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Abstract

Information extraction from clinical and radiology notes for liver cancer staging

Wen-wai Yim

Chair of the Supervisory Committee:
Associate Professor Meliha Yetisgen

Biomedical Informatics and Medical Education

Medical practice involves an astonishing amount of variation across individual clinicians,

departments, and institutions. Adding to this condition, with the exponential pace of new

discoveries in biomedical research, medical professionals, often understaffed and overworked,

have little time and resources to analyze or incorporate the latest research into clinical prac-

tice. The accelerated adoption of electronic medical records (EMRs) brings about great

opportunities to mitigate these issues. In computable form, large volumes of medical infor-

mation can now be stored and queried, so that optimization of treatments based on patient

characteristics, institutional resources, and patient preferences may be data driven. Thus,

instead of relying on the skillsets of patients’ support network and medical teams, patient

outcomes can at least have some statistical guarantees.

In this dissertation, we focused specifically on the task of hepatocellular carcinoma (HCC)

liver cancer staging using natural language processing (NLP) techniques. Staging, or cat-

egorizing cancer patients by extent of diseases, is important for normalizing over patient

characteristics. Normalized stages, can then be used to facilitate research in evidence-based

medicine to optimize for treatments and outcomes. NLP is necessary, as with other clinical

tasks, a majority of staging information is trapped in free text clinical data.

This thesis proposes an approach to liver cancer stage phenotype classification using a

mixture of rule-based and machine learning techniques for text extraction. Included in this



approach is a careful, layered design for annotation and classification. Each constituent

part of our system was characterized by detailed quantitative and qualitative analysis. Two

important modules in this thesis are a framework for normalizing text evidence related to

specific conditions and an algorithm for tumor reference resolution.

The overall results of our system revealed an F1 performance of 0.55, 0.50, 0.43 for

AJCC, BCLC, and CLIP liver cancer stages, respectively. Although outperforming baseline

classifications, these accuracies are not viable for clinical use. Analysis of error suggests

that performance for some constituent stage parameters would improve through additional

annotation. However, one identified crippling bottleneck was the requirement of reference

resolution and discourse-level reasoning to determine the number of tumors in a patient, a

crucial part of cancer staging.

Still our work provides a methodology to classify a complex phenotype, whose strength

includes its interpretability and modularity while maintaining ability to scale and improve

with greater amounts of data. Furthermore, submodules of our system, for which perform

at higher accuracies, may be used as tools to decrease annotation costs.
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Chapter 1

INTRODUCTION

1.1 Context and motivation

Medical practice involves an astonishing amount of variation. At all levels, between individ-

ual clinicians, departments, institutions, local regions, and countries, there will be differences

in diagnoses for the same symptoms, different techniques for the same procedures, and dif-

ferent recommendations even if the same diagnosis is agreed upon. Moreover, with the

exponential pace of new discoveries in biomedical research, medical professionals, often un-

derstaffed and overworked, have little time and resources to analyze or incorporate the latest

research into clinical practice. Patients and their family members, on the other hand, with

whom the burden of choosing clinical options and navigating the healthcare system usually

falls, are ill-equipped to understand the consequences to the medical expenditures they find

themselves unexpectedly needing.

The accelerated adoption of electronic medical records (EMRs) brings about great oppor-

tunities to mitigate these issues. In computable form, large volumes of medical information

can now be stored, queried, and transferred across large distances. Although there are many

issues to resolve regarding data sharing and interoperability, the implications of this tech-

nology is enormous, a fact that is captured in the large investments in EMRs globally. For

example, the United States through the Health Information Technology for Economic and

Clinical Health (HITECH) Act provision in the 2009 American Recovery Act has made large

investments towards EMRs [1]. In the 2015 inaugural address, President Obama introduced

the precision medicine initiative which strives to collect data for research such that per-

sonal characteristics, e.g. genes, environment, and lifestyle, can be incorporated into health

decision making [11]. Elsewhere, the European Commission has laid out a roadmap for 2012-
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2020 emphasizing innovations and advancements in eHealth as a means of improving disease

management and prevention [5]. China, where most urban hospitals have adopted EMRs,

has further made large allocations to accelerate EMR adoption in rural hospitals [186].

Here we concentrate specifically on the use of EMRs as a means of conducting evidence-

based research1, which may decrease variations in treatments by collecting data analytics.

This can lead to, at least, data-driven guarantees, and less reliance on the particular skills

and resources of individual clinicians, patients, and institutions to optimize courses of action.

Ideally, every patient’s episode of treatments should be saved and compared to others as a

series of natural experiments. Eventually, it would then be possible to personalize treat-

ments based on the best treatment outcomes for a patient type, given resource constraints,

and individual patient preferences. However, as it is now, it is all too common for clinicians

and patients to be unaware of the full host of previous examples available. To this end,

we point to natural language processing (NLP) technology, as a means to help clinicians in

shifting, aggregating, and processing medical evidence, for which a majority of data is in

free text form, making it possible to “close the loop” between clinical practice, research, and

education. [177]

1.2 Problem description

This thesis project utilizes EMR data, most of which are free text clinical notes, to identify

and normalize information relevant for patients with liver cancer. The overall objectives

are to be able to store and compile the normalized information so that, in the future, they

can be combined with other data sources, e.g. procedure codes or genetic information, for

evidence-based research.

The specific disease we characterize is hepatocellular carcinoma (HCC), a prevalent form

of liver cancer. The information we seek to identify and normalize are factors related to

1We define evidence-based research as retrospective clinical research based on patient clinicl data. We
make this distinction to differentiate apart from prospective clinical research, e.g. a randomized clinical
trial. On the other hand, evidence-based medicine is the application of a clinician’s personal experience
in addition to outside systematic research studies to perform the best course of treatment.
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liver function and cancer spread, also used to calculate liver cancer stages. In the following

subsections, we motivate the need of evidence-based research in HCC, the importance of

staging in cancer patients, and the necessity of NLP to meet these ends.

1.2.1 Need for evidence-based treatment for HCC

Hepatocellular carcinoma (HCC) is one of the leading cancer-related causes of death and

the most common primary hepatic malignancy worldwide [191]. Though a majority of cases

occur in Africa and East Asia, the incidence of HCC in developed countries is rising [192].

In the United States, mortality rates due to liver cancer has increased even as deaths related

to other cancers in the same time frame have decreased [18]. Only 30% of patients diagnosed

at an early stages2 survive to 5 years, this rate decreases to 11% and 3% for patients with

regional3 and distal4 metastasis [156].

Global comparisons show that HCC manifests at different ages in different countries, with

younger populations in Africa and older populations in East Asia and North America. This

is attributable to regional variations in hepatitis B virus (HBV) and hepatitis C virus (HCV)

infection rates, which are strong causal factors for HCC [113]. Other cofactors include afla-

toxin B1, a common mycotoxin that contaminates foodstuffs in Africa, and cirrhosis related

to excessive alcohol consumption, diabetes, and obesity. HBV vaccination and sterilizing

medical instruments practices have played key roles in combating HBV and HCV spread,

and in turn HCC epidemics. For the United States, the most prevalent cofactors of HCC

is shifting from HBV and HCV to obesity and diabetes. In fact, recent studies have identi-

fied NASH (non-alcoholic steatohepatitis), liver inflammation and fat accumulation not due

to excessive alcohol intake and associated with obesity and diabetes, as an emerging HCC

cofactor [192]. Furthermore, interestingly, overseas immigrant populations of ethnic groups

with higher prevalence of HCC, have shown higher incidence rates to the surrounding popu-

2In early stages, tumors remain small and have not invaded nearby major blood vessels or lymph nodes.

3Tumors have invaded to nearby lymph nodes

4Tumors have invaded to other organs
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lation, but lower rates compared to the populations of their place of origin [113]. Altogether,

evidence suggests various genetic, environmental, and lifestyle components to disease sus-

ceptibility and progression.

The liver is a vital organism involved with multiple systems of the body, including glyco-

gen storage, hormone production, and detoxification. Because of the conditions of HCC onset

which often involve cirrhosis, HCC patients typically have multiple immediate comorbidities.

In the presence of such constraints, clinicians must reconcile between the competing health

risks associated with specific HCC progression and liver failure for treatment options [33].

Unfortunately, the variations in therapy differ as much as the number of conditions HCC

can manifest in. Patients may be treated with surgical interventions, such as transplant and

resection, as well as local regional treatments, such as radiofrequency ablation and transar-

terial chemoembolization [62][191]. In 2009, Sorafenib, an oral systemic therapy, was demon-

strated to have significant improvements in survival of HCC patients, making chemotherapy

another option. During their treatment progression, patients may consult a range of special-

ties including surgery, interventional radiology, and oncology [162]. However, ultimately, the

final strategies depend on the institution’s resources and the experience of local clinicians

as well as the patient’s tumor characteristics, liver function, comorbidities, and preferences.

Thus, evidence-based clinical guidelines that account for the best treatments in the face of

the diversity of disease manifestation and demographics is highly desirable.

1.2.2 Role of staging on HCC evidence-based research

Previous work in developing HCC guidelines typically prescribe treatment based on liver

cancer stages or select liver function variables [73][33]. Staging is used to summarize the

extent of disease for cancer patients. Each cancer domain may have different criteria for its

stages. For example, prostate cancer stages use the Gleason score to measure likelihood of

tumor spread based on morphology of prostate cancer tissue [159].

For liver cancers, patient performance status as well as liver function variables are incor-

porated into various staging schemes. The Barcelona Clinic Liver Cancer (BCLC) staging
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system is one of the most widely used liver staging systems and links therapy plans to specific

stages [33]. Recent advances in HCC treatment plans have led to more options not included

in the original BCLC staging scheme. Furthermore experience at various institutions have

have suggested loosening existing BCLC staging restrictions of prescribed techniques. For

this reason, institutions often adapt their own guidelines to meet their needs. The Alberta

HCC and the Japan Society of Hepatology (JSH) algorithms, for example, extends the BCLC

staging with recognition of radiofrequency ablation for very early stages, liver transplanta-

tions for Child-Pugh class C patients, Sorafenib for Child-Pugh class A and B patients, and

adds transarterial chemoembolization and transarterial radioembolization with 90 Yttrium

as treatments. Other work, such as the Korean and Chinese guidelines in [73] look at individ-

ual stage parameters and codify appropriate treatments based on their own designed logic.

Other HCC staging systems that are linked to survival rates exist, including Cancer of the

Liver Italian Program (CLIP), Japanese Integrated Staging (JIS), and Chinese University

Prognostic Index (CUPI) [136]. Each staging scheme represents distinct measurements of

cancer spread and liver function.

Despite their use in research, cancer stages are not always recorded in the electronic med-

ical record in structured or unstructured forms [112]. For example, even under mandated

collection across all cancer type stages, an Ottawa Regional Cancer Center study had shown

only 71.5% average completion [59]. Even when stage information is available, for reasons

of data entry errors or incorrect application of staging guidelines, they are often inaccurate

[99][148][193][151]. The absence of liver cancer staging in medical records reflects both the

ongoing debate for which staging system to use, which are subject to revision, and the pri-

mary use of HCC staging as a research tool. The goal of our project is to facilitate HCC

research by using NLP to automatically induce liver cancer staging. The work could not

only go towards development of a nuanced evidence-based guideline for HCC disease but

also provide useful data on HCC progression and treatment per demographics.
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1.2.3 Leveraging NLP for liver cancer staging phenotype evidence-based research

Currently, a large portion of medical records, including information needed for our stage

and stage parameters, are recorded in free-text narrative form. For example, liver disease

symptoms such as ascites or hepatic encephalopathy may not be included in the problem list;

nor may items such as tumor number or size be recorded as structured data5. This data is in

a large part locked within free text daily nurse or physician notes, radiology reports, admit

and discharge notes of the clinical record, where both minor and significant medical events

may be recorded.

Nuances in findings or uncertainties are better captured in free text writing and it is infea-

sible for clinicians to code for every single possible metric for secondary purposes. Therefore,

the advantage of using NLP for automatic information extraction is the ability to extract

information into structured forms without adversely altering clinical workflow. A successful

system would expedite HCC research on large diverse corpora of patient notes while circum-

venting the high cost of manual review by specialists. Moreover, automating liver cancer

staging can accommodate new or changing staging schemes as NLP methodology then only

requires new or updated gold annotations on patient records to retrain the liver cancer

staging component. Importantly, automated liver cancer staging allows research over histor-

ical patient records in retrospective chart review studies, providing access to a potentially

unlimited amount of outcome data for new hypotheses.

1.3 Contributions and objectives

The objectives of this project are to automatically extract and normalize text information

and predict cancer stages relevant for three liver cancer stages. This project confronts sev-

eral issues: (1) in-depth annotation of patient-related medical conditions, (2) identification

and normalization of text evidence to symptoms and their severities, and (3) classification

of patient characteristics. This work makes the following contributions: analysis of annota-

5Structured data is information that is collected with some assumed internal structure. Two examples
are drop-down menu input or spreadsheet input.
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tion issues for multi-layered phenotypes, a method for sparse annotation of radiology report

findings, a statistically driven system to identify and normalize text evidence related to a

clinical phenotype, experiments for tumor reference resolution classification, and experimen-

tally driven results of patient staging.

Taking a broader view, we may additionally appreciate the research in this dissertation set

in the larger backdrop of advancing medical evidence-based research and the sub-specialty

of NLP in clinical text. Although we are motivated by a specific need, the methods and

questions addressed here very much corroborate the growing trend of deep clinical pheno-

type6 extraction. Though large scale projects which leverage NLP-extracted data and pair

such data with traditionally structured information, such as ICD codes, to define complex

phenotypes have become more and more ubiquitous, current methods have only scratched

the surface. However, how to best integrate developing clinical NLP tools (which typically

give less than ideal performances) into complex tasks of patient phenotype prediction with

reasonable clinically-useful predictions remains open for exploration.

1.4 Guide for the reader

The structure of this dissertation describes the overall project with distinct chapters focuses

on particular parts. However, Chapters 5, 6, and 7 describe sub-projects that include their

own more specific literature reviews. A summary of each chapter is described following:

Chapter 2 : This chapter starts with a background on clinical NLP and briefs the reader

on related works relevant to cancer of the liver prediction.

Chapter 3 : This section describes our corpus annotation for liver cancer stage parameter

extraction and stage classification.

Chapter 4 : In this chapter, we describe the overall system architecture for our cancer

stage prediction. Each component and how they fit within the entire system are briefly

6We define phenotype as a categorical label which characterizes a set of observable traits.
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reviewed with references to later chapters. We also provide the results of a simple

document baseline to which the rest of sub-patient classifications are measured against.

Chapter 5 : This chapter describes two special stage parameters: ECOG and Child-Pugh.

We provide a discussion into their explicit and non-explicit representations and describe

our rule-based extraction for them.

Chapter 6 : This section describes our statistical feature based classification on sentences

to identify stage parameters: ascites, hepatic encephalopathy, macrovascular invasion,

metastasis, and portal hypertension.

Chapter 7 : This chapter features a sub-system used to extract tumor characteristics. The

target values include the stage parameters for tumor number, size, and morphology.

This sub-project describes its own set of corpus annotations, system creation, training,

testing, and evaluation used for radiology report tumor information. Tasks in this sec-

tion include entity and relation extraction, reference resolution, and rule-based tumor

characteristics extraction.

Chapter 8 : In this chapter, we piece together multiple submodules to create a patient

level classifiers for 3 liver cancer stages and 11 stage parameters.

Chapter 9 : This chapter features an experiment comparing a trained non-expert against

expert annotation and make comments compared to our system.

Chapter 10 : In the final chapter, we summarize the dissertation and describe directions

for further work.

In addition to the above-mentioned chapters, the included appendices include created re-

sources, such as annotation guidelines and word-lists, generated throughout this thesis.



9

There are several themes generally relevant to clinical informatics, but manifested in several

specific instances in our work. We briefly describe them here as well as give a discussion

touching these points at the end of this dissertation.

Structured versus unstructured input : Though structured input is preferable for re-

search, it is highly inconvenient for the primary purposes of clinical record-keeping.

This entire project is premised on needing to calculate liver cancer stages, which can

be in theory coded as a structured input. Digging deeper, many individual staging

variables are also sub-stages. For example, Child-Pugh liver disease stages and ECOG

statuses can further be inputted as structured input. Where to achieve the balance

between the two modalities in the clinic is an open question that is likely to change

with the evolution of health care practices.

Medical conditions have arbitrarily complex signs and symptoms : Medical con-

cepts are abstract but the observable signs used to diagnose them can be numerous and

highly complex. For example, portal hypertension may be identified by any number of

observable traits, e.g. splenomegaly (enlarged spleen) or unblocked blood vessels. As

technology changes, the signs and symptoms tied to abstract concepts and the abstract

concepts themselves may change in definition and in medical characteristics.

Information completeness : Information completeness is a difficult issue in regards to

patient records. Patients may transfer care from outside hospitals, emergency room

visits may not be properly connected to the correct records, etc. Problem lists or

billing data may be incomplete; alternatively, certain details can be assumed to be

true given context or some may simply have not been collected. Related to this idea is

information consistency, as it is possible to have discrepant information from two data

sources. These are factors to be considered when making judgements about patients.
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Chapter 2

BACKGROUND

In this section, we first give a brief overview of natural language processing in the clinical

domain, in general. Afterwards, we provide deeper discussion with closely related work.

Finally, the chapter ends with a brief appreciation of where the work in thesis lies with

respect to other biomedical research.

2.1 Natural language processing in the clinical domain

Unlike news or classical English literature, clinical documents are used as transitory notes

among a patient’s medical team rather than heavily edited information for wider commu-

nication. As a consequence, clinical documents may be ungrammatical and composed of

short telegraphic phrases. They can include copy-and-paste results, misspellings, local ab-

breviations, and special formats [116]. As a domain, biomedicine is notorious for a variety

of synonyms, acronyms, and abbreviations [118]. Thus, there are many ways to express a

concept and each can have multiple abbreviations. Meanwhile, a single acronym can mean

many different things. Furthermore, clinical documents have the idiosyncrasy of sections

and section headings. Section headings of clinical documents demark parts of text as sepa-

rate regions for organizational purposes. However, the number and type of sections are not

strictly controlled vocabularies and subsections can occur spontaneously with little ortho-

graphic indication of hierarchy.

These nuances are highly variable depending on local institution, department, and clini-

cian. Furthermore, even though some report types may include parts with implicit templates,

e.g. outputted as tab delimited formats, methods extracting information using explicit tem-

plates, e.g. regular expressions looking for a particular pattern, may not generalizable to
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other report types, departments, or institutions.

While a human interpreter may easily be able to navigate between these fluctuating dis-

parities, it is much more difficult for a machine. Therefore, upstream NLP tasks that are

considered solved for the larger English NLP domain such as sentence tokenization or parts-

of-speech tagging become more problematic or irrelevant for some sections. Higher-level

tasks such as chunking or sentence parsing, are even less developed.

2.1.1 Historical and existing medical NLP systems

Beginning in the late 1980s, computational linguistics and artificial intelligence (AI) was

applied to the medical field. The ability to focus on a narrow domain, with a reasonable

amount of knowledge consistency regardless of language, and the composition of medical

words by Greek and Latin parts made the area attractive to NLP and AI researchers. Early

systems, many written in Prolog and Lisp, were characterized by carefully constructed gram-

mars linked with detailed knowledge representations, many in the form of concept graphs

and frames. Though we do not give a detailed account of each here, we point the reader to

an excellent review by Spyns et al [161].

Existing medical NLP processing systems are often developed in university hospital cen-

ters as large processing suites and may include section identification, negation detection,

and modifier extraction, in addition to concept identification and some syntactic or semantic

analyzer modules. Briefly, we name some important systems. Most notable is Columbia

University’s MedLEE [66][52], one of the oldest systems in continual usage. University of

Utah has developed several iterations of medical NLP systems such as SymText, SPRUS,

and MPLUS [75][40]. Other suites and their affiliated centers used today include the RE-

genstrief data eXtraction (REX) tool from Regenstrief Research Institute in Indianapolis,

Indiana[64][63], MediClass from Kaiser Permanente Center for Health Research in Port-

land Oregon [76], MEDSYNDIKATE from Freiburg University Germany [72], MTERMS

from Partners Healthcare system and Brighman and Woman’s Hospital [200] and Med-

TAS/P (Medical Knowledge Text Analysis System/Pathology) from IBM, in collaboration
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with Mayo Clinic [41].

Among freely available processing tools are NLM’s (National Library of Medicine) MetaMap,

which first identifies noun phrases then matches to Unified Medical Language System (UMLS)

concepts by string matching [22], cTAKES (clinical Text Analysis and Knowledge Extraction

System) developed from Mayo Clinic, which performs dictionary look-ups of UMLS terms

[147], and HITEx (Health Information Text Extraction) from Brigham and Women’s Hos-

pital and Harvard Medical School, currently integrated into i2b2’s NLP suite and based on

the GATE platform, which maps to UMLS concepts by first attempting exact matches to

noun phrases and subsequently trying to stem and truncate strings [198].

2.1.2 Clinical NLP challenges and datasets

Annotated corpora are important resources for building NLP systems, especially for provid-

ing example data for statistical systems. However, creation of clinical corpora is especially

difficult due to privacy laws and the sensitive nature of personal medical information. We

would be remiss if we did not devote some space to discuss the clinical text NLP challenges

that have been so impactful in this domain.

One of the first efforts for providing de-identified public clinical text was realized through

the 2007 Medical NLP Challenge which assigned ICD9CM (The International Classifica-

tion of Diseases, Ninth Revision, Clinical Modification) codes to radiology reports [131].

Since then several datasets, releaseable under data use agreements have been made available

through other challenges.

The i2b2 NLP challenges which continue once every couple of years are perhaps the most

well known. Starting in 2009, the i2b2 Medication Challenge made clinical discharge sum-

maries with annotations of medication and fields pertaining to the medication (e.g. dosage,

mode, frequency, duration, reason, and associated narratives) available for public use [128].

The next 2010 i2b2/VA challenge focused on medical concept identification, assertion1 clas-

1Assertion classification labels text as one of several categories: not associated with the patient, hypo-
thetical, conditional, possible, absent, and present.
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sification, and relation extraction [176]. The 2011 i2b2/VA/Cincinnati Children’s Hospital

Medical Center Shared-Tasks featured concept and pronoun coreference for one subtask and

sentiment classification on suicide notes for another [14][175][132]. The 2012 i2b2 temporal re-

lations challenge involved medical event concepts and linking them with temporal expressions

such as dates, times, durations, or frequencies [171]. The most recent 2014 i2b2/UTHealth

Shared-Task challenge focused on public health information de-identification and identifica-

tion of heart disease risks [6][168][167].

The Clinical E-Science Framework (CLEF) corpus from the Royal Marsden Hospital

(RMH) and the University of Sheffield, UK is annotated with clinical entities and their re-

lations [141]. In a collaboration between the Shared Annotated Resources (ShARe) project

funded by the US NIH and CLEF, the 2013 ShARe/CLEF eHealth challenge targeted the

identification and mapping of acronyms, abbreviations, and disorders in clinical text [172].

The goal of the subsequent 2014 ShARe/CLEF e-health evaluation lab task 2 targeted

template-filling of disorders and its attributes [89].

In growing recognition of the domain, recently, general NLP shared tasks have included

clinical NLP tasks in their events. In 2011, the TExt Retrieval Conference (TREC) Chal-

lenge, hosted by the United States NIST (National Institute for Standards & Technology)

annually, included a Medical Records Track which made de-identified patient records and

their associated ICD-9 codes available for identification of clinical study eligibility [56]. The

SemEval-2014 Task 7 shared task released the ShARe/CLEF data for concept identification

and mapping of acronyms, abbrevations, and disorders in clinical text [137]. The SemEval-

2015 Task 14, corresponding to the 2014 ShARe/CLEF eHealth challenge, included identifi-

cation of disorder attributes in a template filling task [12][57].

The most deeply linguistically-annotated clinical text corpus is the MiPACQ clinical cor-

pus out of Mayo Clinic and the SHARPn dataset which includes several layers of annotation,

including treebank, PropBank, and UMLS semantic type annotations [16][51]. The THYME

(Temporal History of Your Medical Events) corpus is also comprised of de-identified notes

from the Mayo Clinic and marks events focusing on clinical occurrences and their temporal
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relations [169].

2.2 Cancer stage prediction from clinical records

Automatic cancer staging from free text clinical notes has been explored for other cancers

such as lung cancer [121][122][112], colorectal cancer [108], and general pathology reports

[39], though work in the liver cancer staging domain specifically is relatively sparse. Like

other cancers, the number of tumors, the size of the tumor, tumor metastasis and etc. are

key characteristics to capture for cancer staging. Unlike other cancers, liver cancer staging

additionally considers performance status and liver function variables [136]. Thus the prob-

lem of liver cancer staging involves extraction tasks of multiple different elements, including

tumor characteristics and liver-related metrics, as well as an inference step to determine stage

based on extracted evidence. Our overview of related work divides literature into those that

predict cancer stages and those that extract cancer characteristics. Afterwards, we describe

related subdomains.

2.2.1 Predicting cancer stage

One well-explored area of cancer stage prediction is for lung cancer patients from the Queens-

land Integrated Lung Cancer Outcomes Project data and the Queensland Health Pathology

Information System (AUSLAB). In several papers, Nguyen et al and McCowan et al, progress

from simpler approaches to increasingly complex setups to predict TNM cancer staging2. In

[121], Nguyen et al perform support vector machine (SVM) document classification with

concept normalization, negation detection, and term frequency weighting using different hi-

erarchial set-ups for multi-class classification. Their accuracies for T and N sub-stages were

64% and 82% respectively. In [112], the cancer stage document classification problem was

2In TNM staging, a stage is made up of 3 sub-stages each with its own values. For example, one stage
classification may look like T1 N0 M0. T, N, and M values signal tumor size, lymph node spread, and
distant metastasis, respectively, and the values accompanying them signal different levels of severity. For
example, T0 means no signs of tumor while T1, T2, T3, and T4 refers to increasing size or extension of a
tumor.
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subdivided into a number of sentence level classifications each with two-steps. First, a sen-

tence is classified to be relevant or not to a particular TX, T0, Nx, N0, etc. Second, if

relevant, the sentence is classified to be positive or negative.3 The final stage document level

stage was determined by starting from the lowest sub-stages and performing the relevant

classifications until reading the highest sub-stage classification. Their T and N accuracy was

improved to 74% and 87% respectively. Finally in [122], the group used a symbolic logic

approach. Rules were developed with handling of conjunction with concept-normalization,

negation, and normalization through the SNOMED-CT hierarchy. Their accuracies using

these methods were 72% and 78% for T and N respectively.

Martinez and Li [108] similarly predicts staging (T, N, and Australian Clinico-Pathological

(ACPS) Staging system), number of tumors, as a document classification task for nominal

stage parameters and a sentence classifier for numerical parameters. Their dataset included

colorectal cancer pathology reports from the Royal Melbourne Hospital. In this case, for T

and ASCPS sub-stages, a sentence is classified as relevant or irrelevant. Subsequently, they

extracted the numerical values in the sentence, using the value closest to the median from

the training set. Two strategies of N sub-stage classification were compared. One strategy,

involved document classification, the other involved using lymph node knowledge from a pre-

vious classification with a set of heuristics. They tested a variety of machine learning, e.g.

SVM and naive Bayes (NB), and rule-based methods along with different SNOMED, UMLS,

and lemma features with best F1 scores at 82%, 81%, and 75% for T, N, and ACPS staging

respectively. Martinez et al further adapted their system to notes from another hospital,

Barwon Health [107].

Cheng et al [39], sought to predict the cancer progression, which was made up of a 3-

tuples with status, magnitude, and significance fields, in free-text MRI (magnetic resonance

imaging) radiology reports. An example of one class is (stable, moderate, uncertain). Their

3Each sub-stage classification problem could have multiple two-part classifiers. For example, to classify
N1, there was one two-step classifier trained to determine “peribronchial lymph node involvement” and
one two-step classifier trained to determine “hilar lymph node involvement” – both whose end result is a
N1 relevant or irrelevant. For details, the reader is encouraged to read the referenced paper.
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approach for statical classification of status began with creating subdocuments by looking up

pairs of subject and status words in as adjacent sentences, e.g. “mass” and some indication

of progression, dividing leftover sentences to the nearest subdocument. Stop words were

removed and instances were vectorized by bag-of-words and negation features and classified

using an SVM. The probability of the entire document belonging to a class was calculated

by normalizing over its subdocuments. Sensitivity and specificity for status performed at

81% and 92%. The pattern-matching modules for magnitude and significance performed at

sensitivities and specificities of 79% and 89% and 67% and 86%, respectively.

There is also some work with cancer staging using structured data. [117] and [134] pre-

dicted cervical cancer Federation Internationale de Gynecologie et d’Obstetrique (FIGO)

staging using neural networks with a set pre-determined parameters, achieving accuracies

of 73% and 80% respectively. Their input parameters resembled other staging information

such as tumor diameters and lymph node enlargements, but also had cervical cancer specific

parameters such as cervical involvement and vaginal involvement.

2.2.2 Extracting cancer characteristics

Most work on clinical NLP cancer staging emphasizes extraction of cancer stages or cancer

stage parameters over prediction. We make this distinction to clarify between cases where

the stage is explicitly mentioned in text, e.g. “she is a stage 1 breast cancer patient”. In

contrast to the previously described works, these works only assign a cancer stage if it is

explicitly found in a document, along with other cancer-related information such as tumor

number and size.

Rule-based systems for these tasks typically involve a dictionary look-up, negation han-

dling, and heuristic algorithms to structure results. These works can be divided among those

that extract tumor or cancer characteristics and those that focus on cancer case-finding. In

the first set of works, systems extract multiple pieces of information from radiology and

pathology reports. Scores range widely between systems as well as between distinct vari-

ables within a single system, depending heavily on the selection of extraction variables. In
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[41], a collaboration between Mayo Clinic and IBM, Coden et al looked for cancer grade,

stage, size, date, and etc. from pathology reports and structured the results into templates.

They achieved F1 scores ranging for 0.65 to 1.00 for various categories. Ashish et al [23]

from the University of California Irvine (UCI) trained and tested on pathology reports from

the UCI data warehouse and looked for entities such as TNM stage, capsule invasion, lymph

invasion, chronic inflammation, and vascular invasion. They achieved F1 scores ranging from

0.78 to 1.00. In [80], Imler et al from the Indianapolis Veterans Affair extracted mentions

of adenomas and their location, size, and number from colonoscopy reports, among other

items. From Kaiser Permanente Southern California (KPSC), Danforth et al [45], working

on radiology transcripts classified findings of lung nodules with a 96% and 86% sensitivity

and specificity. Another study from from KPSC, [165], analyzed breast and prostate cancer

pathology reports in a predetermined multi-stage pipeline which involved concept matches

of clinical findings, diagnostic information, and other information such as tumor stage and

Gleason score. Gao et al from Group Health [67] classified existence and location of mam-

mography findings, using a combination of regular expressions and heuristic rules, with high

accuracy.

Cancer case-finding systems are those that concentrate on detecting cancer occurrence

or reoccurrence. This classification often takes place at the document level but may be sub-

sumed to the patient level. Friedlin et al [65] used the Regenstrief EXtraction tool (REX)

to look up pancreatic cancer and its synonyms as well as context, e.g. positive, negated,

historical, and family history. They further compared pancreatic cancer case detection when

using ICD-9 codes versus natural language processing extraction from Indiana School of

Medicine data and found both cases where pancreatic cancer mentions occurred in clinical

notes and not in ICD-9 codes and vice versa. In [34], Carrell et al from the Group Health

Research Institute in Seattle approached the problem similarly to identify mentions of breast

cancer. Further classification of reoccurrence depended upon their manipulating previously

captured cancer mentions with a set of heuristics. Wilson et al [183] from the University of

Pittsburgh identified and structured cases of ancillary cancer on patients and patient family
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members from multiple report types. Their strategy involved using rule-based identification

of “hotspots” (relevant text areas of interest), e.g. looking for words with “-oma” suffix as

in “carcinoma”, and creating context-dependent dynamic windows around the “hotspots” to

look for context.

