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Within the hospital setting, sepsis is a leading cause of mortality, affecting more than 1.7 million 

adults annually. It is also present in about 30 to 50 percent of hospitalizations that end with 

death. Despite the high incidence and prevalence, detection and diagnosis of sepsis remain a 

challenge due to its non-specific early stage symptoms. However, as it can quickly progress to a 

life-threatening stage, it is important to detect sepsis patients earlier to improve outcomes. With 

the recently increased adoption of EHRs, many institutions now have large amounts of patient 



 

data being collected and have created their own customized sepsis detection and mortality tools 

using various modeling or machine learning (ML) techniques. Additionally, those who 

experience more socioeconomic challenges are more susceptible to chronic illnesses, including 

sepsis. However, structured coding of social or behavioral features is often underutilized and 

unreliable. First, in order to understand the current environment of predictive analytics solutions 

for sepsis, we systematically identified various studies that utilize different models or ML 

techniques and analyzed their approach and results. Second, we developed a framework that 

utilizes natural language processing text classification from clinical notes to extract social and 

behavioral determinants of health (SBDH). Third, we assessed classification methods that utilize 

currently established sepsis definitions or clinical scores to establish a baseline and integrated the 

SBDH data extracted from clinical notes described earlier and determined if SBDH features can 

help enhance predictive performance for sepsis detection in the acute care setting. 
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Chapter 1. INTRODUCTION  

1.1 SIGNIFICANCE OF THE PROBLEM 

Sepsis is a leading cause of mortality in hospitals nationwide; the Centers for Disease Control 

and Prevention (CDC) reports about one third of patients who died in a hospital, died from 

sepsis.1,2 Even though the occurrence and prevalence of sepsis is fairly high, there are many 

challenges with early detection and diagnosis of sepsis as it typically presents with early 

nondescript onset symptoms that are common to other illnesses, such as elevated body 

temperature and high heart rate.3 Because sepsis can progress to life-threatening stages in 

patients rapidly, it is a priority for many to be able to identity and treat patients prior to the 

progression to increase recovery and survival outcomes. Additionally, the high prevalence and 

cost disease of sepsis is financially straining on healthcare institutions. In 2013, around $24 

billion was spent on care for patients with sepsis, making it the most expensive condition for 

U.S. hospitals.1 Increased risk for sepsis is also associated with other chronic diseases such as 

chronic obstructive pulmonary disease, cirrhosis, and other immunodeficiency disorders.4 

Furthermore, those who survive sepsis may also suffer from additional long-term complications, 

such as higher risk of hospital readmission, increased cardiovascular disease severity, and 

potentially cognitive impairment, all of which may lead to reduced life expectancy and/or lower 

quality of life.5 With the Health Information Technology for Economic and Clinical Health 

(HITECH) Act, Meaningful Use, and Institute for Healthcare Improvement (IHI) Triple Aim 

framework, the adoption of electronic health records (EHRs) and other supporting technologies 

increased with aims to improve healthcare quality, patient safety, and data security.6–9 With this 
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increased adoption of EHRs, secondary analysis at healthcare institutions is now feasible due to 

the large amounts of data being collected and stored.  

1.2 CURRENT SEPSIS DEFINITIONS 

It has been challenging to define sepsis and various definitions have been created over the years. 

In 1991, the American College of Chest Physicians/Society of Critical Care Medicine Consensus 

Conference introduced the first clinical definition of sepsis, severe sepsis, and septic shock, 

referred as Sepsis-1.10 Sepsis-1 defined sepsis as a systemic inflammatory response syndrome 

(SIRS) due to a present infection, with at least two abnormal vital sign criteria.11,12 Additionally, 

Sepsis-1 aggregated the definition of sepsis further, creating severe sepsis and septic shock.11,12 

Because SIRS is nonspecific, the presence of at least two SIRS criteria may not always be the 

result of an infection. Therefore, in 2001, the International Sepsis Definitions Conference 

updated Sepsis-1 with the revised definition of Sepsis-2, which introduced confirmed or 

suspected infection to the prior sepsis definition.11,13 However, another update to the definition 

was introduced in 2016, Sepsis-3, and now defines sepsis as a life-threatening organ dysfunction 

caused by a dysregulated host to infection.12 There are currently two scoring schemes available 

for determining organ dysfunction: (1) Sequential Organ Failure Assessment (SOFA) Score, 

which is used to calculate organ dysfunction related to sepsis, often used in the ICU setting, and 

(2) quickSOFA (qSOFA), which is used to identify patients with high risk of adverse outcomes, 

often used in the non-ICU setting.12 SOFA takes various organ systems into account, including 

the respiratory, hematologic, hepatic, cardiovascular, neurologic, and renal systems.12 On the 

other hand, qSOFA criteria consists of vital signs and mental status.12  

Outside the United States, detection and defining sepsis is also challenging. In 1999, the 

Audit Commission in London recommended developing early warning systems (EWSs) to help 
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clinical staff identify patients who needed attention. They proposed a modification of Morgan's 

Early Warning Score, creating the Modified Early Warning Score (MEWS) which aimed to 

create communication between nursing and medical staff when patient deterioration was 

detected.14  MEWS consists of the following clinical features: (1) systolic blood pressure, (2) 

heart rate, (3) respiratory rate, (4) temperature, and (5) Alert-Verbal-Pain-Unresponsive (AVPU) 

score. These concrete flow-based definitions have been applied in the clinical setting to assist 

with sepsis detection with varying success.15–18   

1.3 IMPACT OF TECHNOLOGY  

With increased EHR adoption and usage in recent years, many institutions have started to utilize 

the vast amount of collected patient data and create customized sepsis detection and mortality 

tools using machine learning (ML) techniques. At a high level, ML is the application of 

algorithms and/or artificial intelligence to aid with automatic learning and detection. Although 

there are many ML algorithms, they are commonly categorized as supervised or unsupervised 

methods. Supervised ML algorithms take what has been learned through the use of a labeled 

training data set to create a model that is then applied to a new unlabeled dataset, often referred 

to as a testing or validation set, to predict future outcomes or events.19 Because supervised 

methods assume truth from labeled data, if the labeled data are noisy or incorrect, the resulting 

predictions may not be reliable, as the generated models are trained on these potentially incorrect 

data. On the other hand, while unsupervised ML algorithms draw inferences and patterns from 

datasets to describe unlabeled data, commonly used in data exploration as they can highlight 

potential trends in data without existing data analysis.19 Both of these techniques can be used on 

structured or unstructured data. Structured data typically encompasses quantitative data, such as 

lab result values or vital sign values. However, unstructured data, such as clinical text notes from 
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providers or images, can provide an array of information not present or identifiable in structured 

data.20 Using natural language processing (NLP) to analyze notes can potentially provide greater 

insight as not all patient data is readily available in structured formats.  

ML methods have been used to aid with sepsis prediction. Locally at Harborview 

Medical Center (HMC), a systematic rule-based screening tool was developed in 2012 to identify 

septic inpatients using EHR data to evaluate patients for signs of infection. The screening system 

utilized SIRS criteria as well as lactate and would notify providers if nurses suspected new or 

worsening infection. Internal pilot testing revealed that rapid response team activations were 

reduced by half on the acute care floor. Additionally, it was shown that time from sepsis screen 

to care was reduced and 3-hour bundle compliance increased over a year. Furthermore, the 

average nurse response time to screen decreased.21,22 

However, with this increased adoption, there have been challenges standardization and 

data interoperability. Sharing data between institutions, and sometimes within institutions, can be 

challenging depending on how EHRs are implemented. Additionally, there are many EHR 

platforms which structure and store data differently, and each institution may even customize 

their systems even further to meet their criteria and workflow. However, collating and extracting 

these data can be challenging due to these nuances in how the data are collected and stored. Prior 

to March 2020, HMC had contracts with two major EHR vendors, Epic and Cerner, where Epic 

was used primarily in the outpatient setting (e.g. neighborhood clinics, emergency department) 

while Cerner was used in the inpatient setting (e.g. intensive care, emergency department 

transfer). Each of these two vendors collected and stored patient data differently, which added 

hurdles for data sharing and interoperability. However, using a common data model (CDM), 

such as the Observational Medical Outcomes Partnership (OMOP) CDM, would allow for data 
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from different databases and EHRs to be combined seamlessly and transparently, ultimately 

adding to reproducibility and ease of use.23,24  Data analysis can then be performed on the CDM, 

creating code and scripts that would be applicable to other data that are transformed to the same 

common data model, increasing its utility and generalizability.24–26  

1.4 SOCIAL AND HEALTH BEHAVIOR DATA 

In addition to structured data and commonly used vital signs and lab results, social and 

behavioral determinants of health (SBDH) data are now starting to be analyzed for secondary 

research as recent research has indicated that there is a correlation between SBDH and health 

outcomes.27 Common SBDH indicators can not only include specifically social determinants 

such as housing stability, access jobs and health care services, education level, language, and 

socioeconomic conditions, but also health behaviors, such as diet, physical activity, alcohol 

intake, and tobacco use.28–30 These SBDH indicators are descriptors of populations since they are 

useful predictors of health outcomes and health related interventions.31 Because SBDH can 

potentially be strong indicators of health, many institutions are now starting to analyze and 

intake SBDH information, whether through clinical text notes or standardized coding, such as 

International Classification of Diseases (ICD).30 However, there are challenges with SBDH 

intake as there is no standardized SBDH screening tool in the EHR; additionally, coding schemes 

like ICD can prove to be unreliable in secondary analysis as coding can oversimplify symptoms 

and diagnoses leading to coding uncertainties and the fact that coding errors may be present from 

unintentional mistakes or even upcoding.32,33 Furthermore, SBDH relies heavily on the clinical 

staff to screen and document SBDH as well as  assumes patients will provide accurate answers. 

Complications arise when documenting diagnostic codes and SBDH.32 Past research has shown 
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that hospital readmissions are highly influenced by patient health status and SBDH and suggest 

that clinical staff and researchers should consider SBDH when assessing readmission risk.34  

Housing stability is a major public health issue. Within our region, it is estimated that 

there are at least 22,000 individuals facing housing insecurity in Washington State, with more 

than 12,000 in Seattle/King County, a four percent increase over the previous year.35 Housing 

instability is associated with various health inequalities, such as shorter life expectancy, higher 

morbidity, and increased usage of acute hospital services, “as the social determinants of 

homelessness and health inequities are often intertwined, and long term homelessness further 

exacerbates poor health”.36 Although some research has shown that patients who experience 

housing instability are more likely to die following admission for severe sepsis than those with 

insurance,37 other research indicates that the effects of health inequalities are still unclear and 

need further investigation.38 Additionally, social habits and health behavior, such as tobacco and 

alcohol use, can impact health decisions and outcomes; one study found that participants who 

drank alcohol and reported tobacco use consumed more foods higher in fat and sugar, low in 

vitamins and minerals as well as foods, considered to be less healthy and prepared in a less 

healthy way.39 Therefore, it may be important to look at SBDH and their impact on health 

outcomes.39  

1.5 SEPSIS AND SOCIAL AND HEALTH BEHAVIORAL DATA 

The 2018-2019 King County Community Health Needs Assessment (CHNA) found local 

healthcare issues, including affordability and stability, mental health, tobacco, and alcohol and 

substance-related disorders, that were major challenges affecting our community.40 Past research 

has shown that low socioeconomic status, including low income or housing stability issues, 

contributes to an increased mortality and intensive care unit (ICU) admission in patients with 
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sepsis.41 Sepsis has also been found to be associated with demographic and social factors, such as 

tobacco and alcohol use, poverty level, and race; additionally, access to care is closely correlated 

with lower sepsis prevalence and mortality rates.4 

When evaluating the impact of homelessness on presentation and outcomes, it was found 

that homeless sepsis patients were younger and had more liver disease.42 These patients also used 

more healthcare resources, longer length of stays, increased risk of dying within 30 days of 

admission, and tended to show higher 180-day mortality.41,42 Similarly, a study from Argentina 

that explored health inequities in the diagnosis and outcome of sepsis found that patients in 

socially disadvantaged groups were sicker at admission, had septic shock more frequently, and 

had higher mortality.43 

Additionally, smoking and tobacco use are leading causes of preventable illness and 

death; they are often associated with the development of chronic diseases and conditions, such as 

respiratory difficulties, lung cancer, bronchitis and bacterial pneumonia.44–46 Smoking can 

increase susceptibility to other bacterial infections which can lead to septic shock and respiratory 

failure.44 Recent literature has also found that smoking is associated with longer hospital stays, 

increased need for mechanical ventilation, and higher mortality.45,47 On the other hand, it has 

also been shown that current smoking is associated with a decreased risk of mortality in 

pneumococcal pneumonia with bacteremia.46 Given the complex nature of the effect of smoking 

on immune function, it is difficult to predict the overall impact of tobacco smoking on clinical 

outcomes in sepsis and shows that this social feature is worth exploring. Similarly, alcohol is 

frequently abused, and it has been shown that there is a disproportionate level of alcohol-related 

consequences among those who classify as low socioeconomic status.48 Chronic alcohol 

consumption can impair a person’s antibacterial defense against infections; therefore, patients 
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with chronic alcohol consumptions or experiencing alcohol use disorders can become more 

severely ill and are at an increased risk of developing infections that can lead to sepsis.49,50 This 

is due to higher cortisol levels, which have been found to be elevated in patients with septic 

shock, and decreased immune systems.51 

Overall, social and behavioral factors have been shown to impact health outcomes and 

sepsis onset. Although some research has started to show that patients who experience health 

inequalities like housing instability are more likely to die following admission for severe sepsis, 

other research indicates that the effects of health inequalities are still unclear and need further 

investigation. Therefore, it is important to explore how social and behavioral health determinants 

can impact health outcomes. 

1.6 STATEMENT OF THE STUDY PURPOSE 

Although there have been inroads in exploring how predictive analytics can be used for sepsis 

prediction, most studies have focused on patients in the intensive care unit (ICU) or emergency 

department (ED) and most have focused on applying SIRS, Sepsis-2 or Sepsis-3 definitions as 

gold standards. However, to our knowledge, little has been investigated in the acute care setting; 

which we define as consisting of patients who have been admitted to the hospital for a stay that is 

greater than 24 hours and do not require critical care. This research will attempt to discover a 

new method that integrates SBDH for sepsis prediction or detection in the acute care setting at 

HMC. Through use of supervised algorithmic-based text and sentiment classification ML 

methods on clinical text notes, we hope to shed new light on potential social features, which are 

collected in unstructured formats at varying points in a patient’s stay, that may have a 

meaningful impact on predictive analytics for sepsis patients in acute care. Despite all these 

varying approaches to adapting predictive analytics for sepsis, there has not been an instance to 
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our knowledge where social factors and past medical history are extracted from unstructured 

clinical text notes and transformed into structured metrics to be integrated into a predictive 

machine learning algorithm. There are three main objectives to this study: 

Aim 1: Perform a systematic scoping review to understand the status quo of predictive analytics 

and sepsis. 

Aim 2: Extract clinical text notes with social history, and other related features, and apply 

various supervised text classification algorithms to create a numeric scoring metric that captures 

sentiment and then compare the feasibility of extracting SBDH phenotypes using clinical text 

notes and structured disease coding. 

Aim 3: Integrate the previously generated scoring metrics on social determinants, convert these 

metrics into features that will then be integrated with a general SIRS, Sepsis-3, and MEWS 

based classification sepsis prediction algorithms, evaluate their impact on prediction in the acute 

care setting and identify and analyze patterns that may arise through a mixed-methods approach. 

1.7 CONTENT OF THE DISSERTATION 

This dissertation discusses how SBDH data can be extracted from unstructured data sources and 

explores how integrating these derived data can impact sepsis prediction as defined by existing 

scoring systems commonly used in the acute care setting. Below is an outline of the content of 

each chapter: 

In Chapter 2, we present findings from a systematic scoping review that we published in 

Applied Clinical Informatics.52 Here, we explore the current literature and specifically examine 

the approaches and methods used in the literature to determine how others are defining sepsis in 

their respective patient population. Furthermore, we explore which algorithms or methods were 

used across studies to shape our decisions and methods for Aim 3.   
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In Chapter 3, we present findings from applying text classification methods on clinical notes to 

extract social and health behavior data, focusing specifically on (1) housing stability, (2) tobacco 

use, and (3) alcohol use as they were found to be locally important social and behavioral 

determinates. We also compare our findings from the unstructured classification with structured 

sources of SBDH data. We then weight and average the classifications for each patient by social 

factor to form a generalizable and interpretable risk score.  

In Chapter 4, we present findings from integrating scores that were generated in Chapter 3 with 

clinical, rule-based, scoring schemes, focusing specifically on (1) qSOFA, (2) SIRS, and (3) 

MEWS. We analyze how the integration of SBDH data extracted from unstructured clinical 

notes can influence the predictability of these scoring methods.  

In Chapter 5, we summarize our dissertation findings from all studies. Furthermore, we outline 

how our findings can be used to inform future work and discuss areas in where the research 

could be further explored.  
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Chapter 2. REVIEW OF PREDICTIVE ANALYTICS SOLUTIONS 

FOR SEPSIS PATIENTS 

This is an Accepted Manuscript of an article published by Thieme in Applied Clinical 

Informatics on April 2, 2020, available online at https://www.thieme-

connect.de/products/ejournals/abstract/10.1055/s-0040-1710525. © Georg Thieme Verlag KG 

2.1 ABSTRACT 

Background: Early detection and efficient management of sepsis are important for improving 

healthcare quality, effectiveness, and costs. Due to its high cost and prevalence, sepsis is a major 

focus area across institutions and many studies have emerged over the past years with different 

models or novel machine learning techniques in early detection of sepsis or potential mortality 

associated with sepsis.  

Objective: To understand predictive analytics solutions for sepsis patients, either in early 

detection of onset or mortality.  

Methods and Results: We performed a systematic scoping review and identified common and 

unique characteristics between their approaches and results in studies that used predictive 

analytics solutions for sepsis patients. After reviewing 148 retrieved papers, a total of 31 

qualifying papers were analyzed with variances in model, including linear regression (n = 2), 

logistic regression (n = 5), support vector machines (n = 4), and Markov models (n = 4) as well 

as population (range: 24-198,833) and feature size (range: 2-285). Many of the studies used local 

datasets of varying sizes and locations while others used the publicly available MIMIC data. 

