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Abstract 
 

Detecting Errors in the Clinical Laboratory: Detecting the Invisible 
 

Gregory B. Strylewicz 
 

Chair of the Supervisory Committee: 
Professor Peter Tarczy-Hornoch 

Department of Medical Education 
 

Clinical laboratories provide a critical service to the health care and well-being of the 

world’s population.  Estimates suggest that the clinical laboratory influences some 70 

percent of health-care decisions, but requires only about 4 percent of the health-care 

expenditures.  Given an estimated 7 billion laboratory tests per year in the United States, 

about 1% of the results, or 70 million laboratory errors annually, are erroneous with an 

estimated 6%, of those errors causing harm to the patient.  Laboratory errors harm 

millions of patients each year and laboratory experts spend countless hours reviewing 

billions of laboratory results each year in the search for these rare errors.  

Autoverification systems, automated programs used to check laboratory results for errors, 

can save laboratories countless hours and be more accurate than laboratory experts, but 

the current generation of rule-based systems is not appropriate for the clinical laboratory 

domain due to its inherent uncertainty.  This research demonstrates that a novel approach 

using a synthetic error generation system to create training datasets for a conditional 

Gaussian Bayesian network produces an autoverification system superior to ones trained 

using standard methods and superior to laboratory experts.  Unlike standard approaches 

that require an expensive and time-consuming expert annotation process to create training 

datasets, the synthetic error generation method uses results that were reviewed normally.  



 

 

By creating synthetic datasets, the synthetic error generation process creates customized 

training datasets, which maximize the Bayesian network’s performance in detecting 

errors.  In this dissertation, we review the clinical laboratory process and the many 

sources of errors in clinical laboratory results, Bayesian networks, and the class 

imbalance problem.  Next, we elucidate the performance characteristics of the synthetic 

error generation process, which is followed by a comparison between our novel method 

and standard approaches to the class imbalance problem.  Finally, we compare the results 

of a synthetic error autoverification system against laboratory experts in the identification 

of errors.   
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GLOSSARY 

ANALYTE: A chemical substance, for example glucose and cholesterol, which is 

measured in a clinical laboratory. 

AREA UNDER CURVE (AUC): The area under the receiver operating characteristics 

(ROC) curve, which provides a metric for the performance of a classifier.  An 

AUC of 0.5 indicates a guessing whereas an AUC of 1.0 indicates a perfect 

classifier. 

AUTOVERIFICATION: The process by which clinical laboratory results are 

programmatically reviewed to determine if they meet the laboratory’s 

acceptance criteria.  Results that pass the laboratory’s acceptance criteria may be 

free for reporting while a laboratory expert reviews failing results. 

CLASS IMBALANCE: In a dichotomous classification, this refers to one class being 

more frequent than the other class.  

CLASS OVERLAP: In a dichotomous classification, this refers to the degree to which 

the classes are dissimilar or disjunct.  

DELTA CHECK: A method used to check laboratory results for errors by evaluating 

the plausibility of the observed change in an analyte’s value over time. 

DISJUNCT: The difference in attributes between two classes that make an object a 

member of one class instead of another class. 



 

ix 

 

ERROR: An error is the difference between an analyte's true value and its measured 

value. 

ERROR, ANALYTICAL: An error that occurs during in the clinical laboratory cycle 

where the specimen is being analyzed. 

ERROR, POST-ANALYTICAL: An error that occurs in the clinical laboratory cycle 

after the result has been released for reporting. 

ERROR, PRE-ANALYTICAL: An error that occurs in the clinical laboratory cycle 

prior to the clinical laboratory analyzing the specimen. 

ERROR, SAMPLE-SWITCHING:  An error that occurs when a patient’s specimen is 

identified as a different patient.  

FAITHFULNESS: A graph and joint probability distribution is said to satisfy the 

faithfulness condition if they satisfy the Markov condition and the only 

conditional independencies in the joint probability distribution are those entailed 

by the Markov condition (Neapolitan 2004).  See Markov condition. 

GLUCOSE: An analyte in the human body commonly measured to detect and monitor 

the progression of diabetes. 



 

x 

GLYCOSYLATED HEMOGLOBIN (HBA1C): An analyte in the human body formed 

by a non-catalytic reaction between hemoglobin and glucose that is measured to 

monitor the progression of diabetes.  

GOLD STANDARD: A definitive test or method to classify an analyte’s measured 

result as an error or not and that is never wrong. 

INTERNAL CONSISTENCY: A method to evaluate clinical laboratory results by 

checking that correlated analytes maintain the expected relationship.   

LIMS: Laboratory Information Management System – a database used to manage data 

in a clinical laboratory. 

LIS: Laboratory Information System – see LIMS. 

MAJORITY-CLASS:  In a dichotomous classification system with a class imbalance, 

this term refers to the more frequent class. 

MARKOV CONDITION: A graph and joint probability distribution is said to satisfy 

the Markov condition if for every variable in the graph, it is conditionally 

independent of all its nondescendants given the values for all of its parents 

(Neapolitan 2004).  See faithfulness. 

MINORITY-CLASS: In a dichotomous classification system with a class imbalance, 

this term refers to the less frequent class. 



 

xi 

NODE: An element in the graph of a Bayesian network, which generally represents an 

analyte. 

NODE - ANCESTOR:  In a directed acyclic graph, an ancestor of a node is a node that 

is upstream of the first node. 

NODE - ADJACENT: In a graph, two nodes with an edge between them are said to be 

adjacent. 

NODE - DESCENDENT: In a directed acyclic graph, a descendent node is a node that 

is downstream of the first node. 

NODE - PARENT: In a directed acyclic graph, a parent of a node is a node that is 

immediately upstream of the first node.  The graph contains a node from the parent 

node to the child node. 

PROBABILITY, POSTERIOR: The probability of some event after observing some 

evidence.  

PROBABILITY, PRIOR: The probability of some event prior to obtaining new 

evidence.   

RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE: A graphical plot of a 

dichotomous classifier’s performance.  The vertical axis corresponds to the true 

positive rate and the horizontal axis corresponds to the false positive rate.  Each 

point on the curve corresponds to a classification threshold. 



 

xii 

SENSITIVITY: A measure of how well a dichotomous classifier correctly classifies 

positive cases (erroneous laboratory results).  This measure depends on the 

classification threshold being used and varies between 0.0 and 1.0. 

SINGLE-CLASS CLASSIFIER: A classification system that, instead classifying an 

object as belonging to one class or another, classifies objects as belonging to the 

single class.  For example, a system in the clinical laboratory that is trained to 

only recognize the single class of acceptable results. 

SPECIFICITY: A measure of how well a dichotomous classifier correctly classifies 

negative cases (acceptable laboratory results).  This measure depends on the 

classification threshold being used and varies between 0.0 and 1.0. 



 

xiii 

ACKNOWLEDGEMENTS 
 
I wish to express my appreciation to the following individuals: 
 
To Drs. Peter Tarcy-Hornoch and Michael Astion for their invaluable advice and 
guidance. 
 
To Dr. Santica Marcovina for her support, patience, and willingness that made this 
journey possible. 
 
To Katherine Rosecrans for keeping my spirits up on those gloomy days when nothing 
went right. 
 
To the staff of Northwest Lipid Metabolism and Diabetes Research Laboratories for 
their priceless patience as I always seemed to be running out the door. 
 
Finally, I wish to expresses my deepest appreciation to Dr. Jason Doctor for his 
guidance and support in helping take a tiny seed of an idea and growing it into what it is 
today.  He is a true mentor.  



 

xiv 

DEDICATION 
 
To my friends and family for their never-ending love and support. 
 
 



 

 

1

Chapter 1: Introduction 

Clinical laboratories provide a critical service to the health care and well-being of the 

world’s population.  It is estimated that the clinical laboratory influences some 70 

percent of health-care decisions, but requires only about 4 percent of the health-care 

expenditures (Silverstein 2003; Laboratory Corporation of America 2007).  Clinical 

laboratories have been able to provide this enormous value by using highly automated 

instruments and complex database applications.  While the instruments have become 

increasingly automated and complex, the methods employed by the clinical laboratory 

to check the results for errors has not changed.  Over half of the clinical laboratories do 

not use an automated program, called an autoverification system, to check for errors 

(American Association for Clinical Chemistry 2007).  Unfortunately, most errors in 

clinical laboratory results are caused by errors that occur before the sample even reaches 

the analyzer, so improvements to analytic instruments do little to reduce the number of 

errors (Bonini, Plebani et al. 2002).  Of those laboratories that employ an 

autoverification program, virtually all are based on rules.  However, rules are a poor 

choice as a decision tool in an environment, such as the clinical laboratory, with rare 

errors and a high degree of uncertainty.  The primary research question is whether we 

can do better at detecting errors in the clinical laboratory.   

As we will discuss, development of an effective autoverification system is 

stymied by the rarity of laboratory errors as well as characteristics of laboratory 
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analyses and their errors.  This dissertation is the culmination of nearly 8 years of 

effort to develop an effective laboratory autoverification system that is a radical 

departure from historical approaches.  It describes complex issues involved in the 

development of autoverification systems and proposes a novel method, synthetic error 

generation, for addressing those issues.  Synthetic-error generation is used to create 

training datasets, which are then used to train Bayesian networks to detect laboratory 

errors.  After discussing the clinical laboratory process, Bayesian networks, and a major 

technical impediment (class imbalance), we describe the performance characteristics of 

the proposed method and compare performance against standard methods as well as 

laboratory experts. 

1.1 Background and Significance 

Since the Institute of Medicine’s 1999 report that estimated 44,000 to 98,000 deaths 

each year in the United States due to medical errors, there has been an increasing public 

awareness of medical errors including a call in the President’s State of the Union 

Address to reduce medical errors using better information technology (Institute of 

Medicine 1999; Bush 2007).  Only more recently has there been an increasing public 

awareness of the importance of clinical laboratories and the costs due to laboratory 

errors (Landro 2006).  Laboratory errors come from a variety of sources and each has its 

own implication for patient safety with the overall error rate generally estimated to be 

between 0.1% and 1.0% (Plebani and Carraro 1997).  Given an estimated 7 billion 

laboratory tests per year in the United States, this equates to upwards of 70 million 
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laboratory errors annually.  Laboratory errors are particularly problematic because 

they are pivotal in making many medical decisions.  Hence, errors in laboratory values 

may lead to unnecessary further testing and erroneous treatment decisions.  It is 

estimated that approximately 6% of erroneous laboratory results cause some harm to the 

patient (Astion 2006).  Physicians acting on erroneous information can have adverse 

health consequences for patients and increase the cost of medical care by introducing 

inefficiency.     

Laboratories use either expert review or a combination of automated methods, 

called autoverification systems, and expert review of flagged results, to review 

laboratory data and identify errors.  Autoverification systems in use today such as 

LabRespond or VALAB may be purchased as middle-ware applications or may be 

developed by the local laboratory (Oosterhuis, Ulenkate et al. 2000; Prost and Rogari 

2002).  These systems virtually always use rules to review laboratory results, checking 

for such conditions as abnormal values, large changes in values over time, and internal 

consistency of results.  For example, the autoverification system developed at New 

Cook County Hospital in Chicago, Illinois automatically releases for reporting 

(autoverifies), any cholesterol value between 80 and 450mg/dl or any glucose between 

60 and 325mg/dl and holds for expert’s manual review any cholesterol or glucose result 

outside of that range (Torke, Boral et al. 2005).  In contrast to the few simple rules by 

New Cook County Hospital, VALAB uses over 25,000 rules to review laboratory 

results (Prost and Rogari 2002).  While VALAB with its plethora of rules is able to out-
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perform many existing systems, the large number and proprietary nature of rules 

renders VALAB’s logic opaque to inspection (Oosterhuis, Ulenkate et al. 2000). 

When developing an automated system to detect laboratory errors, developers 

need to address the rarity of laboratory errors, estimated at less than 1.0%, in order to 

balance the system’s sensitivity and specificity along with the greater cost of mis-

classifying erroneous values as acceptable.  Class imbalance is the difference in the 

percentage of erroneous items compared to the percentage of acceptable items, and is a 

significant impediment to developing autoverification systems.  If not properly 

addressed, the severe class imbalance in the clinical laboratory domain inhibits many 

machine-learning algorithms since they can achieve near-perfect performance, as 

measured by percent correctly classified, by concluding all results are acceptable.  

Typical methods used to ameliorate the class-imbalance problem include: 1) over-

sampling, either directed or random, the minority class; 2) under-sampling, either 

directed or random, the majority class; 3) adjustment of misclassification costs; 4) 

single-class classifier (Japkowicz and Stephen 2002).  However, due to characteristics 

of the clinical laboratory, which are discussed next, standard approaches are not 

expected to produce optimal systems. 

In addition to the class imbalance problem, developers must also consider their 

gold standard for classifying results as erroneous or acceptable.  Laboratory analyses 

are subject to varying degrees of biological variability, instrument imprecision and 

biases, and treatment affects.  For example, cholesterol has a 6.0% within-in subject 
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coefficient of variation (Ricos, Alvarez et al. 1999).  The Centers for Disease 

Control laboratory standards for an instrument performing cholesterol analysis allows 

for a bias not to exceed 3.0% and a coefficient of variation not to exceed of 3.0%, for a 

combined total allowed error not to exceed 8.9% (Centers for Disease Control and 

Prevention 2004).  The combination of biological and instrumentation variability 

renders the results of laboratory analyses as only estimates of the true values and, 

therefore, limits the ability of a system to detect accurately deviations from the true 

value.  At a great expense in human capital, human experts are usually capable of 

identifying most gross laboratory errors.  As with other domains in the medical 

sciences, however, human experts should not be viewed as a “gold standard” because 

they do not have perfect sensitivity and specificity.  However, several human experts 

evaluating the same data are often able to detect and remove virtually all sizeable 

naturally occurring errors from a dataset.  When working off such a “cleaned” dataset, 

the only error for which there exists a gold standard are those knowingly introduced by 

the researcher (i.e., synthetic errors).  Synthetic errors are errors deliberately introduced 

by the researcher via some rule or set of rules to facilitate the study of error 

identification.  The set of rules used to synthesize errors often represents an analogue to 

naturally occurring error processes.  For example, sample-switching errors can be 

modeled effectively by randomly switching a proportion of samples within a cleaned 

dataset and transcription errors by randomly changing the digits of single analyte 

values.  This approach yields a criterion-based dataset with a gold standard for error 

identification as given by the record of the deliberate introduction of errors to the data. 
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1.2 Contribution of Work 

In this dissertation, we describe a novel laboratory autoverification system utilizing 

Bayesian networks and synthetic error generation that out performs existing systems.  

We believe that once a predictive, reliable and valid Bayesian belief error detection 

model is developed and tested, it can be incorporated into autoverification protocols in 

laboratories or managed care organizations with relative ease and minimal cost.  An 

autoverification system would alert the technician to a potential error, which (s)he could 

then investigate.  The cost-offset of such a system could potentially be enormous.  That 

is, the small cost of implementing a Bayesian autoverification protocol in laboratory 

settings would be offset by tremendous savings both in the reduction of laboratory 

errors and in the reduction of time needed to review results.  Because primitive 

autoverification protocols are currently widely used in medical laboratories, there would 

be potentially a low socio-technical barrier to implementation of improved error 

detection protocols. 

Specifically, this dissertation contributes to the biomedical and health informatics 

domain by showing that we can detect errors in the clinical laboratory better by: 

• Showing that we can better train a classification algorithm.  The performance 

characteristics of the proposed system are elucidated to show the relationship 

between class imbalance, class distinction, and within-class imbalance.  In 

developing an autoverification system that learns from training data and is then 
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used to identify errors in a real dataset, the training data’s parameters must 

be carefully configured to optimize performance.   

• Demonstrating the superiority of the proposed system to existing methods 

designed to address the class imbalance problem in the clinical laboratory 

domain.  The clinical laboratory domain is unique and standard approaches may 

not work as well as one designed specifically for the domain of interest. 

• Demonstrating the superiority of the proposed system to laboratory experts.  

Autoverification systems supplement laboratory experts, who must necessarily 

trust them to function at least as well as a laboratory expert. 

1.3 Outline of this Dissertation 

This dissertation describes the development and evaluation of the synthetic error 

generation method in order to create a laboratory autoverification system that 

outperforms existing systems and laboratory experts.   

The dissertation is organized as follows: 

• Chapter 1: Introduction – a brief overview of the significance of 

autoverification systems along with impediments to their successful 

development. 

• Chapter 2: The Clinical Laboratory: Processes and Errors  – a description of 

the clinical laboratory process including sources for errors and the methods used 

to detect laboratory errors.  We will discuss pre-analytical, analytical, and post-
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analytical errors and how errors are detected using internal consistency 

checks, delta checks, and extreme values. 

• Chapter 3: Bayesian Networks: Overview and Operation - a review of Bayesian 

networks as utilized in this dissertation including structure learning, parameter 

learning, and inference in both discrete and conditional Gaussian networks.  We 

will guide the reader through parameter learning and making inferences with 

examples specific to the medical domain. 

• Chapter 4: Class Imbalance: Standard Solutions - a discussion of class 

imbalance problem and its impacts on the clinical laboratory autoverification 

domain as well as standard methods for addressing the class imbalance problem.  

Class imbalance in the clinical laboratory domain is more extreme than is 

observed in other domains, and introduces unique problems that inhibit the 

effective training of autoverification systems. 

• Chapter 5: Synthetic Minority-Class Generation – a description of the synthetic 

error generation method with performance characteristics over a wide range of 

model parameters.  Our approach, given the unique and extreme class imbalance 

problem, is to create part of the training dataset synthetically, thereby better 

training the autoverification system. 

• Chapter 6: Comparison of Synthetic Error Method           Against Standard 

Methods – the results of statistical comparisons between the domain-specific 

synthetic error-generation method and the standard methods for detecting 

laboratory errors demonstrating that better training results in better performance. 
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• Chapter 7: Comparison of Synthetic Error Generation  Against 

Laboratory Experts – survey results from laboratory experts of their utility for 

laboratory error detection systems and a statistical comparison against the 

synthetic error-generation method demonstrating the superiority of a Bayesian 

network autoverification system training with synthetic errors. 

• Chapter 8: Summary and Conclusions – a summary of the dissertation with 

limitations and future work. 

1.4 Conventions and Notations 

The following words are used frequently within this dissertation and, therefore, it is 

critical that their use be understood: 

• Error – An error is the difference between an analyte's true value and its 

measured value.  

• Dichotomous system – a system containing two mutually exclusive and 

exhaustive classes or labels.  For example, a clinical laboratory result is either 

acceptable or not. 

• Minority-class – the class with small frequency in a dichotomous system. 

• Majority-class – the class with larger frequency in a dichotomous system. 

• Between-class Imbalance – when one class is significantly less frequent than 

the other class. 
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• Small disjuncts – when the class disjunct is small, the overlap between 

classes is substantial making class differentiation difficult.  

• Within-class Imbalance – when one class contains subclusters with 

significantly different frequencies.  

• Class imbalance – a general term describing between-class imbalances, class 

disjuncts, and within-class imbalances. 

• Autoverification system – a system that automatically reviews laboratory 

results and identifies those results that are possibly in error. 
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Chapter 2: The Clinical Laboratory: Processes and Errors 

The clinical laboratory is a critical part of the health care system, providing services to 

hospitals and local clinics as well as to researchers investigating novel drugs and 

treatment regimes.  The timely identification and resolution of errors is critical to the 

laboratory’s ability to provide quality results.  While, as we will see in section 2.2, most 

laboratory errors occur outside of the analytical process, the term “laboratory error” 

encompasses any error within the process described in section 2.1.  Within the 

laboratory process cycle, the laboratory is often best suited to detect indications of an 

erroneous result, discussed in section 2.3, either via an expert’s review or via an 

automated program.  We start with an overview of the clinical laboratory process. 

