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Abstract 

 

Clinical Phenotyping in the Prediction of Pediatric Acute Kidney Injury 

 

Michael G. Semanik 

 

Chair of the Supervisory Committee: 
Meliha Yetisgen, PhD, Associate Professor 

Biomedical and Health Informatics 

 

Predicting pediatric acute kidney injury is a difficult but important task.  Accurate prediction 
would allow preventative measures to be taken before kidney injury occurs, decreasing the 
morbidity and mortality associated with this disease.  This work describes the process of creating 
an “at risk for AKI” clinical phenotype from electronic health record data, which is then used to 
predict AKI in a retrospective data set.  This predictive model has reasonable performance, with 
an F1 score of 0.67 and AUC of 0.75.  In a subset of intensive care unit patients, the addition of 
unstructured data from clinician notes improves the model’s F1 score to 0.72 and AUC to 0.77, 
suggesting a possible role for natural language processing in refining clinical phenotypes.  
Interpreting these models requires careful consideration of the information contained within each 
variable – specifically, the extent to which that information describes biologic processes within a 
patient or systemic processes within a hospital.  Further evaluation of the use of clinical 
phenotyping in predicting pediatric AKI is necessary to confirm the utility of these models. 
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Chapter 1.  INTRODUCTION 

Hospital acquired acute kidney injury (AKI) is an increasingly common and costly problem 

amongst pediatric inpatients.  Although the hospital wide incidence of pediatric AKI has been 

difficult to determine, a review of the Kids’ Inpatient Database (KID) found that an AKI 

discharge diagnosis occurred at a rate of 3.9 cases per 1000 admissions, meaning AKI affects 

more than 10,000 children annually in the United States [1].   Incident rates are even higher 

within various pediatric inpatient subpopulations, ranging from 10% of pediatric ICU patients [2] 

to 56% of cardiac surgery patients [3].  Furthermore, children diagnosed with AKI have worse 

outcomes, with studies suggesting that median length of stay increases by a week, and that 

mortality risk increases 5 to 25-fold [1,4,5].  Thus, early identification and prevention of 

hospital-acquired AKI is extremely desirable. 

Since 2004, pediatric AKI has been diagnosed using criteria from one of four guidelines: 

RIFLE [6], pRIFLE [7], AKIN [8], or KDIGO [9].  Although the guidelines do not agree upon 

an exact definition of AKI, in general each characterizes AKI in terms of either a rising serum 

creatinine or a decrease in urine output.  This characterization has the benefit of simplicity and 

practicality, as both serum creatinine and urine output measurements are routinely ordered and 

easily interpreted by clinicians.  However, serum creatinine and urine output are not truly 

markers of injury, but rather indicate decreased renal function.  Indeed, by the time creatinine has 

risen or urine output fallen, the kidney damage has already been done.  This “late marker” 

problem has largely frustrated efforts to prevent AKI, and has spurred research and development 

into earlier, more injury-focused AKI biomarkers, such as NGAL [10], IL-18 [1], KIM-1 [12], 

and L-FABP [13].  Early results for these novel biomarkers are promising, but until they are 
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validated and accepted into clinical practice, providers remain frustratingly behind the curve 

when it comes to diagnosing and treating acute kidney injury. 

The work described here attempts to address this deficiency.  It is based on the hypothesis 

that the wealth of data routinely collected in electronic health records (EHRs) – specifically 

demographic information, procedural information, medications, laboratory values, vital signs, 

and the unstructured data found in clinician notes – can be combined to create an “at risk for 

AKI” clinical phenotype, which can then be used to predict which patients will develop AKI 

before functional markers change.   Earlier identification will hopefully improve prevention 

efforts and ultimately decrease the morbidity and mortality associated with AKI. 

 

Chapter 2.  RELATED WORK 

The use of modeling to predict clinical outcomes is not new in pediatric medicine.  Much work 

has been done in the pediatric intensive care population, where scores such as the PRISM-III 

[14] and PELOD-2 [15] combine clinical data to predict a patient’s mortality risk.  These scores 

generally perform quite well, with area-under-the-curve scores (AUCs) of 0.94 for the PRISM-

III and 0.93 for the PELOD-2. Other models, broadly termed Pediatric Early Warning Scores 

(PEWS), have been used in emergency departments to predict which patients need to be admitted 

to the hospital generally and/or to the ICU specifically.  A review of ten of these PEWS systems 

found that their sensitivities for pediatric ICU admission ranged from 0.61 to 0.94, with AUCs of 

0.60 to 0.82 [16].  The sensitivities and AUCs were lower for hospital admission (0.28 to 0.86 

and 0.56 – 0.68, respectively). 

There has also been a recent trend in using EHR data to characterize specific clinical 

outcomes, known as clinical phenotyping.  Chen et al provide an excellent review of the recent 
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advances in both supervised and unsupervised phenotype identification before presenting their 

own results, which use a latent Dirichlet allocation model to infer phenotypic types at two 

separate hospital systems [17].  The identified phenotypes were consistent within hospital 

systems, and showed less variance between hospital systems than ICD-9 coding, suggesting that 

clinical phenotyping may be a better way to categorize patients than reliance upon billing codes. 

Clinical phenotyping has utility beyond providing better discharge diagnoses, however.  

Researchers have begun to leverage phenotypes in predictive modeling – that is, they seek to 

create an “at risk for a disease” phenotype as opposed to a “had a disease” phenotype.  In 

pediatrics, much of this work has focused on sepsis, which like AKI is associated with 

significant morbidity and mortality.  One such “at risk for sepsis” phenotype for use in neonates 

had an AUC of 0.80 [18], whereas a similar model for use in the broader intensive care 

population had an AUC of 0.87 [19].  These successes in phenotyping sepsis suggest that this 

approach can be applied to other pediatric disease states as well. 

One such disease state is pediatric acute kidney injury.  However, clinical phenotyping of 

AKI is in its infancy, and the few studies that exist have generally been confined to the cardiac 

surgery subpopulation [20,21,22], which is unique in that the exact timing of AKI is known (it is 

presumed to be the time of cardiac bypass).  Thus, results from these studies may not be 

applicable the broader pediatric population.  However, a few studies have attempted to 

characterize AKI in the overall ICU population.  One such study develops the Renal Angina 

Index, which attempts to predict whether or not an ICU patient will develop severe AKI on day 3 

of hospitalization based on three features from ICU admission – the change in estimated 

creatinine clearance from baseline, the amount of fluid overload, and the use of vasopressors 

[23].  This sketches a rough outline of a potential “at risk for AKI” phenotype, but is still 



4 
 

 
 

difficult to apply to the pediatric inpatient population at large (in which determination of a 

baseline creatinine clearance and fluid overload may be difficult).  In the ICU population, 

however, the RAI performed well, with AUCs ranging from 0.74 – 0.81 in validation cohorts 

(although the positive predictive values of the score were lower, ranging from 0.18 – 0.39).  

More recently, a Pediatric Early AKI Risk Score was developed, also for use in the 

pediatric ICU population [24].  This phenotype involved seven variables, and demonstrated a 

slight improvement in AUC compared to the Renal Angina Index (AUCs in the validation cohort 

were 0.81 – 0.86).  However, positive predictive values were even lower (0.07).  Use of either 

tool in practice, then, would generate a large number of false positives, potentially limiting their 

clinical utility. 

An additional shortcoming of the above phenotyping methods is that they are time-

limited; both are designed to predict the likelihood of AKI on Day 3 of hospitalization using data 

from ICU admission, but neither has been validated at other time points.  Phenotypes that are 

temporally related to the event of interest rather than tied to a single point during a 

hospitalization would likely prove more robust in clinical practice.  Given the above studies’ 

temporal restrictions – as well as their population restrictions and difficulties with positive 

predictive values – better phenotypes of pediatric AKI risk are still required. 

In a general sense, creating a better AKI risk estimate requires identifying better 

predictors.  These predictors may exist as either structured data (i.e., data entered into discrete 

fields within an EHR, such as vital signs, lab values, demographic information, procedural 

information, and medication doses) or unstructured data (i.e., free-text data, such as the 

assessment and plan of a clinician’s note).  Each of the pediatric AKI risk scores described above 

use some form of structured data, but contain only a few predictors (three for the RAI and seven 
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for the Pediatric Early AKI Risk Score).  Therefore, additional structured predictors, the 

incorporation of unstructured predictors, or some combination thereof could create a more 

granular “at risk for AKI” phenotype with better predictive performance. 

However, utilizing unstructured data is not straightforward, and requires at least some 

basic natural language processing (NLP).  For AKI this is somewhat uncharted territory, as there 

have been no studies evaluating the use of NLP in predicting AKI in either adults or children.  

Fortunately, NLP has shown promise in other medical conditions: one study utilizing both 

structured and unstructured EHR data successfully identified multiple sclerosis patients with a 

sensitivity of 82.7% and positive predictive value of 92.1% (though determination of disease 

severity proved more difficult, in that the model’s predicted severity scores had only moderate 

correlation – R2 = 0.38 – with the true severity scores) [25].  Another study was able to show 

excellent prediction of ventilator associated pneumonia among adult ICU patients using NLP of 

chest x-ray reports obtained prior to the event of interest, with a sensitivity of 91.4% and positive 

predictive value of 77.2% [26].  Therefore, there is reason to believe that the use of unstructured 

data may augment an AKI prediction system as well. 

