%
ILE g- t 28.55% 39.47% 10.93% 50.03% 30.00% 11.80% 29.70%
ILE g- g- 23.12% 35.01% 18.90% 33.39% 17.20% 11.34% 12.67%
LEU g+ g+ 0.26% 0.02% 0.19% 0.01% 0.87% 0.45% 0.06%
LEU g+ t 0.19% 0.01% 0.17% 0.00% 0.69% 0.23% 0.22%
LEU g+ g- 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.00%
LEU t g+ 22.92% 24.48% 21.31% 15.88% 29.35% 14.13% 25.99%
LEU t t 3.26% 3.12% 3.25% 3.10% 5.29% 1.96% 4.36%
LEU t g- 1.19% 1.49% 1.64% 0.58% 1.12% 0.44% 0.82%
LEU g- g+ 4.18% 2.71% 4.14% 4.50% 7.46% 5.70% 6.65%
LEU g- t 66.49% 66.45% 67.31% 75.00% 54.11% 75.59% 61.27%
LEU g- g- 1.51% 1.71% 1.99% 0.92% 1.11% 1.49% 0.63%
LYS g+ g+ g+ g+ 0.01% 0.00% 0.00% 0.00% 0.03% 0.01% 0.00%
LYS g+ g+ g+ t 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g+ g+ g+ g- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g+ g+ t g+ 0.06% 0.03% 0.13% 0.00% 0.06% 0.14% 0.01%
LYS g+ g+ t t 0.01% 0.01% 0.01% 0.00% 0.01% 0.04% 0.00%
LYS g+ g+ t g- 0.08% 0.06% 0.06% 0.00% 0.10% 0.13% 0.00%
LYS g+ g+ g- g+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g+ g+ g- t 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g+ g+ g- g- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g+ t g+ g+ 0.22% 0.03% 0.22% 0.01% 0.62% 0.39% 0.24%
LYS g+ t g+ t 0.14% 0.02% 0.05% 0.00% 0.42% 0.31% 0.18%
LYS g+ t g+ g- 0.01% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00%
LYS g+ t t g+ 2.25% 1.03% 2.63% 0.18% 3.47% 4.10% 3.01%
LYS g+ t t t 0.43% 0.07% 0.12% 0.00% 1.50% 0.91% 0.27%

128

Residue χ1 χ2 χ3 χ4 Ind.
Dep.

α-Helix
R

Dep.
Near α-
Helix R

Dep.
α-Helix

L

Dep.
β-

Strand

Dep.
PIIL

Dep.
PIR

LYS g+ t t g- 1.21% 0.38% 1.80% 0.11% 2.68% 2.13% 1.32%
LYS g+ t g- g+ 0.01% 0.00% 0.03% 0.00% 0.01% 0.01% 0.01%
LYS g+ t g- t 0.13% 0.02% 0.05% 0.00% 0.34% 0.33% 0.14%
LYS g+ t g- g- 0.52% 0.15% 0.63% 0.02% 1.05% 1.16% 0.56%
LYS g+ g- g+ g+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g+ g- g+ t 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g+ g- g+ g- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g+ g- t g+ 0.02% 0.00% 0.01% 0.00% 0.09% 0.02% 0.05%
LYS g+ g- t t 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00%
LYS g+ g- t g- 0.02% 0.01% 0.08% 0.00% 0.04% 0.02% 0.02%
LYS g+ g- g- g+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g+ g- g- t 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g+ g- g- g- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS t g+ g+ g+ 0.22% 0.29% 0.27% 0.09% 0.14% 0.18% 0.09%
LYS t g+ g+ t 0.19% 0.31% 0.07% 0.07% 0.10% 0.04% 0.11%
LYS t g+ g+ g- 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS t g+ t g+ 2.02% 2.54% 1.93% 1.15% 1.84% 0.90% 2.72%
LYS t g+ t t 0.29% 0.42% 0.17% 0.09% 0.22% 0.12% 0.29%
LYS t g+ t g- 1.42% 1.78% 1.12% 0.64% 1.37% 0.89% 1.26%
LYS t g+ g- g+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS t g+ g- t 0.03% 0.06% 0.01% 0.01% 0.01% 0.00% 0.01%
LYS t g+ g- g- 0.04% 0.06% 0.02% 0.05% 0.02% 0.01% 0.07%
LYS t t g+ g+ 2.32% 3.04% 1.67% 1.05% 2.11% 1.21% 1.85%
LYS t t g+ t 0.87% 1.17% 0.26% 0.12% 1.01% 0.47% 1.07%
LYS t t g+ g- 0.03% 0.03% 0.02% 0.02% 0.02% 0.02% 0.01%
LYS t t t g+ 3.52% 3.72% 3.12% 1.69% 4.85% 2.31% 6.09%
LYS t t t t 0.77% 0.75% 0.37% 0.28% 1.39% 0.73% 0.87%
LYS t t t g- 4.81% 5.95% 3.14% 3.82% 4.90% 2.55% 5.87%
LYS t t g- g+ 0.02% 0.00% 0.00% 0.01% 0.06% 0.04% 0.01%
LYS t t g- t 0.36% 0.39% 0.27% 0.13% 0.47% 0.36% 0.27%
LYS t t g- g- 0.53% 0.54% 0.54% 0.31% 0.79% 0.35% 0.81%
LYS t g- g+ g+ 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS t g- g+ t 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS t g- g+ g- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS t g- t g+ 0.30% 0.40% 0.21% 0.16% 0.32% 0.12% 0.38%
LYS t g- t t 0.07% 0.08% 0.05% 0.04% 0.07% 0.03% 0.06%
LYS t g- t g- 0.52% 0.70% 0.40% 0.23% 0.48% 0.13% 0.78%
LYS t g- g- g+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS t g- g- t 0.06% 0.08% 0.05% 0.00% 0.05% 0.02% 0.04%
LYS t g- g- g- 0.15% 0.20% 0.08% 0.05% 0.18% 0.05% 0.15%
LYS g- g+ g+ g+ 0.11% 0.07% 0.11% 0.29% 0.12% 0.16% 0.08%
LYS g- g+ g+ t 0.03% 0.04% 0.04% 0.05% 0.03% 0.02% 0.03%
LYS g- g+ g+ g- 0.00% 0.00% 0.00% 0.02% 0.01% 0.01% 0.01%
LYS g- g+ t g+ 0.61% 0.58% 1.07% 0.46% 0.66% 0.54% 0.59%

129

Residue χ1 χ2 χ3 χ4 Ind.
Dep.