 

Figure 2.1 Clinical Laboratory Process 
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2.1. Overview of Laboratory Process 

The clinical laboratory process or cycle, Figure 2.1, shows the process of the clinical 

laboratory that starts and ends with the clinician.  The clinician may be in a hospital, a 

local office, a research environment, or similar, and decides to perform some laboratory 

analysis on a patient.  Depending on the analysis, the patient may need to fast for 

several hours before the phlebotomist is able to collect the sample.  The phlebotomist 

has procedures that they must follow, which include proper patient identification, 

assessing analysis-interfering conditions such as non-fasting, collecting the specimen 

with the proper gauge needle, using a test-appropriate type of container, and labeling 

the vial (University of Utah 2007).  Once the specimen is collected, it generally needs to 

be processed.  This includes letting it sit for a specific period of time, centrifuging, 

aliquoting the plasma or serum, etc.  Once processed, the sample is shipped or delivered 

to the laboratory where the sample is logged into their Laboratory Information 

Management System (LIMS), identifying the patient and requested tests.  The 

laboratory may need to re-label the specimen with its own accessioning number, which 

adds another potential source for error.  Laboratory technicians analyze the specimen 

and results are entered into the LIMS, typically directly from the analyzer.  Laboratory 

experts or an autoverification system reviews the results of the analyses and releases the 

results for reporting back to clinician, who interprets the results and may make take 

some action regarding the patient’s treatment.  The part of the cycle from when the 

clinician orders the test to when the sample is received by the laboratory technicians is 

called the pre-analytical phase and is indicated in green.  The analytical phase, indicated 
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in red, covers the portion of the cycle from the laboratory technicians’ receipt of 

the sample to when the results are released for reporting to the ordering clinician.  The 

post-analytical phase, indicated in blue, is the portion of the process occurring after 

results have been released for reporting.  As discussed next, errors may occur at any 

point along this process. 

2.1.1 Scope of Applicability 

Errors occur at points within the clinical laboratory process and errors are also caught at 

points along the process as well.  A diligent login staff can catch many sample quality 

errors, such as low volume, and improperly identified samples or requisitions.  

Autoverification systems are concerned with detecting errors once a specimen is logged 

into the Laboratory Information System (LIS) and given to the laboratory technicians 

for analysis.  Laboratory analysis may be performed using automated analyzers or may 

be performed using a manual procedure.  The result of the analysis may be numeric 

(cholesterol: 220 mg/dl) or non-numeric (Apo E Genotype: E3/E3).  The 

autoverification system described herein is designed only to detect errors in numeric 

data.  Furthermore, in order to hypothesize that a given result is in error, we must 

assume that the analytical result can be predicted.  The autoverification system 

discussed herein is not meant to be an all-encompassing autoverification solution, but 

rather, is meant to be a layer in a laboratory’s error defense system.  The clinical 

laboratory must continue to use proper quality control procedures and, where 

appropriate, rule-based autoverification systems (Westgard 2004).   
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2.1.2 The Canonical Clinical Laboratory 

In 1999, there were approximately 170,000 clinical laboratories in the United States 

with hospital laboratories performing 60% of the testing, commercial laboratories 

performing 30%, and doctors’ offices performing 10% (Pollack 2001).  The clinical 

laboratory process in each of these three setting is different.  For example, in a doctor’s 

office, a nurse may collect and process the specimen, perform the analysis, and provide 

results to the clinician using a hand-written note.  A hospital laboratory may have staff 

perform much of the specimen processing occurring in the pre-analytical phase whereas 

a commercial laboratory may perform virtually none of the pre-analytical processing.  

With such a wide range of settings, we define a canonical clinical laboratory as our 

setting.  This canonical clinical laboratory is considered to use the following process: 

1. Receives samples from the client along with a requisition form identifying the 

patient and desired analyses. 

2. Logs the samples into their LIS, including available patient demographic data. 

3. Labels the samples with a unique bar-coded sample accession number. 

4. Provides samples to the technicians, who place the sample on an automated 

analyzer. 

5. The automated analyzer, if capable, reads the bar-code, queries the LIS for the 

desired analyses, performs the analyses, and reports the result to the LIS via an 

interface.  Less capable analyzers may require the technician to enter results 

manually or identify the sample accession number. 
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6. The laboratory technician checks results ensuring quality controls are 

acceptable and reasonable values.  If warranted, the laboratory technician will 

contact the client with critical values.  Once checked, the laboratory technician 

posts the results to the LIS. 

7. Laboratory experts and/or autoverification systems evaluate the results, 

designating suspect results to be repeated or investigated and releasing the rest 

for reporting. 

8. Results are reported to the client via any combination of email, postal mail, fax, 

automated interface, phone, remote printers, etc.  

The canonical clinical laboratory autoverification system detects errors when the value 

is transferred from the automated analyzer to the LIS or after the laboratory technician 

has posted the value. 

2.1.3. The Role of Autoverification in the Clinical Laboratory 

Clinical laboratories use autoverification systems, such as the one described herein, to 

screen laboratory results for potentially erroneous results.  Laboratory directors are in 

many cases required, by law and by licensing organization, to ensure that their 

autoverification systems operate as required (California Assembly 2006; Commission 

on Laboratory Accreditation 2006).  One requirement is for the autoverification system 

to flag for expert evaluation results that exceed some predefined threshold, which is 

usually defined by clinical significance.  These thresholds are easily set using rule-

based autoverification systems.  However, detecting possible errors and hypothesizing 



 

 

16
as to its origin, is best performed using a probabilistic system, not a rule-based 

system.  In practice, the clinical laboratory will need to implement both a rule-based 

system to flag results exceeding predefined thresholds and a probabilistic system to 

detect erroneous results.  The system described herein is a probabilistic system and as 

such, is designed to detect when an analytical result differs significantly from the 

expected value.   

2.2. Sources of Laboratory Errors 

Table 2.1 lists the three phases of the clinical laboratory process, along with 

representative errors common to each phase.  The phases are pre-analytical (Wiwanitkit 

2001), analytical (Witte, VanNess et al. 1997), and post-analytical (Stroobants, 

Goldschmidt et al. 2003).  A recent review found tremendous variability between 

laboratories, but estimated that about two-thirds of these errors occur in the pre-

analytical stage, one-sixth in the analytical stage, and one-sixth in the post-analytical 

stage (Bonini, Plebani et al. 2002).  The pre-analytical phase contains errors originating 

from the patient, such as being mis-identified or non-fasting, and errors due to improper 

sample collection and processing, such as using the wrong type of collection container 

or poor sample quality.  Analytical errors are those originating in the analytical sections 

of the clinical laboratory and include analyzer errors, sample mis-handling, data entry 

errors.  Post-analytical errors are those errors occurring after the results have been 

released for reporting back to the clinician and include excessive turn-around-time of 

results.  Autoverification systems generally do not address post-analytical errors except 
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for turn-around time: an accurate autoverification system can review results 

quickly, holding only suspect results from reporting, so that the turn-around time is as 

short as possible. 

Table 2.1 Three phases of the laboratory testing process with representative errors 

Pre-Analytical Analytical Post-Analytical 

• Patient misidentified 

• Incorrect collection vial  

• Inappropriate specimen 

quality (clotted, low 

volume, hemolysis, etc.) 

• Specimen mishandled 

• Delay in shipment 

• Sample switch 

• Instrument error 

• Procedural error 

• Dilution error 

• Quality control failure 

• Data entry error 

• Delay in analyzing 

• Results misidentified 

• Physician not notified of 

problem 

• Results misinterpreted 

• Delay in reporting 

2.2.1 Errors in Context 

As is clear from Table 2.1, laboratory errors occur in several contexts.  Pre-analytic 

errors occur in the context of specimen collection, processing, handling, and logging 

into the clinical laboratory’s LIS.  Analytic errors occur during the analysis of the 

specimen.  Finally, post-analytic errors occur within the context of communication 

between laboratory and clinician or within the clinical practice setting.  A careful 

analysis of workflow and processes within these contexts could reveal “root causes” of 

errors.  However, because laboratories, clinics and hospitals represent numerous largely 

independent entities, what represents a cause of error at one location may not represent 

a cause at another.  For example, neither the measurements of insulin or HbA1c are 
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standardized, which results in a wide range of analysis protocols and well as a 

wide range of analytical variability (Hoelzel, Weykamp et al. 2004; Marcovina, 

Bowsher et al. 2007).  

 Another approach to incorporating context into the analysis of error would be to 

build models that predict error around laboratory value contextual annotations (e.g., 

“sample hemolyzed”).  Such an approach would target directly the causes of error 

within the context of laboratory data collection and analysis.  However, such 

annotations, if available, may not be usable for detecting errors due to their dependence 

on the analytical method and reagents used in the analysis (Jay and Provasek 1993).  

Furthermore, some critical types of annotations would never be available.  For example, 

one rarely knows if a sample was switched or an instrument failed.  Had such 

information been known in context, then avoiding an error would have been possible.  

The “contextual annotations” approach is useful in measuring the affect of an 

intervention aimed at reducing laboratory errors, but, as we will see in Chapter 4, is not 

useful in building a predictive system to identify those errors. 

 We approach the problem of context from a third perspective by evaluating the 

belief in an analyte’s value being in error within the context of results of other analytic 

values.  Unlike annotations or workflow analyses, information on other analytic values 

has virtually no additional cost in reasoning about errors; they are already available in 

laboratory databases.  Analytic values are of course, indicators of biological function, 

and errors represent exogenous perturbations of these biological indicators that lead to 
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unusual data patterns.  Hence, examining an analyte’s value in the context of 

other biological indicators can influence one’s belief that a value is in error.  For 

example, measuring a high fasting glucose and a low glycosylated hemoglobin should 

increase our belief in an error since such a combination is unlikely.   

2.2.2 Qualitative Error Types 

Within this method, we attempt to detect errors that affect a single result such as one of 

the three major types of errors listed in Table 2.2.  Value errors are those errors that 

affect a single result.  Such errors have no affect on our belief that any other result is in 

error.  Value errors may be due to transcription mistakes or instrument failures.  A value 

error is, for example, when a technician enters an erroneous cholesterol result of 250 

mg/dl instead of an actual value of 150 mg/dl.  Sample processing errors are those 

errors that affect a known set of more than one analytical result for a collected sample 

and will do so in a predictable manner.  For example, hemolysis in a sample will cause 

the potassium to be higher and the alkaline phosphatase to be lower, than their true 

values (Jay and Provasek 1993).  Finally, a sample switching error occurs when two 

patient samples are interchanged.  For the purposes of this study, however, it is assumed 

that one result, glucose, comes from one sample and the other result, glycosylated 

hemoglobin (HbA1c), comes from a different sample such that sample processing errors 

and sample switching errors only affect one of the two results.  This is an appropriate 

assumption for glucose and HbA1c since glucose is performed using serum or plasma 

while HbA1c is performed using whole blood.  Laboratory errors, such as the types 
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listed here, come about from any one of a number of steps and perturb the results 

leading to unusual data patterns that can be detected. 

Value Error Sample Processing Error Sample Switch 

• Instrument failure 

• Data-entry error 

• Incorrect specimen collection vial 

• Inappropriate specimen quality 

• Specimen mishandled 

• Vial interchange

Table 2.2 The Three Major Qualitative Error Types  

2.3. Indications of Laboratory Errors 

The affect of laboratory errors in creating unusual data patterns can be very subtle, 

obvious, or more commonly somewhere in-between.  For example, if two patients 

selected at random have his or her glucose specimens interchanged, each patient is 

expected to have a glucose measurement near the mean value and the resulting error is 

expected to be near zero.  However, if measuring potassium and the specimen is grossly 

hemolyzed, the inappropriate specimen quality error is obvious because the measured 

potassium value will greatly exceed a value compatible with life and the specimen will 

be a bright cherry red instead of a normal clear.  Further confounding the identification 

of laboratory errors is biological and instrument variability.  For example, cholesterol 

has a 6.0% within-subject biological variability and is expected to be measured within 

8.9% of the true value set by a reference laboratory (Ricos, Alvarez et al. 1999; Centers 

for Disease Control and Prevention 2004).  While many errors can be proven, there is, 

in general, no definitive way to prove that a given value is in error.   
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2.3.1 Limited Gold Standards for Error Identification 

The qualitative types of errors listed in Table 2.2 reflect both human and instrument 

failures.  Typically, these failures go undetected leading to an error.  Thus, naturally 

occurring errors are often not evident to the observer.  At a great expense in human 

capital, human experts are usually capable of identifying most gross laboratory errors.  

As with other domains in the medical sciences, however, human experts should not be 

viewed as a “gold standard” because they do not have sufficient sensitivity or 

specificity.  A critical function experts provide is deciding whether a suspected error is 

significant and worth investigating.  Human experts evaluating a dataset are often able 

to detect and remove most sizeable errors from a dataset.  When working off such a 

“cleaned” dataset, the only error for which there exists a gold standard are those 

knowingly introduced by the researcher (i.e., synthetic errors).  Synthetic errors are 

errors that have been deliberately introduced by the researcher via some rule or set of 

rules to facilitate the study of error identification.  The set of rules used to synthesize 

errors often represents an analogue to the naturally occurring error process.  For 

example, sample-switching errors can be modeled effectively by randomly switching a 

proportion of samples within a cleaned dataset, and transcription errors can be modeled 

by randomly changing the digits of single analyte values.  This approach yields 

criterion-based datasets with a gold standard for error identification as given by the 

record of the deliberate introduction of errors to the data.  In our method, we use a 

synthetic-error generation process as the gold standard when creating the training data 

set. 
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2.3.2 Delta Checks 

Delta checks compare the patient’s current results with their previous results and 

provide an estimate on the plausibility of the observed changes (Ladenson 1975).  They 

are well established and understood by laboratory experts.  By using the assay’s 

coefficient of variability along with the biological coefficient of variability, a laboratory 

can compute changes, called reference change values, that indicate a statistically 

significant change (Fraser, Stevenson et al. 2002).  This approach may be satisfactory if 

the patient is seen often, has not changed his or her lifestyle, has had no changes in 

treatments, has had no changes in any of his or her afflictions, has not aged 

significantly, and the analytes being measured have low biological variability.  As the 

patient’s condition gets further away from this ideal, the usefulness of delta checks as 

traditionally implemented diminishes.  Since we use a conditional Gaussian Bayesian 

network in our method, the incorporation of nodes representing historical results can be 

included and the structure and parameter learning algorithms presented in Chapter 3 

will identify when changes are expected and when they are not.  For example, patients 

with a high cholesterol value are usually treated and, therefore, the expected change is 

large and negative.  

2.3.3 Internal Consistency 

Checking internal consistency involves examination of pathophysiologically related 

variables using empirically derived rules, intuition, or training (Boran, Given et al. 

1996).  For example, Rohlfing et al. (2002) researched the relationship between fasting 
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plasma glucose and glycosylated hemoglobin and concluded that a predictable 

relationship existed between them.  As glycosylated hemoglobin increased, however, 

the variability in glucose increased substantially.  Biological variation, especially in 

morbid patients, may limit the usefulness of the internal consistency approach (Boran, 

Given et al. 1996).  For example, an analysis of the NHanes data from the 2004 survey 

indicates the relationship between glucose and glycosylated hemoglobin changes as a 

patient transitions from non-diabetic to pre-diabetic, to diabetic (Centers for Disease 

Control and Prevention (CDC) 2004).  The method presented here properly handles the 

uncertainty due to biological variation and can adapt for disease states.  

2.3.4 Extreme Values 

If a specimen is grossly hemolyzed then the measured potassium value will be extreme 

and instantly identified as an error.  The range of values that, outside of which 

constitutes an extreme value, depends on the setting as well as one’s tolerance.  For 

example, the New Cook County hospital in Chicago uses a range of 80 – 450 mg/dl to 

review cholesterol results and a range of 60 – 325 mg/dl to review glucose results 

(Torke, Boral et al. 2005).  By checking for extreme values, some errors can be 

identified, but these are often only the most obvious errors.  Conditional Gaussian 

Bayesian networks easily detect extreme values because extremes are improbable. 
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2.4 Detecting Laboratory Errors 

Methods employed by a typical clinical laboratory to detect errors, such as those listed 

in Table 2.2, in laboratory results have not changed substantially over the years even 

though technology in general, has grown rapidly.  The method for validating patient 

results is to evaluate the results for indications of laboratory errors either via a review 

by seasoned laboratory experts, or by a computer algorithm called an autoverification 

system.  Currently, about 48% of clinical laboratories have a rule-based autoverification 

system implemented (American Association for Clinical Chemistry 2007).  When 

reviewing data, both the autoverification system and the laboratory experts estimate the 

believability of results based on the internal consistency of the data and against delta 

checks (Boran, Given et al. 1996).  Below we provide a brief overview of the current 

approaches to laboratory error detection. 

2.4.1 Laboratory Experts 

Laboratory experts are effective large error detectors, but invariably get fatigued, are 

interrupted, or just make a mistake.  Studies of rule-based autoverification systems have 

suggested they can reduce technologist review time by about 40% and achieve greater 

accuracy (Crolla and Westgard 2003; Torke, Boral et al. 2005).  This is influencing  a 

move towards automated systems (Crolla and Westgard 2003).  According to a 2007 

American Associate for Clinical Chemistry survey, approximately 52% of clinical 

laboratories use experts to review data prior to release (American Association for 

Clinical Chemistry 2007).  Our preliminary research suggested that laboratory experts 
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are not as sensitive or specific as a Bayesian network trained using the method 

presented here and this result, discussed in Chapter 7, was confirmed. 

2.4.2 Rule-Based Experts 

Current systems that implement artificial intelligence based approaches to detecting 

laboratory errors are generally based on rules.  A commercial rule-based 

autoverification system, VALAB, was compared to a panel of nine clinical chemists at 

the St. Elisabeth Hospital in The Netherlands and was shown to be more sensitive, 

though significantly less specific, than the experts in identifying intentionally altered 

data (Oosterhuis, Ulenkate et al. 2000).  However, VALAB requires tens of thousands 

of rules and a complex weighting system (Valdiguie, Rogari et al. 1996).  In addition, 

VALAB’s underlying rules are proprietary and are not open to inspection (Oosterhuis, 

Ulenkate et al. 2000).  The tremendous number of rules in modern autoverification 

systems renders these systems brittle and unmanageable and their proprietary nature 

renders their logic opaque, but this is not the primary objection to using rule-based 

systems to detect laboratory errors.  The primary objection to rule-based systems in the 

laboratory error context is that they are not able to reason abductively (from evidence of 

error to belief in hypothesis about error).  Rule-based systems have difficulty reasoning 

bi-directionally.  As we will demonstrate in Chapter 3, Bayesian networks by virtue of 

their dual probabilistic and graphical framework are able to reason from evidence to 

hypothesis and from hypothesis to evidence (Wright and Ayton 1994).   



 

 

26
2.4.3 Detecting errors via probabilistic methods 

Oosterhuis, Ulenkate, & Goldschmit (2000) developed a method call LabRespond by 

which correlated laboratory tests are examined for patterns.  LabRespond compares 

observed versus expected patterns as an indicator of the likelihood of the observed data.  

Such an indicator can be used as an error threshold.  Oosterhuis (2000) has shown that 

the error identification rate ranged between 24% and 71% with this method.  As with 

the current dissertation, they too used synthetic errors for the analysis.  In their research 

they demonstrated that LabRespond is comparable to VALAB in its performance 

(Oosterhuis, Ulenkate et al. 2000).  Our preliminary research demonstrated a 

conditional Gaussian Bayesian network that outperformed LabRespond in detecting 

laboratory errors. 

2.5. Summary 

Current approaches used to detect laboratory errors are not effective.  Delta checks will 

flag large changes in a laboratory analysis, but fails to consider when large changes are 

expected such as a patient starting a new medication.  Internal consistency checks will 

flag results that inconsistent with other observations, but may be limited in morbid 

patients.  Both laboratory experts and rule-based systems are capable of using delta 

checks and internal-consistency checks to identify laboratory errors, but our preliminary 

research suggests that Bayesian networks are capable of significantly outperforming 

current approaches as well as provide hypotheses for the error.  An overview of 

Bayesian networks with a discussion of structure learning, parameter learning, and 



 

 

27
making inferences is provided next followed by a critical problem, class 

imbalance, in the clinical laboratory domain that stymies the development of effective 

autoverification systems. 
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Chapter 3: Bayesian Networks: Overview and Operation 

The purpose of this chapter is to familiarize the reader with Bayesian networks as 

utilized later in the dissertation.  This is not intended to be a complete discussion of 

Bayesian networks.  For a more thorough explanation, the interested reader is referred 

to the following books though only Neapolitan and Cowell cover Gaussian networks:  

• Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference 

(Pearl 1988) 

• Causality: Models, Reasoning, and Inference  (Pearl 2000) 

• Learning Bayesian Networks (Neapolitan 2004) 

• Probabilistic Networks and Expert Systems (Cowell, Dawid et al. 1999) 

• Bayesian Networks and Decision Graphs (Jensen 2001) 

Within the domain of biomedical artificial intelligence, researchers have increasingly 

utilized Bayesian networks because of their strength in properly handling uncertainty.  

