
ⓒCopyright 2020

Yiliang Ma

Everyone’s Variant Annotation Tool: EVAT

Yiliang Ma

 A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science

University of Washington

2020

Committee:

Sean Mooney

John Gennari

Program Authorized to Offer Degree:

Department of Biomedical Informatics and Medical Education

University of Washington

Abstract

Everyone’s Variant Annotation Tools: EVAT

Yiliang Ma

Chair of the Supervisory Committee:

Professor Sean Mooney

Department of Biomedical Informatics and Medical Education

Currently, there is a lot of genetic variant information distributed in many different

databases, and it will cost individuals plenty of time to retrieve data from those resources.

In this thesis, I develop EVAT(Everyone’s variant annotation tool), a tool aiming at

helping individuals retrieve annotation information about their genetic variants. People with or

without programming skills may choose different methods to get their genetic variant annotation

information. For individuals who have program skills, EVAT offers Python APIs which connect to

the backend directly to help them retrieve annotation information. The backend of the tool is

built by four file interpreters that translate file format, a module that sends and receives

information from MyVariant.info, a module that converts the JSON result from MyVariatn.info to

Panda dataframe and three functions that support different queries. For individuals who don’t

have program skills, EVAT offers a graphical user interface, which is the front end of the tool.

This graphical user interface allows users to upload files, read the annotation, and do the query

by mouse so that they don’t need coding skills when doing genetic annotation.

EVAT can be used either as a backend only(for users with programming skills) or with a

graphical user interface to easily query and retrieve annotation information. This annotation

information could help people understand the effect of genetic variants or do further research

about them.

Table of Contents

Chapter 1: INTRODUCTORY STATEMENT 9
1.1 Goal of the Thesis 9
1.2 Variant and Types of Variants 10
1.3 Variants Annotation 13

Chapter 2: RELATED WORK 15
2.1 Variant Information Availability 15
2.2 Annotation Tools 16
2.3 MyVariant.info 18

Chapter 3: EVAT: PYTHON MODULE AND COMMAND-LINE INTERFACE 22
3.1 Overview 22
3.2 Dependencies in EVAT: 23
3.3 Input Files 24
3.4 Interact MyVariant.info 25
3.5 EVAT Special Built-In Special Query Functions 28
3.6 Output File Format 29
3.7 Time and Memory Requirements: 30

Chapter 4: EVAT: Graphical User Interface 31
4.1 Introduction to Graphical User Interface 32
4.2 Graphical User Interface for EVAT 33
4.3 Code Structure of the Front End 34

Chapter 5: USER GUIDE FOR EVAT 37
5.1 Python package: 37
5.2 Python Package Guide 38
5.3 Graphical User Interface Guide 39
5.4 Case Study 44

Chapter 6: Discussion 46

6.1 EVAT 46
6.2 Advantages 47
6.3 Limitations and Disadvantages 48
6.4 Future Plan 49

Chapter 7: Summary 50

ACKNOWLEDGMENTS

First and foremost, I wish to express my sincere gratitude to the University of

Washington for providing access to amazing faculty and world-class research

facilities/resources. During these 3 years, I learned not only the knowledge but also ways of

doing research. This thesis could not be done without the support of many people.

My mentor Sean Mooney, thank you for being strict and your group affects me from

every perspective. Your way of doing research lets me experience what attitude and what effort

I should have when doing real research.

My committee member John Gennari, I really appreciate your suggestions on my thesis

and project. You are very patient and kind to guide me how to do research and write a thesis.

Postdoc in my group: Vikas, thank you for spending a lot of time guiding my thesis,

including the plan of the whole idea, how to do the research and the writing skills. Furthermore,

you give me suggestions on my career and exchange views about events in life, which provide

a positive effect on my whole life.

Finally, I would like to personally acknowledge some incredible people: my peer Jimmy

who helped me a lot about writing and presentations, My friends Chenchao Xu, Sicheng Song

and Yiqun Rong give me a lot of advice on courses and life in BIME, Lora and Jill who answer

my questions about study in BIME, my friend Yuanze Zhang, all in Sean Mooney’s group and

my parents.

Chapter 1

INTRODUCTORY STATEMENT

1.1 Goal of the Thesis

EVAT(Everyone’s variant annotation tool) is a tool that aims at helping everyone get their

genetic variants annotation. Individuals may have different backgrounds, some of them may

have program skills and some of them not. General public may have their own variant

sequences, like the genetic sequence file 23andMe. However, they need tools to let them know

what the variant is about, like the variant is about the color of your eyes or the color of your hair

or something else. (“The Genetics of Blond Hair” 2014) Biologists may have sequences about

many human tissues and may want to know what we have already known about these variants

and where they could do more research. A bioinformatician may want to get the variants

information of large files to do their own research. EVAT could help everyone get their variant

annotation

With four kinds of file input recognition, three query functions and two files output format

and one graphical user interface. The EVAT system queries information from MyVariant.info

databases which contains information from twenty databases, including large integrated

databases and small but specialized databases. (Xin et al. 2016)

The work of this thesis is development of a tool that could help people with or without

programming skill get their variant annotation information. The backend of the tool is built by

https://paperpile.com/c/rfnm50/t87U
https://paperpile.com/c/rfnm50/zgCG

four file interpreters, a module that could send and receive information from MyVariant.info, a

module that could convert the JSON result from MyVariatn.info to Panda dataframe and three

functions to helper users do queries. The frontend of the tool is built by a group of modules that

put close widgets into groups, build collapsible boxes, assign the location of the group and the

location of widgets in the box and several modules that assign the relationship between the

frontend button and backend.

Overview of the thesis: Chapter1 will introduce the tools, concept of variant and variant

annotation; Chapter2 will introduce the problem we face, the related tools and MyVariant.info;

Chapter3 and Chapter 4 will introduce the backend and the frontend of the tool; Chapter 5 is the

discussion of the advantages, disadvantages, future plan of the tool and other expectation of the

tool; Chapter 6 is the brief summary of the whole thesis.

1.2 Variant and Types of Variants

The variant is an alteration in the DNA nucleotide sequence. (“Definition of

Variant - NCI Dictionary of Cancer Terms” 2012) Based on the different modifications to

the DNA sequence, we have SNV, Indel, Copy Number variations and Translocations and

Inversions.