Machine learning and hybrid systems also exist. Similar to the rule-based systems, these

can be divided to works that extract cancer characteristics and those that focus on case-

finding. As before, scores vary tremendously based on the extraction variable and the types

of documents. Kavuluru et al [88] worked on pathology reports from the Kentucky Cancer

Registry to find primary site of neoplasm with macro-F1 0.72 and micro-F1 0.90 performance

testing several machine learning algorithms on n-gram and medical concept features. In [87],

Jouhet et al, working with French pathology reports from the Poitou-Charentes region, fo-

cused on extracting generic anatomic site, generic histology, and ICD-O3 (third edition of the

International Classification of Diseases for Oncology) named entities with individual parame-

ter performances ranging from 0.66 to 0.999 F1 for various topographic classes, e.g. prostate,

skin, colon, etc. They tested between NB and SVM on bag-of-words term-weighted features.

Hassanpour and Langlotz [74] experimented with named entity recognition in CT radiology

reports, comparing dictionary methods, conditional random fields (CRFs), and maxiumum

entropy markov models (MEMMs) with a performance of 0.85 F1. Ou et al [127] processed

pathology reports into sentences, then used CRFs to extract cancer-related entities. After-

wards, entities were structured into templates using rules. Specific information of interests

included diagnosis, metastasis, site, size, and specimen type, with end-to-end performance of

0.85 F1. University of Pittsburgh’s Cancer Tissue Information Extraction System (caTIES)

uses MMTx (MetaMap) and a series of rule-based steps to identify tumor grade, stage, other

concepts, and negation [42]. Afterwards entities are arranged into a hierarchy using a simple

nearest neighbor algorithm.

Cancer case finding using machine-learning systems may be evaluated at the document

or patient level as well. In [46] and [145] D’Avolio et al and Sada et al, use the ARC frame-

work to test CRF and MEMM classifiers in identifying positive cases of colorectal, prostate,



19

lung, and HCC cancer in pathology and radiology reports. Xu et al [187] detected colorectal

CRC cancer (CRC) cases from multiple documents. They first identified CRC concepts us-

ing MedLEE, with the addition of hand-crafted keyword lookups, and performed assertion

classification on those terms before testing a patient level machine-learning or rule-based

final step.

Two systems were especially relevant to our project. One was a 2013 rule-based system

from National Taiwan University [135] that extracted elements of liver cancer diagnosis, tu-

mor characteristics, staging (BCLC and Child-Pugh), comorbidities, and treatments using

regular expression rules to capture concepts and relations. In their study, Ping et al used a

diverse set of report types include radiology, ultrasound, discharge, pathology, operation, and

admission reports from 152 liver cancer patients receiving ultrasound (US) radiofrequency

(RF) abalation. Relevant extraction performances are shown in Table 2.1.

The other study was a 2014 hybrid system from Wang et al, Fudan University [181].

Hepatic carcinoma information was extracted from 115 operation notes. The group first

identified sentences of interest with keyword look-ups with 0.95 F1. In a second step, they

tested using a rule-based versus a CRF algorithm to structure information. Their CRF setup

yielded the best performances on the test set with 69.6% precision, 58.3% recall, and 63.5%

F1. Relevant performances are summarized in Table 2.2. While extraction variables are

similar, the difference in language (Chinese vs. English) and the difference in note types

(operation notes vs. clinical and radiology notes) makes this and our work not directly

comparable.
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Category Example Expressions Precision Recall F1

Comorbidity diagnosis Child-Pugh: Child’s B 0.99 0.98 0.99

Comorbidity: liver cirrhosis

Diagnostic status: suspi-

cious

Staging(BCLC) BCLC stage A1, BCLC A1 0.99 0.98 0.98

Tumor Tumor object: tumor 0.96 0.96 0.96

Size: 1cm

Quantifier: two

Location: liver, breast

Table 2.1: Relevant Ping 2013 et al [135] results. Categories reflect several parameters pooled

together.

Category Precision Recall F1

Ascites (Q5) 0.75 0.82 0.78

Lymph node enlargement (Q6) 0.92 0.92 0.92

Tumor location (Q8) 0.37 0.50 0.42

Hepatic cirrhosis (Q9) 0.43 0.79 0.56

Tumor size (Q11) 0.33 0.45 0.38

Portal vein blocking (Portal vein thrombosis) (Q12) 0.23 0.38 0.29

Table 2.2: Relevant Wang 2014 et al [181] results. (Paranthetical items, e.g.

Q5, are the corresponding markers in the paper’s chart)

2.3 Relation to other clinical NLP tasks

Because every work is part of a rich mosaic of exciting research, in this section we give some

details of related sub-domains for the benefit of the reader.
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2.3.1 Phenotype extraction from clinical documents using NLP

We define a phenotype as a label characterized by a pre-determined set of observable values.

Thus, liver cancer stage classification may be considered a special case of phenotype extrac-

tion; and part of a larger set of medically motivated problems that require classifications of

a disease state using multiple data sources, often with complex definitional criteria.

In recognition of the complexity of defining phenotypes and the intrinsic value in having

reference standards to them for future studies, the Phenotype KnowledgeBase (PheKB) was

created within the eMERGE Network4 starting from 2012 to support sharing and building

phenotype algorithms [91]. Currently, there are 30 phenotype algorithms and more than 60

in development, of which NLP is a leading extraction factor behind ICD codes and medica-

tion data.

Previous work in phenotype identification cases have shown successful implementations

of both rule-based and machine learning algorithms to aggregate multiple or disparate val-

ues in several documents per patient [154][98][130][95][96]. In the cancer domain, patient

level predictions are often for cancer case identification. Ping et al performed a patient level

classification of HCC occurence and reoccurence using regular expression and crafted rules

[135]. Xu et al identified cases of colorectal cancer (CRC) on the entity level and then clas-

sified document level and patient level CRC status testing rule-based and machine learning

methods [187].

Some common themes among phenotype problems, are: (1) multiple sources of data,

(2) multiple levels of aggregation (e.g. document level, episode level, patient level), and (3)

complementary data sources

4The mission of the eMERGE Network, funded by the National Human Genome Research Institute, is to
combine DNA repositories with electronic health records (EHRs) for large-scale research [69].
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2.3.2 Identification of medical topics and concepts in social media

While clinicians listen to patients and transcribe their observations to relevant medical con-

ditions in clinical reports, patients’ own personal accounts of symptoms can be another

source of information as technologies evolve. Indeed, there is a growing interest in text-

mining health-related topics in social media such as in community message boards and in

twitter-like services. While work in this genre generally have different NLP challenges, such

as internet abbreviations and emojis, capture of some stage parameters may be very similar

to our tasks. For example, a forum discussing an individual’s bouts of confusion or bloating

may have very similarly language cues as hepatic encephalopathy or ascites. Here we identify

several related examples in social media.

Most relevantly, Jha and Elhadad [83] predicted patient breast cancer stage of online

forum contributors using a network model, with both text and metadata features. Brennan

[32] worked on automatically detecting UMLS medical terms in emails. MacLean and Heer

[103] investigated the creation of a labeled medical term set from online health forums logs

using crowdsourcing and compared several ML systems for the extraction task. In twitter-

like social media, there are works identifying ailment categories such as allergies, depression,

aches/pains, cancer, obesity and etc [129] [48].

2.3.3 Identification of medical concepts in biomedical literature

Less patient-centered and more formal than either personal social media text or clinical text,

biomedical literature may convey clinical concepts in the scope of population-based stud-

ies to contribute to growing medical knowledge. Particularly, the same sign and symptoms

in clinical text may also be described in academic papers regarding specific medical condi-

tions. There is a large body of work in this domain with various targets and techniques.

We reference a few works here for further reading, such as identification of signs and symp-

toms in MEDLINE/PubMed abstracts [106], identification of disease mentions from PubMed
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abstracts [55], and entity and relation extraction from MEDLINE articles [15] [58][199].

2.4 Summary

This chapter gave a brief overview about the challenges of NLP in the clinical domain, de-

scribe existing systems, and challenge sets. Furthermore, we discussed related works to our

staging tasks, including prior works in cancer stage prediction and in cancer characteris-

tics extraction. In the final subsection, we touched upon related sub-domains of clinical

phenotype extraction and biomedically motivated extraction tasks in social media and in

biomedical literature.
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Chapter 3

IN-DEPTH ANNOTATION FOR PATIENT LIVER CANCER
STAGING

This chapter describes the creation of our HCC liver cancer patient dataset, which will

be used to train and build our staging system. Because we needed a way to evaluate our per-

formance and have training data to build our algorithms, we performed detailed annotation.

In the following sections, we provide our process in dataset collection, annotation guideline

creation, and annotation. Afterwards, we show our annotator agreement, as well as provide

quantitative and qualitative analysis to characterize our dataset.

3.1 Annotations

Every staging scheme emphasizes their own observable evaluation metrics related to cancer

spread or liver function. Therefore, the choice of staging scheme affects what parameters

should be summarized. In this study, we chose to annotate for BCLC and CLIP because

of their demonstrated life expectancy correlations in liver cancers, as well as the AJCC

(American Joint Committee on Cancer) recommended staging for its method commonality

across cancers [79][70][155]. By using several popular and demonstratively predictive staging

systems, we do not exclusively commit to one staging system and its particular bias. Each

stage is determined by several stage parameters such as tumor size, Child-Pugh stages, or

ascites [170]. Table 3.1 shows the 3 stages and the 11 pooled stage parameters that are

component information for calculating the stages. Table 3.2 gives the stage parameters,

their descriptions, and examples found in clinical notes. While tumor size, tumor number,

macrovascular invasion and metastasis, are typically collected across all cancers, the other

parameters, with the exception of ECOG, specifically allude to liver function.
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Type Label Values

Stage

AJCC I, II, IIIa, IIIb, IIIc, IVa, IVb

BCLC A1,A2,A3,A4, B, C, D

CLIP 0, 1, 2, 3, 4, 5, 6

Stage Parameters

Ascites

None

Mild-Suppressed on medications

Moderate-Servere/Refractory

Child-Pugh Class A, B, C

ECOG Performance Status 0, 1, 2, ≥ 3

Extrahepatic Invasion No, Yes

Hepatic Encephalopathy

None

Mild/Grade 1-2/Suppressed

Severe/Grade 3-4/Refractory

Macrovascular Invasion

No

Yes - minor branch

Yes - major branch

Metastasis

No

Yes - regional lymph nodes

Yes - distal

Portal Hypertension No, Yes

Tumor Morphology

Uninodular and extension <50% of liver

Multinodular and extension <50% of liver

Massive or extension ≥ 50% of liver

Tumor Number Single, 2-3, >3

Tumor Size <3 cm, 3-5 cm, >5cm

Table 3.1: Stage and stage parameters. (ECOG=Eastern Cooperative Oncology Group).
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Label Description Example Text

Ascites Accumulation of fluid in

the peritoneal cavity.

“He denies increasing abdominal girth”

“He has no problems with edema or ascites”

“No free fluid in the abdomen” “Small volume ascites”

Child-Pugh class Score that summarizes

liver function

“Child-Pugh: A” “She is currently a Child’s B score 7”

“He is Child class A” “CTP-A6 cirrhosis”

ECOG

performance

status

Measure of general well-

being of a patient, (0-5).

“ECOG performance 0.” “He works out at a gym”

“Notable for chronic fatigue.”

“She has been doing relatively well and has been undertaking

her daily activities without any problems”

Extrahepatic invasion Spread of cancer outside

of liver

“Extrahepatic metastatic disease: None”

“Lymph nodes: Scattered subcentimeter lymph nodes

not pathologic by size criteria”

“No evidence of extrahepatic extension”

Hepatic

encephalopathy
Confusion or altered con-

sciousness due to liver

failure

“He has no significant ascites or encephalopathy cirrhosis

has been complicated by hepatic encephalopathy”

“Lactulose”

“The patient denies any confusion, forgetfulness, or other

symptoms of hepatic encephalopathy”

Macrovascular

invasion
Spread of cancer to

nearby blood vessels

“No evidence of portal vein thrombosis”

“No obvious invasion of vessels is noted.”

“Portal veins are patent.” “Vascular invasion: None”

Metastasis Spread of cancer to

outside-liver lymph

nodes

“Lymph nodes suspicious for metastatic involvement: None”

“No abnormal lymph nodes”

“No evidence of extrahepatic extension or metastasis”

“No other findings suggestive of extrahepatic disease”

Portal hypertension Elevation of hepatic ve-

nous pressure gradient to

> 5mm Hg

“No evidence of portal HTN”

“Patient had an EGD which showed small varices”

“Recanalization of the umbilical vein, perigastric and peri-splenic

varices compatible with portal hypertension physiology”

Tumor morphology Size of tumor relative to

the liver

“1 lesion measuring 2.1 x 1.7 cm in segment 6”

“Lobulated hypovascular lesion in segment VIII.”

“Small segment 7 hepatic mass which enhances and demonstrates

some degree of washout”

Tumor number Number of liver tumors “Multiple other indeterminate foci of arterial enhancement in the

left and right lobe suspicious for HCC”

“Two new liver lesions noted on the current examination with hy-

pervascularity and washout suggesting hepatomas.”

Tumor size Radius size of liver tumor “there is a segment 4A arterial enhancing lesion which shows ho-

mogeneous washout on the delayed phase measuring 1.7 x 1.5 cm”

“Well defined mass lesion measuring 6.3 x 7.1 x 6.1 cm, epicentered

in segment 4a suggestive of hepatocellular carcinoma”

Table 3.2: Text annotation examples
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3.2 Annotation process

Data and data preparation

A cohort was drawn from patients visiting the University of Washington Medical Center

(UWMC) primary liver cancer clinic from 1/2011-12/2013. Included data for each patient

comprised of all clinical notes from the day of visit to the clinic, all laboratory results 30 days

prior or following to the day of visit, and the CT or MRI of the abdomen or abdomen/pelvis

or chest/abdomen/pelvis with contrast 3 months prior to or 1 month following the day of

visit.

Patient records were manually reviewed by our clinical expert to exclude patients with

more than one visit day in the time window and who had an obviously irrelevant diagnoses.

Mislabeled reports were renamed to their correct report type. Irrelevant report types, e.g.

Pre Anestheia notes, were removed from the annotation set. The list of inclusion and exclu-

sion note types are shown in Table 3.3. The remaining report types are shown in Table 3.4.

For our study, we focused on the subset of patients that have at least one clinical report, at

least one radiology report, and the full-set of labs needed to calculate Child-Pugh and CLIP

scores. Table 3.11 and 3.10 shows the required parameters for Child-Pugh and CLIP staging.

The resulting dataset includes 236 patients and their associated 422 clinical notes and 309

radiology reports, which translates to an average of 1.8 clinical notes and 1.3 radiology notes

per patient. Tables 3.5 and 3.6 gives the distribution of clinical notes and radiology notes

respectively.

Guideline creation

Guidelines for liver cancer stage and stage parameter annotations were developed primar-

ily by an interventionist radiologist with input from another interventional radiologist and

a group of NLP scientists. Stage parameter values were discretization, according to the

smallest common factor for all 3 staging methods. For example, while macrovascular in-

vasion is important for all three staging schemes, AJCC distinguishes between major and
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Included Excluded

Surgery - Outpt Record ED Note

Outpt Progress Note Patient Instructions–Education Outpt

Interventional Radiology - Inpt Record Pre Anesthesia

Hepatology–Hepatitis - Outpt Record Nursing RecordNote

Admit Note ED Clinical Summary

Madison - Outpt Record ED Patient Summary

SCCA Outpt Record Wound Care – Treatment(s)

Consultation Procedure Note

History & Physical Sleep Study Report

Surgery Admit–Initial Consult Note

Telephone Note

Panel Summary

Table 3.3: Report types that were included or excluded

minor branch invasion, therefore the final discretization has 3 values: {Yes-major branch,

Yes-minor branch, No} instead of two:{Yes, No}. Specifications of from which sections an-

notators were to find stage parameters in a report were formalized into annotation rules

shown fully in Appendix A. Figure 3.1 provides a small excerpt of the text annotation guide-

lines for three stage parameters.

The original stage value assignments for AJCC, BCLC, and CLIP are defined by Table

3.7, 3.8, and 3.10, respectively. Underspecified or ambiguous cases from the original guide-

lines, were arbitrated by the domain expert annotators, with respect to the defined stage

parameters. Decisions were explicitly enumerated in lookup tables of a spreadsheet. The

final lookup tables, after additional programmatic augmentation, to find and disambiguate

logical holes, are in Appendix B.
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Report Type # Patients

Hepatology–Hepatitis - Outpt Record 145

Surgery - Outpt Record 123

Consultation - Outpt Record 55

Interventional Radiology - Outpt

Record

37

SCCA - Outpt Record 21

Clinic Note 9

Radiation Oncology - Outpt Record 4

Interventional Radiology - Inpt Record 4

Admit Note 4

Surgery Admit–Initial Consult Note 3

Surgery - Inpt Record 3

Outpt Progress Note - General 3

Initial Clinic–New Consult 3

Panel Summary 2

Cancer Treatment - Outpt Record 2

Transplant - Outpt Record 1

Hematology–Oncology - Inpt Record 1

GI - Outpt Record 1

Adult Medicine - Outpt Record 1

Table 3.4: Clinical note types

# Reports # Patients

1 94

2 107

3 28

≥ 4 7

Table 3.5: Clinical notes

per patient

# Reports # Patients

1 170

2 59

≥ 3 7

Table 3.6: Radiology notes

per patient
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ECOG Performance Status

If clinic notes do not give specific scores, mark the text that gives clues to the score.

If clinic note gives descriptive text evidence AND specific scores, mark both. If two

notes conflict on score, annotate all scores and give appropriate respective scores,

but when assigning final score during staging by consensus, this will be deemed

unscorable. Values: 0,1,2 ≥ 3

Extrahepatic invasion

Defined as direct invasion of an adjacent organ other than gallbladder or perforation

of visceral peritoneum. Values: No, Yes

Macrovascular invasion

Mark in Impression section, if data is available there. Otherwise, mark in Findings

section. Major branch macrovascular invasion is defined as anything larger than

left or right PV or left, middle, or right HV.

Values: No, Yes-minor branch, Yes-major branch

Figure 3.1: Annotation guideline examples
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AJCC Stage Description

Stage I There is a single tumor (any size) that has not grown into any blood vessels. The

cancer has not spread to nearby lymph nodes or distant sites.

Stage II Either there is a single tumor (any size) that has grown into blood vessels, OR there

are several tumors, and all are 5 cm (2 inches) or less across. The cancer has not

spread to nearby lymph nodes or distant sites.

Stage IIIA There is more than one tumor, and at least one is larger than 5 cm (2 inches) across.

The cancer has not spread to nearby lymph nodes or distant sites.

Stage IIIB At least one tumor is growing into a branch of a major vein of the liver (portal vein

or hepatic vein). The cancer has not spread to nearby lymph nodes or distant sites.

Stage IIIC A tumor is growing into a nearby organ (other than the gallbladder), OR a tumor

has grown into the outer covering of the liver. The cancer has not spread to nearby

lymph nodes or distant sites.

Stage IVA Tumors in the liver can be any size or number and they may have grown into blood

vessels or nearby organs. The cancer has spread to nearby lymph nodes. The cancer

has not spread to distant sites.

Stage IVB The cancer has spread to other parts of the body. (Tumors can be any size or

number, and nearby lymph nodes may or may not be involved.)

Table 3.7: Guidelines for AJCC staging [156]

BCLC Stage PST Tumor Stage Okuda Stage Liver Function

A1 0 Single I No PH, normal bilirubin

A2 0 Single I PH, normal bilirubin

A3 0 Single I PH, abnormal bilirubin

A4 0 3 tumors < 3cm I-II CP A-B

B 0 Large multinodular I-II CP A-B

C 1-2 Vascular invasion or extrahepatic spread I-II CP A-B

D 3-4 Any III CP C

Table 3.8: Guidelines for BCLC staging [170]. PST=performance status (ECOG),

PH=portal hypertension, CP=Child-Pugh. Okuda stages are defined in Table 3.9.
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Okuda factors

Tumor size >50% of liver

Ascites

Albumin < 3 g/dL

Bilirubin > 3 mg/dL

Table 3.9: Okuda stage definition. Stage I: no factors present.

Stage II: 1-2 factors. Stage III: 3-4 factors.

Variable
Points

0 1 2

Child-Pugh A B C

Tumor Morphology Uninodular and

extension ≤ 50%

Multinodular and

extension ≤ 50%

Massive or

extension > 50%

AFP (ng/dL) < 400 ≥ 400

Portal vein thrombosis No Yes

Table 3.10: Guidelines for CLIP staging [170]. CLIP stage is a

score assigned by adding up all the points from each variable.

Variable
Points

1 2 3

Albumin (g/dL) > 3.5 2.8-3.5 < 2.8

Ascites None Mild/Moderate Severe

Bilirubin (Total) (mg/dL) < 2 2-3 > 3

Hepatic Encephalopathy None Grade 1-2 Grade 3-4

Prothrombin INR < 1.7 1.7-2.3 > 2.3

Table 3.11: Child-Pugh parameters [125]. Adding up the points for all

variables, stage is assigned where Child-Pugh A: 5-6 points, Child-Pugh

B: 7-9 points, and Child-Pugh C: 10-15 points.
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Section ontology creation

Clinical documents are typically organized by section headings, however every institution,

department, and specialities, have their own common section formats (Figure 3.2). Because

sections are a crucial element in clinical text processing, we created a section ontology for

clinical notes from the UWMC primary liver clinic. An interventional radiology domain

expert reviewed reports and created the ontology, located in Appendix C. Using the ontology,

a biomedical informatics student manually labeled 100 clinical note documents randomly

drawn from the data set. Radiology reports, also 100 randomly drawn documents, were also

labeled using a previously published radiology report ontology [174]. Using this labeled data,

an in-house section identifier [174] for both types were trained. The estimated performance,

using 5-fold cross-validation, is 0.90 and 0.97 F1, for clinical and radiology notes, respectively.

For future references to identified sections, which we treat as solved, we used this tool.

HISTORY OF PRESENT ILLNESS

..

Over the last 3 weeks he has developed abdominal distention consistent with ascites.

...

PHYSICAL EXAMINATION

...

ABDOMEN: soft.

Moderate to large distention but not tight.

Positive large ascites on exam.

...

ASSESSMENT AND PLAN:

...

He is showing evidence of increasing ascites most likely related to some mild hepatic impairment

in conjunction with extensive vascular invasion.

Figure 3.2: Example of a report with multiple sections.
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Figure 3.3: Annotation workflow. First, patient charts were divided

among two annotators to annotate for text level evidence. Afterwards,

patient information were consolidated and patient level annotations were

annotated in consensus with access to laboratory values. The end-products

are gold standards for: (1) text annotations and (2) patient level annota-

tions.

Annotation workflow and software

Annotation occurred in two phases, as illustrated in Figure 3.3. In the first phase, relevant

parts of reports were identified and associated with an annotation label and value, as shown

in Table 3.1 and 3.2. During this phase our annotators marked text-annotations using brat

[163], a web-based graphical annotation tool, and assigned them a label, e.g. ECOG, and a

value, e.g. 0, as shown in Figure 3.4 and 3.5. Irrelevant patients, e.g. patients with irrelevant

diagnosis, and files, e.g. addenda, abbreviated notes, and post-treatment radiology notes,

were flagged for exclusion. As annotation is relatively time-consuming for clinicians, we

adopted a sparse-annotation approach. Thus not all instances of some stage parameter

evidence in a document were marked. The exact algorithm on which sections to mark are

discussed in our annotation guidelines in Appendix A.

During the second phase, the 3 overall stages were annotated with access to patient

records and laboratory values from structured data. In addition to this, the 11 text annota-

tion liver cancer parameters had corresponding patient level annotations that were marked
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at this step. Part of the reason for this is to resolve missing and conflicting values from the

text annotations. This phase was done as a consensus of the two domain specialists. For

this task, the annotators used a specially built in-house python Tkinter-built [78] interface

shown in Figure 3.6. During this phase, the annotators had access to the full marked reports

as well as a summarized version of their annotations displayed in the interface. Pertinent

laboratory values were displayed via the interface for Child-Pugh or CLIP stage calculations.





38

Interrater agreement

An initial set of 20 patients, with 71 documents total, were double-annotated for text level ev-

idence and their associated values by two interventional radiologist attending physicians. We

then calculated agreement levels and refined annotation guidelines to maximize agreement

and minimize redundant annotation. After the inter-annotator meeting, the two radiologist

re-annotated their set and agreement was re-scored.

Agreement was measured using F1-score (F1)[77] for stage parameter labels and values at

a patient level, e.g. Patient 0: Ascites None, a document level, e.g. Patient 0 Document 1:

ascites none, and at a partial text span level, e.g. Patient 0: document 1: ascites none “no

abdominal distention”. Patient level and document level values were automatically generated

from the text evidence according to which document or patient it belonged to. Therefore, a

single patient or document may have multiple values for the same stage parameter at once,

e.g. “ascites: none” and “ascites: mild”. A partial text span true positive requires some

overlap in highlighted text span, as well as matching labels, e.g. ascites, and values, e.g.

none. The formulas for defining F1 are shown in the following equations, where TP=True

Positive, FP=False Positive and FN=False Negative:

P =
TP

TP + FP
(3.1) R =

TP

TP + FN
(3.2) F1 =

2PR

P +R
(3.3)

After refining guidelines, the rest of the dataset was divided among the two annotators

to annotate separately, in batches of 31 patients. patient level stages and parameter values

were annotated by a consensus of the two annotators and therefore could not be evaluated

for interrater agreement.

Results

Table 3.12, 3.13, and 3.14 shows text evidence agreement levels generated at the patient

level, document level, and partial text span level after the first round of annotations. The
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degradation from patient level to partial text span levels was expected given the precision

required for each level. The patient level annotation is ultimately the most clinically relevant,

however measuring the document level and partial text-span level performances gives a sense

of how consistent the two annotators are with each other. The performance gap between

patient level and document level alludes to how often annotators find the same patient

information in different files. Similarly, the difference from document level and text span

levels demonstrates how often the same values in the same document come from different

areas of the text.

Qualitative analysis and the low agreement across all levels showed that annotators were

locating evidence in different parts of the same report, did not have consistent definitions

for each parameter category, and did not consistently exclude files or patients. During the

inter-annotator meeting, the annotators discussed: (1) definitions of parameters and what

should be marked, (2) which files and which sections to start sparse annotation, and (3)

patient exclusion criteria (one annotator excluded 3 patients whereas the other annotator

did not exclude any). The annotators were then sent to re-annotate the same batch.

Table 3.15, 3.16, and 3.17 shows agreement levels after re-annotating. One annotator (A2)

marked 3 patients for exclusion, whereas the other annotator (A1) marked only 2, though

he did not mark other entities for that patient suggesting this was an annotation error. The

higher level of agreement at the partial text-span level signaled that annotators were looking

at similar areas for certain values. The four lowest-performing staging parameters at the

patient level were ascites, ECOG, extrahepatic invasion, and hepatic encephalopathy. Ascites,

ECOG, and hepatic encephalopathy, were difficult because they appeared in different places in

a clinical note and were often repeated and in different expression formats. Additionally, one

annotator marked ascites drugs while the other did not. Meanwhile, extrahepatic invasion

discrepancies were due to one annotator identifying more information than the other. The

overall higher agreement at all levels, 0.910 vs 0.764 for patient level, 0.854 vs. 0.599 at

document level, and 0.729 vs. 0.447 at the partial text span level, showed better consistency

between the annotators after the first inter-annotator meeting.
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Label TP FP FN P R F1

Ascites 11 5 1 0.688 0.917 0.786

ChildPugh 5 2 0 0.714 1.000 0.833

ECOG 11 4 6 0.733 0.647 0.688

Extrahepatic invasion 1 7 0 0.125 1.000 0.222

Hepatic encephalopathy 8 2 3 0.800 0.727 0.762

Macrovascular invasion 7 8 0 0.467 1.000 0.636

Metastasis 5 4 2 0.556 0.714 0.625

Portal hypertension 11 0 3 1.000 0.786 0.880

Tumor morphology 2 2 5 0.500 0.286 0.363

Tumor number 17 2 0 0.895 1.000 0.944

Tumor size 16 2 0 0.889 1.000 0.941

ALL 94 38 20 0.712 0.825 0.764

Table 3.12: Exact match of label-value per patient (First Round of Annotation)

Label TP FP FN P R F1

Ascites 16 9 6 0.640 0.727 0.681

ChildPugh 5 4 0 0.556 1.000 0.714

ECOG 17 4 8 0.810 0.680 0.739

Extrahepatic invasion 1 8 0 0.111 1.000 0.200

Hepatic encephalopathy 9 3 8 0.750 0.529 0.621

Macrovascular invasion 7 16 0 0.304 1.000 0.467

Metastasis 5 5 2 0.500 0.714 0.588

Portal hypertension 20 3 4 0.870 0.833 0.851

Tumor morphology 1 5 6 0.167 0.143 0.154

Tumor number 12 22 11 0.353 0.522 0.421

Tumor size 20 26 1 0.435 0.953 0.597

ALL 113 105 46 0.518 0.711 0.599

Table 3.13: Exact match of label-value per document (First Round of Annotation)

Label TP FP FN P R F1

Ascites 10 17 17 0.370 0.370 0.370

ChildPugh 7 6 1 0.538 0.875 0.667

ECOG 20 11 18 0.645 0.526 0.580

Extrahepatic invasion 1 9 0 0.100 1.000 0.182

Hepatic encephalopathy 9 5 12 0.643 0.429 0.514

Macrovascular invasion 5 25 2 0.167 0.714 0.270

Metastasis 6 6 4 0.500 0.600 0.545

Portal hypertension 28 14 14 0.667 0.667 0.667

Tumor morphology 0 6 7 0.000 0.000 0.000

Tumor number 12 37 23 0.245 0.343 0.286

Tumor size 19 53 2 0.264 0.905 0.409

ALL 117 189 100 0.382 0.539 0.447

Table 3.14: Partial match of label-value per text-span (First Round of Annotation)
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Label TP FP FN P R F1

Ascites 9 4 2 0.692 0.818 0.750

ChildPugh 6 0 0 1.000 1.000 1.000

ECOG 14 1 3 0.933 0.824 0.875

Extrahepatic invasion 5 4 0 0.556 1.000 0.714

Hepatic encephalopathy 8 2 2 0.800 0.800 0.800

Macrovascular invasion 13 2 0 0.867 1.000 0.929

Metastasis 9 1 0 0.900 1.000 0.947

Portal hypertension 11 3 0 0.786 1.000 0.880

Tumor morphology 17 1 0 0.944 1.000 0.971

Tumor number 17 0 0 1.000 1.000 1.000

Tumor size 17 0 0 1.000 1.000 1.000

ALL 126 18 7 0.875 0.947 0.910

Table 3.15: Exact match of label-value per patient (Second Round of Annotation)

Label TP FP FN P R F1

Ascites 11 8 7 0.579 0.611 0.595

ChildPugh 7 0 0 1.000 1.000 1.000

ECOG 20 4 4 0.833 0.833 0.833

Extrahepatic invasion 6 4 0 0.600 1.000 0.750

Hepatic encephalopathy 12 2 4 0.857 0.750 0.800

Macrovascular invasion 16 5 0 0.762 1.000 0.865

Metastasis 11 1 0 0.917 1.000 0.957

Portal hypertension 13 5 2 0.722 0.867 0.788

Tumor morphology 21 2 2 0.913 0.913 0.913

Tumor number 23 0 1 1.000 0.958 0.979

Tumor size 21 2 2 0.913 0.913 0.913

ALL 161 33 22 0.830 0.880 0.854

Table 3.16: Exact match of label-value per document (Second Round of Annotation)

Label TP FP FN P R F1

Ascites 10 9 12 0.526 0.455 0.488

ChildPugh 7 0 0 1.000 1.000 1.000

ECOG 23 6 9 0.793 0.719 0.754

Extrahepatic invasion 6 4 0 0.600 1.000 0.750

Hepatic encephalopathy 12 3 5 0.800 0.706 0.750

Macrovascular invasion 16 6 0 0.727 1.000 0.842

Metastasis 10 2 1 0.833 0.909 0.870

Portal hypertension 11 7 5 0.611 0.688 0.647

Tumor morphology 15 8 8 0.652 0.652 0.652

Tumor number 17 6 7 0.739 0.708 0.723

Tumor size 18 5 5 0.783 0.783 0.783

ALL 145 56 52 0.721 0.736 0.729

Table 3.17: Partial match of label-value per text-span (Second Round of Annotation)
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Patient annotations

Table 3.18 and 3.20 shows the breakdown of the patient level consensus annotations for

the entire set. The final number of non-excluded patients was 200. Stage annotations are

skewed towards earlier stages for two out of the three schemes. This bias may be because of

the population being treated (sicker patients are less likely to be referred to the university

hospital) and our data exclusion of return patients. Similarly, for the individual patient

level stage parameters, there are large class imbalances towards the least severe values. One

patient was mistakenly not marked for exclusion, explaining the [EMPTY] value of 1 for

many of the parameters. However there was one case of a missing tumor morphology and

extrahepatic invasion in the set. The ECOG parameter had the most conflicts, “??”, with

16 out of 200 patients with multiple conflicting values.