Early researchers, such as Ted Shortliffe with his MYCIN project, attempting to 

incorporate uncertainty into the omnipresent rule-based systems of the day, were unable 

to accomplish this feat without imposing significant restrictions on that system due to 

semantic deficiencies of the language (Pearl 1988).  Specifically, rule-based systems, 

which Pearl refers to as “extensional” systems, are not able to accurately infer 

bidirectionally, retract evidence, or properly handle correlated evidence (Pearl 1988).  

Bayesian networks, in contrast, do not have this limitation and offer here a formal 
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calculus for quantifying belief that a laboratory error has occurred.  In this 

chapter, we start with an overview of Bayesian networks and then examine parameter 

learning, structure learning, and inference in discrete and conditional Gaussian Bayesian 

networks. 

3.1 Overview of Bayesian networks 

A Bayesian network consists of a graph, with some limitations, and joint probability 

distributions.  The graph contains nodes, representing variables such as cholesterol, and 

directed edges between nodes representing a causal relationship between the variables 

(Pearl 1988).  A limitation of the Bayesian network’s graph is that cycles are prohibited.  

Under the Bayesian network framework, directed acyclic graphs faithfully represent 

probabilistic relationships and concisely describe probability distributions over the 

states of variables in the network.  A sample Bayesian network, derived from a portion 

of the NHanes demographic database, is displayed in Figure 3.1 (Centers for Disease 

Control and Prevention (CDC) 2004).  The four nodes in this graph correspond to an 

individual’s gender, race, education level, and income.  A square is used to indicate a 

discrete variable and a circle indicates a continuous variable.  Directed edges between 

the nodes represent statistical correlations and can be defined by subject experts, 

computer algorithms, or both.  The lack of an edge between gender and any other 

variable indicates that, for the NHanes respondents, gender does not co-vary with 

education, race, or income.  The directed edge from the Race node to the Education 

node indicates that one’s race affects the probability of achieving a level of education.  
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Note that the use of directed edges enables the system to represent real-world 

cause and effects: race affects the probability of attaining a level of education; one’s 

education level does not affect one’s race.  A causal interpretation for the graph, while 

irrelevant for the prediction process, is important for the laboratory experts, who must 

evaluate the models during their evaluation process.  A model that is not causally sound 

may not be trusted.  Joint probability distributions, called the parameters of a Bayesian 

network, can similarly be defined by subject experts, learned programmatically, or both.  

For the Bayesian network defined by Figure 3.1 and Table 3.1 - Table 3.5, a dataset was 

created from the 2003-2004 NHanes demographic data file DEMO_C.xpt with all 

missing values removed (Centers for Disease Control and Prevention (CDC) 2004).   

Using a program called “deal”, the structure of the Bayesian network was determined 

(Bøttcher and Dethlefsen 2003).  Finally, a program called “Netica” was used to 

determine the parameters or joint probability distributions (Norsys Software 

Corporation 2006).  By using a formal calculus, described next, one can reason over the 

Bayesian network and make inferences, as demonstrated later in this chapter for a 

discrete and conditional Gaussian Bayesian network. 
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Figure 3.1 Bayesian Network from NHanes Demographics 

 
 

Table 3.1 Joint Probability Distribution of Gender 

Female Male 
51.1% 48.9% 
 
 

Table 3.2 Joint Probability Distribution of Race 

Black Hispanic Other 
Other-

Hispanic White
26.6% 23.7% 3.1% 3.1% 43.5%
 
 

Table 3.3 Joint Probability Distribution of Education Level by Race 

 Black Hispanic Other 
Other-
Hispanic White 

Less than High School       (HS-) 65.0% 75.4% 47.9% 62.0% 34.6% 
High School or equivalent (HS) 13.1% 12.4% 11.7% 14.5% 22.8% 
More than High School      (HS+) 21.9% 12.2% 40.4% 23.5% 42.6% 
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Table 3.4 Joint Probability Distribution of Income Level by Race and 
Education 

 Race: Black Hispanic Other 
 Education: HS- HS HS+ HS- HS HS+ HS- HS HS+ 

0-4,999  3.3% 3.5% 3.3% 3.6% 2.5% 3.8% 1.6% 5.3% 5.6% 

5,000-9,999   9.6% 9.6% 4.8% 6.3% 5.1% 3.0% 1.6% 7.9% 3.7% 

10,000-14,999 12.0% 9.6% 6.5% 13.5% 13.9% 6.4% 9.6% 7.9% 7.5% 

15,000-19,999 9.7% 8.2% 5.4% 8.8% 8.9% 6.0% 12.8% 18.3% 8.4% 

20,000-24,999 9.3% 10.6% 9.1% 10.6% 8.9% 12.0% 12.0% 5.3% 2.8% 

25,000-34,999 14.5% 16.1% 14.1% 18.5% 18.0% 15.8% 16.8% 5.3% 11.3%

35,000-44,999 9.4% 12.4% 11.3% 13.8% 15.6% 11.5% 8.8% 7.9% 10.3%

45,000-54,999 8.2% 9.2% 8.0% 10.3% 11.0% 7.7% 9.6% 13.2% 7.5% 

55,000-64,999 4.7% 6.0% 6.3% 4.6% 6.3% 4.7% 4.0% 7.9% 6.5% 

65,000-74,999 3.2% 3.5% 5.4% 1.7% 3.0% 7.3% 2.4% 10.5% 9.3% 

A
nn

ua
l H

ou
se

ho
ld

 In
co

m
e 

75,000+ 16.1% 11.3% 25.8% 8.3% 6.8% 21.8% 20.8% 10.5% 27.1%

 
 

Table 3.5 Joint Probability Distribution of Income Level by Race and Education – 
continued 

 
 Race: White Other-Hispanic 
 Education: HS- HS HS+ HS- HS HS+ 

0-4,999  1.2% 1.5% 1.7% 1.3% 4.4% 1.5% 

5,000-9,999   4.7% 4.6% 2.9% 7.5% 2.2% 4.5% 

10,000-14,999 10.4% 9.2% 5.3% 13.8% 8.9% 7.5% 

15,000-19,999 9.5% 10.1% 5.3% 10.0% 13.3% 3.0% 

20,000-24,999 9.6% 11.3% 5.3% 10.0% 13.3% 6.0% 

25,000-34,999 9.3% 15.3% 10.6% 16.7% 20.1% 16.4% 

35,000-44,999 8.8% 11.9% 11.3% 15.0% 8.9% 10.4% 

45,000-54,999 9.1% 7.8% 10.0% 6.3% 6.7% 6.0% 

55,000-64,999 7.4% 6.7% 7.4% 7.5% 2.2% 4.5% 

65,000-74,999 5.9% 6.0% 6.9% 2.5% 6.7% 6.0%  A
nn

ua
l H

ou
se

ho
ld

 In
co

m
e 

75,000+ 24.1% 15.6% 33.3% 9.4% 13.3% 34.2% 
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3.1.1 Bayes’ Theorem and Conditional Probability 

In this section we discuss the fundamental probability theory used to reason with a 

discrete Bayesian network such as the one depicted in Figure 3.1.  Bayes’ Theorem, 

named for the Reverend Thomas Bayes (1702 -1761), is used to compute conditional 

probabilities as well as posterior probabilities.  If we observe some fact F, what is the 

probability of event E?  If this probability is difficult to measure, then equation 3.1 

provides a means to compute this probability using the probability of observing the 

event, P(E), the probability of observing the fact, P(F), and the probability of observing 

the fact given that the event has occurred, P(F|E). 

 
( | ) ( )( | )

( )
P F E P EP E F

P F
=  (3.1) 

If the event and the facts are independent, then observing fact F has no impact on the 

probability of observing the event E.  This concept is expressed in equation 3.2. 

 ( | ) ( )P E F P E=  (3.2) 

If F takes on a set of n mutually exclusive and exhaustive set of states, then equation 3.3 

may be used to calculate the probability of event E. 

 
1

( ) ( | ) ( )
n

i i
i

P E P E F P F
=

= ∑  (3.3) 
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These simple formulae are the basis of making inferences with Bayesian networks 

and enable the development of a Bayesian autoverification system. 

3.1.2 d-Separation 

An important concept in Bayesian networks is d-separation, which defines how 

knowledge or the lack of knowledge blocks the flow of information between two nodes.  

Consider the case of three nodes that are connected to form a path.  The four possible 

arrangements of this graph are depicted in Figure 3.2.  For any path, the flow of 

information is blocked if one of the two following conditions are met (Pearl 2000):  

1. The path contains a chain or a fork and the state of the middle node is known. 

2. The path contains a collider and the states of the middle node and all its 

decedents are not known. 

If, given some knowledge (or lack of knowledge in the case of a collider) about the state 

of nodes in the network, all paths between two nodes are blocked, then those nodes are 

said to be d-separated (Pearl 2000).  D-separation is critical in both learning the 

structure of the Bayesian network and making inferences.   
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Figure 3.2 Possible Arrangements of Three Singly Connected Nodes 

3.1.3 Markov Equivalence 

The two chains and fork graphs depicted in Figure 3.2 contain the same conditional 

independence – given knowledge of node B’s state, node A is conditionally independent 

of node C.  These three graphs are clearly not identical, but are indistinguishable 

statistically.  This equivalency is termed Markov Equivalence.  When using a heuristic 

to determine the structure of the graph, one is unable to differentiate between two 

Markov-equivalent structures.  Markov equivalence hinders the ability to consider a 

learned structure as a causal representation because directionality cannot always be 

determined.  However, a human expert is often able to select the model that best fits 

reality and can infer causation from directed edges. 
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3.2 Discrete Bayesian Networks 

Discrete Bayesian networks are a common form of Bayesian networks due to their 

strengths, which include a capability to represent any arbitrary probability distribution 

within the limits of the number of discrete states.  In this section, we will overview the 

steps required to identify the structure of the directed acyclic graph, learn the 

parameters or joint probability distributions, and make inferences based on 

observations.  These steps, when applied to a properly created training database, yields 

a Bayesian network that is able to function as an autoverification system. 

3.2.1 Structure Learning 

The directed acyclic graph part of the Bayesian network must faithfully represent the 

conditional independencies contained within the joint probability distributions.  In 

addition, the graph must correspond with reality in that causal connections expressed by 

the graph need to be temporally sound and model plausible causal connections.  For 

example, the state of a node today cannot affect the state of another node in the past and 

variables such as race cannot be affected by one’s education level.  In general, domain 

experts, an algorithm, or a combination of the two, define the structure of a Bayesian 

network.   

Domain experts may, based upon their expertise, define the Bayesian network’s 

structure by inserting directed edges between nodes to indicate causal actions and their 

direction of effect.  In contrast to the experts, an algorithm does not know a priori the 
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conditional independencies among the variables.  A naïve approach would be to 

use a training dataset and try all possible models to find the one most likely given the 

training dataset.  However, the number of candidate models grows more than 

exponentially as the number of nodes increases with a 10 node system having over 4.2 x 

1018 possible models (Neapolitan 2004).  Identifying the most likely model is NP-Hard 

(Chickering, Geiger et al. 1994).  Therefore, a heuristic is used to guide the search 

through the domain of possible models, scoring each tested model using some criterion, 

and selecting the best model when some stopping criteria are met.  To assist the 

evaluation of possible models and to ensure a realistic model, experts may define a 

temporal ordering of the variables as well as identify intrinsic variables, such as gender 

or race, which cannot be causally influenced by another variable.  The selected model 

will be one of a family of Markov equivalent models and will be a good, but not 

necessarily the best, model given the training dataset and user-imposed restrictions.  

The structure of the Bayesian network is a representation of the training dataset and 

indicates the statistical covariations used to identify laboratory errors.  Next, the 

parameters are learned in order to be able to enable making inferences. 

3.2.2 Parameter Learning 

As observed in the structure learning phase, the parameters of the Bayesian network 

may be determined by domain experts, algorithms, or a combination of the two.  

Algorithmic parameter learning, in contrast to structure learning, in the discrete case is 

far simpler and computationally tractable using any one of several algorithms.  When 
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there is little missing data in the training dataset and no hidden nodes in the 

directed acyclic graph, a common approach by virtue of its speed and simplicity is a 

method based on the Dirichlet distribution, which Netica calls “counting-learning” 

(Norsys Software Corporation 2006).  If there are significant missing data or hidden 

nodes, then other approaches such Expectation-Maximization or gradient descent are 

appropriate (Mitchell 1997).  The dataset created in earlier Section 3.1 does not contain 

hidden nodes or any missing data, so the counting-learning method is appropriate for 

this dataset.   

If one were to estimate a joint probability distribution simply from the observed 

frequency, one would have a biased estimator and would be unable to estimate a 

confidence range (Mitchell 1997).  In addition, an unobserved condition would have an 

estimated probability of 0.0, which would prevent meaningful inference.  Therefore, a 

Dirichlet distribution, a family of continuous multivariate probability distributions 

parameterized by a vector of non-negative real numbers, is used to represent the 

distribution of parameters of each node under the assumption that the parameters of 

each node are independent (Geiger and Heckerman 1997).  The basic process for 

learning the joint probability distributions is to start with an assumption of the prior 

probabilities, which are usually initially uniform, to indicate no prior knowledge.  As 

data are observed, the probabilities are then updated to reflect the additional knowledge.  

For example, consider the Gender node in the directed acyclic graph of Figure 

3.1.  Assuming a prior belief that the probability of observing a male is the same as the 
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probability of observing a female, the expected prior probability of observing a 

male is simply 0.50.  If we now observe new cases, while our estimated posterior 

probability of observing a male may change after observing the data, our confidence in 

that probability estimate will change.  We use the equation 3.4 to estimate the posterior 

probability of observing a male given our new data where the variables Malen and 

Femalen  represent our prior knowledge (usually set to 1) and 'Malen and 'Femalen  simply 

count the number of males and females, respectfully, observed in the new data.  If we 

had greater prior confidence that the genders were equally probable, then larger, but 

equal, values for 
Male

n and 
Female

n  would be used.  Similarly, if the prior probability 

were other than 1:1, we would use a different ratio. 

 
'( | )

'   '
Male Male

Male Male Female Female

n nP Male data
n n n n

+
=

+ + +
 (3.4) 

 

This process is used to learn the parameters for the other nodes in the directed 

acyclic graph with the difference that the equations are conditioned on the parents.  For 

example, in determining the parameters of the Education node, the above equations 

would be repeated for each of the five possible values for Race.  The parameters of the 

Bayesian network hold the joint probability distributions and once the parameters of the 

Bayesian network have been learned, one can make inferences to identify laboratory 

errors. 
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3.2.3 Inference 

Inference is the process of prediction based on a partial observation of the state of the 

world.  For example, one may use the Bayesian network depicted in Figure 3.1 to 

estimate a person’s household income level based upon observing their race and 

education level.  However, one could also reason as to the likelihood a person with a 

given household income, completed high school.  Inference in a Bayesian network may 

be accomplished simply by application of Bayes rule and probability theory, though not 

as efficiently as other algorithms such as Pearl’s message-passing algorithm or a 

Junction tree Algorithm (Lauritzen and Spiegelhalter 1988; Pearl 1988).  In general, the 

computational complexity of inference in a Bayesian network has been shown to be NP-

Hard, which means that worst-case performance would very likely require non-

polynomial time (Neapolitan 2004).  For the NHanes Bayesian network described 

above, we will demonstrate the process of inference in answering question. 

Question: Given a person with a household income between $25,000 - $34,999, what is 

the posterior probability the person is Hispanic.   

Answer: From Table 3.2 we note the prior probability of observing a Hispanic in the 

NHanes dataset is 23.7%.  In order to calculate the probability of observing a Hispanic 

given that their household income is between $25,000 and $34,999, we use the 

following steps: 
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1. The desired probability is P(Race = Hispanic | Income = 25,000 – 34,999), 

which for simplicity we will write as: ( | )P R r I i= = .  In addition, we use 

the variable E  to indicate the education node and e  to indicate an individual’s 

education level. 

2. Using Bayes’ Theorem, we obtain the relationship: 

( | ) ( )( | )
( )

P I i R r P R rP R r I i
P I i

= = =
= = =

=
 

3. Using Table 3.2, we look up the probability of being Hispanic, ( )P R r= , as 

23.7%. 

4. To compute the probability of a household income of between $25,000 and 

$34,999 given that the person is Hispanic, we use equation 3.3 to sum over the 

education levels, as demonstrated below, and obtain a result of 18.1%.  

( | ) ( | , ) ( | )x x
x

P I i R r P I i R r E e P E e R r= = = = = = = =∑  

5. To compute the probability of a household income of between $25,000 and 

$34,999 we again use equation 3.3 but now sum over all combinations of race 

and education level, as demonstrated below, and obtain a result of 14.0%. 

( ) ( | , ) ( | ) ( )y x x y y
x y

P I i P I i R r E e P E e R r P R r= = = = = = = =∑∑  
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6. Finally, the posterior probability for the probability of observing a 

Hispanic given that one’s household income is between $25,000 and $34,999 is 

calculated as: 

0.237 0.181( | ) 30.7%
0.140

P R r I i ×
= = = =  

As demonstrated above, one is able to reason over a Bayesian network bidirectionally 

using Bayes’ Theorem and make sound inferences.  Given a dataset of discrete 

variables, one is able to identify a structure for the Bayesian network, learn the 

parameters of the joint probability distributions, and finally, to make bidirectional 

inferences.  In the clinical laboratory, it is often desirable to leave continuous data as 

continuous rather than discretizing it.  We next consider the case when all of the 

variables are continuous and can be modeled as a Gaussian distribution.   

3.3 Conditional Gaussian Bayesian Networks 

The discrete Bayesian networks described in the previous section provide a way to 

model processes and, once the structure is determined, provide an exact and generally 

efficient means for making inferences.  However, if the underlying process involves 

continuous variables, the discretization process will result in the loss of some accuracy 

even when using an optimal discretization algorithm (Friedman and Goldszmidt 1996).  

While this loss in precision can be compensated, to some degree, by increasing the 

number of bins that data are discretized into, the increase in computational complexity 
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limits the effectiveness of this approach (Cowell, Dawid et al. 1999).  If the 

process can be modeled using a conditional Gaussian Bayesian network, then the 

discretization step is eliminated and the network can still be solved exactly.  Figure 3.3 

shows a simple conditional Gaussian Bayesian network in three variables that 

represents the relationship between cholesterol, high-density lipoprotein (HDL) 

cholesterol, and triglyceride.  Each node has a mean value, μ, and a standard deviation, 

σ, where the variance is the square of the standard deviation.  Edges between nodes 

have a weight, b, which is used in the inference process.  After providing an overview 

of Gaussian systems below, we will overview structure learning, parameter learning, 

and inference in the conditional Gaussian Bayesian network.   

 

Figure 3.3 Example Conditional Gaussian Bayesian Network 
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3.3.1 Gaussian Systems 

A linear Gaussian model is one where the value of each continuous node depends 

linearly on the values of the parents (Nachman 2004).  The Gaussian Bayesian network, 

as with the discrete Bayesian network, consists of a directed acyclic graph and joint 

probability distributions, which are described by a vector of weights for each edge into 

a node, a vector of variances, and a vector of mean values.  Such a representation is 

equivalent to a multivariate Gaussian system, with a vector of mean values and 

covariance matrix,  which allows for ease of  inference and parameter learning as the 

representations can be converted back and forth (Nachman 2004).   

The obvious limitation of conditional Gaussian Bayesian networks is that they 

are only able to model linear relationships between normal variables but as discussed 

later, for the purposes of identifying laboratory errors, they often outperform Bayesian 

networks with discretized data.  For example, in a discrete Bayesian network the 

cholesterol data would need to be discretized into some number, typically between four 

and eight, of bins.  Assuming six bins with equal width and a possible range from 100 

to 400 mg/dl, each bin would be 50 mg/dl wide.  The Bayesian network would have a 

limited ability to detect errors smaller than 50 mg/dl since these errors may not cause a 

change in the discreet value and, therefore, there would be no change in the probability 

of the observed value. 

A conditional Gaussian Bayesian network may have discrete variables, though 

usually with the restriction that a discrete variable may not have a continuous node as a 



 

 

45
parent or ancestor (Lauritzen and Jensen 2001; Lerner, Segal et al. 2001).  Figure 

3.4 shows such a network where the continuous node HDL has a mean and variance for 

males and a different mean and variance for females.  If gender is not known, then the 

HDL node’s expected value and variance will be a function of the gender-specific 

values.  In order to use the Bayesian network to detect laboratory errors, as with the 

discrete Bayesian network, we identify its structure, learn the parameters, and then 

make inferences. 