The aims of this work, then, are three-fold: firstly, to use structured clinical data to 

identify a robust “at risk for AKI” phenotype for all pediatric inpatients; secondly, to evaluate the 

performance of that phenotype in predicting acute kidney injury; and finally, to add unstructured 

data from clinician notes to improve the phenotype’s predictive performance.  The outcome will 

hopefully be a well-defined clinical phenotype with enhanced clinical utility (i.e., high sensitivity 

and positive predictive value) that can be used at nearly any point during a patient’s hospital 

stay. 
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Chapter 3.  METHODS 

The following provides details regarding the dataset used in this work, as well as the 

development of the models used to test the predictive performance of an “at risk for AKI” 

phenotype. 

3.1     STUDY POPULATION 

Patients admitted to Seattle Children’s Hospital from 3/1/2012 – 2/28/2015 who met the 

following criteria were included in the dataset: 

1) Patients had at least 2 creatinine values recorded in the Seattle Children’s Hospital 
electronic health record between 9/1/2011 and 2/28/2015; 

2) Patients were at least 12 months of age; 
3) Patients were admitted to the hospital for at least 72 hours; 
4) Patients were not admitted to the Inpatient Psychiatric Unit or Rehabilitation Unit; 
5) Patients did not have a diagnosis of end-stage renal disease (ICD-9-CM codes 585.6, 

V45.11, V56.31, V56.32, V56.1, V56.2) or renal transplant (ICD-9-CM codes V42.0, 
996.81). 

If a patient was admitted to the hospital multiple times during the study period, only data from 

the first hospitalization was used. 

Electronic clinician notes were only available for ICU patients; therefore, admission 

notes and progress notes were obtained for a randomly selected subset of ICU patients.  Because 

these patients were part of the original dataset, they also met the above inclusion criteria. 

3.2     DEFINING AKI 

Baseline creatinine was defined as the lowest creatinine within the period ranging from 6 months 

prior to hospital admission to 14 days after hospital admission. 

Several definitions of AKI were used, all based upon KDIGO guidelines [8].  The first, 

termed “KDIGO Stage 1”, defines AKI as either a creatinine greater than or equal to 1.5 times 
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the baseline creatinine, or an absolute increase in creatinine of 0.3 mg/dL, whichever is lower.  

The second, “Modified KDIGO Stage 1”, uses only the absolute increase in creatinine of 0.3 

mg/dL as the AKI cutoff.  The third, “KDIGO Stage 2”, defines AKI as a creatinine greater than 

or equal to twice the baseline.  Finally, “KDIGO Stage 3” defines AKI as greater than or equal to 

thrice the baseline.  Urine output-based definitions of AKI were not used due to incomplete urine 

output records. 

3.3     MODEL DESIGN 

Because AKI is defined as an increase in serum creatinine, the ultimate question this work 

attempts to answer is “which variables are associated with an increased serum creatinine?”  To 

be useful, these variables have to be obtained in a discrete timeframe – a Data Collection 

Window – that must occur some length of time – the Prediction Window – before the creatinine 

in question is measured.  This concept is demonstrated in Figure 3.1. 

 

Figure 3.1.  The data associated with each creatinine value is collected during a 24 – 48 hour 
Data Collection Window, which occurs at least 24 – 48 hours before the creatinine value’s 
timestamp (the Prediction Window).  The length of the Data Collection Window and the 
Prediction Length always sum to 72 hours. 

Although it is generally agreed that serum creatinine is a “late marker” of injury, how late 

remains unclear, so three models were created in which the Prediction Length was variably set to 
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24, 36, or 48 hours.  The length of the Data Collection Window also varied between 24, 36, and 

48 hours, such that the total amount of time considered always summed to 72 hours.  This 

ensured that the same creatinine values were considered in each model.  Finally, to be included 

in the dataset, a creatinine value’s Data Collection Window could extend to no more than 12 

hours before hospital admission (which allowed data from emergency department visits prior to 

hospital admission to be captured). This restriction effectively excluded any creatinine values 

obtained prior to 60 hours of hospitalization. 

Each creatinine value in the dataset was treated as an individual case.  However, because 

multiple creatinine values are often obtained for an individual patient, a distinction must be made 

between patient-level variables (those variables which have the same value for every creatinine 

associated with that patient), and creatinine-level variables (those variables which differ in value 

for each creatinine associated with a patient).  Of the 147 structured variables considered, only 

four were patient-level variables: age (at hospital admission), gender, admitting service, and 

whether or not the patient had experienced an AKI episode in the six months prior to hospital 

admission (termed “Prior AKI”).  The remaining 143 variables were specific to an individual 

creatinine value, and can be subdivided into five categories – medications, procedures, labs, vital 

signs, and other – that are further delineated in Table 4.2 and Appendix A.  As mentioned, 

unstructured variables were obtained only for a subset of ICU patients, and are considered in the 

“Unstructured Data Models” section below. 

3.4     STATISTICS 

Because every creatinine value was considered as a separate case, it is possible for a single 

patient to have multiple creatinine values consistent with AKI.  For example, consider the 

following patient: 
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Patient AB 
Date of Admission: 2/1/2001    Date of Discharge: 2/8/2001 
Baseline creatinine (from 1/1/2001): 0.3 

 
Creatinine Values: 

 2/1/2001 2/2/2001 2/3/2001 2/4/2001 2/5/2001 2/6/2001 2/7/2001 
Serum 
Cr 

0.4 0.4 0.6 0.7 0.4 0.4 0.7 

AKI?* n/a** n/a** Yes Yes No No Yes 
* Stage 1 KDIGO Criteria are used to define AKI for the purposes of this example. 
** These values are not considered because their Data Collection Windows do not fall within 12 
hours of hospital admission. 

As can be seen, multiple creatinine values meet AKI criteria and should be classified as 

such.  However, there is almost certainly a clinical distinction between new-onset AKI (that is, 

the first creatinine values crossing the AKI threshold, such as the values from 2/3/2001 and 

2/7/2001 in this example) and ongoing AKI (subsequent creatinine values that meet criteria, such 

as the value from 2/4/2001).  To account for this, a binary interaction term was introduced.  This 

term was positive if the creatinine value in question had no other elevated creatinine value 

obtained during the Data Collection Window (i.e., the creatinine value represented new-onset 

AKI).  The aforementioned 147 variables were each multiplied by this interaction term, 

producing a total of 294 variables that were then used as predictors in the final structured data 

models.  Because the interaction term was binary, 147 variables applied to all creatinine values 

and 147 applied only to new-onset AKI.  Any missing values in the dataset were imputed using 

medians. 

Patients were randomly stratified into a training set (75% of the data) and a test set (the 

remaining 25%) using a patient-level identifier.  All statistical analyses were performed in R, 

using the glmnet package.  Specifically, an elastic-net logistic regression (alpha = 0.5) was 

performed, with AKI as the response variable and the aforementioned 294 variables as 
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predictors.  10-fold cross-validation was used on the training set.  Models were tuned to 

maximize the F1 score (the harmonic mean of the sensitivity and positive predictive value).  The 

maximum F1 score was targeted to ensure that the model valued positive prediction value and 

sensitivity over specificity.  This was felt to be important because AKI is a relatively rare event; 

with rare events, it is relatively easy to generate a high specificity but more difficult to produce a 

high positive predictive value.   Targeting high sensitivities and positive predictive values also 

ensures that the number of false negatives and false positives are minimized. 

Because there is no standard way of calculating 95% confidence intervals for odds ratios 

produced by elastic-net logistic regression, a standard logistic regression was run with the 

features selected by the elastic-net, and these odds ratios and 95% confidence intervals are 

reported.  Values are considered significant at p < 0.05. 

Unstructured models were constructed and analyzed in the same way, and are described 

in more detail below. 

3.5     UNSTRUCTURED DATA MODELS 

As mentioned, electronic clinician notes were obtained for a random subset of ICU patients (the 

only patient population for which clinician notes was available during the timespan of the study).  

Two types of electronic notes were considered: ICU admission notes and ICU progress notes.  

For the purposes of generating features, however, both admission notes and progress notes were 

treated as single corpus.  This corpus was processed as follows: 

1) Deidentification was performed using the National Library of Medicine’s NLM-Scrubber 
[27]; 

2) The billing information contained in each note was removed; 
3) Section headers were removed (for a full list, please see Appendix B); 
4) Documents were chunked into sentences using the Punkt tokenizer from the Natural 

Language Toolkit (NLTK) for Python; 
5) Stop words were removed (for a full list, please see Appendix B); 
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6) Punctuation was removed using regular expressions, and all words were converted to 
lower case; 

7) Unigrams, bigrams, and trigrams were generated, and their frequency tabulated; 
8) Any unigrams, bigrams, or trigrams occurring in less than 2.5% of patients were excluded 

(the 2.5% threshold gave the best performance, results for other thresholds are reported in 
Appendix C); 

9) Feature selection was performed and n-grams ranked using chi-squared.  Ultimately the 
top 225 n-grams were included in the final model, as this threshold provided the best 
performance.  The performances of other thresholds are reported in Appendix C. 

The above steps, with the exception of deidentification, were performed in Python 2.7.11.  

The frequencies associated with each n-gram were then converted to a binary variable that 

indicated whether or not that n-gram occurred in notes associated with each individual creatinine 

value.  N-gram data was then imported into R, where it was combined with the structured 

variables described above to create a “combination model” consisting of both structured and 

unstructured data.   Once again, an interaction variable was associated with each of the selected 

n-grams to differentiate between new-onset and ongoing AKI.  Cases remained divided into the 

same training (75%) and test (25%) sets used for generation of the structured models.  The same 

elastic-net logistic regression model (alpha = 0.5) was run, with AKI as the outcome and the 

structured variables and n-grams as predictors.  10-fold cross-validation was once again 

performed on the training set, and models were once again tuned to maximize F1 scores.  Odds 

ratios and 95% confidence intervals are reported from a standard logistic regression model using 

the features selected from the elastic-net, and are considered significant at p < 0.05. 