Label Value Frequency Label Value Frequency Label Value Frequency

AJCC

I 108

BCLC

A1 27

CLIP

0 66

II 48 A2 21 1 62

IIIA 16 A3 13 2 41

IIIB 14 A4 17 3 18

IIIC 0 B 23 4 8

IVA 6 C 70 5 4

IVB 7 D 14 6 0

Table 3.18: Stage annotations
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Label Value Frequency

Ascites
Mild-Suppressed on

medications
34

Moderate-Severe/Refractory 11

None 154

?? 0

[EMPTY] 1

ChildPugh A 125

B 62

C 12

?? 0

[EMPTY] 1

ECOG 0 121

1 42

2 14

≥ 3 6

?? 16

[EMPTY] 1

Extrahepatic invasion No 196

Yes 2

?? 0

[EMPTY] 2

Hepatic encephalopathy Mild/Grade1-2/Suppressed 26

None 170

Severe/Grade 3-4/Refractory 3

?? 0

[EMPTY] 1

Macrovascular invasion No 172

Yes–yes-major branch 14

Yes–yes-major branch 13

?? 0

[EMPTY] 1

Table 3.19: Patient level liver cancer characteristic annotations (part 1)
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Label Value Frequency

Metastasis No 186

Yes–distal 7

Yes–regional lymph nodes 6

?? 0

[EMPTY] 1

Portal hypertension No 73

Yes 126

?? 0

[EMPTY] 1

Tumor morphology Massive or extension ≥50% of liver 21

Multinodular and extension <50% of liver 64

Uninodular and extension <50% of liver 113

?? 0

[EMPTY] 2

Tumor number 2-3 43

> 3 30

Single 125

?? 1

[EMPTY] 1

Tumor size < 3 87

3-5 59

> 5 53

?? 0

[EMPTY] 1

Table 3.20: Patient level liver cancer characteristic annotations (part 2)
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Label A1 Acc. A1 Extra A2 Acc. A2 Extra

Ascites 11/13 2 11/11 0

ChildPugh 5/5 1 5/5 0

ECOG 11/13 2 13/15 2

Extrahepatic invasion 9/9 0 5/5 0

Hepatic encephalopathy 9/10 1 10/10 0

Macrovascular invasion 15/15 0 13/13 0

Metastasis 10/10 0 9/9 0

Portal hypertension 12/12 2 11/11 0

Tumor morphology 16/17 1 16/17 1

Tumor number 17/17 0 17/17 0

Tumor size 17/17 0 17/17 0

Table 3.21: Comparison of text annotations with the

patient level consensus annotations. An annotator is

said to be accurate in this context if at least one of

their text annotation label-values are the same as the

patient level consensus annotations. A1=Annotator 1,

A2=Annotator 2, Acc=Accuracy.
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Table 3.21 shows the comparison between each annotator’s text evidence and the patient

level consensus annotations in accuracy for the inter-annotator 20 patients. An annotator

is said to be accurate for a particular label if one of their text annotations contains the

value that the patient level annotation is assigned. For example, if the patient level says

the patient is has an ECOG value of 0. Then if the annotator marks at least one ECOG:

0 label-value text annotation, then they get that point. If the patient level annotation is

indeterminable, e.g. ECOG:?? then we do not evaluate for that label. Extra values are for

cases when multiple values appear. Non-accurate values are counted as extra. In general our

annotators were more than 90% accurate for most labels, with the exception of one or two

labels at approximately 85% (11/13) accuracy.

Discussion

In our annotations, the relevant text evidence examples had various forms. Though an actual

concept may not be mentioned, there may be other observable clues. To give an example,

we observe very explicit evidence giving direct information, e.g. “no ascites”, “ecog 0”, “no

metastasis”, “no hepatice encelophathy”. However, there were additionally cases that give

signs and symptoms information or which required some reasoning. For example, ascites

may be observed through “abdominal distension”. Likewise, macrovascular invasion has

indicators such as “No portal vein thrombosis”. Some cases required deep domain knowledge

as well as logical inference. For example, we use the example of tumor number: 2-3 tumors,

“she would be considered to fall within Milan criteria”. In order to understand why this

passage would lead to a clinician to infer 2-3 tumors, we need to know what Milan criteria

means (that the patient has to have either one tumor smaller than 5 cm or up to three tumors

smaller than 3cm). For that particular patient, it was unclear how many tumors there were

but it was clear that there were more than one and none were larger than 3 cm, which

led to the resolution that there had to be tumor number: 2-3 tumors. Another example

is for hepatic encephalopathy. A patient was assigned to have mild or suppressed hepatic

encephalopathy because of evidence “lactulose” and “rifaximin” without any other mentions
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of hepatic encephalopathy. These are drugs which are used to treat problems related to the

liver. Meanwhile, tumor number may require reading radiographic information, recognizing

mentions of malignant tumors, and summing over the resulting list.

3.3 Challenges in annotation

3.3.1 Text annotations

During the process, we encountered several technical annotation challenges: (1) conflicting

information, (2) ambiguity, (3) connected multi-sentence information, and (4) numerous po-

tentials for negative evidence.

The first case is the clearest problem. One part of a document may conflict with another

part of the same document or a different document in the patient’s records. One example

concerns a patient with a document containing the statement that said he or she was Child-

Pugh A, but in another document said Child-Pugh B. Our solution was to add a patient level

resolution for these parameters during the second stage of the annotation workflow.

During initial data testing, we found at least one case where a single statement alluded to

more than one stage parameter value, creating an ambiguous statement, (2). The example

for this was an example that came up “He has well-compensated liver disease, with Child-

Pugh score of 6 or 7 [...] This puts him at a class A/B”. Although, seemingly a subset of

(1) where the conflicting information occurs in the same passage, one can argue this differs

in that respect as this statement does not establish that Child-Pugh B or Child-Pugh C

definitively as in (1) but is a hedge of the two values. To maximize information, we decided

to have annotators mark such passages as both Child-Pugh B and Child-Pugh C.

There were also some issues with annotation based on discrete passages of text. For

example, in reports, many parts of information are clarified in later sentences, thus mak-

ing normalization for each stage parameter value challenging to identify with a single spot

because they are referring to the same real-world entity, (3). Figure 3.7 shows an excerpt

from a report with ascites information. Initially, there is mention of some ascites, but only
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in the Physical Examination section does it become clear that is somewhat severe. At the

end of the document, in the Assessment and Plan section, the ascites is mentioned, again

with less detail. Our annotation decision was to consider sentences independently and to

use less severe values if the sentence is unclear or not detailed. Therefore, the first sentence

in the example is considered mild, even though as a human we understand, in fact, that all

instances in the document actually do refer to the same severe case (moderate/severe).

HISTORY OF PRESENT ILLNESS

...

Over the last 3 weeks he has developed abdominal distention consistent

with ascites.

...

PHYSICAL EXAMINATION

...

ABDOMEN: soft.

Moderate to large distention but not tight.

Positive large ascites on exam.

...

ASSESSMENT AND PLAN:

...

He is showing evidence of increasing ascites most likely related to some

mild hepatic impairment in conjunction with extensive vascular inva-

sion.

Figure 3.7: Ascites information is referenced several times in a document with fluctuating

details regarding severity.

Another issue was (3), the possibility of annotating negative evidence1. A problem such as

hepatic encephalopathy is defined as confusion related to liver failure. Thus, whether or not it

1We define negative evidence as information that at least partially supports the opposite of a sign or symp-
toms of focus. For example, “No suspicious osseous lesions” is not direct evidence for either metastasis
values none, regional lymph nodes, or distal. It does, however, count as negative evidence for metastasis
- distal. The idea is if you collect all instances of negative evidence, e.g. all other body parts being not
suspicious, then you may rule out metastasis - distal.
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is appropriate or possible to mark all mentions of any cognitive issues is a decision required

in designing annotation guidelines. For example “PSYCHIATRIC: Alert and Oriented to

Person, Place and Time, normal mood, normal thought content, affect normal.” clearly

gives some indication for no hepatic encephalopathy in either mild or severe form, but it is

not exactly direct. Moreover, unfortunately, marking every clue to cognitive impairments

(or disimpairments) is much more time-consuming, with little relative gain.

To raise other examples, we can consider metastasis - yes, for which involves tumors

in any other area except the liver – so highlighting all negative cases is challenging, e.g.

“No suspicious osseous lesions”. Similarly, for portal hypertension - yes, which is defined

by increased blood pressure in the portal venous system, symptoms include swollen veins

within the esophagus, stomach, rectum, or umbilical area. Thus, negative examples would

encompass many anatomic parts. Because of the inter-relatedness of various information, we

did not annotate negative evidence, however we should bear in mind that this information

adds the context of the patient record.

3.3.2 Patient stage annotations

Patient stage annotations were a challenge as each staging scheme required many parameters,

and each with many values. Furthermore, the actual guidelines prescribed by the previous

Table 3.7, 3.8, and 3.10 do not exactly align to our stage parameter label and values (because

of the pooling and discretization of values, e.g. to identify significant ranges such as tumor

number - [2-3]), requiring some cognitive processing.

3.4 Limitations

Limitations to the annotation process are that the annotation stages and values were devel-

oped by one primary expert and another assisting expert, allowing room to overlook certain

concepts or other schemas. Most of the text evidence annotations were single-annotated,

leaving possibility of annotation error. The set was also sparsely annotated, and therefore it

may be missing particular semantic forms of the same information.
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Patient level consensus annotations were done by two experts in consensus, which may

allow for less error but opens up an opportunity for the annotators to influence each other.

The arbitrations for unclear stage cases were done by two experts, but may not be agreed on

by the entire community. Finally, the dataset is from the University of Washington Medical

Center system so these guidelines may not be generalizable towards other departments or

institutions.

3.5 Summary

In this chapter, we described the creation of an HCC cohort, the development of a set of

annotation guidelines, as well as provide analysis on our dataset statistics and inter annotator

agreements. In the next chapters, the development of extraction and classification systems

for the various HCC stages and stage parameters will be based on this dataset.
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Chapter 4

STAGING SYSTEM ARCHITECTURE

In this section, we give a brief description of our system design, including explanations

of how constituent parts relate to each other. We further describe a simple document classi-

fication baseline for which sub-patient stage parameter classification tasks will be measured

against.

4.1 Overall system architecture

The overall system architecture consists of several items, depicted in Figure 4.1. At the top

are the three liver cancer stage classifications required per patient. Below the stages, are the

11 text parameters, and 4 laboratory values. Our system first annotates for the patient level

11 parameters before classifying overall patient liver cancer labels after. Each parameter

classification had specific pipelines depending on their needs.

4.1.1 Data: Training and testing

Of the 200 non-excluded patients, 160 patients were separated as training and 40 patients

were kept as a test set. For the stage parameter extractions, all experiments were done using

only files from the 160 patients. For all sub-system modules (Chapters 5 and 6), except the

tumor characteristics extraction (Chapter 7), training and development was performed on a

5-fold cross-validation of those 160 patients. The tumor characteristics extraction module

(Chapter 7) used a smaller subset of the 160 training patients.The test set was only evaluated

on after the entire system was created.
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Figure 4.1: Overall system architecture

4.1.2 Stage parameter extraction

Stage parameters were determined by one of three overall strategies: (1) a two-step regu-

lar expression method, (2) a sentence classifier, and (3) a tumor characteristics extraction

sub-system which classifies subdocument entities and relations and uses the information in

addition to a number of rules. We compare each module to a document classification baseline

described next, but also detailed in a previously published paper [194]. In the next chapters,

at the completion of each module, we will refer back to these baselines.

Document classification baseline

As stage parameters text annotations were annotated sparsely, it was not feasible to do an

evaluation at the subdocument level. Therefore, the various extraction modules (regular ex-

pression extraction, sentence classification, and tumor characteristics extraction) described

in the next sections will be measured against a document classification baseline. As men-
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tioned before, the document classification was measured in a 5-fold cross-validation, split by

patient with their related documents. Specific stage parameters were restricted to certain

document types following annotation guideline recommendations. Report restrictions are

detailed in Table 4.1.

Label Document type

Ascites Clinical, radiology

Hepatic encephalopathy Clinical

Extrahepatic invasion Radiology

Macrovascular invasion Radiology

Metastasis Radiology

Table 4.1: Sentence classification document type restrictions

The baseline was obtained by taking the best score among several machine learning

algorithms (Naive Bayes, Maximum entropy, SVM, binary decision tree, C4.5 decision tree)

using simple 1-, 2-, 3- gram frequency features. The classification task was a binary decision

between each label-value combination, e.g. ascites-none. If a label-value combination of

a stage parameter appeared in the document, the document was considered positive for

that class. The reason document level baseline was used was because, as per the annotation

guidelines, annotators should have annotated at least one instance of a stage parameter label-

value stage parameter in one report, if it appeared. We did not use multi-class classification

for each stage parameter because of overlap possibilities. The performance for the baselines

are shown in Table 7.28, where evaluation is for the document level, which is the same as

those defined in Chapter 3.2.
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Label Freq. Value Class. P R F1

Ascites 44 Mild C45 0.24 0.18 0.21

20 Moderate-Severe DT 0.50 0.30 0.38

146 None DT 0.77 0.36 0.49

ChildPugh 53 A DT 0.46 0.49 0.47

25 B C45 0.84 0.64 0.73

7 C DT 0.50 0.14 0.22

ECOG 105 0 C45 0.71 0.71 0.71

65 1 DT 0.85 0.54 0.66

18 2 C45 0.89 0.44 0.59

8 ≥ 3 DT 0.25 0.13 0.17

Extrahepatic 59 No SVM 0.81 0.85 0.83

invasion 2 Yes ≈ 0.00 0.00 0.00

Hepatic 34 Mild DT 0.70 0.76 0.73

encephalopathy 95 None DT 0.71 0.73 0.72

1 Severe ≈ 0.00 0.00 0.00

Macro-vascular 127 No NB 0.71 0.96 0.82

invasion 20 Yes-major branch C45 0.50 0.55 0.52

8 Yes-minor branch C45 1.00 0.50 0.67

Metastasis 108 No DT 0.78 0.70 0.74

6 Yes-distal DT 0.50 0.17 0.25

7 Yes-regional ≈ 0.00 0.00 0.00

Portal 5 No ≈ 0.00 0.00 0.00

hypertension 84 Yes C45 0.84 0.80 0.82

Tumor 23 Massive DT 0.37 0.30 0.33

morphology 40 Multinodular, <50% ME 0.50 0.15 0.23

105 Uninodular, <50% NB 0.62 0.80 0.70

Tumor 112 Single NB 0.64 0.84 0.73

number 32 2-3 DT 0.24 0.25 0.25

19 >3 ME 0.67 0.11 0.18

Tumor 82 < 3 ME 0.64 0.62 0.63

size 45 3-5 C45 0.43 0.27 0.33

46 >5 ME 0.59 0.28 0.38

ALL 1551 0.66 0.60 0.63

Table 4.2: Best baseline performances for training set.

(Freq = frequency, Class = classification method)
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Regular expression extraction

Text evidence for Child-pugh and a portion of ECOG stage parameters were in a form

ammenable to regular expression capture. The regular expression rules were created by

studying the examples in the training set. The details of our rules along with some further

description of Child-Pugh and ECOG classification challenges are discussed in Chapter 5.

Sentence classification with statistical feature selection

Several stage parameters, ascites, hepatic encephalopathy, portal hypertension, extrahepatic

invasion, metastasis, and macrovascular invasion, were identified with text evidence that

could be, for the most part, assumed to be identified within sentences. For these parameters,

we used a sentence text classification approach using statistically selected features, including

ranked n-grams and UMLS concepts, with assertion classification. To overcome our limited

annotation, we enriched the data set with a subset of non-expert annotated data. Our

detailed process and results are described in Chapter 6.

Tumor characteristics extraction

Tumor-related stage parameters, tumor number, tumor size, and tumor morphology required

aggregated information over multiple sentences. For this extraction system, we built a

pipeline that extracted tumor templates, performed reference resolution, and finally assigned

tumor number, tumor size, and tumor morphology based on a rule-based algorithm. The en-

tire system is the subject of Chapter 7.

4.1.3 Patient level classifications

Patient level classifications, described in Chapter 8, incorporates stage parameter parts of

the pipeline to assign holistic values for each stage parameter. The final stage classifications

take the 11 patient level stage parameters, 4 laboratory values and output the final 3 overall

stages. During this chapter, we show various experiments using different levels (raw text,
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text annotations, patient level stage parameters, etc) of system and gold annotations.

4.2 Summary

The development of a liver cancer staging system involved various extraction and classifi-

cation modules, including a two step regular expression to extract Child-Pugh and ECOG

stage mentions, a feature selected sentence classification strategy, and a pipeline of entity

and relation extraction and reference resolution classification to identify tumor characteris-

tics. In our work, we isolate each component, tune and build an appropriate module and

characterize the performance individually. Patient classification performances are, of course,

the most clinically relevant, which we provide in Chapter 8, along with experiments using

different levels of patient gold annotations.
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Chapter 5

CHILD-PUGH AND ECOG CLASSIFICATIONS

Child-Pugh and ECOG variables for our liver cancer classification are examples of the

recursive nature in defining phenotypes, as they themselves are also stages. Examples of

their expressions are given in Table 5.1. The stage definitions for Child-Pugh and ECOG are

given in Table 5.2 and 5.3, respectively.

Given this, there is at least two ways to represent such variables: (1) the consolidated

stage category, e.g. Child-Pugh A, and (2) the set of compositional staging factors, e.g.

{ascites - none, hepatic encephalopathy - mild, bilirubin < 2 mg/dL} with the algorithm

in Table 5.2. In this chapter, we present our approach to extracting (1) for both stage

parameters, meanwhile (2) for Child-Pugh is deferred to later chapters and (2) for ECOG

will not be addressed in this thesis for reasons addressed in Section 5.5.

Here we present our text extraction performance with evaluation against our previous

simple document baseline.

Label Description Example Text

Child-Pugh class Stage that summarizes

liver function

“Child-Pugh: A” “She is currently a Child’s B score 7”

“He is Child class A” “CTP-A6 cirrhosis”

ECOG

performance

status

Measure of general well-

being of a patient, (0-5).

“ECOG performance 0.” “He works out at a gym”

“Notable for chronic fatigue.”

“She has been doing relatively well and has been undertaking

her daily activities without any problems”

Table 5.1: Text annotation examples for ECOG and Child-Pugh
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Variable
Points

1 2 3

Albumin (g/dL) > 3.5 2.8-3.5 < 2.8

Ascites None Mild/Moderate Severe

Bilirubin (Total) (mg/dL) < 2 2-3 > 3

Hepatic Encephalopathy None Grade 1-2 Grade 3-4

Prothrombin INR < 1.7 1.7-2.3 > 2.3

Table 5.2: Child-Pugh parameters [125]. Adding up the points for all

variables, stage is assigned where Child-Pugh A: 5-6 points, Child-Pugh

B: 7-9 points, and Child-Pugh C: 10-15 points.

Status Description

0 Fully active, able to carry on all pre-disease performance without restriction

1 Restricted in physically strenuous activity but ambulatory and able to carry out

work of a light or sedentary nature, e.g., light house work, office work

2 Ambulatory and capable of all selfcare but unable to carry out any work activities;

up and about more than 50% of waking hours

3 Capable of only limited selfcare; confined to bed or chair more than 50% of waking

hours

4 Completely disabled; cannot carry on any selfcare; totally confined to bed or chair

5 Dead

Table 5.3: ECOG Guidelines [139]

5.1 Explicit vs non-explicit evidence

We refer to evidence exhibited as the consolidated stage, (1), as explicit evidence, while

all other contributing factor evidence, (2), will be regarded as non-explicit evidence. Our

annotation strategies for the two cases for each of Child-Pugh and ECOG were handled

differently. Child-Pugh explicit evidence was marked and normalized, but the factors related

to Child-Pugh, ascites and hepatic encephalopathy, were marked separately. On the other

hand, ECOG explicit and non-explicit evidence were highlighted and normalized to an ECOG
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value, e.g. ECOG 0. This discrepancy was partly due to ECOG factors being relatively less

well-defined and criteria being more difficult to enumerate exhaustively. For example, “all-

pre-disease conditions”, “able to work”, “50%” of the time are imprecise and subjective

to define. Moreover, Child-Pugh factors, such as ascites and hepatic encephalopathy, are

recognized medical concepts by themselves.

5.2 Related work

The closest relevant work we have found was with the rule-based regular expression extraction

of Child-Pugh class from Ping et al [135]. ECOG performance status is frequently used in

clinical trials criteria, however we were unable to locate any previously published extraction

systems. To our knowledge there are no prior work classifying documents to non-explicit

ECOG or Child-Pugh. We follow the same approach as Ping et al [135] with Child-Pugh, a

two-step regular expression extraction, for both explicit ECOG or Child-Pugh extraction.

5.3 Two-step regular expression approach for explicit stages

We designed a two-step regular expression approach to extract explicit mentions of Child-

Pugh. The first step identifies trigger terms. Afterwards, a second regular expression was

used to capture the related value. The trigger regular expressions for Child-Pugh and ECOG

with corresponding examples are shown in Table 5.4 and 5.5, respectively. We found that

specifying capitalizations was necessary especially for less formal references to Child-Pugh,

e.g. “Child’s class A”.

In the second step, another regular expression was ran, and specific values were captured

and mapped to normalized values. For example, the expressions for Child-Pugh, “A”, “B”,

and “C”, would be mapped according to their respective stages. However, at times only the

numerical score was available. For these cases, as according to the Table 3.11 algorithm,

Child-Pugh scores of 5-6 are mapped to A, 7-9 to B, and 10-15 to C.

ECOG extraction was much simpler, as shown in Table 5.5. The value-mappings for 0,

1, and 2 were themselves, while values 3-5 were mapped to ≥ 3.
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Regular expression Examples

child\\s+ (class|classification|category|score) “Child class A”

CTP “CTP A”

ctp.*(class|classification|category|score) “ctp score of 6”

[Cc][hH][iI ][lL][dD].*?[Pp][uU][gG ][hH] “Child-Pugh A”, “Child-Turcotte-Pugh A”

[Cc ]hild’s “Child’s A”

Table 5.4: Child-Pugh trigger regular expression

Regular expression Examples

“ecog 0 to 1”

[Ee][Cc][Oo][Gg] “(ecog performance status): (0)”

“ecog performance status 1.”

“ECOG, 1, in summary”

Table 5.5: ECOG trigger regular expression

5.3.1 Evaluation

The data set was based on the previously split, 5-fold cross-validation of 160 patients from

the training set. Performance was measured in terms of precision, recall, and F1 score defined

previously in Chapter 3.2, for the text span and document levels.

5.3.2 Results

Table 5.6 shows a breakdown of the microscore text extraction performance. As the dataset

was annotated sparsely, compared to the gold standard, precision was low.

We manually reviewed both false positives and false negatives for both stage parameters.

In the case of Child-Pugh, we found false positives to be all the unmarked cases not covered

by our sparse annotation. From studying false negatives, on the other hand, we found 3

known classes of problems that we miss. The first are instances of “child a” or “child b”.
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We did not code for this regular expression was because “child” is a common word. The

second known category that we missed were later parts of hedge cases, e.g. in “child-pugh

score of 6 or 7” only “child-pugh 6” is captured. As our system identifies the “6”, starting

from that text span, it is possible to expand right-ward to identify conjunctions and add in

other cases. We leave this for further work. The final class of false negative errors we miss

are other abbreviations besides “CTP”. For example, one false negative was in a sentence

“a 65 year old man with CPA(6) HCV-related cirrhosis”. While the “cirrhosis” indicates

this may be “Child-Pugh A” with score 6, in the general medical domain, “CPA” has many

other acronyms such as “cardiopulmonary arrest”, or “childhood physical abuse”, therefore

we did not include this in our algorithm.

Category Pos TP FP FN P R F1

A 53 49 25 4 0.662 0.925 0.772

B 25 24 9 1 0.727 0.960 0.828

C 7 7 6 0 0.538 1.00 0.700

ALL 85 80 40 5 0.667 0.941 0.780

Table 5.6: Explicit Child-Pugh extraction results

Table 5.7 shows the performance for ECOG extraction. Since we annotated both explicit

and non-explicit evidence under this category, and the annotation was not comprehensive,

the raw precision and recall scores are not reliable estimates of performance. On manual

inspection we found that false positives were correct but unannotated. For the most part,

the false negatives were due to the non-explicit text evidence. One exception, like with

Child-Pugh, was with hedging cases, which we did not account for, e.g. “ecog 0-1”, where

we only extract ECOG 0. Another exception was when the ECOG trigger was not in the

same sentence as the value. A borderline case is when performance status is mentioned but

not ECOG performance status in particular, “Otherwise his performance status is good at 1

bordering on 0.”
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Category Pos TP FP FN P R F1

0 141 83 18 58 0.822 0.589 0.686

1 84 54 15 30 0.783 0.642 0.706

2 25 16 4 9 0.800 0.640 0.711

≥ 3 9 4 1 5 0.800 0.444 0.571

ALL 259 157 38 102 0.805 0.606 0.692

Table 5.7: Explicit ECOG extraction results

Table 5.8 shows the results resolved for the document level compared to our previous baseline.

Unsurprisingly, our regular expression rule-based approach resulted in substantial improve-

ment over the n-gram document classification baseline.

Baseline Regex

Category Freq. Class. P R F1 P R F1

A 53 DT 0.46 0.49 0.47 0.83 0.94 0.88

B 25 C45 0.84 0.64 0.73 0.92 0.96 0.94

C 7 DT 0.50 0.14 0.22 0.88 1.0 0.93

Table 5.8: Explicit Child-pugh document classification results

Baseline Regex

Category Freq. Class. P R F1 P R F1

0 105 C45 0.71 0.71 0.71 0.96 0.68 0.79

1 65 DT 0.85 0.54 0.66 1.00 0.72 0.84

2 18 C45 0.89 0.44 0.59 1.00 0.78 0.88

≥ 3 8 DT 0.25 0.13 0.17 1.00 0.38 0.55

Table 5.9: Explicit ECOG document classification results
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5.4 Non-explicit Child-Pugh

In the training set, only 67 out of 160 patients had one or more explicit markings for Child-

Pugh; our extraction method detected 73/160 patients’ Child-Pugh values. This leaves ap-

proximately 54% of patients in need of non-explicit Child-Pugh calculations. The question

arises of how to handle calculated Child-Pugh stages against known explicit stages. Fur-

thermore, whether to resolve these issues if conflicts occur at the document level or at the

patient level, is open for debate. The benefit of resolving at the document level would be to

clear up any typos or internal consistency before passing incorrect information to the patient

level. However, while it is possible to disambiguate at the document level, we do not have

document level gold annotations for this. As a consequence, we defer this disambiguation for

the patient level. How we handled multiple values of Child-Pugh, some coming from explicit

text mentions and others from calculated text (ascites and hepatic encephalopathy values)

and from laboratory data, will be explored in Chapter 8.

5.5 Non-explicit ECOG performance status

In the training set, 136 out of 160 patients had one or more markings (both explicit and

non-explicit) for ECOG ; our extraction method detected 105/160 patients’ ECOG values.

This leaves approximately 34% of patients in need of ECOG staging. As mentioned previ-

ously, we ultimately decided not to classify for non-explicit ECOG. A factor in this decision

is the relative simplicity of the clinical assessment process (a couple minutes) combined with

the difficulty of the classification problem. Therefore, a classification system for this would

have little chance of good performance, meanwhile it would have little potential cost-savings.

In the following paragraphs, we offer a discussion of the challenging aspects in classifying

ECOG performance status as an NLP task.

ECOG performance status is one of several measures that give a global assessment of

patient functional capacity, ranging from 0 (normally active) to 5 (dead). Other systems

include Karnofsky Performance Status (KPS) and Palliative Performance Status (PPS). In
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research settings, performance status are used as criteria for clinical trials and to assess

treatment efficacy. In clinical practice, performance status is used to estimate prognosis or

therapy and to assess needs for home care. [102]

Though considered subjective, these performance status are useful, as no single lab or

quantifiable objective measure has the ability to capture the overall well-being of a patient.

However, there are definitional difficulties [139]. For example, “able to carry on all pre-

disease performance” is challenging. If ECOG status is used as primary or secondary mea-

sures during cancer treatments, which are known to have some adverse side-effects, should

these transitory events be part of the assessment? This definition is also contingent on the

patients’ normal daily levels of strenuous activities as well as their own ability to cope with

pain or discomfort. If drug side-effects are factored in, should weakened state due to a sur-

gical intervention also be included?

A young healthy paraplegic may be otherwise healthy before the effects of a cancer takes

a toll. Such a person may remain “fully active” but they are also technically “physically

restricted” and only capable of “limited selfcare”, which may be exasperated more intensely

during treatments. Consider another case of an elderly patient with end-stage renal disease

and some other cancer. A person with serious renal disease may not be ideal for a clinical

trial or may have poor prognosis regardless of the advancing cancer. Age can also have an

affect on functional status. For example, an elderly patient may be otherwise healthy, but

not able to do strenuous activity due to age. Or, to provide another comparison, would a

young healthy person that requires routine dialysis be rated the same or differently from a

healthy elderly person with the same needs?

In clinical practice, performance statuses are assigned based on observation of the pa-

tient. ECOG statuses have been known to be different depending on each assessor. For

example, there has been documented differences between physicians, nurses, and patients

[201][20]. Typically, agreement between 0-2 and >3 stage cut-offs, which is the usual cut-off

for clinical trials, is relatively high; actual kappa agreements between individual categories

are more variable.
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As an extraction task, the broad categorization of performance status and the conditional

complex requirements renders the problem into quite a byzantine challenge. Firstly, ascer-

taining the patient’s functional status from patient records is already a second-hand observa-

tion. Thus, there are already issues such as reporting biases and missing information. Pro-

cessing information from text, not only do specialized medical terms need to be recognized

and considered with their severity and the affect on the patient, their temporal attributes

in regards the the past and current status needs to be considered for the latest evidence.

Moreover, there are cases in which additional inferences may be required. For example,

occupations are also indicators. A patient who is currently working as a airplane pilot most

likely does not have any alarming physical restrictions. Another possible indicator includes

institution names such as hospitals or department referrals, e.g. physical therapy. Similar

to other clinical classification tasks, medication information, such as disease conditions, can

provide clues to the severity of illness. This adds another burden of such a classification

task, since it would require hiring highly trained medical domain expert annotators.

5.6 Summary

Child-Pugh and ECOG parameters are two cases of sub-stages used for liver cancer staging.

For these parameters, sometimes the actual stages are recorded in text explicitly. However,

when it is not recorded, the annotator must take into account algorithms used to perform

the staging. Explicit Child-Pugh and ECOG stages extraction, were captured through the

regular expression methods described here with reasonably success. The resolution of mul-

tiple explicit and calculated Child-Pugh will be discussed during patient level classifications.

Because ECOG is difficult to capture both because of its wide scope as well as its subjective

and amorphously defined nature, we decided to only extract its explicit values.
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Chapter 6

SENTENCE CLASSIFICATION FOR STAGE PARAMETER
NORMALIZATION USING STATISTICALLY SELECTED

FEATURES

In this chapter, we describe our sentence classification approach to identify and normal-

ize passages related to the stage parameters of ascites, hepatic encephalopathy, extrahepatic

invasion, macro vascular invasion, and metastasis, with their respective severity values. Ex-

amples of the text evidence for each parameter are shown in Table 6.1.