A single nucleotide variant (SNV) is the most common type of variant. SNV is the

substitution of a nucleotide that occurs at a specific position in the genome, that leads to the

change of gene sequence, influencing transcription and then translation. (Seeb et al. 2011)

Therefore, different gene products (e.g., proteins) could be observed as a consequence of

SNVs, which can cause different phenotypes or molecular disruption. Sometimes these

variants can have negative effects such as complex disorders or severe diseases. For example,

https://paperpile.com/c/rfnm50/j5sE
https://paperpile.com/c/rfnm50/j5sE
https://paperpile.com/c/rfnm50/VDKJu

red-green colorblindness is caused by mutations on the X chromosome such as Retinitis

pigmentosa-10 (RP10). (Bowne et al. 2002) Until now, researchers have done a lot of work

about variants, including variants' physical features, for instance, the location of variants and the

frequency of the variants, the function to the biology process in human being, like how could this

variant affects proteins and biology process that proteins take part in.

Also, not every SNV will cause the change of protein structure.(Figure 1.2.1) Many

nucleotide mutations will not change the amino acid sequence and those are called Silent type

of SNV. For instance, TTC and TTT are both code for Lys. Therefore, the protein structure

doesn’t change. Nonsense means a codon is changed into a stop codon, which will result in a

truncated protein. This may change the protein function but probably not at the same time. For

example, TTC changes to ATC and ATC is a stop codon. Also, there is one type of SNV called

Missense, which means the sequence change does change the protein structure. For example,

TTC changed to TGC. After the change of protein structure, the function of the protein may be

changed. If the mutation happens in the important location of the protein sequence, the protein

may lose all function, which will bring a negative effect on the normal biology process and might

cause disease.

https://paperpile.com/c/rfnm50/YASle

Figure 1.2.1: Mutations are classified based on how they affect the codon they are in. Image

source: Wikimedia commons. (“What Effect Do Variants in Coding Regions Have?” 2019)

Indels is the term for genetic insertion and the genetic deletion. Genetic insertion is one

type of variant, which means one or more bases are inserted into the original sequence.

Deletion, on the other hand, means the one or more bases are deleted compared to the original

one. It is estimated that there are millions of indels mutation and some of them may play roles in

diseases.(Lin et al. 2017) For instance, indels are the leading cause in Cystic Fibrosis. (Chung

et al. 2012) Cystic fibrosis is caused by CFTR gene three-base-pair deletion. (Trujillano et al.

2013)

Translocations and inversions are another two types of variants. Refers to the gene

rearrangements or the DNA segments. The DNA segments are broken off and if some of them

are located at other places of the chromosome, this is called translocation. if the DNAsegments

are broken and some segments are reinserted into the chromosome with 180 degree reverse,

that is called inversinos. Generally, the larger the DNA sequence is, the more likely

Translocations and inversions happen.

https://paperpile.com/c/rfnm50/2Zk9
https://paperpile.com/c/rfnm50/DY4Z
https://paperpile.com/c/rfnm50/wwqA
https://paperpile.com/c/rfnm50/wwqA
https://paperpile.com/c/rfnm50/xGKr
https://paperpile.com/c/rfnm50/xGKr

Copy number variants are the many copies of a certain trait found in the genome.

According to the central dogma, there are two copies of the gene in the human genome.

However, there might be situations that many copies of a gene are shown in one’s genome

which causes health problems. Also, if there is only one copy or even no copy of the certain

gene, that might likewise cause problems.

1.3 Variants Annotation

Variant annotation is the process of assigning additional biologically meaningful

information to a variant that goes beyond simple positional information, including function,

frequency, disease association, etc. For example, assume someone gets a variant rs28931595

from a genetic test file. Without annotation, what he could know is the id of this variant only.

However, after the variant annotation, after retrieving variant annotation information, they can

find additional information such as the frequency of this variant, or the likelihood that the variant

is associated with a specific disease or disorder.

One important type of annotation is assigning a functional consequence to a variant.

Functional consequences caused by the variants are often defined by the physiological

phenotypes. The genetic variants will cause many differences between humans. Some of them

will not cause disease directly but some of them will cause disease or even death. There are

five levels of clinical functional consequences represented by a simple controlled vocabulary.

They are benign, likely benign, uncertain significance, likely pathogenic, pathogenic, where

benign is that this variant will not cause disease and pathogenic is that this variant will cause

disease.

Based on different features, there are three kinds of annotation query functions: the

gene-based annotation, region-based annotation and filter-based annotation. Gene-based

queries select only variants that belong to certain genes.. A variant is located on the

chromosome and the location might belong to one or more genes. Region-based annotation is a

method to help users identify whether the variant is located in a certain region of the

chromosome. Filter-based queries accept a range and a field, and then the program will find

variants that have the field in that range. For instance, the user could filt the variants that have

frequency between 0.2 and 0.8 by the filter-based query.

Variant annotation could help researchers save their time. For example, the biologist

gets six samples of cancer tissue and adjacent tissue from the hospital and they want to figure

out which gene is related to cancer. Then they use next generation sequence technology and

get a lot of variants. And based on the different expression level(different mRNA numbers

between health tissue and cancer tissue), they got 50 variants that might be important to the

cancer pathway. However, they know nothing about the variant. Therefore, they get the variant

annotation and get that 38 variants have been fully researched and 12 of them are worthy to do

further experiments. Also, they know more about these 12 variants like the chemistry features.

Then they could design next experiments with the annotation information, like the relationship of

these 12 variants and the pathway of cancer.

Chapter 2:

RELATED WORK

 2.1 Variant Information Availability

Currently, there is a lot of variant information distributed in many different databases,

and individuals can not access that data easily.(Arnold et al. 2015) Because every database

could not cover all information of a variant, if someone wants to get several aspects of the

variant, they need to go to many databases to search for the information they need. For

example, if we need to know the information of variant ‘chr6:g.152708291G>A’, including the

general frequency, the relationship between this variant and cancer, and proteins related to this

protein. We need to go to cadd to get the frequency of the variant, CGI to get the cancer related

information and Uniprot to get the protein related information. There are many different data

resources such as dbSNP and ClinVar, which have different aims and focus on different aspects

of genetics. (Sherry et al. 2001; Landrum et al. 2016). Some databases are large and integrated

and some of them are small but focus on specific areas.

For example, dbSNP is a large database that has a catalog of genome variation to

address large amounts of sampling to help studies, gene mapping and evolutionary biology.

dbSNP divides varians in 4 types and single nucleotide variants take 99.77%. Dbsnp is to

facilitate large-scale research in genetic fields, evolutionary biology and physical mapping.

https://paperpile.com/c/rfnm50/ag5j
https://paperpile.com/c/rfnm50/QQSBz+AgbJf

Also, there are some small data sources that focus on certain areas. CGI(Cancer

Genome Interpreter), for instance, is a data source maintained by several clinical and scientific

precision oncology researchers. This data source focuses on the relationship between variant

and tumor type and the interaction with drugs, which is to help identify which tumor alterations

may shape the response to anti-cancer therapies. The CGI applies two data sources to explore

the relationship between gene alterations and drug response. One is Cancer biomarker, The

other is cancer bioactivities.