 

Chapter 4.  RESULTS 

Results of both purely structured data models and models consisting of structured and 

unstructured data are reported in this section. 
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4.1     STRUCTURED DATA MODEL RESULTS 

The best performing structured model was that which had a Data Collection Window length of 

48 hours, a Prediction Window length of 24 hours, and used KDIGO Stage 1 criteria to define 

AKI.  The results of this model will be discussed here, and details regarding other models can be 

found in Appendix D.  A total of 2428 patients with 10636 creatinine values were included in 

this model, of which 3565 (33.5%) had AKI using KDIGO Stage 1 criteria.  Table 4.1 compares 

several characteristics of the training and test sets; in general, the two sets were similar with 

regards to the proportion of overall creatinine values meeting AKI criteria, the proportion of 

new-onset AKI values, and the proportion of ongoing AKI values.   The two sets also had similar 

mean ages (10.1 years for the training set, 9.6 years for the test set) and male to female ratios 

(57.0% male for both).  The mean age of the overall cohort was 10.0 years, and 57.0% of the 

overall cohort was male. 

Table 4.1.  Summary of training and test sets. 

 Mean Age % Male % AKI % AKI New-
onset 

% AKI Ongoing 

Training 
(n = 8121) 

10.1 years 57.0% 33.4% 13.1% 20.3% 

Test 
(n = 2515) 

9.6 years 57.0% 33.8% 12.2% 21.6% 

 

The structured variables used as predictors in each model and the percent of missing data 

for each variable are presented in Table 4.2.  The only variable with greater than 50% missing 

values was glucose standard deviation, at 55.5%.  On average, only 6.3% of the dataset was 

missing (and therefore imputed as median values).  For labs and vital signs, if the mean values 

were missing, the values for “% High” and “% Low” were classified as missing as well. 
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Table 4.2.  Summary of variables in the AKI prediction model.  The number and percent of 
missing values are reported for the dataset with a 48 hour Data Collection Window and 24 hour 
Prediction Window; there are minor differences in the other models. 

Variable # Missing (%) Variable # Missing (%) 
Medications (36)  Hematocrit  

Acyclovir 0 (0.0%) Mean 2095 (19.7%) 
Aspirin 0 (0.0%) Std. Dev. 4451 (41.8%) 
Bleomycin 0 (0.0%) % High 2095 (19.7%) 
Captopril 0 (0.0%) % Low 2095 (19.7%) 
Carboplatin 0 (0.0%) Platelet Count  
Ceftazidime 0 (0.0%) Mean 2329 (21.9%) 
Cisplatin 0 (0.0%) Std. Dev. 4674 (43.9%) 
Cyclosporine 0 (0.0%) % High 2329 (21.9%) 
Cytarabine 0 (0.0%) % Low 2329 (21.9%) 
Enalapril 0 (0.0%) Other  
Epinephrine 0 (0.0%) Vanc level mean 531 (0.05%) 
Furosemide 0 (0.0%) Vanc level % High 531 (0.05%) 
Ganciclovir 0 (0.0%) Gent level mean 0 (0%) 
Gentamicin 0 (0.0%) Gent level % High 0 (0%) 
Ibuprofen 0 (0.0%) Tacro level mean 72 (0.7%) 
Indomethacin 0 (0.0%) Cyclosporine level 

mean 
111 (1.0%) 

Ioversol 0 (0.0%) Electrolytes frequency 1576 (14.8%) 
Ketorolac 0 (0.0%) CBC frequency 2351 (22.1%) 
Lisinopril 0 (0.0%) Vital Signs (47)  
Losartan 0 (0.0%) Heart Rate  
Meloxicam 0 (0.0%) Mean 142 (1.3%) 
Mesalamine 0 (0.0%) Std. Dev. 145 (1.4%) 
Methotrexate 0 (0.0%) % High 142 (1.3%) 
Naproxen 0 (0.0%) % Low 142 (1.3%) 
Neomycin 0 (0.0%) Mean change 72 (0.7%) 
Pamidronate 0 (0.0%) Std. Dev. Change 76 (0.7%) 
piperacillin-
tazobactam 

0 (0.0%) % High change 72 (0.7%) 

Sirolimus 0 (0.0%) % Low change 72 (0.7%) 
Tacrolimus 0 (0.0%) Respiratory Rate  
Tobramycin 0 (0.0%) Mean 142 (1.3%) 
Torsemide 0 (0.0%) Std. Dev. 144 (1.4%) 
Valacyclovir 0 (0.0%) % High 142 (1.3%) 
Valganciclovir 0 (0.0%) % Low 142 (1.3%) 
Valsartan 0 (0.0%) Mean change 72 (0.7%) 
Vancomycin 0 (0.0%) Std. Dev. Change 74 (0.7%) 
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Number of meds 0 (0.0%) % High change 72 (0.7%) 
Procedures (6)  % Low change 72 (0.7%) 

Central Line 0 (0.0%) Systolic Blood Pressure  
Cardiac 
Catheterization 

0 (0.0%) Mean 143 (1.3%) 

Heart Surgery 0 (0.0%) Std. Dev. 155 (1.4%) 
ECMO 0 (0.0%) % High 143 (1.3%) 
CT/MRI 0 (0.0%) % Low 143 (1.3%) 
Procedure time 0 (0.0%) Mean change 73 (0.7%) 

Labs (48)  Std. Dev. Change 85 (0.8%) 
Sodium  % High change 73 (0.7%) 

Mean 1498 (14.1%) % Low change 73 (0.7%) 
Std. Dev. 3302 (31.0%) Diastolic Blood Pressure 
% High 1498 (14.1%) Mean 143 (1.3%) 
% Low 1498 (14.1%) Std. Dev. 155 (1.4%) 

Potassium  % High 143 (1.3%) 
Mean 1511 (14.2%) % Low 143 (1.3%) 
Std. Dev. 3306 (31.1%) Mean change 73 (0.7%) 
% High 1511 (14.2%) Std. Dev. Change 85 (0.8%) 
% Low 1511 (14.2%) % High change 73 (0.7%) 

Chloride  % Low change 73 (0.7%) 
Mean 1535 (14.4%) Temperature  
Std. Dev. 3422 (32.2%) Mean 159 (1.5%) 
% High 1535 (14.4%) Std. Dev. 188 (1.8%) 
% Low 1535 (14.4%) % High 159 (1.5%) 

Bicarbonate  % Low 159 (1.5%) 
Mean 1552 (14.6%) Mean change 94 (0.9%) 
Std. Dev. 3371 (31.7%) Std. Dev. Change 110 (1.0%) 
% High 1552 (14.6%) % High change 94 (0.9%) 
% Low 1552 (14.6%) % Low change 94 (0.9%) 

Blood Urea Nitrogen  Oxygen Saturation  
Mean 1877 (17.6%) Mean 1799 (16.9%) 
Std. Dev. 4057 (38.1%) Std. Dev. 2168 (20.3%) 
% High 1877 (17.6%) % Low 1799 (16.9%) 
% Low 1877 (17.6%) Mean change 1184 (11.1%) 

Glucose  Std. Dev. Change 1408 (13.2%) 
Mean 4489 (42.2%) % Low change 1184 (11.1%) 
Std. Dev. 5896 (55.5%) Other  
% High 4489 (42.2%) Vitals Frequency 87 (0.1%) 
% Low 4489 (42.2%) Other (6)  

White Blood Cell Count  FiO2 Mean 0 (0.0%) 
Mean 2322 (21.8%) FiO2 % High 0 (0.0%) 
Std. Dev. 4687 (44.1%) ICU Admission 0 (0.0%) 



15 
 

 
 

% High 2322 (21.8%) Mean GCS 0 (0.0%) 
% Low 2322 (21.8%) % Low GCS 0 (0.0%) 

Hemoglobin  Mean Weight 5 (0.0%) 
Mean 2266 (21.3%) Patient Level (5)  
Std. Dev. 4631 (43.5%) Age (at admission) 0 (0.0%) 
% High 2266 (21.3%) Gender 0 (0.0%) 
% Low 2266 (21.3%) Admitting Service 0 (0.0%) 

  Prior AKI 0 (0.0%) 
 

In the best performing structured model, the elastic-net regression eliminated 183 of the 

294 predicator variables.  Of the remaining 111 variables, 36 had odds ratios with statistically 

significant 95% confidence intervals, and these are shown in Table 4.3.  The model performed 

well overall, with an F1 score of 0.67 and AUC of 0.75, and correctly identified over 70% of the 

creatinine values meeting AKI criteria.  Of the creatinine values predicted to have AKI, almost 

two-thirds were true positives.  Specific performance metrics for this model are shown in Table 

4.4. 

Table 4.3.  Variables included in the best performing model with significant odds ratios and 95% 
confidence intervals.  Variables are divided into those associated with new-onset AKI, and those 
associated with all creatinine values (new-onset AKI and ongoing AKI). 