α-Helix
R

Dep.
Near α-
Helix R

Dep.
α-Helix

L

Dep.
β-

Strand

Dep.
PIIL

Dep.
PIR

LYS g- g+ t t 0.06% 0.05% 0.06% 0.07% 0.06% 0.05% 0.06%
LYS g- g+ t g- 0.39% 0.37% 0.48% 0.36% 0.44% 0.43% 0.45%
LYS g- g+ g- g+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g- g+ g- t 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LYS g- g+ g- g- 0.01% 0.02% 0.01% 0.00% 0.00% 0.01% 0.00%
LYS g- t g+ g+ 4.79% 4.56% 4.27% 4.89% 4.94% 5.49% 5.01%
LYS g- t g+ t 2.01% 2.35% 0.91% 1.42% 1.83% 2.15% 1.44%
LYS g- t g+ g- 0.09% 0.08% 0.04% 0.12% 0.08% 0.10% 0.21%
LYS g- t t g+ 14.99% 13.34% 16.48% 24.88% 14.52% 16.08% 15.10%
LYS g- t t t 4.96% 6.42% 2.50% 3.23% 3.49% 4.39% 2.88%
LYS g- t t g- 22.34% 23.16% 22.72% 25.24% 19.66% 21.00% 21.22%
LYS g- t g- g+ 0.19% 0.21% 0.20% 0.23% 0.09% 0.23% 0.09%
LYS g- t g- t 3.67% 4.51% 1.58% 2.64% 2.90% 3.72% 2.39%
LYS g- t g- g- 5.13% 3.62% 5.88% 12.35% 5.32% 6.37% 5.76%
LYS g- g- g+ g+ 0.26% 0.41% 0.18% 0.03% 0.09% 0.11% 0.07%
LYS g- g- g+ t 0.09% 0.15% 0.05% 0.02% 0.03% 0.04% 0.02%
LYS g- g- g+ g- 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00%
LYS g- g- t g+ 6.06% 6.26% 6.70% 4.86% 4.97% 6.88% 4.88%
LYS g- g- t t 1.04% 1.03% 1.24% 0.73% 0.96% 1.24% 0.68%
LYS g- g- t g- 7.64% 6.31% 13.94% 6.52% 7.44% 8.85% 9.19%
LYS g- g- g- g+ 0.02% 0.02% 0.01% 0.01% 0.01% 0.02% 0.01%
LYS g- g- g- t 0.66% 0.82% 0.56% 0.21% 0.54% 0.65% 0.33%
LYS g- g- g- g- 1.19% 1.25% 1.30% 1.02% 0.99% 1.20% 0.85%
MET g+ g+ g+ 0.07% 0.01% 0.08% 0.00% 0.20% 0.15% 0.00%
MET g+ g+ t 0.07% 0.01% 0.06% 0.00% 0.22% 0.12% 0.01%
MET g+ g+ g- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MET g+ t g+ 0.73% 0.06% 0.58% 0.06% 2.28% 1.37% 0.79%
MET g+ t t 0.76% 0.06% 0.72% 0.07% 2.40% 1.41% 0.53%
MET g+ t g- 0.79% 0.08% 1.09% 0.04% 2.13% 1.93% 0.47%
MET g+ g- g+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00%
MET g+ g- t 0.08% 0.00% 0.04% 0.00% 0.25% 0.23% 0.02%
MET g+ g- g- 0.07% 0.00% 0.03% 0.00% 0.32% 0.09% 0.02%
MET t g+ g+ 1.92% 2.44% 2.27% 0.98% 1.55% 1.11% 1.30%
MET t g+ t 2.17% 2.94% 2.33% 0.74% 1.60% 0.93% 1.33%
MET t g+ g- 0.09% 0.12% 0.07% 0.05% 0.06% 0.02% 0.09%
MET t t g+ 4.50% 5.14% 3.35% 2.06% 5.26% 3.07% 5.00%
MET t t t 2.53% 2.39% 2.98% 1.56% 3.71% 1.90% 3.90%
MET t t g- 2.55% 2.45% 2.55% 1.91% 3.79% 1.86% 3.67%
MET t g- g+ 0.01% 0.01% 0.01% 0.01% 0.01% 0.00% 0.02%
MET t g- t 0.52% 0.72% 0.65% 0.21% 0.31% 0.16% 0.46%
MET t g- g- 1.16% 1.80% 0.99% 0.15% 0.54% 0.29% 0.62%
MET g- g+ g+ 0.72% 0.33% 1.14% 1.47% 1.04% 1.27% 1.25%
MET g- g+ t 0.83% 0.65% 1.11% 1.09% 0.94% 1.08% 1.30%
MET g- g+ g- 0.03% 0.04% 0.02% 0.01% 0.01% 0.03% 0.01%

130

Residue χ1 χ2 χ3 χ4 Ind.
Dep.

α-Helix
R

Dep.
Near α-
Helix R

Dep.
α-Helix

L

Dep.
β-

Strand

Dep.
PIIL

Dep.
PIR

MET g- t g+ 16.40% 15.74% 14.54% 18.44% 17.15% 17.31% 18.70%
MET g- t t 15.82% 14.04% 13.67% 18.81% 17.96% 18.65% 19.40%
MET g- t g- 20.74% 18.91% 18.42% 31.16% 22.10% 22.81% 24.69%
MET g- g- g+ 0.94% 1.36% 0.57% 0.30% 0.29% 0.65% 0.16%
MET g- g- t 11.48% 12.98% 13.23% 9.51% 7.09% 10.57% 7.49%
MET g- g- g- 15.06% 17.72% 19.49% 11.37% 8.77% 13.00% 8.76%
PHE g+ g 6.47% 0.82% 7.04% 0.23% 15.79% 9.44% 3.27%
PHE g+ t 0.02% 0.00% 0.04% 0.00% 0.03% 0.03% 0.01%
PHE t g 39.54% 59.47% 39.89% 22.88% 25.89% 20.18% 30.21%
PHE t t 2.79% 3.67% 2.14% 3.15% 2.40% 0.89% 5.15%
PHE g- g 45.99% 29.79% 47.36% 69.48% 52.54% 63.16% 58.75%
PHE g- t 5.19% 6.25% 3.53% 4.26% 3.35% 6.30% 2.61%
PRO g+ 62.93% 58.04% 97.66% 0.00% 81.32% 65.62% 100.00%
PRO g- 37.07% 41.96% 2.34% 100.00% 18.68% 34.38% 0.00%
SER g+ 22.69% 14.33% 19.70% 1.91% 31.69% 34.91% 26.59%
SER t 2.05% 1.30% 1.98% 2.39% 3.91% 1.95% 4.36%
SER g- 75.25% 84.37% 78.31% 95.70% 64.40% 63.14% 69.04%
THR g+ 45.14% 26.50% 55.71% 13.97% 52.54% 61.66% 57.70%
THR t 1.71% 0.12% 0.93% 0.36% 4.84% 1.46% 4.78%
THR g- 53.15% 73.38% 43.36% 85.67% 42.63% 36.88% 37.52%
TRP g+ g+ 6.57% 4.05% 14.85% 0.05% 11.08% 5.98% 1.85%
TRP g+ t 0.51% 0.06% 0.16% 0.00% 0.86% 1.38% 0.37%
TRP g+ g- 3.94% 0.95% 5.75% 0.05% 8.22% 5.83% 3.66%
TRP t g+ 16.59% 22.66% 15.48% 10.69% 10.90% 12.05% 11.85%
TRP t t 10.53% 12.39% 8.80% 7.45% 11.17% 4.74% 22.51%
TRP t g- 13.28% 21.20% 10.92% 2.88% 8.47% 5.17% 6.12%
TRP g- g+ 7.19% 3.20% 8.98% 22.40% 9.20% 9.08% 16.93%
TRP g- t 14.98% 14.92% 12.51% 17.46% 11.15% 20.57% 11.69%
TRP g- g- 26.40% 20.56% 22.55% 39.01% 28.94% 35.20% 25.03%
TYR g+ g 8.27% 1.44% 8.56% 0.70% 18.84% 11.34% 4.28%
TYR g+ t 0.02% 0.00% 0.00% 0.00% 0.04% 0.04% 0.08%
TYR t g 37.99% 57.87% 35.08% 26.01% 24.75% 21.51% 25.61%
TYR t t 2.85% 3.88% 1.67% 2.40% 2.38% 0.98% 5.63%
TYR g- g 45.57% 30.22% 51.02% 68.31% 50.71% 59.62% 61.07%
TYR g- t 5.29% 6.60% 3.66% 2.58% 3.29% 6.52% 3.33%
VAL g+ 1.36% 0.71% 1.19% 0.18% 2.32% 1.41% 1.33%
VAL t 55.53% 81.10% 43.65% 89.09% 50.17% 26.78% 48.76%
VAL g- 43.11% 18.19% 55.16% 10.73% 47.51% 71.81% 49.91%

131

Figure 6.1 Dependent rotamer probabilities and example structures for valine.