 

Figure 3.4 Example Mixed Discrete-Gaussian Bayesian Network 
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3.3.2 Structure Learning 

As with discrete Bayesian networks, the directed acyclic graph portion of a Gaussian 

Bayesian network must represent the conditional independencies contained within the 

joint probability distributions and model plausible causal connections.  In addition, as 

with the discrete case, the structure may be determined by a domain expert, via an 

algorithm, or a combination of the both.  Since the problem of structure learning is NP-

Hard, a heuristic combined with a scoring metric is used to drive the search through the 

domain of possible models.  Once the structure of the Gaussian Bayesian network is 

identified, the parameters are learned in order to make inferences. 

3.3.3 Parameter Learning 

Algorithms to learn the parameters of a Gaussian Bayesian network rely on its ability to 

be transformed into a nonsingular multivariate normal distribution and back to a 

Gaussian Bayesian network (Geiger and Heckerman 1994).  Geiger and Heckerman 

(1994) first developed the following algorithm, which Neapolitan (2004) subsequently 

refined, for learning the parameters of the Gaussian Bayesian network.  If discrete 

variables are present, then Gaussian parameters are learned for each combination of 

values for the discrete parents and the joint probability distributions of discrete nodes 

are learned as discussed in section 3.2. 
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Let 
i

μ  be the mean value of node i; 
2

i
σ  be the variance of the node i; bji be  

the multiplication factor in the edge from node j to node i and equals bij; Σ  be the 

positive-definite covariance matrix, which equals the inverse of the precision matrix, 

Γ ; Γ  be the precision matrix and equals the inverse of the covariance matrix, Σ ; υ  

be the size of the hypothetical database from which our prior estimates of the mean 

values are derived, which usually has an initial value of 0 to indicate the lack of a prior 

belief in the means; α  be the degrees of freedom and is nominally set to υ -1; and let   

1( 1)
1

nυ αβ
υ

−− +
= Γ

+
, where n is the number of random variables, be a helper 

term. 

Each cell in the covariance matrix is a function of the edge weights, b, and node 

variances, σ2, in the directed acyclic graph.  This may also be expressed as in equation 

3.5, where entries in one cell depend on the values of cells above it, if off the diagonal, 

and to the left of it, if on the diagonal.  For example, the entry in cell (2,1), 
12 11b Σ , 

could also be written as 
2

12 1
b σ , but we choose the former representation due to its 

compact representation.  The basic process in parameter learning is to first compute a 

covariance matrix from the training dataset and then solve for the edge weights and 

variances using standard matrix operations.   
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2

1

2

12 11 2 12 12

2

13 11 23 12 13 12 23 22 3 13 13 23 23

b b
b b b b b b

σ
σ

σ

− − − −⎛ ⎞
⎜ ⎟Σ = Σ + Σ − −⎜ ⎟⎜ ⎟Σ + Σ Σ + Σ + Σ + Σ⎝ ⎠

 (3.5) 

Assuming no prior knowledge concerning the parameters’ values, the process to learn 

the parameters of the conditional Gaussian Bayesian network is as follows: 

1. Without prior knowledge, the initial parameter values are: 

a. 
*μ  = (0,0,…,0) 

b. υ  = 0 

c. α  = -1 

d. β  = 0 

2. Calculate the updated parameter values: 

a. *μ  is a vector of unconditional means calculated from the training data. 

b. * Mυ υ= +  where M is the size of the training database. 

c. * Mα α= +  

d. 
1

( )( )
M

T

h h
h

s x x x x
=

= − −∑ where 
h

x  is each tuple in the dataset 

and x  is the vector of unconditional means. 

e. * ( )( )TMs x x s
M

υβ β μ μ
υ

= + + − − =
+

 when no prior 

knowledge since β =0 and υ =0. 
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3. Calculate the updated precision matrix, 
*Γ  via:  

 
*

* 1 * *

* *

1( )
( 1)n
υ β

υ α
− +

Γ = Σ =
− +

 

4. Calculate the parameters, using the covariance matrix of the complete graph and 

the matrix 
*Σ to solve for the variances and edge weights.  If the original graph 

is not a complete graph, then the calculation of the variances and edge weights is 

repeated for each ancestral ordering of the variables. 

We now apply this method to a 2004 NHanes dataset created by combining the files 

L13_c (contains cholesterol and HDL cholesterol), L10_am (contains triglyceride), and 

demo_c (contains gender) (Centers for Disease Control and Prevention (CDC) 2004).  

The dataset was limited to the 3,433 tuples with complete data and the natural log was 

taken of triglyceride value in order to normalize the distribution.  We assume no prior 

knowledge of the parameters of the Gaussian Bayesian network, and use the structure of 

Figure 3.3 that was determined by deal (Bøttcher and Dethlefsen 2003).  The ancestral 

ordering of this Bayesian network is cholesterol, triglyceride, and HDL cholesterol.  We 

compute the updated values 
*μ = (183.8, 4.60, 55.0), 

*υ = 3433, 
*α = 3432, 

*β = s , 

and s as: 

*

6,076,807 38,182.5 409,632.7
38,182.5 1,037.2 8,767.1

409,632.7 8,767.1 743,455.9
s β

⎛ ⎞
⎜ ⎟= − =⎜ ⎟⎜ ⎟−⎝ ⎠
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We can then compute the updated covariance matrix as: 

* 1 *

1,771.7 11.13 119.4
( ) 11.13 0.302 2.56

119.4 2.56 216.8

−

⎛ ⎞
⎜ ⎟Τ = Σ = −⎜ ⎟⎜ ⎟−⎝ ⎠

 

Using the updated covariance matrix and solving for the parameters in equation 3.5, we 

calculate the following: 

2

Cholσ = 1,771.7, 
2

lnTrigσ
−

= 0.372, 
2

HDLσ = 179.3 

Cholμ = 183.8, 
lnTrigμ

−
= 4.60, HDLμ = 55.0 

lnChol Trigb
→ −

= 0.00628, Chol HDLb
→

= 0.1233, 
lnTrig HDLb

− →
= -8.89 

Having learned the parameters of the Gaussian Bayesian network, we are now able to 

perform inferences. 

3.3.4 Inference 

Inference in a conditional Gaussian Bayesian network, as in the discrete network, is NP-

Hard so any exact method may take non-polynomial time to complete the calculations, 

which can be alleviated in more complex networks by using heuristics (Neapolitan 

2004).   Within this dissertation, we are only interested in predicting a single node after 

observing the states of all other variables in the directed acyclic graph.  This greatly 
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simplifies the inference process required to predict a value.  In the presence of 

missing or unobserved data, a more complex inference algorithm, such as the described 

in detail in Lauritzen and Jensen (2001), is required.  Using Figure 3.3, to compute the 

expected mean and variance of HDL cholesterol given values for cholesterol and 

triglyceride, we would simply sum the product of each parent node with the appropriate 

edge weight.  The variance, since the state of all parent nodes is observed, is the 

variance for the HDL cholesterol node calculated in the parameter-learning step.   

3.4 Summary 

Bayesian networks are a powerful tool for making bi-directional inferences under 

uncertainty, such as observed in the clinical laboratory.  Whether the dataset consists of 

just discrete variables, just continuous variables, or a combination of the two, as long as 

certain restrictions are satisfied, a Markov-equivalent structure may be 

programmatically identified using the algorithms discussed.  Once the structure is 

identified using an algorithm or experts, the parameters, or joint probability 

distributions, are learned.  Finally, by using the formal calculus discussed for making 

inferences, a system can be built to make inferences and quantify the belief that a 

laboratory error has occurred.  Bayesian networks are an appropriate decision support 

tool for making inferences in the clinical laboratory, but they, like many other decision 

support tools, suffer when there is a large disparity between the sizes of the classes. 
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Chapter 4: Class Imbalance: Standard Solutions  

Class imbalance, a condition when one class is more frequent than the other class, is a 

problem that affects all supervised learning algorithms, negatively affecting their 

performance.  The term “class imbalance” herein will be used to refer to the combined 

problem of between-class imbalance, small disjuncts, and within-class imbalance.  In 

this chapter we discuss the problem of class imbalance and explore why it is a vexing 

problem for classification systems.  We then discuss current solutions used to 

ameliorate the class imbalance problem such as minority-class over-sampling and 

majority-class under-sampling.  Finally, we overview a standard method, receiver 

operating characteristic (ROC) curves, used to measure the performance of a 

classification system.  As we will show, a natural dataset, as opposed to synthetic 

dataset that we will cover in Chapter 5, of laboratory errors is a very poor choice for 

using to train an autoverification system.  A natural clinical laboratory dataset contains 

an extreme between-class imbalance, disjuncts that range from very small to huge, and 

large within-class imbalances.   

4.1 Description of Class Imbalance 

A dataset is said to be balanced when there are approximately equal percentages of each 

class.  For simplicity, we will assume a dichotomous classification problem such as in 

the clinical laboratory where each result is classified as error-free or in error.  If the 

percentage of error-free results was approximately equal to the percentage of results in 
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error, then the classes are said to be balanced.  As the percentages of the classes 

diverge, for example in a clinical laboratory where it is estimated that 99% are error-

free and 1% are in error, the dataset is said to become imbalanced (Bonini, Plebani et al. 

2002).  Standard machine learning approaches typically treat misclassification costs 

equally and attempt to minimize the overall misclassification error percentage while 

simultaneously minimizing the complexity of the model (Wang and Japkowicz 2004).  

Therefore, in the presence of a class imbalance, as we will discuss next, machine 

learning algorithms such as decision tree algorithms and Bayesian networks will 

perform poorly.  Typical methods used to ameliorate the difficulty in machine learning 

approaches in the class-imbalance domain include: 1) over-sampling, either directed or 

random, the minority class; 2) under-sampling, either directed or random, the majority 

class; 3) adjustment of misclassification costs; 4) single-class classifier (Japkowicz and 

Stephen 2002).  However, recent research has shown that the class imbalance problem, 

as we will see in the following sections, is more complex than just the relative class 

balance, but also includes small class disjuncts and within-class imbalance (Japkowicz 

and Stephen 2002; Japkowicz 2003).  Furthermore, these attributes and their affect on 

classifier performance are not independent factors, but rather interact in a non-linear 

method.  

4.1.1 Between-Class Imbalance 

Between-class imbalance refers to the relative proportion of one class compared to the 

other class.  The predominant class is termed to be the major class and the rare class is 



 

 

54
termed to by the minor class.  Consider a classifier, such as the C4.5 decision tree 

classifier, that examines a training dataset and develops rules in order to classify entries 

in the dataset as accurately as possible.  The C4.5 algorithm recursively divides the 

training dataset creating a decision tree where each leaf  either consists entirely of one 

classification or, if the size of the leaf is below a preset limit to avoid overfitting, is 

assigned the classification of the predominant class within that leaf (Quinlan 1993).  

Consider the case of the clinical laboratory where the training dataset consists of 99% 

error-free results and 1% error-containing results.  When the C4.5 algorithm reaches its 

minimum leaf size, assuming equal misclassification costs, that leaf would need to 

contain at least 50% erroneous results in order for the leaf to be labeled as “erroneous”.  

However, given that the prior probability of observing an error-containing result was 

only 1%, this requires the leaf node to represent a condition, as determined by the path 

from the root to the leaf node, where errors are 50 times as likely as the default 

condition.  Anything less than that level will result in the leaf and its contents being 

labeled as error-free results.  While performance of the C4.5 algorithm may be 

improved by using unequal misclassification costs, in extremely unbalanced datasets the 

minority class elements may simply not provide a sufficient estimate of the boundary 

layer between the two classes.   

 Consider the case depicted in Figure 4.1, which shows a correlated system in 

two dimensions that is similar to the correlation between glucose and glycosylated 

hemoglobin (HbA1c).  The majority-class, shown as blue circles, was created by 

randomly selecting an X value from a Gaussian distribution with a set mean and 
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variance.  The Y value was computed as Y X ε= +  where ε is randomly 

drawn from a Gaussian distribution with mean of 0 and a small variance.  The minority-

class, shown as red diamonds, was created in exactly the same manner except that the 

Gaussian noise term ε  had a mean of +2 or -2.  This training dataset contains 9.1% 

minority class elements and 90.9% majority class elements, so the classes are clearly 

not balanced.  The classification problem is to learn, in general terms, using glucose and 

HbA1c those combinations are likely to be errors and which are likely to be non-errors. 

 

Figure 4.1 Class Imbalance Resulting in Poor Boundary 

Errors

Non‐Errors 



 

 

56

 

Figure 4.2 NHanes Glucose and HbA1c Correlation 

Since the underlying generating function is a simple multivariate Gaussian distribution, 

the density distribution of the majority class should resemble the ellipse in Figure 4.2 

(Centers for Disease Control and Prevention (CDC) 2004).  Likewise, the density 

distributions of the minority-class should also be elliptical with one ellipse above the 

majority-class ellipse and the other below the majority-class ellipse.  However, since 

there are so few examples of the minority class, the minority-class boundary within the 

domain space is poorly defined.  A classifier is not able to model the underlying 
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generating function with so few examples, which results in the classifier over-

fitting the few examples and yielding a poorly performing system. 

4.1.2 Small Disjuncts 

Also visible in Figure 4.1 is some overlap between the two classes in that some of the 

minority-class data elements are well into the center of the majority-class area.  Class-

overlap, which is more formally called class disjuncts, refers to the degree to which the 

two classes are differentiated due to differences in their attributes (Jo and Japkowicz 

2004).  Without loss of generality to higher dimensional problems, consider the one-

dimensional classification problem depicted in Figure 4.3, where the area under each 

curve represents that class’s relative proportion and the height of the curve at a given 

point is proportional to the probability at that point.  This figure may represent true 

glucose measurements, in green and on the right, and erroneous glucose measurements, 

in red and to the left, due to a significant failure of the instrument that happens 50% of 

the time and results in an error of constant magnitude.  A classification system 

attempting to differentiate between these two classes could do so trivially by choosing a 

point along the problem’s single dimension and classifying values less than that cutoff 

one class, for example in error, and values greater than that cutoff the other class, for 

example error-free.   
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Figure 4.3 Balanced Classes with Large Disjunct 

Compare that problem with the one-dimensional problem depicted in Figure 4.4, where 

erroneous glucose measurements happen only rarely.  As with the problem depicted in 

Figure 4.3, a classifier would be able to easily differentiate the two classes because of 

the large distinction between the two classes - even though they are significantly 

imbalanced.  As the distinction between the two classes gets smaller and smaller in our 

simple example, the performance of the classifier will stay relatively constant until the 

classes begin to overlap, indicating a small disjuncts.  When we reach the condition 

depicted in Figure 4.5, a classifier using equal mis-classification costs will not be able 

to identify elements of the minority class because for every point along the horizontal 

dimension, the major class is the more accurate classification.  If two classes are 

disjoint, then a classifier would easily distinguish between the two independently of the 

class balance.  Similarly, if two classes are indistinguishable then the classifier’s 

performance will be poor even when the dataset is balanced.  In between those 

extremes, both class balance and class disjuncts affect performance. 
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Figure 4.4 Unbalanced Classes with Large Disjunct 

 

Figure 4.5 Unbalanced Classes with Too Small a Disjunct 

4.1.3 Within-Class Imbalances 

Within-class imbalance refers to the problem when a class, such as laboratory errors, 

has subclasses and those subclasses do not contain the same number of examples 

(Japkowicz 2001).  Figure 4.6 depicts a situation when the minor class consists of two 
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subclasses that are balanced.  For example, this may represent glucose with upper 

erroneous glucose measurements due to the patient not fasting and the lower erroneous 

glucose measurements due to the patient taking an insulin injection.  A classification 

system would handle each subclass separately and attempt to learn how to identify each 

separately.  However, each subclass is subject to problems due to small disjuncts and/or 

class imbalances as discussed earlier.  As discussed in Chapter 2, the laboratory cycle 

has many places for errors to occur and many of those errors have a continuum of 

impacts.  For example, a patient who is not fasting will have a measured glucose that is 

erroneously high.  The degree of this error depends, in part, on what the person ate and 

how long ago.  Therefore, the minority class (errors) in a natural laboratory training 

dataset will consist of many sub-clusters of errors with disjuncts ranging from small to 

large. 

 

Figure 4.6 Balanced Subclasses 



 

 

61

4.2 Solutions to Class Imbalance 

Researchers in the data mining field have developed several methods to address the 

problems caused by class imbalance, small disjuncts, and within-class imbalance, but no 

clear winner has emerged.  Batista (2004) examined eleven approaches on fifteen 

datasets and found the relative performance of each approach varied over the various 

datasets.  Two significant findings from their work were that random over-sampling, a 

relatively simple technique, was competitive with more complex approaches and that in 

the case of an extreme between-class imbalance, approaches that generated synthetic 

minority-class examples tended to perform best (Batista, Prati et al. 2004).  In this 

section, we review four common approaches to the class imbalance problem and discuss 

their applicability to the domain of laboratory errors. 

4.2.1 Minority-class over-sampling 

Over-sampling the minority class involves duplicating minority-class data elements in 

the training dataset to increase their relative frequency.  By over-sampling the minority 

class, the class imbalance is reduced and performance is typically improved (Weiss and 

Provost 2001).  The minority class examples to be over-sampled may either be selected 

randomly or via a heuristic.  This technique is generally effective in improving the 

detectability of the minority class but is limited in that it tends to over-fit the training 

data and increase the computational complexity (Chawla, Japkowicz et al. 2004).  An 

over-fit system is not able to generalize to datasets other than the training dataset.  For 

example, a system might be successfully trained to flag a glucose result of 180mg/dl 
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when measured with a glycosylated hemoglobin of 4.8%, but then fail to flag a 

glucose of 190mg/dl when measured with a glycosylated hemoglobin of 4.7% because 

it did not exactly match the training example.  In Figure 4.7 the ten examples of the 

minority-class have been over-sampled (depicted by their larger size) resulting in 

balanced classes.  In the clinical laboratory domain, there are too few examples of 

errors, the minority class, which results in an over-fit classifier. 

 

Figure 4.7 Graphical Depiction of Minority-class Over-Sampling 
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4.2.2 Majority-class under-sampling 

In contrast to over-sampling the minority-class, under-sampling the majority class 

involves the removal of majority-class examples from the training dataset, either 

randomly or via a heuristic (Chawla, Japkowicz et al. 2004).  This process has the 

potential to remove critical examples resulting in degraded performance (Chawla, 

Japkowicz et al. 2004).  A key advantage of under-sampling the majority-class is that it 

reduces the computational complexity of the problem, but in the case of the clinical 

laboratory domain where errors are very rare, this approach removes too many 

majority-class data elements in balancing the classes, as seen in Figure 4.7. 

 

Figure 4.8 Graphical Depiction of Majority-Class Under-Sampling 
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 An approach developed by Nitesh Chawla et al, called Synthetic Minority 

Over-Sampling Technique or SMOTE,  is an attempt to solve the class imbalance 

problem by combining under-sampling of the majority-class with over-sampling of the 

minority class via synthetic generation of minority class examples (Chawla, Bowyer et 

al. 2002).  In SMOTE, minority class training examples are created by moving a 

random distance along a vector from a selected minority class object to one of its 

nearest minority class neighbors (Chawla, Bowyer et al. 2002).  SMOTE, and its 

derivative algorithms, are not effective when there are too few minority-class data 

elements or when there are many sub-clusters.  In the clinical laboratory, there are very 

few laboratory errors (minority-class data elements) and a multifactorial source of 

errors producing many sub-clusters, which impairs the performance of minority-class 

over-sampling. 

4.2.3 Cost Adjustment 

Classifiers, in learning how to best classify a training dataset, assign a cost to 

misclassifying examples, whether they belong to the majority-class or the minority-

class, and normally the misclassification cost is equal in both cases.  The cost-

adjustment process is used to weight the cost of misclassifying a minority-class example 

to a value greater than that used for a misclassified majority class example.  By 

incurring a higher cost for misclassification of minority-class data elements, the 

classifier will have a higher sensitivity, but lower specificity, in identifying minority-

class objects.  As with minority-class over-sampling, cost adjustments are empirically 



 

 

65
derived and have the potential to over-fit the training data (Monard and Batista 

2002).  A comparison of the performance between over/under sampling and cost 

adjustment under the condition of a class imbalance, indicated no clear winner in 

general, but that cost-sensitive learning generally outperformed sampling when the 

number of examples exceeded 10,000 (McCarthy, Zabar et al. 2005). 