Additionally, vital signs or lab test results were commonly used as features for training and 

testing purposes; however, a few used more unique features including gene expression data from 

blood plasma and unstructured text and data from clinician notes. 

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0040-1710525
https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0040-1710525
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Conclusion: Overall, we found variation in the domain of predictive analytics tools for septic 

patients, from feature and population size to choice of method or algorithm. There are still 

limitations in transferability and generalizability of the algorithms or methods used. However, it 

is evident that implementing predictive analytics tools are beneficial in the early detection of 

sepsis or death related to sepsis. Since most of these studies were retrospective, the translational 

value in the real-world setting in different wards should be further investigated.  

Keywords: Sepsis, Predictive analytics, Machine learning, Algorithms, Data modeling 

2.2 INTRODUCTION 

Sepsis is a severe complication stemmed from an infection in the body and can lead to potential 

tissue damage, organ failure, or even death. More than 1.7 million individuals are diagnosed with 

sepsis annually in the United States and has a one in three mortality rate.1 Sepsis is a strain on the 

hospitals and health care system as it is a disease of high prevalence and cost. In 2013, almost 

$24 billion was spent on care for sepsis patients, making it the most expensive condition to treat 

in U.S. hospitals.2 Unfortunately, sepsis can stem from a vast array of initial infections, such as 

pneumonia or a urinary tract infection. Despite the high occurrence and prevalence, detection 

and diagnosis of sepsis remain a challenge due to its nondescript early onset symptoms, such as 

high heart rate and clammy skin.3 However, as it can quickly progress to a life-threatening stage, 

it is crucial to treat sepsis patients earlier and more efficiently to increase survival outcomes. 

Furthermore, patients diagnosed with sepsis tend to remain in the hospital for a significantly 

longer periods of time when compared to those without the condition; thus, using more resources 

and hampering the ability to move patients out of the emergency department (ED) and into beds 

efficiently.  



 

 

18 

Currently, there are various metrics in use to define and identify sepsis in the clinical 

setting. In 1991, the Sepsis-1 definition of sepsis, severe sepsis, and septic shock was released. 

Sepsis was then described as a systemic inflammatory response syndrome (SIRS) due to a 

present infection, with at least two of the following criteria: (1) Temperature >38°C or < 36°C, 

(2) Heart rate > 90 bpm, (3) Respiratory rate > 20 or PaCO₂ < 32 mm Hg, or (4) WBC > 

12,000/mm³, < 4,000/mm³, or > 10% bands; severe sepsis was having sepsis resulting in organ 

dysfunction while septic shock was the occurrence of sepsis-induced hypotension.4 In 2001, an 

update resulted in the introduction of the Sepsis-2 definition, which added confirmed or 

suspected infection to the sepsis definition.4 However, in 2016, Sepsis-3 was created and sepsis 

is now described as a life-threatening organ dysfunction caused by a dysregulated host to 

infection.5  

While the definitions of sepsis have evolved, so has data collection in the clinical setting. 

In 2010, the United States government established a three-stage incentive program, aptly titled 

‘Meaningful Use’, which established the requirement to use electronic health records (EHRs). 

With Meaningful Use stage one, EHRs were widely adopted and now streams of patient data are 

constantly being collected. Many researchers and clinicians are now trying to leverage and 

integrate the data to create tools that aid in early detection of sepsis. Many of these tools and 

predictive solutions use machine learning (ML) techniques or hazards model to assist in 

predicting sepsis onset or mortality. ML is the application of artificial intelligence to aid with 

automatic learning, detection, or classification, which potentially can be useful with medical 

data.6 Additionally, the type and size of the feature set is important for the efficacy and 

interpretability of ML techniques as irrelevant features may lower the effectiveness.7 
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 Because there are many ML models and feature sets that can be used for sepsis predictive 

analytics, we systematically identified various studies to understand the current state of sepsis 

prediction tools. Furthermore, we sought to determine how predictive analytics are being 

implemented for septic patients and to see if there are any optimal solutions for sepsis detection 

or mortality associated with sepsis currently being explored.  

2.3 METHODS 

We performed a literature search on PubMed in November 2018 to identify current practices and 

studies that have used predictive analytics for septic patients, aiding in both early detection of 

onset or mortality, using the following query: ("sepsis" OR "septicemia" OR "septic" OR "septic 

shock" OR "severe sepsis") AND ("prediction" OR "predict" OR  "analytics") AND ("machine 

learning" OR "big data" OR "AI" OR "NLP" OR "neural network" OR "algorithm").  We 

included common synonyms and popular phrases for sepsis and predictive analytics to cast a 

greater net when searching. After querying the database, we identified and categorized relevant 

articles by reviewing the article titles and abstracts to ensure a ML technique or model was being 

used for prediction or detection of sepsis. Our search was not limited to the intensive care unit 

(ICU) as sepsis does not solely occur in such a setting. Furthermore, this allowed a larger scope 

to explore novel techniques being developed in other clinical settings. Our overall initial 

inclusion criteria are detailed below: 

1. Study was published in a peer-reviewed journal or conference. 

2. Study was published in English. 

3. Study was published after 2008. 

4. Study used at least one ML or model technique. 

5. Study identified the features and dataset used. 
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6. Study presented their summary statistics and/or compared to previous studies. 

Studies that did not meet these criteria were automatically excluded. However, to increase the 

breadth of our search and to include seminal studies, we added studies based on their titles and 

abstracts that were commonly found in the references, regardless of publication year. We did not 

restrict our search to a specific population age for similar reasons, but most of the reviewed 

studies centered around the general adult population aged 18 to 65. After curating our set of 

relevant articles, we identified and categorized the characteristics of each study by analyzing the 

common themes and differences between them to better understand the issues in applying 

predictive analytics to sepsis detection. 

 

Figure 2.1. PRISMA adapted diagram. 
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2.4 RESULTS 

Figure 2.1 depicts the article selection process. Our PubMed search resulted in 148 articles, 

where 31 articles were immediately excluded due to publication date. After reviewing the 

abstracts of the remaining articles, 95 articles were further excluded as they were not relevant to 

our question. A total of 22 full-text articles were extracted from our PubMed search. From these 

articles, a total of 11 cited references were added based on their titles and abstracts as they were 

commonly cited papers between many of the articles that met our inclusion criteria. However, 

two articles were then removed as there were no summary statistics presented. In total, 31 papers 

were analyzed. Full results are summarized in Table 2.1, detailing the algorithm or model, 

population and feature size, “gold standard” definitions, and summary statistics.  

For the majority of the studies analyzed, a variety of metrics were used to report results, 

such as area under the receiver operator curve (AUROC) and accuracy. The reported metrics 

were dependent on the ML technique or model used, the features that were selected, and the size 

of the study data. From our review, we identified four key differences between the analyzed 

studies, (1) variability in ML or modeling techniques, (2) variability in feature selection, (3) 

variability in data sample selection and size and (4) variability in “gold standard” sepsis 

definitions.  

2.4.1 Variability in Machine Learning or Modelling Techniques 

A wide range of models and machine learning techniques were used to predict or detect sepsis 

onset, septic shock, severe sepsis, or mortality. The variety of methods used, summarized in 

Table 2.2, added to the richness of this systematic scoping review. Common methods include 

linear regression (n = 2), 8, 9  logistic regression (n = 5),10-14 support vector machines (n = 4),15-18 

Markov models (n = 4),19- 22 and Bayesian networks (n = 2).23, 24 Additionally, a few studies (n = 
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6),25-30 used an industry created tool, InSight (Dascena Inc.), to validate performance compared 

to the more commonly used methods. In particular, Mao et al., used InSight to test the predictive 

abilities of the industry created sepsis detection algorithm on open source and local datasets, 

determining the transferability of the algorithm across varying datasets.28 Similarly, a few 

studies, including Danner et al., Gultepe et al., and, Thottakkara et al. used multiple methods and 

algorithms for comparison purposes against their own developed solution.9, 15,17 Many of the 

general results concluded that utilizing predictive analytics were beneficial in the detection or 

prediction sepsis onset or mortality. Predictive performance measures for each study are detailed 

in Table 2.1. Due to heterogeneity in methods and standards used, the predictive performance 

measure varies across the analyzed studies. Table 2.1 details the goals of the studies, the “gold 

standard” or definition used for sepsis, septic shock, or severe sepsis, the best performance 

markers, and summary statistics.  

2.4.2 Variability in Feature Selection 

A majority chose common vital signs, including heart rate, temperature, respiratory rate, and 

diastolic and systolic blood pressures, for predicting sepsis onset, septic shock, severe sepsis, or 

mortality. However, some studies went beyond these common vital signs and found that 

including biological data in tandem with these common features could potentially help enhance 

prediction and detection. Sutherland et al. used blood cultured for gene expression analysis to 

help with their detection solution.14 In addition to the common vital and test variables, they 

included 145 biomarkers to compare gene expression change from the Affymetrix Genechip data 

and were able to conclude that gene expression biomarker test had the ability to detect early 

evidence of sepsis before the availability of microbiology results. Langley et al. used blood and 

protein profiles to help curate individualized detection of sepsis.13 Using these profiles, they 
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found that patients with severe sepsis had more skewed distribution of metabolomic 

measurements and distinct metabolic differences between sepsis survivor and death groups. 

Afterwards, they created a solution that took clinical features and various metabolites to predict 

survival of patients with sepsis. Lukaszewski et al. created neural network models that would 

predict which ICU patients would develop sepsis from two daily samples of blood.31 They used 

various leukocytes and cytokines (IL-1B, IL-6, Il-8, IL-10, TNF-a, CCL-2, Fas-L) as features for 

model development. However, they mentioned that the model may also be identifying 

individuals who are more likely to develop sepsis from a genetic predisposition. Although a few 

studies included biological data to aid with sepsis prediction and detection, it may not always 

provide better results. Stanculescu et al. used biological data from neonates for their real-time 

sepsis prediction tool.22 They found that this addition was not statistically significant from their 

previous work using hidden Markov models and vital signs. From this, it is apparent that feature 

selection for machine learning techniques varies and there is not one set of features that is more 

ideal than another. 

2.4.3 Variability in Data Selection and Size 

Many studies used publicly available datasets, such as Medical Information Mart for Intensive 

Care (MIMIC) (n = 8)8, 12, 19, 25-28, 32, or the less commonly used Medical Data Warehousing and 

Analysis (MEDAN) project (n = 2)18, 33, to help train and validate their tools. The MIMIC-III 

dataset contains 53,423 distinct hospital admissions for adult patients (aged 16 years or above) 

admitted to critical care units between 2001 and 2012 while the MEDAN dataset contains data 

from 71 German ICUs from 1998 to 2002.18,34 These datasets are extensive and provide 

researchers with real, de-identified data that can be used as testing, training or validation sets 

when using predictive analytics. Additionally, many studies (n = 23) used ICU data (either 
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local14,17,20-23,29-31,35-37 or MIMIC), while nine studies used ED9-11,13-15,16,24,38,39 data. While local 

data varied greatly in size, ranging from 24 to 198,833, some used MIMIC in addition to their 

local datasets, which created a potentially more generalizable set of data to increase statistical 

significance and to increase the transfer of learning. Nemati et al. used local data as the 

development cohort and MIMIC data as the validation cohort rather than a random split of local 

data for both the development and validation cohorts.35 This allowed them to claim that their 

solution is more generalizable and has the potential to work sufficiently well across institutions. 

Similarly, Mao et al. integrated both ICU and non-ICU using local mixed wards data to increase 

generalizability and MIMIC to increase transferability.28  

Additionally, in our review, most of the studies reviewed were retrospective as they used 

data that was previously collected to create predictive analytics solutions, but there were four 

prospective studies in which tools were created to assist in the real-time clinical setting. 

Sutherland et al. prospectively predicted sepsis onset by using the American College of Chest 

Physicians/Society of Critical Care (ACCP/SCCM) consensus statement and if the patient had 

suspected infection based on microbiological diagnosis.14 Using recursive partitioning, LASSO, 

and logistic regression on microarray procedures, they examined individual genes via a Bayes-

adjusted linear model and leave-one-out cross validation. Later, they used 42 genes to generate a 

diagnostic classifier using a LogitBoost machine learning algorithm and applied the classifier to 

the validation set. Although the diagnosis of sepsis was unknown at the time of enrollment, 

confirmation was done retrospectively, and they found their real-time detection tool was able to 

perform before the availability of microbiology results.  

Similarly, Lukaszewski et al. prospectively monitored molecular changes to identify 

presymptomatic individuals with an admission diagnosis of “likely septic”.31 They used real-time 
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PCR to predict sepsis at an early stage of microbial infection, before overt clinical symptoms 

were to appear. Furthermore, they built five neural network classifiers, each with 30 percent of 

the data, to assess non-linear patterns and used a chi-squared test to ascertain whether the neural 

network derived predictive accuracies that were statistically significant. Although their solution 

was able to predict sepsis before the comparative method using the SIRS criteria, they found that 

clinicians might have trouble understanding the results from the neural network tool. Sawyer et 

al. pilot tested a real-time automated sepsis alert that would increase the rate of interventions 

within 12 hours of detection.38 They found that their alert system resulted in an increase in early 

intervention for those who were identified to be at risk for sepsis.  

2.4.4 Variability in “Gold Standard” Definitions 

When implementing a retrospective predictive analytics solution, defining the outcome variable 

can greatly impact the performance. Among the analyzed studies, there was variability in 

defining sepsis. Some studies determined if a patient had sepsis by using the presence of an 

International Classification of Disease (ICD) Code 9 or 10, while others opted for a more rule-

based approach based on the Sepsis-2, Sepsis-3, SIRS criteria, and/or organ dysfunction 

presence. Detailed information regarding gold standard definitions can be seen in Table 2.1. 

Additionally, a few studies relied on manual chart review for determining septic patients. On the 

other hand, prospective studies utilized a different approach. One utilized an admission diagnosis 

code upon ICU entry31, while another study determined septic patients based on a real-time 

sepsis alert generated from their clinical alert system.38  
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2.5 DISCUSSION 

In this study, we systematically reviewed the literature to identify all relevant studies that used a 

predictive analytics solution, including machine learning and hazards models, to predict onset or 

mortality of sepsis in hospitalized patients. We identified 31 studies and detailed the various 

methods and models each study utilized. Because the studies selected were not homogeneous in 

nature, there are a few distinct differences that should be noted.  

Most of the studies reviewed were retrospective, while a few were prospective. Although 

many of the results show improved accuracy and early detection of sepsis onset or mortality, it 

remains unknown how effective and efficient many of these predictive analytics solutions are in 

a real-time patient care setting. To fully understand the usability and accuracy of these solutions, 

they should be studied prospectively and observed in the healthcare setting. Similarly, Michael 

found that prospective cohort studies could potentially capture clinically relevant variables that 

are absent from retrospective data sets and they could also gather data in a more representative 

an accurate manner.40  

 Furthermore, a lot of studies used ICU data, most likely due to data availability. The 

algorithms created using just ICU data may not be transferable to other departments due to the 

high variation in patient population, differences in scoring schemes, and possible missingness for 

features found in ICU data potentially being utilized in the predictive tool. For instance, often 

times organ dysfunction is measured different scoring schemes in the ICU and ED 

environments.41 Although many studies presented favorable predictive value, it is nearly 

impossible to conclude from the reviewed studies if one predictive analytics solution is more 

effective than another as there were differences among gold standards. These gold standard 

definitions could have resulted in definition-specific results and if modified could yield differing 
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results. Furthermore, the population and data sizes used for each study was different and the 

features that were used ranged from solely vital signs all the way to including free text and 

administrative data.42 The heterogeneous nature of all the reviewed studies shows that there are 

many approaches for solving the question of applying predictive analytics for sepsis.  

A few studies used industry created solutions that were sponsored by the respective 

company. These results can even be seen advertised on the company’s websites themselves.43 

Because of this connection, there may have been publication bias present. It is best to be aware 

of this and interpret their respective results accordingly.44 

2.5.1 Limitations of Predictive Analytics Solutions Used 

Because of the heterogeneity of the data used, there were many differences in types of predictive 

analytic solutions used. Most commonly used predictive analytics techniques used linear 

classifiers, such as Naive Bayes and linear or linear and logistic regressions. Cross validation 

was also a common technique that was used amongst the analyzed studies. The use of cross 

validation indicates that the selected sample sizes in some of these explored studies may not be 

large enough. By utilizing cross validation, an artificial large sample size is created; however, by 

doing so, there is a risk of overfitting. Using k-fold cross validation can help reduce the effects of 

overfitting but does not eliminate the risk.45 With machine learning, larger and more 

representative data sets can result in more realistic outcomes and higher predictive power. 

Therefore, it is important to consider the effects of data size. However, some models, such as 

basic linear regression, may oversimplify a real-world scenario as features and response 

variables may not follow a linear relationship. Multivariate linear regression can produce a more 

complete model in understanding the independent impact of predictor variables on an outcome; 
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similarly, multivariate logistic regression can only be used when the outcome variable is 

categorical, which may not always be the intended case.46   

Non-linear models that were explored include neural networks and Markov models. 

Neural networks are easy to conceptualize, they are slower, do not have as great of performance 

metrics, requires tuning many parameters, and if a multi-layer neural network is used, then it is 

even harder to train.47 Hidden Markov models were also considered, which are memoryless, and 

make assumptions that the next event is only dependent on the current event and not the past 

event. Markov models are state machines with the state changes being probabilities. In a hidden 

Markov models, the probabilities are not known, but the outcome is known. However, 

implementing a neural network may be too much of a black box and may not be ideal in a 

healthcare setting where doctors and clinicians would most likely want to be aware of the 

computations and reasoning behind the outputs.48  

In addition to the common methods previously mentioned, there were a few unique 

methods that were used worth discussing. One study used Symbolic Gate Approximation which 

helped reduce the set of features necessary. Another study used Bayesian Principal Component 

Analysis (PCA), which can be advantageous for small data sets in “high dimensions as it can 

avoid the singularities associated with maximum likelihood PCA by suppressing unwanted 

degrees of freedom in the model”.49  

Generalized additive models were also used. These can be powerful in that they allow us 

to fit a nonlinear function to each predictor potentially allowing for more accurate predictions 

when compared to a linear method. Furthermore, because the model is additive, the effect of 

each predictor can be analyzed when fixing the remaining predictors; however, this additive 

characteristic can also be hindering.50 One study used a Weibull-Cox proportional hazards 
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model, which is a good method for analyzing survival data, and is smoother than just a standard 

Cox model. Finally, random forests were also explored. It is a bagging technique for both 

classification and regression. The general concept is that you divide your data into several 

portions, use a relatively weak classifier/regressor to process, and then combine them. Random 

forest is flexible and can enhance the accuracy of the weak algorithm to a better extent at the 

expense of heavier computational resources required.51 However, if the data is not meaningful to 

begin with, the end result will still not be meaningful. While these uniquely applied predictive 

analytics solutions are interesting, they were not specifically differentiated from the more 

common tools that were used.50 Overall, there was no clear-cut best algorithm; however, when 

selecting a predictive analytics solution to implement, one must consider the bias-variance 

tradeoff and sample size of the data.  