However, there is no possible way that we could gather all information from a single

database. Three kinds of fields might be easy to get, but how about three fields in 20 different

databases? Also, researchers have to suffer from the various file formats and different reference

genome versions of the data. Due to that situation, we would like to provide tools to individuals

to gather all this information at the same time in order to see the whole picture, such as knowing

the physical features and various biology fields at the same time. Thus, providing a tool to let

people understand and interpret variants is important.

2.2 Annotation Tools

ANNOVAR: ANNOVAR is a tool to functionally annotate genetic variants detected from

diverse genomes with various functions. However, Annovar requires the user to download all

files to local as Annovar uses all data based on local file so it takes plenty of space. Also,

Annovar is unfriendly to users without a programming background. Users are required to use

terminal knowledge to understand and take advantage of this tool. MyVariant.info solves this

problem. (Li 2011)

SnpEff: SnpEff is a software that could annotate the variants via genomic location and

predicts the coding effect. However, the SnpEff is based on sequencing information rather than

https://paperpile.com/c/rfnm50/cvyw3

variants location. For example, SnpEff’s input is like “ACGTTGACCCTA” rather than location

and chromosome. Also, the SnpEff will not gather information from other sources but predict by

itself. All in all, SnpEff is very different from MyVariant.info by the information sources.

(Cingolani et al. 2012)

OpenCravat: OpenCravat is a highly customizable decision support framework that could

support variant and gene prioritization. It could help people with variant annotation but still, it

requires data download to annotate the data and background to select suitable annotation files

in their store, which is not friendly to the general public. (Douville et al. 2013)

The Ensembl Variant Effect Predictor is a toolset that could do analysis, annotation, and

prioritization of genomic variants in coding and non-coding regions. However, it requires

professional background and file download to annotate corresponding data. (McLaren et al.

2016)

However, the tools mentioned above require an expertise to use and require the

downloading of many files and some of them are not user-friendly or easy to understand for

people without a programming background. Therefore, there is a need to serve these different

groups of users and help them retrieve and interpret variant data from databases.

2.3 MyVariant.info

But there is one tool that doesn’t have those disadvantages mentioned above. It is

MyVariant.info. MyVariant.info is a web service for querying human variant annotation by

collecting information across many resources. The variant annotations are structured research

findings (e.g., chromosome and position variant located at, corresponding genes, related

pathways) and they distribute in different databases. MyVariant.info could integrate them

together. (Xin et al. 2015)

https://paperpile.com/c/rfnm50/VMGDU
https://paperpile.com/c/rfnm50/wMgeo
https://paperpile.com/c/rfnm50/RwaE1
https://paperpile.com/c/rfnm50/RwaE1
https://paperpile.com/c/rfnm50/3xvml

MyVariant.info integrates data from different data sources, then interprets and stores

them into its own database. MyVariant.info integrates data from about 25 sources including

large databases such as dbsnp and some small data sources such as Wellderly. For each data

source, MyVariant.info has a unique importer to convert the data from resources into JSON file

format. Nomenclature from the Human Genome Variation Society (HGVS) is used as the

primary key for each variant. The output of the parser is stored into a MongoDB and the objects

with the same primary key are integrated as an object that contains all fields of this variant.

Figure2.3.1 The pipeline of the MyVariant.info.

The web services could help users query information they need by various functions and

specific parameters. After getting the input information, the indexing engine provides queries

based on the primary key offered by users in MongoDB. Then, the output result shows up on

the website for users.

To demonstrate MyVariant.info, a simple demo is listed in figure 2.3.2. Figure 2.3.2 (a)

shows the query input website. Here we can select functions, (getVariant is selected here(top

left)) and input the parameters we want. We use the chr6:g.152708291G>A is used here. Chr6

is chromosome number, 152708291 is position, G>A is genotype. And assuming we just want

dbsnp(a famous database) information about this variant, we put “dbsnp” on the field textbox

and then execute query.Then we get a JSON file(Figure 2.3.2(b) shows it) and a console

respond that tells us the overview of the query.

Figure 2.3.2 result from MyVariant.info. (a) an example of how we query in MyVariant.info

services. (b) part of the response body.

There are a lot of advantages to MyVariant.info. First, it integrates data from both large

and specific databases. With large databases, we could know most information about a variant

and with specific sources, we could access specialized fields. Also, a successful website service

needs to be stable, scalable, in a good performance and MyVariant.info fits it well. It uses an

indexing engine that provides not only various query syntax but also superior query

performance. Moreover, MyVariant.info automates the updates weekly so that information will

be up to date. (Xin et al. 2016)

There are 25 different databases contained by MyVariant.info, covering 1402 data fields

and there is a weekly update to make sure users could access the latest information from these

databases. There is an Application programming interface (API) for Python that enables

https://paperpile.com/c/rfnm50/zgCG

programmatic access to the databases mentioned above and helps users annotate variants.

MyVariant.info’s API offers many parameters with different query functions and many database

categories and it is very flexible so individuals could query based on their own annotation

needs. The annotation means the features of variants, such as physical position, chemical

features, biological functions, etc.

But MyVariant.info has some limitations. For example, query large files can’t be

executed on website servers and non-expert still have some barriers to query annotations. To

address these problems, I developed a Python package to satisfy both experts and general

individuals.

Chapter 3

EVAT: PYTHON MODULE AND COMMAND-LINE INTERFACE

3.1 Overview

The first aim of EVAT is to help people who have some bioinformatics or programming

expertise in extracting variant-related information. With the API offered by EVAT, people with

programming skills could retrieve variant information via Python.

Figure3.1 the pipeline of the EVAT

Figure3.1 is the pipeline of the EVAT. The first step is the users upload a file which

could be 23andme, whole genome, vcf or ancestry. The second step is that EVAT will convert

those file formats to standard keys(rsid and chromosome + position + allele) which could be

recognized by MyVariant.info API. Then EVAT will send those keys to MyVarant.info and get the

result with JSON format. Because the JSON file format is not easy to read, EVAT will convert

JSON result to pandas dataframe and then offers three query functions to help users get certain

variant annotations. Finally, EVAT could output the file with VCF or CSV format.