For this set of stage parameters, we cast the classification task as a multi-label sentence

classification for each stage parameter, using statistically selected features. Our final eval-

uation was again compared at the document level against our previous simple document

classification baseline.

6.1 Related work

The concepts we identify here are in many ways related to the previous information extraction

systems for finding cancer characteristics discussed in Chapter 2.2.2 or the sub-stages of the

cancer prediction systems in Chapter 2.2.1, which requires identifying and normalization of

concepts with their severity. However, of note, the dataset we have here cannot be considered

a straight-forward entity and relation extraction systems, as in some previous work such as

Ping et al [135], and Wang et al [181]. Firstly, annotation may consume several clauses.

Secondly, our annotation for each stage parameter is annotated for its corresponding concept

mentions, e.g. “mild ascites” as well as for related signs and symptoms text evidence, e.g.

“free fluid”.

Two sets of methodologies from related works relevant for these parameters are those
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Label Description Example Text

Ascites Accumulation of fluid in

the peritoneal cavity.

“He denies increasing abdominal girth”

“He has no problems with edema or ascites”

“No free fluid in the abdomen” “Small volume ascites”

Extrahepatic invasion Spread of cancer outside

of liver

“Extrahepatic metastatic disease: None”

“Lymph nodes: Scattered subcentimeter lymph nodes

not pathologic by size criteri”

“No evidence of extrahepatic extension”

Hepatic

encephalopathy
Confusion or altered con-

sciousness due to liver

failure

“He has no significant ascites or encephalopathy cirrhosis

has been complicated by hepatic encephalopathy”

“Lactulose”

“The patient denies any confusion, forgetfulness, or other

symptoms of hepatic encephalopathy”

Macrovascular

invasion
Spread of cancer to

nearby blood vessels

“No evidence of portal vein thrombosis”

“No obvious invasion of vessels is noted.”

“Portal veins are patent.” “Vascular invasion: None”

Metastasis Spread of cancer to

outside-liver lymph

nodes

“Lymph nodes suspicious for metastatic involvement: None”

“No abnormal lymph nodes”

“No evidence of extrahepatic extension or metastasis”

“No other findings suggestive of extrahepatic disease”

Portal hypertension Elevation of hepatic ve-

nous pressure gradient to

> 5mm Hg

“No evidence of portal HTN”

“Patient had an EGD which showed small varices”

“Recanalization of the umbilical vein, perigastric and peri-splenic

varices compatible with portal hypertension physiology”

Table 6.1: Text annotation examples

that exercise named entity recognition, such as Ou and Patrick [127] and Ashish et al [23],

and the sub-stage sentence classifications of McCowan et al [112] and Martinez and Li [108],

the latter of which also included some document classification approach. While each has its

merits, because our annotation highlights were not linguistically stringent (e.g. highlighting

well-defined noun phrases), we decided to use a similar approach to McCowan et al’s [112]

sentence classification.
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Though we also use a sentence classification approach, there are some distinct differences

between our approach compared to the work in McCowan et al [112]. Their classification

was for TNM staging, with which each T, N, and M represents separate sub-stages each

with their individual variety of characteristics. For example, the T sub-stage indicates size.

Therefore, a T sub-stage value may be T0 for no signs of tumor or T1, T2, T3, and T4 for

increasing sizes. Furthermore, individually, a T4 classification may require several distinct

criteria such as whether any of the following occurred: “great vessel invasion”, “pericardium

invasion”, and “separate tumor nodules in same lobe”. Their strategy used a divide-and-

conquer methodology. For example, the “separate tumor nodules in same lobe” criteria used

a keyword lookup approach; while, the former two criteria, in addition to a keyword filtering,

were treated using the same two-level sentence classifier (first level for relevance, second for

identifying true positive). Using another example, for N1 classification, two separate parallel

pipelines were used to identify for positive N1: one two-step sentence classifier for “hilar

lymph node involvement” and another two-step sentence classifier for “mediastinal lymph

node involvement”. Each sub-stage pipeline was described in their paper.

In contrast to McCowan et al’s [112], the stage parameters for our sentence classifications

are not sub-stages. We did not subdivide each individual stage parameter and its values,

e.g. using separate classifiers for different instances of ascites - none. Futhermore, though

we include a a filter for sentences from specific document types and employ negative class

instance sampling, our classification of the sentence is a simple one step classification.

In terms of the relevance of our stage parameters, our AJCC stages are in fact based on

summarized TNM stages. Therefore, there are several stage parameters relevant to TNM,

including extrahepatic invasion, macrovascular invasion, and metastasis, discussed in this

chapter, as well as tumor size and number, discussed in the next chapter. Unfortunately,

because our categorical divisions are not summarized the same way as McCowan et al’s [112],

our results cannot be directly compared.
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6.2 Methods

The data set was based on the previously split, 5-fold cross-validation of 160 patients from

the training set. Each stage parameter classification, was a multi-label classification problem

at the sentence level. For example, if a sentence has no marked ascites text evidence, it is

considered NEGATIVE. If a sentence has annotations for ascites-none, ascites-none would

be its sentence tag. If there were multiple values, e.g. both ascites-mild and ascites-moderate,

appeared, the tags would be a combined value, e.g. ascites-mild ## moderate for a sentence

“Mild to moderate ascites.”. We used maximum entropy as the classifier, with features

described in Section 6.2.2. In addition to the expert-annotated data, described previously, we

add a small amount of non-expert annotated data described in Section 6.2.1. As according to

our annotation, we restricted sentence classification for certain stage parameters to particular

document types; they are outlined in Table 4.1. A figure of our sentence classification pipeline

is shown in Figure 6.1.

Figure 6.1: Sentence classification workflow

6.2.1 Annotation enrichment

During annotation, to consider consistency, text evidence from the same sections were marked

by separate annotators and compared during inter-annotator agreement. To save time, not

all sentences with the same information in the document were annotated. However, this left
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positive evidence in the rest of the report sentences (some even in the same sections) that

are unannotated. Moreover, text from different sections of a report have different syntactic

and semantic representations despite representing the same information. For example, in the

History of Present Illness section, “He has no abdominal distention”, and in the Physi-

cal Examination section, “ABDOMEN: Soft, nontender, nondistended.”, both correspond

to text evidence ascites - none.

In order to enrich the dataset, we randomly sampled 70 documents, including both ra-

diology and clinical notes, from the training set of our HCC patient cohort and annotated

these documents fully for all text evidence for the 6 stage parameters in this chapter. In

total, these reports included were 5855 sentences. In contrast to previous annotations, these

annotations were carried out by a non-expert. Therefore, the result for these 70 documents

is fully annotated both positive and negative sentences, with mixed expert and non-expert

annotations.

The benefit of this additional annotation is a greater number of training examples of the

semantic variations for different parts of the document. The unmarked sentences in these

documents may also be considered true negatives (whereas other unmarked sentences may

either be true negatives or unmarked positives). These annotated sentences were included

only during the classification training phase.

6.2.2 Features

Selected features were determined by the N -top ranked 1-, 2-, and 3- grams and asserted1

UMLS concepts found in the original training set (excluding additional annotations). UMLS

concepts were identified using MetaMap [22]. Assertion classification was performed using an

in-house assertion classifier [27]. The top N -grams combined with its assertion classification

for 1-, 2-, and 3- grams were also added. Another feature was a binary indicator if a

categories’ significance feature occurred. A final feature was turned on if no features were

1Assertion classification labels text as one of several categories: not associated with the patient, hypo-
thetical, conditional, possible, absent, and present.
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detected.

As an example, for the classification of ascites, with N = 10. The features would include

the 1-, 2-, 3- grams (with asserted versions) and asserted UMLS concepts associated with

the top 10 values for each “none”, “mild/suppressed”, and “moderate/severe”. For diversity,

we used several significance measures, χ2, t-test, and pointwise mutual information (PMI),

defined below, and merged the resulting lists.

While this method choses N distinct significance values, the actual number of features

may be much more than N because many features have the same significance values, given

the small number of examples. Furthermore, since the each classification has of various

values, e.g. “none” and “mild/suppressed”, each with its own significance lists, and multiple

significance metrics, the set of features can become quite large even for a small N .

6.2.3 Measures of significance

Each feature, e.g. 1-gram=ascites, and label category, e.g. ascites-none, was constructed

into a contingency table and given a significance measure according to the following metrics.

χ2

χ2 is defined by the following equation for each observation type i configuration, e.g. ( no

occurrence of feature 1-gram=ascites and positive occurrence ascites-none):

χ2 =
∑

i

(Oi − Ei)
2

Ei

(6.1)

where Oi is the number of observations of type i, n is the total number of observations (num-

ber of sentences), and Ei is the expected number of observations for that configuration type.

Therefore, for the example configuration, observed Oi = frequency(nofeature, category)

and expected Ei =
frequency(nofeature)

n
∗ freq(category)

n
∗ n. This continues for other configura-

tions, e.g. (occurrence of feature, no occurrence of category), etc. for all four combinations;

the final value is the sum.
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T-test

The Student’s t-test is defined by the following equation:

t =
x− x0

s/
√
n

(6.2)

where we compare our observations against assuming the probabilities of a feature or a cat-

egory occurring are from uniform distributions. Thus, we let the observed distribution of a

positive feature, category combination to be, x = frequency(feature,category)
n

and the default to

be, x0 = frequency(feature)
n

frequency(category)
n

. The variance, s2, was approximated by p(1 − p),

where p = x0, according to the Bernoulli distribution.

Pointwise mutual information

Pointwise mutual information (PMI) is defined by the following equation:

pmi(feature, category) = log
p(feature, category)

p(feature)p(category)
(6.3)

Similar to previous calculations, the probability of p(feature, category) = frequency(feature,category)
n

and p(feature) = frequency(feature)
n

, p(category) = frequency(category)
n

.

6.2.4 Negative sampling

Negative sentences, defined as unannotated sentences (does not count true negatives from

the annotation enrichment), were randomly sampled to accompany the annotated sentences.

The number of negative sentences, x, was optimized during experimentation.

6.2.5 Evaluation

Performance was measured in terms of precision, recall, and F1 score defined previously in

Chapter 3.2, for the text span and document levels. Sentence classifications were converted

back to text spans and compared to gold-annotated text spans. Compound values, e.g.

ascites-mild ## moderate, were broken into multiple text annotations.
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6.3 Results

During experimentation, we optimized for the largest N (top number of significance values

for feature selection) and x (ratio to positive examples) to maximize recall performance (pre-

cision and F1 were not appropriate given the possibility of unannotated positive examples).

We tested values of N = {1, 5, 10, 20, 50, 100} and x = {0, 0.5, 1, 5, 10, 50, 100}. An example

of features in the top N = 1 for macrovascular invasion-yes-minor branch is in Table 6.2.

1-gram 2-gram 3-gram asserted-UMLS concept

associated venous tumor associated thrombosis of present-abnormality

anteriorly thrombosed , portal venous tumor present-clinicaltrialbranch

portal more completely which is thrombosis

completely described venous tumor thrombus

lesion extends lesion extends to

associated thrombosis to the anterior

...... ...

Table 6.2: Significant features for N = 1 top significance values for Macrovascular invasion-

Yes-minor branch

The classifier for ascites was optimized at N = 50, while hepatic encephalopathy was

optimized at N = 10. All others were optimized at N = 20. We leave differing the N value

for 1-gram, 2-gram, 3-gram, and asserted-UMLS concepts for future work. A ratio of x = 1.0

(equal number of positive examples) to draw unannotated sentences as negative examples

was the highest ratio that maintained high recall. Table 6.3 shows the resulting performance.

Table 6.4 shows the comparison of the sentence classification resolved at the document

level compared to our previous baseline. Cases with no annotation enrichment and no feature

selection, and no feature selection only are included for comparison. In all but three case,

hepatic encephalopathy - mild, macrovascular invasion - yes-minor branch, and metastasis -

yes-distal, we see that the sentence classification approach improves performance. Annotation

enrichment in general helped with most of the classifications, however, ascites - moderate-
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No feature selection Feature selection

Label Freq. Value P R F1 P R F1

Ascites 46 Mild 0.25 0.65 0.37 0.20 0.72 0.31

21 Moderate-Severe 0.36 0.38 0.37 0.42 0.38 0.40

146 None 0.32 0.91 0.47 0.29 0.90 0.43

213 ALL 0.30 0.80 0.44 0.27 0.81 0.40

Extrahepatic 62 No 0.84 0.82 0.83 0.90 0.85 0.88

invasion 3 Yes 0.00 0.00 0.00 0.00 0.00 0.00

65 ALL 0.84 0.78 0.81 0.90 0.82 0.85

Hepatic 41 Mild 0.41 0.29 0.34 0.34 0.56 0.42

encephalopathy 95 None 0.53 0.81 0.64 0.49 0.82 0.61

1 Severe 0.00 0.00 0.00 0.00 0.00 0.00

137 ALL 0.51 0.65 0.57 0.44 0.74 0.55

Macro-vascular 132 No 0.58 0.92 0.71 0.54 0.92 0.68

invasion 20 Yes-major branch 0.36 0.60 0.45 0.22 0.75 0.34

8 Yes-minor branch 0.33 0.13 0.18 0.29 0.25 0.27

160 ALL 0.55 0.84 0.67 0.46 0.86 0.60

Metastasis 95 No 0.47 0.84 0.61 0.47 0.85 0.60

7 Yes-distal 0.00 0.00 0.00 0.00 0.00 0.00

7 Yes-regional 0.00 0.00 0.00 0.50 0.29 0.36

126 ALL 0.47 0.75 0.58 0.46 0.77 0.58

Portal 11 No 0.50 0.09 0.15 0.33 0.09 0.14

hypertension 106 Yes 0.44 0.69 0.54 0.40 0.72 0.52

117 ALL 0.44 0.63 0.52 0.40 0.66 0.50

Table 6.3: Sentence classification performances

severe, hepatic encephalopathy -mild, metastasis - yes-regional, and portal hypertension - no,

did better without more annotations. The use of statistical feature selection was successful

in about half of the cases. Specifically, the minority classes benefitted more in such cases as

for ascites, macrovascular invasion, and metastasis.
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Document baseline No enrichment, no

feature selection

No feature selection Feature selection

Label Freq. Value Class. P R F1 P R F1 P R F1 P R F1

Ascites 44 Mild C45 0.24 0.18 0.21 0.35 0.80 0.49 0.48 0.70 0.57 0.44 0.86 0.58

20 Moderate-Severe DT 0.50 0.30 0.38 0.61 0.55 0.58 0.59 0.50 0.54 0.67 0.50 0.59

146 None DT 0.77 0.36 0.49 0.53 0.97 0.67 0.59 0.98 0.73 0.55 0.95 0.67

Extrahepatic 59 No SVM 0.81 0.85 0.83 0.55 0.98 0.70 0.87 0.90 0.88 0.90 0.90 0.90

invasion 2 Yes ≈ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hepatic 34 Mild DT 0.70 0.76 0.73 0.57 0.85 0.68 0.74 0.50 0.60 0.65 0.82 0.72

encephalopathy 95 None DT 0.71 0.73 0.72 0.44 0.96 0.60 0.64 0.85 0.73 0.62 0.87 0.73

1 Severe ≈ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Macro-vascular 127 No NB 0.71 0.96 0.82 0.76 0.98 0.86 0.80 0.96 0.87 0.78 0.97 0.86

invasion 20 Yes-major branch C45 0.50 0.55 0.52 0.56 0.90 0.69 0.67 0.80 0.73 0.46 0.90 0.61

8 Yes-minor branch C45 1.00 0.50 0.67 1.00 0.25 0.40 1.00 0.25 0.40 0.80 0.50 0.62

Metastasis 108 No DT 0.78 0.70 0.74 0.65 0.97 0.78 0.74 0.93 0.82 0.75 0.94 0.83

6 Yes-distal DT 0.50 0.17 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 Yes-regional ≈ 0.00 0.00 0.00 1.00 0.14 0.25 0.00 0.00 0.00 0.50 0.29 0.36

Portal 5 No ≈ 0.00 0.00 0.00 0.50 0.40 0.44 0.50 0.20 0.29 0.33 0.20 0.25

hypertension 84 Yes C45 0.84 0.80 0.82 0.69 1.00 0.82 0.92 0.92 0.92 0.89 0.98 0.93

Table 6.4: System evaluated at document level compared to document classification baseline.

Bolded rows shows the best F1 performances for each stage parameter value.

6.4 Discussion and error analysis

We analyzed the test set for one fold of the cross validation to identify the accuracy of the

sentence classifications and give some brief characterizations below.

6.4.1 Sentence classification

Ascites

We found that many false positives (98% for none, 48% mild, and 100% moderate/severe)

were correct. Much of the misclassifications can be attributable to the confusion between

moderate-severe category for some mild category cases. This was most likely due to the

smaller amount of moderate-severe cases as well as the higher variety at which it was found,

e.g. “gross ascites”, “extensive ascites”, “refractory ascites”, or “ascites [...] required multi-
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ple large volume paracenteses”. Other false positives were due to cirrhosis-related sentences.

Extrahepatic invasion

This stage parameter was very imbalanced. For the majority category, it was highly accurate.

The affirmative, Extrahepatic invasion - yes, would most likely occur for patients at the later

stages of liver cancer which our population does not well represent.

Hepatic encephalopathy

For false positives, 78% none and 64% mild were accurate. This classification was one in

which drug information was used as text evidence. However, the use of the particular drugs

might have been a source of confusion. For example, if a patient was taking “lactulose”

they would be considered to at least have hepatic encephalopathy - mild. However, there

were passages such as “supposed to be on lactulose but not taking”. Other challenges include

some evidence that relies on more complex inference, e.g. “he only complains of mild, occa-

sional confusion” or “has well-compensated cirrhosis to date. he has not had any significant

complications”. The severe category was under-represented.

Macrovascular invasion

About 2/3 of the false positives for the yes-major branch category were correct while the

rest were misclassififed yes-minor branch. The confusion between the two categories is under-

standable as there are many variations and word-orders to express the major blood vessels,

e.g. “the portal vein”, in contrast to the subparts of the major blood vessels, e.g. “superior

mesenteric vein” or “anterior branches of the right portal vein”. For the majority category,

no, 84% of false positives were correct, e.g. “vascular invasion: none” or “hepatic arteries,

veins, and portal veins are patent”. False negatives for all categories included different se-

mantic variations expressing blockages of blood vessels using different types of terms, e.g.

“involvement”, “infiltrated”, “distending” or “occluded”.
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Metastasis

Negative findings of metastasis, also the majority category for this stage parameter, metas-

tasis - no, had many instances of straight-forward text clues, e.g. “extrahepatic metastatic

disease: none”, leading to a high number of false positives which were correct. However,

there was some confounding features related to lymph nodes. This was due to the inclusion

of lymph nodes as evidence of metastasis - yes regional, but only if they were pathologically

related to the cancer, e.g. “Enlarged peripancreatic and porta hepatis lymph nodes may be

reactive or due to nodal metastases.” would be marked, but “Enlarged peripancreatic and

porta hepatis lymph nodes” alone would not be. If there were “no enlarged lymph nodes”,

“no lymphadenopathy”, the lymph nodes were “stable” or did not “demonstrate enhance-

ment or washout to suggest a represent metastatic disease”, these would be considered to

support metastasis - none. For distant metastasis, metastasis - yes distal, any malignant tu-

mor findings in other anatomic locations outside of the liver would affirmatively support this

category. However, again, these types of patients were not well-represented in our dataset.

Portal hypertension

While there were instances in the majority class text evidence that mention portal hyper-

tension, a significant portion of the evidence regarded portal hypertension signs, e.g. “large

gastroesophageal varicose”, “spleen: enlarged”, or “splenomegaly”. Interestingly the portal

hypertension - no category consistently missed some relatively simple text evidence, that

our features should have captured, e.g. “No, there are no signs of portal hypertension”, “no

evidence of portal htn”, or “No, liver cirrhosis with stigmata of portal hypertension”. The

false negatives for portal hypertension - yes, similarly had very unequivocal mentions of por-

tal hypertension, e.g. “the patient is a child’s a cirrhotic with known portal hypertension”.

While normalization involving the signs and symptoms related to the portal venous system

would help, e.g. grouping all vessels or organs related to the portal venous systems, merely

annotating more would at least resolve these more obvious cases without need for extra fea-
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ture extraction techniques. We found 95% of false positives correct for the majority, yes,

class.

Analyzing the effect of feature selection on the feature space size, while feature selection ap-

proximately halved the number of features for ascites, macrovascular invasion, and metas-

tasis, the other classifications had approximately the same number of features. This is

attributable to the mechanism of feature selection which relies on some spread of signifi-

cance values for each label-value stage parameter category. For example, since extrahepatic

invasion - yes had very few examples, because of few significance value brackets, the top 20

values may turn up all the features.

These problems may be mitigated by careful tuning of N , individualized by each classifi-

cation category, e.g. the N for ascites-none should not be the same as the N for ascites-mild.

Even the N for 1-, 2-, 3-, and asserted UMLS concepts can be individualized and tuned to

receive a more reliable performance. A key factor is the need for more expert training data.

In our experiments, a small amount of non-expert enriched data, in general, facilitated im-

proved performances. However, it is reasonable to conclude that additional expert-annotated

data would be of higher quality, thereby yielding better performance and generalizability.

We used relatively simple features, N -grams and UMLS concepts, that are sufficient for

variables with fewer semantic variations (such as for ascites). Normalization for drugs in

hepatic encephalopathy, e.g. grouping similar drug classes into one feature, normalization

for larger and smaller blood vessels in the liver macrovascular invasion, e.g. grouping large

blood vessels under one feature, and normalization for organs and vessels that are a compo-

nent of the portal venous system for portal hypertension would allow, theoretically, for better

upstream features during feature selection. Normalization for findings associated with liver

and non-liver locations would help for extrahepatic invasion and metastasis.

Finally, we note that we assumed individual sentences may characterize a patient, this

idea is somewhat murky. For example, for metastasis - none, information regarding enlarged

lymph nodes is conveyed in multiple sentences “lymph nodes: numerous retroperitoneal and
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peri portal lymph nodes are evident. none of these demonstrate enhancement or washout to

suggest a represent metastatic disease”. Figures 6.2, 6.3, and 6.4, also provide examples in

which outside sentence information makes a difference.

He reports drinking heavily up until his HCV diagnosis, but became abstinent since due to

concern for the health of his liver.

In the past few months Mr. Xxxxxxxx endorses sometimes getting confused, and

has had others tell him that he is not acting like himself and not making sense.

Mr. Xxxxxxxx denies any other symptoms or complications related to his cirrhosis including

nausea, vomiting, ascites, jaundice, fatigue, edema or bleeding tendency.

Figure 6.2: The meaning of overall evidence may change over multiple lines. Here we un-

derstand confusion to be related to hepatic encephalopathy only through the surrounding

sentence context.

Lymph nodes: Prominent epiphrenic paracardiac node measures 0.8 x 0.9 cm

(4/133).

Prominent porta hepatis nodes measure 1.2 cm (4/181) and 1.1 cm (4/186) .

Enlarged peripancreatic node measures 1.7 cm in short axis (4/176).

There are multiple scattered retroperitoneal and messentric lymph nodes which are not enlarged

by size criteria.

Bones: No concerning lytic or blastic osseous lesions.

...

3. Enlarged peripancreatic and porta hepatis lymph nodes may be reactive or due

to nodal metastases.

Figure 6.3: Example in which one sentence does not have enough information (first bolded

sentence), but another similar sentence referring the same clinical phenomenon (second

bolded sentence), has additional information.
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HISTORY OF PRESENT ILLNESS

..

Over the last 3 weeks he has developed abdominal distention consistent with as-

cites.

...

PHYSICAL EXAMINATION

...

ABDOMEN: soft.

Moderate to large distention but not tight.

Positive large ascites on exam.

...

ASSESSMENT AND PLAN:

...

He is showing evidence of increasing ascites most likely related to some mild

hepatic impairment in conjunction with extensive vascular invasion.

Figure 6.4: Without the text evidence in the Physical Examination section, the other men-

tions of ascites is much more vague. With less specific information, as with the first and last

sentences, it makes more sense to assume the mild case.

6.4.2 Document level evaluation

Although in most cases, the annotation enrichment benefitted the classification, surprisingly,

addition of more annotated data caused performance to drop in 4 categories, e.g. ascites -

moderate-severe, hepatic encephalopathy - mild, metastasis - yes-regional, and portal hyper-

tension - no. This is likely due to increasing in the amount of training variations, for the

relatively lower frequency labels.

Our system involving sentence classification and resolving to the document level yielded

higher results over the 1-, 2-, 3- gram document classification baselines. However this may

be attributable to higher-level features (assertion classification) as well as enrichment of the

corpus with more annotation. The document classification baseline did outperform for the

hepatic encephalopathy - mild and metastasis - yes-distal baselines. Though, this was minor

for the former category.

Of note, our annotations are sub-document, while our evaluation is at the document
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level. So there may be some discrepancy regarding the actual category of a document when

supposedly there are multiple marked categories of evidence within it. Moreover, given that

there are multiple documents per patient, there was possibly some documents with missing

annotations. From a comparison with document level inter-annotator agreement, several

categories with below 0.85 F1 agreements were ascites, extrahepatic invasion, and hepatic

encephalopathy with 0.60, 0.75, 0.80 F1 agreements, respectively.

6.5 Summary

In this chapter, we describe our sentence classification method to identifying and normaliz-

ing text evidence to stage parameter labels and values. Through this, we provide a general

approach to find text evidence related to a certain phenotype given some annotations. As

clinical domain experts cannot be expected to undertake the detailed and stringent anno-

tation, this loose form of annotation gives enough detail (sub-document highlights) without

being overwhelming (such as requiring detailed concept identification and sense normaliza-

tion).

Though our approach was overall only marginally more effective for most categories than

comparative set-ups, this methodology has a lot of potential to improve with little mod-

ifications. Mainly, with some further feature tuning, and most importantly, more expert

annotated data, we can confidently expect additional performance boosts. Other possible

improvements include additional feature normalization techniques.
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Chapter 7

TUMOR CHARACTERISTICS EXTRACTION

This chapter describes a sub-system designed to extract entities and relations related

for tumor information. These entities and relations are then assembled into templates, with

some attribute identification. Then, finally, the templates are processed so that tumor related

characteristics in a document such as size, number, and invasion of the organ are calculated.

The work here is the subject of several of our papers [194], [196], [195].

7.1 Introduction

When biopsy or resection specimens are unavailable, clinicians may rely on non-invasive

imaging studies to identify and characterize malignant tumors prior to planning treatment.

This is often the case for HCC, since biopsies carry a significant danger of bleeding and

tumor spread; further, tumor features on CT or MRI are considered highly sensitive and

specific. As in other tumor diagnostic reports such as for histology and pathology, imaging

reports describe crucial information related to a tumor, including location, number, size, and

spread. This information is located throughout a report in a fragmented fashion, as shown in

Figure 7.1, where diagnosis appears in the impressions section with summative information

of previously mentioned lesions from the findings sections.

Moreover, previous measurements may become a confounding extraction problem be-

cause radiology reports often cite past readings. For example, Figure 7.2 shows a previous

measurement mentioned.

In contrast to histologic or pathologic analyses which tests directly on specific corporal

samples, cross-sectional imaging covers a large volume of tissue and therefore may pick up

other non-cancerous entities. Further, imaging diagnostics may be prone to uncertainty
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25: Focal lesions:

26: Total number: 5

27: Lesion 1: segment 8, 2.2 x 1.4cm , image 3/8, hyper enhancing with washout on delayed phase.

28: Lesion 2: segment 5, 2.0 x 1.8cm , image 3/25, hyper enhancing with washout on delayed phase.

29: Lesion 3: segment 4A, 1.8cm , image 3/7, hyper enhancing with washout on delayed phase.

30: Lesion 4: segment 8, 1.6 x 1.1cm , image 3/15, hyper enhancing with no definite washout.

31: Lesion 5: segment 6, 0.4cm , image 3/28, hyper enhancing with no definite washout.

..

35: Impression:

36:
3 focal lesions in segment 4A, 5 and 8 are hyper enhancing with washout on delayed

phase, typical for HCC.

37:
2 focal lesions in segment 8 and 6 are hyper enhancing with no definite washout on

portal venous/ delayed phase suggestive of indeterminate nodules.

Figure 7.1: Anaphoric and split antecedent tumor references in radiology reports

The previously visualized mass involving segment 5 and segment 6 has increased in size (cranial

caudal measuring 11 mm, previously 8.5 mm) and now extends to involve segment 4.

Figure 7.2: Temporal tumor references

related to limitations of technology. Detected anomalies in imaging reports may be related

to various cancer types, but could also be benign entities such as hemangiomas (tumors

made of cells that line blood vessels), cysts (abnormal membranous sac containing fluid),

pseudomasses (from imaging anomalies), or anatomic scarring. Table 7.1 shows examples in

which tumor references are determined as malignant, benign, or indeterminate.
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Tumor status Example Passage

Malignant

1.9 x 1.8 cm hyperenhancing mass on the arterial phase with enhancing pseudocap-

sule, corresponding washout on portal venous phase as well as T2 hyperintensity

and restricted diffusion, characteristic of HCC.

Benign
There are multiple scattered hepatic hypodensities that exhibit no enhancement and

likely represent cysts.

Indeterminate

In segment 4a, there is a stable hypovascular lesion which is indeterminate and could

represent a regenerative nodule. Would recommend MRI with Eovist specifically to

further evaluate this lesion.

Table 7.1: Examples of tumor statuses

Reference resolution is the task of identifying expressions in text that refer the same

real-world entity. In order to thread together the fragmented information we must be able to

disambiguate which tumor findings respond to which. For example, consider the following

excerpt from a radiology report:

22: Within hepatic segment II/III there is 14 x 9 mm hypervascular lesion(1) is isotense

to liver parenchyma on portal venous phase ...

24: This lesion(1) is suspicious for hepatocellular carcinoma.

........

41: Impression:

42: Hypervascular lesion(1) in hepatic segment II/III with imaging features suspicious

for hepatocellular carcinoma.

Figure 7.3: Radiology report excerpt

The three mentions of the hypervascular lesion appear in separate sentences, yet the reader

will naturally group them as one real world entity.

The state-of-the-art in reference resolution in the general domain is still challenging; this

condition is even more dire for the clinical domain, in which there is a relative scarcity of

annotated corpora. Furthermore, in the clinical domain, there are still well-known unsolved

text processing problems such as ill-formed, ungrammatical, telegraphic, semi-structured,
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abbreviation-ridden narratives.

In the following sections, we describe our annotation and system-building for: (a) tumor

information extraction, to capture and structure the scattered tumor-related information in

reports, (b) tumor reference resolution, to condense the same information together, and (c)

tumor characteristics, to use the structured and reference resolved tumor information to find

staging-relevant characteristics.

7.2 Dataset

For deeper tumor information annotation, we randomly selected 101 radiology reports from

the previously divided 160 HCC patient training set. Here we have 3 distinct levels of anno-

tation: (a) tumor-related finding event annotations, (b) tumor reference resolution and (c)

tumor characteristics. After describing our annotation, we show inter annotator agreement

for all three levels.

7.3 Annotation description

7.3.1 Template annotation

Templates are pre-determined simplified representations of knowledge, here comprised of

entities, spans of text with assigned label names, and relations, directed links between enti-

ties. In our task, entities captured anatomic entities, tumor references, sizes, number, cancer

diagnosis, whereas relations ensured that the proper descriptions linked to the items they

characterized. Our template schema was designed by a biomedical informatics graduate stu-

dent and a medical student. Figure 7.2 includes example sentences annotated with entities

and relations. We used Brat [163] a web-based annotation tool, for our annotation software.

Our entities had the following types: (1) Anatomy: anatomic locations in the human

body (e.g., segment 5 or left lobe) with attributes (Liver, NonLiver), (2) Measurement:

quantitative size in the text (e.g., 2.2 x 2.0 cm), (3) Negation: indicator to some negation

of a tumor reference (e.g., no) (4) Tumor count: number of tumor references (e.g., two or
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reference or a measurements (the starting point of the relation or the head) in all avail-

able lines, but only annotated other entities if they were related to our tumor reference or

measurements or if it appeared in a line with annotations, (3) we annotated radiographic

evidence of tumorhood evidence, e.g. “hypervascular with washout,” and (4) we added extra

relations from a measurement to an anatomy when they referred to different locations. Re-

lation attachments over multiple lines were allowed, though we did not mark for co-referring

information and each tumor reference was treated separately.