2.5.2 Limitations in Findings 

There are some limitations in terms of how the systematic scoping review was conducted and 

designed. We chose our search query to be fairly broad to be able to capture the variety of 

predictive analytics solutions being created for septic patients. Many of these studies had a 

different objective in their approach to using predictive analytics making it is difficult to 

determine whether one approach was better than another. If we narrowed the objective of our 

review to solely include studies that aimed to decrease sepsis mortality or onset, the search 

would have brought in different studies and examples. Furthermore, the definition of sepsis is 

ever changing, and this solely marks, generally, what has been done until now.  

 The availability of data seems to deeply affect and influence data availability. The most 

commonly used data were obtained from the ICU followed by the ED. This skew may be due to 

the availability of public open-access data, such as MIMIC and MEDAN. Therefore, we do not 
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have good information in terms of whether or not predictive analytics tools are better applied in 

the ICU setting for better patient outcomes. As more data sets become available, we should be 

careful in interpreting where the application of these algorithms should be best assigned and 

used. The definition of sepsis that was used as well as target population contributed to the 

variation. Stanculescu et al. looked at developing an alert system for neonates. Because the 

number of neonates that met their eligibility criteria was low, their study population size was 

thus limited.21, 22 Most of the studies included in our analysis attempted to detect sepsis or death 

related to sepsis earlier than what is currently available. Furthermore, most of the studies were 

retrospective, but there were a few prospective studies performed, and even a randomized control 

trial. When using machine learning to predict sepsis onset, many studies used vital signs or lab 

test results as their features to train and test their solutions. However, Sutherland et al. show that 

waiting for the microbiology results could potentially be avoided if gene expression analysis 

from blood plasma were to be utilized instead.14 They were able to show strong findings of 

detecting sepsis before the availability of microbiology results. Shimabukuro et al. performed a 

randomized control trial by using an algorithm created by Dascena, Inc. and found that their 

predictor decreased the average length of stay and in-hospital mortality rate.30 Nemati et. al 

found that they can predict, accurately, sepsis onset 4-12 hours prior to clinical recognition 

through the use of their modified hazards model.35 Horng et al. found that utilizing the 

unstructured text data improved the accuracy of models that solely used the structured data.16 

However, since most of these studies were performed retrospectively, a prospective approach 

would be needed to determine the feasibility and clinical utility of these predictive analytics 

methods. For those that did use a prospective approach, there were varying results in accuracy 

metrics as some found that there was no major improvement in patient outcomes, while others 
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found decreased in-hospital mortality and length of stay rates. Additionally, since the definitions 

of sepsis currently available rely on clinical features, bias in prediction models will be present as 

there will be an overlap in the feature set and outcome. Further research and exploration would 

be necessary in this area.  

2.5.3 Limitations in Search Strategy 

There are a few limitations in our search query. We used a simplistic and more accessible search 

phrase query without using search tags for our exploration purposes. Recent systematic or 

literature reviews that have been published in the last few months utilize more extensive queries 

and use a range of Boolean and search tags in a wider set of databases. Fleuven et al. performed 

searches on not only PubMed, but also Embase and Scopus.51 Peiffer-Smadja et al. used a 

general search query to identify general infectious diseases on PubMed, Embase, Google 

Scholar, BioXiv, Acm Digital Library, arXiV, and IEEE.52 Schinkel et al. performed a review 

similar to ours by searching only PubMed, but they excluded studies that did not have an 

AUROC statistic.53 No search query is perfect; in fact, Salvador-Olivan et al. found that almost 

93 percent of search strategies in systematic reviews contained at least one error in their 

respective search queries.54 

2.6 CONCLUSION 

Overall, we found variation in the domain of predictive analytics tools for septic patients, from 

feature and population size to choice of method or algorithm. However, it is evident that 

implementing predictive analytics tools are beneficial in the early detection of sepsis or death 

related to sepsis. Since most of these studies were retrospective, the translational value in the 

real-world setting should be further investigated as other variables such as changes in workflow 
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may also have an impact on outcome. Additionally, many solely used one dataset, which is not 

generalizable across institutions, or even within departments. It will be interesting to see if a 

predictive analytics tool can be built on top of institutions that have implemented a common data 

model.
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Table 2.1. Overview of unique characteristics and differences between methods  

(* indicates prospective) 

Author Year Goal Population 

location and size 

Feature set 

size 

"Gold standard" 

definition 

Model and 

performance 

metrics 

Carrara et al.8 2015 Mortality prediction in 

septic shock patients 

MIMIC II (ICU) 

30,000+ patients 

30 variables Septic Shock: 1991 

SIRS criteria, ICD-

9 code for septic 

shock, abnormal 

interval must 

exceed 5hrs for 

each feature, SIRS 

2+, SIRS with low 

SBP despite 

adequate fluid 

resuscitation 

Multivariate 

linear regression 

with Shrinkage 

Techniques 

model 

 

Mean square 

error (MSE): 

0.03 

Danner et al.9 2017 Assess the value of HR-to-

systolic ratio in the 

accuracy of sepsis 

prediction after ED 

presentation 

Local (ED) 

53,313 patients 

9 

vitals/variables 

Sepsis: Discharge 

diagnosis of sepsis, 

evaluated vitals, 

demographics, 

chief complaints 

Multivariate 

linear regression 

model 

 

- Accuracy: 0.74 

- HR to systolic 

ratio accounted 

for 69% of 

overall 

predictive ability  
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Capp et al.10  2015 Describe key patient 

characteristics present 

within 4 hours of ED arrival 

that are associated with 

developing septic shock 

between 4 and 48 hours of 

ED arrival. 

Local (ED) 

1,316 patients 

5 risk factors Sepsis: manual 

chart review with 

SIRS 2+, evidence 

of infection 

(excluded if 

gastrointestinal 

bleed) 

 

Septic shock: SBP 

> 90mmHg despite 

appropriate fluid 

hydration of 

30cc/kg with 

presence of 

hypotension for at 

least 2 hours after 

Multivariable 

logistic 

regression model 

 

Found risk 

factors 

associated with 

progression of 

sepsis to septic 

shock between 4 

and 48 hours of 

ED arrival: 

- Female: 1.59 

odds ratio (OR) 

- Non-Persistent 

hypotension: 

6.24 OR 

- Lactate > 4 

mmol/L: 5.30 

OR 

- Bandemia > 

10%: 2.60 OR 

- Past medical of 

coronary heart 

disease: 2.01 OR 
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Faisal et al.11 2018 To develop a logistic 

regression model to predict 

the risk of sepsis following 

emergency admission using 

the patient’s first 

electronically recorded vital 

signs and blood test results 

and to validate this novel 

computer-aided risk of 

sepsis model, using data 

from another hospital.  

Local (ED) 

57,243 patients 

12 

vitals/variables 

Sepsis: ICD-10 

codes without 

organ failure 

 

Severe sepsis: ICD-

10 codes with 1+ 

organ failure or 

septic shock 

Logistic 

regression 

models  

 

All area under 

the receiver 

operator curve 

(AUROC): 0.79 

Sepsis AUROC: 

0.70 

Severe sepsis 

AUROC: 0.81 

Ho et al.12 2012 Investigate how different 

imputation methods can 

overcome the handicap of 

missing information.  

MIMIC II (ICU) 

Sample size not 

stated 

6 vitals Sepsis: ICD-9 

 

Septic shock: 

examined clinical 

chart records 

 - Sepsis: 

Multivariate 

logistic 

regression 

models 

- Septic shock: 

multivariate 

logistic 

regression, linear 

kernel SVM, and 

regression trees 

 

H: Clinical 

history feature 

set 

P: initial 

physiological 

state feature set 

 

Sepsis AUROC 

(imputed mean 
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and matrix 

factorization-

based 

approaches) 

All H: 0.791 

(0.792) 

Stepwise H: 

0.790 (0.791) 

All H ∪ P: 0.821 

(0.822) 

Stepwise H ∪ P: 

0.823 (0.823) 

 

Septic shock 

AUROC: 0.773-

0.786 

Langeley et 

al.13 

2013 Examine clinical features, 

plasma metabolome, and 

proteome of patients to 

predict patient survival of 

sepsis.  

CAPSOD (ED) 

1,152 individuals 

with suspected, 

community 

acquired sepsis; 

Discovery set of 

150 patients 

4 

vitals/variables 

Acute infection + 

2+ SIRS 

Logistic 

regression 

(sepsis 

prediction) and 

SVM model 

(survival and 

death prediction) 

 

Logistic 

regression 

AUROC: 0.847 

Logistic 
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regression 

accuracy: 0.851 

*best stats 

occurred at 

enrollment 

 

SVM AUROC: 

0.740 

SVM accuracy: 

0.746 

Sutherland et 

al.14  * 

2011 Use gene expression 

biomarkers to prospectively 

distinguish patients with 

sepsis from those who 

experience systemic 

inflammation from healing 

of surgery 

Local (ICU) 

85 patients 

42 biomarkers Likely enter sepsis 

cohort if met 

ACCP/SCCM 

consensus 

statement and 

clinical suspicion of 

systemic infection 

 

Confirmation 

performed 

retrospectively 

Classifier: 

Recursive 

partitioning, 

LASSO, logistic 

regression. 

Individual genes 

examined via 

Bayes-adjusted 

linear model. 

MT-PCR 

diagnostic 

classifier 

generated using 

a LogitBoost ML 

algorithm (tree-

based)  

 

PCR Accuracy: 

92% 

AUROC: 0.86-

0.92 
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Gultepe et 

al.15  

2014 Develop a decision support 

system to identify patients 

with hyperlactatemia and to 

predict mortality from 

sepsis using predicted 

lactate levels 

Local (ED) 

741 patients 

7 vitals/labs Sepsis: determined 

from EHR 

diagnosis and SIRS 

criteria 

SVM classifier 

 

Accuracy: 0.73 

AUROC: 0.73 

Horng et al.16  2017 To demonstrate the 

incremental benefit of using 

free text data in addition to 

vital sign and demographic 

data to identify patients 

with suspected infection in 

the emergency department  

Local (ED) 

198,833 control 

32,103 cases 

12 

vitals/variables 

ED ICD-9-CM 

code 

Linear SVM and 

free text models 

 

Bag of words 

AUROC: 0.86 

Bag of words 

sensitivity: 0.78 

Bag of words 

specificity: 0.79 

 

Topic model 

AUROC: 0.85 

Topic model 

sensitivity: 0.80 

Topic model 

specificity: 0.75 
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Thottakkara et 

al.17  

2015 To compare performance of 

risk prediction models for 

forecasting postoperative 

sepsis and acute kidney 

injury 

Local (in-patient) 

50,318 patients 

285 variables Forecast post-op 

sepsis and acute 

kidney injury 

 

AHRQ definition of 

"post-op sepsis" 

and organ failure 

associated with 

sepsis was 

identified by ICD-

9CM code for acute 

organ dysfunction 

Comparison of 

models that used 

logistic 

regression, 

generalized 

additive models 

(GAM), naive 

Bayes, SVM 

 

Naive Bayes 

performed the 

worst in the 

comparison; 

GAMs and 

SVMs had good 

performance; 

PCA feature 

extraction 

(reduced to 5 

features) 

improved 

predictive 

performance for 

all models 

 

Severe sepsis 

AUROC: 0.76-

0.91 
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Vieira et al.18 2013 Proposed a modified binary 

particle swarm optimization 

method for feature selection 

to predict mortality in septic 

patients 

MEDAN (ICU) 

382 patients 

Model chooses 

custom number 

of features (2-

7) 

MEDAN dataset 

prelabelled patients 

for abdominal 

septic shock 

Support vector 

machine for 

mortality 

prediction 

Modified binary 

particle swarm 

optimization 

(MBPSO): 

feature selection 

MBPSO  

 

12 (28) features: 

No-FS 

Accuracy: 72.6% 

(89%) 

Accuracy: 76.5% 

(94.4%) 

Ghosh et al.19 2016 Predict septic shock for 

ICU patients using non-

invasive waveform 

measurements 

MIMIC II (ICU) 

1,519 patients 

3 vitals/labs Sepsis: ICD-9 

 

Septic shock: 

examining clinical 

chart records 

Coupled hidden 

Markov models 

(CHMM) with 

varying gap 

interval and 

observation 

window sizes 

 

CHMM average: 

0.85 

Multi-channel 

patterns (MCP)-

CHMM average: 

0.86 
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Peelen et al.20 2009 Develop a set of complex 

Markov models based on 

clinical data to extract 

meaningful clinical patterns 

and to provide prediction 

for sepsis and other 

diseases. 

Local (ICU) 

2,271 patients 

6 variables Sever sepsis: SIRS 

2+ within 24 hrs. of 

ICU admission and 

1+ dysfunctioning 

organ system 

(SOFA) 

3 Markov 

models (amount 

of organ failure, 

type of organ 

failure, 

differences 

between 

development and 

persistence of 

organ failure) 

 

ICU death the 

error rates were 

17.7%, 18.1% 

and 17.8% and 

the AUCs were 

0.79, 0.79, and 

0.80 for Models 

I, II, and III. 

Stanculescu et 

al.21  

2014 Demonstrate that by adding 

a higher-level discrete 

variable with semantics 

sepsis/non-sepsis, can 

detect changes in the 

physiological factors that 

signal the presence of sepsis 

Local (NICU) 

24 neonates 

Bradycardia, 

desaturation 

Lab result of blood 

culture for neonatal 

sepsis 

Hierarchical 

switching linear 

dynamical 

system (HSLDS) 

 

Autoregressive 

(AR)-HMM 

AUROC: 0.72 

HSLDS deep 

learning 

AUROC: 0.69 

HSLDS known 

factors AUROC: 

0.62 
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Stanculescu et 

al.22  

2014 Detect and identify sepsis in 

neonates before a blood 

sample is drawn. 

Furthermore, they wanted 

to identify which 

physiological event would 

contribute most for 

detecting sepsis.  

Local (NICU) 

24 neonates 

6 

vitals/variables 

Positive cultures as 

pathogens: proven 

sepsis 

 

Positive cultures as 

mixed growth/skin 

commensal: 

"suspected sepsis" 

AR-HMM 

 

AUROC: 0.74-

0.75 

AUROC with 

missing data: 

0.72-0.73 

 

AUROC with 

bradycardia and 

mini 

bradycardia: 

0.79-0.80 

AUROC with 

desaturation: 

0.76-0.78 

AUROC with all 

states: 0.79-0.80 

Gultepe et 

al.23 

2012 Use a Bayesian network to 

detect sepsis early 

Local (ICU) 

1,492 patients 

BN1: 5 

variables 

BN2: 7 

variables 

"Sepsis occurrence" Bayesian 

network (BN) 

models  

 

BN-1 (vitals) 

goodness of fit: 

15.4 

BN-2 

(vitals+MAP) 

goodness of fit: 

19.9 

 

Found that 

lactate is a driver 

in both models 



 

 

43 

and maybe an 

important feature 

for early sepsis 

detection 

Nachimuthu 

and Haug24  

2012 Detect sepsis right after 

patients are admitted to the 

ED. 