4.2.4 Single-class classifier 

In contrast to the above methods that discriminate between two classes based on 

learning attributes from a collection of examples and counter-examples, the single-class 

classifier only learns the attributes of a single class (Japkowicz 1999).  Within the 

context of the clinical laboratory, result sets are compared to the single class, 

representing acceptable results, and any set not matching the description of that class is 

classified as not acceptable (erroneous).  In the two-variable case, the probability of 

observing two, correlated variables is determined using a conditional normal 

distribution to determine the probability of observing a value given the values for the 

other nodes in the network, P(Y | X).  In addition, one may elect to use a multivariate 

normal distribution to calculate the probability of observing all of the variables, P(X,Y).  

However, a single-class classifier has the limitation that it cannot determine which error 

is more likely when there is more than a single source of error.  This limitation 

precludes the use of a single-class classifier as an autoverification system.   
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4.3 Measuring Performance 

A central part of the development of any system is in the evaluation of that system.  The 

simple measure of accuracy may seem appropriate when classes are balanced and the 

misclassification costs are equal, but even under these ideal conditions, accuracy can be 

misleading.  Implicit within the concept of accuracy is a threshold used in the 

classification, so accuracy only provides a metric of performance at a single 

classification threshold  (Obuchowski 2003).  Receiver Operating Characteristic (ROC) 

curves, which make explicit the classification threshold, are the standard method for 

displaying and comparing the results of a classification system (Bach, Heckerman et al. 

2004).   
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Figure 4.9 Sample Receiver Operating Characteristic (ROC) Curve 

4.3.1 Overview of ROC Curves 

An ROC curve is a plot of the true positive rate, the fraction of positives (laboratory 

errors) correctly predicted, versus the false positive rate, the fraction of negatives 

(acceptable results) erringly predicted as positive, as the classification threshold is 

varied between all possible points (Flach 2004).  An example ROC curve is displayed in 

Figure 4.9 and models a hypothetical system with five classification thresholds used to 

classify laboratory results: definitely an error; probably an error; neutral; probably not 

an error; and definitely not an error.  Note that because these thresholds are ordinal, we 



 

 

68
can consider each threshold as including lower-ranked thresholds.  For example, 

if one were to use “Neutral” as their decision threshold for classifying a result an error, 

then any result they were neutral about, thought was probably an error, or thought was 

definitely an error, would be classified as an error.  As the decision threshold is 

increased, the percentage of true positives and the percentage of false positives can stay 

the same or increase, but can never decrease.  In addition, the curve always starts at 

(0.00, 0.00) and always ends with (1.00, 1.00) even if no decision threshold yields that 

point.  The area under this curve provides a single metric, AUC for “area under curve”, 

for evaluating and comparing classifier performance.  Furthermore, because of the use 

of true positive and false positive rates, the ROC curve and its AUC are insensitive to 

class imbalances. 

4.3.2 Selecting the Optimal Classification Threshold 

The dashed diagonal line in Figure 4.9 represents the performance characteristic of a 

classifier that is guessing, which corresponds to an area under the curve of 0.50.  

Classifiers with an AUC of 1.00 are perfect and classifiers with an area greater than 

0.50 represent classifiers that perform better then guessing.  An ROC curve is generated 

using the full range of classification thresholds, but in operation a classifier would use 

only a single classification threshold.  To select the optimal point on the curve we return 

to the concept of accuracy, which is defined as the ratio of the number correctly 

classified (both positive and negative) to the total number of cases classified (Flach 

2004).  Iso-accuracy lines are lines of constant accuracy and the slope of each line is 
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equal to the ratio of negative cases to positive cases (Flach 2004).  Since the ROC 

curves are convex, as depicted in Figure 4.10, the optimal point is selected by moving 

the iso-accuracy line, with constant slope, down the descending diagonal and finding 

the location on the ROC curve where the line is first tangential to the curve (Flach 

2004).  When the classes are balanced and the misclassification costs are equal, the 

slope of the iso-accuracy line is 45 degrees.  As the classes become increasing 

imbalanced, assuming the percentage of true cases is less than the percentage of 

negative cases, the slope of the iso-accuracy line gets steeper and steeper and the 

optimal operating point moves to the left.  As the cost of misclassification becomes 

unequal, assuming the cost of misclassifying a true positive is larger than the cost of 

misclassifying a true negative, the slope of the curve becomes less and the optimal 

operating point moves to the right.  In the clinical laboratory domain, the classes are 

very imbalanced and the misclassification costs are very unequal, resulting in a 

significantly more complex decision in selecting the optimal operating point.  In 

practice, the clinical laboratory may elect to obtain a desired sensitivity or a desired 

specificity based upon their business model.  However, the operating point is 

determined by the clinical laboratory, they must balance the sensitivity and specificity 

within the limits of the classification system, as determined by the receiver operating 

characteristic curve. 
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Figure 4.10 Iso-Accuracy Lines 

4.3.3 Statistical Comparison of Area Under ROC Curves 

To evaluate if one classification system is better than another classification system, one 

needs to take into account the correlation between the two areas due to the paired nature 

of the comparison (Hanley and McNeil 1982).  The first step is to compute the area 

under the ROC curve, which may accomplished via several methods.  The easiest 

method is the Mann-Whitney statistic, also called the empirical method, which is a sum 

of the areas under the curve calculated using a trapezoidal rule (Hanley and McNeil 

1983).  The empirical method has been shown to systematically underestimate the area 
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under the curve, especially when the number of positive cases is small and the 

resulting ROC curve is a step-function, but is an unbiased estimator of the AUC 

(Hanley and McNeil 1983).  Other methods for computing the area under the ROC 

curve include kernel smoothing to smooth out the ROC curve or assuming normal 

distribution and using parametric methods (Faraggi and Reiser 2002).  When the 

number of true cases is at least 20, the Mann-Whitney method, while systematically 

underestimating the true area under the ROC curve, yields a result that is often close to 

the best of the other methods (Faraggi and Reiser 2002). 

 To compare two areas under the ROC curve, we use the approach described by 

Hanley and McNeil (1982, 1983), where the critical ratio, z , is calculated using 

equation 4.1.  In this equation, xA  is the area, xSE  is the standard error, and r  is the 

correlation coefficient.  The standard errors may be estimated using the method 

described in Hanley and McNeil (1982) and the correlation coefficient may be 

estimated from Hanley and McNeil (1983).  The critical ratio, z , is evaluated for 

statistical significance using the normal distribution, which leads to a threshold of 1.96 

for a two-sided comparison. 

 1 2

2 2

1 2 1 22
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SE SE rSE SE
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+ −

 (4.1) 

When comparing the performance of multiple classifiers on multiple test 

datasets, as we will do in Chapter 6, the standard Friedman non-parametric statistical 
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test is used to determine if a statistical difference exists between those classifiers 

(Friedman 1937).  When comparing the performance of two classifiers on multiple test 

datasets, as we will do in Chapter 6, the standard Wilcoxon Signed-Rank test is used.  

4.4 Summary 

In the clinical laboratory domain, the domain’s extreme class imbalance hampers the 

development of autoverification systems to classify results as acceptable or erroneous.  

Laboratory errors are estimated to be about 1% of the results, resulting in an extreme 

between-class imbalance; are multifactorial in their origin, resulting in within-class 

imbalances; and have a continuum of possible affects, resulting in small disjuncts.  By 

over-sampling the minority-class, under-sampling the majority-class, using unequal 

misclassification costs, or using a single-class classifier, performance of an 

autoverification system may be improved.  However, as we will see next, a novel 

synthetic error generation system outperforms existing methods and enables the better 

detection of errors in the clinical laboratory. 
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Chapter 5: Synthetic Minority-Class Generation 

In order for laboratory experts to trust an autoverification system, it must do more than 

just flag a value as being possibly erroneous but must also state the criteria used to 

make that determination.  In addition, the inference engine must be able to handle the 

inherent uncertainty in a clinical laboratory domain.  Rule-based systems, which are 

used in almost all current autoverification systems, are capable of stating their criteria, 

but cannot properly handle uncertainty.  In contrast, Bayesian networks are able to 

explain their criteria and properly handle uncertainty.  In order to classify laboratory 

results, we must define the structure and parameters of the Bayesian networks, either by 

eliciting that knowledge from domain experts or using a training dataset to estimate the 

structure and parameters.  Eliciting and maintaining all of the required knowledge from 

laboratory experts would be a most daunting task, so identification of the Bayesian 

network’s structure and parameters are determined from a training dataset with 

structural restrictions defined by experts (Mars and Miller 1987). 

In the previous chapter, we discussed the trio of issues associated with class 

imbalance: between-class imbalance, small disjuncts, and within-class imbalance.  As 

discussed in Chapter 2, errors in the clinical laboratory are very rare, have disjuncts 

ranging from very small to huge, and have a multifactorial etiology that gives rise to 

within-class imbalances.  These factors result in a very poor quality natural training 

dataset that prevents a Bayesian network from effectively detecting errors.  Our solution 
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is to create minority-class data elements synthetically in a training dataset, which 

results in the more effective training of the Bayesian network. 

5.1. Basis for model 

Rather than introducing errors, one could use a single-class classifier to identify 

acceptable results and, those not meeting the definition of the acceptable class, 

erroneous results.  However, there are two significant limitations to this approach.  

First, biological variability makes defining acceptability limits problematic.  Second, 

the single-class classifier is not able to hypothesize as to the source of error.  Therefore, 

we will utilize synthetic minority-class data elements.  The use of synthetic minority-

class data elements is not wholly novel: both the SMOTE and DataBoost-IM methods 

create some minority-class data elements synthetically (Chawla, Bowyer et al. 2002; 

Guo and Viktor 2004).  However, neither method generated all of the minority-class 

data elements synthetically, because both examined imbalanced datasets that contained 

at least some examples of the minority class.  As discussed in Chapter 2, the only gold 

standard for identifying errors in the clinical laboratory are those knowingly introduced 

by the researcher via some rule or set of rules to facilitate the study of error detection.  

A natural clinical laboratory dataset does not have a perfect method to accurately 

identify all laboratory errors.  A natural dataset of laboratory results would, having had 

all sizeable errors removed by the expert’s prior review, contain only a single class 

corresponding to acceptable results, to which we then add synthetic errors. 
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5.1.1. Creating Synthetic Errors 

We start with a natural dataset of real reported laboratory results and assume, since 

laboratory experts reviewed the data prior to reporting and errors are rare, it is free from 

sizeable errors.  The dataset consists of one target analyte and zero or more covarying 

analyses, all of which are assumed to have, or to be converted to, a Gaussian 

distribution.  Each analyte is considered one at a time.  Without loss of generalizability 

to higher dimensional distributions, consider the one-dimensional example in Figure 5.1 

that shows a Gaussian distribution, with mean μ  and standard deviation σ , in blue, 

representing error-free results for an analyte of interest such as glucose.  If we were to 

randomly copy some percentage, p , of these error-free results, but introduce a bias, 

m , in the analyte of interest, then we would create a second Gaussian distribution.  

The second Gaussian distribution, representing erroneous laboratory results, would have 

a mean value equal to mμ + , a standard deviation σ , and an area under the 

Gaussian curve that is some portion of the original area, depending on the value for p .  

Note that the standard deviation of the error-containing Gaussian curve is equal to the 

standard deviation of the error-free Gaussian curve since we use an additive error.  To 

complete the creation of the new training dataset, synthetic errors of the opposite 

magnitude would be added to create a minority class with two subclusters that bracket 

the error-free distribution.  This process allows us, by varying the probability and 

magnitude of error of each minority class subcluster, to create training datasets 

customized for the domain of interest without the significant class imbalance problems 
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of a natural dataset.  The resulting training dataset, containing the original error-

free results and synthetic errors, can now be used to train a Bayesian network to classify 

laboratory results. 

 

Figure 5.1 Creating Synthetic Errors 

5.1.2. Modeling Errors 

Synthetic errors, as discussed above, do not model naturally occurring errors in the 

clinical laboratory, which results in a better training dataset.  Consider the hypothetical 

distribution of naturally occurring errors in glucose, Figure 5.2, which consists of 

sample switching errors, non-fasting patient, sample hemolysis, and instrument bubble.  

Sample switching, the most common error in this model since the area under its curve is 

the largest, is caused by two glucose samples being randomly switched and has a mean 

error of 0.0.  A non-fasting patient, the next most common error in this model, is due to 

the patient not fasting before blood collection.  Depending on what the patient 

consumed, when they consumed it, and their diabetic state, their glucose measurement 

will have some positive error.  Sample hemolysis interferes with the measurement 
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process and results in a negative error.  Finally, if the instrument draws some air 

when aspirating the sample for analysis, the measured value will have a negative error 

proportional to the amount of air drawn in.  The overall distribution of laboratory errors 

will be a function of the individual error distributions, which, in this example, is clearly 

complex and has an expected error of 0.0.   

 

Figure 5.2 Hypothetical Distribution of Natural Laboratory Errors 

However, an error of zero or close to zero, even though it is still an error and, if 

possible, should be addressed to reduce future mistakes, is not going to be detected by 

an autoverification system or laboratory expert.  For every analyte in every clinical lab 

checked by an autoverification system, the system should have a certain sensitivity and 

specificity to detect a minimum magnitude of error, which will be a dependent on the 

detectability of errors in that analyte as well as the operational desires of the clinical 
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laboratory.  For example, a clinical lab may desire a 50% sensitivity to detect a 20 

mg/dl error in glucose and a 95% sensitivity to detect a 50 mg/dl error.  However, 

modeling the natural distribution of clinical laboratory errors is not likely to produce an 

autoverification system sensitive enough to detect errors. 

 

Figure 5.3 Distribution of Synthetic Laboratory Errors 

 A training dataset with synthetic errors, however, is more likely to produce an 

autoverification system with the requisite sensitivity.  For the purposes of this 

dissertation, errors are modeled as simply causing the value to be too low or too high.  

See Chapter 8 for a discussion of work currently underway that will enable 

hypothesizing as to the probability that a predicted error was due to some specific error 

such as hemolysis.  Into the initial training dataset, we add synthetic errors with a 

negative magnitude of error to model “value too low” errors and a positive magnitude 
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of error to model “value too high” errors using the procedure discussed in the 

previous section.  The resulting distribution of synthetic errors is depicted in Figure 5.3.  

For example, we might train the autoverification system to detect errors of 20 mg/dl in 

order to detect errors in glucose.  In order to create a Bayesian network able to detect 

errors in clinical laboratory data, we start with a natural dataset presumed free of 

significant errors, create synthetic errors with the desired minority-class probability and 

magnitude, learn the parameters of a conditional Gaussian Bayesian network whose 

structure was identified via structure learn and/or domain experts, and make inferences 

about the probability of error given the observations.   

5.2. Simulation Method 

The autoverification system described herein consists of two Bayesian networks.  The 

first Bayesian network, consisting of a glucose node, an HbA1c node, and a directed 

edge from the glucose node to the HbA1c node , is used to predict the expected HbA1c 

value based on the value of glucose.  The second Bayesian network is used to infer the 

probability the measured HbA1c value is too low, too high, or acceptable based on the 

predicted value.  A two-stage system is used to enable the use of non-Gaussian 

algorithms to calculate the predicted value as long as the output is an expected value 

and an uncertainty term.  In addition, a two-stage system reduces the computational 

complexity.   
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Figure 5.4 shows the process used to evaluate the performance characteristics of 

the system and is summarized as follows: 

1. Generate initial, error-free training and testing datasets with the desired correlation 

coefficient and size of 10,000. 

2. Add errors to training and testing datasets using the synthetic error method with 

varying error magnitude and minority-class probability. 

3. Learn the parameters of the Bayesian networks to classify data using 10-fold cross-

validation. 

4. Evaluate the Bayesian network using the testing dataset. 

5. Repeat this process 100 times. 
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Figure 5.4 Simulation Process 

Glucose, derived from analysis of the NHanes dataset, was set to have a Gaussian 

distribution with a mean value of 95.0 mg/dl and a standard deviation of 13.5 mg/dl.  A 

linear relationship, equation 5.1, between glucose and HbA1c was assumed based on 

results of the Diabetes Control and Complications Trial and linear regression performed 

using the NHanes (2004) dataset (Rohlfing, Wiedmeyer et al. 2002) .  Equation 5.1 

contains a Gaussian noise term, ε , with mean 0.0 and standard deviation empirically 
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derived to produce a Pearson’s correlation coefficient of 0.3, 0.6, or 0.9 for a 

weak, medium, and strongly correlated systems, respectively.  The levels of correlation 

are inspired by the correlation between glucose and HbA1c in non-diabetics, pre-

diabetics, and diabetics.  It was empirically determined that a standard deviation for the 

Gaussian noise term of 0.12, 0.33, and 0.75 produced the desired strong, medium, and 

weak correlations.  Both the initial training and testing datasets were created by 

calculating an HbA1c value using a glucose value randomly sampled from its Gaussian 

distribution and including some random Gaussian noise. 

HbA1c 3.675 0.01765 Glucose ε= + × +           (5.1) 

 In the training and testing datasets, the minority-class probabilities were varied 

between 0.1% and 50.0% and the magnitude of HbA1c errors were varied between 0.05 

and 2.0.  Note that the units of HbA1c are percent so an error of 2% would change a 

value of 5.0% to 7.0%, but we drop the percentage symbol from the error magnitude 

term to avoid confusion.  For each of the three levels of system correlation and each 

combination of the four parameters above, we performed 100 simulations computing 

the average area under the ROC curve.  A total of 24,260,400 simulations were 

performed, requiring approximately four weeks of computer time. 

5.3. Performance Characteristics of Basic Model 

As discussed in Chapter 4, we expected classifier performance to vary with the degree 

of the class imbalance.  In these simulations, between-class imbalance is modeled as the 
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minority-class probability.  As the minority-class probability increases, the 

between-class imbalance gets smaller.  A within-class imbalance is not modeled at this 

stage of the simulations as each minority-class subcluster has the same magnitude of 

error and is equal in size.  Class disjuncts are modeled as the magnitude of error and the 

correlation coefficient.  As either the magnitude of error or correlation coefficient 

increases, the class disjunct is reduced.  Magnitudes of error, correlation coefficient, and 

minority-class probability have direct analogues to the clinical laboratory domain as the 

size of error, predictability of error due, in part, to biological and instrument variability, 

and probability of error.  For example, errors in cholesterol are more readily identified 

because it can be measured accurately, has a lower biological variability, and is 

correlated with other variables (Ricos, Alvarez et al. 1999; Centers for Disease Control 

and Prevention 2004).  In contrast, a diabetic’s fasting glucose, while able to be 

accurately measured, has a high degree of biological variability and, therefore, errors 

are more difficult to identify.   

5.3.1. Performance Varies with Correlation Coefficient 

As all other model parameters are kept constant, one would expect the area under the 

ROC curve to increase as the correlation coefficient increases.  Figure 5.5 shows the 

classifier’s average performance at detecting an error in datasets containing 1.0% errors 

with a 0.50 magnitude as the minority class probability increases for the three different 

levels of correlation coefficient.  As readily observed, for every minority-class 

probability, errors in the stronger correlated datasets are more detectable than in the 
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lesser correlated systems.  Figure 5.6 shows the classifiers’ average performance 

at detecting an error in datasets containing 1.0% errors as the magnitude of error 

increases for the three different levels of correlation coefficient.  As before, errors in a 

more-correlated system are more detectable than errors in lesser-correlated system.  

This pattern is observed for all combinations of minority-class probability and 

magnitude of error.  In a clinical laboratory’s autoverification system, the more 

accurately a value can be predicted, the more accurately errors in that analyte can be 

detected.  

 

Figure 5.5 Area Under ROC Curve as Training Minority-Class Probability Varies 
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Figure 5.6 Area Under ROC Curve as Error Magnitude Varies 

5.3.2. Performance Varies with Minority-Class Probabilities 

As discussed earlier, errors in the clinical laboratory are estimated to be roughly 

between 0.1% and 1%, resulting in a significant between-class imbalance (Bonini, 

Plebani et al. 2002).  Using a representative training dataset is known to produce poor 

results, but the relationships between minority-class probabilities in the training dataset 

versus in the testing dataset were not well elucidated.  Holding all other variables in the 

simulation constant, Figure 5.7 shows the average area under the ROC curve as the 

minority-class probabilities in the training and testing datasets are independently varied 

between 0.1% and 5%.  The relationship between 5% and 50% is not displayed in 

Figure 5.7, though it follows the same pattern.  For a given minority-class probability in 
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the training dataset, the average performance does not vary with the minority-

class probability in the testing dataset.  Conversely, for a given minority-class 

probability in the testing dataset, the average performance increases significantly with 

the minority-class in the training dataset until it reaches a plateau, as demonstrated in 

Figure 5.8.  The optimal minority-class probability in the training dataset, as indicated 

in Figure 5.9, also depends on the magnitude of error used in the training dataset.  From 

Figure 5.7 through Figure 5.9, we conclude that using a minority-class probability of 

50% in the training dataset produces optimal results for detecting errors in the clinical 

laboratory domain. 