We decided on (1) because, we found that the “findings” and “impressions” sections

comprehensively harbored the radiologic information in the report. Other parts of reports

had comparatively more unimportant tumor information, e.g. in the “indication” section,

“please determine size and location of tumor.”

Our reason for designating tumor references and measurements as heads, in decision (2),

was part of our strategy to maximize annotation simplicity. For example, we avoided a lot of

excess annotation by not allowing pronouns such as “this”, “these”, “the largest” as a tumor

reference, e.g. Figure 7.4 line 21. Measurements were allowed as heads because in absence

of a nearby tumor reference, a size was the most reliable indicator of tumor information,

e.g. “1. Segment VII: 2.6 x 2.4 cm, hyper enhancing with washout.” By only annotating

entities related to these heads, we avoided lines without any information of interest. We an-

notated other entities within a line, not necessarily related to an event, to provide negative

example cases. For example, an anatomy entity may only be near a tumor without actually

having been invaded, e.g. Figure 7.4 line 23, or instead a measurement may be measuring

an anatomy entity instead, e.g. Figure 7.4.

The full annotation guidelines are provided in Appendix D.
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e.g. Figure 7.6, where Lesions(1) is a reference that represents a set of items, partic-

ularized by Lesion(2), Lesion(3), and Lesion(4).

21: Lesions(1) consistent with HCC given their enhancement characteristics:

22: 1. Lesion(2) in segment 8 measuring 1.2 x 1.3 cm previously measuring 1.3 x 1.7 cm

23: 2. Lesion(3) in segment 4A measuring 1.2 x 0.9 cm not clearly seen on the previous study.

24: 3. Lesion(4) on the border between segment 4A and 8 measuring 2.9 x 3.5 cm previously

measured 2.5 x 2.6 cm

Figure 7.6: Example of one reference and its particularizations

Pronominal cases, e.g. “it”, “they”, and “these” are unmarked.

For our annotation software, we again used brat, a web-based, annotation software for

our reference resolution annotation. Since the number of coreference and particularization

relations would visually render the annotations to be highly cluttered, we augmented the

software to output text information regarding the clusters and particularizations annotated

whenever the user selected a “show references” button, as shown in Figure 7.7.

Full annotation guidelines are provided in Appendix E.
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Figure 7.7: Brat annotation with augmentations.

7.3.3 Tumor characteristics annotation

Additionally, we are interested in the real-world task of automatically categorizing patients

into liver cancer staging phenotypes, to which reference resolution is only an intermediate

step. To this end, we are motivated to identify three summative tumor characteristic vari-

ables important for staging: (1) largest size of a malignant tumor, (2) tumor counts, and (3)
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whether 50% of the liver organ is invaded by tumors. These are relevant for three liver can-

cer staging algorithms: AJCC (American Joint Committee on Cancer), BCLC (Barcelona

Cancer of the Liver Clinic), and CLIP (Cancer of the Liver Italian Program). Since these

variables require aggregate knowledge of tumor-related attributes, an end-to-end evaluation,

incorporating reference resolution, using these staging variables would provide a worthy per-

spective.

Tumor characteristics annotation included a spreadsheet that referenced each document

name and (1) the number of tumor counts by type (benign, indeterminate, unknown, and

malignant), (2) the largest size for malignant tumors, and (3) whether or not more than

50% of the liver is invaded. We decided to mark inequalities, as at times the documents

do not in fact give a clear number. Meanwhile, we also collected information regarding the

various tumor counts for each of the Findings and Impression sections, as well as the entire

document. A sample is of this is shown in Figure 7.8.

Figure 7.8: Tumor characteristics annotation

Because the measurement for (3) is not readily quantifiable given the information in

reports, we use a series of expert-created guidelines to determine the criteria for (3), as

outlined in the Figure 7.9 below. The full annotation guidelines are given in Appendix F.
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Tumor extension for malignant tumors are considered over 50% if ANY

of the following conditions are met:

1. Tumor ≥ 10 cm

2. >4 segments involved

3. “majority” of “right lobe” involved

4. All right lobe segments involved

5. Entire left lobe plus some right lobe involved

6. Some description to suggest much of liver involved, e.g. massive very extensive

Figure 7.9: Logic for >50% of liver invaded

7.4 Evaluation

7.4.1 Template evaluation

Our evaluation for templates was carried out at three levels: (a) entity, (b) relation, and

(c) template levels. We used precision, recall, and F-1 measure, defined previously, as our

inter-annotator agreement measure (where one annotator was held as the gold standard).

Two entities were considered matching if they had the same label, attribute (if appro-

priate), and document offset text spans. Relations were considered matching if both of its

entities matched, and the relation types both matched. Two templates were considered

matching if all its entities and relations matched that of the other template. Partial entity

match allowed document to be counted as matching if document text spans at least over-

lapped and their labels matched. Similarly relation partial matching was defined on whether

the two pair of entities partially matched and if the relation type was correct. Partial tem-

plate match was defined by whether all entities and relations were partially matched.

7.4.2 Reference resolution evaluation

Coreference evaluations were based on MUC [179], B-cubed [24], and CEAF [101] F1 scores.

Reference resolution for particularization relations were measured using relations F1 score.

Tumor characteristics were evaluated based on the label assigned to a specific document,
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document section, and tumor characteristics variable combination. In the next sections, we

detail the specific instance, precision, and recall definitions for each metric.

Coreference evaluation

In the following sections, we provide formulaic definitions of the coreference evaluation met-

rics.

MUC metric

The MUC (Message Understanding Conference) metric [179] measures the minimum

amount of of correct links necessary to transform the key’s (the gold) equivalence classes,

partitioned by the responses’s (the system) equivalence classes, back to its original equiva-

lence classes. First the relative partition of the key’s classes are identified with respect to

the system’s by intersecting the key’s sets with the system sets that over lap with the key.

For example, if Qi = {A,B,C,D} is one equivalence class in the key and S = {{A,B}} is

the system’s set of equivalence classes then the partition of Qi is p(Qi) = {{A,B}{C}{D}}.
After this separation, the number of links to connect back into the key’s original classes can

be quantified.

Recall is defined by:

R =

∑
(|Qi| − |p(Qi)|)∑

(|Qi| − 1)
(7.1)

where |p(Qi)| is the cardinality of partitions in the key’s i-th equivalence class, with respect

to the system, and the denominator represents the minimal number of correct links necessary

possible. Precision is calculated by reversing the system and the key answer sets; meanwhile

F1 is computed as before in Equation 3.3.
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B-cubed metric

The B-cubed metric [24] we employ here is the uniformly weighted element-wise mea-

surement of recall for the classes containing each element.

Recall is defined by:

R =
n∑

eε{⋃i Qi}
wi ∗ |Qe

⋂
Se|

|Qe| (7.2)

where e is a mention in the key, n is the total number of mentions in the key, wi is set to

wi =
1
n
and Qe is the equivalence class in the key that contains e and Se is the system class

that contains e.

CEAF metric

CEAF [101] precision and recall are defined based on an optimal one-to-one alignment

of the system and key equivalence classes, based on a similarity function φ, where extra-

neous classes are discarded. Thus for a set of key equivalence classes Q(d) = {Qi : i =

1, 2, ..., |Q(d)|}, system equivalence classes S(d) = {Si : i = 1, 2, ..., |S(d)|}, let Gm be the set

of one-to-one maps between Q and S for m = min{|Q|, |S|} classes, where we denote g as a

function mapping Q to S. We now define the best mapping function g∗:

g∗ = argmax
gεGm

∑

Q

Φ(g) (7.3)

where

Φ(g) =
∑

QεQm

φ(Q, g(Q)) (7.4)

i.e. the best alignment is the one that maximizes the sum of the similarity function for the

matches. Finally, precision and recall defined:
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P =
Φ(g∗)∑
i φ(Si, Si)

(7.5)

R =
Φ(g∗)∑

i φ(Qi, Qi)
(7.6)

where F1 is defined again as in Equation 3.3. Precision is the sum of similarities between the

best alignment of G to S, normalized by the sum of similarities of each item in S to itself.

Recall is calculated in the similar way except using Q.

We used the relative measure of similarity φ = 2|R⋂
S|

|R|+|S| , which is the φ4 in the original

definition paper. Meanwhile, the optimal assignment problem based on a given definition of

φ may be calculated using the Kuhn-Munkres Algorithm [92].

Particularization relation evaluation

Particularization relations are labeled directed connection between two mentions. A correct

relation requires the correct label (in this case particularization) and the correct identifica-

tion of the first mention to the second mention. Precision and recall are the same as those

defined in Equations 3.1 and 3.2

7.4.3 Tumor characteristics evaluation

Tumor characteristics evaluation was based on the correct label for each document and

tumor characteristic variable: (1) tumor counts for benign, indeterminate, malignant, and

unknown and (2) largest size for malignant tumors, and (3) whether > 50% of liver is invaded.

Although we also labelled tumor counts for specific sections in a document (Findings and

Impression) we only evaluate values for the entire document in this work.

We also introduced a relaxed match motivated by our specific extraction needs for liver

cancer staging for AJCC, BCLC, and CLIP liver cancer algorithms. Based on staging criteria,

there were certain critical thresholds that affect the score. For example, given malignant
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tumor measurements all under 3cm, it does not make a difference if our algorithm cannot

distinguish between 2 or 3 tumors, or if it cannot distinguish between 5 and 10 tumors;

however, if the system cannot distinguish between a single tumor and multiple tumors,

the cancer stage is changed drastically. The case is the same for certain sizes. Thus, our

relaxed match measures based on the bins discretized from the critical values of our staging

algorithms. The bin thresholds are the same as those summarizing our tumor characteristics

annotation distribution in Table 7.7.

7.5 Inter-annotator agreement

7.5.1 Template agreement

After agreeing on a final annotation schema, the biomedical informatics graduate student

and medical student tested inter-annotator agreement on a set of randomly selected 31 ra-

diology documents. At the first annotator meeting, agreement was scored at 0.84, 0.73, 0.54

F1 for entities, relations, and templates, respectively. After refining guidelines further, the

annotators re-annotated on the same set. The final entity, relation, and template agreements

improved to 0.88, 0.78, 0.61 F1, with partial scores of 0.93, 0.90, and 0.70 F1. The full break-

down is shown in Tables 4, 5, and 6. Reported templates are broken down into categories by

their constituent relations for finer-grained analysis. For example, if refersTo was a relation

in the template, it is categorized as an AnatomyMeasure template; if the template has an

isNegated relation, it is a Negative template. Singletons were all templates with a single

entity. The remaining templates were categorized as tumor events.

The medical student annotator annotated the remaining 70 reports of the corpus. The

total number of entities, relations, and templates for the 101 radiology report corpus were

3211, 2283 and 1006, respectively.
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Label TP FP FN P R F

Anatomy 316 32 49 0.91 0.87 0.89

Measurement 159 1 2 0.99 0.98 0.99

Negation 23 0 3 1.00 0.88 0.94

Tumor count 65 2 5 0.97 0.93 0.95

Tumor reference 245 7 14 0.97 0.94 0.96

Tumorhood evidence 159 14 24 0.92 0.87 0.89

ALL 967 56 97 0.95 0.91 0.93

Table 7.3: Entity agreements (partial)

Label TP FP FN P R F

hadMeasurement 15 0 2 1.00 0.88 0.94

hasCount 64 3 6 0.96 0.91 0.93

hasMeasurement 94 6 8 0.94 0.92 0.93

hasTumEvid 155 23 27 0.87 0.85 0.86

isNegated 24 0 3 1.00 0.89 0.94

locatedIn 279 25 39 0.92 0.88 0.90

refersTo 24 4 7 0.86 0.77 0.81

ALL 655 61 92 0.92 0.88 0.90

Table 7.4: Relation agreement (partial)

Label TP FP FN P R F

AnatomyMeas 20 5 8 0.80 0.71 0.76

Negative 17 7 10 0.71 0.63 0.67

Singleton 34 23 24 0.60 0.59 0.59

TumorEvent 161 57 62 0.74 0.72 0.73

ALL 232 92 104 0.72 0.69 0.70

Table 7.5: Template agreement (partial)
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7.5.2 Reference resolution agreement

Annotation for both reference resolution and tumor characteristics were performed together

on all 101 reports. 20 reports were used to measure inter-annotator agreement between a

medical student and a biomedical informatics graduate student. The rest of the corpus was

single-annotated by the biomedical informatics student.

We measured inter-annotator agreement for coreference in terms of MUC [179], B-cubed

[24], and CEAF [101] for tumor-related template heads. The agreements were at 0.956,

0.969 and 0.916 F1, respectively. For annotator 2, there were 20 clusters (no singletons),

149 clusters (with singletons), with the average size of 2.7 entities per cluster. The cluster-

normalized F1 measure for particularization relations was at 0.837.

Lesion 3: Multiple satellite lesions for example, segment 4 measures 2 cm

This region is heterogeneously hyper intense with numerous regions of focal

washout

Mild increase in size of segment 6 hyper vascular focus from 1.2 to 2.2 cm with

central area of nodular hyper vascular focus

Figure 7.10: Examples of coreference relations that can be mistaken as particularizations

Some ambiguities did occur between coreference and particularization, which accounted

for some of the disparity in inter-annotator agreement. Mainly, as given in the examples of

Figure 7.10, some mentions are singular but may be equivalent to the plural form of another

mention.

The final corpus has 210 clusters (no singletons), 479 cluster (with singletons), with an

average of 2.60 mentions per cluster. Inferred particularization relations amounted to 573.

The average and median number of sentences between the closest pairwise mentions in the

same cluster are 10 and 6 sentences respectively. The large difference between mean and

median suggests the existence of some very long-distance coreference relations. The mean

proportion of mentions that are exact matches in a cluster is 37%, 43% if normalized for capi-
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talizations. The average proportion of mentions found in the Findings and Impression section

per cluster respectively, are 57% and 38%. The proportion of particularization relations that

connect mentions in different sections is 47%.

7.5.3 Tumor characteristics agreement

The inter-annotator agreement is shown in Table 7.6. In general, results were high but there

were some ambiguities in the annotation that led to some disagreements.

Label TP F1 F1 (relaxed)

Benign 17 0.85 0.95

Indet 18 0.90 0.95

Malignant 17 0.85 0.95

Unk 20 1.0 1.0

LargestSize 17 0.85 0.95

>50% 20 1.00 1.00

Table 7.6: Tumor characteristics inter-annotator agreement

Tumor characteristics annotation were subject to various gray areas. For example for

tumor counts, at times there were many ambiguous statements regarding the numbers. One

example of this is in the case of conjunctions, several examples of which are shown in Figure

7.11.

5-6-mm segment 6/7 and 5 hyper vascular foci

A small enhancing area seen along the lateral aspect of segment 6, segment 7,

and segment 4b/5

Figure 7.11: Conjunction ambiguities.

The first statement can imply either one 5-6-mm focus in segment 6/7 and one in segment

5, or one 5-6-mm touching segments 6/7 and segment 5; or multiple 5-6-mm foci in the areas
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of segment 6/7 and 5. Similarly, “enhancing area”, in the latter statement, may be one large

area inside segment 6 and 7 (which are adjacent) or separate areas in 6 and 7.

Furthermore, to gather the most accurate number bounds for tumor counts, it was at

times necessary to add multiple inequalities, e.g. if there are multiple (but unspecified or

only partially specified) lesions in separate areas, which added to the cognitive load.

Annotating the largest size was the least controversial, though this too has some ambi-

guity. For example the same lesion may have two different measurements in a single report.

For example in the Findings section, the largest size might be “2.5cm” but the same lesion is

later referred to as “2.4cm” in the Impression section. In another example, one measurement

mentioned may be specific, e.g. “6.3 x 6.1 x 9.8 cm”, and but later rounded, e.g. “6 x 6 x 10

cm”. Moreover, the amount of text and lengths of the documents, including many possible

repetitions, could make it difficult to locate the best representable sizes.

The >50% variable was at times still unclear, even with the guideline. Analyzing Figure

7.12 as an example, it is obvious that there are multiple tumors in both the right lobe and

in the left lobe; however only 3 segments are specifically mentioned. It is therefore not clear

if the unmentioned numerous tumors may be all over the liver or only in those specific parts.

Focal lesions:

Multifocal HCC with hypervascular washout

In the right hepatic lobe, the largest is in segment 5/6.

It measures 4.5 x 4.4 cm image 21/7

In the left hepatic lobe, the largest is in segment 4a.

It measures 3.6 x 3.5 cm

Impression:

Multifocal HCC with malignant vascular invasion of the right portal vein and IVC

Figure 7.12: Ambiguity in tumor invasion area.

The distribution for the full corpus of the tumor characteristics annotation, binned along

critical threshholds, is shown in Table 7.7.
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Annotation categories

Tumor counts Number Freq.

Benign 0 69

1 8

2-3 10

> 3 8

[2-3, > 3] 6

Indet 0 62

1 19

2-3 9

> 3 4

[2-3, > 3] 7

Malig 0 3.0

1 54

2-3 25

> 3 13

[2-3, > 3] 6

Unk 0 89

1 5

2-3 2

> 3 2

[2-3, > 3] 2.0

[0, 1, 2-3, > 3] 1.0

Largest size Size (cm) Freq.

[0,3) 43

[3,5] 26

(5-10) 17

[10,) 10

n/a 5

>50% Label Freq.

n/a 4

no 83

yes 14

Table 7.7: Tumor characteristics annotation distributions, binned according to crucial stag-

ing values. The value of “[0, 1, 2-3, > 3]” was for a case in which the full number of lesions

was given, but it was unclear how many were malignant, resulting in an unknown lesion

inequality after subtraction < 5.
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California Irvine data warehouse and looked for structured classes such as TNM stage, cap-

sule invasion, lymph invasion, chronic inflammation, and vascular invasion, with per field

F1 performances ranging from 0.78 to 1.0. Ping et al [135] used regular expressions and

structured entities extraction using heuristic algorithms for liver cancer information, with

0.92-0.996 F1 score. The machine learning equivalent of these works used statistical methods.

Hassanpour and Langlotz [74] experimented with named entity recognition in CT radiology

reports, comparing dictionary methods, conditional random fields (CRFs), and maxiumum

entropy markov models (MEMMs) with a performance of 0.85 F1. Ou and Patrick [127] used

CRF classification to extracting cancer-related entities, such as diagnosis, metastasis, site,

size, and specimen type, from processed primary cutaneous melanoma pathology reports.

Afterwards, entities were populated into structured reports using rules. F1 performance for

populating fields was at 0.85. Roberts et al [142] attached anatomical locations to known

findings in radiology reports through statistical classifications of words around the finding

and with various surface, morphological, and dependency features.

Radiology report parsing

The general task of parsing reports have been explored since the early days of biomedical in-

formatics, with a heavy emphasis on comprehensive linguistic annotation that subsequently

mapped to a separate parallel domain knowledge base. These have contributed to systems

such as MedLee and others [66]. Continuing in this tradition, Taira et al [173] detailed their

system that includes deep linguistic annotation with dependency parses fortified with a de-

tailed radiology report domain ontology. Their strategy started with identifying concepts

using custom dictionaries, then dependency parsing entities using statistical methods in their

parser module. Once parsed, relations from their radiology ontology were constructed using

their semantic interpreter module, which either used rule-based logic or a statistical maxi-

mum entropy classifier. Finally, their frame constructor bundled together their concepts and

relations. They reported parsing performance of 87% recall and 88% precision. Meanwhile,

their conversion of dependency parses into relations were evaluated at 79% and 87% recall
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and precision, respectively.

7.6.2 Preprocessing

Radiology reports were processed to remove excess white spaces and blank lines using report-

specific heuristics. Sentences were identified using NLTK punkt module [100]. Only sentences

belonging to the Findings and Impressions sections, as tagged by our in house section chunker

[174] were kept as per our annotation guidelines.

7.6.3 Sentence identification

To avoid classifying sentences with no annotations, we first selected sentences of interest.

Based on the analysis of our corpora, we found that 90% of relations were from entities on

the same line, and around 7% were from entities connected to the entities on the next line.

To identify these sentences, we mimicked the annotation strategy of first finding the tumor

reference or measurement before marking other entities. Sentences of interest on the first

line (S1) were identified using regular expressions on measurement values, e.g. (\\d+) cm

(a number before a cm word), and a word list of radiographic tumor reference terms, listed

in Figure 7.14, created from the top unigrams accounting for 90% by frequency for tumor

references. S1 sentences, along with the sentence following it (S2) sentences, were passed to

subsequent steps. This resulted in a sentence identification recall and precision of 94% and

69%.

7.6.4 Entity extraction

Entities were extracted from the sentences identified using one of two strategies: regular

expression lookup and sequential label classification. The original regular expressions used

to identify measurement values in sentence identification were taken as the measurement

entities. For the remaining entities, anatomy, negation, tumor reference, tumorhood evidence

entities, we used CRFs classified using CRFSuite [126].
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focal

foci

enhancing

hypervascular

hypodense

lesion

mass

nodule

tumor

Figure 7.14: Sentence word list

We created CRF features by identifying several base features, then generatively creating

the final more complex features by tuning several variables: window-size, n-gram numbers,

and tag sets (for entity features) {BIOE, BIO, IOE, IO}, as illustrated in Figure 7.15. For

example, suppose our base feature is unigrams. Then if we choose a window size of ±2, and

n-grams of 1 and 2, then the final features would be all unigrams and bigrams within ±2

words of a word. For base features that may span over multiple words, such as tagged UMLS

concepts, we additionally experimented with different tag sets. Table 8 gives a more detailed

description of our base features. We also implemented two augmenting parameters, which

replaces the UMLS feature with a more general term if a concept id is part of the specified

list. These two lists were for liver anatomic parts and carcinoma concepts. For example, if

any concept ID part of the carcinoma list is found, instead of its specific preferred name used

as a feature, it will be <CARCINOMA>. Liver concepts were identified from taking all liver

anatomic subparts as specified in the Foundation Model of Human anatomy. Carcinoma

concepts were generated from taking sub concepts of C3263 (Neoplasm By Site) from the

National Cancer Institute thesaurus. S1 and S2 sentences were trained separately.

Sentences were tokenized, tagged for parts-of-speech, dependency parsed using ClearNLP

[3]. UMLS features were extracted using MetaMap [22], with word sense disambiguation

turned on. During experimentation, we optimized for the feature parameters, as well as the
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Feature Feature Description

CLOSESTREF
1 if the head entity is closest left or right tumor reference, e.g.

(closestLeftRef:0, closestRightRef:1)

DIFFLINES 1 if two entities are on the same line, (e.g. sameLine:1)

ENTNUM
Number of each type of entity in corresponding line (e.g.

num-l1[Anatomy]:2, num-l1[TumCount]:2)

ENTWORDS
1 for every word inside an entity, represented by its lemma (e.g.

en1-nodule:1, ent2-segment:1)

POSSIBLELABELS
1 if relation label type is a possible between two entities (e.g.

candidateLabel-locatedIn:1)

ONLYPOSSIBLEHEAD
1 if head entity is the only tumor reference or measurement in the lines

being considered (e.g. onlyHead:0)

SHORTESTPATH
The shortest path distance between two entities through the

dependency tree (e.g. minPath:3)

SHORTESTPATH.HEADS

Within the shortest path, 1 if words within path have the labels of

tumor reference, measurement, or the second entity label (e.g.

minPath[tumorref]:1)

SUBTREE

Minimum distance between head entity to another second entity of the

same label type in its dependency subtree (not including the second

entity) (e.g. subTreeNextCand[samelabel]:1)

SURRWORDS
1 for every word within the word window of the entities, (e.g.

uni-ent1[-2]=multiple:1, uni-ent2[1]=with:1)

Table 7.9: Relation features description

7.6.6 Results

Table 10 and 11 shows entity extraction performances for exact and partial match, respec-

tively, consolidated by label. Our final feature configurations included a window size of ±1

word, 1-grams, and BIO tagging for both features and labels. Our higher performing en-

tities, the measurement and tumor reference, were expected given the rule-based nature of

measurement extraction and the strategy of sentence classification. Precision was high across

all entities, which is perhaps a result of our tagging scheme and overlapping entities, which

combines to very specific tags. Our entity overall extraction performance 0.87 F1 was lower

compared to inter-annotator agreement 0.93 F1, which is often considered the upper bound

for a task. Specifically, negation, tumor count, and tumorhood evidence were at considerably

lower performances with 0.08, 0.12, and 0.19 F1 difference.
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Label TP FP FN P R F

Anatomy 789 103 254 0.88 0.76 0.82

Measurement 472 9 17 0.98 0.97 0.97

Negation 59 6 14 0.91 0.81 0.86

Tumor count 126 6 48 0.95 0.72 0.82

Tumor reference 678 64 124 0.91 0.85 0.88

Tumorhood evidence 315 85 315 0.79 0.50 0.61

ALL 2439 273 772 0.90 0.76 0.82

Table 7.10: Entity extraction results (exact)

Label TP FP FN P R F

Anatomy 828 65 215 0.93 0.79 0.86

Measurement 480 1 9 1.00 0.98 0.99

Negation 59 6 14 0.91 0.81 0.86

Tumor count 127 5 47 0.96 0.73 0.83

Tumor reference 714 25 88 0.97 0.89 0.93

Tumorhood evidence 359 40 271 0.90 0.57 0.70

ALL 2567 142 644 0.95 0.80 0.87

Table 7.11: Entity extraction results (partial)

Our feature configurations for relation extraction was a window size ±3 words from each

entity, using a maximum entropy classifier. The system relation and template extraction per-

formance are shown in Table 12 and 13, with both gold and system entities. Even with gold

entities, the hadMeasurement and the refersTo relations were comparatively low-performing

at 0.35 and 0.67 F1 scores, respectively. Given gold entities, our system reached 0.89 F1 for

relation extraction and 0.64 for tumor extraction, with 0.72 F1 for the TumorEvent template

subcategory. Meanwhile, when using system entities both relation and template extraction

suffered more than 10% degradation, suggesting that improvements in the entity extraction

upstream task will lead to improvements in the overall system.
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Baseline System

Entities Gold System Gold System

hadMeasurement 0.00 0.00 0.35 0.36

hasCount 0.90 0.76 0.95 0.79

hasMeasurement 0.85 0.81 0.89 0.85

hasTumEvid 0.86 0.61 0.89 0.63

isNegated 0.97 0.86 0.98 0.87

locatedIn 0.82 0.71 0.89 0.77

refersTo 0.00 0.00 0.67 0.63

ALL 0.83 0.69 0.89 0.74

Table 7.12: Relation extraction results (partial)

Baseline System

Entities Gold System Gold System

AnatomyMeas 0.00 0.00 0.49 0.26

Negative 0.84 0.57 0.82 0.57

Singleton 0.25 0.25 0.35 0.32

TumorEvent 0.69 0.42 0.72 0.44

ALL 0.60 0.38 0.64 0.42

Table 7.13: Template extraction results (partial)

7.6.7 Discussion

A significant hurdle for our entity extraction task was that, different from traditional entity

extraction tasks (e.g. the i2b2 2010 challenge), our entities were not always noun phrases

or even well-contained chunks of information. For example, we annotated “hepatic” such as

in “hepatic lesions to be an anatomy liver entity”. Ou and Patrick [127] reported similar

experiences in their extraction. Our tumorhood evidence experience entity extraction was

particularly interesting in this respect. Particularly, tumorhood evidence based on radio-

graphic evidence, such as if “hypervascularity” or “enhancement” in addition to “washout”

cues were present, the contained text would be considered positive for cancer. These men-
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tions of enhancement could occur as adjectives to other entities, e.g. “enhancing lesion” or

“hypervascular lesion”, and the “washout” may be mentioned very far from the enhance-

ment, resulting in long spans of identified text with spurious words. On the other hand, if

both positive mentions were not met, then cues were not highlighted, e.g. enhancing with

no definite washout.

Other issues included medical abbreviations. This occurred for anatomy terms, e.g.

“SMV”, (short for superior mesenteric vein) as well as tumorhood evidence terms, e.g. LR3

(short for LI-RADS, a coding system for tumor malignancy). Overtraining on context was

another problem. For example negation and tumor counts worked better in short sentences,

or around words they were most often found near. Tumorhood evidence isBenign evidence

were difficult to differentiate since a non cancerous entity could be a number of things, e.g.

“nonocclusive chronic thrombi”, “cysts”, “likely related to old trauma/fracture”, “differential

includes infection”.

Our partial match performance entity extraction performance was comparable to Ou and

Patrick [127] who achieved an overall 0.84 F1 and Hassanpour and Langlotz [74] with 0.85

F1. That said, we have many opportunities with which simple adjustments can make large

improvements. For example, we may condition tumorhood evidence instead as a classifica-

tion on our tumor reference or measurements (e.g. “Is lesion cancerous?”). In so doing,

we can also conveniently re-introduce outside sentence information (e.g. previous sentence

unigrams), incorporate our already extracted evidence, and address the abbreviations issue

for LI-RADS. This extension is the subject of Section 7.7.

Because of our definitions of S1 and S2 lines, any line with a measurement is considered

its own S1 line, therefore a sentence such as “This compared to a prior measurement of ap-

proximately 6.4 x 6.0 cm” may not be linked to a prior tumor reference or measurement as

was in annotation. Some prior measurements were also associated with past dates, which

was not included in this classification. Reparameterization of this classification and inclusion

of additional features will be discussed in Section 7.7.

Our relation extraction performed similarly to other statistical methods, such as Taira et
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7.7 Negation, temporal, and malignancy attribute classification

Realizing that not all attributes necessitate locating exact spans, or may become redundant

with other evidence, we re-framed some attributes to be a classification on the entity they

modify. We chose to do this for negation, temporality, and malignancy status. In the follow-

ing sections, we describe our attribute classification using specialized feature engineering.

7.7.1 Adapting classifications of assertion to negation classification

For negation classification, we re-purposed our in house assertion classifier [27] to detect

negation for tumor reference and measurement entities. Assertion classification is a clas-

sification of an entity, given the sentence it appears in, into one of six categories: absent,

conditional, hypothetical, not associated with patient, possible, and present. To adapt asser-

tion into a negation classification, we mapped assertion classification labels into negation

labels. Thus, categories of possible and present were relabeled as PRESENT, whereas the

remaining categories were mapped to NEGATED.

7.7.2 Feature-based classification on entities for temporal and malignancy

We identified temporal and malignancy attributes by classifying entities given heuristic-

and domain- motivated features. Temporal attributes were only classified for measurement

entities; malignancy attributes were classified for both measurement and tumor reference

entities.

In addition to the categories of our previous entity and relation extraction in regards

to temporal and malignancy classification task, we specified default values for unannotated

tumor reference and measurement entities. Thus, if there were no annotations of hadMea-

surement relations related to a measurement, then it is assumed to be CURRENT. Similarly,

if there were no hasTumEvid associated with a tumor reference or measurement, it is given

the default value of UNK, for unknown. If two values are associated with malignancy, they

are combined, e.g. INDET–BENIGN, however any mention of isCancer, represented here as
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MALIGNANT, will take precedence over combined values, e.g. INDET–MALIGNANT will

be mapped to MALIGNANT.

We modeled the classification as a maximum entropy classification problem, as it has

been shown to be successful with large amounts of features, such as text features. We used

MALLET[110] for our machine learning implementation software. Detailed descriptions of

the features used in classification are described in the following section.

7.7.3 Features

In this section, we detail the features for Section 7.7.2. Several feature parameters and

feature classes were combined to produce a variety of final features. Below we give an

overview of feature parameters and classes, with explanations of the features in Table 7.14

and an overview of feature extraction in Figure 7.19. During experimentation, we optimized

in a greedy fashion for the best feature combinations.

Feature parameters

Our extraction had three adjustable feature parameters which affect n-gram and a couple of

other features: (1) raw word vs. lemmatization, which affects all n-gram features, (2) word

window, for n-gram features around an entity, and (3) sentence window, which specifies

from which relative sentences to draw n-grams and rule-based entity features. The scope of

features related to (2) and (3) are specified in column 2 of Table 7.14.