Local (ED) 

3,100 patients 

11 

vitals/variables 

Clinician 

determined 'sepsis' 

during retrospective 

chart review 

Dynamic 

Bayesian 

network 

 

3 hrs. after 

admission 

AUROC: 0.911 

6 hrs. after 

admission 

AUROC: 0.915 

12 hrs. after 

admission 

AUROC: 0.937 

24 hrs. after 

admission 

AUROC: 0.944 

Calvert et al.25  2016 Detect and predict the onset 

of septic shock for alcohol-

use disorder patients in the 

ICU 

MIMIC III (ICU)  

1,394 patients 

9 

vitals/variables 

Septic shock: SIRS 

2+, ICD-9, organ 

dysfunction, SBP 

<90 mmHg for 1 

hour, total fluid 

replacement >= 

1200mL or 

InSight 

 

Sensitivity: 0.93 

Specificity: 0.91 

Accuracy: 0.91 

F1 Score: 0.161 
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20mL/kg for 24 

hours 

Calvert et al. 
26 

2016 To develop high-

performance early sepsis 

prediction technology for 

the “general patient 

population” 

MIMIC II (ICU) 

29,083 patients 

10 

vitals/variables 

Sepsis: ICD-9 code, 

1991 SIRS for 5 

hours 

InSight 

 

Sensitivity: 0.90 

Specificity: 0.81 

AUROC: 0.92 

Accuracy: 0.83 

Desautels et 

al.27  

2016 To validate InSight with the 

new Sep-3 definition and 

make predictions using 

minimal set of variables 

MIMIC III (ICU) 

22,583 patients 

8 vitals/labs Sepsis: Sep-3 

definition, 

suspicion of 

infection equated 

with an order of  

culture lab draw 

and dose of 

antibiotics 

InSight 

 

AUROC: 0.88 

APR: 0.60 
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Mao et al.28 2017 Validate the InSight 

algorithm for detection and 

prediction of sepsis and 

septic shock 

MIMIC III (ICU) 

Local (ED, 

General) 

61,532 stays 

6 vitals/labs Sepsis: ICD9 + 

SIRS 2+ (995.91) 

 

Severe sepsis: 

ICD9 (955.92), 

organ dysfunction, 

SIRS 2+ 

 

Septic shock: ICD9 

(785.52), SBP < 

90mmHg (at least 

30 min), 

resuscitated with 

>= 20 mL/kg over 

24 hrs, >=1200mL 

in total fluids 

InSight 

 

Detect sepsis 

AUROC: 0.92 

Detect severe 

sepsis AUROC: 

0.87 

 

Detect 4 hrs 

before onset 

sepsis AUROC: 

0.96 

Detect 4 hrs. 

before onset 

severe sepsis 

AUROC: 0.85 

McCoy et al.29  2017 Aimed to improve sepsis-

related patient outcomes 

through a revised sepsis 

management approach 

Local (ICU) 

407 patients 

6 

vitals/variables 

Severe sepsis: SIRS 

2+, qSOFA score 

Dascena 

 

Sep-3 AUROC: 

0.91 

Sep-3 

sensitivity: 0.83 

Sep-3 

specificity: 0.96 

 

Severe sepsis 

AUROC: 0.96 

Severe sepsis 

sensitivity: 0.90 

Severe sepsis 

specificity: 0.85 
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Shimabukuro 

et al.30  * 

2017 Randomized control trial to 

show lowered mortality and 

length of stay using a 

machine learning sepsis 

prediction algorithm 

Local (ICU) 

75 controls 

67 cases 

7 vitals/labs Severe sepsis: 

'organ dysfunction 

caused by sepsis' 

 

Random allocation 

sequence to put 

patients in groups 

InSight  

 

AUROC: 0.952 

Sensitivity: 0.9 

Specificity: 0.9 

 

Average length 

of stay decreased 

from 13 to 10.3 

days 

In-hospital 

mortality 

decreased by 

12.3% 

Henry et al.32  2015 Create and test a score that 

predicts which patients will 

develop septic shock 

MIMIC II (ICU) 

16,234 patients 

54 features Suspicion of 

infection: ICD-9 or 

by presence of 

clinical note that 

mentioned sepsis or 

septic shock 

 

Sepsis: suspicion + 

SIRS 

Severe sepsis: 

sepsis + organ 

dysfunction 

TREWScore 

(Cox 

proportional 

hazards model 

using the time 

until the onset of 

septic shock as 

the supervisory 

signal) 

 

AUROC: 0.83 

Specificity: 0.67 

Sensitivity: 0.85 

"Patients were 

identified a 

median of 28.2 

hours before 

shock onset" 
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Lukaszewski 

et al.31 * 

2008 Detect and identify septic 

patients before displaying 

symptoms for ICU patients 

Local (ICU) 

92 patients 

7 cytokines Admission 

diagnosis upon ICU 

entry 

Neural networks 

using cytokine 

and chemokine 

data 

 

Sensitivity: 0.91 

Specificity: 0.80 

Accuracy: 0.95 

Nemati et al.35 2017 Aimed to develop and 

validate an artificial 

intelligence sepsis 

algorithm for early 

prediction of sepsis 

Local (ICU) 

33,069 patients 

65 variables Sepsis: Sepsis-3  Modified 

Weibull-Cox 

proportional 

hazards model 

 

4 hrs. in advance 

AUROC: 0.85 

Pereira et al.33  2011 Examined different 

approaches to predicting 

septic shock with missing 

data.  

MEDAN (ICU) 

139 patients 

2 sets of 12 

and 28 

"selected 

features" 

Septic shock: 

associated with 

abdominal causes 

(not clearly defined, 

data may be 

prelabelled) 

Zero-Order-Hold 

(ZOH) Fuzzy c-

means clustering 

based on partial 

distance 

calculation 

strategy (FCM-

PDS) 

 

Performance 

improvements 

occur where up 

to 60% of the 

data is missing 

 

ZOH-FCM-PDS 

12 (28) feature 

AUROC: 0.899 
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(0.649); FCM-

PDS 12 (28) 

feature AUROC: 

0.786 (0.631) 

Ribas et al.36 2011 Demonstrate that a SVM 

variant can provide 

automatic ranking of 

mortality predictor and have 

higher accuracy that current 

methods.  

Local (ICU) 

354 patients  

4 vitals/labs Severe sepsis: 

organ dysfunction 

(SOFA) 

Relevance vector 

machine 

 

AUROC: 0.80 

Error rate: 0.24 

Sensitivity: 0.66 

Specificity: 0.80 

Sawyer et al.38 

* 

2011 Evaluate if implementing an 

automated sepsis screening 

and alert system can 

facilitate in early 

interventions by identifying 

non-ICU patients at risk for 

developing sepsis  

Local (Non-ICU) 

270 patients 

9 

vitals/variables 

Intervention group: 

real-time sepsis 

alert generated 

from Clinical 

Desktop 

Recursive 

partitioning 

regression tree 

analysis 

 

Within 12hrs of 

sepsis alert, 

70.8% of 

patients in the 

intervention 

group received 

treatment vs. 

55.8% in control.  
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Shashikumar 

et al.37  

2017 Investigates the utility of 

high-resolution blood 

pressure and heart rate 

times series dynamics for 

the early prediction of 

sepsis 

Local (ICU) 

242 patients 

11 

vitals/variables 

Sepsis: Seymour 

(Sep-3) at some 

point during ICU 

stay 

Elastic Net 

logistic 

classifier: 3 

models: (1) 

entropy features, 

(2) EMR + 

socio-

demographic-

patient history 

features, (3) 

models 1+2 

 

Model 1 

AUROC 

(Accuracy): 0.67 

(0.47) 

Model 2 

AUROC (Acc): 

0.70 (0.50) 

Model 3 

AUROC (Acc): 

0.78 (0.61) 

Taylor et al.39  2016 Compare a machine 

learning approach to 

existing clinical decision 

rules to predict sepsis in-

hospital mortality 

Local (ED) 

4,676 patients 

20 variables ICD-9 with AHRQ 

clinical 

classification 

software to obtain 

more exhaustive list 

of patients 

Random forest 

model 

 

AUROC: 0.86 
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Table 2.2. Count of Methods Used Amongst Analyzed Studies 

Method Retrospective Count Prospective Count 

InSight/Dascena 5 1 

Regression models 6 (4 logistic, 2 linear) 1 (logistic) 

Markov models 4  (3 HMM, 1 MM) - 

Vector machine 4 (3 SVM, 1 RVM) - 

Bayesian network 2 - 

Hazard models 2 - 

Neural network - 1 

Fuzzy c-means clustering 1 - 

Regression tree - 1 

Net classifier 1 - 

Linear dynamic 1 - 

Random forest 1 - 

Total 13   
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Chapter 3. A SIMPLIFIED FRAMEWORK TO EXTRACT SOCIAL 

AND BEHAVIORAL DETERMINANTS OF HEALTH: A 

DATA SCIENCE APPROACH    

3.1 ABSTRACT 

Background: Social and behavioral determinants of health can be important indicators of health 

outcomes. However, collection of these data is not standard and can be commonly found in both 

structured and unstructured forms, with past literature determining structured data to be less 

complete. 

Objective: To extract, classify, and score a subset of social and behavioral factors from clinical 

notes using common text classification methods. 

Setting: We collaborated with a local Level I trauma hospital located in an underserved area that 

has a housing unstable patient population of about 6.5% and extracted text notes related to 

various social and behavioral determinants of health for acute care patients.  

Methods: We solely utilized open source Python packages to test simple text classification 

methods that can potentially be easily generalizable and implemented. We extracted social 

history text from various sources, such as admission and emergency department notes, over a 

five-year timeframe and performed manual chart reviews to ensure data quality. We manually 

labelled the sentiment of the notes, treating each text entry independently. Four different models 

with two different feature selection methods (bag of words (BOW) and bigrams) were used to 

classify and predict housing stability, tobacco use, and alcohol use status for the extracted 

clinical text.  

Results: From our analysis, we found overall positive results and metrics in applying open-

source classification techniques; the accuracy scores were 91.2%, 84.7%, 82.8% for housing 
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stability, tobacco use, and alcohol use respectively. There were many limitations in our analysis 

including social factors not present due to patient condition, multiple copy-forward entries and 

shorthand. Additionally, it was difficult to translate usage degrees for tobacco and alcohol use. 

However, when compared to structured data sources, our classification approach on unstructured 

notes yielded more results for housing and alcohol use; tobacco use proved less fruitful for 

unstructured notes. 

Keywords: Text classification, Sentiment modelling, Social factors, Social history, Risk scores 

3.2 INTRODUCTION 

The Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009 

established guidelines to help improve patient safety and efficacy by laying the framework for 

electronic health record (EHR) adoption in the United States through financial incentives.1 With 

the HITECH Act and incentives through Meaningful Use, EHR adoption skyrocketed and large 

databases of clinical information were implemented.2 These large databases can contain simple 

information such as patient demographics and vital signs, but it can also contain more qualitative 

or descriptive data such as clinical notes and images. With Meaningful Use, the completeness of 

the data being collected has increased. Currently, many institutions have large amounts of 

underutilized data that are ideal for biomedical exploration and discovery to aid in patient care, 

creating new exploration opportunities. 

Most data can be generally categorized as structured or unstructured, where structured 

data can consist of items such as vital signs and lab results and unstructured data can consist of 

items such as text notes, images, or multimedia.3 Structured data have been essential in modern 

databases as they are significantly easier to query, merge, or filter when sifting through the data. 

They have two parts which simplifies the search process: (1) variable name and (2) value.4 
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Structured data can be easily added and expanded and has proven critical in modern clinical 

databases, especially for data such as patient vitals and demographics. On the other hand, 

although structured data can generally be easier to extract and analyze, unstructured data can 

potentially provide an array of information not present or easily identifiable in structured data. 

Challenges arise with unstructured data as they are not as easily interpretable as or categorizable 

as a numeric structured value. Images and text often contain many levels of metadata that would 

need manual review or more advanced extraction techniques to decode or interpret; basic queries 

will not work in these cases as the data are simply not queryable. Furthermore, if a provider is 

uncertain, CMS guidelines state that they “do not code diagnosis documented probable, 

suspected, questionable, rule out, compatible with, consistent with, or working diagnosis or 

similar terms indicating uncertainty”; however, a statement could be written in the provider notes 

for reference.5 This type of detailed encounter information would not be available in structured 

data formats. Additionally, clinicians have recently expanded intake data and social determinants 

of health (SDoH) information are starting to become more readily available. Furthermore, there 

has a been a growing interest around Medicaid patients, as SDoH can drive up to 80% of health 

outcomes, especially within this patient demographic.6 Therefore, SDoH and REAL (Race, 

Ethnicity and Language) data are now starting to be analyzed for secondary research as recent 

research has indicated that there is a correlation between SDoH and health outcomes and the 

increasing need to research health disparities across populations.7  

SDoH and REAL can include housing stability, access jobs and health care services, 

education level, language, and socioeconomic conditions.8 These indicators are population 

descriptors which are useful as health outcomes predictors and the utilization of health 

interventions.9 Because they can potentially be strong indicators of health and health outcomes, 
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many are now starting to analyze and increase intake of SDoH and REAL information, whether 

through text notes or standardized coding, such as International Classification of Diseases 

(ICD).10,11  However, there are challenges with SDoH intake as there is no standardized SDoH 

screening tool in the EHR12. Furthermore, many times these data are self-reported or inferred by 

the provider, especially if the patient is in a noncommunicable state, such as experiencing a loss 

of consciousness. Additionally, coding schemes, like ICD, can be unreliable in secondary 

analysis as coding can oversimplify symptoms and diagnoses into general coding categories, 

leading to uncertainties and coding errors may be present from unintentional mistakes or even 

upcoding.13,14 Past research has shown that hospital readmissions are highly influenced by 

patient health status and SDoH and suggest that clinical staff and researchers should consider 

SDoH when assessing readmission risk.15  

The 2018-2019 King County Community Health Needs Assessment (CHNA) reported 

the results from a health needs assessment survey given to residents to identify regional 

perceived healthcare issues. It was determined that housing affordability and housing stability 

were major challenges dominating overall health. Mental health was also highlighted as a 

challenge for healthcare providers; mental illness can be caused by depression, schizophrenia, 

and alcohol and substance-related disorders. The CHNA reported that adults in the lowest 

income tier were about 15 times more likely to experience severe psychological distress 

compared to their high-income counterparts. Additionally, it noted that part of the region had 

continued challenges with adult smoking rates.16  

Locally, there were more than 12,000 people experiencing housing instability in 2018.17 

Because housing instability is often associated with other health inequalities as “the social 

determinants of homelessness and health inequities are often intertwined, and long term 
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homelessness further exacerbates poor health”,18 it is therefore important to treat housing 

stability and other SDoH as a combined health issue to aid in improving health outcomes in 

clinical settings. Additionally, various behavioral health habits, including tobacco and alcohol 

use, although may not directly be considered a SDoH, can impact health decisions and outcomes. 

For example, participants from a study who drank alcohol and self-reported tobacco use tended 

to have a diet higher in fat and sugar, low in vitamins and minerals as well as less healthy.19 

Within our region, it has been noted in recent years that the smoking rate is around 13 percent; 

however, among Black/African-Americans or individuals with multiple races, is double the rate 

among white adults and four times higher than Asian adults. Additionally, it was reported that, 

when compared to high income households, low income households were three times more likely 

to be smokers.16,20 Drug and alcohol use also shared similar metrics; within the region, “drug and 

alcohol-caused deaths was 22% higher among Blacks and four times greater among American 

Indian/Alaskan Native than among non-Hispanic Whites” and alcohol use represented 4.97 per 

100,000 deaths locally in 2015.21,22 Therefore it may be important to look at the combined 

category of social and behavioral determinants of health (SBDH) to better understand the patient 

population.19 

Recent technological advances in machine learning and artificial intelligence have shown 

great potential in providing a pathway for informaticians and clinicians to better understand 

unstructured data. Within the clinical setting, there have been numerous approaches in adopting 

natural language processing (NLP) to aid with processing unstructured clinical text notes. 

Common uses of NLP include extracting diagnoses and chief complaints as well as grouping of 

information for quality improvement. There are various NLP methods that can be used in the 

clinical setting, such as automatic tagging of conditions or variables of interest, sentiment 
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classification, or even text extraction. Various open source NLP and ontological tools, such as 

Automated Retrieval Console, Apache clinical Text Analysis and Knowledge Extraction System 

(Apache cTAKES), MetaMap, and HITEx, Unified Medical Language System (UMLS) 

Metathesaurus and BioPortal have been used to aid with text extraction or classification.23–25 On 

the other hand, less complex classification methods have been used as well to identify specific 

groups of patients, risk assessment, or aid in validating structured annotation.26,27,28 A recent 

scoping review found that although practitioners collect a variety of SBDH data at point of care 

through EHR, the overall use of automated technology is limited to date.29  

With the idea of implementing an easily generalizable approach to classify selected social 

factors, we extracted both unstructured and structured data sources related to SBDH from a local 

hospital to identify and generate a framework to automatically extract and classify SBDH from 

text notes. We focused on housing stability status, tobacco use, and alcohol use. These three 

social factors were chosen due to their direct impact on health outcomes and the local public 

health impact17–19,30,31 and presence in the EHR. To tackle challenges associated with SBDH 

extraction from unstructured text notes, we aimed to create a generalizable framework using low 

barrier open-source tools that are commonly used in the data science field. Because notes and 

stylistic choices can be institution and location specific, we sought not to create a model that is 

generalizable but rather a simplified method that could be potentially easily implemented using 

common off the shelf NLP and data science tools.  
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3.3 METHODS 

 

Figure 3.1. Workflow diagram. 

3.3.1 Study Design and Overview 

A high-level overview of our workflow can be seen in Figure 3.1. We conducted a retrospective 

cohort study of patients in the acute care setting at a Level I trauma center and academic teaching 

hospital with the aim to create a general and easily applicable workflow to extract and classify 

social factors from clinical notes. We applied a two-pronged approach and collected unstructured 

data from a subset of patients over a 1-year timespan (Group A) to create and test the text 

classification model and also collected structured and unstructured data from a subset of patients 

over a 5-year timespan (Group B) to apply the best model created from Group A and compare 

results between the two data types. We performed automatic classification and scoring of 

patients via various NLP classification methods on three social factors: (1) housing stability, (2) 

tobacco use, and (3) alcohol use. Our general workflow for housing stability, a similar approach 

was also used for tobacco and alcohol use, can be seen in Figure 3.2. Patient data were extracted 

directly from the data warehouse and stored on encrypted computers and were not distributed or 

shared outside of the secured and closed environment. 

3.3.2 Study Population 

Data were extracted from Harborview Medical Center, a 413-bed academic hospital that has a 

patient population consisting mostly from Washington, but also from a five-state area.32 In 2014, 
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there were 17,121 inpatient admissions, where 19 percent of the patients belong to a racial or 

ethnic minority and 37 percent of patients were enrolled in Medicaid.32,33 Additionally, in 2015, 

the non-US born population was estimated to be around 21 percent in Seattle, highlighting the 

potential diversity that could be found with this patient population.33 

 

Figure 3.2. Housing stability extraction diagram. 

3.3.3 Data Sources, Extraction, and Validation 

We extracted both structured and unstructured data sources related to housing stability, tobacco 

use, and alcohol use. These SBDH indicators were selected as they were important indicators 

highlighted in the King County CHNA and because they were more readily available in the 
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clinical notes. Extraction was performed using SQL queries called directly from an integrated 

python-based Jupyter Notebook: 

a. Structured data sources include billing and diagnostic/International Classification of Disease 

(ICD) 9 and 10 codes, questionnaire or Epic SmartForm responses, address fields (location), 

problem list (ICD 9), patient encounters, clinical events (actual encounters of care), and 

discharge/disposition location. 

b. Unstructured data sources consisted of text notes from the emergency department (ED), 

admission (admit) notes, social work, and ambulance notes.  

Discharge notes were not explored as they were not recorded in the same subdivided format as 

the admit and ED notes, making selective text extraction of SBDH difficult. From our initial list 

of patient identifiers over a one-year timespan from Group A, we performed manual EHR 

validation of a random subset of 25 patients to validate the completeness of the clinical notes and 

confirm the location of social history and social factors in clinical notes. Extensive research and 

conversations with an internal data analyst confirmed the location of these topics (housing, 

tobacco use, and alcohol use) within structured data sources.  

3.3.4 Data Cleaning 

After confirmation, clinical notes were extracted for both Groups A and B. The notes were 

cleaned (e.g. symbols removed, converted to lowercase) prior to classification and analysis in the 

Jupyter notebook via NLTK. Our general text extraction and cleaning workflow can be seen in 

Figure 3.3. However, housing stability notes and tobacco or alcohol use notes were stylistically 

and grammatically different, and both sets needed distinct additional cleaning steps. Housing 

stability notes that contained the phrase ‘not homeless’ were converted via regex to say ‘housed’ 

instead. Additionally, for housing stability, a concept dictionary was also created to substitute 
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local facility names with more general concept (e.g. ‘Union Gospel Mission’ was converted to 

‘shelter’). This was done to explore how the algorithms handle formal nouns.  