Variables Associated 
with all Creatinine 
Values 

OR (95% CI) Interaction 
Variables 
Associated with 
New-onset AKI 

OR (95% CI) 

Increasing Risk 
Prior AKI 2.497 (2.114 - 2.949) CICU Admit 8.707 (3.843 - 19.731) 
Central Line 2.247 (1.535 - 3.29) HemOnc Admit 1.363 (1.020 - 1.821) 
Gen Surg Admit 1.358 (1.076 - 1.713) High SBP (Cut 2) 

(per 10%) 
1.281 (1.092 - 1.504) 

BMT Admit 1.319 (1.022 - 1.701) Mean Platelets (per 
100,000) 

1.146 (1.089 - 1.206) 

lisinopril (per 5 mg) 1.261 (1.044 - 1.523) Mean Tacro Level 1.127 (1.057 - 1.201) 
ICU Transfer 1.243 (1.051 - 1.471) Chloride Std. Dev. 1.123 (1.057 - 1.193) 
carboplatin (per 100 
mg) 

1.225 (1.015 - 1.478) ioversol (per 10 mL) 1.039 (1.010 - 1.068) 

Low DBP (Cut 1) (per 1.184 (1.014 - 1.381) Mean Vanc Level 1.036 (1.011 - 1.062) 
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10%) 
Hemoglobin Std. Dev. 1.159 (1.038 - 1.295)   
neomycin (per 100 
mg) 

1.094 (1.011 - 1.184)   

High Sodium (per 
10%) 

1.065 (1.020 - 1.113)   

furosemide (per 10 
mg) 

1.035 (1.011 - 1.060)   

methotrexate (per 100 
mg) 

1.029 (1.006 - 1.052)   

Mean HR (Cut 1) (per 
5 bpm) 

1.029 (1.008 - 1.05)   

Mean RR (Cut 1) 1.022 (1.000 - 1.044)   
Mean BUN 1.021 (1.012 - 1.031)   
Mean WBC (per 
1,000) 

1.003 (1.000 - 1.005)   

Decreasing Risk 
Bicarb Std. Dev. 0.942 (0.890 - 0.998) Mean BUN 0.975 (0.962 - 0.988) 
Sodium Std. Dev. 0.937 (0.888 - 0.990) SBP Std. Dev. (Cut 

2) 
0.963 (0.942 - 0.983) 

Mean SBP (Cut 1) (per 
5 mmHg) 

0.933 (0.905 - 0.962) High Chloride (per 
10%) 

0.944 (0.911 - 0.979) 

Rheumatology Admit 0.440 (0.211 - 0.918) Mean GCS 0.919 (0.892 - 0.948) 
CICU Admit 0.257 (0.133 - 0.496) lisinopril (per 5 mg) 0.735 (0.573 - 0.942) 
  Central Line 0.333 (0.199 - 0.558) 
 

Table 4.4.  Performance measures of the best-performing structured data elastic-net regression 
model with a Data Collection Window of 48 hours, a Prediction Window of 24 hours, and AKI 
defined using KDIGO Stage 1 criteria. 

 No AKI AKI  
Predicts No AKI 1314 239 NPV: 0.85 
Predicts AKI 351 611 PPV: 0.64 
 Specificity: 0.79 Sensitivity: 0.72  
F1 Score: 0.67   AUC: 0.75 

4.2     RESULTS FOR MODELS CONTAINING UNSTRUCTURED DATA 

The subset used to generate the models combining structured and unstructured data consisted of 

195 patients with 353 creatinine values.  A summary of this subset can be found in Table 4.5.  In 
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the subset, the differences in between the training set and test set are slightly more pronounced, 

likely because of the smaller overall size and the random selection process.  There are also more 

males (59.2% versus 57.0%) in the subset than in the overall dataset, and the patients are older 

(10.8 years compared to 10.0 years). 

Table 4.5.  Summary of ICU subset. 

 Mean Age % Male % AKI % AKI New-
onset 

% AKI Ongoing 

Training 
(n = 283) 

10.7 years 58.0% 45.2% 19.4% 25.8% 

Test 
(n = 70) 

11.1 years 64.3% 50.0% 18.6% 31.4% 

 

The structured model described above was applied to the 70 creatinine values in the n-

gram test set, providing a baseline performance against which the n-gram model could be 

measured (shown in Table 4.6).  The baseline performance was similar to the performance in the 

overall dataset, with a slightly improved F1 score of 0.70 (compared to 0.67 for the overall 

cohort) and slightly worse AUC of 0.70 (compared to 0.75).  The lower AUC was due to a lower 

specificity in the ICU subset, which likely resulted from the fact that the proportion of AKI cases 

was higher in the subset than in the overall dataset. 

Table 4.6.  Performance measures of the elastic-net regression model in the ICU Subset, without 
n-grams. 

 No AKI AKI  
Predicts No AKI 25 11 NPV: 0.69 
Predicts AKI 10 24 PPV: 0.71 
 Specificity: 0.71 Sensitivity: 0.69  
F1 Score: 0.70   AUC: 0.70 

The 225 highest ranking (by chi-squared criteria) n-gram binomial variables were then 

combined with the structured data, and the model run again.  This combination model improved 
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upon the baseline model’s performance in every respect, with summary measures of an F1 score 

of 0.76 and AUC of 0.77.  Detailed performance measures for the combination model are 

presented in Table 4.7.  The statistically significant n-grams utilized by the model and their 

associated odds ratios and 95% confidence intervals are shown in Table 4.8. 

Table 4.7.  Performance measures of the elastic-net regression model in the ICU Subset, with n-
grams. 

 No AKI AKI  
Predicts No AKI 29 10 NPV: 0.74 
Predicts AKI 6 25 PPV: 0.81 
 Specificity: 0.83 Sensitivity: 0.71  
F1 Score: 0.76   AUC: 0.77 

Table 4.8.  N-grams included in the model, with corresponding odds ratios.  N-grams are divided 
into those associated with the new-onset AKI and those associated with all creatinine values 
(new-onset and ongoing AKI). 

Variables Associated 
with all Creatinine 
Values 

OR (95% CI) Interaction 
Variables Associated 
with New-onset AKI 

OR (95% CI) 

“IV fluids 
maintenance” 

0.069 (0.013 – 0.356) “morphine” 0.168 (0.042 – 0.672) 

“2L nasal” 18.954 (2.276 – 
157.819) 

  

“white blood cell” 5.219 (1.643 – 
16.579) 

  

“dose” 2.819 (1.093 – 7.272)   
 

 

Chapter 5.  ERROR ANALYSIS 

The models described above demonstrated reasonable performance, with F1 scores ranging from 

0.67 to 0.76 and AUCs ranging from 0.70 to 0.77.  However, they are not perfect, and 

consideration of where they went wrong may provide suggestions for improvement.  This 
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analysis will focus on the results of the structured model because it had more errors available for 

review, but its findings are relevant to the n-gram model as well. 

The structured model produced a total of 351 false negatives and 239 false positives.  

These errors had two things in common: firstly, most errors occurred near the AKI threshold 

(84.3% of false negatives and 73.6% of false positives involved creatinine values that were less 

than 0.2 mg/dL away from the threshold), suggesting that the model rarely misclassified obvious 

cases.  Secondly, most errors – 72.4% of false negatives and 75.8% of false positives - involved 

creatinine values for which the baseline creatinine was 0.3 mg/dL or less.  This is meaningful 

because this model used the KDIGO Stage 1 definition for AKI: either an increase in 0.3 mg/dL 

or 1.5 times the baseline creatinine, whichever is lower.  Thus for a baseline creatinine of 0.1 

mg/dL the AKI threshold is 0.15 mg/dL; for a baseline of 0.2 mg/dL the AKI threshold is 0.3 

mg/dL; and for a baseline creatinine of 0.3 mg/dL the AKI threshold is 0.45 mg/dL.  It may be 

that these small increases in serum creatinine - only 0.1 or 0.2 mg/dL - represent routine 

variation in creatinine measurement rather than true AKI.  (Laboratory measurements of 

creatinine are not perfect, and a small amount of variation would not be surprising.)  It is 

certainly plausible, then, that the “errors” in these cases are not representative of the clinical 

phenotype the model is designed to identify. 

If this were true, then removal of cases with lower baseline creatinine values should 

increase the performance of the model.  Table 5.1 shows the model’s performance if creatinine 

values with a baseline creatinine of 0.3 mg/dL or less are excluded.  The F1 score for this model 

increased from 0.67 to 0.72, and the AUC from 0.75 to 0.81.  Indeed, every metric (sensitivity, 

specificity, positive predictive value, and negative predictive value) improved, suggesting that 

not every minor fluctuation in creatinine is meaningful. 
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Table 5.1.  Performance Measures of the Elastic-net Regression Model with Data Collection 
Window 48 hours, Prediction Window 24 hours, KDIGO Stage 1 AKI definition, and the 
exclusion of any creatinine value with a baseline creatinine of 0.3 mg/dL or less. 

 No AKI AKI  
Predicts No AKI 718 75 NPV: 0.91 
Predicts AKI 189 345 PPV: 0.65 
 Specificity: 0.79 Sensitivity: 0.82  
F1 Score: 0.72   AUC: 0.81 

Error analysis was also performed at a patient level, which demonstrated that 

misclassifications generally fell into one of several patterns.  There were three primary patterns 

for false negatives and three for false positives, which are shown in Figure 5.1. 
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Figure 5.1.  Different patterns of patient-level errors produced by the structured data model.  A-C 
represent false negative patterns, whereas D-F represent false positive patterns.  In A, the model 
is delayed in predicting AKI onset by 24 – 48 hours.  In B, the model predicts resolution of AKI 
24 – 48 hours before it actually happens.  C demonstrates the scenario in which the model does 
not recognize that a single creatinine has met AKI criteria.  In D, the model predicts that AKI 
will last 24 – 48 hours longer than it does.  In E, the model predicts that AKI begins 24 – 48 
hours before it actually does.  F demonstrates the scenario in which creatinine values are 
intermittently crossing the AKI threshold, but the model predicts the entire series of creatinine 
values represents AKI.  Error patterns A-B and D-E are likely more significant clinically, as 
patterns C and F do not occur in patients who develop prolonged substantial AKI. 