The overall backbone-dependent distribution of valine residues in the Dynameomics 2009
release set is shown in the upper right-hand corner of the image with outlined secondary
structure regions. Bins are colored by percentage of maximum bin size as follows: 0 < light
gray ≤ 0.01, 0.01 < gray ≤ 0.05, 0.05 < green ≤ 0.2, 0.2 < blue ≤ 0.4, 0.4 < red ≤ 0.8, 0.8 <
black. Panels A, B and C represent the gauche+ (g+), trans (t), and gauche- (g-) rotamers of
valine, respectively. The plot on the left of each panel shows the distribution of backbone-
dependent rotamer probabilities versus backbone-independent probabilities. The plots range
from a 0% to 100% backbone-dependent probability on a logarithmic scale for improved
contrast. Example rotamer conformations, with their source protein structure, are shown on the
right portion of each panel and the numbers correspond to areas of interest in the distribution
plots.

132

Figure 6.2 Dependent probabilities per secondary structure for a selection of residues.

Dependent probabilities per secondary structure for a selection of residues. The plots on the left
depict the backbone-dependent distribution of the respective residue from simulations in the
Dynameomics 2009 release set. The overlays highlight the secondary structure regions. Bins
are colored by percentage of maximum bin size as follows: 0 < light gray ≤ 0.01, 0.01 < gray ≤
0.05, 0.05 < green ≤ 0.2, 0.2 < blue ≤ 0.4, 0.4 < red ≤ 0.8, 0.8 < black. The panels on the right
show the probabilities for the top three rotamers per secondary structure with the most probable
rotamer highlighted in red. The complete probabilities can be found in Table 6.2.

133

Chapter 7

RELATED AND CONTINUING WORK

 Scientific research extends beyond developing novel methods to test hypotheses and

answer difficult questions. An important aspect of research is generalizing the methods, models

and tools so that they can be reused and applied to new problems. Much of the research presented

in this dissertation has been designed with the intent of sharing the methods, software, and resulting

data. Here we present several ongoing projects that either extend the scope of the previously

described research or capitalize on the existing frameworks and software to accelerate the research

process. These works range in completeness from early stages of development to submitted

articles of the completed research. In particular, the research in Sections 7.1 and 7.2 has been

submitted for publication, the research in Section 7.3 has produced preliminary results, and the

research in Sections 7.4 and 7.5 is ongoing work.

7.1 Evaluation of Cross-Linking Distances using Dynameomics

This research was led by Erik D. Merkley and submitted for publication in late 2013

(Merkley, Rysavy, et al., 2013).

Protein complexes are difficult to model with conventional approaches due to their size,

dynamics, and complexity and can result in ambiguous models (Henderson et al., 2012; Lau et al.,

2012; H.-W. Wang et al., 2009). These models can benefit from integrative structural modeling,

the combination of computational protein structure prediction and experimentally derived data

(Schneidman-Duhovny et al., 2012; Ward, Sali, & Wilson, 2013). One particular experimental

method, chemical cross-linking mass spectrometry (Merkley, Cort, & Adkins, 2013; Sinz, 2006),

134

provides three-dimensional distance restraints that can inform protein modelling efforts by

specifying pairs of residue that are close to one another. However, there can be discrepancies

between the residues’ cross-linked distance and the distance calculated from a known structure.

For this analysis we investigate a commonly used cross-linker, bis(sulfosuccinimidyl)suberate,

which primarily targets lysine residues. We used simulations from the Dynameomics data

warehouse to investigate the change in distance between pairs of lysine residues due to native state

dynamics. These results in turn will inform researchers using cross-linking mass spectrometry to

model protein complexes. Additional information will be published by Merkley et al. (Merkley,

Rysavy, et al., 2013).

Distances between lysine-lysine atoms were calculated for all 807 native state simulations

in the Dynameomics data warehouse using the Dynameomics API presented in Chapter 4. Of

these 807 simulations, 766 contained two or more lysine residues. Distances were calculated

between both Cα-Cα and Nζ-Nζ atoms pairs for all the lysine-lysine residue pairs at 100 ps

intervals. This resulted in 4.6 x 107 distance measurements from 43,354 lysine residues using the

Dynameomics API.

7.2 Comparison of Native and Denatured State Protein Fold Space Coverage

This research was led by Clare Louise Towse and an article is near completion. This

manuscript will be submitted for publication in early 2014 (Towse, Rysavy, & Daggett, 2014).

Dynameomics is an ongoing project to study the dynamics of all known protein structure

folds (Beck et al., 2008). In order to characterize dynamics across protein fold space, a

quantification of the space was needed. Our previous approach defined protein fold space via a

consensus of classifications from three separate taxonomies: CATH (Pearl et al., 2003), Dali

135

(Holm & Sander, 1996), and SCOP (Andreeva et al., 2004). As a result, a comprehensive set of

807 protein structures, representing 95% of protein fold space, were selected for Dynameomics

dataset using this consensus view of fold space (Day et al., 2003; Schaeffer et al., 2011). To extend

this work, we implemented a recently introduced method called the Proteomic Ramachandran plot

(Carugo & Djinović-Carugo, 2013) to further assess the space. We are now able to visually depict

Dynameomics’ coverage of protein fold space and confirm that our 807 representative proteins

have comparable coverage to the PDB. Additionally, we can now detect and assess shifts in protein

fold space for unfolding proteins across all Dynameomics simulations. Detailed information on

this project will be published by Towse et al. (Towse et al., 2014).

The Dynameomics API (Chapter 4) was used to calculate and aggregate φ and ψ backbone

angles for experimental structures in a subset of the PDB. The PDB set was generated using

PISCES with a filter to only include X-ray crystal structures higher in resolution than 2.7 Å, less

than 95% sequence identity, and having an R-factor of less than 3 Å (Gouli Wang & Dunbrack Jr.,

2005; Guoli Wang & Dunbrack Jr., 2003). A command line interface program was created,

referencing the Dynameomics API assemblies, to process all 23,080 protein chains in this PDB

set.

7.3 Transition State Ensemble Prediction

Defining the process by which a chain of amino acids (polypeptide) forms into a functional,

three-dimensional protein structure is one of the biggest problems in molecular biology. This

process, described as the folding/unfolding pathway, can be classified into four distinct regions:

the native state, the transition state, the intermediate state, and the unfolded state (Fersht, 1999).

The transition state (TS) is of particular interest due to its role in the protein folding pathway;

136

extended polypeptides must pass through this state in order to fold into the correct native state

structure, which has even been demonstrated in silico (McCully, Beck, Fersht, & Daggett, 2010).

We have developed a novel method to automatically determine the TS of a protein folding pathway

in MD protein simulations using internal-coordinate based fragments. Using the Dynameomics

data warehouse, we provide the promising results of this informatics-driven, high-throughput

approach.

7.3.1 Introduction and Background

The Dynameomics data warehouse contains MD simulations of key protein structures

representing the majority of all known protein folds. Each of these proteins is simulated at both

25º C and 225º C to mimic an in-vitro environment and thermal denaturation, respectively. These

two types of simulations model the native state dynamics and protein folding/unfolding pathways.

Identification of the TS ensemble in the denaturing simulations will greatly improve our

understanding of the protein folding process. However, the Dynameomics data warehouse

contains nearly 11,000 simulations totaling over 100TB in data storage space. This is prohibitively

expensive for a manual or even semi-automatic processes (Toofanny, Jonsson, & Daggett, 2010);

an automated, high-throughput method is necessary to identify TS ensembles for each of the

protein simulations.