For text notes in Group B, we performed an additional concept extraction step. Tobacco 

and alcohol use notes often contained incomplete (lacking the subject, predicate, object format) 

triples or doubles (e.g. ‘Denies smoking, drinking, drugs’). Due to their incomplete sentence 

structures, common NLP tools to parse, extract, and classify triples, such as Stanford CoreNLP, 

were not suitable as these tools rely on having all three parts of the triple present. These notes 

related to tobacco and alcohol use therefore underwent an additional step that performed a 

separate relation extraction that first pulls out the SBDH related objects and then would 

reclassify and label the negative sentiment to all components of the list. Our process can be seen 

in the left side of Figure 3.3. If the regex extraction of negative lists resulted in a different result 

from the text classification prediction, the regex extraction would overwrite the end result prior 

to scoring. Once these steps were performed, the data were considered clean and suitable for 

classification.  

  

Figure 3.3. Text cleaning workflow. 
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3.3.5 Model Building 

Cleaned text from Group A were used to generate and test the classification models. These notes 

were split in 70/30 validation and testing sets. We applied four different common NLP text 

classification models to the testing sets (via SciKit Learn): multinomial naïve Bayes, support 

vector machine, logistic regression, and random forest. Default parameters and a bag-of-words 

approach were used. The best performing model by accuracy was then chosen and applied to the 

larger corpus, Group B, with notes from patients in Group A removed, to avoid overfitting and 

classification bias. This process was performed for housing, tobacco use, and alcohol use.  

3.3.6 Scoring Generation 

In order to create a simple method of identifying patients who are experiencing social instability, 

we created a scoring metric based on the classified notes. After applying the optimum model by 

accuracy to the entire corpus of extracted text notes, housing stability, tobacco use, and alcohol 

use scores were generated. Patient identifiers were mapped by patient location and those who 

were not in the acute care setting during this timeframe were removed. Three different scoring 

approaches were used to describe these social factors: (1) predictions were averaged by patient 

encounter, then averaged by patient identifier, (2) predictions were averaged by year, then by 

patient identifier, and (3) predictions were averaged by year, where each year then had a weight 

where the most recent year had the highest weight and the furthest year had the lowest weight 

(e.g. predictions from 2019 were weighted by a factor of 5 and predictions from 2015 were 

weighted by a factor of 1). This scoring generation process was then repeated on our structured 

data for all three social factors and the results were compared and analyzed. Structured data was 

also extracted for our list of patients in Group B.  
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3.4 RESULTS 

3.4.1 Characteristics of Study Participants 

Clinical notes (ED, admit, social work, and ambulance) between 2015 and 2019 were extracted 

and included, forming Group B. Notes from the first 200 patients were included in Group A and 

notes from 147,457 patients were included in Group B. During the same timeframe, 61,767 

patients were in acute care. After extraction and model prediction, the patient notes were cross 

referenced with inpatient location and only notes from those who were in acute care were 

retained, for a total of 43,798 patients from 2015 to 2019. The patient demographics of this final 

subset were 63% (n=27,575) male, 37% (n=16,223) female, 88.2% (n=38,634) not Hispanic or 

Latino, and 10.5% (n=4,609) Hispanic or Latino, and 1.3% (n=555) unknown or not answered. 

Further descriptive statistics can be found in Table 3.1.  

 

Table 3.1. Population demographics 

Race (n=43,798) 

 

White or Caucasian 

Black or African American  

Asian 

American Indian or Alaska Native 

Native Hawaiian or other Pacific Islander 

Multiple races 

Unavailable, unknown, or missing 

n (%) 

 

31,575 (72.1%) 

4,812 (11.0%) 

3,174 (7.2%) 

1,165 (2.7%) 

524 (1.2%) 

3 (0%) 

2,545 (5.8%) 

Age range (n=43,798) 

 

0-18 

19-44 

45-64 

65-84 

85 and over 

n (%) 

 

1,856 (4.2%) 

12,437 (28.4%) 

14,863 (33.9%) 

11,902 (27.2%) 

2,740 (6.3%) 
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3.4.2 Data Attributes 

Table 3.2 illustrates the amount of data for each corresponding extraction level, specifically for 

housing status. We first started with extracting text from the ED and admit notes, forming Group 

A, which consisted of 50,000 rows or text entries and covered 3,200 unique patients, over a one-

year timeframe. From there, we manually labelled housing stability concepts in a binary fashion, 

where 0 would indicate housing stability and 1 would indicate any level of housing instability, 

regardless of severity. As manual labelling can be a labor-intensive process, only the first 6,000 

text rows were labelled, covering 218 unique patients. However, within these first 6,000 rows, 

numerous notes did not contain text that alluded to housing status or were empty due to patient 

condition. Therefore, only 1,785 out of the 6,000 rows were labelled, covering 200 unique 

patients, where 995 (55.7%) were labelled as housing stable and 790 (44.3%) were labelled as 

housing unstable. We also found that 5.7% of the entries within this subset were duplicates or 

copy-forward entries. The same workflow was performed for labelling tobacco and alcohol use. 

However, only 1,108 rows were labelled for tobacco use and 1,220 rows for alcohol use, where 

in both cases 0 indicated no use, 1 indicated rare/previous/occasional use, and 2 indicated current 

use, regardless of degree. Tobacco use resulted in 446 (40.3%) labels for no use, 129 (11.6%) 

labels for rare/previous/occasional use, and 533 (48.1%) labels for current use. Similarly, alcohol 

use resulted in 595 (48.8%) labels for no use, 185 (15.2%) labels for rare/previous/occasional 

use, and 440 (36%) labels for current use. 

Table 3.2. Extracted data amounts for housing status 

 Level of extraction Rows (n) Unique patients 

(n) 

Unique 

encounters (n)  

Social history 

entries (n/unique)  

ED and Admit notes 49,955  3,233 15,664 21,876/21,334 

Housing, Tobacco, 

Alcohol Information 

6,000 218 1,995 2,408/2,211 
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Remove nulls/missing 

data 

Housing: 1,785 

Tobacco: 1,108 

Alcohol: 1,220 

Housing: 200 

Tobacco: 179 

Alcohol: 181 

1,361 1,785/1,684 

 

3.4.3 Model Performance 

Four different common text classifiers, mentioned in the Methods section, were applied to the 

manually labelled Group A data. The statistical metrics, including accuracy, precision, and recall, 

can be seen in Table 3.3 and 3.4. The accuracies between the classifiers and each classification 

technique for housing stability were overall fairly high ranging from 84.4-92.2%. The accuracies 

for tobacco and alcohol use were lower, ranging from 70.9-84.7% for tobacco use and 70-82.8% 

for alcohol use. Additionally, for each top performing model, the most influential words for text 

classification, for each social factor, can be seen in Table 3.5. The best performing classification 

models were selected for each social factor and were used to apply the model to our entire corpus 

in Group B.  

Table 3.3. Accuracies amongst text classifiers 

 n=1 n=1-2 

Multinomial naïve Bayes Housing: 91.62% 

Tobacco: 70.87% 

Alcohol: 70.77% 

Housing: 91.43% 

Tobacco: 77.18% 

Alcohol: 69.95% 

Support vector machine Housing: 92.18% 

Tobacco: 81.08% 

Alcohol: 76.50% 

Housing: 91.99% 

Tobacco: 82.88% 

Alcohol: 81.97% 

Logistic regression Housing: 84.36% 

Tobacco: 75.38% 

Alcohol: 77.60% 

Housing: 90.13% 

Tobacco: 84.68% 

Alcohol: 82.79% 

Random forest Housing: 90.50% 

Tobacco: 76.28% 

Alcohol: 71.31% 

Housing: 91.25% 

Tobacco: 78.98% 

Alcohol: 75.68% 

 

Table 3.4. Best performing classifier detailed metrics 

 Classifier Accuracy Recall  Precision F1 

Housing 

status* 

Support 

vector 

machine 

(n=1) 

0.92 0.93/0.91 

(0/1) 

0.94/0.90 0.93/0.91 
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Tobacco 

use** 

Logistic 

Regression 

(n=1-2) 

0.85 0.82/0.95/0.86 

(0,1,2) 

0.96/0.43/0.87 

(0,1,2) 

0.88/0.60/0.87 

(0,1,2) 

Alcohol 

use** 

Logistic 

Regression 

(n=1-2) 

0.83 0.86/0.73/0.81 

(0,1,2) 

0.93/0.44/0.88 

(0,1,2) 

0.89/0.55/0.84 

(0,1,2) 

* 0: no use, 1: current use  

** 0: no use, 1: rare/occasional/history, 2: current use 

 

Table 3.5. Importance ranking 

 

Social factor (Classifier) Top 20 weighted words 

Housing stability (support vector machine, 

n=1) 

['friends' 'motel' 'stay' 'cigs' 

'found' 'street' 'stays' 'streets' 

'van' 

 'incarcerated' 'desc' 'currently' 

'undomiciled' 'friend' 'respite' 

'kcj' 

 'shelters' 'homelessness' 

'shelter' 'homeless'] 

No tobacco use (logistic regression, n=1,2) ['use denies' 'deneis' 'lives' 

'tobacco drug' 'seattle denies' 

 'use results' 'lives seattle' 

'alcohol tobacco' 'tobacco drugs' 

 'never smoker' 'etoh tobacco' 

'drinking' 'seattle tobacco' 

 'denies cigarettes' 'drugs 

tobacco' 'denies alcohol' 'tobacco 

alcohol' 

 'denies smoking' 'denies' 'denies 

tobacco'] 

No alcohol use (logistic regression, n=1,2) ['care' 'ppd' 'tobacco' 'smoking' 

'etoh tobacco' 'history cocaine' 

 'tobacco alcohol' 'etoh illicit' 

'alcohol tobacco' 'etoh drug' 

 'drugs etoh' 'alcohol drug' 'use 

none' 'alcohol drugs' 'drug etoh' 

 'denies alcohol' 'lives' 'denies 

drug' 'denies etoh' 'denies'] 

 

3.4.4 Scoring Results and Comparison 

After classifying text for housing stability, tobacco use, and alcohol use for patients in Group B, 

we applied a scoring metric scheme, described in the Methods section. We generated scores that 

were calculated and weighted differently based on time. Our final score weighs more recent note 
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entries and their resulting classification score higher than notes from previous years as social 

factors and their influence can change over time. Using the same process, we extracted and 

scored housing stability, tobacco use, and alcohol use with structured data sources and compared 

the results with the unstructured process. 

3.4.4.1 Housing stability 

Using notes, we classified 839 patients as housing unstable, a score above 0.5, and 21,370 

patients as housing stable, a score of 0.5 and below. In total, we classified 22,209 patients with 

this text classification workflow, which covered 50.7% of the acute care patients within the same 

timeframe. When compared with structured data sources, only 791 (1.8%) additional patients 

were found.  

3.4.4.2 Tobacco Use 

We classified 4,039 patients as currently using tobacco, regardless of amount or degree (2) using 

text notes. We classified 2,423 patients as having rare/occasional/past use of tobacco (0-2), and 

6,492 patients as not using tobacco (0). In total, we classified 12,954 patients with this text 

classification workflow, which covered 28.7% of the acute care patients within the same 

timeframe. When compared with structured data sources, 18,730 (42.7%) additional patients 

were captured.  

3.4.4.3 Alcohol Use 

We classified 2,196 patients as currently using alcohol, regardless of amount or degree (2) using 

text notes. We classified 4,405 patients as having rare/occasional/past use of alcohol (0-2), and 

9,612 patients as not drinking alcohol (0). In total, we classified 16,213 patients with this text 

classification workflow, which covered 37% of the acute care patients within the same 
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timeframe. When compared with structured data sources, we found an additional 135 patients, 

which covered 0.3% of acute care patients.  

3.4.4.4 Structured and Unstructured Data Comparison 

Structured sources of patient social and health behavior information were captured in numerous 

locations within the electronic medical record, often times in overlapping areas. Structured 

housing information was pulled from the following locations: (1) Problem list (ICD 9), (2) 

Patient encounter homelessness question (Y/N), (3) diagnosis (ICD 9 or 10), Patient address 

(typically would state homeless, DESC, shelter, use the hospital’s address, or a DESC or shelter 

address), Q&A form with a housing question (e.g. “Where did you sleep last night?”), 

SmartForm data, or Clinical Event Discharge Disposition Entry. Table 3.7 lists the addresses of 

the shelters that were queried. We found that unstructured data for housing stability identified a 

total of 17,511 total patients, which covered 40% of acute care patients. With structured data 

sources, we were able to identify an additional 1,093 patients that were not found with clinical 

notes, of which 2.5% were in acute care.  

Structured data sources for alcohol use consisted of (1) Problem list (ICD 9), (2) Patient 

encounter (Y/N), (3) diagnosis (ICD 9 or 10), and (4) structured social history data entries. 

Clinical events were also explored but were too messy and could not be considered structured. 

We found 16,213 patients with unstructured text data, which covered 37% of acute care patients. 

With structured data sources, we found an additional 135 patients, which covered 0.31% of acute 

care patients.  

Similarly, structured data sources for tobacco use consisted of (1) Problem list (ICD 9), 

(2) Patient encounter (Y/N), (3) diagnosis (ICD 9 or 10), and (4) Epic SmartForm. We found 

12,954 patients with unstructured text data, which covered 28.7% of acute care patients. 
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However, with structured data sources, we found an additional 18,730 patients that were not 

found using text data. This covered 42.7% of the acute care patients. 

Table 3.6. List of addresses used to identify patients experiencing housing instability 

Harborview Medical Center '325 9th Ave', '325 Ninth Ave' 

Downtown Emergency 

Service Center (DESC) 

Facilities 

Main Office: 

'515 3rd Ave', '515 Third Ave' 

 

Emergency Shelters: 

'517 3rd Ave', '517 Third Ave', 

'505 3rd Ave', '505 Third Ave', 

'510 Minor Ave N', 

'606 12th Ave S', '606 Twelfth Ave S' 

 

Supportive Housing Projects: 

'1811 Eastlake Ave', 

'10507 Aurora Ave N', 

'424 Minor Ave N', 

'937 N 96th St', 

'5444 Delridge Way SW', 

'3501 Rainier Ave S', 

'415 10th Ave', '415 Tenth Ave', 

'2208 15th Ave W', 

'510 Minor Ave N', 

'607 3rd Ave','607 Third Ave', 

'509 3rd Ave','509 Third Ave', 

'5270 Rainier Ave S' 

Shelters in Seattle  '2030 3rd Avenue', 

'2720 E Madison St', 

'611 12th Ave S', 

'150 Denny Way', 

'600 4th Ave', '600 Fourth Ave', 

'1265 S Main St', 

'715 Spring St', 

'505 Third Avenue', 

'157 Roy St', 

'2810 E Cherry St', 

'302 N 78th St', 

'326 Ninth Ave', '326 9th Ave', 

'1215 Thomas St', 

'4th & Jefferson', 

'510 Minor Ave N', 

'500 4th Ave', '500 Fourth Ave', 

'3120 NE 125th St', 

'2329 Rainier Ave S', 
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'2709 3rd Ave', '2709 Third Ave', 

'118 Bell St', 

'2030 Third Avenue', '2030 3rd Avenue', 

'901 Rainier Ave S', 

'1101 Pike St', 

'1609 19th Ave', 

'1415 NE 43rd St', 

'232 Warren Ave', 

'305 Harrison St', 

'301 Mercer St', 

'606 12th Ave S', 

'1561 Alaskan Way S', 

'318 2nd Ave', '318 Second Ave', 

'811 Maynard Ave S', 

'3800 S Myrtle St', 

'2100 24th Avenue S', 

'Rainier Ave S & S Hudson St', 

'Denny Way & Stewart St 
 

3.5 DISCUSSION 

Our approach using a simple text classification method for our chosen social and behavioral 

determinants of health has shown positive results. The selected classification models were 

chosen as they were the most commonly used classification models when researching text 

classification techniques. Furthermore, these models were robust enough to curtail the need for 

more complex machine learning based text classification methods, which may be harder to 

interpret in the clinical space as the weights and decisions can cause confusion due to the black 

box nature of these more complex classification methods; furthermore, in the healthcare field, 

where there are many high-stakes situations, it may be better to use more interpretable 

methods.34 Generally, linear models are fast to train, can work well with sparse data, and offer 

interpretability.35 Additionally, recent research has also suggested that more complex machine 

learning approaches may not yield statistically significant improvements in predictive power to 

justify the time and effort necessary to implement and test these more complex methods.36,37 
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Although promising, more advanced methods of NLP, such as convoluted neural networks, may 

not provide a significant tradeoff in improvement or accuracy versus transparent understanding 

of rule-based approaches. In fact, Yao et al. found that the F1 scores for CNN via TensorFlow 

did not improve significantly for interested features when compared to logistic regression and 

support vector machine implementations.36 Finally, generalizable methods to create institution-

specific models can be better for the healthcare system as a whole since each institution collects, 

records, and stores clinical information differently.  

Although SBDH information can be indicative of overall health, collection of SBDH 

heavily relies on clinical staff to screen and document SBDH. Furthermore, it also assumes that 

patients will respond accurately and truthfully. Various financial incentives from the federal 

level have propelled collection of social factors, such as tobacco use and tobacco cessation. 

However, other social factors, which can be equally as important, such as alcohol use are not 

incentivized to be captured; rather only more severe instances are incentivized, such as alcohol 

dependence or alcohol addiction or disorder.38,39 Due to this discrepancy, we found that 

structured data sources were less reliable and less complete, and that text classification aided in 

detailing a patient more holistically, increasing the data completeness.  