3.2 Dependencies in EVAT:

PyLiftover: PyLiftover is a library for quick and easy conversion of genomic (point)

coordinates between different assemblies. In this project, it was used to convert the reference

genome version, e.g., from hg38 to hg19 because MyVariant.info is built on the hg19 assembly

but the input file might be hg38. (pyliftover)

Pandas: pandas is an open-source, BSD-licensed library providing high-performance,

easy-to-use data structures and data analysis tools for the Python programming language. In

this project, pandas was used to manipulate data frames so that downstream operations could

be done more easily. (pandas - Python Data Analysis Library)

https://paperpile.com/c/rfnm50/T25l
https://paperpile.com/c/rfnm50/vSnz

3.3 Input Files

Figure3.3 loading files and converting to standard key

Different users may have different files. Users might have ordered a 23andMe kit and

downloaded the results file or a biologist with a whole genome file in a standard format from a

patient with cancer. However, none of these files can currently be uploaded to MyVariant.info

directly because of differences in file formats. Therefore, the package offers a function that can

parse the 23andMe, vcf, Ancestry and whole genome file to the format that could be uploaded

to MyVariant.info to retrieve information.

After getting the input files, the following operations were done to prepare them for a

MyVariant.info query. The first step is to convert the input file into a standard format based on

the parameters. The standard format means rsid, such as rs12190874, or chromosome +

position + genotype + mutation, for example: “char1:3415135A>G. Based on the different file

types (read from parameter), the input file is interpreted by the corresponding parser. Currently,

we have implemented four processors to deal with four file types (VCF, 23andMe,

AncestryDNA, whole genome). Every module reads line-based information and breaks a line

based on the “Tab” (“\t”) character or other delimiters. For example, in a VCF file, the module

extracts chromosome, position and reference/alternative alleles. Then, the module put them

together to form a standard query key and pass it to the next module. In the future, we

anticipate the use of new file formats and expect to add more processors in our package. The

modular design of this part allows us to add processors more easily in the future.

3.4 Interact MyVariant.info

Figure 3.4 interacting with MyVariant.info: send keys to MyVairnt.info and get JSON

results.

As MyVariant.info’s Python API requires a set of query parameters, which include the

data file, file type, reference genome version, and the query field. Therefore, EVAT package’s

query function is based on MyVariant.info query requirement. The package uses the standard

format to form a query key and use the MyVariant.info query API to retrieve information.

Users have their own fields of interest and EVAT package needs to perform many

functions corresponding to their needs. Thus, the package offers the user a basic query function

that is similar to MyVariant.info as well as some new functions that have many new features

compared to the query functions of MyVariant.info. The basic functions have many parameters

and the first one is a field parameter. The “field” parameter allows users to use field names to

query certain databases, such as “dbsnp” or “cadd”. Also, users could input many fields at one

time to make a combined query. For example, [“dbsnp, “cadd.1000p”] could also be identified by

the system.

In the next paragraph, I will state how EVAT converts results from MyVariant.info to

human readable tables. First, I will introduce two data structures: Python’s “Dictionary” and the

JSON format. Dictionary is a data structure in Python that is similar to HashMap and nested

Dictionary is similar to nested HashMap. The nested HashMap here refers to the situation that

the values of the HashMap are also a HashMap. The Hashmap is a collection of key value pairs

based on the harsh function and it enables people to query keys with constant time. The JSON

file is automatically converted to a nested dictionary when returned from MyVariant.nifo and the

key is first level field name, dbsnp for example, and the value of them is also a dictionary,

dbsnp.gene for example, and fields in dbsnp.gene is also a dictionary.

For example, Figure 3 shows a sample of JSON data. There are two elements in the first

level dictionary: dbsnp and Civic. However, dbsnp is also a dictionary and gene and other

information are the elements in this dictionary, which is an element of a dictionary of a

dictionary and we define this as a second level dictionary element. “gene” is also a dictionary

and we need to call expand function again. To generate an output, we have to expand to human

reader-friendly formats which are shown in the right-side figure. Every nested dictionary is an

expanded before further operation.

Figure 3.4.1: Example of converting JSON to the pandas.dataframe with a built-in function to

help other operations.

EVAT package is based on MyVariant.info API and the data is returned in JSON file

format. However, JSON files are hard to read and understand data structure by users. . To do

additional operations, the package needs to get rid of all nested dictionaries and convert it to

another file format, and we used a pandas dataframe here. The method is for every element in

the first level dictionary, if it is still a dictionary, we call expand function with this dictionary and

use the name of this dictionary as input parameter like dbsnp. The expand function converts the

element in a dictionary to an element in the outer list. Then for every expanded element, we

merge the name of all levels and call expand function again if the element is still a dictionary. In

the end, every element is expanded in standard format such as dbsnp.1000g.af and we could

use them as pandas. dataframe.

3.5 EVAT Special Built-In Special Query Functions

Figure 3.5 three query functions offered by EVAT.

EVAT offered gene-based annotation, region-based annotation, and filter-based

annotation to fit the users’ needs. Gene-based query subsets out variants belonging to certain

genes. A variant is located on the chromosome and the location might belong to one or more

genes. The module tries to find the gene at that location and tell users which gene is affected.

When it comes to region-based annotation, it is a method to help users identify whether the

variant is located in a certain region of the chromosome. (Li 2011) There are many specific

regions on the genome, such as binding sites and conserved regions. Users could pick the

regions they care about, and the program maps the region and the variants’ locations. For

example, users could use chromosome1:15000-chromosome1:300000 and the variants in this

are identified. The last query funtion is a filter-based query, which is flexible. Filter-based

queries accept a range and a field, and then the program will find variants that have the field in

that range. For instance, the user could filt the variants that have frequency between 0.2 and 0.8

by the filter-based query. These three annotative methods are used in common tasks and EVAT

offers complete functions to do the related analysis.

https://paperpile.com/c/rfnm50/cvyw3

3.6 Output File Format

EVAT returns two different output file formats: VCF and CSV. CSV stands for

“comma-separated values”, in which all data are separated by a comma. Within the data frame,

the package adds a comma between the fields. Therefore, all fields are separated by commas

and each variant corresponds to a line in the file.

To convert a dataframe into CSV file, the package first converts the dataframe into

string, and then changes all tabs into a comma. For example, for elements in a line, this function

read them one by one and convert them into a string and put them together to form the output

file.

As for the VCF file, the package first writes the header block according to the latest VCF

specifications. The version information is retained from the input and the head listed below is

the VCF standard format. In VCF headers, chromosome, position, ID, reference, alternative type

listed below are all queried based on the dbsnp database. The INFO is the information the user

wants and in the INFO, the data is organized by “title: data, title2: data2….”.