N-gram Features

1-, 2-, and 3- gram features were used as part of the sentence n-gram (SENTUNI) and

surrounding n-gram (SURRUNI) features, each with sentence and word window restrictions,

respectively. These feature either use raw words or lemma-izations for the n-grams depending

on Section 7.7.3(1) configurations described above.
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Figure 7.19: Feature extraction for various scopes
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Entity Features

Features related to the entities being classified, e.g. tumor reference “lesion” or measurement

“2.3 cm”, were also included. Namely, these included the number of tumor reference or

measurement entities in a sentence window (NUMTUMREF and NUMMEAS features).

Rule-based Entity Features

We used three classes of rule-based entity features. The first class of rule-based entities used

Stanford Time Parser (SUTime) to identify temporal expressions, which were normalized to

before or concurrent to the document date [35].

A second class of rule-based entities were constructed using regular expressions. These

were designed to identify variations in LIRADS abbreviations as well as identify “enhancing”

and “washout” terms. In Table 7.14, these are described in the LIRADS and ENHANCE-

WASHOUT features. All synonyms of concepts descendant “certainty descriptor” (C0087130),

e.g. “possibly,” from the Taxonomy for Rehabilitation of Knee Conditions [160] were con-

verted into regular expression and comprised of another type of entity which affected CLOSEST-

CERTAINTYCUE features.

A third class of rule-based entities were first identified using MetaMap [22]. Neoplasm-

related concepts were identified by taking all descendants of the concept Neoplasm by Site

(C0027653) and combined by its neoplastic status, e.g. “malignant,” “indeterminate,” and

“benign,” extracted from the National Cancer Institute Thesaurus (NCI) [124]. Lesion-

related concepts were identified by the union of “lesion” (C0221198), all descendants of “me-

chanical lesion” (C3872807) and all descendants of “mass” (C0577559) from the SNOMED

CT 2015 ontology [7]. UMLS CUI related to certainty descriptors, generated by run-

ning MetaMap the list of synonyms from the “certainty descriptor” mentioned above, were

also identified. These entities contributed to the features: ASSERT.UMLS, CLOSEST-

CERTAINTYCUE, CLOSESTLESIONITEM, and CLOSEST-NEOPLASM.
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Feature Scope Description

ASSERT.UMLS Sentence window

UMLS concepts with assertion. If there are concepts related to

certainty, lesion item, or neoplasms according to our CUI word

lists, corresponding features indicating that these generalized

terms appear, combined with their assertion values fire.

CLOSEST-

CERTAINTYCUE
Within Sentence

Closest certainty cue through the dependency tree, combined with

the closest lesion item, normalized neoplasm, or normalized

LIRADS entity near the certainty cue.*

CLOSEST-DATE Within Sentence Closest date through the dependency tree*

CLOSEST-

LESIONITEM
Within Sentence Closest lesion item through the dependency tree*

CLOSEST-

NEOPLASM
Within Sentence

Closest neoplasm with neoplastic status through the dependency

tree*

DATES No line restriction

The date normalized to before document date or document date.

Outputs feature if any type of date is found within the line. The

closest date mentions in previous or subsequent lines are also

outputted.†
ENHANCE-

WASHOUT
Within Sentence

Enhancement term with assertion, combined with washout terms

with assertion.

LIRADS No line restriction

LIRADS normalized to malignant, indeterminate, benign.

Outputs feature if any type of LIRADS is found within the line.

The closest LIRADS mentions in previous or subsequent lines are

also outputted.†
NUMMEAS Sentence window number of measurement entities

NUMTUMREF Sentence window number of tumor references

SENTUNI Sentence window 1-, 2-, 3- grams

SURRUNI Word window 1-, 2-, 3- grams around the entity being classified

Table 7.14: Feature Descriptions. *Dependency path features also outputted a binary

feature if a tumor reference or measurement is passed through the shortest path. †Features
which looked through previous and next feature appearances, if fired, also outputted a feature

if tumor references and a leading determiner were within the search path.
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Shortest Dependency Path Features

Shortest dependency path features involved tracing the shortest path between tumor refer-

ence or measurement entities, e.g. “lesion’ ’, to rule-based entities (Section 7.7.3) in the same

sentence, e.g. “UMLS CONCEPT[Liver Cancer]”, through the dependency tree. Some of

these features were related to the entities encountered through the shortest path, e.g. if an-

other tumor reference entity is in the way of a tumor reference to a tumorhood evidence, as

depicted in Figure 7.19. Other features compare competing rule-based entities with respect

to the entity being classified, e.g. which tumorhood evidence is closer to a tumor reference.

Several dependency path-related features are described in Table 7.14 marked with a * sym-

bol. We used ClearNLP, trained on clinical text, to identify dependency parses [3].

For measurement entities attached to a tumor reference, dependency path features are

measured from the attached tumor reference entity instead of the measurement entity itself.

Features over multiple sentences

Because dates or LIRADS abbreviations were at times mentioned far from an entity many

sentences before or after, we allowed separate features to transcend the sentence windows.

An example of this is shown in as in Figure 7.15, where “LR4B” is written many sentences

after the mention of “Lesion 2”. For these features, the closest dates or LIRADS before or

after the line of the entity would be identified and all tumor references in between would be

used as additional features (DATES and LIRADS features). These features are marked with

a † symbol and specified to have “No line restriction” scope in Table 7.14 column 2.

7.7.4 Evaluation

We evaluated based on individual slot attributes per each tumor reference and measure-

ment entity classification, for negation, temporality, and malignancy, respectively. We also

evaluated at a template level, where each template required correct slots for each negation,

temporality, and malignancy as well as the complex relations with other entities. These can
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35: Lesion 2) Increased untreated liver lesion:

36: i) Location: heaptic segment 6

37: ii) Size: 37 mm x 27.9 mm (previously 30.7 mm);

....

42: vii) LI-RADS category: LR4B

Table 7.15: Lirads malignancy beyond several lines

include complex templates, in which a tumor reference is connected to another sub-templates

with a measurement and its own anatomy location, as shown in Figure 7.20. Measurements

classified as PAST in templates were not counted, because they are considered obsolete

information.

Figure 7.20: Complex template

For our evaluation metrics, we used the standard information extraction measures of

precision, recall, and F1 score as defined in Chapter 3.2.

7.7.5 Results

Tables 7.16, 7.17, and 7.18 show results for classifications on gold standard tumor refer-

ence and measurements for negation, temporal, and malignancy classifications, respectively.

The optimized features for malignancy included: ASSERT.UMLS, CLOSESTCERTAINTY-

CUE, CLOSESTLESIONITEM, CLOSESTNEOPLASM, ENHANCEWASHOUT, LIRADS,

NUMMEAS, and NUMTUMREF with a sentence window of ±0 (only current sentence was

used for those features restricted by the sentence window). The optimized features for tem-

poral classification included, CLOSESTDATE, SURRUNI with a word window size of ±3.
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For temporal classification, PAST instances in training were weighted to 20 times CUR-

RENT instances to offset for the large class imbalance.

Table 7.16 shows our negation detection results after modifying our in-house assertion

classifier. The NEGATED label improved with 7 more cases of true positives.

Label Method Pos. TP P R F1

NEGATED 75 Assertion 73 0.90 0.97 0.94

Baseline 60 0.97 0.80 0.88

PRESENT 1216 Baseline 1214 0.99 0.998 0.99

Assertion 1201 0.998 0.99 0.99

Table 7.16: Negation Classification Results

The baseline for the PAST category of temporal classification is expected to be low due to

the constraints specifying relation candidates (which broke up potential hasMeasurement).

However, while our new classification improves the situation, it is still at a modest perfor-

mance of 0.62 F1 measure.

Label Pos. Method TP P R F1

CURRENT 457 Baseline 457 0.95 1.00 0.97

Classifier 451 0.97 0.99 0.98

PAST 32 Baseline 7 1.00 0.22 0.36

Classifier 16 0.80 0.50 0.62

Table 7.17: Temporal Classification Results

Table 7.18 shows that while the categories of INDET-BENIGN and UNK were relatively

unchanged. There were sizable gains in the categories of INDET, BENIGN, and MALIG-

NANT categories.

Inspection of the confusion matrix, Table 7.19, shows that approximately 60% of mis-

classifications were due to incorrect assignment to UNK. Unsurprisingly, the low frequency

category INDET-BENIGN was often mislabeled as either INDET or BENIGN.
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Pos. Label TP P R F1

BENIGN 109 Baseline 34 0.83 0.31 0.45

Classifier 50 0.73 0.46 0.56

INDET–BENIGN 5 Baseline 0 0.00 0.00 0.00

Classifier 0 0.00 0.00 0.00

INDET 139 Baseline 64 0.89 0.46 0.61

Classifier 101 0.80 0.73 0.76

MALIGNANT 456 Baseline 297 0.86 0.65 0.74

Classifier 345 0.85 0.76 0.80

UNK 582 Baseline 552 0.66 0.94 0.78

Classifier 463 0.76 0.80 0.78

ALL 1425 Baseline 1011 0.74 0.71 0.73

Classifier 1060 0.80 0.74 0.77

Table 7.18: Malignancy Classification Results

System

INDET INDET–BEN BENIGN MALIG. UNK

Gold

INDET 101 0 1 10 58

INDET–BEN 6 0 4 0 2

BENIGN 2 0 50 36 80

MALIG. 12 0 10 345 148

UNK 30 0 22 72 463

Table 7.19: Malignancy Confusion Matrix

Tables 7.20 reveal classifications and their influence at a template level. Improved per-

formance at the granular level transferred well at the more integrated levels for templates.

Templates are presented into subcategories as follows:

AnatomyMeas - events with refersTo relations

Negation - events with isNegated relations

TumorSingleton - events with a single entity, in which the entity is a tumor reference or

measurement
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OtherSingleton - events with a single entity, which are not TumorSingleton events

Tumor - events not part of the previous event types

We are particularly interested in the improved performance of TumorSingleton and Tumor

events at 0.68 and 0.68 F1 for baseline, to 0.72 and 0.77 F1 after classification. Since we used

gold standard entities for Anatomy and TumorCount, entities, OtherSingleton templates were

expected to have a 1.00 F1 performance. Other types of template type performances were

degraded depending on the classification of negation, temporality, and malignancy. Using

our new classifications, tumor-related events (the combination of typed TumorSingleton and

Tumor events) resulted in micro-score improvement from 0.65 to 0.72 F1.

Category Method TP P R F1

AnatomyMeas Baseline 49 0.92 0.92 0.92

Classifier 43 0.81 0.81 0.81

Negation Baseline 60 0.97 0.80 0.88

Classifier 73 0.90 0.97 0.94

OtherSingleton Baseline 70 1.00 1.00 1.00

Classifier 70 1.00 1.00 1.00

TumorSingleton Baseline 113 0.60 0.72 0.65

Classifier 114 0.64 0.73 0.68

Tumor Baseline 427 0.63 0.66 0.65

Classifier 475 0.72 0.74 0.73

Table 7.20: Template Classification Results

7.7.6 Error Analysis and Discussion

Analysis of negation classification error analysis showed that adaption of assertion classifi-

cation for negation classification worked well. One consistent error, which accounted for the

majority of false positives, was for the case of long clauses, e.g. “Stable wedge-shaped hy-

per vascular focus in segment 4 A with no definite washout suggesting indeterminate lesion”
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where “lesion” was incorrectly identified as negated. Other errors were due to annotation

errors, report errors (spontaneous “no” appears), and unmarked hypothetical cases (consid-

ered negated).

Temporal classification errors were primarily due to false negatives. Meanwhile, manual

inspection revealed false positives to be due to annotation errors. Despite our inclusion of

SUTime to normalize for past dates, it appeared our classifier was not able to use this feature

effectively as several false negatives had clear attached dates or references to times before

the document date. Furthermore, many of the false negatives were those in which clues for

past indicators were infrequent, e.g. “prior,” “formerly,” and “prev”. These observations,

combined with the our knowledge of the optimized features for this classification, suggested

that despite our efforts, although we were able to overcome the hurdle of relying on rela-

tion extraction for past classification, our model at this point does not generalize well for

temporal cues. In fact, an overwhelming number of examples of past measurements have a

preceding “previously”. That said, our training size was small and our features were relied

heavily on SUTime normalization. We expect increasing data size, incorporating synonyms

of “previous” or “formerly” which SUTime does not catch, relating these to the classification

through the dependency tree, and merging with SUTime features, would yield much better

results.

Interestingly, the optimized malignancy classification feature set did not include n-gram

based features, suggesting that our specially designed high-level rule-based features captured

important variables without resorting to surface level information. A significant hurdle in

malignancy classification was that many mislabels were due to cues existing outside the

current line, which occurred in approximately 15% of the cases. While one of our features,

LIRADS, did reach outside of lines we found that increasing sentence window size to outside

sentences resulted in performance degradation. As a consequence of this, it was unsurprising

that many of the incorrect classifications were to UNK as, without outside line information,

the state of a tumor reference or measurement would in fact be considered UNK. BENIGN

classifications were a particular challenge as it encompasses a variety of things. For example,
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a tumor reference or measurement would be considered BENIGN if they turned out to be

imaging artifacts, scarring, or simple cysts. Though we incorporated lesion items to try to

normalize these variations in our features, we could not account for all the diversity, e.g.

“perfusion abnormality” was not specially grouped. Also we should note that according to

our annotation rules, any mention of “malignant” or “suspicious” automatically classifies

an entity as MALIGNANT. However, there were cases of hedging that may have created

confounding factors, e.g. “differential diagnosis includes dysplastic nodule versus atypical

HCC” where “dysplatic nodule” is considered to be indeterminate for malignancy (they are

pre-malignant and follow-up is necessary). Given these observations, we note several ways

to improve this classification. As we designed special LIRADS features that captured in-

formation in many lines before and after, we can also do this for UMLS entities related to

neoplasms and lesion items and encode cues for subheading scopes. To target benign enti-

ties further, we could exploit more subsections of ontologies to enrich the feature space. To

combat the effects of hedging, we could engineer features that take into account the numbers

of identified malignant, indeterminate, or benign entities capture by the UMLS.

For negation and temporal attributes, false positives, e.g. mistaken classification of

negated cases, are less of a concern than false negatives. A patient typically has multi-

ple imaging files, therefore what is disregarded due to being negated or not current may be

pulled in from another source. Keeping this in mind, it would be possible to change the

decision boundary to optimize for the best outcome for a given dataset in such downstream

applications. For malignancy classification, the importance of each category performance

depends on the intended use. In general, a tumor-like finding that is found to be benign

is less important than the malignant category or indeterminate category (which may turn

benign). An application may only be concerned with malignant tumors such as our use for

liver cancer staging, though its feasible to imagine an decision support tool that wants to

track whether or not indeterminate tumors become malignant or benign at a later time state.

However, as the confusion is often with the unknown category, it would be difficult to easily

modify the system to get a better yield in this particular classification.
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Evaluation at the template levels revealed that improved classification at the granular

level reverted into improved classifications at a structured level. Templates associated with

AnatomyMeas and Negation were impacted by occasional mentions of malignancies attached

to those types of templates, e.g. “Lymph nodes suspicious for metastatic involvement: Peri-

portal greater than 1 cm” and “Pelvis: No suspicious lytic or sclerotic bony lesions.” Though

not focused on in this work, they are nevertheless important cancer-related information.

7.8 Tumor reference classification and characteristics extraction

Some of the problems already encountered involved knowledge located in outside sentences.

In general, in order the understand holistic report information, we need to be able to resolve

which mentions, e.g. tumor reference entities, refer to the same real-world entity. In the

following sections we describe our system to classify coreferrent and parent-child particular-

ization relations.

7.8.1 Related work

Reference resolution is an active area of research in the natural language processing domain.

General english NLP focus on reference resolution has primarily been on newswire text, with

several notable information events such as the Message Understanding Conference (MUC)

[71] and the Automatic Content Extraction (ACE) program [53]. Similar to our goals,

one previous work that attempts to classify event, subevents, etc. using a pairwise logistic

regression classifier. [21]

In the biomedical domain, the BioNLP 2011 Shared Task featured anaphoric coreference

of biomedical entities, e.g. biological entities, processes, and gene expressions. [90].

In the clinical domain, annotation of a variety of concept types, e.g. person, tests,

problems, for coreference, has been the focus of the 2011 i2b2/VA Cincinnati challenge.

[175] Some difference between our task and that of the 2011 i2b2/VA Cincinnati challenge

are the following: (a) we target very few specific mentions (tumor references instead of large

classes such as person, test, or problems) and (b) our annotation is based on smaller noun
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phrase chunks. For example, the i2b2 challenge puts references between long noun phrases

which includes descriptors such as: “a left facial mass”, “a right parietal hyper dense and

heterogeneously enhancing mass”, “an endobronchial tumor of the right upper lobe bronchus”,

“a 5mm linear , focal area of enhancement in the left central semiovale”. In contrast, our

references are between shorter phrases, e.g. “hypervascular lesion” or “tumor”. Similar to

our task, the Ontology Development and Information Extraction (ODIE) part of the corpus

has been annotated with anaphoric references, with identity, set/subset, and part/whole

relations. [38]

Related works on reference resolution relevant to tumors or clinical findings have been

the subject of several works. Coden et al [41] identified coreferences in pathology reports

using a rule-based system. Son et al [158] classified coreferrent tumor templates between

documents with a MUC score of 0.72 precision and 0.63 recall. Sevenster et al [150] paired

numerical finding measurements between documents.

Actual reference resolution tasks vary widely in scope. For example, nouns, pronouns,

and noun phrases are common; however, corefernce for nested noun phrases or nested named

entities, (e.g. “America” in “Bank of America”), relative pronouns, and gerunds may not be

annotated in a corpus. [164] Here our references are between the template heads of tumor

templates. Our corpus does not include pronominal cases and nested references.

7.8.2 Reference resolution classifier

Our reference resolution classifier consists of a greedy algorithm which visits each tem-

plate in the order of appearance in each document, and classifies the head of a template

as EQUIV, SUBSETOF, SUPERSETOF, and NONE for each available cluster. If the tem-

plate is EQUIV to one or more clusters, the template is added to the clusters and merged.

For all other choices, the template forms a new cluster. As conflicts or cycles may arise at

each classification round, we used simple heuristics to resolve these. If any cycles formed, all

mentions would be merged. If there was a conflict between a NONE relation and another

one, the other relation would take precedence. We leave more sophisticated decision-making
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algorithms for future work. Relations between clusters were updated during the process.

Figure 7.21 depicts the choice of a new potential cluster being being classified with one

of the relation labels for each available existing cluster. Classifications were trained using

LibSVM and MALLET, using a linear kernel. Feature values are scaled by the difference

between the minimum and maximum values.

7.8.3 Reference resolution features

We detail several types of features shown in Table 7.21. Some classes of these features are

described in the following section.

Normalized anatomic location features

If anatomical entities are detected for a template, they are normalized to an anatomic con-

cept. Based on this concept, we designed features based on anatomic hierarchy, e.g. “segment

Figure 7.21: Reference resolution set up
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Feature Name Description

closestTempDist The distance of the closest template in a candidate cluster to the current template

containedIn
If any of the anatomies in the current template are contained in the anatomy in

the candidate cluster

containerOf
If any of the anatomies in the candidate cluster are contained in the current

template

header If the sentence of the template looks like a section header

isSuperset If the candidate cluster is already a superset of another cluster

malignancy Malignancy status of template

malignancyOfCandCluster Malignancy status of the cluster

nextBestSim L-2 norm of the next best similarity vector

ngrams 1-, 2-, and 3- grams (using lemma) for sentences of template and candidatecluster

ngramsMatching
Matching 1-, 2-, and 3- grams (using raw words) for sentences of template and

candidatecluster

nthTemplate The number template in the document

numOfCand The number of candidate clusters

numOfMeas The number of measurements

numOfTempInCluster The number of templates in the candidate cluster

onlySameMal The only candidate cluster with matching malignancy as template

onlySameMeas The only candidate cluster with matching measurement malignancy as template

sameOrgan If the organ in the sentence matches organ in a cluster

sameLocations The matching locations of all

section Section of the template

sim The L2-norm of similarity vector

simvecfeats
This feature extends from the similarity vector features so that each individual

similarity vector dimensions are each considered their own feature

summaryOf If tumor reference is preceded with “the”, “this”, “these”

totalNumOfTemp Total number of templates in the document

totalNumOfImpTemp Total number of impression in the document

UMLS Matching UMLS concept between the template and the cluster

Underheading

If there is a sentence in the cluster that looks like a header, and if the number

leading 5 characters of variations in sentences leading up to the template is less

than 4

Table 7.21: Reference resolution features

VIII” is contained in “liver”. The processing and normalization of anatomic entities is further

described in Section 7.8.5. Normalization was based on Unified Medical Language System

(UMLS) [31] concept names. Relevant related features are containedIn, containerOf, and

sameLocations.
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Positional features

Whether or not a template appears in the top or near the bottom of the template will

affect how many options it will be clustered to and the threshold to what cluster similarity

should be in order to be paired. We included several features related to the position of

a template over all templates in a document. For example, nthTemplate gives both the

absolute number and the ratio of the template position normalized to the number of all the

templates.

Target Description

sentence similarity Jaccard proximity for sentence, word-tokenized

tumor reference similarity Jarowinkler string proximity

number of measurements
Difference between number of measurement entities divided

by the larger number of measurements

tumor count similarity Difference in tumor count divided by the larger tumor count

matching measurement1

The number of matching measurements divided by the total

number of measurements in template 1 (Measurements

considered matching if within 0.1 cm)

matching measurement2
The number of matching measurements divided by the total

number of measurements in template 2

anatomy1

Sum of pairwise jarowinkler proximity for all anatomy entity

combinations between template 1 and 2, divided over the

number of anatomy entities in template 1

anatomy2

Sum of pairwise jarowinkler proximity for all anatomy entity

combinations between template 1 and 2, divided over the

number of anatomy entities in template 2

malignancy1

The number of matching malignancy status (combined

malignancy status’ get broken up, e.g. “INDET-BENIGN”

becomes “INDET” and “BENIGN”), divided by the total

number of malignancy status for template 1

malignancy2
The number of matching malignancy status, divided by the

total number of malignancy status for template 1

Table 7.22: Similarity features description
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Relative features

Relative features identify differences between candidate clusters. For example, onlySameMal

is in the case of if a candidate cluster is the only one of the candidate clusters which has the

same malignancy status. Another exists for same measurement.

Static features

Static features includes a variety of features, such as the section of the template, n-grams

in the sentence, and number of measurements (numOfMeas). These features remain the

same regardless of what candidate cluster a template head reference is being classified with.

Similarity features

Similarity features (simvecfeats and sim) are measured from the current template head

to be classified to an existing candidate cluster. The similarity with the entire cluster is

measured by taking the maximum of each similarity dimension among all the templates

in the existing candidate clusters. For all dimension except for 0 and 1, subset candidate

templates features are combined and normalized together.

Similarity features include the sentence similarity features, tumor reference similarity,

as well as similarity between template attributes. For example, tumor reference similarity,

measurement similarities, anatomy similarities, and anatomy similarities. The total of all

similarity features combine to form a similarity vector of 9 dimensions. Each dimension is

described in the Table 7.22.

7.8.4 Tumor characteristics extraction

The tumor characteristics annotator receives grouped tumor templates and outputs (1) the

number of tumor for each malignancy category, (2) the largest size malignant tumor, and

(3) whether 50% of the liver is taken up by malignant tumors, using a series of heuristic

rule-based algorithms. The various system components parts are shown in Figure 7.22. First
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the templates are updated to a new malignancy status depending on their coreference and

particularization relations to other templates, next the templates are sent through several

various pipelines depending on the chosen variable. In the following sections, we describe

several of the non-obvious components in the pipeline: the module for updating malignancy

status, the module for classifying whether >50% of liver is invaded, and the module for

consolidating referenced tumors.

Figure 7.22: Tumor characteristics annotator

Updating malignancy status

The malignancy statuses for related tumor templates are updated in the following way. The

malignancy status for coreferrent templates are updated to the most critical case. Thus,

anything coreferrent to a malignant tumor template is also malignant; if the most critical

status is indeterminate then all templates are updated to indeterminate. In regards to

particularizations (superset/subset relations), we take a top-to-bottom approach. The status

of the superset is transferred down to the templates in the subset. After this top-down-

transfer, the inter-cluster malignancy status is updated once more. Extension of this forward-

backward algorithm continuously is left for future work.
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Invasion of >50% of liver logic

The logic for deciding whether or not >50% of the liver is invaded, as shown in Figure 7.23.

The algorithm is based on the expert guidelines introduced in Figure 7.9.

Figure 7.23: Algorithm for >50% liver is invaded

Concepts such as “right lobe”, “left lobe”, and “liver”, as well as decisions on which

lines are segments are involved, are based on the anatomy normalizations from the anatomy

normalization module, described in Section 7.8.5.
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Reference consolidator

The reference consolidator is responsible for updating templates to the most current set of

information and removing extraneous other templates. The premise is to be able to refine

all the given information to a few representative templates. For example, if a reference in

“Several liver lesions, suspicious for HCC” has the particularizations of “Lesion 1: segment

8, 3.0cm” and “Lesion 2: segment 5: 2.1x1.1 cm” then the template associated with the first

passage will be (1) updated with measurements of “3.0cm” and “2.1x1.1 cm”, (2) updated

with anatomies of “segment 8” and “segment 5”, and (3) updated to have a number of “2” for

tumor count. Furthermore, if the particularization templates match the malignancy status

of its superset template then those are deleted. The final result should yield a set of tumor

templates with updated count, measurement, anatomy, and malignancy attributed that can

be easily summed to determine the number of each type of tumors found in the radiology

report.

Our exact algorithm includes heuristics for deciding for unambiguous cases, for example:

• If the tumor count is set to 3 what happens if there are more than 3 measurements?

• If the tumor count is not reliably determinable, how should it be decided based on the

number of associated measurements?

Both coreference and particularization relations are used in the decisions.

7.8.5 Anatomy normalizer module

Even with properly marked anatomy entities, concept normalization requires both conjunc-

tion normalization as well as concept disambiguation. For example, “segment 2, 4A/B, and

5” must be normalized to “segment 2”, “segment 4A”, “segment 4B”, and “segment 5”.

Furthermore, “left lobe” may refer to “lung” or “liver”.

Anatomy named entity clauses are normalized to discrete concepts by first, determining

the organ dictionary to use using the organ context of the sentence. Afterwards, text-spans
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adjusted to account for missed endings for system entities, e.g. “segments VIII and

V/IVb”, and terms are conjunction-normalized. Finally, concepts are matched based on the

lowest score of summing together the matching edit distance with any leftover substrings.

In the following sections, we describe our rule-based algorithms for how to map sentences

to an organ context and how to normalized for conjunctions; as well as our automatic creation

of organ-specific hierarchal dictionaries using the Foundation Model of Human Anatomy

(FMA) ontology [143].

Mapping sentences to organ scope

In order to disambiguate between ambiguous anatomic locations, e.g. “left lobe” the organ

context for a sentence must be understood. However, this information is not always available

within a sentence, requiring external information. An example of this is shown in Figure 7.24.

Findings:

Lungs bases: There is calcification of the coronary arteries.

There is a new 1.3 x 0.9 cm a sub pleural nodule in the right base.

No pleural effusion.

Abdomen:

Liver: Nodular cirrhotic liver.

Figure 7.24: Different parts of the report have anatomical context not necessarily immedi-

ately available in the same sentence or not explicitly clear. In the third sentence, “right base”

can be inferred to be part of the lungs by the reference to “Lungs bases” in the previous

sentence or the mention of “pleural” in the same sentence.

Our algorithm is detailed as follows. From starting at the beginning of a document to

the end, each sentence, previously tagged with UMLS concepts using MetaMap [22], was

categorized as related to one or more organ concepts, if these two conditions were met: (1)
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an anatomic location semantic type was found and (2) the corresponding matched string

was matched to the organ dictionary. The list of semantic type abbreviations included in

the anatomic location list are: anst, bdsy, blor, bpoc, bsoj, and tisu. The list of organs

UMLS concept identifiers was created by recursively identifying “is-a” relations starting from

the top (non-inclusive) concepts listed in Figure 7.25.

“Organ with caveated organ parts” (C0927231)

“Organ with organ parts” (C0927230)

“Nonparenchymatous organ” (C0935295)

“Lobular organ” (C0927223)

“Corticomedullary organ” (C0927224)

“Homogeneous organ” (C0927225)

Figure 7.25: Starting organ concept identifiers

Our algorithm also assigns organ context by matching to organ-related adjectives, e.g.

“hepatic” refers to the liver. The mapping from a organ-related adjective to an organ was

created by taking pertainyms from WordNet [30] which point to a MetaMap-matched organ.

Examples of the resulting dictionary is shown in Table 7.23 with the full list included in

Appendix G. If no match occurs, the previous line’s organ is set for the current line. At the

start of each section, the assigned organ is reset to a default state. In our case, the default

organ concept was set to the liver.

A manual review of 5 randomly drawn documents (215 sentences) revealed a precision of

94% for this procedure.
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Organ Adjective forms

kidney nephritic, renal, adrenal

liver hepatic

lung
pulmonic, lung-like, pulmonary, pneumogastric, pneu-

monic, cardiopulmonary, intrapulmonary

prostate prostatic, prostate

spleen lienal, splenetic, splenic

tibia tibiall

Table 7.23: Organ adjectives identified using WordNet pertainyms. As

bones are considered organs in the FMA, adjective forms of specific bones

are also included (tibial). A full list is given in Appendix G.
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Figure 7.26: Conjunction normalization process. Step 1: Isolate relevant parts of the

dependency tree and connect loose items as necessary. Step 2: Find the “base string” to

connect other items to, by using the longest match intersected with the highest dependency

node. Step 3: Cycle through the dependency tree and connect with “base string” ignoring

conjunction tokens.
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Normalizing for conjunctions

Conjunctions were normalized by first finding the longest match from organ-specific dictio-

naries. The automatic creation of these hierarchal organ-specific dictionaries is detailed in

Section 7.8.5. The overlap of the longest match was then intersected with the highest node

of the sentence dependency tree. The longest match was determined by finding the terms

with the lowest edit distance. Starting from this match, the center-most word is popped off.

Then, each unused word from the anatomy entity is paired with the match, ignoring terms

such as “and”, “or”, “/” , “-” and “.” . The construction of the pairings for “segments 4A

and 4B, and 2 and 6”, as shown in Figure 7.26. The same algorithm is designed to also be

used for cases such as “Tumor thrombus within main, right and proximal left portal

veins”.

Our aim here was to provide a way to capture both types of conjunction problems that

we encounter for our anatomy entities, such as the right-branching conjunctions of “segments

x, x, and x” as well as the left-branching conjunctions of “x, x and x portal veins” in the

least assuming way possible. Thus, the generalization of this heuristic for other cases is left

for future investigation.

Organ-specific hierarchal dictionary creation

Portions of each organ’s hierarchal constituent structures were extracted starting from the

organ concept identifiers listed in the previous section. The concepts were collected by recur-

sively following relations: has regional part, has constitutional part, and has attributed part.

Synonym dictionaries for each concept was augmented by adding synonyms in which ro-

man numerals were replaced with numbers (1-12), e.g. “segment II” would be duplicated

with variant “segment 2”. Synonyms that required mentions of the specific organ, e.g. “right

lobe of the liver”, were also duplicated with the removal the organ mention to allow better

matching, e.g. “right lobe”. The following regular expressions were used to identify por-

tions of synonyms to be augmented: “ of [organ]$”, “̂[organ] ”, “̂[organ-adjective] ”. These
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regular expressions were created after studying the naming conventions of the FMA. As a

caveat, this may not generalizable to all ontologies and is subject to changes of the FMA

terminology.

7.8.6 Results

Tables 7.24 show coreference and particularization classifications results, using gold standard

tumor templates, with a simple baseline of ngrams and ngrams-matching features com-

pared with our system with the full set of features. Though there was little improvement for

particularizations, the coreference performance increased sizably.