Our text classification of unstructured data relied solely on ED, admit, social work, and 

ambulatory notes. Social factors and other social history could also be recorded in other 

locations. Furthermore, social work and ambulatory notes used for housing status only and were 

only extracted if the notes contained a word or phrase related to housing instability. This 

approach was used as the notes were typically stored in a more unstructured format compared to 

the ED and admit notes; there were no section headers. The lack of section headers increased the 

difficulty to extract the notes and the notes would often verbiage that would interfere with the 
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simple text classification approach that we used. Therefore, we decided to extract notes that 

contained words relating to housing instability. Additionally, tobacco and alcohol use notes had 

stylistic and grammatical challenges. These social factors were often grouped together in 

incomplete triples (e.g. “denies drinking, smoking, illicit drug use”). The classification 

algorithms often had trouble reciprocating the negative connotation to all components of the 

triple. Therefore, we used regex to specifically extract these triples and classify the note based on 

the presence of words related to tobacco or alcohol. These results would then override the text 

classification algorithm, if there was a discrepancy. Therefore, the scoring metrics for these cases 

would not necessarily reflect the accuracy or performance of our scoring method.  

It was interesting to find that tobacco use was recorded significantly more often in 

structured data sources compared to alcohol use and housing stability. However, because tobacco 

use is a Centers for Medicare and Medicare Services (CMS) core quality measure, it can be 

expected that this feature is more available in structured form as it is often directly asked to the 

patient on intake forms, screeners, or during cessation treatment. Furthermore, the Joint 

Commission created the Tobacco Performance Measure Set, which are three standardized 

performance measures addressing tobacco screening and cessation counseling: (1) Tobacco use 

screening of patients 18 years and over, (2) Tobacco use treatment, including counseling and 

medication during hospitalization, and (3) Tobacco use treatment management plan at discharge. 

CMS began using these performance measures in 2016.40 

3.5.1 Limitations 

Our study has numerous limitations. There were two distinct areas in our workflow that required 

manual attention: (1) EHR review and (2) labelling of features. Manual EHR review was 

performed to ensure that the notes contained social history information in a consistent location 
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prior to widespread text extraction. We initially validated this with a random set of 10 patients, 

but later expanded our validation to 25 patients. We felt that having consistent results with the 25 

patients indicated a high level of confidence. Manual labelling of features was time consuming 

and taxing. Although only one author performed the feature labelling, having multiple team 

members would provide better and possibly more consistent classification.  

This approach, although we aim to create a generalizable workflow, is still stunted by 

local customizations due to unique nuances in note taking language. Patients can withhold 

information about their social challenges, making text classification harder to perform due to 

incorrect incoming data streams. Our approach relies on the fact that the patient has been seen 

within the healthcare system at some point in the past five years. This approach would not be 

applicable to those who are new to the institution or those who are not immediately identifiable. 

Classification levels for unstructured notes are not concrete as descriptive wording is also not 

concrete and can vary (e.g. “patient was a former smoker”, “patient quit last week”, “patient is an 

occasional smoker”, etc.). Structured data sources can add a more concrete sense to the 

classification. There were 5.7% copy-forward entries present as data collection of social factors 

may not always be appropriate (e.g. patient is inebriated, in an altered mental state, etc.). We did 

not incorporate outside ontologies, such as UMLS or MetaMap, as we were interested in creating 

a simple text classification approach that did not need to rely on outside entities. Furthermore, 

we believe that these ontologies would not have added a significant improvement in our 

approach due to the social factors (housing, alcohol, tobacco) that were investigated. Although 

minimized, applying NLP to clinical notes will always present limitations and risks with biased 

models, biased data, and data privacy.41 



 

 

78 

3.6 CONCLUSION 

From our analysis, we can first see that text classifiers are promising when applied to extracted 

clinical notes for housing stability, tobacco use, and alcohol use status. Additionally, we found 

that structured data sources, such as diagnosis codes and intake surveys, vary and may not be the 

most holistic approach to understanding housing stability, tobacco use, and alcohol use. Our 

simplified approach has shown that open source simple text classifiers can be used to predict text 

sentiment for social determinants and can supplement current structured sources to provide a 

more complete social history for patients. However, even with a few limitations with our 

approach, we believe that this workflow can help inform clinicians and provide an easily 

implementable snapshot on patient social history. 
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Chapter 4. INTEGRATING SOCIAL AND HEALTH BEHAVIOR 

DATA WITH ESTABLISHED CLINICAL SCORES FOR 

POTENTIAL SEPSIS ACUTE CARE PATIENTS  

4.1 ABSTRACT 

Background: Detecting sepsis has been a challenge as preliminary symptoms are often not 

specific and similar to other diseases. Identifying important features to extract to aid in sepsis 

identification has resulted in numerous definitions. However, all established rules and scoring 

schemes focus on vital signs and lab results. Social determinants also have been shown to have a 

correlation with health and clinical outcomes.  

Objective: To explore how social determinants of health data extracted from unstructured 

clinical notes can impact clinical scoring schemes commonly used for potential sepsis patients in 

acute care. 

Methods: We integrated results from an exploration that extracted social determinants of health 

data from unstructured clinical notes and created scores for housing stability, tobacco use, and 

alcohol use. These scores were generated using a longitudinal approach and a prior-year 

approach. These scores were then integrated with extracted vital signs and lab results. We 

examined the influence of these additional social features by comparing baseline SIRS, qSOFA, 

and MEWS scores with their enhanced counterparts. We identified sepsis patients as having a 

diagnosis code related to sepsis, a clinical event where an antibiotic was administered, and data 

from a nursing checklist that indicated whether the nurse suspects signs of infection or were 

already treating the patient for sepsis.  

Results: From our analysis, we found that the addition and integration of our selected social and 

health behavior features did not necessarily influence the existing scoring schemes commonly 
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used for potentially sepsis patients. With the longitudinal approach, we found that the baseline 

accuracies were 0.66 for qSOFA, 0.71 for SIRS, and 0.63 for MEWS. The prognostic accuracies 

with social and health behavior information were 0.68 for qSOFA, 0.67 for SIRS, and 0.63 for 

MEWS.  With the prior year approach, we found the baseline accuracies were 0.64 for qSOFA, 

0.68 for SIRS, and 0.63 for MEWS. The prognostic accuracies with social and health behavior 

information were 0.56 for qSOFA, SIRS, and MEWS. 

Keywords: Sepsis detection, Social determinants, Health behavior, Acute care 

4.2 BACKGROUND 

According to the Centers for Disease Control and Prevention (CDC), approximately one third of 

patients who die in a hospital had sepsis, which is an extreme reaction to an infection that can 

lead to tissue damage, organ failure, or even death.1 Because those with sepsis have nondescript 

early onset symptoms, detection and diagnosis of sepsis have been challenging.2 The importance 

of detecting sepsis in a timely manner is apparent as sepsis can quickly progress to a life-

threatening stage and is a strain on health care systems due to is high prevalence and high cost.3 

Throughout the past decades, various rule-based definitions and scoring schemes were 

created to help define and identify sepsis in the clinical setting. First in 1991, the American 

College of Chest Physicians/Society of Critical Care Medicine Consensus Conference introduced 

the clinical definitions of sepsis, severe sepsis, and septic shock, commonly referred together as 

Sepsis-1.4  Sepsis-1 defined sepsis as a systemic inflammatory response syndrome (SIRS) due to 

a present infection, with at least two of the following criteria: (1) Temperature greater than 38 

degrees Celsius or less than 36 degrees Celsius, (2) Heart rate greater than 90 beats per minute, 

(3) Respiratory rate greater than 20 per minute or PaCO₂ less than 32 mmHg, or (4) White blood 

cell count greater than 12,000 per mm³, less than  4,000 per mm³, or greater than 10 percent 
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bands; severe sepsis was having sepsis resulting in organ dysfunction, hypoperfusion, or 

hypotension while septic shock was the occurrence of sepsis-induced hypotension despite 

adequate fluids.5,6  Because SIRS is nonspecific, the presence of at least two SIRS criteria may 

not always be the result of an infection. One decade later, the International Sepsis Definitions 

Conference updated Sepsis-1 with Sepsis-2, which added confirmed or suspected infection to the 

sepsis definition.5   However, in 2016, Singer et al. created Sepsis-3, ultimately changing the 

definitions of sepsis and septic shock that were in use for more than two decades.6 Under Sepsis-

3, sepsis is now described as a life-threatening organ dysfunction caused by a dysregulated host 

to infection and there are currently two scoring schemes available for determining organ 

dysfunction: (1) Sequential Organ Failure Assessment (SOFA) Score to calculate organ 

dysfunction related to sepsis, often used in the ICU setting, and quickSOFA (qSOFA) to identify 

patients with high risk of adverse outcomes, often used in the non-ICU setting.6 SOFA takes 

various organ systems into account, including the respiratory, hematologic, hepatic, 

cardiovascular, neurologic, and renal systems.6 On the other hand, qSOFA criteria consists of (1) 

respiratory rate ≥ 22 per minute, (2) a change in mental status, and (3) systolic blood pressure ≤ 

100mmHg.6 Outside the United States, detection of sepsis is also challenging. In 1999, the Audit 

Commission recommended developing early warning systems (EWSs) to help clinical staff 

identify patients who needed attention. They proposed a modification of Morgan's Early 

Warning Score, creating the Modified Early Warning Score (MEWS) which aimed to create 

communication between nursing and medical staff when patient deterioration was detected.7 

MEWS consists of the following clinical features: (1) systolic blood pressure, (2) heart rate, (3) 

respiratory rate, (4) temperature, and (5) Alert-Verbal-Pain-Unresponsive (AVPU) score. These 
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rule-based definitions have been applied in the clinical setting to assist with sepsis detection with 

varying success.8–11  

In addition to using established rule based clinical scores, Harborview Medical Center 

(HMC) developed a systematic rule-based screening tool in 2012 to identify sepsis inpatients 

using EHR data to evaluate patients for signs of infection for patients in acute care. The 

screening system utilized SIRS criteria as well as lactate and would notify providers if nurses 

suspected new or worsening infection. Internal pilot testing showed that rapid response team 

activations were reduced by half on the acute care floor. Additionally, it was shown that time 

from sepsis screen to care was reduced and 3-hour bundle compliance increased over a year. 

Furthermore, the average nurse response time to screen decreased.12,13  

In addition to structured data and commonly used vital signs and lab results, social and 

behavioral determinants of health (SBDH) are now of interest to many researchers as recent 

literature has indicated that there is a correlation between SBDH and health outcomes.14 Social 

determinants of health (SDoH) can include housing stability, access jobs and health care 

services, education level, language, and socioeconomic conditions.15 These indicators are 

descriptors of populations which are useful health outcomes predictors.16 Because SDoH can 

potentially be powerful indicators of health, many institutions are analyzing SDoH information, 

whether through clinical text notes or standardized coding, such as International Classification of 

Diseases (ICD) or other structured data sources. Additionally, health behaviors (tobacco and 

alcohol use), although not directly considered a SDoH but together form SBDH, can impact 

health decisions and outcomes. For example, one study found that participants who drank 

alcohol and reported tobacco use consumed more foods higher in fat and sugar, low in vitamins 



 

 

87 

and minerals as well as foods, considered by them to be less healthy and prepared in a less 

healthy way.17 Therefore, it may be important to look at health habits and SDoH together.17  

Although there have been inroads in exploring how predictive analytics can be used for 

sepsis prediction, most studies have focused on patients in the intensive care unit (ICU) or 

emergency department (ED) and most have focused on applying SIRS, Sepsis-2 or Sepsis-3 

definitions as gold standards. However, to our knowledge, little has been investigated in the 

acute care setting; which we defined as consisting of patients who have been admitted to the 

hospital for a stay that is longer than 24 hours and do not require critical or intensive care. We 

explored integrating SBDH with existing sepsis definitions in the acute care setting at HMC. 

Through use of supervised algorithmic-based text and sentiment classification machine learning 

methods on clinical text notes, we explored and integrated social features, which were collected 

in unstructured formats at varying points in a patient’s stay, with common sepsis clinical scoring 

and prediction methods and analyzed their impact on predictive analytics for sepsis patients in 

acute care. 

4.3 METHODS 

4.3.1 Study Design, Setting, and Eligibility 

This was a retrospective analysis of data collected between January 1, 2015 and December 31, 

2019 from a level one trauma urban public hospital. All patients who were in the acute care 

setting were included in our initial query, which extracted various vital signs and lab results, 

including respiratory rate, temperature, heart rate, oxygen saturation (SpO2), systolic blood 

pressure, diastolic blood pressure, white blood cell count, and Richmond Agitation Sedation 

Scale (RASS). These vital signs and lab results were selected as they are necessary components 
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for computing clinical scores commonly used for sepsis patients. Patient encounters that did not 

have at least one of these data points present were dropped.  

4.3.2 Data Collection and Quality Control 

All data were queried directly from Microsoft SQL Server Management Studio (SSMS), which 

contained patient data from both Cerner and Epic electronic medical record systems. The 

institution utilized Cerner Millennium for inpatient data collection. Vital signs and clinical notes 

were queried from Cerner clinical events while lab results and structured data (diagnosis or 

billing codes and ICD descriptors) were queried from Epic Clarity tables. An extract, transform, 

and load (ETL) process was performed to convert the varying data store formats into a common 

data model. The Observational Medical Outcomes Partnership (OMOP) common data model was 

chosen for its wider use and acceptance within the field.18–22 All the data were averaged into one-

hour time buckets.  

Additionally, clinical notes were extracted for patients, not solely limited to acute care, to 

identify and score social and health behavior factors, including housing stability, tobacco use, 

and alcohol use. These generated scores were merged via an inner join with our acute care 

patient data by patient identifier, date, and hour. Further details on how these text notes were 

extracted and scored are in detailed in Chapter 3.  

Integration of these scores were performed in two manners, longitudinal and prior year 

average. The longitudinal method joined the vital signs and lab results with social factor scores 

by encounter identifier. This kept the longitudinal recording of the social factors in notes data 

intact. For example, if a patient had a note detailing their housing status on January 1, 2015 at 

08:00, then the housing score would be merged with the vital signs and lab results available at 

that exact day and hour if the encounter identifier was the same. On the other hand, the prior year 
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average method took the scores for any given patient from the prior year, if available, and 

calculated a mean value which was then merged by patient identifier. Therefore, if a patient was 

seen in 2015 and had a housing score generated from the available notes from 2015, if the patient 

had any acute care encounter again in 2016, the housing score generated by the prior-year 

average would be joined with the available vital signs and lab results for the entire latter year, 

regardless of encounter identifier.  

4.3.3 Defining Sepsis 

We evaluated our entire study population for the presence of sepsis, suspected sepsis, or 

administration of an antibiotic within the patient encounter. A combination of ICD 9 or 10 codes 

along with a diagnosis description string matching query using sepsis related words, including 

“sepsis”, “bacteremia”, and “urosepsis”, were used to identify patients who had sepsis. 

Additionally, we specifically extracted the administration of an antibiotic regardless of 

administration time. A full list of the antibiotics that were included in our query can be seen in 

Table A4.1. Because we did not have expert review of the medical records or patient charts, in an 

effort to include and integrate more skilled knowledge in our definition of sepsis, we included 

binary data from the screening system described earlier which allowed nurses to indicate if they 

suspected new or worsening infection. This checklist included binary questions or entries like 

“Sepsis - Being treated for Infection (Y/N)”, Sepsis Screen - Suspected Infection (Y/N)”. The 

presence of an antibiotic and a diagnosis code, and a confirmation from the nursing checklist for 

either question formed our definition sepsis to identify septic patients. 
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4.3.4 Sepsis and Scoring Systems 

Our target measure was the ability for the scoring systems to identify an instance of sepsis and 

integrate previously generated social factor and health behavior scores and explore how the 

addition of these scores can impact the performance of these existing sepsis or clinical 

deterioration scoring systems. Three scoring systems were selected for our study, (1) SIRS, (2) 

qSOFA, and (3) MEWS. Other existing scoring systems, like SOFA, were not used as they were 

not appropriate for our requirement of acute care patients only. Additionally, these scoring 

systems would require various other parameters and/or lab tests that would not be traditionally 

administered in this setting making these scoring systems difficult to use and integrate. Missing 

data were imputed via forward fill by patient identifiers and encounter identifiers for every 

available hour within the encounter. This preserved the existing process that nurses and 

physicians used by looking at prior encounters or charts to find the most recent data point. 

Imputing by date and time would have prevented data from 23:00 being forward filled for 01:00 

the next day. Using encounter identifiers also helped with copy forwarding data points that were 

between days. The AVPU (Alert, Voice, Pain, Unresponsive) scale was a required component to 

qSOFA; however, this scale was not used at our institution. Rather we used the RASS and 

converted it to equivalent points on the AVPU scale, as seen in Table 4.1. Additionally, for each 

scoring system, a subset of the study population was used as not all hours of every encounters 

had the necessary features for calculating scores for each scoring system.  

Table 4.1. RASS to AVPU Conversion 

RASS AVPU RASS Description 

Above 0 0 (Alert) Alert, but agitated or restless 

0 to 4 0 (Alert) Alert and calm 

-1 to -3 1 (Verbal) Drowsy, light/moderate sedation 

-4 2 (Pain) Deep sedation, but response to physical stimulation  

-5 3 (Unresponsive) Unarousable 
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4.3.5 Statistical analysis 

Data analysis was performed in Python through a Jupyter notebook, both open-source resources 

commonly used in the data science field. The SciKit learn package was utilized as it has already 

built machine learning and statistical functions. Comparisons between the original scoring 

schemes and the enhanced scoring schemes with social factors were performed using chi-squared 

tests to determine the relationship between the established scoring schemes and our integrated 

approach with social determinants. Accuracy, sensitivity, and specificity metrics were also 

calculated from a subset of the scored data, utilizing and filtering only the first hour bin of data 

where the clinical score was highest per encounter identifier. This was done to reduce 

redundancies and to minimize bias from any particular patient or encounter.  

4.4 RESULTS 

4.4.1 Study population 

The demographics of our selected acute care population are detailed in Table 4.2. These patients 

had at least one of the required vital signs and lab results necessary to calculate qSOFA, SIRS, or 

NEWS. Our string-based query to identify patients with sepsis, bacteremia, or urosepsis 

identified 4,692 patients (5,566 unique encounters) with a sepsis related diagnosis. We also 

identified 32,830 patients (42,803 unique encounters) who had antibiotics administered at any 

given point during within the encounter. Using the two types of nurse checklist data points, we 

identified 18,690 patients (23,168 unique encounters) where the nurse suspected sepsis and 5,728 

patients (6,590 unique encounters) where the nurse was already treating the patient for sepsis. 

Once the social factors were merged and integrated with this population subset, we had 28,387 

patients (35,226 unique encounters) with housing data, 18,175 patients (20,883 unique 
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encounters) with alcohol data, and 15,155 patients (17,005 unique encounters) with tobacco data 

all from extracted via text classification methods of unstructured data sources, clinical (ED and 

admission) notes.  