 

 

87
 

 

 

Figure 5.7 Area Under ROC Curve as Minority-Class Probability Varies 
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Figure 5.8 Increasing Performance with Non-Representative Minority-Class 
Probability 
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Figure 5.9 Average Performance to Detect Errors of Size 1.0 

 

 



 

 

90

5.3.3. Performance Varies with Magnitude of Errors 

The magnitude of error directly affects the size of the disjunct between classes and 

larger errors should be more easily detected than smaller errors.  Figure 5.10 shows the 

average classifier performance, as measured by area under the ROC curve, over various 

magnitudes of error when detecting errors in a system with medium correlation, a 

minority-class probability of 0.2%, and a representative training dataset.  This system 

has a poor ability to small errors, less than 0.4.  In addition, this system over-fits the 

magnitude of error such that training with a single magnitude of error results in a 

system that performs poorly for errors that are either larger or smaller.  Contrast the 

system’s performance in Figure 5.10 with the system’s performance in Figure 5.11, 

which was conducted in exactly the same manner except that a minority-class 

probability of 50% was used in the training dataset.  Not only is performance for small 

errors dramatically improved, but also the over-fitting seen in Figure 5.10 is largely 

gone.  Figure 5.12 displays the difference in the area under the ROC curve gained by 

using a non-representative training dataset.  When training an autoverification system, it 

is possible to minimize the affect of over-fitting the training dataset by using a non-

representative minority-class probability such as 50%.  
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Figure 5.10 Area Under ROC Curve as Error Magnitude Varies with 
Representative Training Dataset 
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Figure 5.11 Area Under ROC Curve as Error Magnitude Varies with Non-
Representative Training Dataset 
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Figure 5.12 Improvement in Area Under ROC Curve Due to Non-Representative 
Training Dataset 
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5.4. Performance Characteristics of Advanced Model 

The prediction model, Error! Reference source not found., used in the above 

discussion is a primitive model chosen for its ease of operation and uncomplicated 

interactions.  While primitive, it still addresses a critical need of the clinical laboratory 

in reviewing tremendous amounts of data.  In this section, to estimate the 

generalizability of the method we examine the performance characteristics of the 

synthetic error autoverification system using a more complex model and real dataset. 

5.4.1. NHanes Chemistry Panel 

As part of the NHanes laboratory assessments, subjects provided samples for analysis of 

diabetes factors (glucose, insulin, c-peptide, HbA1c), lipids (cholesterol, HDL 

cholesterol, triglyceride), biochemistry (serum albumin, ALT, AST, ALP, BUN, 

calcium, bicarbonate, GGT, iron, LDH, phosphorous, total bilirubin, total protein, uric 

acid, serum creatinine, sodium, potassium, chloride, globulin) and assorted other 

analyses (National Center for Health Statistics 2004).  From these components, we 

selected a common chemistry component, AST (aspartate aminotransferase), which is 

performed to check liver function, for evaluation.   

 To predict an AST value, we first determined the structure of the directed 

acyclic graph using deal and R (Bøttcher and Dethlefsen 2003; The R Project for 

Statistical Computing 2007).  We combined the biochemistry data with the patient’s 

age, race, and gender from the NHanes demographics dataset.  Persons who identified 
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their race as “Other” or “Other-Hispanic” constituted only 4.6% and 3.4% , 

respectfully, of the dataset and were eliminated from further analysis due to their low 

percentage and non-specific race.  Age was discretized into three levels: child (less than 

18 years of age), aged (greater then or equal to 65 years of age), and adult.  We 

removed patients with missing results or missing demographics from further analysis 

and split the dataset equally into training and testing datasets.  Using the program deal, 

which runs under the statistical program R, we determined the structure of the directed 

acyclic graph.  The resulting structure consisted of three distinct sub-graphs anchored 

by the patient demographics age, race, and gender.  One sub-graph consisted of age, 

race, gender, BUN, potassium, serum creatinine, and uric acid.  Another sub-graph 

consisted of age, race, gender, serum albumin, globulin, total protein, calcium, sodium, 

chloride, and bicarbonate.  The final sub-graph, containing the analyte of interest AST, 

Figure 5.13, consisted of the remaining analytes.  Even though the panel consists of 

twenty analytes, the value of any given analyte is only influenced by the patient’s 

demographics and generally two other analytes.   
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Figure 5.13 Directed Acyclic Sub-Graph from NHanes Biochemistry Panel 

 The AST-containing sub-graph, Figure 5.13, could be used to predict the value 

of AST, given values for the other nodes in the network.  However, the form of this 

directed acyclic graph is not convenient.  Since the training and testing data do not have 

missing data, we can use the concept of d-separation to remove unnecessary nodes.  In 

addition, explaining the prediction model to laboratory experts, who rarely have 

experience with making inferences in directed acyclic graphs, is easier if the node of 

interest does not have decedents.  To accomplish this task, we can either use arc-

reversal, which must maintain conditional dependencies, on the larger graph or impose 

restrictions on the structure learning and repeat the structure-learning step with a 

reduced data set.  We choose the latter method as it represents the more likely method 



 

 

97
to be employed by the client.  In addition, we removed the top 0.5% AST values 

as outliers.  The bottom 0.5% of the AST values were not outliers.  The resulting 

directed acyclic graph, Figure 5.14, is not Markov equivalent to the sub-graph in Figure 

5.13 due to the heuristic nature of structure learning.  We are now able to use this model 

to predict AST values and, therefore, detect errors in AST. 

 

Figure 5.14 AST Prediction Model 
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5.4.2. Predicting AST 

From the directed acyclic graph in Figure 5.14, we are able to predict a value for AST 

along with a standard deviation.  The smaller the standard deviation, the more confident 

we are in the value and the more readily errors can be detected.  When values are 

known for all nodes other than AST, the standard deviation ranges from 3.3 U/L for a 

female child to 6.3 U/L for an older male.  In contrast, in the absence of any knowledge, 

the standard deviation in our AST estimate is 8.8 U/L.  In the laboratory performing the 

analyses, the reference range for AST is 13 – 33 U/L for adults and 13 – 63 U/L for 

children (National Center for Health Statistics 2004).   

To estimate the minimum error magnitude we want our system to detect, we 

compute a reference change value (RCV) for AST.  An RCV is the change in an 

analyte, assuming steady state conditions and previous results, that should be detectable 

in an autoverification system (Fraser, Stevenson et al. 2002).  In the NHanes dataset, we 

do not know a patient’s previous AST result, so the RCV will provide a conservative 

estimate.  An analyte’s RCV is calculated is equation 5.2, where CVA is the analytical 

coefficient of variation, CVI is mean within-subject biological coefficient of variation, 

and Z is the desired standard deviate (Fraser, Stevenson et al. 2002).   

 
2 2

A I
RCV 2 Z CV CV= × × +  (5.2) 

For AST, we use a within-subject coefficient of variation of 11.9%, an analytical 

coefficient of variation of 15.2%, and a standard deviate of 1.96 to obtain an RCV of 
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53.5% (Ricos, Alvarez et al. 1999).  Assuming a mean AST value of 25 U/L, the 

synthetic error autoverification system should detect errors of 13.4 U/L or larger. 

5.4.3. Detectability of Errors in AST 

We trained the synthetic error autoverification system using a training dataset 

containing 50% synthetic errors.  The magnitudes of the synthetic errors in the training 

dataset were varied between 3 and 26 in increments of three.  We created the testing 

datasets by varying the magnitude of error between 3 and 60 and varying the testing 

minority-class probability between 5.0% and 50.0%.  Using Figure 5.14, we predict the 

expected AST value given gender, age, LDH, and ALT and then compute the 

probability that the AST value is in error.  Only one iteration was done at each 

combination of evaluation parameters due to the limited amount of testing data. 

 As expected, small errors in AST are very difficult to detect while larger errors 

are more readily detected.  Figure 5.15 shows the relationship between the training error 

magnitude and the testing error magnitude, which indicates that training the system to 

detect errors in AST with a moderate sized error of 25 U/L has good performance for 

smaller errors and larger errors.  This relationship is similar to the one observed in 

Figure 5.11 for the simple model.  Performance did not significantly vary with the 

minority-class probabilities in the testing dataset, Figure 5.16, though statistical analysis 

at the low end of the range, minority-class probabilities less than 5.0%, were not 

possible due to the small size of the NHanes dataset.  In the beginning of Section 5.4.2, 

we stated that AST’s standard deviation in the training dataset ranged from 3.3 U/L for 
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a female child to 6.3 U/L for an older male.  In Figure 5.17 we see small AST 

errors for a female child are readily detected whereas only larger errors are readily 

detected for aged males.   

 

Figure 5.15 Detectability of Errors in AST as Error Magnitude Varies 
 



 

 

101
 

 
 
 
 
 
 
 
 

 
Figure 5.16 Detectability of Errors in AST as Minority-Class Probability in 

Testing Dataset Varies 
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Figure 5.17 Detectability of Errors in AST by Age and Gender 

5.5. Summary 

The implications for the clinical laboratory due to the results presented in this chapter 

are profound: Bayesian-based autoverification systems can be developed without an 

expensive annotated database of laboratory errors.  The use of synthetic errors mitigates 

the between-class imbalance impact and allows for the selection of the most appropriate 

error magnitude to minimize the affect of small disjuncts.  The Bayesian networks used 

are small and easily constructed from a statistical analysis of a dataset, their parameters 

are readily determined and exact inference efficient.  The synthetic error approach 

enables the better training of a Bayesian autoverification system.  We next compare the 
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performance of the synthetic error generation method against standard class 

imbalance methods. 
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Chapter 6: Comparison of Synthetic Error Method           
Against Standard Methods 

The previous chapter introduced the concept of synthetic error generation as a means to 

create better training datasets for a Bayesian network-based autoverification system.  

Results indicate such a system is effective in learning how to identify errors in the 

presence of an extreme class imbalance.  In this chapter, we compare performance of 

the synthetic error generation method to standard methods for handling class imbalance: 

minority-class over-sampling and majority-class under-sampling.  By comparing 

performance across a wide range of system parameters, we determine where the 

synthetic error generation method is statistically superior to standard methods, where it 

is statistically inferior, and where it is statistically indifferent.   

6.1. Model Definitions 

In comparing the synthetic error generation method against standard methods, we utilize 

a different error model, one based on a common laboratory error, to create the testing 

dataset to enable an unbiased comparison.  In addition, this error model is used to 

generate the initial training datasets for the minority-class over-sampling and majority-

class under-sampling.  The Bayesian network used for the synthetic error generation, 

minority-class over-sampling, and majority-class under-sampling is the same as used in 

Chapter 5.   
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Figure 6.1 Creating a Sample-Switching Error 

6.1.1. Error Model 

Unlike the method used in Chapter 5, datasets used for training the minority-class over-

sampling and majority-class under-sampling Bayesian networks use an error-model 

based on sample-switching errors, a common laboratory error.  The testing dataset is 

also created using a sample-switching error model in order to provide a realistic and 

unbiased dataset.  Sample-switching errors, caused by randomly switching two HbA1c 

values, are expected to have a mean error of zero, which is not realistic or meaningful to 

flag as an error.  Therefore, for the purposes of this dissertation, we are only interested 

in errors that exceed some minimum value.  For example, assume that HbA1c has the 

probability distribution in Figure 6.1 and assume a randomly selected value, as 

indicated.  We use the minimum detectable error to define the range of possible errors, 

indicated in red, and then randomly select the replacement value from this range.   
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6.1.2. Bayesian Network Model 

The Bayesian network model used for the synthetic error generation, minority-class 

over-sampling, and majority-class under-sampling methods is identical to the one used 

in the previous chapter, section 5.2 (page 79).  This model uses a conditional Gaussian 

Bayesian network to predict, based on the observed glucose value, the HbA1c value and 

a second mixed conditional Gaussian Bayesian network to infer if the observed HbA1c 

value is in error.   

6.2. Simulation Process 

The simulation process, Figure 6.2, employed for the comparison is similar to the one 

used in Chapter 5.  One significant difference, however, is that the minority-class 

probability and error magnitude in the training dataset are the same as in the testing 

dataset.  This restriction, significantly reduces the number of simulations, and represents 

a more realistic operating condition where the training dataset is designed to maximize 

the detection of errors in the testing dataset.  As before, the relationship between fasting 

glucose and HbA1c is determined by equation 6.1. 

 HbA1c 3.675 0.01765 Glucose ε= + × +               (6.1) 
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Figure 6.2  Simulation Process 

The simulation process is as follows for each combination of correlation coefficient, 

minority-class probability (ρ ), and magnitude of error (m ): 

1. Generate initial error-free training and testing sets with the desired correlation 

coefficient and size of 10,000. 
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2. For the synthetic error generation training dataset, add synthetic errors 

with a magnitude m .  Based on the results from Chapter 5, a minimum error 

magnitude of 0.4 and a minority-class probability is 50% was used to train the 

Bayesian network. 

3.  For the minority-class over-sampling and majority-class under-sampling 

training dataset, create sample-switching errors with minimum error m such 

that their initial probability is ρ . 

a. For minority-class over-sampling, randomly duplicate minority-class 

examples until their percentage equals the percentage of the majority 

class (50%). 

b. For majority-class under-sampling, randomly remove majority-class 

examples until their percentage equals the percentage of the minority-

class (ρ ). 

4. Learn the Bayesian network parameters, using 10-fold cross-validation, for 

synthetic error generation, minority-class over-sampling, and majority-class 

under-sampling. 

5. For the testing dataset, create sample-switching errors with minimum error 

m such that their initial probability is ρ . 

6. Evaluate the performance of synthetic error generation, minority-class over-

sampling, and majority-class under-sampling against the testing dataset. 

7. Repeat 100 times and calculate average area under ROC curve. 
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6.3. Statistical Analysis 

In our initial statistical analysis, we assumed a null hypothesis that all three algorithms 

performed consistently throughout each combination of correlation coefficient, 

magnitude of error, and minority-class probability.  Using the Freidman non-parametric 

statistical test, we determined with at least 95% confidence that there exists a statistical 

difference between the three algorithms at most of the 816 parameter combinations 

evaluated except where the area under the ROC curve was very high or very low 

(Friedman 1937).  Unfortunately, the Friedman test does not indicate which algorithm is 

best for a given set of parameters, just that the three algorithms yield statistically 

different results. 

6.3.1. Variations in Performance 

For each of the 816 parameter combinations, one of the three algorithms performed best 

as indicated by having the highest average area under the ROC curve over the 100 

repetitions.  While this comparison, Figure 6.3, does not confer statistical significance, 

it does enable the observation of key patterns.  Under-sampling the majority-class was 

useful when the minority-class probability was higher and when the correlation was 

stronger.  Over-sampling the minority-class was productive at low, but not the lowest, 

levels of the minority-class probability.  The synthetic error generation system appears 

to be the most useful when the minority-class probability is very low, as observed in the 

clinical laboratory. 
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Figure 6.3 Preferred Algorithms over Varying Degrees of Correlation, Size of 
Error, and Probability of Error 
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6.3.2. Over-Sampling Compared to Under-Sampling 

Figure 6.3 suggests under-sampling the majority class is only effective when the 

difference in class balance is small and when the data are more strongly correlated.  As 

the correlation became weaker or the between-class imbalance became smaller, 

conditions more likely to be observed in the clinical laboratory, over-sampling the 

minority-class appears superior to under-sampling the majority-class.  To test this 

hypothesis, we performed a two-sided Wilcoxon Rank-Sum test between minority-class 

over-sampling and majority-class under-sampling to determine if a statistical difference 

existed between these two algorithms and the conditions where one method was 

preferred to the other (Rosner 2000).   

 When the system is highly correlated, Figure 6.4, minority-class over-sampling 

is statistically superior to majority-class under-sampling when the minority-class 

probability is less than about 3%.  When the minority-class probability reaches about 

8%, majority-class under-sampling is statistically superior.  Under-sampling the 

majority-class removes examples of the major class, which results in the Bayesian 

network fitting a Gaussian model using fewer data points.  As more and more majority-

class examples are removed, the uncertainty in the Bayesian network’s parameters 

increases and performance declines as it over-fits the remaining majority-class data 

elements.  Hence, under-sampling the majority-class is not expected to be the best 

algorithm when the minority-class probability is very low.   
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Figure 6.4  Statistical Difference in Highly Correlated System 

Over-sampling the minority-class duplicates examples of the minority-class, but 

does not create novel examples.  The between-class imbalance is reduced in the training 

dataset and the Bayesian network parameters are largely unaffected.  For example, if 

one takes 100 random numbers and duplicates each number n times, the mean and 

variance will not change as n changes.  The Bayesian network will, however, also over-

fit the minority-class examples when the minority-class probability is very low.  Hence, 
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over-sampling the minority-class is also not expected to be the best algorithm 

when the minority-class probability is very low. 

In a weakly correlated system, Figure 6.5, over-sampling the minority-class is 

statistically superior to under-sampling the majority-class at virtually all parameter 

combinations.  This would suggest that discarding training examples in a weakly 

correlated system results in over-fitting the remaining training examples, resulting in 

reduced performance. 

 

Figure 6.5 Statistical Difference in Weakly Correlated System 
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Figure 6.6 Statistical Difference in Moderately Correlated System 

 The moderately correlated system, Figure 6.6, shows a significantly more 

complex relationship between minority-class over-sampling and majority-class under-

sampling than observed in the previous two systems.  When the size of the disjunct is 

relatively small, corresponding to poor performance, majority-class under-sampling is 

statistically superior as long as the minority-class probability is relatively high, at least 

17%.  When the disjunct size is large, majority-class under-sampling is again 

statistically superior as long as the minority-class probability is at least 17%.  This 
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suggests that under-sampling is only effective when the minority class probability 

is above a threshold that depends on the system’s correlation and the disjunct size.  

From this complex relationship, we conclude that both approaches must be evaluated in 

the domain of interest.  In the clinical laboratory domain, a domain with very low 

minority class probabilities and generally poorer correlation, over-sampling the 

minority-class is expected to be statistically superior to under-sampling the majority-

class.  Therefore, we only compare the performance of synthetic error generation to 

minority-class over-sampling. 

6.3.3. Superiority of Synthetic Error Generation 

Errors in the clinical laboratory are rare, generally estimated at about 1%, so we limit 

our comparison to where the minority-class probability is between 0.1% and 2.0%.  

With this assumption, as discussed in the previous section, majority-class under-

sampling is always expected to be statistically inferior to minority-class over-sampling.  

Therefore, we limit our evaluation of the synthetic error generation method to just the 

minority-class over-sampling method. 

 In a strongly correlated system, Figure 6.7, the difference between the two 

methods is generally statistically insignificant.  At very low minority-class probabilities, 

synthetic error generation is superior whereas minority-class over-sampling is superior 

at larger minority-class probabilities, if the magnitude of error is small.  To estimate the 

performance difference between these two systems, we calculated the difference in the 

average areas under the ROC curves, Figure 6.8.  When minority-class over-sampling is 
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superior, the difference in area in the ROC curve is only about 0.01 whereas the 

synthetic error generation method, when statistically superior, improves performance 

between 0.01 and 0.04.  Since the performance difference between the minority-class 

over-sampling method and the synthetic error generation method is very small when the 

system is highly correlated and the minority-class probability is less then 2.0%, either 

method can be expected to produce good results in training an clinical laboratory 

autoverification system.   

 In a moderately correlated system, Figure 6.9, the performance gains of the 

synthetic error generation method are readily apparent.  For all regions when the area 

under the ROC curve is expected to be between about 0.750 and 0.999, synthetic error 

generation is statistically superior and can be expected to improve performance, Figure 

6.10, by 0.01 to 0.08.  In a weakly correlated system, Figure 6.11, synthetic error 

generation is statistically superior when the area under the ROC curve exceeds 0.675 

and adds, Figure 6.12, between 0.01 and 0.14 to the area under the ROC curve. 
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Figure 6.7 Statistically Significant Differences between Synthetic Error and 
Minority-Class Over-Sampling in Strongly Correlated System 
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Figure 6.8 Difference in Area under ROC Curves between Synthetic Error and 
Minority-Class Over-Sampling in Strongly Correlated System 
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Figure 6.9 Statistically Significant Differences between Synthetic Error and 
Minority-Class Over-Sampling in Moderately Correlated System 
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Figure 6.10 Difference in Area under ROC Curves between Synthetic Error and 
Minority-Class Over-Sampling in Moderately Correlated System 
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Figure 6.11 Statistically Significant Differences between Synthetic Error and 
Minority-Class Over-Sampling in Weakly Correlated System 
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Figure 6.12 Difference in Area under ROC Curves between Synthetic Error and 
Minority-Class Over-Sampling in Weakly Correlated System 
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6.4. Summary 

In this chapter, we have shown that the synthetic error generation method is generally 

statistically superior, though with only a modest gain in performance, to the standard 

minority-class over-sampling and majority-class under-sampling methods in detecting 

errors under a broad range of conditions likely to be observed in the clinical laboratory.  