The most common false negative error pattern involved delayed onset of AKI prediction 

(pattern A in Figure 2).  This occurred in 116 cases, or 33.0% of all false negatives.  Pattern B, in 

which the model predicted early AKI resolution, occurred in 50 cases (14.2% of false negatives).  

Pattern C occurred almost exclusively in patients with a baseline creatinine of 0.3 mg/dL or less, 

and was seen in 99 cases (28.2% of false negatives).  The remaining 86 false negatives (24.5%) 

did not fit a particular pattern. 
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The most common false positive error pattern is demonstrated by Pattern D, and involved 

the model predicting prolonged AKI episodes.  This occurred in 117 cases, or 49.0% of all false 

positives.  Pattern E, in which the model predicted AKI onset early, occurred in 26 cases (10.9% 

of false positives).  Pattern F also occurred most frequently in patients with baseline creatinine 

values of 0.3 mg/dL or less, and was seen in 49 cases (20.5% of the total false positives).  The 

remaining 47 false positives (19.7%) did not fit an obvious pattern. 

Analysis of these patterns indicates that the model has the most difficulty with 

determination of AKI onset and cessation.  There are several possible explanations for this.  

Firstly, AKI has a wide range of potential causes, including poor renal perfusion, the direct 

nephrotoxic effect of medications, hyperfiltration of nephrotoxic substances (such as uric acid), 

and autoimmune disease.  It is quite possible that different insults cause damage at varying rates, 

leading to the errors in predicting AKI onset and cessation seen in the model.  Secondly, it is also 

possible that each cause has its own risk phenotype, such that the phenotype produced by the 

model is actually an amalgam of features from several sub-phenotypes.  This would explain why 

the model was able to identify most but not all cases of kidney injury, and suggests that further 

study into quantifying AKI risk in specific disease states is required. 

 

Chapter 6.  DISCUSSION 

The models described above were able to predict a rise in creatinine 24 hours before it happened 

with reasonable performance.  Especially encouraging was that the positive predictive values in 

all models were well above 50%, ensuring that the number of generated false positives was less 

than the number of correctly identified elevated creatinine values.  This represents a significant 

improvement over previous methods of predicting acute kidney injury, which produced high 
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sensitivities but low positive predictive values.  Nor was specificity sacrificed to improve 

positive predictive value, as the AUCs for the above models (0.75 for the overall model and 0.77 

for the n-gram subset) are comparable to the AUCs obtained by previous methods. 

This improvement in performance was likely due to two primary factors: the use of F1 

scores as a preferred summary measure and overall model design.  As mentioned, F1 scores are 

the harmonic mean of sensitivity and positive predictive value, and thus emphasize these 

components equally.  This is in contrast to AUC scores, which emphasize sensitivity and 

specificity.  When considering lower percentage outcomes such as AKI, it is easier to generate a 

high specificity (for instance, by simply assuming every case to be negative) than it is to produce 

a high positive predictive value.  Tuning the model to select for higher F1 scores, then, proved 

essential to improving performance. 

Model design also likely contributed to the performance improvement.  Rather than 

relying on data collected at the time of admission, the use of a Data Collection Window ensured 

that the information associated with each creatinine value was both timely and relevant.  The 

models described here also contained a wide variety of structured data, and specifically 

incorporated a large amount of vital sign data, which has not been used in previous studies.   

Overall, there were a greater number of variables associated with each creatinine value in this 

model compared to previous models, which also may have impacted performance. 

6.1     BIOLOGIC VERSUS SYSTEMIC INFORMATION 

However, the use of more variables is also potentially problematic, in that as the number of 

variables increases, so does the probability that some of those variables are associated with AKI 

purely by chance.  Thus, it is essential that predictors included in the model make sense 

clinically.  Determining the sensibility of each predictor is a difficult task at baseline, and is in 
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some cases a matter of expert opinion.   This determination is further complicated by the fact that 

the meaning of an individual predictor is not always straightforward, because the information 

contained within that variable exists on a continuum between systemic information and biologic 

information.  That is, each predictor begs the question, “To what extent is information captured 

regarding biologic processes happening within a patient, and to what extent is information 

captured regarding the hospital system in which patients find themselves?”  The answer to this 

question depends on the predictor in question, but in general, each variable fits into one of three 

classes: 

1) Mostly systemic – variables that primarily capture information about the hospital system, 
but contain some information about biologic processes (e.g., admitting service or 
medications) 

2) Partly systemic – variables that carry a roughly equal amount information about the 
hospital system and biologic processes (e.g., laboratory values) 

3) Mostly biologic – variables that primarily capture information about biologic processes, 
but contain some information about systemic processes (e.g., vital signs and 
demographics) 

No variable is purely biologic, in that everything provides some information about the 

hospital system.  Even demographics, which certainly provide biologic information about a 

patient, can also provide systemic information (e.g., the demographics of a children’s hospital 

are significantly different from those of a Veteran’s Administration hospital).  Vital signs also 

provide a good deal of insight into biologic processes, but which vital signs are monitored and 

how frequently that monitoring occurs is systemic.  Alternatively, although medications 

undoubtedly have a biological effect on patients, the majority of the information they convey 

may be systemic to the extent that medication use serves as a proxy for a specific disease process 

(e.g., chemotherapeutic agents are used to treat patients with cancer).  N-gram data could span all 

three categories depending on the n-gram in question, but would also never be purely biologic. 
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With that in mind, Table 6.1 reorganizes the significant predictors from the structured 

data model into these variable types. 

Table 6.1.  Variables included in the best performing structured model with significant odds 
ratios and 95% confidence intervals.  Variables are divided into those associated with new-onset 
AKI, and those associated with all creatinine values (new-onset and ongoing AKI), and are 
organized according to how much systemic information they provide. 

Variables Associated 
with all Creatinine 
Values 

OR (95% CI) Interaction 
Variables Associated 
with New-onset AKI 

OR (95% CI) 

Mostly Systemic 
Central Line 2.247 (1.535 - 3.29) CICU Admit 8.707 (3.843 - 

19.731) 
Gen Surg Admit 1.358 (1.076 - 

1.713) 
HemOnc Admit 1.363 (1.020 - 1.821) 

BMT Admit 1.319 (1.022 - 
1.701) 

ioversol (per 10 mL) 1.039 (1.010 - 1.068) 

lisinopril (per 5 mg) 1.261 (1.044 - 
1.523) 

lisinopril (per 5 mg) 0.735 (0.573 - 0.942) 

ICU Transfer 1.243 (1.051 - 
1.471) 

Central Line 0.333 (0.199 - 0.558) 

carboplatin (per 100 mg) 1.225 (1.015 - 
1.478) 

  

neomycin (per 100 mg) 1.094 (1.011 - 
1.184) 

  

furosemide (per 10 mg) 1.035 (1.011 - 
1.060) 

  

methotrexate (per 100 
mg) 

1.029 (1.006 - 
1.052) 

  

Rheumatology Admit 0.440 (0.211 - 
0.918) 

  

CICU Admit 0.257 (0.133 - 
0.496) 

  

Partly Systemic 
Hemoglobin Std. Dev. 1.159 (1.038 - 

1.295) 
Mean Platelets (per 
100,000) 

1.146 (1.089 - 1.206) 

High Sodium (per 10%) 1.065 (1.020 - 
1.113) 

Mean Tacro Level 1.127 (1.057 - 1.201) 

Mean BUN 1.021 (1.012 - 
1.031) 

Chloride Std. Dev. 1.123 (1.057 - 1.193) 

Mean WBC (per 1,000) 1.003 (1.000 - 
1.005) 

Mean Vanc Level 1.036 (1.011 - 1.062) 
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Bicarb Std. Dev. 0.942 (0.890 - 
0.998) 

Mean BUN 0.975 (0.962 - 0.988) 

Sodium Std. Dev. 0.937 (0.888 - 
0.990) 

High Chloride (per 
10%) 

0.944 (0.911 - 0.979) 

Mostly Biologic 
Low DBP (Cut 1) (per 
10%) 

1.184 (1.014 - 
1.381) 

High SBP (Cut 2) 
(per 10%) 

1.281 (1.092 - 1.504) 

Mean HR (Cut 1) (per 5 
bpm) 

1.029 (1.008 - 1.05) SBP Std. Dev. (Cut 
2) 

0.963 (0.942 - 0.983) 

Mean RR (Cut 1) 1.022 (1.000 - 
1.044) 

  

Mean SBP (Cut 1) (per 5 
mmHg) 

0.933 (0.905 - 
0.962) 

  

 

The mostly systemic variables generally make sense clinically.  Patients admitted to the 

Bone Marrow Transplant service, General Surgery service, or transferred to the ICU are 

probably systemically ill, and it is not surprising they would be at increased risk for AKI.  There 

are two service-related variables that are more perplexing.  The first is being admitted to the 

Rheumatology service, which is associated with a decreased risk of AKI.  This may be because 

the majority of patients with rheumatologic diseases affecting the kidney are admitted to the 

Nephrology service instead, such that most patients admitted to Rheumatology have pristine 

kidney function.  However, it is harder to explain how those admitted directly to the Cardiac ICU 

have a decreased risk of developing AKI; one would expect the opposite.  Interestingly, the 

interaction term for Cardiac ICU admission shows a significantly increased risk, suggesting that 

those in the Cardiac ICU are at elevated risk for new-onset AKI, but that episodes of AKI there 

are not ongoing.  This signal may simply be the result of a small sample size; only 1.7% of the 

dataset, or 183 creatinine values, were directly admitted to the Cardiac ICU.  It may also be that 

AKI in the Cardiac ICU is generally due to the acute tubular necrosis secondary to cardiac 

bypass and/or poor cardiac output, and that patients recover more quickly from this type of AKI. 
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Turning to the medication variables, the known nephrotoxins lisinopril, carboplatin, 

neomycin, furosemide, and methrotrexate are associated with an increased risk of AKI.  Ioversol, 

also believed to be nephrotoxic, is associated with new-onset AKI, though not with AKI overall.  