During the 2015-2019 timeframe, we extracted 55,067 patients (75,749 unique 

encounters) were in acute care after extraction and removing patients who did not have an 

encounter identifier and those who were missing at least one vital sign or lab result. The patient 

demographics of this final subset were 61.9% (n=34,099) male, 38% (n=20,937) female, 85.7% 

(n=47,209) not Hispanic or Latino, and 9.4% (n=5,161) Hispanic or Latino, and 4.9% (n=2,697) 

unknown or not answered.  

Table 4.2. Population demographics 

Sex (n=55,067) 

 

Male 

Female 

Unknown 

n (%) 

 

34,099 (61.9%) 

20,937 (38%) 

31 (0.1%) 

 

Race (n=55,067) 

 

White or Caucasian 

Black or African American  

Asian 

American Indian or Alaska Native 

Native Hawaiian or other Pacific Islander 

Mexican, Mexican-American or Chicano 

Hispanic 

Middle Eastern                                   

Puerto Rican 

Multiple races 

Unavailable, unknown, or missing 

n (%) 

 

40,227 (73.1%) 

5,573 (10.1%) 

3,708 (6.7%) 

1,238 (2.2%) 

578 (1%) 

298 (0.5%) 

304 (0.6%)  

28 (0.05%) 

11 (0.02%) 

9 (0.02%) 

3,093 (5.6%) 

 

Age range (n=55,067) 

 

0-18 

19-44 

45-64 

65-84 

85 and over 

n (%) 

 

2,020 (3.7%) 

14,767 (26.8%) 

17,927 (32.6%) 

16,147 (29.3%) 

4,206 (7.6%) 
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4.4.2 Data Attributes  

Because each established scoring system uses different features for calculation, a subset of the 

prior described patient population was used for each scoring system to maintain data 

completeness for each subset. Therefore, encounters with a missing Glasgow coma score were 

not used for qSOFA calculation as the data was not present, even after imputing via forward fill 

by encounter identifier. Outcome data (presence of antibiotics, diagnosis, nursing suspicion or 

confirmation) and social history data (housing, alcohol, tobacco status) were converted to binary 

sets and missing data were replaced with zeros.  

After removing rows that were missing data for each scoring subset, there were 53,199 

total patients (73,374 unique encounters) that were used to calculate qSOFA, 28,362 total 

patients (35,852 unique encounters) for SIRS, and 14,062 total patients (15,452 unique 

encounters) for MEWS. Among those with an adjusted qSOFA score greater than or equal to 2, 

2,935 out of 30,264 (9.70 %) patients had indicators of housing instability, 3,672 (12.13%) 

patients had indicators of tobacco use, and 3,408 (11.26%) patients had indicators of alcohol use 

all scored from extracted notes using natural language processing classification methods 

described in Chapter 3. Similarly, among those with an adjusted SIRS score greater than or equal 

to 2, 2,940 out of 28,362 (10.4%) patients had indicators of housing instability, 3,798 (13.4%) 

patients had indicators of tobacco use, and 3,590 (12.7%) patients had indicators of alcohol; and 

among those with an adjusted MEWS score greater than or equal to 2, 1,264 out of 14,062 

(9.0%) patients had indicators of housing instability, 1,576 (11.2%) patients had indicators of 

tobacco use, and 1,485 (10.6%) patients had indicators of alcohol. These cutoffs were used as 

they are standard in the clinical setting for determining clinical deterioration.  
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4.4.3 Model Performance 

4.4.3.1 Longitudinal Approach 

Using our filtered data, our definition of sepsis to identify septic patients (presence of antibiotics,  

diagnosis/billing, and nurse suspicion/nurse confirmation) was compared with the scores created 

by qSOFA, SIRS, and MEWS. The AUROC for the detection of sepsis at baseline were qSOFA 

= 0.66, SIRS = 0.71, and MEWS = 0.63. The AUROC for the detection of sepsis with SBDH 

scores averaged together were qSOFA = 0.68, SIRS = 0.67 and MEWS = 0.63. The AUROC for 

the detection of sepsis with just averaged SDoH was 0.57 with qSOFA features, 0.52 with SIRS 

features, and 0.55 with MEWS features. The accuracy of these comparisons can be seen in Table 

4.3. Area under the characteristic receiver operator curve plots can be seen in Figure 4.1. 

Furthermore, the integrated social determinants data with these scoring schemes and the results 

of this integration can be seen in Table 4.3. 

Table 4.3. Accuracies of clinical scoring schemes and SBDH – longitudinal approach 

 qSOFA (2+) filtered SIRS (2+) filtered MEWS (2+) filtered 

Baseline 0.66 0.71 0.63 

Scores with social and 

health behavior 

0.68 0.67 0.63 

 

 qSOFA (2+) filtered SIRS (2+) filtered MEWS (2+) filtered 

Baseline 

   



 

 

95 

Scores 

with 

social 

and 

health 

behavior 

   
Social 

and 

health 

behavior 

only 

   
Figure 4.1. Area under the characteristic receiver operator curve plots – longitudinal approach. 

4.4.3.2 Prior Year Approach 

Using social history and health behavior information from the previous year of the encounter was 

also used. If a patient was seen in the year prior the scores generated within that year for social 

determinants were averaged over the year and integrated with the current encounter. The 

AUROC for the detection of sepsis were qSOFA = 0.64, SIRS = 0.58, and MEWS = 0.63. The 

AUROC for the detection of sepsis with SDoH scores were qSOFA = 0.56, SIRS = 0.56 and 

MEWS = 0.56. The AUROC for the detection of sepsis with just SDoH was 0.50 with qSOFA 

features, 0.48 with SIRS features, and 0.51 with MEWS features. Similarly, more details can be 

seen in Table 4.4 and Figure 4.2.  

 

Table 4.4. Accuracies of clinical scoring schemes and social and health behavior – prior year 

approach 

 qSOFA (2+) filtered SIRS (2+) filtered MEWS (2+) filtered 

Baseline 0.64 0.68 0.63 

Scores with social and 

health behavior 

0.56 0.56 0.56 
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 qSOFA (2+) filtered SIRS (2+) filtered MEWS (2+) filtered 

Baseline 

   
Scores with 

social and health 

behavior 

   
Social and 

health behavior 

only 

   
Figure 4.2. Area under the characteristic receiver operator curve plots – Prior year approach. 

Significance 

We used a chi-squared test to determine whether there was a relationship between the scoring 

schemes (qSOFA, SIRS, MEWS) and our definition of sepsis which identified septic patients. 

Afterwards, we sought to determine whether there was a relationship between the scoring 

schemes integrated with SBDH for sepsis patients. The results of this analysis can be seen in 

Table 4.5. Sensitivity and specificity calculations were only performed on the baseline scores as 

scores with social determinants created continuous, non-integer scores as they were averaged 

together. For the unfiltered scores, meaning the data sets where the maximum score per 

encounter identifier was not singled out, we can see across the board, all scores have very low 
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sensitivity and relatively higher specificity. There was also poor association with likelihood and 

sepsis with the three scoring methods.  

When filtering out for max score value per encounter identifier, we saw a reversal in 

sensitivity and specificity. In these cases, there was high sensitivity and low specificity, meaning 

it did well identifying those who were likely to develop sepsis, but produced a high false-positive 

rate. With this subset, there was a stronger association between our sepsis definition and the 

selected scoring methods. When narrowing down to each targeted SBDH feature with the filtered 

data subsets, we found that housing and tobacco had associations with the scoring methods and 

their detection of sepsis likely; however, alcohol use was a poor indicator. Furthermore, a feature 

importance was calculated on the scoring methods to see which vital sign or lab result influenced 

the scores the most; however, no clear pattern of importance arose or could be identified from 

the analysis. 

Table 4.5. Sensitivity and Specificity for baseline scores 

 qSOFA 

(2+) 

unfiltered 

SIRS (2+) 

unfiltered 

MEWS 

(2+) 

unfiltered 

qSOFA 

(2+) 

filtered 

SIRS 

(2+) 

filtered 

MEWS 

(2+) 

filtered 

Sensitivity 0.35 0.27 0.14 0.84  0.96 0.79 

Specificity 0.66 0.81 0.88 0.49 0.47 0.46 

χ2, p-value 

(random 

5K) 

2.12, 0.146 24.71, 6.6710-

7 

0.36, 0.55 102.16, 

5.1110-24 

115.47, 

6.2110-

27 

153.31, 

3.2810-35 

 

(random 5K) qSOFA filtered SIRS filtered MEWS filtered 

Housing: χ2, p-value 49.90, 1.6110-12 19.18, 1.1910-5  36.07, 1.9010-9 

Alcohol: χ2, p-value 0.26, 0.88 0.23, 0.89 2.23, 0.33 

Tobacco: χ2, p-value 9.06, 0.011 8.57, 0.014 7.59, 0.022 

 

4.5 DISCUSSION 

At baseline, we found that SIRS performed more accurately compared to qSOFA and MEWS for 

identification of potential sepsis retrospectively in the acute care setting. When integrating social 
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determinant and health behavior data scores, we found that qSOFA performed slightly more 

accurately compared to SIRS and MEWS for identification of sepsis retrospectively in the acute 

care environment. However, because we maximized the amount of data per scoring method by 

only excluding parts of an encounter that were missing required features per scoring method, the 

number of encounters and unique patients varied slightly across the board, making it harder to 

directly compare performance. Additionally, to reduce bias from any particular patient, we 

selected the first highest hourly bin per encounter identifier; doing so drastically shifted the 

distribution of the outcomes to skew more towards a 50/50 distribution for the clinical scores. 

However, the integration of social factors or health behavior data from unstructured clinical 

notes did not improve accuracy or performance in both a longitudinal approach or prior year 

approach. In fact, the use of housing stability, tobacco use, or alcohol use lowered performance 

overall when integrated with existing clinical scoring schemes and using purely social factors or 

health behavior did not correlate well with our definition of likely having sepsis in the acute care 

setting.  

4.5.1 Clinical Scoring Schemes 

qSOFA was designed to aid in identifying patients with suspected infection who are at a great 

risk of poorer outcomes in settings outside of the ICU. Previous literature has found that qSOFA 

has a high specificity and low sensitivity for determining patient mortality from sepsis.23–25 This 

matches our initial results; however, this does not match our findings after we took a subset of 

the first maximum per encounter, which resulted in the exact opposite. This also may be due 

impart of our simplified definition to identify sepsis patients, rather than death from sepsis or 

even due to the fact we did not separate or aggregate out various sepsis severity levels. 

Additionally, because qSOFA requires the GCS, it may not be feasible to calculate for all 
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patients in acute care as not all patients receive a neurological assessment. Additionally, qSOFA 

may not be as clinically sensitive as it does not have many critical physiologic criteria, such as 

respiratory rate, heart rate or temperature.26,27 Other have suggested that qSOFA be used for 

monitoring purposes or for early identification of an infection or clinical deterioration. 

Interestingly, this matches our definition.6,28  

SIRS was used as part of the original Sepsis-1 definition that was created about three 

decades ago. Previous literature has shown SIRS to be sensitive but not specific for sepsis 

detection due to the components that constitute SIRS and how they can be indicators for many 

other illnesses.6,29  Our findings have reflected existing trends. Because MEWS is a rule-based 

early warning score, it is best used to identify patients who need immediate medical attention. It 

is superior to other rule-based systems as it does not require lab results to calculate the score and 

can be performed rather immediately, making it an ideal scoring scheme. In our case, we were 

classifying patients who would be “sepsis likely”. At a threshold of 4, MEWS was previously 

found to be 75% sensitive for patients being admitted to a critical care facility with a specificity 

of 83%. However, in our implementation, we found that MEWS resulted in only a 45% 

specificity and 79% sensitivity. Within the ICU setting, Khwannitmit et al. found that early 

warning scores (MEWS and NEWS) were sufficient alterative tools to use for risk stratification 

and sepsis screening if SOFA scores were unable to be calculated.11  

Interestingly, our outputs for the AUROC presented rather unsmooth curves. This can 

most likely be attributed to the fact that our scores are discrete and not continuous. Our data 

types are all dichotomous and categorical. Additionally, if we were to add more samples to the 

dataset, the curves may be smoother. Potentially using probabilities of the predicted class from 

the clinical scores and the observed labels from the “gold definition” could smooth the curve. 
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Furthermore, using cross validation techniques, such as leave-one-out, could also smoothen the 

curve for all the clinical scores.  

4.5.2 Limitations 

4.5.2.1 Sepsis Definition 

Our method of defining a sepsis patient utilized underlying principles commonly used to identify 

a sepsis patient such as presence of an ICD code, infection suspicion, and administration of 

antibiotics. The type of data that we were interested in exploring did not necessitate the need to 

aggregate the varying levels of severity. Additionally, because we were interested in 

investigating how SBDH data would affect the scoring capabilities of existing scoring systems. 

Additionally, we were not calculating scores as an early-warning but rather taking the highest 

calculated score during an encounter and comparing it directly with our definition of identifying 

sepsis patients. Another difference was that ICD codes were not properly encoded in the 

database under the diagnosis table; however, were correctly encoded in the billing table. We had 

to approach the diagnosis table via a string search which potentially miss instances that did not 

explicitly mention sepsis, septicemia, or urosepsis in the diagnosis description.  

4.5.2.2 Setting 

Performance in the acute care setting overall was lower when compared to other hospital setting 

like the ED or ICU.30–34 Additionally, our method of querying and extracting patients in the acute 

care setting was a bit unique. Studies in the existing literature tend to identify and include 

patients based off of their location at a given time and then start the filtering and exclusion 

process. However, we queried for vital signs and laboratory results first then filtered by patient 

location. Additionally, scoring information for the social concepts were performed independently 

from this query and were merged later by patient identifier, data, and hour. This can potentially 
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lead to data that is available to be not merged as vital signs and laboratory results may not occur 

at the same hour as the intake note. In cases like this, the social features were therefore not 

merged as there was no equivalent hour to merge on. To facilitate comparison between our 

results and the existing literature, we also ran our queries for those in the ICU and the results 

were not much better. The full results of this comparison can be seen in Table A4.1.   

4.5.2.3 Social Determinants and Health Behavior Features 

Our analysis only utilizes social determinants data that was extracted from ED and admission 

notes. Integrating these unstructured sources of data with structured sources may improve 

correlation between SBDH and existing sepsis scoring systems. Additionally, our definition of 

sepsis could be improved upon by integrating professional and clinical opinion via chart reviews.  

We found that the integration of social factors with existing sepsis scoring schemes did not 

improve predictive performance across the board. Although the scoring of social factors can 

provide clinicians an immediate numerical value to indicate recent housing instability, tobacco, 

or alcohol use, the inclusion of these factors ultimately did not boost accuracy when combined 

with vital signs and lab tests. Additionally, our target population was neither the ED or ICU, 

which are the two main areas of research for sepsis prediction, but rather the acute care setting. 

Patients in acute care would not necessarily have the same level of monitoring and testing done 

as those in the ICU. Therefore, certain scoring schemes, such as SOFA, were not tested due to 

the limited amount of potential data.  

4.5.2.4 Expert Data: Nursing Checklist 

The nursing checklist was designed to capture both binary and qualitative data from nurses who 

suspected an infection. Due to the complex nature of notes, these data were not utilized but could 

potentially provide another layer of expert data. For the system, an alert will sound once every 12 
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hours to prevent alert fatigue amongst the staff. However, it is possible for nurses to suspect new 

or a worsening infection and begin to treat the patient before an alert is generated. These cases 

would not be captured in the database. Additionally, although the alerts are derived from a 

simple rule-based system, there is a delay in creating these alerts as it is not directly integrated 

with the EHR and manual entry of the lab results and vital signs are necessary. Even with these 

limitations, an internal pilot found that rapid response team activations were reduced by half on 

the acute care floor and that the average nurse response time decreased, but the system has 

shown to have a high false-positive rate.12,13  

4.6 CONCLUSION 

We aimed to provide insight in how applying and integrating three types of social or health 

behavioral information with existing clinical scores can affect the clinical scores for sepsis 

patients in acute care. Overall, our exploration of integrating SBDH data with existing clinical 

scoring schemes for potentially sepsis patients in acute care did not yield statistically meaningful 

influence. We found instances where integrating these more qualitative data types can both 

increase and decrease performance accuracy. However, it is still important to explore how these 

factors can influence clinical care and patient outlook as SBDH play a key part in one’s health. 

However, it may be important to take into consideration other clinical scoring schemes, target a 

different patient population, like the ED or ICU, or explore other types of social or health 

behavior data.  
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Chapter 5. CONCLUSION 

5.1 OVERVIEW  

Sepsis continues to be a burden for both patients and healthcare institutions as it is a key cause of 

morbidity, mortality and healthcare costs. Detection and prediction of sepsis with machine 

learning techniques continue to be a major research area as sepsis remains challenging for 

providers to detect due to its high prevalence and nonspecific early stage symptoms. 

Additionally, patient data collection varies across healthcare systems and the changing 

definitions of sepsis increases variability and complexity.1–7 A review of the literature indicates 

that there is currently no consensus amongst the research community on defining a sepsis patient 

retrospectively, which can directly impact the performance of predictive models as they are 

dependent on defining outcome variables, or consensus on the best algorithms or detection 

methods. Although there have been several edits and addendums made to the definition of sepsis 

over the past few decades, these definitions have been purely based on clinical attributes or lab 

test results.8–11 To our knowledge, there has not been a published instance where social and 

behavioral determinants of health (SBDH) data extracted from unstructured sources were 

integrated with existing clinical scoring methods to explore the impact and influence of these 

additional non-clinical data. However, recently a protocol proposal has been published aiming to 

explore how social determinants of health are associated with the development of sepsis in 

adults.12  

Concurrently, in recent years, collection of SBDH data has increased making these data 

more complete for research, whether through structured sources like International Classification 

of Disease (ICD) Z-codes and intake forms, or unstructured sources like physician 

notes.13,14(p10),15 The need to analyze these more demographic and qualitative data are becoming 
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more present as SBDH are important influences on overall health.16,17 Additionally, recent 

research has identified various SBDH, including housing, income, tobacco and alcohol use, race, 

and education, to have an impact on sepsis prevalence and mortality rate among more vulnerable 

populations, which include the uninsured, homeless, and those with multiple comorbidties.18–23 

The papers presented in this dissertation addressed the identified gaps in research by exploring 

the impact of integrating SBDH data with established clinical scoring methods on acute care 

patients who present sepsis-like qualities. Specifically, we explored the impact of generating 

housing stability, alcohol use, and tobacco use scores with qSOFA, SIRS, and MEWS scoring 

methods. 