7.3.2 Methods

We identify TS ensembles by comparing a protein’s native state simulation with its

denaturing simulation. The starting protein structure is first automatically parsed to determine

regions of local structure, called secondary structure. Secondary structure elements are translated

137

into fragment representations using the inter- and intra-atomic distances between non-hydrogen

atoms in each fragment’s terminal amino acids. Other fragments are similarly generated between

these secondary structure elements, resulting in a collection of structurally representative

fragments. Using an internal-coordinate comparison of these fragment distances, we gather

statistics over the course of each simulation. The denaturing simulation statistics are analyzed

against the native state simulation statistics for significant differences, which we use to mark the

beginning and end of the TS.

The automated TS algorithm is based on internal coordinate (IC) fragment representations

(see Chapter 5). These fragments are described by 45 inter- and intra-distances calculated between

the heavy atoms in each terminal residue of the fragment (C, Cα, Cβ, N, O). Once obtained, these

45 distances can be compared between fragments using a root-mean-square deviation (RMSD)

calculation to produce a structure similarity metric. The internal coordinate RMSD (RMSDIC)

results in similar structure comparison values as a Cα RMSD comparison, but has the advantage

of being internally consistent; that is, RMSDIC calculations do not require structure alignments

whereas Cα RMSD alignments do.

The lack of a pre-comparison structural alignment is the primary reason this algorithm is

efficient. The method enables multiple, simultaneous fragment comparisons between protein

structures within a trajectory. Using this concept, we created an algorithm that divides a protein

structure into many fragments that are then compared over time. These comparisons are used to

detect local and global structural variations. The specific steps of the algorithm are described in

detail below.

138

1. Determine secondary structure regions. Using DSSP classifications from the

Dynameomics data warehouse, we automatically determine the initial secondary

structure assignments for the starting structure of the protein simulation. Specifically,

regions of three or more contiguous 3-10 helix, α-helix, or π-helix residues are

classified as α-helix structures. Regions of three or more contiguous parallel or anti-

parallel β-strand regions are classified as β-strand structures. All other regions are

classified as loop structures.

2. Assign fragments. Well-defined secondary structure elements (α-helix and β-strand

regions) are labeled as secondary structure fragments. Loop regions are labeled as loop

fragments. Fragments are also defined between each pair of well-defined secondary

structure elements using the center of the secondary structure elements as terminal

residues.

3. Generate native state statistics. Each fragment is compared to its starting structure

counterpart using IC comparisons at predetermined time intervals. This list of resulting

RMSDIC values is processed to ascertain the average variance, maximum variance, and

standard deviation of variance for each fragment assigned to the protein structure.

4. Generate unfolding statistics. Similar to Step 3, statistics are gathered for each

fragment over a predetermined region of the unfolding trajectory. Again, the average

variance, maximum variance, and standard deviation of variance for each fragment are

collected over this window.

5. Compare native state and unfolding statistics. The final step of the algorithm is to

compare the native state fragment statistics with the unfolding fragment statistics. The

139

overall concept is to normalize the standard deviations between the two sets of fragment

statistics to determine which fragments are most mobile. From this normalization,

maximum RMSDIC values for native-like fragments are generated. We then define the

start of the transition state when all fragments have surpassed their respective

maximum RMSDIC value.

7.3.3 Preliminary Results and Discussion

We analyzed the TS ensembles of five protein simulations that also have experimentally

determined data characterizing the TS structure, named Φ-values. We calculated the correlation

between the experimental Φ-values and computationally-derived S-values to assess the TS

ensembles’ agreement with experiment. Preliminary results show that the automated method

performs similarly to alternative TS-picking methods for four of the five simulations. However,

this novel method for choosing TS ensembles from MD simulations is fully-automated and much

less computationally-intensive. Refinement of the core algorithm should improve the results.

Furthermore, this technique of comparing fragments using internal-coordinate comparisons may

work well to determine other structural features in a protein folding/unfolding pathway as well.

7.4 Pentapeptide Structural Conformations

Kabsch and Sander previously reported on the relationship between sequence and structure

for peptides of five residues in length (pentapeptides) (W. Kabsch & Sander, 1984). They found,

among other results, that pentapeptides with identical structures can have different secondary

structure. This was an extremely important finding for protein structure prediction and modeling.

However, the study was performed over 20 years ago on a mere 62 small protein structures,

140

averaging approximately 160 residues per structure. We intend to mine the entirety of the native

state simulations from the Dynameomics data warehouse to update this study with dynamic protein

structure data and a more comprehensive set of proteins.

As described in Chapter 5, the fragment library schema is extensible. To address the

pentapeptide research endeavor, we have created fragment tables populated with both sequence

and structure data. Each row of these tables corresponds to a unique fragment and each row

contains a residue name, a DSSP structure code (Wolfgang Kabsch & Sander, 1983), and a φ-ψ

structure code per residue (Simms & Daggett, 2012). Using the Dynameomics API’s sequence

library, we have produced an overall structure assignment per fragment based on the residue

structure values. These additional analysis tables are not restricted to pentapeptides, but can be

generated for any length of fragment. Additionally, the analysis can be performed for

Dynameomics or PDB-based fragment libraries (with the exception that DSSP values will not be

available for PDB fragments).

Using the sequence software library in the Dynameomics API in conjunction with SQL,

we can now query fragment sequences from any fragment library and aggregate the results based

on secondary structure type. The sequence queries support basic Boolean logic for matching

residues, so wildcard operators and classifications of residues can be used on instead of only

strictly identical residue sequences.

7.5 D-Amino Acid Rotamer Library Comparison

Amino acids exist in one of two isomeric forms, L- (left-handed) or D- (right-handed)

chiral molecules, in which the side-chain atoms are mirrored structural conformations of one

another about the Cα backbone atom. All proteins in nature are formed from L-amino acids.

141

However, D-amino acids are prevalent in nature outside of protein structures and have many

important applications to areas such as antibiotic design (Wade et al., 1990) and peptide design

(Hopping, Kellock, Caughey, & Daggett, 2013). Since D-amino acids do not naturally occur in

proteins, there is very little experimental structural data on their conformations or dynamics. The

Dynameomics API presented in Chapter 4 was used to produce a D-amino acid rotamer library

from small peptide simulations containing guest D-amino acids. We plan to evaluate the D-amino

acid rotamer library and compare the contents with the L-amino acid rotamer library, described in

detail in Chapter 6.

142

BIBLIOGRAPHY

Andreeva, A., Howorth, D., Brenner, S. E., Hubbard, T. J. P., Chothia, C., & Murzin, A. G. (2004).
SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic
Acids Research, 32(suppl 1), D226–D229. doi:10.1093/nar/gkh039

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G.
(2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
Nature Genetics, 25(1), 25–29. doi:10.1038/75556

Baeten, L., Reumers, J., Tur, V., Stricher, F., Lenaerts, T., Serrano, L., … Schymkowitz, J. (2008).
Reconstruction of Protein Backbones from the BriX Collection of Canonical Protein
Fragments. PLoS Comput Biol, 4(5), e1000083. doi:10.1371/journal.pcbi.1000083

Bahar, I., & Jernigan, R. L. (1996). Coordination geometry of nonbonded residues in globular
proteins. Folding and Design, 1(5), 357–370. doi:10.1016/S1359-0278(96)00051-X

Beauchamp, K. A., Lin, Y.-S., Das, R., & Pande, V. S. (2012). Are Protein Force Fields Getting
Better? A Systematic Benchmark on 524 Diverse NMR Measurements. Journal of
Chemical Theory and Computation, 8(4), 1409–1414. doi:10.1021/ct2007814

Beck, D. A. ., Alonso, D. O. ., & Daggett, V. (2003). A microscopic view of peptide and protein
solvation. Biophysical Chemistry, 100(1–3), 221–237. doi:10.1016/S0301-
4622(02)00283-1

Beck, D. A. ., & Daggett, V. (2004). Methods for molecular dynamics simulations of protein
folding/unfolding in solution. Methods, 34(1), 112–120. doi:10.1016/j.ymeth.2004.03.008

Beck, D. A. C., Alonso, D. O. V., & Daggett, V. (2000). in lucem Molecular Mechanics (ilmm).