Evaluation N-grams + Ngrams matching All Features

P R F1 P R F1

Coreference classification

MUC 0.49 0.35 0.41 0.63 0.54 0.58

B-cubed 0.82 0.72 0.77 0.84 0.78 0.81

CEAF 0.61 0.36 0.45 0.68 0.52 0.59

MUC+B3+CEAF
3

0.54 0.66

Particularization relation

particularization 0.51 0.39 0.44 0.42 0.44 0.43

Table 7.24: Reference resolution results. (P=precision, R=recall, F1=F1-score)

In order to quantify how well our tumor characteristics annotator works, we experiment

with using no reference resolution information, using gold standard reference resolution, and,

finally, system reference resolution using gold standard templates. The results are shown

in Table 7.25. Given system reference resolution annotations, the tumor characteristics

significantly dropped, however the performance remained high for the > 50% variable, and

dropped less drastically for the largest size variable, compared to those for the tumor count

variables.

We were also interested in knowing how the two components affect our entire system

end-to-end. That is given, system produced templates, what is our tumor characteristics
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No Ref. Res. Gold Ref. Res. System Ref. Res.

TP F1 TP F1 TP F1

>50% 94 0.93 95 0.94 95 0.94

#benign 72 0.71 80 0.79 76 0.75

#indet 67 0.66 78 0.77 76 0.75

#malig 14 0.14 70 0.69 56 0.55

#unk 12 0.12 60 0.59 52 0.51

largest size 80 0.79 94 0.93 87 0.86

Table 7.25: Tumor characteristics annotation results (gold standard templates)

annotation results? The comparison results are shown in Table 7.26. From these results we

see the > 50% variable remains high, suggesting that it is a variable that is more robust to

changes in reference resolution errors as well as template extraction problems. The tumor

count variables for all types of malignancies are shown once again to drop substantially.

However, this makes sense as even with perfect gold reference resolution, our annotation

logic would not get past 0.80 exact F1; furthermore, figuring out the number of tumors

requires very exact reference resolution information, making the tolerance for errors very

much lower. The largest size variable was the least affected using both the system references

and system templates; this accounts to the ability of the metric to absorb errors (it uses a

maximum function).

No Ref. Res. System Ref. Res. System Ref. Res. (relaxed)

TP F1 TP F1 TP F1

>50% 89 0.90 90 0.90 90 0.90

#benign 67 0.67 66 0.66 68 0.68

#indet 64 0.64 68 0.68 72 0.72

#malig 18 0.18 50 0.50 62 0.62

#unk 2 0.02 34 0.34 34 0.34

largest size 63 0.63 77 0.77 79 0.79

Table 7.26: Tumor characteristics annotation results (system standard templates)
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We also allowed our system to only process certain sections of the document, e.g. Findings

only, Impression only, or both (default). We present our results of doing so for our three

important variables in Table 7.27, with different combinations of gold and system reference

resolution and template annotations.

Section

Findings Impression Both

>50% 0.81/ 0.80/0.69 0.89 /0.89/0.78 0.94/0.93/0.90

#malig 0.67/0.56/0.40 0.69/0.61/0.56 0.69/0.50/0.50

Largest size 0.76/0.70/0.57 0.43/0.39/0.37 0.93/0.86/0.77

Table 7.27: Tumor characteristics annotation results restricted by section measured in accu-

racy (gold-templates, gold references / gold-templates, system references / system-templates,

system references)

While the tumor count variable for malignant tumors did better using only the Impres-

sion section, the other two variables benefitted from having information across both the

Findings and Impression section. Interestingly, the largest size variable is much lower for

the Impression section compared to the Findings section, which reinforces the observation

we have found that more detailed information are often kept in the Findings section, with

more summary information in the Impression section.

7.8.7 Error Analysis and Discussion

Tumor reference resolution classification

Analyzing the misclassification of relations, we found that of the 358 FP particulariza-

tions, 350 were represented in the gold standard except with the opposites direction (su-

persetof/subsetof switch) and 27 corresponded to equivalent relations in the gold standard

(the may overlap with the supersetof/subsetof switch since they are not mutually exclusive).

Similarly, for the 253 FN, 217 were reversed and 34 were related to equivalent relations in
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the system.

There are many areas for improvement with this classification. Firstly, the greedy merge

approach for all coreference and particularization loops is simplistic. An algorithm that re-

solves this issue by ranking probabilities of each individual relation may do better to resolve

the loop without causing large chain reactions. In general english, there are constraints such

as pronoun agreement (“John” and “he” vs “her”) that are used for coreference systems. We

did not implement any such constraints, partly because of our small corpus. Some ideas in

this vein could be constraints against different “named lesions” being in the same cluster, e.g.

“Lesion 1” and “Lesion 2”. Our classification for each template to all candidate clusters were

done individually, though perhaps joint classification could yield marginally better results.

Finally, our system aggregated clusters from top to bottom in a greedy fashion, allowing the

possibilitiy of cascading errors.

Tumor characteristics annotation

Analysis of the tumor characteristics annotator using gold standard templates and referencer

resolution annotations revealed some interesting phenomenon. While the tumor count errors

was partly due to our system not producing inequalities (which is required in the gold stan-

dard under strict evaluation), it was also due to the heuristic rules of changing malignancy

status (only if coreferrent or top-down) and in merging. Futhermore, while particularization

hierarchies may go down several levels, we limited our number, measurement, and anatomy

update rules to a scope to 3 levels.

In the case of > 50% invasion of the liver, there were only a handful of mistakes. One

false positive was due to a possible typo in the report (listed as 24 cm in Findings but 24 mm

in the Impression), one false negative in which no template was attached to a malignancy

evidence finding (it was outside the Findings/Impression section), and one case which was

labelled ”n/a” due to no size or anatomy in the report at all. The remaining cases included

one false negative in which “both segments” was not converted to mean segments 1-8 in

the liver and a false positive in which ”majority” was not meant to modify ”liver” in the
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sentence.

For the largest size variable, two errors were due to no malignancy evidence attached

to templates, four errors were due to either differences in reported measurements (mistakes

or simply precision differences, e.g. 2.5 cm vs. 2.4 cm). Finally, one error was due to

malignancy status not being updated in a down-up fashion.

7.9 Tumor related document performance

Table 7.28 shows the result of the tumor characteristics annotator, with non-liver templates

excluded, and with a rule-based transfer to the normalized tumor related liver cancer stage

parameter values. For example, the number of malignant tumors are mapped to tumor

number - single, tumor number - 2-3, or tumor number - > 3. A similar thresholding system

was used for tumor size variables. Tumor morphology on the other hand used information

about the number of malignant tumors as well as whether ≥ 50% of the liver is invaded.

Analysis of the F1 scores shows that every category improved with this system over

baseline except for tumor number - > 3. Tumor number required, entity, relation, attribute,

coreference/reference classification and tumor characteristics annotation; thus, though there

was some improvement over the baseline, it was not very dramatic. Manual review of the

mistakes revealed that some of the tumor morphology gold standard had some annotation

errors; otherwise the greatest confusion was between multinodular, < 50% and uninodular,

< 50%. The performance of the tumor size variables were expectedly better than the baseline

as finding measurements using regular expression and normalizing them to a size is more

reliable than a simple n-gram baseline.
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Baseline Tumor

char. ann.

Label Freq. Value Class. P R F1 P R F1

Tumor 23 Massive DT 0.37 0.30 0.33 0.57 0.52 0.55

morphology 40 Multinodular, <50% ME 0.50 0.15 0.23 0.43 0.63 0.51

105 Uninodular, <50% NB 0.62 0.80 0.70 0.80 0.73 0.77

Tumor 112 Single NB 0.64 0.84 0.73 0.76 0.73 0.75

number 32 2-3 DT 0.24 0.25 0.25 0.34 0.53 0.41

19 >3 ME 0.67 0.11 0.18 0.18 0.16 0.17

Tumor 82 < 3 ME 0.64 0.62 0.63 0.89 0.79 0.84

size 45 3-5 C45 0.43 0.27 0.33 0.77 0.82 0.80

46 >5 ME 0.59 0.28 0.38 0.79 0.59 0.68

Table 7.28: Best baseline performances for training set.

7.10 Summary

In this work, we present our annotation as well as our system design for tumor template

extraction, tumor reference resolution, and tumor characteristics annotation. The tumor

information extraction system here are biased towards findings that are not at first known.

For example, we did not mark HCC in “HCC in segment 8” as a tumor reference. However

through further annotation and some minor changes in the system and annotation algorithm,

these cases may be augmented for.

Although our reference resolution and tumor characteristics extraction results are modest,

through our experiments we can see that improvements in reference resolution will also lead

to improvements in downstream tasks. Finding the number of tumors proved to be the

most difficult variable, as it requires very precise reference annotations. Meanwhile the other

variables, > 50% and largest size were more tolerant to errors.

Some limitations to work is that our dataset is from a single institution for a creation

cohort of patients, our corpus size is small, and our annotations were mostly single-annotated.

Our corpus annotations were specific towards tumors and not generalizable towards general
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medical concepts. In the following chapters, we use the models built on this subset to classify

the rest of the corpus.
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Chapter 8

PATIENT LEVEL CLASSIFICATIONS

In this section, we incorporate previous modules and classify patient level stage parameter

and liver cancer stages. We also compare with different frame-works of stage classification,

e.g. classification based on raw words, on normalized concepts, or on patient level normalized

concepts.

8.1 Related work

Patient classification is related to the general problem of clinical phenotype extraction. Spe-

cific cancer-related cases have had their own strategies for aggregating classifications for

patient level evaluation. For example, with patient cancer identification, a patient was clas-

sified as positive for a case if at least one positive extraction in any part of the patient record

was found [145][187]. In another example, the final categorizations of MRI cancer progression

for Cheng et al [39] were determined by getting the category that maximized the summed

probability of all a patient’s subdocuments.

Of the cases related to cancer staging, we reference Nguyen et al [121], in which pa-

tient records were concatenated into a a single file and least to most severe classifications of

sub-stages were determined until finding the final stage combination. In Nguyen et al [122],

which used a heuristic algorithm, the most severe sub-stages were tested before moving to

the least severe cases until a final stage combination was reached.

Here we describe our patient level classification for stage and stage parameters, for which

we ultimately used a rule-based algorithm. In general, our strategy for stage parameter

aggregation to the patient level was to use a “most severe rule” heuristic. Our conversion

from stage parameters to stages used a domain expert rule-based algorithm.
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8.2 Rule-based patient level stage parameter classification

To summarize, from the previous extraction systems we have the following data, described

in Table 8.1

Stage parameter Extraction method Granularity

Laboratory data Structured Timestamp

Child-Pugh Regular expression Text highlights

ECOG

Ascites Sentence classification Text highlights

Extrahepatic invasion

Hepatic encephalopathy

Macrovascular invasion

Metastasis

Portal hypertension

Tumor morphology Entity, relation extraction Entities and relations

Tumor number Reference resolution Document level annotation

Tumor size Tumor characteristics

extraction

Table 8.1: Extraction data summary

Given the automatic annotations resulting in the previous extraction systems, there are

many options on how to arrive at patient level stage parameter values, e.g. take highest

frequency. For our system, we use the simple heuristic of taking the most severe finding for

each category in a patient. If no findings were found, the least severe of each category was

given as default. Table 8.2 shows the result of the rule-based heuristic using system and gold

annotations for the 160 training set patients. We also provide, for comparison, the result of

a classifier that just outputs the majority class.

Besides macrovascular invasion and metastasis, our heuristic using system annotations

outperformed the majority class baseline. As observed, in the results, gold annotations may

not lead to a 1.00 F1 match. Part of the reason for this is that our algorithm assigns values

to a patient regardless of whether or not there is evidence of it. In the annotated gold
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standard, this is not the case as missing or conflicting information may lead to an unscore-

able result. Lower performance with gold annotations of ECOG may be explained by the

annotation guidelines’ specifying use of the least severe case for disambiguation, opposite to

our heuristic. Another stage parameter that our patient level resolution algorithm may not

work best for is Child-Pugh. Child-Pugh values can either be read from text (explicit values)

or calculated (non-explicit values); and it is possible to have errors in either form because of

either human calculation of the explicit values, or extraction problems for the non-explicit

values. This discrepancy is explored more in the next section. Which values to trust would

require some logic regarding classification confidences. In the future, these decisions may be

changed according to clinically motivated reasons.

Majority class System annotations Gold annotations

Label TP F1 TP F1 TP F1

Ascites 120 0.75 130 0.81 155 0.97

ChildPugh 99 0.62 139 0.87 155 0.97

ECOG 96 0.60 135 0.84 139 0.87

Extrahepatic invasion 156 0.98 156 0.98 157 0.98

Hepatic encephalopathy 136 0.85 145 0.91 158 0.99

Macrovascular invasion 138 0.86 134 0.84 155 0.97

Metastasis 147 0.92 145 0.91 158 0.99

Portal hypertension 96 0.60 131 0.82 151 0.94

Tumor morphology 90 0.56 114 0.71 148 0.93

Tumor number 102 0.64 106 0.66 151 0.94

Tumor size 74 0.46 128 0.80 153 0.96

Table 8.2: Patient level stage parameters classification performance using text annotations

on training set (total 160 patients)

8.2.1 Child-Pugh values comparison

With a method to resolve text annotations to a patient level stage parameter, we can compare

several different versions of Child-Pugh from the gold and system annotations. The first is
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to take the most severe Child-Pugh from text annotations (text), e.g. mentions such as

“Child’s class A”, the second is to use the calculated values of Child-Pugh with input from

patient level ascites or hepatic encephalopathy (calculated), the third is to use the patient

level annotations of Child-Pugh (patient level annotation). For patients which had at least

one Child-Pugh text annotations (67 patients), we put the F1 agreement numbers in Table

8.3.

Annotation Text vs. calculated Text vs. patient level

annotation

Calculated vs. patient

level annotation

Gold 0.81 0.85 0.96

System 0.74 0.79 0.85

Table 8.3: Different comparisons of Child-Pugh

The comparison between text and patient level annotation for gold annotations reveals

that the stated explicit annotations (calculated by the clinician at the time) do not always

match the true Child-Pugh class (calculated on review by our domain experts). The differ-

ence between calculated and patient level annotations signals internal inconsistencies due to

annotation errors. The disagreement between the Child-Pugh text values compared to the

gold-standard is interesting. Some possible causes are either calculation errors of either the

attending clinician of the note or our annotators, perhaps as a consequence of the cognitive

load required to stage patients, or using different laboratory values for calculations.

For system annotations, the agreements quantify the consistency between taking the text

annotations by themselves (text), calculating from the value using the Child-Pugh algorithm

(calculated), and taking the most severe out of the two (patient level annotation) for the 73

patients with at least one explicit value.

8.3 Rule-based patient level stage classifications

With patient level stage parameters resolved, only the final classification for patient level

stages are left. For this task, we experimented using several levels of annotation from both
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the gold and the system annotations. We compared (1) a classifier that names the majority

category, maximum entropy classifiers using (2) document 1-, 2-, 3- gram and normalized

UMLS concepts (using MetaMap) with frequency features, (3) text annotation label values

with frequency features, and (4) stage parameter label value features, and (5) a set of rules

generated from the expert created lookup tables created during annotation (Appendix B).

The results using gold and system annotations on the 160 patient cross-validated training

set are shown in Table 8.4 and 8.5, respectively. Table 8.5 additionally gives relaxed scores if

AJCC stage IIIA-IIIC were merged into AJCC stage III, AJCC stage IVA-IVB were merged

into AJCC stage IV, and if BCLC stage A1-A4 were merged into one BCLC stage A.

Majority class Doc. class. Text annot. Stage param. Rules

Label TP F1 TP F1 TP F1 TP F1 TP F1

Stage ajcc 87 0.54 86 0.54 138 0.86 140 0.88 157 0.98

Stage bclc 57 0.36 57 0.36 112 0.70 138 0.86 155 0.97

Stage clip 53 0.33 48 0.30 72 0.45 110 0.67 152 0.95

Table 8.4: Gold patient level stage parameters classification performance on training set

(total 160 patients)

Text annot. Stage param. Stage param. (r) Rules Rules (r)

Label TP F1 TP F1 TP F1 TP F1 TP F1

Stage ajcc 96 0.60 109 0.68 113 0.71 103 0.64 108 0.68

Stage bclc 76 0.48 92 0.58 109 0.68 98 0.61 111 0.69

Stage clip 115 0.28 88 0.55 88 0.55 88 0.55 88 0.55

Table 8.5: System patient level stage parameters classification performance on training set

(total 160 patients), where (r) is the relaxed stage match

While each higher level of annotation using gold annotations led to better performances,

with system annotations this trend did not carry through. In the end, using system annota-
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tions, having more accurate staging system did not translate into better classifications due

to the cascading errors from lower levels.

8.4 Patient evaluation on the test set

The results of the models trained on the entire training set and decoded for the test set are

shown in Table 8.6. The drop in performance was most notice-able for the tumor-related

stage parameters. Meanwhile, the general performance degradation signals overtraining on

the training set.

Label TP F1

Ascites 29 0.73

ChildPugh 35 0.88

ECOG 32 0.80

Extrahepatic invasion 40 1.00

Hepatic encephalopathy 35 0.88

Macrovascular invasion 34 0.85

Metastasis 39 0.98

Portal hypertension 34 0.85

Tumor morphology 23 0.58

Tumor number 23 0.58

Tumor size 33 0.83

Stage ajcc 22 0.55 (0.60)

Stage bclc 20 0.50 (0.55)

Stage clip 17 0.43 (0.43)

Table 8.6: Patient level stage parameters classification on test set (total 40 patients), paren-

thesis scores are the relaxed stage matches

Comparison of corpus population to the test set revealed some differences in the overall

sampling trend for BCLC and CLIP stages, which may account for some of the discrepancies

between the cross-validated training set performance and the test set performance in Table

8.7. For a quantification of classification mistakes, we give the confusion matrices for the

three stages in Table 9.2, 9.3, and 9.4.
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Label Value Frequency (corpus) Frequency (test)

AJCC

I 108 20

II 48 15

IIIA 16 2

IIIB 14 3

IIIC 0 0

IVA 6 0

IVB 7 0

BCLC

A1 27 2

A2 21 4

A3 13 7

A4 17 4

B 23 11

C 70 11

D 14 1

CLIP

0 66 10

1 62 18

2 41 6

3 18 5

4 8 0

5 4 1

6 0 0

Table 8.7: Stage annotations

System

I II III-a III-b III-c IV-a IV-b

G
o
ld

0 0 0 0 0 0 0 0

I 0 13 8 0 0 0 0 0

II 0 4 7 0 1 0 0 0

III-a 0 1 0 1 1 0 0 0

III-b 0 1 0 1 1 0 0 0

III-c 0 0 0 0 0 0 0 0

IV-a 0 1 0 0 0 0 0 0

IV-b 0 0 0 0 0 0 0 0

Table 8.8: AJCC stage confusion matrix
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System

A1 A2 A3 A4 B C D

G
o
ld

0 0 0 0 0 1 2 0

A1 0 0 1 0 0 1 0 0

A2 0 0 2 1 0 3 0 0

A3 0 0 0 2 0 1 0 0

A4 0 0 0 0 3 0 0 0

B 0 1 1 2 1 3 0 0

C 0 0 0 2 0 2 9 0

D 0 1 0 0 0 0 0 1

Table 8.9: BCLC stage confusion matrix

System

0 1 2 3 4 5 6

G
o
ld

0 0 0 0 0 0 0 0

0 0 6 5 1 1 0 0 0

1 0 2 10 3 1 0 0 0

2 0 2 3 1 2 0 0 0

3 0 0 0 1 0 0 0 0

4 0 0 0 0 1 0 1 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

Table 8.10: CLIP stage confusion matrix
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8.4.1 Sensitivity analysis

To get a sense in the error propagation for each patient level stage parameter to patient

level stage assignment, we performed two sets of sensitivity analysis experiments. The first

set assumes system patient level stage parameter annotations for all except one gold stage

parameter (Table 8.11). The second set assumes gold patient level stage parameter annota-

tions for all except one system stage parameter. If given the correct number of tumors, there

are drastic changes in performance for AJCC and CLIP, as shown with tumor morphology

and tumor number. Recall, tumor morphology does take into account the tumor numbers as

well. The BCLC stage, on the other hand, tended to be less volatile according to changes in

one specific stage parameter, suggesting that it has a more equitable reliance on each of its

stage parameters.

Note, the different staging schemes use different parameters, so not every change in vari-

able will lead to changes in performance. The BCLC stage is the only one that uses ECOG

stage parameters, for example. For comparison, we also provide the sensitivity experiments

for the training set (Table 8.12), which exhibits the same trends.
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Stage ajcc 0.55 0.55 0.55 0.55 0.55 0.60 0.58 0.55 0.55 0.85 0.55

Stage bclc 0.50 0.50 0.63 0.50 0.50 0.55 0.53 0.53 0.50 0.63 0.55

Stage clip 0.43 0.50 0.43 0.43 0.43 0.43 0.43 0.43 0.80 0.43 0.43

Table 8.11: Sensivity analysis substituting one gold stage parameter in test set

The reverse experimental observations also corroborated the importance of tumor mor-

phology and tumor number, where system values degraded the system much more than other
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Stage ajcc 0.64 0.64 0.64 0.65 0.64 0.74 0.73 0.64 0.64 0.76 0.67

Stage bclc 0.61 0.64 0.73 0.61 0.61 0.67 0.64 0.66 0.61 0.69 0.64

Stage clip 0.55 0.60 0.55 0.55 0.55 0.64 0.55 0.55 0.74 0.55 0.55

Table 8.12: Sensivity analysis substituting one gold stage parameter in train set

parameters (Table 8.13 and 8.14) for test and train sets, respectively.
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Stage ajcc 0.97 0.98 0.98 0.98 0.98 0.90 0.95 0.98 0.98 0.63 0.95

Stage bclc 0.93 0.93 0.83 0.93 0.93 0.90 0.90 0.88 0.93 0.75 0.85

Stage clip 1.00 0.88 1.00 1.00 1.00 0.93 1.00 1.00 0.58 1.00 1.00

Table 8.13: Sensivity analysis substituting one system stage parameter in test set
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Stage ajcc 0.98 0.98 0.98 0.98 0.98 0.88 0.89 0.98 0.98 0.85 0.94

Stage bclc 0.97 0.94 0.87 0.97 0.97 0.91 0.95 0.93 0.97 0.88 0.95

Stage clip 0.95 0.84 0.95 0.95 0.95 0.84 0.95 0.95 0.69 0.95 0.95

Table 8.14: Sensivity analysis substituting one system stage parameter in train set

8.5 Summary

This chapter covered the rule-based algorithms for patient level classifications. Included,

as well, were experiments using various levels of gold and system annotations. We used a

simple heuristic of aggregating patient level stage parameters, however for future work, it

is easy to experiment with other methods, e.g. using the highest frequency. The patient

level stage classifications used a rule-based method, which was high-performing assuming its

stage parameter input were accurate. For future work, in order to decrease this low level

of robustness, it would be interesting to experiment with methods that take into account

confidences regarding multiple stage parameter values at different granularities, e.g. making

a classification based on text evidence as well as patient level values with associated uncer-

tainties.

The final performance of the system on the test set was unfortunately not as high as

estimated with the cross-validation training set. Analyzing the sensitivity of each param-

eter, we found that the weakest link was the tumor numbers, which, non-coincidentally,

was the hardest stage parameter to correctly classify, due to requirements of discourse-level

information.
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Chapter 9

EXPERT VS NON-EXPERT PATIENT CLASSIFICATIONS

Because hospital human abstractors are typically staff personnel with some medical back-

ground, e.g. a nurse, but not a domain expert, e.g. an interventional radiologist, we wanted

to experiment with the accuracy of a non-expert with medical background for patient level

stage parameter and stage assignments.

A non-expert medical student was trained for six hours over three days. Afterwards, their

task was to assign patient level annotations for stage parameters and the 3 stages, given the

free text notes and the necessary laboratory values. 100 of the patients were randomly cho-

sen from the entire set and the results are compared to the consensus expert interventional

radiologist gold standard patient level annotations.

9.1 Results

The overall classifications for all patient labels (stage parameters and stages) are shown

in Table 9.1. In general patient level annotation for stage parameters were quite high.

Only 3 out of 11 parameters were below 0.90 F1. The lower performing categories were

ascites, Child-Pugh, and tumor morphology. Possibly ascites was more problematic because

of the number of locations it may appear in. Child-Pugh stage on the other hand required

either calculating the new stage or finding explicit mentions of Child-Pugh in the text.

Finally, tumor morphology is one of the most difficult staging parameters as it requires

disambiguating malignancy in various findings and performing reference resolution over one

(or more) documents. The average time spent on staging per patient was 13 ± 4 minutes.

The minimum, maximum, and median time spent per patient was 6, 34, and 12 minutes,

respectively.
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Label TP F1

Ascites 86 0.86

ChildPugh 89 0.89

ECOG 88 0.88

Extrahepatic invasion 94 0.94

Hepatic encephalopathy 95 0.95

Macrovascular invasion 93 0.93

Metastasis 98 0.98

Portal hypertension 94 0.94

Tumor morphology 86 0.86

Tumor number 92 0.92

Tumor size 94 0.94

Stage ajcc 89 0.89 (0.90)

Stage bclc 82 0.82 (0.86)

Stage clip 75 0.75 (0.75)

Table 9.1: Expert versus non-expert patient level annotations

Below is a breakdown of the 3 stages shown as confusion matrices. While most of the

mistakes were off the center for AJCC, CLIP stages and BCLC stages were more scattered.

This is most likely caused by the comparative complexity of BCLC staging.

System

I II III-a III-b III-c IV-a IV-b

G
o
ld

0 1 0 0 0 0 0 0

I 0 49 4 0 0 0 0 0

II 0 2 25 1 0 0 0 0

III-a 0 0 0 5 0 0 0 0

III-b 0 0 1 0 4 1 0 0

III-c 0 0 0 0 0 0 0 0

IV-a 0 0 0 0 0 0 3 0

IV-b 0 0 0 1 0 0 0 3

Table 9.2: AJCC stage confusion matrix
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System

A1 A2 A3 A4 B C D

G
o
ld

2 0 1 0 0 0 2 0

A1 0 9 2 0 0 1 0 0

A2 0 0 9 1 0 2 0 0

A3 0 0 1 5 0 0 0 0

A4 0 0 0 0 8 0 0 0

B 0 0 0 0 0 10 2 1

C 0 2 1 1 0 0 31 1

D 0 0 0 0 0 0 0 8

Table 9.3: BCLC stage confusion matrix

System

0 1 2 3 4 5 6

G
o
ld

0 1 0 0 0 0 0 0

0 0 25 5 1 0 0 0 0

1 0 2 24 2 3 0 0 0

2 0 0 3 17 5 0 0 0

3 0 0 0 1 6 0 0 0

4 0 0 0 0 0 1 2 0

5 0 0 0 0 0 0 2 0

6 0 0 0 0 0 0 0 0

Table 9.4: CLIP stage confusion matrix

9.2 Summary

A non-expert trained to discriminate liver cancer stagings achieved high accuracies. As

with the system performance, errors among the stage parameter propagated to overall stage

classification performance. The annotator took an average of 13 minutes to compete a staging

task for 40 patients. While, the annotator had limited training and further more experience

would increase the speed of the task, simultaneously the effort required for staging more

patients may cause substantial cognitive load and thus annotation fatigue, possibly resulting
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in annotation errors.

Comparatively, a human annotator performs significantly better than our automated

system. As described in the previous chapter, one of the main performance bottlenecks is

identifying the correct tumor number for a patient. The superior performance of a human

is consistent with the fact that anaphoric reference resolution is still an unsolved problem.
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Chapter 10

CONCLUSIONS AND FUTURE WORK

We conclude this thesis with a summary of results, a discussion of our contributions, a

review of the limitations in this thesis, and finally a look to future work.

10.1 Summary of results

Table 10.1 summarizes the annotation work in this thesis, while Table 10.2 summarizes the

classification results for this work.

Annotations Granularity Description

Clinical note sections Text highlights Annotations demarking clinical note sections

Stage parameter text evidence Text highlights Annotations of text evidence related to 11 liver cancer

stage parameters

Patient level stage parameters Patient labels Patient level values for 11 liver cancer stage parameters

Patient level stages Patient labels Patient level stage values for three liver cancer staging

schemes

Tumor templates Entities & relations Radiology report tumor-related events

Tumor reference resolution Relations Reference resolution between tumor-related event heads

for coreference and particularization relations

Tumor characteristics Document labels Document level annotations for tumor counts, sizes, and

whether 50% of liver is invaded

Table 10.1: Summary of annotation work
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Classification Agreement Baseline System

Stage parameter text evidence 0.85 0.63 0.75

Patient level stage parameters N/A 0.71 0.95

Patient level stages N/A 0.41 0.97

Tumor templates 0.70 0.38 0.42

Tumor reference resolution 0.95/0.84 0.54/0.44 0.66/0.43

Tumor characteristics 0.91 N/A 0.79

Table 10.2: Summary of classification results (F1) for cross-validation sets.

Each component assumes gold standard inputs. For example, patient

level stage parameter classification assumes gold text annotation input;

tumor reference resolution classification assumes gold tumor templates in-

put. Stage parameter text evidence are measured at the document level.

Tumor reference resolution measured for coreference (averaged MUC, B3,

and CEAF) and particularization.

10.2 Contributions

In this thesis, we contribute (1) a framework for normalizing concepts and severities/attributes

using data driven statistical classification, (2) a sparse annotation approach for tumor find-

ings, an annotation methodology for tumor reference and characteristics, (3) experiments

with anaphoric reference resolution using a greedy feature-rich classifier, (4) a phenotype al-

gorithm for liver cancer stages of AJCC, BCLC, and CLIP stages, and (5) characterizations

of challenges for the classification for the 11 stage parameters and 3 stages in liver cancer.

An important issue to address for this thesis is that though our system has some reason-

able performances for stage parameters, they and their corresponding cancer stage classifi-

cations do not perform near human level. As our goal is to automate staging to facilitate

evidence-based medicine, this result is somewhat problematic. In regards to this, we can

offer two consoling points. The first is that each module in our system, using the least

assumptions possible for our tasks, has great potential for growth with small configuration
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changes and with more annotated data.

Secondly, though our full system does not provide clinically acceptable performances,

parts of it may be used as tools for pre-annotation or in conjunction with human inputted

data for stage parameters that are not achievable using current methods. For example, the

sentence classifiers may be used to find important sentences with normalized values, and a

human can examine whether or not they are correct. This would potentially cut annotation

costs. Similarly, for tumor characteristics annotation, entity and relation classification may

be used to highlight important parts of the report. Of course, whether or not pre-annotation

would decrease annotation time, currently approximately 13 minutes per patient, requires

validation through human-centered interaction research. Another use case is taking human

input for the more problematic stages, while keeping the higher performing modules. As

identifying the number of tumors is the most difficult challenge in this thesis, if this was

inputted by a human, the baseline for the patient classification would increase.

Other cancer stages may benefit from using the same methods and workflow we build.

Diagnosed medical conditions not captured by problem lists may also follow similar patterns

as our stage prediction workflow. Furthermore, our subtask classifications for individual

stage parameter identification may be applicable or relatable to other studies.

10.3 Limitations

One of the limitations of our work include that it is from small dataset of a single institution.

Therefore our models may be overtrained or may not generalize well to the language of other

institutions. Annotation typically involved a small number of domain experts.

The liver cancer stage parameter and stage classifications applied to 3 stages but may

not collect enough information for all other liver cancer stage schemes. Our population was

skewed towards early to intermediate stage patients, and we also assumed we could correctly

identify irrelevant files and report types, e.g. addendum file types, etc. Our staging was also

targeted towards patients before treatments. However, staging of patients after treatments

start may involve different text evidence and more complex criteria for identifying relevant
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symptoms.

10.4 Conclusions and future work

This thesis details our automated system for liver cancer staging. The problems that we

encounter are typical for complex patient clinical phenotype classifications. We offer some

of our solutions that are relevant to other similar tasks. During the course of our work, we

identified a significant challenge in our classification tasks as issues of anaphoric references

and reasoning over discourse.

Though our system is currently not clinically viable, several improvements may lead to

reasonable performance gains. For example, with more training examples, our stage param-

eter extraction methods for sentence classification and tumor entity and relation extraction

would increase. Adding additional rules, e.g. to handle conjunctions for ECOG and Child-

Pugh stages, would increase performance with not much further effort.

Barring use of the full system, certain submodules can be used in conjunction with humans

to decrease annotation costs. This is related to one of our described themes of structured

vs. unstructured data entry. A balance must be achieved to optimize the maximum data

collection strategy while minimizing the cost of data collection given resource constraints.