The first paper resulting from this work (Chapter 2) presented findings from a literature 

review which aimed to identify and aggregate the status quo regarding sepsis detection methods 

and sepsis definitions. In this work, we systematically reviewed and detailed the current 

literature to identify relevant studies that used a predictive analytics solution to predict the onset 

or mortality of sepsis in hospitalized patients. We identified a total of 31 studies and detailed the 

methods and models that each study utilized and also described their main findings. As each 

study presented results, identified patient populations, and defined sepsis onset or mortality 

differently, it was important to note the challenges with comparing results between studies. 

Overall, we found wide variation in the domain of predictive analytics tools for sepsis patients, 

from feature and population size to selection of prediction method or analytic algorithm. Even 

though there were discrepancies between methods and there were no clear best practices to 

extract from the review, it was evident that implementing predictive analytics tools for sepsis 

detection and prediction for onset or mortality were still beneficial in the battle of sepsis.24   
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The second and third paper (Chapters 3 and 4) from the dissertation presented findings 

from the dissertation study. SBDH data can be collected through various avenues. However, it 

has been noted in the literature that purely relying on structured data, typically diagnosis codes, 

may not be complete or entirely representative of the patient population.13 Therefore, we decided 

to explore extracting these SBDH data features from unstructured data, most notably clinical 

notes from admission and the emergency department. We found that these notes at Harborview 

Medical Center were prime for extracting three concepts, housing stability, alcohol use, and 

tobacco use, which corresponded well with the King County Community Health Needs 

Assessment (CHNA) report.25 After manually sifting through 25 notes, we discovered that these 

selected clinical notes were written in a fairly structured manner which made the process of 

extracting the text feasible. We identified text classification methods that were commonly used 

in the data science field and applied them to these clinical notes. Additionally, we aimed to use 

more simple text classification techniques as more complex methods would be harder to interpret 

in the medical space. Overall, we found that text classification worked well with these selected 

clinical notes and identified features of interest. Furthermore, we compared the unstructured data 

extraction results with extracting the same concepts through structured data. We found that for 

housing stability and alcohol use, classification from clinical notes provided more data than 

structured data. However, tobacco use data was more complete with structured data as tobacco 

use screening is a core CMS measure and a part of Meaningful Use; alcohol dependence is also a 

part of this measure, but general alcohol use screening is not.26 Altogether, our simplified 

approach has shown that open source simple text classifiers can be used to predict text sentiment 

for SBDH and can supplement current structured sources to provide a more complete social 



 

 

109 

history for patients, especially when SBDH structured data are not complete or regularly 

recorded.  

The third paper focused specifically on integrating the results from Chapter 2 with sepsis 

scoring methods commonly used in the acute care setting. We aimed to provide novel insight in 

how applying and integrating three types of SBDH information with existing clinical scores can 

affect the clinical scores for sepsis patients in acute care. With baselines scores, we found that 

SIRS had a higher accuracy than qSOFA and MEWS for identifying potential sepsis patients in 

acute care. But, once we integrated the SBDH scores that were created in Chapter 3, we found 

that qSOFA has a slightly higher accuracy compared to SIRS and MEWS. However, in order to 

reduce missing data of necessary features for each scoring method, patient encounters that did 

not have values for a required feature per scoring method were excluded; therefore, a different 

subset of the initially identified population were used for each calculation making it harder to 

directly compare performance across the scoring methods. Overall, we found that the integration 

of SBDH data from unstructured clinical notes did not improve accuracy or performance in both 

a longitudinal approach or prior year approach. In fact, the use of housing stability, tobacco use, 

or alcohol use slightly lowered performance overall when integrated with existing clinical 

scoring schemes and using purely SBDH did not correlate well with our definition of likely 

having sepsis in the acute care setting. We found instances where integrating these more 

qualitative data types can both increase and decrease performance accuracy. Therefore, it is still 

important to explore how these factors can influence clinical care and patient outlook as social 

determinants play a key part in one’s health.  
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5.2 LIMITATIONS 

All research has limitations within the methods. Here, we highlight the limitations of each of the 

three aims.  

5.2.1.1 Aim 1 Limitations 

The systematic scoping review query was designed to be broad in order to capture the variety of 

methods and predictive analytic solutions being used and created for detecting sepsis onset or 

mortality. Furthermore, MesH terms, which catalog and index the articles in PubMed, were not 

used in the query. Utilizing MesH terms could have potentially narrowed down further our initial 

selection of articles. Additionally, if we narrowed the objective of our review to solely include 

studies that aimed to decrease sepsis mortality or onset, the search would have brought in 

different studies and examples. Furthermore, the definition of sepsis is ever changing, and this 

solely marks, generally, what had been done up until the search date. PubMed is not the only 

database for research articles. Our review only queried PubMed; searching in other literature 

databases such as Google Scholar, Excerpta Medica Database (EMBASE), Medical Literature 

Analysis and Retrieval System Online (MEDLINE), or the Cumulative Index to Nursing and 

Allied Health Literature (CINAHL) could have yielded a different set of results potentially 

enriching our findings. Collaborating with a university librarian could have also made the search 

more robust.  

5.2.1.2 Aim 2 Limitations 

There were two main points in our process that required manual attention: (1) EHR review and 

(2) labelling of features within the clinical text. Manual EHR review was done to ensure the 

completeness of social history information and to confirm that these quantitative data were in a 

consistent note location before implementing a widespread text extraction. Initially, we validated 
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the completeness of the data with a random set of ten patients, reviewing social history sections 

of both admission and emergency department notes, but later expanded our validation check to a 

total of 25 patients. We performed a statistical calculation and determined that the presence of 

these data features in notes within a random set 25 patient indicated a high level of confidence of 

data completeness. Furthermore, labelling features manually was a time-consuming process and 

was performed only by one person. Having multiple team members would provide a more 

accurate and possibly more consistent labelling of features to train the model for text 

classification as there would be consensus between labelers.   

Although we aimed to create generalizable workflow, it was limited due to unique 

nuances in note-taking language, such as specific shelter names, addresses, or abbreviations that 

might not be standardized in the medical field. Furthermore, because patients can downplay or 

withhold information about the social challenges they face, incoming data streams can inhibit the 

potential of text classification. Our method also depended on the patient having been seen within 

the healthcare system at some point, inpatient or outpatient, within the past five years. 

Additionally, we did not incorporate outside ontologies, such as UMLS or MetaMap, as we were 

interested in creating a simple text classification approach that did not need to rely on outside 

entities.  

5.2.1.3 Aim 3 Limitations 

From Chapter 2 (Aim 1), we found that there were many ways to define and confirm a sepsis 

diagnosis. Given our data extract, we decided to create our confirmation definition that utilized a 

combination of expert data extracted from a nurse checklist, diagnosis codes, and the presence of 

antibiotics. Therefore, our confirmation definition of a sepsis diagnosis did not aggregate 

severity levels definitions, including septic shock and severe sepsis. Because we were interested 



 

 

112 

in exploring the impact of SBDH data with clinical scoring methods commonly used for sepsis, 

we determined that the we did not need to explore the varying levels of severity of sepsis as we 

wanted to explore the general influence and capabilities of the existing scoring systems. 

Additionally, we were not calculating clinical scores as an early-warning but rather taking the 

highest calculated score during an encounter and comparing it directly with our confirmation 

definition. This minimized bias from potentially overexposed patients, such as those with longer 

stays or those who had more frequent vital signs or laboratory results. Additionally, patients with 

missing data or lack of complete data were removed potentially reducing our patient population.  

Another slight limitation was that ICD codes were not always numerically coded in the 

database under the diagnosis table; however, were correctly coded in the billing table. Therefore, 

we had to approach the diagnosis table via a string search. This search could have potentially 

missed instances that did not explicitly mention sepsis, septicemia, or urosepsis in the diagnosis 

description string.  

Identifying our patient population differed slightly from other existing literature. A 

number of past studies included patients based off of their location at a specific time and then 

filtered and excluded based on their defined criteria. Our process was reversed; we queried and 

included patients based on their vital signs and lab results first, and then filtered patients by 

location. Furthermore, our results from Chapter 3 (Aim 2) were calculated independently from 

the query used in Chapter 4 (Aim 3) and were merged via patient identifier, data, and hour. This 

can potentially lead to data that is available to be not merged as vital signs and laboratory results 

may not occur at the same hour as the intake note. In any situation like this, the social features 

were not merged as there was no equivalent hour to merge on.  
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In an effort to include expert data, we extracted data from a nursing checklist was 

designed to capture both binary and qualitative data from nurses who suspected an infection. Due 

to the complex nature of notes, these data were not utilized but could potentially provide another 

layer of expert data. However, alerts for this system are only generated after manual entry of lab 

results or vital signs as the alert system is not directly integrated with the EHR, creating a slight 

delay.  

5.3 FUTURE WORK AND RECOMMENDATIONS 

5.3.1.1 Immediate Considerations 

Future work can build upon the established workflow and results presented in this dissertation. 

To better understand the state of sepsis predictive analytics, a new search query could be 

performed as new research in the past few years could have evolved. Furthermore, searching 

across multiple databases would potentially provide more comprehensive and complete results. 

Our search query erred towards maximizing recall as we did not want to miss or exclude any 

studies; however, future searches may want to err towards precision to identify specific articles 

and results. Collaborating with a librarian and having multiple team members analyzing titles 

and abstracts would provide better insight and more robust search queries or results. Utilizing 

software tools, such as Rayyan or Covidence, would provide structured, easy-to-use, and 

streamlined collaboration.27  

Community needs are constantly changing as the health of the community is not static. 

Currently, the King County CHNA has identified obesity, healthcare access, insurance status and 

drug use as other potential SBDH information to explore. These data types would be stored in 

different areas of the EHR and within different notes. It would be interesting to see if our 

designed workflow presented in Chapter 3 could be applicable and generalized to meet the needs 
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of other SBDH data. Although we aimed to create a simplified framework to extract SBDH data 

from clinical notes, more complex methods such as convoluted neural networks and more 

advanced NLP part of speech tagging may be worth exploring as they may help improve 

accuracy and precision of the classification. As more notes become available for patients, it will 

also be important to keep in mind the potential bias of having more notes present from sicker 

patients and evaluating ways to reduce this bias.  

Furthermore, as UW Medicine has just recently transitioned all EHR systems to Epic, it 

would be of value to explore how the shift in systems impact the established text extraction and 

classification workflow. Similarly, testing the workflow at another healthcare institution would 

show the generalizability and implantability of the described workflow. With the adoption of the 

OMOP common data model, we expect the workflow to work and transition seamlessly in 

theory, but practice may prove otherwise. Furthermore, as more SBDH continue to be collected 

from intake forms, patient portals, and providers, it may be important to identify how to combine 

both qualitative and quantitative data and determine which data sources are more trustworthy and 

assign weights to create a holistic scoring system.  

Integrating SBDH data is still important to explore. Although our initial results presented 

in this dissertation showed that our selected social features did not yield statistically meaningful 

results, other SBDH could result differently. Furthermore, the integration of social determinants 

and clinical data may prove to be more influential in a different hospital setting. Collaborating 

with experts in the field may also improve the presented work. Although we did not have expert 

review of EHR data, we tried to supplement this shortcoming by integrating qualitative data from 

a nursing checklist, essentially adding expert data. However, having a few experts review the 

EHR and collectively identify and classify notes as well as scoring methods would substantially 
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increase the validity of the results. As sepsis research evolves, it would be important to take 

future definitions and features of importance into consideration. Recent literature has shown 

hydrocortisone, vitamin C, and thiamine as newer sepsis treatment workflows, although may not 

provide more rapid resolution of septic shock, may still be worth exploring and provide 

additional insight with other non-clinical data.28,29 

5.3.1.2 Long-Term Directions 

Current research has also indicated that incorporating individual level or community level 

SBDH features may not impact patient length of stay and readmission rates for the general 

patient population.22,29 However, it was shown that specific vulnerable subpopulations from the 

general patient population benefited from the incorporation of SBDH data, including Medicaid 

patients, obese patients, and patients aged 65 and older.29 Therefore, with our work, it similarly 

may be worth exploring these vulnerable subpopulations rather than the general patient 

population in the acute care setting. Targeted subpopulations could also include those with two 

or more comorbidities, the uninsured, or immunocompromised patients.31–33 These more 

vulnerable populations are less likely to seek consistent preventative care as their priorities are 

different, services which can accumulate requiring more invasive treatment later in life. It may 

also be interesting to explore how to flag or score the frequency of visits by patient to extract 

those who do not consistently seek preventative care. Therefore, it is important to explore how 

the integration of SBDH data can impact not only sepsis prediction for these vulnerable 

populations, but also readmission and post-acute care mortality risk.   

We sourced data from solely one medical center. Patients might have had encounters or 

other visit types in neighboring hospitals and healthcare systems in the region. The lack of data 

sharing between institutions prevents holistic collection of SBDH data. Data completeness is 
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vitally important to the quality and accuracy of models that are dependent on big data. Poor data 

quality and completeness lead to lower utilization and the lack of data can potentially lead to 

mistakes in the decision-making process; additionally, since there is no single or standardized 

source for SBDH data, the diversity of data and complexity of the associated data structures 

increase the difficulty and bottlenecks for data integration.34 The lack of a standardized 

methodology to collect and store all SBDH data will limit the potential of this research field. 

Additionally, SBDH factors are constantly changing for patients as their behaviors can change 

depending on their circumstance. Being able to aggregate these data and create adaptable models 

is crucial as these features are never static. Furthermore, public health, outreach services 

fluctuate, and even medical terminology can over time. Creating a method or utilizing an API to 

update the list of community shelters and other places for homeless services would be necessary 

to maintain an accurate understanding of a patients housing status. A data dictionary mapping 

older medical terminology and shorthand with current language can also aid with better 

extracting of clinical notes.  

Our analysis follows a heuristic that hypothesizes a correlation between SBDH and the 

likelihood for an acute care patient to develop sepsis. However, it may also be worth exploring 

the inverse where one identifies a list of features (vital signs, lab results, and SBDH factors) and 

apply machine learning techniques to tease out the weights and importance for each feature to 

identify which are more influential in determining the development of sepsis in acute care. 

However, this approach would be limited to structured data sources only, which we found to be 

incomplete for two out of the three SBDH that were selected in our analysis. Utilizing clinical 

text to extract and classify SBDH sentiment would not be feasible from this workflow but may 

still be worth exploring in the future as SBDH data collection continues to improve.  
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5.4 IMPLICATIONS 

5.4.1.1 Implications for Healthcare Institutions 

Although our approach integrating SBDH with existing sepsis definitions and methods did not 

yield an improvement of sepsis prediction, it is still important to continue to explore how SBDH 

can affect patient health outcomes. Past research has consistently pointed towards SBDH 

impacting patient health and outcomes. However, collection of SBDH can be a major limiting 

factor in the ability to model and integrate these data. There has not been a standardized 

collection process for SBDH data across the institution, whether it is recorded through notes or 

electronic forms. Additionally, many times, SBDH data may not be asked due to patient 

condition or it might not be updated regularly.  

Providers and healthcare institutions should strive to collect SBDH data more regularly 

even if the data fields are not empty as SBDH status can change. These intake procedures should 

be present and not optional; currently, only language preference must be completed due to 

translation and interpreter laws in place. Additionally, educating patients to utilize patient portals 

and update information via these portals can provide more current SBDH information. However, 

we should note that vulnerable populations would most likely not be the primary audience to 

utilize this feature, and this is the subpopulation that arguably needs more attention.  

5.4.1.2 Implications for Public/Population Health and Policy 

Patients can seek care from multiple providers. Data interoperability between health systems has 

historically been challenging on multiple levels, including data structures and semantics. 

Creating policies to ensure reporting standards could improve data interoperability. Having an 

integrated data sharing option for SBDH data can help eliminate data completeness concerns. 

Creating strategies to coordinate clinical and social services can aid community-level efforts to 
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address SBDH concerns. Improving public health outreach and initiatives for these vulnerable 

populations can potentially reduce health disparities and potentially reduce the burden of sepsis 

and other diseases. Additionally, COVID-19 has shown the importance of being able to identify 

and provide support to vulnerable populations. 

5.5 CONCLUSIONS 

Overall, we found that there are currently, to our knowledge, standard or uniform method for 

predicting sepsis onset or mortality within the hospital setting, whether it be in the intensive care 

unit or emergency department. Furthermore, we found that the existing literature solely focus on 

clinical features, such as vital signs and laboratory results. Recent literature has suggested that 

SBDH can influence overall health. Therefore, we explored how these non-clinical data can 

impact clinical scoring methods commonly used on sepsis patients in acute care. Although we 

found success in extracting SBDH data, creating a score and integrating it with existing clinical 

scoring methods for sepsis patients did not yield a significant difference. While this stands in 

contrast to existing research suggesting the importance of SBDH and clinical outcomes, it seems 

for this selected disease, there may be other factors more worth investigating.  
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APPENDIX 

Table A4.1: List of antibiotics 

List of antibiotics used for patients if sepsis is suspected 

imipenem-cilastatin 

meropenem 

cefotaxime 

ceftazidime 

ceftriaxone 

cefepime 

ceftaroline 

moxifloxacin 

levofloxacin 

amoxicillin-clavulanate 

ampicillin-sulbactam 

piperacillin-tazobactam 

ticarcillin-clavulanate 

amikacin 

gentamicin 

tobramycin 

aztreonam 

cefazolin 

cefuroxime 

ciprofloxacin 

clindamycin 

daptomycin 

vancomycin 

linezolid 

azithromycin 

erythromycin 

ampicillin 

nafcillin 

penicillin g 
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Table A4.2: Aim 3 prediction distribution (confusion matrix), longitudinal method 

 qSOFA w/ SBDH TN = 29,971 

FP = 39,784 

FN = 403 

TP = 3,216 

SIRS w/ SBDH TN = 25,214 

FP = 38,313 

FN = 66 

TP = 2,060 

MEWS w/ SBDH TN = 9,102 

FP = 15,613 

FN = 400 

TP = 2,447 
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