Beck, D. A. C., Jonsson, A. L., Schaeffer, R. D., Scott, K. A., Day, R., Toofanny, R. D., … Daggett,
V. (2008). Dynameomics: mass annotation of protein dynamics and unfolding in water by
high-throughput atomistic molecular dynamics simulations. Protein Engineering Design
and Selection, 21(6), 353–368. doi:10.1093/protein/gzn011

Benson, N. C., & Daggett, V. (2008). Dynameomics: Large-scale assessment of native protein
flexibility. Protein Science, 17(12), 2038–2050. doi:10.1110/ps.037473.108

Berman, H. M., Kleywegt, G. J., Nakamura, H., & Markley, J. L. (2013). How Community Has
Shaped the Protein Data Bank. Structure, 21(9), 1485–1491. doi:10.1016/j.str.2013.07.010

143

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E.
(2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242.
doi:10.1093/nar/28.1.235

Bernstein, F. C, Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., …
Tasumi, M. (1977). The protein data bank: A computer-based archival file for
macromolecular structures. Journal of Molecular Biology, 112(3), 535–542.

Bernstein, Frances C., Koetzle, T. F., Williams, G. J. B., Meyer Jr., E. F., Brice, M. D., Rodgers,
J. R., … Tasumi, M. (1977). The protein data bank: A computer-based archival file for
macromolecular structures. Journal of Molecular Biology, 112(3), 535–542.
doi:10.1016/S0022-2836(77)80200-3

Branden, C., & Tooze, J. (1991). Introduction to protein structure (Vol. 2). Garlnad New York.

Bromley, D., Anderson, P. C., & Daggett, V. (2013). Structural Consequences of Mutations to the
α-Tocopherol Transfer Protein Associated with the Neurodegenerative Disease Ataxia with
Vitamin E Deficiency. Biochemistry, 52(24), 4264–4273. doi:10.1021/bi4001084

Bromley, D., Rysavy, S. J., Su, R., Toofanny, R. D., Schmidlin, T., & Daggett, V. (2013). DIVE:
A Data Intensive Visualization Engine. Bioinformatics, 30(4), 593–595.
doi:10.1093/bioinformatics/btt721

Bromley, D., Rysavy, S. J., Su, R., Toofany, R. D., Schmidlin, T., & Daggett, V. (2013). DIVE -
A Data Intensive Visualization Engine.

Carugo, O., & Djinović-Carugo, K. (2013). A proteomic Ramachandran plot (PRplot). Amino
Acids, 44(2), 781–790. doi:10.1007/s00726-012-1402-z

Chang, G., Roth, C. B., Reyes, C. L., Pornillos, O., Chen, Y.-J., & Chen, A. P. (2006). Retraction.
Science, 314(5807), 1875–1875. doi:10.1126/science.314.5807.1875b

Choi, Y., & Deane, C. M. (2010). FREAD revisited: Accurate loop structure prediction using a
database search algorithm. Proteins: Structure, Function, and Bioinformatics, 78(6), 1431–
1440. doi:10.1002/prot.22658

Cino, E. A., Choy, W.-Y., & Karttunen, M. (2012). Comparison of Secondary Structure Formation
Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations. Journal
of Chemical Theory and Computation, 8(8), 2725–2740. doi:10.1021/ct300323g

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., … de Hoon, M. J.
L. (2009). Biopython: freely available Python tools for computational molecular biology
and bioinformatics. Bioinformatics (Oxford, England), 25(11), 1422–1423.
doi:10.1093/bioinformatics/btp163

144

Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., … Richardson,
D. C. (2007). MolProbity: all-atom contacts and structure validation for proteins and
nucleic acids. Nucleic Acids Research, 35(suppl 2), W375–W383.
doi:10.1093/nar/gkm216

Day, R., Beck, D. A. C., Armen, R. S., & Daggett, V. (2003). A consensus view of fold space:
Combining SCOP, CATH, and the Dali Domain Dictionary. Protein Science, 12(10),
2150–2160. doi:10.1110/ps.0306803

Dayhoff, M. O., & Schwartz, R. M. (1978). A model of evolutionary change in proteins. In in Atlas
of Protein Sequence and Structure (pp. 345–352). Washington, DC.

Dunbrack, R. L., & Cohen, F. E. (1997). Bayesian statistical analysis of protein side-chain rotamer
preferences. Protein Science, 6(8), 1661–1681. doi:10.1002/pro.5560060807

Dunbrack, R. L., & Karplus, M. (1994). Conformational analysis of the backbone-dependent
rotamer preferences of protein sidechains. Nature Structural & Molecular Biology, 1(5),
334–340. doi:10.1038/nsb0594-334

Dyson, H. J. (2011). Expanding the proteome: disordered and alternatively folded proteins.
Quarterly Reviews of Biophysics, 44(04), 467–518. doi:10.1017/S0033583511000060

Eicken, C., Sharma, V., Klabunde, T., Lawrenz, M. B., Hardham, J. M., Norris, S. J., & Sacchettini,
J. C. (2002). Crystal Structure of Lyme Disease Variable Surface Antigen VlsE of Borrelia
burgdorferi. Journal of Biological Chemistry, 277(24), 21691–21696.
doi:10.1074/jbc.M201547200

Fersht, A. (1999). Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and
Protein Folding. Macmillan.

Fetrow, J. S. (1995). Omega loops: nonregular secondary structures significant in protein function
and stability. The FASEB Journal, 9(9), 708–717.

Gaile, G. L., & Burt, J. E. (1980). Directional statistics. Norwich: Geo Abstracts.

Glazer, D. S., Radmer, R. J., & Altman, R. B. (2009). Improving Structure-Based Function
Prediction Using Molecular Dynamics. Structure, 17(7), 919–929.
doi:10.1016/j.str.2009.05.010

Goecks, J., Nekrutenko, A., Taylor, J., & The Galaxy Team. (2010). Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computational research
in the life sciences. Genome Biology, 11(8), R86. doi:10.1186/gb-2010-11-8-r86

Gore, S., Velankar, S., & Kleywegt, G. J. (2012). Implementing an X-ray validation pipeline for
the Protein Data Bank. Acta Crystallographica Section D Biological Crystallography,
68(4), 478–483. doi:10.1107/S0907444911050359

145

Gough, J. J., & Gough, K. J. (2001). Compiling for the .Net Common Language Runtime. Upper
Saddle River, NJ, USA: Prentice Hall PTR.

Hagarman, A., Mathieu, D., Toal, S., Measey, T. J., Schwalbe, H., & Schweitzer-Stenner, R.
(2011). Amino Acids with Hydrogen-Bonding Side Chains have an Intrinsic Tendency to
Sample Various Turn Conformations in Aqueous Solution. Chemistry – A European
Journal, 17(24), 6789–6797. doi:10.1002/chem.201100016

Henderson, R., Sali, A., Baker, M. L., Carragher, B., Devkota, B., Downing, K. H., … Lawson, C.
L. (2012). Outcome of the First Electron Microscopy Validation Task Force Meeting.
Structure, 20(2), 205–214. doi:10.1016/j.str.2011.12.014

Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences, 89(22), 10915–10919.

Holm, L., & Sander, C. (1996). Mapping the Protein Universe. Science, 273(5275), 595–602.
doi:10.1126/science.273.5275.595

Holmes, J. B., & Tsai, J. (2004). Some fundamental aspects of building protein structures from
fragment libraries. Protein Science, 13(6), 1636–1650. doi:10.1110/ps.03494504

Hopping, G., Kellock, J., Caughey, B., & Daggett, V. (2013). Designed Trpzip-3 β-Hairpin Inhibits
Amyloid Formation in Two Different Amyloid Systems. ACS Medicinal Chemistry Letters,
4(9), 824–828. doi:10.1021/ml300478w

Horrocks, I. (2008). Ontologies and the semantic web. Communications of the ACM, 51(12), 58–
67.

Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the Role of the Crystal
Environment in Determining Protein Side-chain Conformations. Journal of Molecular
Biology, 320(3), 597–608. doi:10.1016/S0022-2836(02)00470-9

Jones, E., Oliphant, T., & Peterson, P. (2001). SciPy: Open source scientific tools for Python.
Retrieved from http://www.scipy.org/

Kabsch, W., & Sander, C. (1984). On the use of sequence homologies to predict protein structure:
identical pentapeptides can have completely different conformations. Proceedings of the
National Academy of Sciences, 81(4), 1075–1078.

Kabsch, Wolfgang, & Sander, C. (1983). Dictionary of protein secondary structure: Pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–
2637. doi:10.1002/bip.360221211

Karplus, M., & Kuriyan, J. (2005). Molecular dynamics and protein function. Proceedings of the
National Academy of Sciences of the United States of America, 102(19), 6679–6685.

146

Kryshtafovych, A., Moult, J., Bales, P., Bazan, J. F., Biasini, M., Burgin, A., … Schwede, T.
(2013). Challenging the state-of-the-art in protein structure prediction: Highlights of
experimental target structures for the 10th Critical Assessment of Techniques for Protein
Structure Prediction Experiment CASP10. Proteins: Structure, Function, and
Bioinformatics, n/a–n/a. doi:10.1002/prot.24489

Larriva, M., & Rey, A. (2014). Design of a Rotamer Library for Coarse-Grained Models in Protein-
Folding Simulations. Journal of Chemical Information and Modeling, 54(1), 302–313.
doi:10.1021/ci4005833

Lau, P.-W., Guiley, K. Z., De, N., Potter, C. S., Carragher, B., & MacRae, I. J. (2012). The
molecular architecture of human Dicer. Nature Structural & Molecular Biology, 19(4),
436–440. doi:10.1038/nsmb.2268

Leszczynski, J. F., & Rose, G. D. (1986). Loops in globular proteins: a novel category of secondary
structure. Science, 234(4778), 849–855. doi:10.1126/science.3775366

Levitt, M., Hirshberg, M., Sharon, R., & Daggett, V. (1995). Potential energy function and
parameters for simulations of the molecular dynamics of proteins and nucleic acids in
solution. Computer Physics Communications, 91(1–3), 215–231. doi:10.1016/0010-
4655(95)00049-L

Levitt, M., Hirshberg, M., Sharon, R., Laidig, K. E., & Daggett, V. (1997). Calibration and Testing
of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids
in Solution. The Journal of Physical Chemistry B, 101(25), 5051–5061.
doi:10.1021/jp964020s

Lovell, S. C., Word, J. M., Richardson, J. S., & Richardson, D. C. (2000). The penultimate rotamer
library. Proteins: Structure, Function, and Bioinformatics, 40(3), 389–408.
doi:10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2

McCully, M. E., Beck, D. A. C., Fersht, A. R., & Daggett, V. (2010). Refolding the Engrailed
Homeodomain: Structural Basis for the Accumulation of a Folding Intermediate.
Biophysical Journal, 99(5), 1628–1636. doi:10.1016/j.bpj.2010.06.040

Merkley, E. D., Cort, J. R., & Adkins, J. N. (2013). Cross-linking and mass spectrometry
methodologies to facilitate structural biology: finding a path through the maze. Journal of
Structural and Functional Genomics, 14(3), 77–90. doi:10.1007/s10969-013-9160-z

Merkley, E. D., Rysavy, S. J., Kahraman, A., Hafen, R. P., Daggett, V., & Adkins, J. N. (2013).
Distance Restraints from Cross-Linking Mass Spectrometry: Mining a Molecular
Dynamics Simulation Database to Evaluate Lysine-Lysine Distances. Submitted for
Publication.

Microsoft Corporation. (2007a). .NET Framework (Version 3.5).

147

Microsoft Corporation. (2007b). SQL Server 2008 (Version 2008 Enterprise Edition R2 x64).

Microsoft Corporation. (2007c). Windows (Version 2008 Server R2 Enterprise Edition x64).

Montelione, G. T., Nilges, M., Bax, A., Güntert, P., Herrmann, T., Richardson, J. S., … Markley,
J. L. (2013). Recommendations of the wwPDB NMR Validation Task Force. Structure,
21(9), 1563–1570. doi:10.1016/j.str.2013.07.021

OSGi Service Platform, Release 3. (2003). IOS Press, Inc.

Otzen, D. E., & Fersht, A. R. (1995). Side-Chain Determinants of .beta.-Sheet Stability.
Biochemistry, 34(17), 5718–5724. doi:10.1021/bi00017a003

Outercurve Foundation. (2013). .NET Bio Framework (Version 1.1). Retrieved from
http://bio.codeplex.com/

Pearl, F. M. G., Bennett, C. F., Bray, J. E., Harrison, A. P., Martin, N., Shepherd, A., … Orengo,
C. A. (2003). The CATH database: an extended protein family resource for structural and
functional genomics. Nucleic Acids Research, 31(1), 452–455. doi:10.1093/nar/gkg062

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., &
Ferrin, T. E. (2004). UCSF Chimera--a visualization system for exploratory research and
analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084

Read, R. J., Adams, P. D., Arendall III, W. B., Brunger, A. T., Emsley, P., Joosten, R. P., … Zwart,
P. H. (2011). A New Generation of Crystallographic Validation Tools for the Protein Data
Bank. Structure, 19(10), 1395–1412. doi:10.1016/j.str.2011.08.006

Rysavy, S. J., Beck, D. A. C., & Daggett, V. (2014). Dynameomics: Data-Driven Methods and
Models for Utilizing Large-Scale Protein Structure Repositories for Improving Fragment-
Based Loop Prediction. In Preparation.

Rysavy, S. J., Bromley, D., & Daggett, V. (2014). DIVE: A Graph-Based Visual Analytics
Framework for Big Data. In Press.

Rysavy, S. J., Towse, C.-L., & Daggett, V. (2014). Dynameomics: Comparative Data-Driven
Analysis of the Correlation Between Rotameric States and Backbone Conformational
Propensities. In Preparation.

Schaeffer, R. D., Jonsson, A. L., Simms, A. M., & Daggett, V. (2011). Generation of a consensus
protein domain dictionary. Bioinformatics, 27(1), 46–54.
doi:10.1093/bioinformatics/btq625

Schneidman-Duhovny, D., Rossi, A., Avila-Sakar, A., Kim, S. J., Velázquez-Muriel, J., Strop, P.,
… Sali, A. (2012). A method for integrative structure determination of protein-protein
complexes. Bioinformatics, 28(24), 3282–3289. doi:10.1093/bioinformatics/bts628

148

Schroeder, W., Martin, K., & Lorensen, B. (1996). The Visualization Toolkit: An Object-Oriented
Approach to 3-D Graphics. Upper Saddle River, NJ: Prentice Hall.

Schwartz, R. M., & Dayhoff, M. O. (1978). Matrices for detecting distant relationships. In in Atlas
of Protein Sequence and Structure (pp. 353–358). Washington, DC.

Scouras, A. D., & Daggett, V. (2011). The dynameomics rotamer library: Amino acid side chain
conformations and dynamics from comprehensive molecular dynamics simulations in
water. Protein Science, 20(2), 341–352. doi:10.1002/pro.565

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. (2003).
Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome Research, 13(11), 2498–2504.