Under conditions when the synthetic error generation method is not the best method, its 

performance is only slightly below the best method.  Errors in the clinical laboratory are 

very rare and have a complex multifactorial etiology that makes their detection very 

difficult.  In addition, as discussed in Chapter 2, there is no gold standard that can be 

applied to an existing dataset to identify clinical laboratory errors.  Even if a gold 

standard existed and, at a great cost, a realistic training dataset could be created, the 

results of this chapter indicate this is neither necessary nor beneficial.  Synthetic error 

generation is statistically superior to existing methods in training a Bayesian network to 

identify errors in the clinical laboratory. 
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Chapter 7: Comparison of Synthetic Error Generation  
Against Laboratory Experts 

In Chapter 2, we discussed that only about half of the clinical laboratories use an 

autoverification system, which is virtually always based on rules, and that rule-based 

systems are not capable of handling the inherent uncertainty within the domain.  In 

Chapter 6, we saw the superiority of the synthetic error generation method compared to 

standard methods for training a Bayesian network to identify errors in the clinical 

laboratory.  In this chapter, we survey laboratory experts to estimate the desired 

performance characteristics for an autoverification system and evaluate their 

performance against the synthetic error generation method using simulated results.  For 

a clinical laboratory using an autoverification system to be accredited, their 

autoverification system must be evaluated and authorized by their laboratory director 

prior to its use (Commission on Laboratory Accreditation 2006).  The core requirement 

is that it check if a result meets “laboratory-defined acceptance parameters” and 

require expert review of results failing to meet its acceptance parameters (Commission 

on Laboratory Accreditation 2006).   

7.1. Laboratory-Defined Acceptance Parameters 

By definition, laboratory-defined acceptance parameters are specific to a given 

laboratory.  Each laboratory has its own desired sensitivity and specificity for detecting 

errors in the laboratory results.  However, if we assume that each laboratory expert has 

the same capability to detect errors, then their receiver operating characteristic (ROC) 
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curves will be the same and their “laboratory-defined acceptance parameters” will 

be seen as operating at different points along the same curve.  For example, Laboratory 

A may desire a more conservative autoverification system than Laboratory B, Figure 

7.1, and choose an operating point on the ROC curve with a higher sensitivity (true 

positive rate), but with a correspondingly lower specificity (1 – false positive rate).  

This would result in Laboratory A’s system detecting more errors, but also results in 

fewer results being autoverified.  

 

Figure 7.1 Choosing an Operating Point on the ROC Curve 
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We conducted a survey of potential laboratory experts to estimate the 

range of desired operating characteristics for an autoverification system.  The survey, 

Appendix II, was advertised via email to 280 people with email addresses currently 

listed in the American Association for Clinical Chemistry’s Laboratory Information 

Systems and Medical Informatics Division.  Twenty-eight (10%) of the respondents 

completed at least part of the survey with one respondent not answering eight questions 

and another respondent not answering one question.  The remaining twenty-six 

respondents answered all questions posed to them.   

7.1.1. Cost and Frequency of Laboratory Errors 

All twenty-eight respondents indicated their laboratory’s size and four (14%) were from 

small laboratories, thirteen (46%) from medium laboratories, and eleven (40%) were 

from large laboratories.  In line with estimates, twenty-three (85%) of the twenty-seven 

answering respondents felt laboratory errors rates are less then 0.5%, and only one 

respondent felt laboratory error rates exceed 1.5%.  However, sixteen (59%) of the 

twenty-seven responding laboratory experts appeared to underestimate the percentage 

of errors causing harm, estimated at about 6%,  at less than 1% (Astion, Krueger-

Nielsen S et al. 2004). 
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Table 7.1 Percentage of Errors Resulting in Patient Harm by Laboratory 

Size (n = 24 Respondents) 

 < 1% 5% 10% > 10% 

Small 1 0 1 1 

Medium 9 1 2 1 

Large 4 1 3 0 

Total 14 2 6 2 

Only eleven (39%) of the twenty-eight respondents indicated they currently use an 

autoverification system and larger laboratories were more likely than smaller 

laboratories to use one.  When reviewing data via an autoverification system or expert 

review, twenty-six (93%) of the twenty-eight respondents indicated they have access to 

previous clinical results performed in their laboratory.  Access to previous clinical 

laboratory results increases the laboratory’s ability to detect errors.  Of laboratories with 

access to historical results, twelve (46%) of the twenty-six also have access to the 

patient’s electronic medical record (EMR).  Again, larger laboratories tend to have 

greater access to the patient’s data.  Access to a patient’s EMR further enhances the 

clinical laboratory’s ability to predict values and, therefore, detect errors.   

All respondents utilizing an autoverification system were satisfied or very 

satisfied with its performance.  We then asked them to explain the reason for their 

satisfaction.  A sampling of comments from six of the nine answering respondents: 
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• “Works … and it’s FAST” 

• “Reduces human errors and increases consistency” 

• “Autoverification … works reasonably well where we use it and for what it is 

capable” 

• “While I am satisfied with the performance of the Autoverification system in 

use, I feel it is rather limited when it comes to setting up the "Rules" used to 

evaluate whether a result can be autoverified.” 

• “Although none of these systems (is) perfect, they have improved the quality of 

review and alleviated much of the drudgery associated with test verification.” 

• “Handles release criteria as specified well but certain criteria are not easily 

modeled.” 

Laboratory experts appear to be satisfied with their autoverification systems because 

they are fast and have “alleviated much of the drudgery” of reviewing results, but 

several respondents commented on the difficulty in establishing effective rules.  From 

respondents’ comments, we hypothesize that users would be satisfied with a synthetic 

error generation-based Bayesian autoverification system because its speed is on par 

with a rule based system and its ability to learn from data will simplify setup. 

When asked what percentage of results they expect to be automatically released 

by an autoverification system, half of the respondents indicated they would be satisfied 

if approximately 75% of the results were autoverified.  This autoverification rate 

corresponds to a false positive rate of about 0.75, which indicate that clinical 
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laboratories highly value the detection of laboratory errors.  Using the optimal 

classification threshold discussed in Section 4.3.2 (page 68), the rarity of laboratory 

errors moves the operating point to the left along the false positive rate dimension and a 

misclassification cost imbalance moves the operating point to the right.  Since the 

operating point appears far to the right of where it would appear assuming equal 

misclassification costs, the misclassification cost associated with laboratory errors must 

be much greater than the misclassification cost associated with acceptable results.  

 Twenty-five (89%) of the twenty-eight respondents indicated that it was 

somewhat or very important for the autoverification to explain why a result was flagged 

as potentially in error.  Furthermore, eighteen (67%) of the twenty-seven believe it 

somewhat or very important to provide possible causes for the perceived error.  Current 

rule-based autoverification systems are able to state the criteria that caused a result to be 

flagged, but are not able to hypothesize as to the cause of the error.  Finally, twenty-two 

(81%) of the twenty-seven respondents indicated that an autoverification system should 

be able to detect a 10 – 20% error in an analyte such as cholesterol.  In analytes with 

higher biological variability, such as triglyceride, twenty-four (89%) of the twenty-

seven respondents indicated a 10 – 30% error should be detected at least 50% of time.  

For larger errors, the autoverification system should detect errors more readily.  Based 

on the results of the survey, we estimate that an effective autoverification system should 

operate with a specificity of approximately 0.75 and a sensitivity of approximately 0.50 

for an appropriate minimum magnitude of error for the analyte.  
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7.2. Experimental Design 

To evaluate the synthetic error generation method’s performance against laboratory 

experts in detecting errors in clinical laboratory data, we asked laboratory experts who 

completed the survey if they were able to review glucose and glycosylated hemoglobin 

(HbA1c) results to identify errors.  Since the survey and evaluation were required to be 

anonymous, we were not able to ensure those who completed the evaluation where 

indeed qualified.  Subject volunteers completed one of two randomly selected 

comparisons, which are listed in Appendix III and Appendix IV.  Each of the two 

surveys consisted of 60 questions split over two sections.  Each of the four sections 

started with the question “Consider a pre-diabetic population where the average 

glucose is 103 mg/dl (standard deviation 11mg/dl) and the average glycosylated 

hemoglobin (HbA1c) is 5.9 (standard deviation 0.2).  For each of the 30 sets below, 

what is your belief that the HbA1c value is in error given the fasting glucose value? ”.  

For each of the 60 questions, respondents selected one of Definitely Not an Error, 

Probably Not an Error, Neutral, Probably an Error, Definitely an Error.  As discussed 

later, we are confident all eleven experts who completed the evaluation understood the 

questions and were qualified to participate, since they performed reasonably well. 

 The training and testing datasets were artificially created using a model of a pre-

diabetic population in order to provide a clean dataset known to be free from errors and 

one with sufficient variability for a meaningful evaluation.  We again, based on the 

results of the Diabetes Control and Complications Trial (DCCT) results, assumed a 
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linear relationship, equation 7.1, between glucose and glycosylated hemoglobin in 

the region of interest (Rohlfing, Wiedmeyer et al. 2002).  The parameters of the linear 

relationship were determined from an analysis of glucose and glycosylated hemoglobin 

(HbA1c) results in a pre-diabetic population and are similar to published data for a pre-

diabetic group (The Diabetes Prevention Program Research Group 2000).  As before, 

we randomly selected glucose values from a Gaussian distribution and used equation 

7.1 to derive an HbA1c result.  Table 7.2 lists the parameters of the original, training, 

and testing datasets. 

 HbA1c 4.22 0.01604 Glucose + ε= + ×  (7.1) 

Table 7.2 Parameters of Target and Artificial Dataset 

 ORIGINAL TRAINING TESTING

Glucose Average 103.4 103.3 101.4 

Glucose Standard Deviation 11.3 11.3 9.5 

HbA1c Average 5.87 5.88 5.86 

HbA1c Standard Deviation 0.22 0.26 0.38 

Pearson’s Correlation Coefficient 0.361 0.629 0.521 

Number of Results > 3,000 10,000 120 

 

 The procedure used to evaluate the performance of the synthetic generation 

method against laboratory experts, Figure 7.2, is similar to the methods used in previous 

chapters.  We continue to use the Bayesian network described in the previous chapter 

(section 5.2, page 79).  To train the Bayesian network, we used the following procedure: 
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1. Create an initial error-free dataset by randomly selecting from the glucose 

distribution and using equation 7.1 to calculate an HbA1c value. 

2. Add synthetic errors with an error magnitude of 0.50 and a frequency of 50%. 

3. Learn the parameters of the Bayesian network using 10-fold cross-validation. 

We created the testing dataset using the following procedure: 

1. Create an initial error-free dataset by randomly selecting from the glucose 

distribution and using equation 7.1 to calculate an HbA1c value. 

2. Add sample switching errors with a minimum error magnitude of 0.50 and a 

frequency of 40%.   
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Figure 7.2 Evaluation Procedure 

We used a high minority-class probability in the testing dataset to provide sufficient 

power for analysis and since, from the results in Chapter 5, the performance of the 

synthetic error generation method would be unaffected.  Had we selected a lower 

minority-class probability for the testing dataset, the experts would have needed to 

review significantly more results to obtain sufficient power to observe a difference in 

performance.  We do not know the extent to which an unrealistic minority-class 

probability affected the performance of the laboratory experts, or the extent to which the 
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format of the question mitigated this affect.  We split the testing dataset in half to 

present a reasonably sized (sixty questions) comparison to the experts.  For the sixty 

pairs of glucose and HbA1c results presented, the subjects annotated each HbA1c result 

as definitely an error, probably an error, neutral, probably not an error, and definitely 

not an error.  Four respondents answered the same for each question and were excluded 

from further analysis.  Five respondents satisfactorily completed comparison #1 and six 

respondents completed comparison #2.  Two respondents did not answer a total of three 

questions for unknown reasons.  When respondents did not answer a question, we 

assumed they were neutral in their belief of an error.  The synthetic-error generation 

trained Bayesian network evaluated both comparison sets, producing the probability 

that a value is in error.   

7.3. Statistical Analysis 

By varying the classification threshold between 0% and 100%, we produce an ROC 

curve for the Bayesian network’s performance for each of the two comparisons.  The 

laboratory experts, however, did not provide a probability for use in creating an ROC 

curve.  As discussed in Section 4.3.1 (page 67), since the rating system is ordinal, we 

created an ROC curve for each expert by computing their sensitivity (true positive rate) 

and specificity (1 – false positive rate) as the classification threshold is varied from 

“definitely an error” to “definitely not an error”.  For example, using the classification 

threshold of “neutral”, we classified as an error all entries the experts labeled as 

“definitely an error”, “probably an error”, or “neutral” and computed the resulting true 
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positive rate and false positive rate.  We computed an average ROC curve by 

averaging each expert’s linearly interpolated true positive rate at each false positive rate 

point between 0.0 and 1.0.  The experts’ results for comparison #1 are displayed in 

Figure 7.3 and Table 7.3.  Comparison #2 results are displayed in Figure 7.4 and Table 

7.4. 

 

Figure 7.3 Comparison #1: Expert Performance 
 

Table 7.3 Comparison #1: Experts’ Area Under the ROC Curve 

#1 #2 #3 #4 #5 AVERAGE 

0.6875 0.7250 0.6781 0.7900 0.6981 0.7158 
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Figure 7.4 Comparison #2: Expert Performance 

 

 

Table 7.4 Comparison #2: Experts’ Area Under the ROC Curve 

#1 #2 #3 #4 #5 #6 AVERAGE

0.7494 0.7072 0.6846 0.8206 0.6696 0.7465 0.7296 
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 From Table 7.3, we compute a standard error of 0.020 in the average area 

under the ROC curve for comparison #1 and from Table 7.4, a standard error of 0.022 

for comparison #2.  The average expert’s performance against the synthetic error 

autoverification system is displayed in Figure 7.5 for comparison #1 and Figure 7.6 for 

comparison #2.  In both comparisons, the synthetic error autoverification system 

outperformed the experts.  

 

Figure 7.5 Comparison #1 Between Synthetic Error and Laboratory Experts 

For comparison #1, the synthetic error autoverification system produced an area 

under the ROC curve of 0.8750 compared to the expert’s 0.7158.  From Hanley and 
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McNeil (1983), which is summarized in Appendix I, we estimate the standard 

error in the synthetic error autoverification system at 0.05.  The critical ratio z  is 

calculated as  

 1 2

2 2

1 2 1 22
A Az

SE SE rSE SE
−

=
+ −

 (7.2) 

where xA  is the area under the ROC curve, xSE  is the standard error, and r  is the 

estimated correlation between the two areas (Hanley and McNeil 1983).  Using a 

conservative assumption that the correlation is 0.0, equation 7.2 produces a critical ratio 

of 2.91, which indicates a statistically significant difference between the two with p < 

0.002.  At a specificity of 75%, the average expert had a sensitivity of 62% whereas the 

synthetic error autoverification system had a sensitivity of 84%, a statistically 

significant increase in performance. 

For comparison #2, the synthetic error autoverification system produced an area 

under the ROC curve of 0.9531 compared to the average expert’s 0.7296.  The testing 

dataset used for comparison #2 was created by randomly splitting the original testing 

dataset and, by chance, did not contain errors near the expected value, as can be 

observed in Figure 7.7.  This difference resulted in the synthetic error autoverification 

system performing better than in comparison #1.  Using equation 7.2 with a standard 

error estimate of 0.05 for the synthetic error autoverification system and conservatively 

assuming a correlation of 0.0, the critical ratio z  is calculated at 4.15.  This again 



 

 

139
indicates a statistically significant difference between the two systems with p < 

0.00002.  At a specificity of 75%, the laboratory experts achieved a sensitivity of 65% 

whereas the synthetic error autoverification system achieved a sensitivity of 100%. 

 

Figure 7.6 Comparison #2 Between Synthetic Error and Laboratory Experts 
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Figure 7.7 Scatter Plot of Testing Datasets #1 and #2 

7.4. Summary 

Previous chapters have shown the statistically significant improvement in performance 

of the synthetic error generation method over standard methods for training a Bayesian 

network to detect rare events.  In this chapter, we showed that a Bayesian network 

trained by the synthetic error generation method produces an autoverification system 

that, for the analyte considered, is statistically superior to laboratory experts.  Most 

clinical laboratories do not use autoverification systems, but those that do are satisfied 

with their performance.  Laboratory experts indicate they would be satisfied with an 

autoverification system that autoverified 75% of the results, leaving the rest for 
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laboratory experts to review.  At that level, laboratories with the synthetic error 

autoverification system can expect approximately a 35% increase in sensitivity over the 

performance of laboratory experts.  The synthetic error autoverification system has 

shown that it is statistically superior to laboratory experts in detecting errors in the 

clinical laboratory.   
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Chapter 8: Summary and Conclusions 

In this final chapter, we summarize the results presented herein showing the utility of a 

novel approach to autoverification in the clinical laboratory, describe the contribution of 

this dissertation to the Biomedical and Health Informatics domain, discuss limitations in 

our research, and highlight future work to address those limitations and further expand 

this work.  

8.1. Summary of Results 

This dissertation started with the simple question of whether we could develop an 

autoverification system that better detecte errors in the clinical laboratory than currently 

possible.  Creating an effective autoverification system for a clinical laboratory is a very 

challenging task.  Rule-based systems, virtually the only inference engine used in the 

current generation of autoverification systems, are not capable of handling the inherent 

uncertainty in the domain.  This limitation relegates rule-base autoverification systems 

to doing what they are capable of doing: alerting when pre-defined criteria, such as an 

extreme value, are exceeded.  Such a system performs poorly when attempting to 

identify errors, especially false-normal results.  Bayesian networks, however, are a 

powerful tool for making bi-directional inferences under uncertainty and are more 

appropriate for the domain.   

 In order to use a Bayesian network as an autoverification system, the structure of 

the network is first identified using an algorithm or expert specification and then a 
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training dataset is used to learn how to identify potentially erroneous results.  The 

clinical laboratory, unfortunately, lacks a gold standard that can be used to create 

training datasets.  Furthermore, should a gold standard exist, the performance of the 

Bayesian network would be very poor due to the extreme class imbalance and small 

disjuncts that arise from the complex multifactorial etiology of laboratory errors. 

 A synthetic error generation method, used to create a synthetic training dataset, 

yields an autoverification system statistically superior to minority-class over-sampling 

and majority-class under-sampling under the broad range of conditions likely to be 

present in the clinical laboratory.  Unlike standard approaches that require an expensive 

and time-consuming expert annotation process to create training datasets, the synthetic 

error generation method uses datasets of results that were reviewed normally.  By 

creating synthetic datasets, the synthetic error generation process creates customized 

datasets, which maximize the Bayesian network’s performance in detecting errors.  

 Errors are very rare in the clinical laboratory and in this domain, the synthetic 

error autoverification excels.  Compared to minority-class over-sampling, the only 

standard class imbalance method that approached the performance levels of the 

synthetic error method, a Bayesian network trained using the synthetic error generation 

method is superior.  The synthetic error generation method enables the better training of 

an autoverification system, which results in better performance when detecting errors. 

 Laboratories that use an autoverification system are satisfied with them, but 

fewer than half use one.  Laboratory experts want an autoverification system to 
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autoverify approximately 75% of the results, leaving the rest to be reviewed by 

experts.  They also want to know why a result was not autoverified and the possible 

causes of the perceived error.  However, the current generation of autoverification 

systems is not capable of hypothesizing as to the source of the error, whereas Bayesian 

networks can.  When asked to review laboratory results mimicking a pre-diabetic 

population, the synthetic error autoverification system significantly outperformed 

laboratory experts.  At their desired specificity of 75%, laboratory experts completing 

one of two comparisons achieved an average sensitivity of 64% while the synthetic 

autoverification system achieved an average sensitivity of 92%.  Using the synthetic 

error generation method to create training datasets for a Bayesian network produces a 

superior autoverification system compared to systems trained using standard methods 

and to laboratory experts.   