It is interesting that lisinopril is associated with a decreased risk of new-onset AKI, suggesting 

that while the drug may not contribute to AKI onset, patients on lisinopril have longer episodes 

of AKI.  This is certainly reasonable clinically. 

The partly systematic variables consist entirely of labs, which are biologic in that they 

reflect what is happening within a patient, but systemic in that not every lab is checked on every 

patient every day.  Patients in the ICU, for instance, undergo more lab draws than patients 

outside of it.  Thus, while it is satisfying that the lab values generally correspond with what one 

would expect clinically – higher white blood cell counts, indicative of systemic illness, and high 

sodium levels, indicative of volume depletion, should be associated with AKI – there is still the 

possibility these variables are conveying more systemic than biologic information.  For instance, 

does having a variable chloride level truly put one at risk for kidney injury, or do patients who 

develop AKI have their chloride levels checked more frequently?  Similarly, dose having 

variable hemoglobin values somehow affect kidney function, or is it representative of receiving a 

blood transfusion? 

Like lisinopril, several lab values are associated with AKI overall but show decreased 

risk of new-onset AKI.  This makes sense for BUN and chloride, which can certainly show 

derangements with AKI, but may be normal prior to AKI onset.  The opposite may be true for 

vancomycin and tacrolimus levels, which would be high at AKI onset but may normalize later as 

clinicians respond to higher levels.  Overall, then, the partly systemic data provided by lab values 

is clinically sound. 
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Finally, the mostly biologic variables consist of vital signs and demographic information.  

These also make sense clinically – one would expect, for example, that episodes of AKI during 

prior hospital admissions would put one at risk for future AKI.  It also makes sense that higher 

heart rates and respiratory rates, signs of a sicker patient, are associated with AKI.  The systolic 

blood pressure variables are more difficult to interpret. It would appear that the higher one’s 

systolic blood pressure is during Cut 1 – the later 24 hours of the Data Collection Window – the 

less likely one is to either develop new-onset AKI or have ongoing AKI. This makes sense in 

that a higher blood pressures suggests better renal perfusion, which makes injury less likely.  

However, there are also associations between a high systolic blood pressure and a more variable 

systolic blood pressure in Cut 2 (the earlier 24 hours of the Data Collection Window) and an 

increased risk of new-onset AKI.  Perhaps these represent direct sequelae of whatever injury 

causes AKI, during which a distressed kidney releases renin and causes a brief spike in blood 

pressure.  However, this is purely speculation, and requires confirmation in other studies before 

being accepted. 

Overall, the associations between the majority of the variables in the structured model 

and AKI can be reasonably explained clinically.  The few variables that are more difficult to 

explain may represent novel AKI associations, or may simply be due to chance.  Of course, all 

predictors need to be validated in future studies. 

6.2     UNSTRUCTURED DATA 

Analysis of the models containing unstructured data requires additional considerations.  Firstly, 

the use of natural language processing of clinician notes to predict the onset of acute kidney 

injury has not been previously reported in the literature, so there is no available baseline against 

which the n-gram results can be compared.  Therefore, the value of adding n-grams to the 
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structured data model was determined by comparing the performance of a baseline (structured 

data only) model to that of a combination (structured data plus n-grams) model.  This 

comparison favored the inclusion of n-grams, suggesting that combining structured and 

unstructured data holds potential for more specific clinical phenotyping. 

However, several limitations apply specifically to the n-gram portion of this study.  

Firstly, only ICU notes were included, meaning that any results involving n-grams can only be 

applied to an ICU population.  Secondly, only 195 patients (with 353 creatinine values) were 

included in the subset analysis, which is a relatively small sample size.  A smaller number of 

patients may increase the possibility that certain n-grams were associated with AKI purely by 

chance, although it is equally plausible that the study was not powered well enough to detect less 

potent associations. 

The n-gram model was able to detect five potentially meaningful signals: “IV fluids 

maintenance”, “morphine”, “2L nasal”, “white blood cell”, and “dose”.  The first two were 

associated with a decreased risk of AKI, which certainly makes sense for “IV fluids 

maintenance”: because maintenance IV fluids are a “default” setting, their use may mean that a 

clinician is not concerned about a patient getting too much (or too little) fluid.  The “morphine” 

signal is harder to interpret, but many patients are admitted to the ICU for post-operative 

monitoring, and these patients may require adequate pain control (with morphine) but have a 

lower chance of developing AKI. 

The three n-grams associated with an increased risk for AKI may reflect increasing 

clinical severity; for instance, patients requiring oxygen via nasal cannula (which is likely what 

“2L nasal” refers to) are sicker than those breathing room air.  Patients for whom a “white blood 

cell” count is mentioned are also likely to be critically ill; the structured model corroborates this 
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in that an increasing white blood cell count is associated with an increased risk for AKI.  Finally, 

a provider mentioning “dose” in a note may be referring to clinically significant medications that 

patient has received.  Overall, then, it is reasonable to assume that the methods used to construct 

this n-gram model have detected clinically relevant signals, and may detect further signals in a 

larger dataset. 

6.3     REPRODUCIBILITY 

These models were produced with data from a single institution, which raises the question: how 

would they perform elsewhere?  To suggest an answer requires expanding upon the concept of 

biologic versus systemic information to create biologic and systemic phenotypes. 

Biologic phenotypes are potentially superior to primarily systemic phenotypes for two 

reasons.  Firstly, they are more likely to be reproducible at other institutions, since they capture a 

clinical phenotype that is inherent to patients, not hospital systems.  Secondly, they require very 

little upkeep, since a biologic phenotype will presumably not vary over time.  Systemic 

phenotypes, however, will naturally evolve alongside hospital systems.  Indeed, any 

implementation of a systemic model predicting AKI would need to be routinely monitored to 

ensure that the changes it introduces to the hospital system do not invalidate its results. 

Because the models discussed in this work contain both biologic and systemic variables, 

they capture a mixed biologic-systemic phenotype.  Therefore, it is unlikely that use of these 

exact variables would produce equivalent results at other institutions.  However, the extent to 

which this is a problem is debatable – if a system works well at single institution, does reduced 

performance at another institution make it less valid?  Furthermore, the process by which these 

models were created – the construction of Data Collection Windows and Prediction Windows 

relative to a clinical event of interest – could easily be applied to any hospital system.  Using this 
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process to predict AKI at other institutions would likely result in models that perform similarly 

and contain similar biologic variables, but different systemic variables. 

Given this, the best way to test a particular would be prospectively – that is, incorporate 

the model into an EHR and let it predict the onset of AKI in real time.  Reasonable performance 

in a prospective test would suggest the model lends itself well to clinical use.  Poor performance 

would suggest that variables in that model should be reconsidered. 

 

Chapter 7.  FUTURE WORK 

The results of this work suggest that it is possible to develop a clinical phenotype describing 

pediatric patients at risk for the development of AKI.  However, validation of both model design 

and model performance is necessary before the clinical phenotype described herein is 

incorporated into clinical practice.  This validation could occur using retrospective data at other 

institutions, prospective data at Seattle Children’s Hospital and/or other institutions, or, ideally, a 

combination of the two. 

Replicating the model design at other institutions has the added benefit of suggesting 

answers to one of questions raised by this work: namely, to what extent are individual variables 

representing biologic versus systemic information?  As discussed, models developed using data 

from other institutions are likely to identify different systemic variables but similar biologic 

variables.  Therefore, comparing multiple models should provide insight into which variables are 

primarily biologic (i.e., which are predictive at multiple hospitals) and which are primarily 

systemic (i.e., which are predictive only at a single institution).  Attempts to clarify whether 

systemic differences are due to proscribed hospital policies or variations in provider training and 

preferences may also prove useful, and should be investigated. 
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The role of natural language processing in clinical phenotyping also needs to be further 

explored.  The n-grams identified in this work suggest that structured data regarding a patient’s 

intravenous fluids and respiratory support should be included in future models.  The addition of 

medications that are not known to be nephrotoxic – such as morphine – should be considered as 

well.  Ideally, more such signals would be identified with the use of a larger dataset (and 

therefore a larger corpus). Furthermore, there may be a role for NLP in extracting structured 

information that may not otherwise be available.  For instance, if a patient is transferred to a 

hospital from an outside facility, routine structured data such as vital signs, medications, and labs 

would not be available in the receiving hospital’s EHR, but may be transcribed in a clinician’s 

note.  If this information could be reliably extracted and added to the predictive model, it could 

significantly improve performance. 

Finally, the concept of a Data Collection Window and Prediction Window is not unique 

to a rising serum creatinine.  Indeed, the methods described in this work could – and hopefully 

will – be applied to any clinical event with a clearly defined onset.  It may be that the future of 

medicine involves routine use of “at risk for a disease” clinical phenotypes, greatly improving 

clinicians’ ability to identify and prevent problems before they happen. 