##fileformat=VCFv4.1

##fileDate=2019-04-16 21:50:19.076473

##version=hg19

##CHROM POS ID REF ALT QUAL FILTER INFO

3.7 Time and Memory Requirements:

Figure 3.7.1: the x-axis is the number of variants. Left: Time consumed for certain row variants.

Right: speed row_number we could annotate per second. Like every. The y-axis is the time

consumed by every 25000 lines.

To test if our package could run both on a personal computer (Windows 10, ryzen5) and

on the server (Linux CentOS 5), several tests were performed. We used a laptop to query all

500,000 variants with 16 gigabytes memory. About an average of 3400 seconds later, the laptop

finishes the process of querying from MyVariant.info and works fine. On the server, we test with

the same set and use a similar time consume. The result is similar: for every 25000 lines, the

time cost is about 150 second. The result means that EVAT is efficient and stable when

annotating large files. After querying all variants in the file, subsequent operations such as

gene-based query would be quick, taking only a few minutes.

For experts in bioinformatics, time complexity and space needed are important. EVAT

can parallelize the code to reduce the time cost. Therefore, the time cost will decrease to

two-fifth of the original time. When it comes to the local disk management, EVAT offers

web-based queries so that users will not need to download extra files and our package can save

disk space for them. However, there is a bottleneck in querying from MyVariant.info and it is

hard to do the query quicker and this limitations will be discussed in Chapter6.

Figure 3.7.2: the x-axis is the number of variants. Top: y-axis is time consumed for certain row

variants. Blue line is a program without parallel and the orange line is a program with parallel.

Bottom: y-axis is the speed that we could annotate per second.

Chapter 4

EVAT: Graphical User Interface

4.1 Introduction to Graphical User Interface

EVAT offers users who do not have program expertise in retrieving and interpreting

variant data an easy-to-use interface so that they could upload raw data without having to write

code. The graphical user interface is common for most people who have experience accessing

websites and apps, etc. The program uses certain functions to query and interpret the data in

the file and output an annotated file to the user. The output file contains the genetic annotation

information retrieved from MyVariant.info. It groups related information and presents it to users

to help form meaningful conclusions. For example, it gathers the information in the same

pathway so that if an unusually large number of variants show up, one can hypothesize that this

pathway is disrupted. With the interface and interpreted output reports, people without

informatics expertise could understand their data.

Figure4.1.1: Illustration of User-Interface. Simple user-interface with widget groups for

uploading, loading table, querying functions and resulting table.

4.2 Graphical User Interface for EVAT

To help users without a programming background, the Python package has a built-in

graphical user interface(Figure4.1.1). With that graphical user interface, users could get their

annotation by mouse and several simple input, like file name. Therefore, users could do queries

without any coding skills.

The graphical user interface is built with four main components. The first one is file

upload group box, which has three textbox; upload file name, genome file type and reference

genome version. Users need to upload files here to EVAT. Then, the collapsible box shows up

on the left, each parent node is a database and each leaf node is a field of that database. On

the right, there is a loading table that shows every annotation to the user. Below the table, there

are the query functions. And also, users could input the parameter under the box and do the

query to the column they selected. And after the query has finished, users could get their result

shown in the result table.

For users who don’t have programming skills and informatics background, the mouse is

a more friendly input device than a keyboard. For most users, the mouse is a more common

input device. With a terminal and keyboard, the user needs to know how to use the function and

how to import the python functions. For example, “query(file, vcf, 19, conserved)” is a query

function, but users need to understand the document and know the meaning of every

corresponding parameter. The documentation could tell the meaning and usage of the functions

and parameters but individuals without expertise will spend a lot of time doing that. With the

graphical user interface, all they need to know are following the guide in Chapter 5. Also, they

just need to input the parameters just like all other applications on the web.

4.3 Code Structure of the Front End

I used PyQt5 to build the graphical user interface as it has many advantages. First, it is

fast and stable. PyQt5 is a package that developed in 2016, but the Qt (which is the precursor of

PyQt5) was developed 24 years ago and it gradually became one of the most popular packages

for graphical user interfaces. PyQt5 is also an easy-to-use package. Moreover, pyQt5 could be

used on all platforms like Mac, Windows, Linux, etc.

To build the graphical user interface, the package uses groups that contain many small

widgets of a part. For example, the upload group contains Upload file prompt, upload file

textbox, reference genome version hint, reference genome version textbox. All these widgets

are wrapped into a group and could be moved together. Therefore, we have implemented these

widgets as one thing to operate them at the same time. For example, when a collapsible box is

shown and these widgets need to move together, we don’t have to move one by one but change

the widget group coordinate instead. (Figure4.3) So the problem is how we build that widgets

group. Generally, the widgets group is allocated a location first based on the design of the

graphical user interface. Then, the widget is allocated a relative location. For instance in figure

4.3, the upload function group box is located at position(x: 20, y: 20) and the upload file box is

at (x: 10, y: 30). The real absolute location of this upload file box is at (30, 50). However,

because it is a widget in the upload function group box, we assign it as (x: 10, y: 30) and this

widget will show up on the (x: 10, y: 30) beginning from the top left corner of the widget group

box. And if we move the location of the upload file group box to (70, 20) when the collapsible

menu shows up. All locations of widgets will shift 50 right on the x axis. By that feature, all

widgets groups are generated and assigned that way. (Figure 4.3)

Figure 4.3: left is a figure that shows the upload file widget box in red. The red widget box in the

right figure shifts 50 units right and all widgets in it do the same shift.

To build the collapsible box, there is a unique collapsible box function that defines a

collapsible box, which contains an arrow button, a collection of leaf nodes and the logic after

click. After the user clicks on the arrow, the arrow changes to “down” if it is “right” now. At the

same time, the function also calculates the extra space of the collapsible box based on the leaf

node numbers. When clicking the arrow when it is “down”, the arrow goes back to “right”. And all

sub menus and nodes disappear and return the original status.

Chapter 5

USER GUIDE FOR EVAT

5.1 Python package

We built documentation and tutorials to help users navigate the graphical user interface.

An early version of the step-by-step guide is presented below:

Check if the Python is already downloaded on your computer. For Mac users, Python is

a built-in function, but for other operating systems, users need to go to

https://www.Python.org/downloads/ to download the Python file and follow the

https://www.Python.org/about/gettingstarted/ guide.

Open terminal. Type “pip install this package” and then “Type Python3 package Interface” and

the graphical user interface will show up.

5.2 Python Package Guide

To use EVAT, users could use the Python package in EVAT. For example, users could

build the annotation class by the EVAT python package and do the queries they need. Here is a

demo of python. The first step is to build a query object with the input file name, output file

https://www.python.org/downloads/
https://www.python.org/about/gettingstarted/

name, genetic type of input file, genetic reference version, fields of query, begin and end lines.