Shapovalov, M. V., & Dunbrack Jr., R. L. (2011). A Smoothed Backbone-Dependent Rotamer
Library for Proteins Derived from Adaptive Kernel Density Estimates and Regressions.
Structure, 19(6), 844–858. doi:10.1016/j.str.2011.03.019

Shehu, A., & Kavraki, L. E. (2012). Modeling Structures and Motions of Loops in Protein
Molecules. Entropy, 14(12), 252–290. doi:10.3390/e14020252

Simms, A. M., & Daggett, V. (2012). Protein simulation data in the relational model. The Journal
of Supercomputing, 62(1), 150–173. doi:10.1007/s11227-011-0692-3

Simms, A. M., Toofanny, R. D., Kehl, C., Benson, N. C., & Daggett, V. (2008). Dynameomics:
design of a computational lab workflow and scientific data repository for protein
simulations. Protein Engineering Design and Selection, 21(6), 369–377.
doi:10.1093/protein/gzn012

Sinz, A. (2006). Chemical cross-linking and mass spectrometry to map three-dimensional protein
structures and protein–protein interactions. Mass Spectrometry Reviews, 25(4), 663–682.
doi:10.1002/mas.20082

Skolnick, J., Zhou, H., & Brylinski, M. (2012). Further Evidence for the Likely Completeness of
the Library of Solved Single Domain Protein Structures. The Journal of Physical Chemistry
B, 116(23), 6654–6664. doi:10.1021/jp211052j

Smock, R. G., & Gierasch, L. M. (2009). Sending signals dynamically. Science, 324(5924), 198–
203. doi:10.1126/science.1169377

Søndergaard, C. R., Garrett, A. E., Carstensen, T., Pollastri, G., & Nielsen, J. E. (2009). Structural
Artifacts in Protein−Ligand X-ray Structures: Implications for the Development of
Docking Scoring Functions. Journal of Medicinal Chemistry, 52(18), 5673–5684.
doi:10.1021/jm8016464

149

Spronk, C. A. E. M., Nabuurs, S. B., Krieger, E., Vriend, G., & Vuister, G. W. (2004). Validation
of protein structures derived by NMR spectroscopy. Progress in Nuclear Magnetic
Resonance Spectroscopy, 45(3–4), 315–337. doi:10.1016/j.pnmrs.2004.08.003

Toofanny, R. D., & Daggett, V. (2012). Understanding protein unfolding from molecular
simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(3),
405–423. doi:10.1002/wcms.1088

Toofanny, R. D., Jonsson, A. L., & Daggett, V. (2010). A Comprehensive Multidimensional-
Embedded, One-Dimensional Reaction Coordinate for Protein Unfolding/Folding.
Biophysical Journal, 98(11), 2671–2681. doi:10.1016/j.bpj.2010.02.048

Toofanny, R. D., Simms, A. M., Beck, D. A., & Daggett, V. (2011). Implementation of 3D spatial
indexing and compression in a large-scale molecular dynamics simulation database for
rapid atomic contact detection. BMC Bioinformatics, 12(1), 334. doi:10.1186/1471-2105-
12-334

Towse, C.-L., & Daggett, V. (2012). When a domain is not a domain, and why it is important to
properly filter proteins in databases. BioEssays, 34(12), 1060–1069.
doi:10.1002/bies.201200116

Towse, C.-L., Rysavy, S. J., & Daggett, V. (2014). Dynameomics: Comparison of the Coverage
of Protein Fold Space by Native and Denatured States. In Preparation.

Van der Kamp, M. W., Schaeffer, R. D., Jonsson, A. L., Scouras, A. D., Simms, A. M., Toofanny,
R. D., … Daggett, V. (2010). Dynameomics: A Comprehensive Database of Protein
Dynamics. Structure, 18(4), 423–435. doi:10.1016/j.str.2010.01.012

Vanhee, P., Verschueren, E., Baeten, L., Stricher, F., Serrano, L., Rousseau, F., & Schymkowitz,
J. (2011). BriX: a database of protein building blocks for structural analysis, modeling and
design. Nucleic Acids Research, 39(suppl 1), D435–D442. doi:10.1093/nar/gkq972

Verschueren, E., Vanhee, P., van der Sloot, A. M., Serrano, L., Rousseau, F., & Schymkowitz, J.
(2011). Protein design with fragment databases. Current Opinion in Structural Biology,
21(4), 452–459. doi:10.1016/j.sbi.2011.05.002

Wade, D., Boman, A., Wåhlin, B., Drain, C. M., Andreu, D., Boman, H. G., & Merrifield, R. B.
(1990). All-D amino acid-containing channel-forming antibiotic peptides. Proceedings of
the National Academy of Sciences, 87(12), 4761–4765. doi:10.1073/pnas.87.12.4761

Wagner, G., Hyberts, S. G., & Havel, T. F. (1992). NMR Structure Determination in Solution: A
Critique and Comparison with X-Ray Crystallography. Annual Review of Biophysics and
Biomolecular Structure, 21(1), 167–198. doi:10.1146/annurev.bb.21.060192.001123

Wang, Gouli, & Dunbrack Jr., R. L. (2005). PISCES: recent improvements to a PDB sequence
culling server. Nucleic Acids Research, 33(suppl 2), W94–W98. doi:10.1093/nar/gki402

150

Wang, Guoli, & Dunbrack Jr., R. L. (2003). PISCES: a protein sequence culling server.
Bioinformatics, 19(12), 1589–1591. doi:10.1093/bioinformatics/btg224

Wang, H.-W., Noland, C., Siridechadilok, B., Taylor, D. W., Ma, E., Felderer, K., … Nogales, E.
(2009). Structural insights into RNA processing by the human RISC-loading complex.
Nature Structural & Molecular Biology, 16(11), 1148–1153. doi:10.1038/nsmb.1673

Ward, A. B., Sali, A., & Wilson, I. A. (2013). Integrative Structural Biology. Science, 339(6122),
913–915. doi:10.1126/science.1228565

Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., … Goble, C.
(2013). The Taverna workflow suite: designing and executing workflows of Web Services
on the desktop, web or in the cloud. Nucleic Acids Research, 41(W1), W557–W561.
doi:10.1093/nar/gkt328

Wu, S.-J., & Dean, D. H. (1996). Functional Significance of Loops in The Receptor Binding
Domain ofBacillus thuringiensisCryIIIA δ-Endotoxin. Journal of Molecular Biology,
255(4), 628–640. doi:10.1006/jmbi.1996.0052

Xiang, Z., & Honig, B. (2001). Extending the accuracy limits of prediction for side-chain
conformations. Journal of Molecular Biology, 311(2), 421–430.
doi:10.1006/jmbi.2001.4865

151

Appendix A

MOLECULAR DYNAMICS

Researchers commonly use molecular dynamics (MD) simulations (Toofanny & Daggett,

2012) to study protein structure and dynamics. Proteins are complex molecules consisting of amino

acids (residues). Contacts between the constituent atoms exist when they’re within a defined

distance from one another.

Proteins are responsible for much of the functional and structural activity in living tissue.

In the human body, protein function is involved in such areas as muscular structure, metabolism,

immune response, and reproduction. So, understanding how proteins work is critical to advancing

the science of human health. An interesting facet of protein biology is that structure equals

function; what a protein does and how it does it is intrinsically tied to its 3D structure (see Figure

A.1).

During an MD simulation, scientists simulate interatomic forces to predict motion among

the atoms of a protein and its environment (see Figure A.1). In most cases, the environment is

water molecules, although scientists can alter this to investigate different phenomena. The physical

simulation is calculated using Newtonian physics; at specified time intervals, the simulation state

is saved. This produces a trajectory, a series of structural snapshots reflecting the protein’s natural

behavior in an aqueous environment.