The pragmatic goals, in regards to application of NLP and AI in clinical decision support,

is to prioritize important data entry tasks for humans that cannot be easily or reliably done

with a machines; meanwhile decreasing data-entry tasks for humans which can be instead be

dealt with using machines. Then, as a secondary use step, this distilled data may leverage

methods to facilitate evidence-based research or even as more gold standard data to improve

existing classification algorithms.

We point out the strength in our approach is the interpretability and trace-ability for

phenotype classification. Our system can not only predict a patient stage value, but can also

provide the predicted patient level stage parameter values and the relevant text evidence.

This approach is desirable given our second theme, that medical conditions have arbi-

trarily complex signs and symptoms. Configurable definitions for medical conditions
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and accompanying signs and symptoms may have different criteria depending on the study.

For example, a subset of the TREC 2011 Medical Records Track challenge [56], shown in

Table 10.3, already includes different levels of specificifications for which a variety of text

evidence may be useful for. Meanwhile, the use of statistical algorithms within the overall

methodology maintains some ability to increase performance as more data is added and the

ability to adapt to other datasets.

Topic number Description

101 Patients with hearing loss

102 Patients with complicated GERD who receive endoscopy

104 Patients diagnosed with localized prostate cancer and treated with robotic surgery

105 Patients with dementia

112 Female patients with breast cancer with mastectomies during admission

123 Diabetic patients who received diabetic education in the hospital

133 Patients admitted for care who take herbal products for osteoarthritis

135 Cancer patients with liver metastasis treated in the hospital who underwent a procedure

Table 10.3: Subset of topics in the Text Retrieval conference (TREC) 2011 Medical Records

Track challenge to retrieve patients eligible for clinical studies.

Another strength of our system is its modularity. Separate modules of the system were

divided by granularities as well as by the classification category task. Connected to this was

the challenging decisions of how and where to require separate layers of integration, a prob-

lem that touches upon the issues of information completeness and consistency. We

used only some simple heuristics for integration here, e.g. taking most severe stage param-

eter cases, however there is room to experiment with trying different integration methods,

e.g. highest frequency, or with integration methods taking in multiple levels of integration,

e.g. using subdocument text evidence as well as patient level information and classification

confidences.

With improvements, we hope our system could eventually be integrated with other knowl-

edge, e.g. treatment billing codes and life expectancy, to bolster evidence-based medicine.



166

10.5 Final remarks

Advancing computer processing and storage has led to great strides in AI. The last several

decade has heralded improvements in digital assistants (Alexa, Cortana, and Siri), self-

driving vehicles, and self-balancing robots. Today, machine learning is used for a variety

of tasks including fraud detection, consumer recommendations, improved internet search

results, and voice-recognition.

With further research into clinical NLP and parallel integration into EMRs, it is hopeful

to expect the advancements in AI to aid in healthcare. The trends for this is promising.

Besides the incorporation of EMRs in the hospital setting, institutions are pooling together

similar cohorts into large conglomerate databases, e.g. eMERGE. Private companies are also

investing into personal patient records, e.g. Practice Fusion and CareCloud. Increasingly,

hospitals are supporting health information exchange as well as new technologies that provide

new ways of patient data collection, such as through emails, images, or other application

tools. Furthermore, other data collection modalities powered by the patients themselves,

e.g. Fitbit data and social media logs, may become increasingly visible and important for

personalized medical care.

With all the advancements and conveniences of modern society, it would be welcoming

to have such improvements ease unnecessary the suffering or the bottlenecks for a portion of

the population that we or a family member will, at one time or another, inevitably fall under.

Though there are still many technical and logistical barriers against effective streamlining

of clinical encounters as natural feedback data points for evidence-based medicine, we are

optimistic about the current atmosphere and hope that our work will add to the growing

technology.
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Appendix C

PRIMARY LIVER CLINIC NOTE SECTION ONTOLOGY

A clinical note has the following general sections with the various subsections.

GENERAL INFORMATION

Clinic note type

Date of Service

ID/Chief Complaint

HISTORY

History of present illness

Past Medical history

Past Surgical history

Social history

Family history

Allergies

Medications

Review of systems

Performance status

OBJECTIVE DATA

Vital signs

Physical examination

Laboratory results



196

Imaging studies

ASSESSMENT & PLAN

Assessment

Plan

OTHER

Attending statement

Timed billing statement

Journal references
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Appendix D

TUMOR TEMPLATE ANNOTATIONS GUIDELINES
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Appendix E

TUMOR REFERENCE RESOLUTION ANNOTATIONS
GUIDELINES



 1

 

 
In this document we describe the annotation process and lay out the annotation guidelines for marking 
reference mentions of tumor artifacts in radiology report. Here, we assume that the corpus has already 
been marked with tumor events. 
 

 
Reference resolution involves identifying information in text that refer to the same entity. For example,  

 
“John has a three ducks. They were just born yesterday. He is very proud of them.” 

 
John is referred to in the last sentence as He, while the ducks are alternatively addressed with they and 
them. 
 
The general English domain focuses on named entities, where constraining features are based on 
subject-verb agreement, pronoun (he vs. she vs. it) usage, etc. For example, in the following example, 
Victoria Chen is referred to with Chief Financial Officer, her, the 37-year-old, and company’s 
president. And Megabucks Banking Corp is referred to later as the Denver-based financial-services 
company. Target named entity types are person, location, and organization. 
 
Victoria Chen, Chief Financial Officer of Megabucks Banking Corp since 2004, saw her pay jump 
20%, to $1.3 million as the 37-year-old also because the Denver-based financial-services company’s 
president. 

Jurasky and Martin, Speech and Language 2nd edition 
 
In the biomedical literature domain, target named entity types have been on genes and proteins. Below 
“p65” and “this transcription factor.” 
 
To investigate the molecular basis for the critical regulatory  interaction between NF-kappa B and I 
Kappa B/MAD-3 a series of human NF-kappa B p65 mutants was identified that functionally 
segregated DNA binding, I kappa B-mediated inhibition, and I kappa B-induced nuclear exclusion of 
this transcription factor. 

BioNLP 2011 Shared Task Protein/Gene Coreference Task 
 
In the medical reference resolution domain, there has been much emphasis on identifying coreferences 
for persons, symptoms, and tests. This was the subject of the 2011 i2b2/VA cincinatti challenge. 
While overall scores have been high, these depend on the evaluation metric and the particular 
categories of the challenge. Below “Patient” and “She” refer to the same entity, but the two 
“Pathology” are not the same. 
 
Patient underwent a total abdominal hysterectomy in 02/90 for a 4x3.6x2 cm cervical mass felt to be a 
fibroid at Vanor. Pathology revealed poorly differentiated squamous cell carcinoma of the cervix […] 
with extensive lymphatic invasion. She underwent exploratory laparotomy […]. Pathology was 
negative for tumor and showed peritubal and periovarian adhesions. 
Jonnalagadda, et al. Coreference analysis in clinical notes: a multi-pass sieve with alternate anaphora resolution modules. 
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 2

JAMA 2012, 19: 867-874 

 
Event reference resolution is related entity reference resolution, which identifies events that are the 
same. An event is a predefined template with certain attributes. For example, in the general English 
domain, an event has “agent” “patient” and “location.” 
 
Example from (Liu, Supervised Within-Document Event Coreference using Information Propagation, 
LREC 2014) 
 
Indian naval forces came to the rescue (E1) of a merchant vessel under attack (E2) by pirates in the 
Gulf of Ade on Saturday, capturing (E3) 23 of the raiders, India said (E4). 
 
Event 1:  came to the rescue 
   Agent: Indian naval forces 
   Patient: merchant vessel 
   Location: Gulf of Ade 
   Time: Saturday 
 
Event 2:  attack 
   Agent: pirates 
   Patient: merchant vessel 
   Time: Saturday 
 
Event 3:  capturing 
   Agent: pirates 
   Patient: 23 of the raiders 
 
Event 4:  said 
   Agent: India 
 
The Indian navy captured (E5) 23 piracy suspects who tried (E6) to take over (E7) a merchant vessel 
in the Gulf of Aden, between the Horn of Africa and the Arabian Peninsula, Indian officials said (E8). 
 
Event 5:  captured 
   Agent: Indian navy 
   Patient: 23 piracy suspects 
   Location: Gulf of Aden 
 
Event 6:  tried 
   Agent: 23 piracy suspects 
   Location: Gulf of Aden 
 
Event 7:  take over 
   Agent: 23 piracy suspects 
   Patient: merchant vessel 
   Location: Gulf of Aden 
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Event 8:  said 
   Agent: Indian officials 
 
In this case, events 3 and 5, events 2 and 7, and events 4 and 8 co-refer. 
 
In the following example, we note subevent cases in which there are parent-child and sister relations in 
addition to a straightforward coreference. 
 
Ismail said the fighting, which lasted several days, intensified when forces loyal to Egal’s Ha-bar Awal 
sub-clan of the Issak attacked(E12) a militia stronghold of his main opposition rival, . . .  
Egal militia, claiming to be the national defence force, said they had captured(E15) two opposition 
posts, killing(E16) and wounding(E17) many of the fighters, destroying(E18) three technicals (armed 
pick-up trucks) and confiscating(E19) artillery guns and assorted ammunition 
 

 
 

Examples from (Araki, Detecting Subevent Structure for Event Coreference Resolution, LREC 2014)  
 

 
Reference resolution of tumors in radiology reports are in many ways similar to the traditional 
entity/event reference resolution task. For example emphasis on the WH- preceding determiner, e.g. 
“the” and “these”, within-sentence repeated mentions, and intra-document mentions. Some event cues 
are based on attributes: anatomic location, measurements, and cancer description. 
 
There are numerous hypervascular liver lesions (E1) involving all segments of the liver several of 
which demonstrate washout on delayed scans in keeping with multifocal hepatocellular carcinoma. 
The largest in the left lobe and is in inferior lateral segment 3 and measures 6.7 x 6.8 cm (E2) in 
transverse diameter. 
… 
There are numerous additional confluent lesions (E3) in the left lobe of the liver. 
The largest lesion in the right lobe of the liver is in posterior superior segment 7 and measures 2.7 and 
3.8 cm (E4) in transverse diameter 
 
Here, events 2 and 3 refer to the same lesions. 
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Our annotation is a direct extension of our previous sparse tumor annotation, which is described in our 
guidelines and in this paper [1]. Our goal is to annotate not only for equivalence event references but 
also for parent-child non-transitive, non-symmetric referring expressions, between tumor events. 
Because our annotation extends our previous scheme, we highlight some key differences with prior 
work. 
 
Key Differences: 

1. Sparse annotation: Not all lines are marked, and not all elements in the sentences are marked. 
a. “E.g.  “The largest in the left lobe and is in inferior lateral segment 3 and measures 6.7 x 

6.8 cm in transverse diameter.” – “the largest” is not annotated 
2. Use of measurements as referring expressions of a tumor entity: This was a consequence of 

the telegraphic nature of the medical text and as well as our sparse annotation (the goal to avoid 
excess annotation for all sentence elements, e.g. determiners). 

a. “Segment VII: 2.6 x 2.4 cm (37/4).” – “2.6 x 2.4 cm” is marked as the referring 
expression to a tumor 

 
Our annotation is performed over a clinical radiology text corpus, primarily focusing on hepatocellular 
carcinoma patients. Thus the language and style of the reports yields important observations. 
 
Domain particularities: 

1. Approximate measurement equivalences – measurement sizes may not be exact, sometimes 
being referred to as “approximately X” where X may be the same number without a significant 
figure or rounded up or down. 

2. Largest measurement as referring expressions – tumor measurements differ depending on 
the scan angle and axis. Typically, after mentioning all the dimensions, the maximum 
dimension may be used as a representative of the full measurement. 

 
2.1 x 2.1 hyper enhancing mass in the arterial phase in segment 4a (5/16, 8/12) with washout and single 
pseudocapsule consistent with HCC. 
Hyperenhancing lesion in segment 2 (5/12) measures 0.9 x 0.7 cm, without any suspicious washout on 
the portal venous and delayed images. 
… 
Impression: 

1. 2.1 cm segment 4a mass consistent with HCC. 
2. 0.9 cm hyper enhancement in segment 2 without any suspicious washout, is indeterminate 

 
3. Summarization by measurements – More than one tumor may be described at once 

summarized by a bounded number range, e.g. “3 lesions all under 2 cm.”  
4. Summarization by anatomic region –More than one tumor may be described at once, 

summarized by a region, e.g. “3 lesions in the left lateral section” or “numerous tumors all over 
the right lobe.” 

 
Coreference of 2 summary statements with non-exact number agreement 
Focal lesions: 
Total number Two large and multiple small in right lobe 
Lesion 1: Large lesion involving segment 8,7,6,5, At least 13.5cm 
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Lesion 2: segment 5, 7cm 
Lesion 3: Multiple satellite lesions for example, segment 4 measures 2 cm. 
…. 
Impression: 
Multiple focal lesions in right lobe the largest measuring 13.5 cm. 
Findings are highly suspicious of fibrolameliar hepatocellar carcinoma. 
Smaller lesions are suspicious of satellite lesions. 
 

  
Image from www.aboutcancer.com 

 
For more information about liver anatomy, there is an online version of Gray’s anatomy 
(http://www.bartleby.com/107/250.html) and a site that describes how radiologists read images 
(http://www.radiologyassistant.nl/en/p4375bb8dc241d/anatomy-of-the-liver-segments.html). 

 

 
This section describes the reference resolution annotations. Annotations should be between event 
heads. Tumor event heads can either be tumor references or measurements, typically the highest in the 
tumor template graph annotation. For tumor events with more than one measurement, those 
measurements are also considered tumor event heads. 
 
Coref: Coreference 
This type of relation annotate for equivalence references for two event heads. The relationship should 
be both transitive and symmetric. 
 
Particularization: Reference of general referring expression to specific a specific one 
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This annotates for references from an event that is a superset to another event. This relation is non-
symmetric, but it is transitive. 
 
Multiple tumors in same place 
In response to the question regarding the size of the masses seen in the liver: The mass in segment 6 
measures 2.6 x 2.3 x 2.8 cm, measured in the hepatocyte phase. 
The mass in segment 8 measures 1.6 x 1.6 x 1.6 cm, measured in hepatocyte phase. 
 
Particularization: {masses -> mass},{masses->mass} 
 
Focal lesions: 
Total number: 9: 
Largest Lesion : segment 6, 5.5cm , image 601/61, at least 4 more lesions are probably HCC. 
Largest lesion has some fat attenuation in it. 
…. 
Impression: 
Agree Single phase scan limits the diagnostic specificity 
Nine hypervascular lesions in the liver. 
At least 5 lesions are probably HCC. 
The largest located in segment 6 measuring 5.5cm. 
 
Coreference: {Lesion, lesion, 5.5cm}, {Focal lesions, lesions} 
Particularization: {Focal lesions -> Lesion}{Focal lesions -> lesions} {lesions -> lesions} {lesions-
>5.5cm} 
 
 
Connection with previous annotations 
 
Previous annotation hasMeasurement, for a single measurement can be seen as a special case of 
COREF 
 

 
 
Previous annotation hasMeasurement for more than one measurement can be seen as a special case of 
particularization 
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1. Only mark references based on previous mention annotation. Do not correct past annotations errors. 
 
2. Mark all head “tumor reference” and “measurement” with reference annotations. 
 
3. Mark non-head “measurements” if there are more than one “hasMeasurement” for that tumor 
reference, and if the measurement is mentioned by itself at a later time. 
 
4. Put the minimum amount of reference annotations to fully constrain the problem. (So if A corefers 
with B and B corefers with C, it is not necessary to also put A corefers with C. Similarly, if A is a 
particularization to B, and B particularization to C, there is no need to put A particularization to C). 
 
5. Annotate all references, including the benign entities from other anatomic locations. 
 
Findings: 
Scans demonstrate at least 12 scattered pulmonary nodules in the 3-8 mm size range some of which are 
slightly larger than on the prior exam of 2 weeks ago 
…. 
Assessment: 
…. 
4. Multiple pulmonary nodules 
 
Mark nodules from findings and assessment to COREF. 
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Example 1 Different tumor in same area, later referred to with a combined anatomy location 
 
Arterially enhancing lesion in segment 7/8 of the liver that is partially exophytic and washes out … 
measuring 2.9 x 2.8 cm, consistent with HCC. 
There is 1.5 x 1.3 cm hyper enhancing subcapsular lesion in segment 8 which washes out … consistent 
with HCC. 
There is 0.9 cm focus of arterial enhancement in segment 7 … indeterminate. 
Impression: 
Segment 7/8 enhancing lesions arterially enhancing lesion … definite for hepatocellular carcinoma 
 

 
 
After adding reference resolution annotations: 
 
Last  (Line 5) enhancing lesions connected in a particularization relation to (Line 1) enhancing lesion 
and to (Line 2) lesion. 
 

 

216



 9

 
Example 2. Needs cancer type to distinguish 
 
1)Liver dome lesion measuring 34 mm segment 8 .. indicating microscopic fat. 
Post-contrast this lesion demonstrates hypervascularity at its inferior aspect, washout, and capsule 
LR5B 
2) 12 mm hypervascular observation in segment 8 peripherally, series 11 image 24, not perceptible on 
other phases. 
LR3 
….. 
Impression: 
… 
-segment 8 hypervascular lesion with washout and capsule – LR5B 
-segment 8 hypervascular lesion, no other features – LR3 
 

 
 
After adding reference resolution annotations: 
 
(Line 1) lesion connects with (Line 9) hypervascular lesion in a COREF relation 
(Line 2) 12 mm connects with (Line 10) hypervascular lesion in a COREF relation 
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Example 3. General statements with subevents 
 
FINDINGS: 
Liver: There is a 1.5 x 1.9 cm focus of early arterial enhancement with washout and a pseudocapsule in 
segment 7 (29/28) consistent with hepatocellular carcinoma. 
There are 3 other T1 weighted hyperintense foci with no or questionable arterial enhancement but 
demonstrate washout in the following locations: segment 5 (33/19) measuring approximately 1.3 x 0.9 
cm, segment 5/6 (33/25) measuring 0.9 x 0.8 cm, segment 7 (33/32) measuring 1.7 x 1.5 cm. 
IMPRESSION: 
1.  Single lesion in segment 7 measuring 1.5 x 1.9 cm is consistent with hepatocellular carcinoma. 
2.  Three smaller lesions in segments 5(1.3 x 0.9 cm), 5/6(0.9 x 0.8 cm), and 7(1.7 x 1.5 cm), as 
described above, may represent dysplastic nodules versus atypical HCC. 
Attention should be given in the follow-up imaging. 
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After adding reference resolution annotations: 
 
(Line 2) focus connects with (Line 5) lesion in a COREF relation 
(Line 3) hperintense foci connects with (Line 6) lesions in a COREF relation 
(Line 3) 1.4 x 0.9 cm connects with (Line 6) 1.3 x 0.9 cm in a COREF relation 
(Line 3) 0.9 x 0.8 cm connects with (Line 6) 0.9 x 0.8 cm in a COREF relation 
(Line 3) 1.7 x 1.5 cm connects with (Line 6) 1.7 x 1.5 cm in a COREF relation 
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Example 4. Ambiguity with number 
 
The following lesions are hypervascular with delayed washout, characteristic for HCC: 
1. Segment VII: 2.6 x 2.4 cm (37/4). 
2. Segment VI/VII: 5.6 x 4.5 cm (47/4). 
3. Segment III: 2.6 x 2.0 cm (45/4). 
4. Segment III subcapsular: 0.9 cm (52). 
5. Segment II/III: 1.5 x 1.4 cm (35/4). 
The latter lesion could also represent 2 separate smaller lesions, measuring 1.4 and 1.0 cm, best 
appreciated on delayed phase (37/6). 
… 
Impression: 
1. 5 or 6 hypervascular lesions within the liver with delayed washout, characteristic for HCC, the 
largest over 5 cm. 
 

 
 
After adding reference resolution annotations: 
 
(Line 1) lesions connected to (Line 2-6) 2.6 x 2.4 cm, 5.6 x 4.5 cm, 2.6 x 2.0 cm, 0.9cm, 1.5 x 1.4 cm in 
a particularization relation. 
 
(Line 6) 1.5 x 1.4 cm connects to (Line 7) lesion as a COREF relation 
(Line 7) lesion connects with (Line 7) lesions as a COREF relation 
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Example 5. Incorrect numbers 
 
Focal lesions: 
Total number: 2: 
Lesion 1: segment 3, 3.6 x 2.3cm hypervascular with washout on delayed imaging, image 3/32 and 
7/33 
Lesion 2: segment 4A/B, 0.8cm hypodense on all phases, image 7/32 
Lesion 3: Segment 7, 2.3 cm, washout lesion with ill-defined margins (7/38) 
… 
Impression: 
Agree with outside report: 
3 focal lesions: 
Segment 3 lesion is consistent with HCC. 
Segment 4A/B lesion is indeterminate. 
Segment 7 lesion is suspicious for HCC. 
 

 
 
 
After adding reference resolution annotations: 
 
(Line 1) Focal lesions should connect with (Line 3) Lesion 1, Lesion 2, Lesion 3 in a particularization 
relation. 
(Line 9) focal lesions should connect with (Line 10) lesion, (Line 11) lesion, and (Line 12) lesion in a 
particularization. 
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(Line 1) Focal lesions should connect with (Line 9) focal lesions in COREF relation 
(Line 3) Lesion 1 should connect with (Line 10) lesion in COREF relation 
(Line 4) Lesion 2 should connect with (Line 11) lesion in COREF relation 
(Line 5) Lesion 3 should connect with (Line 12) lesion in COREF relation 
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Example 6. Information in different places (size, and HCC diagnosis) 
 
There is a 4.0 x 3.9 cm lesion in segment 7 … which demonstrates arterial enhancement and washout 
on the delayed images. 
Additional wedge shaped lesions of arterial enhancement which do not demonstrates any washout 
(3/16, 24, 27) which were not demonstrated on prior. 
….. 
IMPRESSION: 
Cirrhosis. 
Lesion in segment 7 with arterial enhancement and washout on delayed suspicious for HCC. 
Additional wedge shaped lesions as described above which likely represent transient hepatic arterial 
differences. 
 

 
 
After adding reference resolution annotations: 
 
(Line 1) lesion connects with (Line 6) Lesion in a COREF relation 
(Line 2) lesions connects with (Line 7) lesions in a COREF relation 
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1. What do I do for a general statement with one example? 
 
Focal lesions: 
Total number: 1. 
Lesion 1: Segment V, 4.5 cm, series 5, image 53. 
Diagnosis: Suspicious for HCC, incompletely characterized, needs 3 phase CT or MRI 
 
Mark relation between “Focal lesions” and “Lesion 1” as particularization. 
 
2. How should I mark tumor thrombus? 
 
1. Large infiltrative mass involving entire right lobe, infiltrating into the caudate lobe and segment 4 of 
the left lobe and invading into the right and main portal vein (tumor thrombus) consistent with 
infiltrative HCC. 
 
Mark relation between “mass” and “tumor” as particularization. 
 
3. What if there 2 general statements, but have no number match? 
 
There are multiple arterial enhancing lesions which demonstrate washout consistent with HCC. 
… 
Impression: 
1. Three arterial enhancing lesions within the liver involving segments 2, 3 and 8 which demonstrate 
washout concerning for HCC. 
 
Decide if it is a COREF or a particularization based on context. 
 
4. Should we connect negated instances? 
 
No other foci of arterial enhancement or washout are demonstrated. 
…. 
2. No other lesions suspicious for HCC. 
 
Do not connect unless it is more specific 
For example, connect these: 
 
No nodules or masses are seen in the lungs. 
 
5. Incorrect plural 
 
Should the latter tumor mention (“1 focal lesions”) be associated with first (“Focal lesions”) or 2nd 
mention (“Lesion 1”)? 
 
Rule: If expression is in sentence format (in oppose to section format), and the number is “1” then it 
should be considered a specific example. 
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Focal lesions: 
Total number: 1: 
Lesion 1: Hypervascular with washout, segment 4A, 5.0 x 4.5 cm, image 7 series 9, subcapsular in 
location. 
…… 
Impression: 
Outside report not available at time of dictation: 
1 focal lesions in semgnet 4A, typical for HCC. 
 
 

 
[1] W. Yim, T. Denman, S. Kwan, M. Yetisgen. Tumor information extraction in radiology reports for 
hepatocellular carcinoma patients. To Appear in Proceedings of the American Medical Informatics 
Association Clinical Research Informatics Summit (AMIA CRI'16), San Francisco. March, 2016. 
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Finally, we recognize that radiology reports follow a structure in which the “Findings” section typically explain 
in detail each tumor, meanwhile “Impression” may offer additional or more summarized information. Therefore, 
mark gold standard labels at 3 levels: 

1. Whole document – considers the entire document for the (1-3) target annotations described before 
2. “Findings” section – considers only the “Findings” section for the (1) target annotations 
3. “Impression” section – considers only the “Impression” section for the (1) target annotations 

 

 
1. Corpus will be pre-annotated with tumor events from previous annotations. 
2. Label all quantity ranges in inequality form with “,” to separate multiple inequalities, for example if 

there are 2-3 lesions, then represent >1,<4.  
3. If “more than one,” “several,” or “multiple” are indicated, only assume the number is >1. 
4. Several inequalities can be added as in regular arithmetic. 
5. If a tumor is both “Indeterminate” and “Benign,” label it as Indeterminate. 
6. Take the full dimensions for the size of the largest lesion related to malignant cancer. If more than one 

measurement exists, take the one most precise (in case one version is a rounded version).  
7. If there are discrepancies between the tumor measurements (typo or other), take the one from 

Impressions section first, or the largest otherwise. 

 
Findings: 
Arterially enhancing lesion in segment 7/8 of the liver that is partially exophytic and washes out … measuring 
2.9 x 2.8 cm, consistent with HCC. 
There is 1.5 x 1.3 cm hyper enhancing subcapsular lesion in segment 8 which washes out … consistent with 
HCC. 
There is 0.9 cm focus of arterial enhancement in segment 7 … indeterminate. 
Impression: 
Segment 7/8 enhancing lesions arterially enhancing lesion with … washout … definite for hepatocellular 
carcinoma  
 
Annotations 
 
Section ISCANCER INDET BENIGN UNK Largest 

Malignant 
Lesion Size 

>50% 

Findings 2 1 0 0   
Impression >1 0 0 0   
Whole 2 1 0 0 2.9 x 2.8 cm NO 
 
Tumors that are indeterminate are not mentioned in the “Impression” section, therefore the “INDET” is written 
as 0. 
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1. How do I handle multiple inequalities? 
 
-> First determine if they are separate inequalities or related inequalities. 
 
Separate inequalities example: 
 
Liver: The liver is cirhootic in morphology 
Multiple well-defined T2 hyperintense foci are noted again, representing simple cysts. 
… 
Spleen: Splenomegaly, measuring 17 cm in long axis. 
Multiple hypodense nodules are noted in the spleen, representing, Gamma bodies 
 
For benign: 
 
       (hyperintense foci)         # of lesions > 1 
  +   (hypodense nodules)      # of lesions > 1 
----------------------------------------------------------- 
        (# benign entities)           # of lesions >2 
 
Related inequalities example: 
 
The lesions are too numerous to count. 
The largest is in the left lobe and is inferior lateral segment 3 and measures 6.7 x 6.8 cm in transverse diameter. 
It is hypervascular in the arterial phase with washout and a thin enhancing capsule in the venous phase. 
 
“lesions are too numerous” already implies  “# of lesions > 1”. 
Therefore any mention of up to 2 more specific examples does not change the inequality. If there are 3 
specific examples, the inequality can then change to “>2”. 
 
        (# malignant entities)           # of lesions >1 
 
 
2. Should I count tumors that were missed in previous annotations? 
 
-> Yes, adjust for annotation errors from tumor event annotation. 
 
 
3. Should I count tumors that were missed due to the annotation guidelines from previous annotation? 
 
-> If the tumor is a malignant tumor (e.g. HCC) which was not marked due to annotation guidelines, then YES 
count it. 
 
Large HCC in the proximal and central portion of segment VIII as described above. 
 
The “HCC” may not have been identified as a tumor reference due to annotation rules. For counting number of 
tumors, DO count these. 
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-> If there is a mention of a benign or indeterminate tumor, without the measurement, then NO, do not count it. 
 
Pancreas: Tiny 2 mm cyst in the pancreatic head (15/27), unchanged since pror CT from 2007 suggesting 
benign. 
 
The “cysts” are not identified as a tumor reference or a tumorhood evidence due to annotation rules. For 
counting number of tumors (benign), DO NOT count these. 
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Appendix G

ORGAN ADJECTIVE WORDLIST

CUI PreferredName Adjectives

C0041600 bone structure of ulna ulnar

C0009194 bone structure of coccyx coccygeal

C0035561 bone structure of rib costal, intercostal

C0018787 heart cardiopulmonary, cardiorespiratory, cardiac

C0037303 bone structure of cranium cranial, intracranial

C0001625 adrenal glands adrenal

C0015392 eye ophthalmic, binocular, optic, optical, ocular

C0006441 synovial bursa bursal

C0030274 pancreas pancreatic

C0038351 stomach gastric gastroesophageal, pneumogastric,

gastroduodenal, stomachal, stomachic

C0024947 maxilla maxillary, maxillodental

C0041967 urethra urethral

C0024109 lung pulmonic, lung-like, pulmonary, pneumogastric,

pneumonic, cardiopulmonary, intrapulmonary

C0549207 bone structure of spine vertebral, intervertebral

C0026845 muscle muscular, neuromuscular, myoid, intramuscular,

musculoskeletal

C0223792 phalanx of hand phalangeal

C0022646 kidney nephritic, renal, adrenal

C0262950 skeletal bone osseous, osteal, bony, ossiferous

C0004457 axis vertebra axial, axile, biaxial, biaxal, biaxate

C0026367 molar tooth molar

C0030558 parietal bone structure parietal

C0039597 testis testicular

C0033572 prostate prostatic, prostate

C0039316 tarsal bones tarsal

C0025526 metacarpal bone metacarpal

Table G.1: Organ adjective wordlist by using WordNet pertainyms with MetaMap. (Part 1)
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CUI PreferredName Adjectives

C0030580 parotid gland parotid

C0040426 tooth structure dental

C0006655 bone structure of calcaneum calcaneal

C0448350 scalene muscle scalene

C0008913 bone structure of clavicle subclavian

C0030786 hip bone pelvic

C0559499 biceps brachii muscle structure bicipital

C1123023 skin integumentary, percutaneous, hypodermic,

transcutaneous, intradermal, endermatic,

subcutaneous, endermic, integumental,

mucocutaneous, skinny, intracutaneous, intradermic

C0032005 pituitary gland pituitary, hypophysial, hypophyseal

C0040184 bone structure of tibia tibial

C0014876 esophagus esophageal, gastroesophageal

C0016976 gallbladder biliary

C0034627 bone structure of radius radial

C1744702 gluteal muscle gluteal

C0040132 thyroid gland thyroid antithyroid, thyroidal

C0036037 bone structure of sacrum lumbosacral, sacral

C0016068 fibula peroneal

C0042276 vagus nerve structure vagal

C0036277 bone structure of scapula scapular, scapulohumeral

C0042232 vagina vaginal

C0022907 lacrimal gland structure lacrimal, lachrymal

C0029939 ovary ovarian

C0024687 mandible mandibulate, mandibular, inframaxillary,

maxillomandibular

C0038293 sternum sternal

C0005682 urinary bladder bladderlike, abdominovesical, bladdery

C0816871 skeleton skeletal, musculoskeletal

C0020164 bone structure of humerus scapulohumeral

C0013313 dura mater dural, extradural, epidural, subdural

C0015811 femur femoral

C0278403 subcutaneous tissue hypodermal

C0020417 hyoid bone structure hyoid

C0031050 pericardial sac structure pericardial, pericardiac

C0011980 respiratory diaphragm phrenic

C0042149 uterus intrauterine, uterine

C0037993 spleen lienal, splenetic, splenic

C0223741 trapezoid bone structure trapezoidal

C0023884 liver hepatic, hepatovenous

C0224434 structure of sartorius muscle, sartorial

C0030647 patella patellar

Table G.2: Organ adjective wordlist by using WordNet pertainyms with MetaMap. (Part 2)