The second step is to do the query and the next three lines are different queries.

Figure 5.2.1 demo of a query from EVAT.

5.3 Graphical User Interface Guide

For users without a programming background, a graphical user interface is offered. A

basic query involves seven different steps:

Step1: Launching the interface. To launch the graphical user interface, users can find the

Python file(Figure 5.3.1.a) and open it with Python Launcher(Figure 5.3.1.b), or use the terminal

with command “Python3 main_window.py”(Figure 5.3.1.c) to open the front end.

Figure 5.3.1: Steps to open graphical user interface.(a)find main_window.py. (b)open with

Python Launcher. (c) open with a terminal.

Step2: File upload

After opening the graphical user interface, users will see the UI listed below. On the top left, the

graphical user interface offers a window that could upload files. Users need to input file name,

file type and reference genome version. For example, the file name is 23andme_small.txt; file

type is 23andme, reference genome version is 19.

Figure 5.3.2: Steps2, file upload window.

Step3:

After the file is uploaded, the loading table(top table) will show annotations of every variant.

Every row is a variant and the column is the annotation field. All the columns will show on the

left and it is a collapsible menu. Users could use the collapsible menu to browse the field

names.

Figure 5.3.3: Steps3, loading table.

Step4:

After that, the users could do three kinds of queries as shown in the middle of the graphical user

interface. Every query type has unique query parameters. Filter-based query, as example, has

three parameters: query column name that tells the tool which field you are interested in; upper

bound input and lower bound input tell the tool the range users need. The result after the query

is shown in the result table below.

Figure 5.3.4: Steps4, three functions and result table.

Step5:

Also, Another query could be done after the query above and the result will be the intersection

of these two queries. Here we use region based query as an example. There are three

parameters in region based query: first one is which chromosome you want and the second and

third are the start position and end position of the query. After the query below, There are only

two rows in the result table.

Figure 5.3.5: Steps5, do another query after Step4 and the intersection result is shown on the

result table.

Step 6:

Also, The result table could be cleared. Users could use Refresh all query functions and do the

query again. This function is used when users want to do another query or delete the query

now.

Figure 5.3.6: clear all query buttons that could clear all tables and do that again.

Step 7:

The Generate report button could output the result in the result table to a csv file.

5.4 Case Study

In this section, I describe a case study using real PGP(Personal Genome Project) data

and EVAT. The PGP data includes a 23andme data file named huED0F40 which can be

downloaded from PGP Data and the health report of a participant could be found in the PGP

Genome Report. The huED0F40 file is the 23andme file which contains 576532 variants of the

participant. The health report includes the current disorder or disease of the participant and the

potential risk.

The participant was suffering loss of hearing and diagnosed with Asymmetrical Hearing

Loss caused by genetic mutations. Therefore, he wanted to know more about his mutations and

decided to do a genetic test. Then he got his 23andme file but he knew nothing about those

variants as there are only some rsid there. So he wanted some more information and used

EVAT to retrieve more information about his genetic variants and got all fields annotation of

these variants. Then he learned about some gene names related to Asymmetrical Hearing Loss

by reading papers, which is GJB2, SLC26A4, MYO15A, OTOF, CDH23, and TMC1. Let’s use

GJB2 as an example. By using EVAT, and its gene-base querying ability, he found 9 valid

variants related to those genes. But not all of these variants were equally important and some of

them were more common and well researched. Therefore, he used filter based query function in

EVAT to get variants that have dbnsfp.mutpred.score higher than 0.75, (dbnsfp.mutpred.score

higher than means this variant has a high risk of causing a disease) and had

gnomad_exome.af.af <= 0.01 (variants that located on genes where one or more identified

high-impact SNVs have AF > 0.1% in gnomAD) (Whiffin et al. 2020). After the query, he got

one variant that is rs28931595. By the other field in the output file, he learned more information

about that variant. Thus, the EVAT tool can help such users find more information about their

most relevant variants

Chapter 6

Discussion

6.1 EVAT

EVAT could offer variant annotation information to individuals with different backgrounds.

Everyone could get variants annotations from the Python package or from the graphical user

interface. The package has many features to help users retrieve their variant annotation by their

own way. In the backend structure, EVAT offers the four different input file interpreters, including

23andMe, vcf, Ancestor and the whole genome. Also, the query function offers parameters so

that users could custom their query statement to MyVairant.info. After that, EVAT offers 3

high-level query functions: Gene-based funcion, filter-based function, region-based function to

do the query for result from MyVariant.info. Then, the output file format could be chosen from

vcf or csv.

Furthermore, EVAT includes a graphical graphical user interface for users without a

programming background. With the mouse click and the input to the textbox, Users could get

annotation data from MyVariant.info, browse the data by table and browse the columns and

fields by collapsible box. Then, the user could use the 3 functions to query their data and the

output file they need.

6.2 Advantages

For users with different backgrounds, EVAT could offer different variant annotation

methods. For users with programming skills, EVAT offers an API for users to control every step

of query input parameters, query functions, input and output file format. There are functions in

the Python package that could be imported by users.

For users without a programming background, EVAT offers the user an graphical

graphical user interface. With that graphical user interface, users could also control every step

of query input parameters, query functions, input and output file format or ignore everything and

output everything. However, the steps could not be imported for other usage. For example,

users with programming experience could import EVAT functions and use them in their code,

but with user interface you can only do what graphical user interface can do.

EVAt queries information from the MyVairant.info, which could offer a large amount of

information. EVAT is not only friendly to all users but also offers various functions that optimize

query experience. Also, a high-performance API that allows real-time queries on the Python

package is provided.

6.3 Limitations and Disadvantages

EVAT still has some limitations and Disadvantages.

Firstly, at certain situations, users may find the annotation is wrong or they have new

features of the variant and want to contribute to the variant annotation. However, they could not

add them through EVAT. What they could do is email the related databases like Dbsnp or CGI

to add their research result to the whole database.

Secondly, the query in EVAT is based on the Internet and the speed of query can’t be

too quick. A real variant file without annotation is about 500,000 lines and 10MB - 100MB. And it

takes about 6 hours to do all the queries. Although queries may not cover all fields and the file

might be part of the complete file, the efficiency of the whole process is not good enough. The

bottleneck is to query from the MyVarint.info and this is hard to improve. Unless MyVariant.info

changes the APIs that allow many lines to query at the same time.

Thirdly, the graphical user interface is not fully developed. There are still some

limitations. For example, when the input file is larger than one million rows, the loading speed

becomes slow dramatically. Also, the Python is required when launching the graphical user

interface and the users need to download Python to use EVAT.