 

Chapter 8.  CONCLUSION 

Predicting pediatric acute kidney injury remains difficult task, but this work represents a step 

forward in the creation of a robust clinical phenotype describing patients at risk for developing 

AKI.  This phenotype is temporally related to AKI onset, and when used in a predictive model it 

demonstrates reasonable performance, with an F1 score of 0.67 and AUC of 0.75.  This 

performance improved in an ICU subset following the addition of unstructured data from 
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clinician notes, with the model’s F1 score increasing to 0.72 and AUC increasing to 0.77.  This 

suggests that natural language processing may have a role in refining clinical phenotypes.  

However, interpreting the results of these modes requires careful consideration of the 

information contained within each variable – specifically, the extent to which that information 

describes biologic processes within a patient or systemic processes within a hospital.  Further 

evaluation of the use of clinical phenotyping in predicting pediatric AKI is necessary to confirm 

the utility of these models and to help differentiate which signals and primarily biologic and 

which are primarily systemic.  Ultimately, a thoroughly vetted and comprehensive “at risk for 

AKI” phenotype will allow clinicians to identify and potentially prevent the onset of kidney 

injury, substantially reducing the morbidity and mortality associated with this disease. 
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Appendix A: Details about Variables Included in the Model 

Medications 

The summative doses (in mg) of the 35 medications administered during the Data Collection 
Window were included in the model.  The total number of medications received in Data 
Collection Window was also recorded as a separate variable.  For example, if Patient A received 
800 mg of acyclovir, 2000 mg of vancomycin, and 20 mg of furosemide during the Data 
Collection Window, the value of acyclovir would be 800, the value of vancomycin would be 
2000, the value of furosemide would be 20, the value of the remaining 32 medications would be 
0, and the value of the number of medications would be 3. 

Procedures 

For the purposes of model construction, “procedures” indicate those procedures that require 
general anesthesia (with the exception of emergent ECMO cannulation).  Thus, if patients 
received CT scans or MRIs without anesthesia, these were not included in the dataset.  Each 
procedure was tagged with a start time and end time, so procedures were only associated with a 
specific creatinine if the entirety of the procedure fell within that creatinine’s Data Collection 
Window.  The length of the procedure (in minutes) was also recorded, and entered into the model 
as a continuous variable. 

Procedure names were associated with procedure variables as follows: 

Central Line: Insertion Cath Dialysis, Insertion Cath Intravenous, Insertion Cath Other, Insertion 
Cath Other US Guided, Insertion Catheter Apheresis, Insertion Central Venous Line, Insertion 
PICC Line, zzCath Placement Central Line GEN 

Cardiac Catheterization: Card Cath Heart Right, Card Cath w/ Bal Aortic Angioplasty, Card 
Cath w/ Stent Placement, Cardiac Catheterization 

Heart Surgery: Aortopexy, Arterial Switch Procedure, Fontan, Konno Procedure, Repair Aortic 
Arch, Repair Aortic Coarctation Pump Standby, Repair Aortic Valve, Repair Atrial Septal 
Defect, Repair Atrioventricular Valve, Repair AV Canal, Repair Coarctation, Repair Cor 
Triatrium, Repair Interrupted Aortic Arch, Repair Mitral Valve, Repair Partial Anom Pulm 
Venous, Repair Pulmonary Artery, Repair Pulmonary Valve, Repair RV Outflow Tract 
Obstruction, Repair Sub Aortic Stenosis, Repair Supravalvular Aortic Stenosis, Repair Tricuspid 
Valve, Repair Ventricular Septal Defect, Replacement Aortic Valve, Replacement Mitral Valve, 
Replacement Pulmonary Valve, Ross Konno Procedure, RV to PA Conduit, zzOH ASD 
Secundum Repair LT 8 yrs, zzOH Fontan LT 8 yrs, zzOH Anom Pulm Venous Partial Rep LT 
8yr, zzOH Left Ventric Asst Dev Plcmt GT 8yrs, zzOH Damus Kaye Stansel Procedure LT 8 
yrs, zzOH Ventricular Septal Defect Repair LT 8 yrs, zzOH Aortic Valve Repair LT 8 yrs, zzOH 
ASD Sinus Venosus Repair LT 8 yrs, zzOH Conduit Replace RV to PA LT 8 yrs, zzOH 
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Pulmonary Valve Replacement GT 8 yrs, zzOH AV Septal Defect Repair LT 8 yrs, zzOH 
Coronary Osteoplasty GT 8 yrs, zzOH Sub Aortic Stenosis Repair LT 8 yrs, zzOH Conduit 
Replace RV to PA LT 8 yrs, zzOH Left Ventric Asst Dev Plcmt GT 8 yrs, zzOH Konno 
Procedure GT 8 yrs, zzOH Left Ventric Asst Dev Plcmt LT 8 yrs, zzOH Tetralogy of Fallot 
Repair LT 8 yrs 

CT/MRI scans: CT scan, MRI 

ECMO: ECMO Cannulation, zzECMO Cannulation GEN 

Labs 

Because not every patient has every lab drawn every day, lab values represented the largest 
source of missing data in the model.  As such, if greater than 50% of cases were missing a 
specific lab test, that lab test was excluded.  This resulted in the inclusion of only 10 general 
laboratory values (sodium, potassium, chloride, bicarbonate, blood urea nitrogen, glucose, white 
blood cell count, hemoglobin, hematocrit, and platelet count), and 4 drug levels (vancomycin, 
gentamicin, tacrolimus, and cyclosporine).   

Four measures were obtained for each general laboratory value: the mean of the measurements 
obtained during the Data Collection Window, the standard deviation of those measurements, the 
proportion of values above the upper limit of normal, and the proportion of values below the 
upper limit of normal.  Missing data was imputed using median values.   

The upper and lower limits of normal for each general laboratory value were obtained from the 
Seattle Children’s Hospital EHR, and are recorded in the table below. 

Table A.1.  Normal ranges for labs included in the model, extracted from the SCH EHR. 

Lab Value Normal Lower Bound Normal Upper Bound 
Sodium 135 145 
Potassium 3.5 5.5 
Chloride 96 109 
Bicarbonate 18 27 
Blood Urea Nitrogen 6 20 
WBC Count 4.5 – 6 (varies with age) 11 – 15.5 (varies with age) 
Hemoglobin 10.5 – 13.5 (varies with age 

and gender) 
13.5 – 17.5 (varies with age 
and gender) 

Hematocrit 33 – 41 (varies with age and 
gender) 

39 – 53 (varies with age and 
gender) 

Platelet Count 150 – 250 (varies with age) 450 – 600 (varies with age) 
 

The mean value of each drug level was also calculated.  Patients who did not receive 
vancomycin, gentamicin, tacrolimus, or cyclosporine during the Data Collection Window were 
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assumed to have a level of zero.  Because drug levels are often checked infrequently, there were 
very few cases in which more than one value occurred during the Data Collection Window, so 
standard deviations were not performed.  The proportion of values above a given threshold were 
also obtained for vancomycin and gentamicin, but not for tacrolimus and cyclosporine, since the 
target level for these drugs varies widely depending on indication.  The threshold for 
vancomycin was set at 15, and at 2 for gentamicin. 

Finally, the frequency with which electrolytes and a complete blood count were obtained during 
the Data Collection Window was recorded.  The electrolyte frequency was determined by 
averaging the frequencies of sodium, potassium, chloride, and bicarbonate checks, and the 
complete blood count frequency was determined by averaging the frequencies of the white blood 
cell count, hemoglobin, hematocrit, and platelet count checks. 

Vital Signs 

Six vital signs were included in the model: heart rate, respiratory rate, systolic blood pressure, 
diastolic blood pressure, temperature, and oxygen saturation.  Because vital signs are checked 
relatively frequently on hospitalized patients, there was enough data to divide the Data 
Collection Window into two halves, Cut 1 and Cut 2 (with Cut 1 being the earlier half of the 
window). 

Means, standard deviations, and the proportion of vitals above and below the normal range were 
calculated for each vital in each cut.  The difference between Cut 1 and Cut 2 was then 
calculated for the means, standard deviations, and proportions.  Finally, the frequency of each 
vital was calculated, and an overall Vitals Frequency determined by averaging the frequency of 
heart rate, respiratory rate, blood pressure, temperature, and oxygen saturation checks. 

The normal range for each vital sign was determined in two ways.  Firstly, aged-based normal 
bounds were obtained from the Seattle Children’s Hospital EHR.  Secondly, the mean and 
standard deviation for each vital sign during the entirety of the Data Collection Window was 
calculated, and the upper threshold of normal was set at two standard deviations above the mean, 
and the lower threshold at two standard deviations below the mean.  The two methods of 
calculating a normal range were then compared, with the lower of the two upper bounds and the 
higher of the two lower bounds used as the final cutoff points.  (Upper bounds were ignored for 
oxygen saturation, since 100% saturation would still be considered normal in most instances.) 

The normal bounds from the Seattle Children’s Hospital EHR are in the table below. 
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Table A.2.  Normal ranges for vital signs included in the model, extracted from the SCH EHR. 

Vital Sign Normal Lower Bound Normal Upper Bound 
Heart Rate 60 – 90 (varies with age) 130 – 150 (varies with age) 
Respiratory Rate 14 – 20 (varies with age) 20 – 40 (varies with age) 
Systolic Blood Pressure 72 – 90 (varies with age) 106 – 140 (varies with age) 
Diastolic Blood Pressure 55 – 65 (varies with age) 65 – 90 (varies with age) 
Temperature 35.5 38.0 
Oxygen Saturation 85% n/a 
 

Other 

FiO2: The mean FiO2 values and proportion of FiO2 values above 21% were calculated for each 
case.  If FiO2 was not recorded, it was assumed to be 21%. 