8.2. Contributions 

In this dissertation, we describe a novel approach to clinical laboratory autoverification 

systems that utilizes a synthetic error generation method to create training datasets, 

which are then used to train a Bayesian network to detect errors in clinical laboratory 

results.  Our novel approach produced an autoverification system that is superior to 

laboratory experts and standard class-imbalance methods.  Thus, this dissertation 

contributes to the biomedical and health informatics domain by: 

• Demonstrating the performance characteristics of the synthetic error generation 

autoverification system to show that we can better train our system. 
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• Demonstrating the superiority of the synthetic error generation 

autoverification system compared to the standard methods of addressing the 

class imbalance problem in the clinical laboratory domain to show that better 

training results in better performance.   

• Demonstrating the superiority of the synthetic error generation autoverification 

system compared to laboratory experts. 

An implicit question in our research was whether a training dataset needed to 

represent accurately the target testing dataset and, if not, how non-representative 

training datasets affected performance.  In Chapter 5, we demonstrated that superior 

performance is obtained when the training dataset is very unrealistic.  When the 

minority-class probability is very low in the testing dataset, maximum performance is 

obtained by training with a minority-class probability of 50%.  Furthermore, for a given 

minority-class probability in the training dataset, performance is not affected by the 

minority-class probability in the testing dataset.  The synthetic error generation system 

will tend to over-fit the magnitude of the error in the training dataset, but a large 

training minority-class probability minimizes this affect.  By demonstrating the 

performance characteristics of the synthetic error generation system, we have 

contributed to the biomedical and health informatics domain by adding a new tool for 

researchers to use when addressing supervised learning under an extreme class 

imbalance. 
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The class imbalance problem is not unique to the clinical laboratory 

domain and experts have developed established methods to address this problem.  

However, it was not known if these standard methods were appropriate or best in the 

clinical laboratory domain.  In Chapter 6, we demonstrated that minority-class over-

sampling is the best standard method for the clinical laboratory domain, but that the 

synthetic error generation method is even better.  In addition to the superior 

performance of the synthetic error generation method, it does not require a costly 

expert-annotated database, which serves to expand greatly the usefulness of the method.  

We contribute to the biomedical and health informatics domain by showing that clinical 

laboratories, with precious little resources and ever-tightening budgets, can more readily 

implement autoverification specific to their client population with synthetic error 

generation.   

Prior to their use, the laboratory director must evaluate and authorize the 

autoverification system.  In Chapter 7, we evaluated the performance of the synthetic 

error autoverification against laboratory experts in the detection of errors in a dataset 

mimicking a pre-diabetic population.  The results of the comparison were clear: in such 

a dataset, a synthetic error autoverification system significantly outperforms laboratory 

experts.  We contribute to the biomedical and health informatics domain by 

demonstrating the effectiveness of autoverification systems against laboratory experts. 
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8.3. Limitations 

The method of using a synthetic error generation system to create training datasets for a 

conditional Gaussian Bayesian network has some clear limitations, primarily due to the 

choice of a conditional Gaussian Bayesian network for predicting the expected value.  

These limitations may be inherent limitations due to the way data are modeled in a 

Gaussian Bayesian network, or they may be due to the way Gaussian Bayesian 

networks are developed.  In addition, the comparison with laboratory experts has 

limitations due to its necessarily limited depth and breadth. 

8.3.1. Model Limitations 

First, we must assume that laboratory data can be modeled by a multivariate 

Gaussian distribution, either directly or after some transformation of the data.  For 

example, triglyceride has a skewed distribution that, in part, can be corrected by taking 

the natural log of the data.  Still, highly skewed data such as autoantibody indices may 

not be sufficiently modeled by a Gaussian representation.  Conditional Gaussian 

Bayesian networks require that each node be a linear weighted sum of its parents where 

the weights are constant.  However, the relationship between glucose and glycosylated 

hemoglobin is known to vary depending on treatment and stage of diabetes (Kilpatrick, 

Rigby et al. 2007).  It is not known if a single Bayesian network is able to effectively 

model the relationship over the entire range of treatments and stages of diabetes, or if a 

collection of models is needed. 
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The structure of the Bayesian network must be identified either by using 

an algorithm or through expert specification.  Either way, the relationships entailed by 

the Bayesian network will be based on statistical co-variation, rather than causation.  As 

such, there is a risk that both the structure and parameters of the Bayesian network are 

specific to the data source utilized in its construction.  The synthetic error 

autoverification’s performance on a disparate dataset may result in reduced 

performance. 

8.3.2. Expert Comparison Limitations 

The survey response rate of 10% is too low for statistical analysis, so opinions 

expressed by the respondents may not be generalizable to the population in general.  

However, a key result of the survey was an estimate of the desired specificity, 75%, and 

this value is comparable to other published values.  In Chapter 7, we compared the 

performance of the synthetic error autoverification against laboratory experts.  Due to 

the anonymous nature of this comparison, we do not know the qualifications of each 

expert and if their qualifications extended to the review of glycosylated hemoglobin 

data in a pre-diabetic population.  In addition, a real database could not be used for the 

comparison so a database was created that mimicked the target population.  It is 

possible that an expert unqualified to perform the comparison did so or that the artificial 

dataset was unrealistic, reducing the average performance of the experts.  In addition, 

due to time constraints, we were not able to evaluate the synthetic error autoverification 

system against laboratory experts for analyses other than glycosylated hemoglobin in a 
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single population nor were we able to use a realistic testing dataset containing 

approximately one percent errors.  The low response rate, however, does not affect the 

conclusion that the synthetic error autoverification system is statistically superior to 

laboratory experts since the low response rate is accounted for in the larger standard 

error estimate. 

8.4. Future work 

The results presented in this dissertation suggest that the synthetic error autoverification 

system is an effective tool for the clinical laboratory to identify errors.  To enhance 

further this work we will continue the development and evaluation of the system.  The 

system can be thought of as two parts: 1) The first part predicts a value and compares 

that predicted value to the measured value to estimate the error; 2) The second part uses 

the error estimates to hypothesize as to the source of error.  The prediction model used 

in this system is not required to be a Bayesian network, but we have not evaluated 

different models.  In this dissertation, we did not hypothesize as to the source of error.  

By modeling a variety of errors and their affects on correlated analyses, we can train the 

system to detect a wide range of errors.  Preliminary work with the 2004 NHanes 

dataset has already demonstrated the significant potential of this approach.   

  Comparing an autoverification system against laboratory experts is very time 

consuming.  In a realistic comparison, experts would need to review thousands of 

results.  However, some researchers have culled annotated datasets containing 

laboratory errors.  While laboratory experts are not perfect in their identification of 
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errors and, therefore, these datasets would contain mis-labeled results, those 

datasets may still be useful in demonstrating the performance of the synthetic error 

autoverification system.  

8.5. Concluding Remarks 

Estimates of the harm caused by laboratory errors vary significantly depending on the 

true error rate, the observed error rate, definition of harm, and percentage of errors 

causing harm.  Laboratory errors may harm millions of patients each year or they may 

only harm thousands.  Either way, laboratory experts spend countless hours reviewing 

billions of laboratory results each year in the search for these errors.  Autoverification 

systems can save countless hours and be more accurate than laboratory experts, but the 

current generation of rule-based systems is not appropriate for the clinical laboratory 

domain with its inherent uncertainty.  This research has demonstrated that a novel 

approach using a synthetic error generation system to create training datasets for a 

conditional Gaussian Bayesian network produces an autoverification system that is 

superior to ones trained using standard methods and to laboratory experts. 
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Appendix I – Power Calculations 

Power calculations, detailed below, are from Hanley and McNeil (1983; 1982).  All 

comparisons of average area under the receiver operating characteristic curves are pair-

wise.  The following equation is used to estimate the standard error in the area under the 

receiver operating characteristic curve for a single simulation. 
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Where: 

θ  = the area under the receiver operating characteristic curve for one simulation 

An  = the number of minority-class elements in the simulation 

Nn  = the number of majority-class elements in the simulation 
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We make the following assumptions: 

• The area under the receiver operating characteristic curve is 0.60. 

• The minority-class probability is 1.0%. 
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• The sample size is 10,000. 

With these assumptions and using the equation above, the standard error for a single 

simulation is 0.0030.  Each simulation is repeated 100 times so the standard error in the 

mean area under the receiver operating characteristic curve is 0.0003.  We then use this 

estimate for the standard error to derive the minimum difference that we have 80% 

power to detect.  Hanley and McNeil in (1983) provide the following equation: 
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Where: 

XA  is the area under the receiver operating characteristic curve for x. 

XSE  is the standard error estimate for x. 

r is the correlation coefficient between areas. 

z is the critical ratio 

We make the following assumptions: 

• An 80% power to detect an effect. 
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• A Type I error rate of 5%.  For a two-sided comparison, this corresponds 

to a value of z equal to 1.96.  For a one-sided comparison, this corresponds to a 

value of 1.65. 

• The correlation coefficient between areas, r , is conservatively estimated at 0.0. 

• The standard errors are equal. 

With these assumptions, we will have an 80% chance of detecting a difference of 0.008 

between the two areas under the receiver operating characteristic curves.  Our power to 

detect an effect increases as the areas under the receiver operating characteristic curves 

increase and as the minority-class probability increases. 
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Appendix II - Survey Questions 

1. How would you describe the size of your laboratory?  

a. Small 

b. Medium 

c. Large 

2. What is your opinion as to the percentage of overall errors in your laboratory 

reports?   

a. < 0.01% 

b. 0.01 – 0.5% 

c. 0.5% - 1.5% 

d. > 1.5% 

3. What is your opinion as to the percentage of all errors from above that result in 

some harm to the patient?  Harm is defined as including delayed treatment or 

additional testing. 

a. < 1% 

b. 5% 

c. 10% 

d. > 10% 

4. Do you generally have access to a patient’s previous laboratory results 

performed in your laboratory for use in reviewing current results? 

a. Yes 

b. No 

5. Do you generally have electronic access to a patient’s medical records for use in 

reviewing results? 

a. Yes 

b. No 

6. Do you use an autoverification system to review results? 

a. Yes 

b. No (go to Question #10) 
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7. What is the approximate percentage of results that are automatically 

released? 

a. < 50% 

b. 67% 

c. 75% 

d. > 95% 

8. What is your satisfaction level with your autoverification system? 

a. Very dissatisfied  

b. Dissatisfied 

c. Satisfied 

d. Very satisfied 

9. Please explain. 

a. (Open text) 

10. For you to be satisfied with an autoverification system, what percentage of 

results should be automatically released? 

a. 50% 

b. 67% 

c. 75% 

d. >95% 

11. How important is it that an autoverification system be able to explain why a 

result was flagged?  For example: “Fasting glucose > 150mg/dl and HbA1c < 

5.0%” 

a. Very important 

b. Somewhat important 

c. Somewhat unimportant 

d. Very unimportant 
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12. How important is it that an autoverification system rank possible sources 

of error in a flagged result?  For example: “Patient not fasting (30%), samples 

switched (20%),…” 

a. Very important 

b. Somewhat important 

c. Somewhat unimportant 

d. Very unimportant 

13. For a test like cholesterol, what magnitude of error would you want detected at 

least 50% of the time? 

a. 10% 

b. 20% 

c. 30% 

d. 40% 

e. >50% 

14. For a test like cholesterol, what magnitude of error would you want detected at 

least 95% of the time? 

a. 10% 

b. 20% 

c. 30% 

d. 40% 

e. >50% 

15. For a test like triglyceride, what magnitude of error would you want detected at 

least 50% of the time? 

a. 10% 

b. 20% 

c. 30% 

d. 40% 

e. >50% 
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16. For a test like triglyceride, what magnitude of error would you want 

detected at least 95% of the time? 

a. 10% 

b. 20% 

c. 30% 

d. 40% 

e. >50% 
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Appendix III – Comparison #1 Questions  

Subjects were asked the following questions, with answers in parentheses, and asked to 

rate their belief using one of: Definitely not an error, probably not an error, neutral, 

probably an error, definitely an error: 

Consider a pre-diabetic population where the average glucose is 103 mg/dl 

(standard deviation 11mg/dl) and the average glycosylated hemoglobin (HbA1c) 

is 5.9 (standard deviation 0.2).  

For each of the 30 sets below, what is your belief that the HbA1c value is 

in error given the fasting glucose value? 

Section #1 

1. Glucose:  96, HbA1c: 5.4% (error) 

2. Glucose:  97, HbA1c: 5.2% (error) 

3. Glucose: 105, HbA1c: 6.4% (error) 

4. Glucose: 104, HbA1c: 5.8% (OK) 

5. Glucose: 103, HbA1c: 6.5% (error) 

6. Glucose: 105, HbA1c: 6.0% (OK) 

7. Glucose:  96, HbA1c: 5.7% (OK) 

8. Glucose: 120, HbA1c: 5.8% (OK) 

9. Glucose: 103, HbA1c: 5.9% (OK) 

10. Glucose: 100, HbA1c: 5.8% (OK) 

11. Glucose:  87, HbA1c: 6.4% (error) 

12. Glucose: 110, HbA1c: 6.1% (OK) 

13. Glucose: 101, HbA1c: 5.8% (OK) 
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14. Glucose:  90, HbA1c: 5.4% (OK) 

15. Glucose:  87, HbA1c: 6.4% (error) 

16. Glucose: 118, HbA1c: 5.4% (error) 

17. Glucose: 106, HbA1c: 5.5% (error) 

18. Glucose: 107, HbA1c: 6.5% (error) 

19. Glucose:  98, HbA1c: 5.8% (OK) 

20. Glucose: 111, HbA1c: 5.8% (OK) 

21. Glucose:  99, HbA1c: 6.2% (OK) 

22. Glucose:  99, HbA1c: 5.6% (OK) 

23. Glucose:  70, HbA1c: 6.0% (error) 

24. Glucose:  96, HbA1c: 5.6% (OK) 

25. Glucose:  97, HbA1c: 6.3% (error) 

26. Glucose:  99, HbA1c: 5.8% (OK) 

27. Glucose:  97, HbA1c: 5.1% (OK) 

28. Glucose:  91, HbA1c: 6.4% (error) 

29. Glucose:  77, HbA1c: 5.6% (OK) 

30. Glucose: 115, HbA1c: 5.5% (error) 

 

Section #2 

1. Glucose: 108, HbA1c: 6.1% (OK) 

2. Glucose: 114, HbA1c: 6.3% (OK) 

3. Glucose:  97, HbA1c: 5.5% (OK) 

4. Glucose: 122, HbA1c: 5.8% (error) 

5. Glucose:  99, HbA1c: 6.0% (OK) 

6. Glucose:  92, HbA1c: 6.2% (error) 

7. Glucose:  88, HbA1c: 5.9% (OK) 

8. Glucose: 101, HbA1c: 6.0% (OK) 

9. Glucose: 116, HbA1c: 6.4% (OK) 
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10. Glucose:  98, HbA1c: 5.6% (OK) 

11. Glucose: 111, HbA1c: 6.3% (OK) 

12. Glucose: 113, HbA1c: 5.5% (error) 

13. Glucose: 110, HbA1c: 6.1% (OK) 

14. Glucose: 103, HbA1c: 6.3% (OK) 

15. Glucose: 109, HbA1c: 5.6% (OK) 

16. Glucose: 105, HbA1c: 5.6% (OK) 

17. Glucose: 108, HbA1c: 5.9% (OK) 

18. Glucose:  97, HbA1c: 6.3% (error) 

19. Glucose:  85, HbA1c: 5.7% (OK) 

20. Glucose: 115, HbA1c: 5.2% (error) 

21. Glucose:  96, HbA1c: 5.7% (OK) 

22. Glucose: 108, HbA1c: 5.7% (OK) 

23. Glucose: 102, HbA1c: 6.0% (OK) 

24. Glucose: 117, HbA1c: 5.2% (error) 

25. Glucose: 102, HbA1c: 6.3% (OK) 

26. Glucose: 120, HbA1c: 5.8% (error) 

27. Glucose:  94, HbA1c: 5.5% (OK) 

28. Glucose:  97, HbA1c: 6.1% (OK) 

29. Glucose:  96, HbA1c: 6.0% (OK) 

30. Glucose:  95, HbA1c: 6.3% (OK)  
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Appendix IV – Comparison #2 Questions 

Subjects were asked the following questions, with answers in parentheses, and asked to 

rate their belief using one of: Definitely not an error, probably not an error, neutral, 

probably an error, definitely an error: 

Consider a pre-diabetic population where the average glucose is 103 mg/dl 

(standard deviation 11mg/dl) and the average glycosylated hemoglobin (HbA1c) 

is 5.9 (standard deviation 0.2).  

For each of the 30 sets below, what is your belief that the HbA1c value is 

in error given the fasting glucose value? 

Section #1 

1. Glucose: 96, HbA1c: 6.5% (error) 

2. Glucose: 112, HbA1c: 6.0% (OK) 

3. Glucose: 91, HbA1c: 5.5% (OK) 

4. Glucose: 104, HbA1c: 5.6% (OK) 

5. Glucose: 103, HbA1c: 6.1% (OK) 

6. Glucose: 96, HbA1c: 5.5% (error) 

7. Glucose: 98, HbA1c: 5.2% (error) 

8. Glucose: 92, HbA1c: 5.7% (OK) 

9. Glucose: 92, HbA1c: 6.2% (OK) 

10. Glucose: 102, HbA1c: 5.7% (error) 

11. Glucose: 107, HbA1c: 6.1% (OK) 

12. Glucose: 111, HbA1c: 5.5% (error) 

13. Glucose: 104, HbA1c: 6.1% (OK) 
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14. Glucose: 112, HbA1c: 5.2% (error) 

15. Glucose: 99, HbA1c: 5.9% (OK) 

16. Glucose: 92, HbA1c: 6.5% (error) 

17. Glucose: 105, HbA1c: 6.0% (OK) 

18. Glucose: 117, HbA1c: 5.7% (error) 

19. Glucose: 104, HbA1c: 5.6% (OK) 

20. Glucose: 104, HbA1c: 6.0% (OK) 

21. Glucose: 98, HbA1c: 6.0% (OK) 

22. Glucose: 83, HbA1c: 5.5% (OK) 

23. Glucose: 106, HbA1c: 6.1% (OK) 

24. Glucose: 107, HbA1c: 6.1% (OK) 

25. Glucose: 101, HbA1c: 6.2% (OK) 

26. Glucose: 98, HbA1c: 6.4% (error) 

27. Glucose: 112, HbA1c: 6.0% (OK) 

28. Glucose: 117, HbA1c: 5.7% (error) 

29. Glucose: 112, HbA1c: 6.1% (OK) 

30. Glucose: 113, HbA1c: 6.5% (error) 

 

Section #2 

1. Glucose: 90, HbA1c: 6.0% (OK) 

2. Glucose: 94, HbA1c: 6.4% (error) 

3. Glucose: 86, HbA1c: 5.1% (OK) 

4. Glucose: 105, HbA1c: 6.2% (OK) 

5. Glucose: 99, HbA1c: 5.2% (OK) 

6. Glucose: 101, HbA1c: 5.4% (error) 

7. Glucose: 107, HbA1c: 6.4% (error) 

8. Glucose: 99, HbA1c: 5.4% (OK) 

9. Glucose: 109, HbA1c: 5.8% (OK) 
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10. Glucose: 82, HbA1c: 5.0% (OK) 

11. Glucose: 101, HbA1c: 5.8% (OK) 

12. Glucose: 103, HbA1c: 5.6% (OK) 

13. Glucose: 110, HbA1c: 6.1% (OK) 

14. Glucose: 100, HbA1c: 6.0% (OK) 

15. Glucose: 98, HbA1c: 5.9% (OK) 

16. Glucose: 100, HbA1c: 6.5% (error) 

17. Glucose: 99, HbA1c: 5.9% (OK) 

18. Glucose: 95, HbA1c: 6.4% (error) 

19. Glucose: 110, HbA1c: 5.4% (error) 

20. Glucose: 86, HbA1c: 5.7% (OK) 

21. Glucose: 102, HbA1c: 5.7% (error) 

22. Glucose: 98, HbA1c: 5.5% (error) 

23. Glucose: 105, HbA1c: 6.1% (OK) 

24. Glucose: 115, HbA1c: 5.2% (error) 

25. Glucose: 115, HbA1c: 6.0% (OK) 

26. Glucose: 89, HbA1c: 6.2% (error) 

27. Glucose: 104, HbA1c: 5.2% (error) 

28. Glucose: 100, HbA1c: 6.0% (error) 

29. Glucose: 84, HbA1c: 5.5% (OK) 

30. Glucose: 96, HbA1c: 6.2% (error) 
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