Furthermore, EVAT could only query data in human species. The annotation data in

EVAT is from MyVariant.info and MyVairnat.info doesn't cover annotation further than human.

Therefore there can’t be annotation further than that. However, connecting to other resources

means a complete pipeline: EVAT needs to load more data types, interact with other API,

interpret returned files and do more query functions. And these may be done in the future.

Last, the annotations are focused on SNV. The other variant type is not as frequent as

SNV, but they play important roles in the biology process. However, the annotation based on

that part is not completed and can not be annotated by EVAT.

6.4 Future Plan

The package will offer an analysis function to users to visualize the result of the query.

For example, the diseases related variants will be compared to other people and databases.

Based on specific variants' occurrence frequency, the disease probability will be calculated.

Also, the visualization function needs to be added into the package. After the data are

analyzed, the system could visualize the data into the figures. For example, the genetic variants

frequency data will be shown in volcano plots to show the comparison of the variant and the

general frequency.

Graphical user interface also needs some more features. For example, when the user

selects a field or column, the interface should throw a window to notify the user what the column

means as the column name is confused sometimes. For example, users may feel confused

about the field ‘Cadd.1000g.af’, which means the Cadd database, 1000 genome project, african

variant sequence.

In the future, the graphical user interface will contain a button that could generate

human-readable reports for users. In this report, the ratio of disease variants that are positive

and variants that are negative are offered. And there is a description part here that the disease

and related variants are described.

Also, we will compare the mutations with the general population so that the user knows if

this mutation is rare or common. Finally, we will map the variant to the pathway and share the

pathway that has many variants to users. If a pathway is enriched in disease-associated

mutations, it is flagged as being noteworthy.

Finally, a chromosomal map will be generated by the package. The mapped variants

show the overview of variants distribution for users. With this figure, users could have an

overview of the variants they have and also know the locations.

Chapter 7:

Summary

In this thesis, I built a Python package to help users know what the variant is about by

retrieving data from different databases and offering query functions. Users could be individuals

with little or extensive programming knowledge and EVAT will help all of them. For users with

programming skills, EVAT offers an API for users to control every step of query input

parameters, query functions, input and output file format. For users without a programming

background, EVAT offers the user an graphical graphical user interface and this feature makes

EVAT easy to use.

Also, EVAT has huge potential as EVAT is not a tool that will only be used in the

bioinformatics field. In the future, EVAT can offer variant annotation information with genetic test

participants with fancy visualizations and easy-to-understand reports by one click on the

graphical user interface. By that way, EVAT may be able to put into market and benefit a lot of

people.

REFERENCES

Arnold, Matthias, Johannes Raffler, Arne Pfeufer, Karsten Suhre, and Gabi Kastenmüller. 2015.
“SNiPA: An Interactive, Genetic Variant-Centered Annotation Browser.” Bioinformatics 31
(8): 1334–36.

Bowne, Sara J., Lori S. Sullivan, Susan H. Blanton, Constance L. Cepko, Seth Blackshaw,
David G. Birch, Dianna Hughbanks-Wheaton, John R. Heckenlively, and Stephen P.
Daiger. 2002. “Mutations in the Inosine Monophosphate Dehydrogenase 1 Gene (IMPDH1)
Cause the RP10 Form of Autosomal Dominant Retinitis Pigmentosa.” Human Molecular

http://paperpile.com/b/rfnm50/ag5j
http://paperpile.com/b/rfnm50/ag5j
http://paperpile.com/b/rfnm50/ag5j
http://paperpile.com/b/rfnm50/ag5j
http://paperpile.com/b/rfnm50/ag5j
http://paperpile.com/b/rfnm50/YASle
http://paperpile.com/b/rfnm50/YASle
http://paperpile.com/b/rfnm50/YASle
http://paperpile.com/b/rfnm50/YASle
http://paperpile.com/b/rfnm50/YASle

Genetics 11 (5): 559–68.
Chung, Jade C. S., Jennifer Becq, Louise Fraser, Ole Schulz-Trieglaff, Nicholas J. Bond, Juliet

Foweraker, Kenneth D. Bruce, Geoffrey P. Smith, and Martin Welch. 2012. “Genomic
Variation among Contemporary Pseudomonas Aeruginosa Isolates from Chronically
Infected Cystic Fibrosis Patients.” Journal of Bacteriology 194 (18): 4857–66.

Cingolani, Pablo, Adrian Platts, Le Lily Wang, Melissa Coon, Tung Nguyen, Luan Wang, Susan
J. Land, Xiangyi Lu, and Douglas M. Ruden. 2012. “A Program for Annotating and
Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of
Drosophila Melanogaster Strain w1118; Iso-2; Iso-3.” Fly 6 (2): 80–92.

“Definition of Variant - NCI Dictionary of Cancer Terms.” 2012. National Cancer Institute. July
20, 2012.
https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/genetic-variant.

Douville, Christopher, Hannah Carter, Rick Kim, Noushin Niknafs, Mark Diekhans, Peter D.
Stenson, David N. Cooper, Michael Ryan, and Rachel Karchin. 2013. “CRAVAT:
Cancer-Related Analysis of Variants Toolkit.” Bioinformatics 29 (5): 647–48.

Landrum, Melissa J., Jennifer M. Lee, Mark Benson, Garth Brown, Chen Chao, Shanmuga
Chitipiralla, Baoshan Gu, et al. 2016. “ClinVar: Public Archive of Interpretations of Clinically
Relevant Variants.” Nucleic Acids Research 44 (D1): D862–68.

Li, Heng. 2011. “Tabix: Fast Retrieval of Sequence Features from Generic TAB-Delimited Files.”
Bioinformatics 27 (5): 718–19.

Lin, Maoxuan, Sarah Whitmire, Jing Chen, Alvin Farrel, Xinghua Shi, and Jun-Tao Guo. 2017.
“Effects of Short Indels on Protein Structure and Function in Human Genomes.” Scientific
Reports 7 (1): 9313.

McLaren, William, Laurent Gil, Sarah E. Hunt, Harpreet Singh Riat, Graham R. S. Ritchie, Anja
Thormann, Paul Flicek, and Fiona Cunningham. 2016. “The Ensembl Variant Effect
Predictor.” Genome Biology 17 (1): 122.

“Pandas Documentation — Pandas 1.0.3 Documentation.” n.d. Accessed June 3, 2020.
https://pandas.pydata.org/pandas-docs/stable/index.html.