GCS: The mean Glasgow Coma Scores and proportion of Glasgow Coma Scores below 13 were 
calculated for each case.  If GCS was not recorded, it was assumed to be 15. 

ICU Admission: A binary variable; positive if a patient was admitted to the ICU during the Data 
Collection Window. 

Mean weight: The mean weight during the Data Collection Window was calculated for each 
case. 

Patient Level Variables 

Age: Recorded in days, and determined at the time of hospital admission. 

Gender: The patient’s gender, determined at the time of hospital admission. 

Admitting Service: This is a factorial variable with one of 13 values: 
 0 – General Medicine 
 1 – Pediatric ICU 
 2 – Cardiac ICU 
 3 – Bone Marrow Transplant 
 4 – Hematology/Oncology 
 5 – Cardiac Surgery 
 6 – General Surgery 
 7 – Neurosurgery 
 8 – Oral Surgery 
 9 – Orthopedics 
 10 – Otolaryngology 
 11 – Plastic Surgery 
 12 – Urology 



42 
 

 
 

 13 – Cardiology 
 14 – Nephrology 
 15 – Pulmonary 
 16 – Gastroenterology 
 17 – Rheumatology 

Prior AKI: As described in the manuscript, this is a binary variable that is set to true if a patient 
has experienced an episode of AKI in the six months prior to hospital admission.  
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Appendix B: Information Regarding Unstructured Models 

Section Headers 

CHIEF COMPLAINT 
HISTORY OF PRESENT ILLNESS 
PROBLEM LIST 
ALLERGIES 
PAST MEDICAL HISTORY 
BIRTH HISTORY 
MEDICATIONS 
SOCIAL HISTORY 
FAMILY HISTORY 
REVIEW OF SYSTEMS 
IMMUNIZATIONS 
PHYSICAL EXAMINATION 
LABORATORIES 
GLOBAL ASSESSMENT 
IMPRESSION AND PLAN 
ANALYSIS 
CONSULTATIONS 
PROCEDURES 
RESPIRATORY 
FLUIDS/ELECTROLYTES/NUTRITION 
CARDIOVASCULAR 
RENAL 
HEMATOLOGY 
HEMATOLOGIC 
HEMATOLOGY-ONCOLOGY 
ONCOLOGY 
ONCOLOGIC 
ENDROCRINE 
INFECTIOUS DISEASE 
GASTROINTESTINAL 
NEUROLOGIC 
NEUROLOGY 
SOCIAL 
PAIN MANAGEMENT 
PSYCHIATRIC 
PERSONALNAME (tag from deindentification) 
DATE (tag from deindentification) 
ALPHANUMERICID (tag from deindentification) 
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Stop Word List 

Seattle 
Children's 
Hospital 
She 
He 
Her 
His 
Him 
A 
About 
Again 
All 
Almost 
Also 
Although 
Always 
Among 
An 
And 
Another 
Any 
Are 
As 
At 
Be 
Because 
Been 
Before 
Being 
Between 
Both 
But 
By 
Can 
Could 
Did 
Do 
Does 
Done 

Due 
During 
Each 
Either 
Enough 
Especially 
Etc 
For 
Found 
From 
Further 
Had 
Has 
Have 
Having 
Here 
How 
However 
I 
If 
In 
Into 
Is 
It 
Its 
Itself 
Just 
Made 
Mainly 
Make 
May 
Might 
Most 
Mostly 
Must 
Nearly 
Of 
Often 
On 
Our 
Overall 

Perhaps 
Quite 
Rather 
Really 
Regarding 
Seem 
Seen 
Several 
Should 
Since 
So 
Some 
Such 
Than 
That 
The 
Their 
Theirs 
Them 
Then 
There 
Therefore 
These 
They 
This 
Those 
Thus 
To 
Upon 
Various 
Was 
We 
Were 
What 
When 
Which 
While 
Who 
With 
Would 
  



45 
 

 
 

Appendix C: Performance of the Structured Data and N-gram 
Model at Various Thresholds 

 
Table C.1.  Performance of the model at different N-gram inclusion thresholds. 
Threshold* Best F1 Score Best AUC 
1% 0.74 0.76 
2.5% 0.76 0.77 
5% 0.73 0.74 
7.5% 0.72 0.73 
10% 0.72 0.73 
*Threshold refers to the percentage of patients an n-gram had to appear in to be included in the 
final feature set.  For example, 1% indicates that the n-gram must be present in at least 1% of 
patients. 
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Table C.2.  Performance of the 2.5% threshold model at various feature counts. 
Feature Count F1 Score AUC 
25 0.71 0.71 
50 0.70 0.70 
75 0.72 0.73 
100 0.73 0.74 
125 0.74 0.74 
150 0.74 0.74 
175 0.74 0.74 
200 0.75 0.76 
225 0.76 0.77 
250 0.76 0.77 
275 0.76 0.77 
300 0.76 0.77 
325 0.76 0.77 
350 0.76 0.77 
375 0.76 0.77 
400 0.76 0.77 
425 0.76 0.77 
450 0.76 0.77 
475 0.76 0.77 
500 0.76 0.77 
525 0.76 0.77 
550 0.76 0.77 
575 0.71 0.73 
600 0.71 0.73 
625 0.71 0.73 
650 0.71 0.73 
675 0.71 0.73 
700 0.71 0.73 
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Appendix D: Performance of Other Structured Models 

Table D.1.  Results using a 36 hour Data Collection Window, 36 hour Prediction Length, and 
AKI defined using KDIGO Stage 1 criteria. 

 No AKI AKI  
Predicts No AKI 1340 273 NPV: 0.83 
Predicts AKI 325 577 PPV: 0.64 
 Specificity: 0.80 Sensitivity: 0.68  
F1 Score: 0.66   AUC: 0.74 

Table D.2.  Results using a 24 hour Data Collection Window, 48 hour Prediction Length, and 
AKI defined using KDIGO Stage 1 criteria. 

 No AKI AKI  
Predicts No AKI 1249 285 NPV: 0.81 
Predicts AKI 416 565 PPV: 0.58 
 Specificity: 0.75 Sensitivity: 0.66  
F1 Score: 0.62   AUC: 0.71 

Table D.3.  Results using a 48 hour Data Collection Window, 24 hour Prediction Length, and 
AKI defined using Modified KDIGO Stage 1 criteria. 

 No AKI AKI  
Predicts No AKI 2084 118 NPV: 0.95 
Predicts AKI 114 199 PPV: 0.64 
 Specificity: 0.95 Sensitivity: 0.63  
F1 Score: 0.63   AUC: 0.79 

Table D.4.  Results using a 48 hour Data Collection Window, 24 hour Prediction Length, and 
AKI defined using Modified KDIGO Stage 1 criteria, excluding creatinine values with a baseline 
of 0.3 mg/dL or less. 

 No AKI AKI  
Predicts No AKI 839 108 NPV: 0.89 
Predicts AKI 116 264 PPV: 0.69 
 Specificity: 0.88 Sensitivity: 0.71  
F1 Score: 0.70   AUC: 0.79 
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Table D.5.  Results using a 48 hour Data Collection Window, 24 hour Prediction Length, and 
AKI defined using KDIGO Stage 2 criteria. 

 No AKI AKI  
Predicts No AKI 1880 147 NPV: 0.93 
Predicts AKI 200 288 PPV: 0.59 
 Specificity: 0.90 Sensitivity: 0.66  
F1 Score: 0.62   AUC: 0.78 

Table D.6.  Results using a 48 hour Data Collection Window, 24 hour Prediction Length, and 
AKI defined using KDIGO Stage 2 criteria, excluding creatinine values with a baseline of 0.3 
mg/dL or less. 

 No AKI AKI  
Predicts No AKI 1033 133 NPV: 0.89 
Predicts AKI 81 80 PPV: 0.50 
 Specificity: 0.93 Sensitivity: 0.38  
F1 Score: 0.43   AUC: 0.65 

Table D.7.  Results using a 48 hour Data Collection Window, 24 hour Prediction Length, and 
AKI defined using KDIGO Stage 3 criteria. 

 No AKI AKI  
Predicts No AKI 2049 393 NPV: 0.84 
Predicts AKI 31 42 PPV: 0.58 
 Specificity: 0.99 Sensitivity: 0.10  
F1 Score: 0.17   AUC: 0.54 

Table D.8.  Results using a 48 hour Data Collection Window, 24 hour Prediction Length, and 
AKI defined using KDIGO Stage 3 criteria, excluding creatinine values with a baseline of 0.3 
mg/dL or less. 

 No AKI AKI  
Predicts No AKI 1092 183 NPV: 0.86 
Predicts AKI 22 30 PPV: 0.58 
 Specificity: 0.98 Sensitivity: 0.14  
F1 Score: 0.23   AUC: 0.56 
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Table D.9.  Results using a 48 hour Data Collection Window, 24 hour Prediction Length, and 
AKI defined using KDIGO Stage 1 criteria, new-onset AKI only. 

 No AKI AKI  
Predicts No AKI 1128 188 NPV: 0.86 
Predicts AKI 405 132 PPV: 0.25 
 Specificity: 0.74 Sensitivity: 0.41  
F1 Score: 0.31   AUC: 0.57 

Table D.10.  Results using a 48 hour Data Collection Window, 24 hour Prediction Length, and 
AKI defined using KDIGO Stage 1 criteria, ongoing AKI only. 

 No AKI AKI  
Predicts No AKI 75 94 NPV: 0.44 
Predicts AKI 142 527 PPV: 0.79 
 Specificity: 0.35 Sensitivity: 0.85  
F1 Score: 0.82   AUC: 0.60 

 