MD is useful for three primary reasons. First, like many in silico techniques, it allows

virtual experimentation; scientists can simulate protein structures and interactions without the cost

or risk of laboratory experiments. Second, modern computing techniques allow MD simulations

to run in parallel, enabling virtual high-throughput experimentation. Third, MD simulation is the

152

only protein analysis method that produces sequential time-series structures at both high spatial

and high temporal resolution. These high-resolution trajectories can reveal how proteins move, a

critical aspect of their functionality.

However, MD simulations can produce datasets considerably larger than what most

structural-biology tools can handle. As computers become more powerful, MD simulations’ size

and resolution are increasing. So, the logistical challenges of storing, analyzing, and visualizing

MD data require researchers to consider new analysis techniques.

 At the University of Washington’s Daggett laboratory, we’re studying protein dynamics as

part of the Dynameomics project (van der Kamp et al., 2010). This project aims to characterize

the dynamic behaviors and folding pathways of topological classes of all known protein structures.

So far, the project has generated hundreds of terabytes of data consisting of thousands of

simulations and millions of structures, as well as their associated analyses. We store these data in

a distributed SQL data warehouse. This warehouse currently holds 104 times as many protein

structures as the Protein Data Bank (Frances C. Bernstein et al., 1977), the primary repository for

experimentally characterized protein structures. Dynameomics is currently the largest database of

protein structures in the world.

153

Figure A.1 Solvating and simulating a protein using molecular dynamics.

(1) An all-atom depiction of a protein with a transparent surface. (2) The same protein solvated
and in a water box. (3) Three structures of interest selected from a trajectory containing more
than 51,000 frames. The red area shows the protein’s functional site and how it closes over time.

154

Appendix B

PROVISIONAL PATENTS COVERING METHODS FOR

EFFICIENT STREAMING OF STRUCTURED INFORMATION

B.1 Efficient Data Streaming into a Structured Ontology

B.1.1 Background

Big data is becoming increasingly present in many aspects of society and technology

including health care, science, industry and government. Many of these data are highly complex

and multi-dimensional and are best understood – and are made more valuable – when they are

analyzed in a structured manner.

Ontologies are a way of representing data in a structured way. Although not new per se,

the use of ontologies is growing in the presence of modern computer technologies; the semantic

web is a very compelling, yet nascent and underdeveloped, example of this.

We believe that these two paradigms of data interaction will only become more important.

Furthermore, we believe that these paradigms work well together and that using them in

combination represents a powerful and potentially widespread usage scenario. An example of this

is the field of visual analytics, the emerging field that uses interactive visual techniques to mine

big data. Below, we describe an algorithm and data flow architecture for efficiently accessing,

analyzing, visualizing and interacting with big data in an ontological structure.

155

B.1.2 Problem Invention Addresses

 Querying data from a big data source and representing them in a complex ontology can be

slow. Interactively traversing different subsets of the big data is therefore slow because building

each subset is slow. Unfortunately, traversing big data in an efficient manner is key to current and

future big data interaction paradigms such as visual analytics.

B.1.3 Solution Invention Provides

A pre-loader predicts user needs and preemptively caches frames (subsets) of data from the

big data source. A data broker maps from a data frame to a set of pins; when the user (or code

logic) switches from one data frame to another, all pins simultaneously re-map to the new frame.

The ontology, in turn, maps node and edge properties to the pins. When the pins switch data

frames, all ontology data is updated simultaneously.

B.1.4 Architecture Broken Down by Step

Please see Figure B.1. Step numbers refer to circled numbers in the figure.

1. Numerous kinds of big data resources, both dynamic and static.

2. Preemptive loading and caching of frames (subsets) of the big data. Caching can take

place locally or remotely. Caching could also be multi-tiered e.g. remote caching on a

cloud database feeds local caching in computer RAM. Preemptive loading can reduce

to on-demand loading of a specified frame if necessary.

3. Frames of cached data are stored where they can be quickly accessed e.g. computer

RAM.

156

4. Data frame selection logic e.g. user input, programmatic logic, etc. This step switches

the data pins to pull from a selected frame e.g. by changing an array pointer. This

process is runs in constant time.

5. Data selection pins pull from the currently selected frame. Pins all switch together.

6. The data ontology consisting of arbitrary node types and arbitrary edges. Node and

edge data and logic are fed by the pins. When the pins are switched, the data at every

location in the ontology are therefore simultaneously updated. This step is the key to

the invention.

7. Ontological data can be arbitrarily transformed before user interaction. Note that data

transformation can take place anywhere in the pipeline.

8. Because of the pin-linked ontology, fed by a fast-switched dataset, in turn fed by

preemptive data caching, complex and multi-dimensional data can be interacted with,

analyzed, and visualized quickly.

B.2 Automated Parsing of Object-Oriented Assemblies into Dynamically Linked
Ontologies

B.2.1 Background

Ontologies are a way of representing data in a structured way. This additional structure

provides a powerful framework to programmatically access and traverse the data in interesting and

semantically meaningful ways. Ontologies also enable formal analysis, which helps with semantic

correctness, interoperability, and can bring much needed insight.

Ontologies are most useful when applied to complex, multi-dimensional, and/or large

datasets. The development of data-specific, formal ontologies can be very difficult and may

157

require collaborations between domain specialists and informaticians. However, the work of

codifying these complex relationships is already implicitly done during the process of engineering

software. Therefore it is possible to recover a formal ontology from the software itself.

As computational problems become bigger, more complex, and more data-intensive,

ontologies will become necessary to gain insight from the data. Below we describe an invention

for leveraging the pre-existing investment in software engineering to create formal ontologies for

deep data analysis. This algorithm parses object-oriented assemblies into an automatically

generated ontology. These ontologies can be output as a static definition or dynamically linked

instances of the ontological structure.

B.2.2 Problem Invention Addresses

Modern computational problems increasingly require formal ontological analysis.

However, for most software formal ontologies do not exist. The generation of formal ontologies

is time consuming, difficult, and may require several experts. Ontologies are often implicitly

defined in code by software engineers, but there is currently no way to obtain a formal ontology

from these definitions. Furthermore, once an ontology is created, the legacy code must be modified

to interface with the ontology.

B.2.3 Solution Invention Provides

An object-parser automatically traverses the object-oriented data structures within a

provided assembly using code reflection. Using generalized rules to leverage the existing

ontological structure, a formal ontology is generated from the existing relationships of the data

structures within the code. The ontology is provided in either a static definition or by dynamically

158

linking the ontological structure to the object instance. The dynamically linked ontology allows

the underlying object instances to be modified through the context of the ontology without changes

to the assembly itself. Alternatively, metadata tags may be added to the assembly to provide a

richer ontology definition.

B.2.4 Architecture Broken Down by Step

Please see Figure B.2. Step numbers refer to circled numbers in the figure.

1. An object or set of objects of interest is provided to the object parser via a code

assembly.

2. Parameters are used to specify which semantic components will be parsed into an

ontology, such as private objects, protected objects, static objects and interfaces.

3. The complete object hierarchy is recursively traversed using code reflection and

expression trees. Using generalized, pre-defined rules, fields, properties, methods,

classes, interfaces, etc. are parsed into ontological components. A simplified example

is shown in Figure. This step is key to the invention.

4. The static definition is produced using a standardized ontology language.

5. An ontological structure is provided with dynamic links to the object(s) instance(s).

This linking is done using delegate methods and lambda functions. This step is key to

the invention.

159

Figure B.1 Steps for streaming data into a structured ontology.

160

Figure B.2 Steps for parsing assemblies into dynamically linked ontologies.

161

VITA

 Steven Joseph Rysavy received his Bachelor’s of Science Degree in Computer Engineering

from Iowa State University in 2002. He also earned a Master’s of Science Degree in Computer

Science from San Francisco State University in 2008. In 2014 Steven earned his Doctor of

Philosophy from the University of Washington’s in Biomedical and Health Informatics.