Seeb, J. E., G. Carvalho, L. Hauser, K. Naish, S. Roberts, and L. W. Seeb. 2011.
“Single-Nucleotide Polymorphism (SNP) Discovery and Applications of SNP Genotyping in
Nonmodel Organisms.” Molecular Ecology Resources 11 Suppl 1 (March): 1–8.

Sherry, S. T., M. H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and K. Sirotkin.
2001. “dbSNP: The NCBI Database of Genetic Variation.” Nucleic Acids Research 29 (1):
308–11.

“The Genetics of Blond Hair.” 2014. Science | AAAS. October 31, 2014.
https://www.sciencemag.org/news/2014/06/genetics-blond-hair.

Tretyakov, Konstantin. n.d. Pyliftover. Github. Accessed June 3, 2020.
https://github.com/konstantint/pyliftover.

Trujillano, D., M. D. Ramos, J. González, C. Tornador, F. Sotillo, G. Escaramis, S. Ossowski, L.
Armengol, T. Casals, and X. Estivill. 2013. “Next Generation Diagnostics of Cystic Fibrosis
and CFTR-Related Disorders by Targeted Multiplex High-Coverage Resequencing of
CFTR.” Journal of Medical Genetics 50 (7): 455–62.

“What Effect Do Variants in Coding Regions Have?” 2019. EMBL-EBI Train Online. May 2,
2019.
https://www.ebi.ac.uk/training/online/course/human-genetic-variation-i-introduction-2019/w
hat-genetic-variation/what-effect-do-variants.

Xin, Jiwen, Adam Mark, Cyrus Afrasiabi, Ginger Tsueng, Moritz Juchler, Nikhil Gopal, Gregory
S. Stupp, et al. 2015. “MyGene.info and MyVariant.info: Gene and Variant Annotation

http://paperpile.com/b/rfnm50/YASle
http://paperpile.com/b/rfnm50/YASle
http://paperpile.com/b/rfnm50/wwqA
http://paperpile.com/b/rfnm50/wwqA
http://paperpile.com/b/rfnm50/wwqA
http://paperpile.com/b/rfnm50/wwqA
http://paperpile.com/b/rfnm50/wwqA
http://paperpile.com/b/rfnm50/wwqA
http://paperpile.com/b/rfnm50/VMGDU
http://paperpile.com/b/rfnm50/VMGDU
http://paperpile.com/b/rfnm50/VMGDU
http://paperpile.com/b/rfnm50/VMGDU
http://paperpile.com/b/rfnm50/VMGDU
http://paperpile.com/b/rfnm50/VMGDU
http://paperpile.com/b/rfnm50/j5sE
http://paperpile.com/b/rfnm50/j5sE
https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/genetic-variant
http://paperpile.com/b/rfnm50/j5sE
http://paperpile.com/b/rfnm50/wMgeo
http://paperpile.com/b/rfnm50/wMgeo
http://paperpile.com/b/rfnm50/wMgeo
http://paperpile.com/b/rfnm50/wMgeo
http://paperpile.com/b/rfnm50/wMgeo
http://paperpile.com/b/rfnm50/AgbJf
http://paperpile.com/b/rfnm50/AgbJf
http://paperpile.com/b/rfnm50/AgbJf
http://paperpile.com/b/rfnm50/AgbJf
http://paperpile.com/b/rfnm50/AgbJf
http://paperpile.com/b/rfnm50/cvyw3
http://paperpile.com/b/rfnm50/cvyw3
http://paperpile.com/b/rfnm50/cvyw3
http://paperpile.com/b/rfnm50/DY4Z
http://paperpile.com/b/rfnm50/DY4Z
http://paperpile.com/b/rfnm50/DY4Z
http://paperpile.com/b/rfnm50/DY4Z
http://paperpile.com/b/rfnm50/DY4Z
http://paperpile.com/b/rfnm50/RwaE1
http://paperpile.com/b/rfnm50/RwaE1
http://paperpile.com/b/rfnm50/RwaE1
http://paperpile.com/b/rfnm50/RwaE1
http://paperpile.com/b/rfnm50/RwaE1
http://paperpile.com/b/rfnm50/4r66
https://pandas.pydata.org/pandas-docs/stable/index.html
http://paperpile.com/b/rfnm50/4r66
http://paperpile.com/b/rfnm50/VDKJu
http://paperpile.com/b/rfnm50/VDKJu
http://paperpile.com/b/rfnm50/VDKJu
http://paperpile.com/b/rfnm50/VDKJu
http://paperpile.com/b/rfnm50/VDKJu
http://paperpile.com/b/rfnm50/QQSBz
http://paperpile.com/b/rfnm50/QQSBz
http://paperpile.com/b/rfnm50/QQSBz
http://paperpile.com/b/rfnm50/QQSBz
http://paperpile.com/b/rfnm50/QQSBz
http://paperpile.com/b/rfnm50/t87U
https://www.sciencemag.org/news/2014/06/genetics-blond-hair
http://paperpile.com/b/rfnm50/t87U
http://paperpile.com/b/rfnm50/wrCw
http://paperpile.com/b/rfnm50/wrCw
http://paperpile.com/b/rfnm50/wrCw
https://github.com/konstantint/pyliftover
http://paperpile.com/b/rfnm50/wrCw
http://paperpile.com/b/rfnm50/xGKr
http://paperpile.com/b/rfnm50/xGKr
http://paperpile.com/b/rfnm50/xGKr
http://paperpile.com/b/rfnm50/xGKr
http://paperpile.com/b/rfnm50/xGKr
http://paperpile.com/b/rfnm50/xGKr
http://paperpile.com/b/rfnm50/2Zk9
http://paperpile.com/b/rfnm50/2Zk9
https://www.ebi.ac.uk/training/online/course/human-genetic-variation-i-introduction-2019/what-genetic-variation/what-effect-do-variants
https://www.ebi.ac.uk/training/online/course/human-genetic-variation-i-introduction-2019/what-genetic-variation/what-effect-do-variants
http://paperpile.com/b/rfnm50/2Zk9
http://paperpile.com/b/rfnm50/3xvml
http://paperpile.com/b/rfnm50/3xvml

Query Services.” bioRxiv. https://doi.org/10.1101/035667.
———. 2016. “High-Performance Web Services for Querying Gene and Variant Annotation.”

Genome Biology 17 (1): 91.

http://paperpile.com/b/rfnm50/3xvml
http://paperpile.com/b/rfnm50/3xvml
http://paperpile.com/b/rfnm50/3xvml
http://dx.doi.org/10.1101/035667
http://paperpile.com/b/rfnm50/3xvml
http://paperpile.com/b/rfnm50/zgCG
http://paperpile.com/b/rfnm50/zgCG
http://paperpile.com/b/rfnm50/zgCG

