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Recent advances in genetic sequencing technologies and analysis tools have made genomic data 

widely available for medical research. Despite the expectation that genomic data will 

revolutionize medicine, there exist major evidence gaps in demonstrating the utility of clinical 

genomics for improving patient outcomes and increasing healthcare efficiency. One promising 

avenue for reducing this evidence gap and accelerating the pace of clinically relevant discoveries 

is to foster environments in which genomic research and clinical care exist symbiotically. 

However, the technical and sociocultural requirements for conducting genomic research in 

clinical environments are not well-defined. The learning health system (LHS) framework is one 

lens through which the barriers and enablers of clinical genomic discovery can be identified and 

organized. Furthermore, drawing on experiences from clinical research consortia like the Clinical 



 
 

Sequence Evidence-Generating Research (CSER) Consortium and the Electronic Medical 

Records and Genomics (eMERGE) Network can help identify requirements that are unique to 

genomic research initiatives that straddle the research-clinical boundary. In this work, we sought 

to derive a sociotechnical model for clinical genomic discovery in genomics-enabled learning 

health systems (GLHSs). We first identified data coordination challenges, strategies, and 

recommendations from the clinical genomics research data integration process in the CSER 

Consortium and found that the social processes involved in data coordination are tantamount to 

the informatics tools used to facilitate data coordination (Aim 1). We then explored medical 

geneticist perspectives on clinical genomic discovery by interviewing 20 board-certified medical 

geneticists in CSER, eMERGE, and the University of Washington medical system (Aim 2). 

Using constructivist grounded theory methods, we developed a preliminary model of GLHS 

discovery that utilizes the concepts of representation, responsibility, risks and benefits, 

relationships, and resources (“5R”) to capture the negotiations and constraints involved in 

clinical-research integration in genomics. To demonstrate the utility of merging electronic health 

record (EHR) data with genomic data for discovery, we then conducted a logistic regression-

based genome-wide association study for C. diff. infection (CDI) using merged genetic and EHR 

data from 12 clinical sites in the eMERGE Network and found a strong gene-disease association 

in the HLA-DRB locus (P=8.06 x 10-14) that predisposed carriers to CDI (Aim 3). Finally, we 

conducted a systematic literature review of proposed enablers of clinical genomic discovery and 

synthesized the qualitative results from the literature review and recommendations from Aim 1 

with the a priori framework developed in Aim 2 using best-fit framework synthesis (BFFS) 

(Aim 4). We found that the vast majority of themes identified in the literature were 

accommodated by the a priori framework, suggesting that the 5R model of GLHS discovery is 



 
 

an adequate representation of processes involved in learning health research. Using additional 

qualitative evidence identified during BFFS, we developed an enhanced 5R sociotechnical model 

to demonstrate how iterative, multidirectional negotiation and tool development can facilitate 

virtuous cycles of learning in clinical genomics research.
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Since the completion of the Human Genome Project in 2003, scientists and clinicians alike have 

expected genomics to revolutionize human healthcare. Indeed, genomics has led to 

advancements in medicine that would not have been possible without the novel insights into 

health, disease, and basic biology that our DNA reveals in such extraordinary detail. Treatments 

such as gene therapy and cancer immunotherapy provide hope to patients and families where 

hope never seemed like an option, and diagnostic techniques for rare inherited disorders help to 

end diagnostic odysseys and pave the way for new treatment options. However, translating 

genomics research more broadly into clinical practice remains a challenge despite the already 

delivered and expected promises of genomic medicine [1]. 

 

One mechanism that has been proposed for realizing the full potential of genomic research and 

medicine is to formalize the integration of genomic research and clinical care. It is well-

recognized that large research evidence bases are required to demonstrate the clinical utility and 

actionability of genomic variants in different populations and clinical environments [2]. 

However, a lack of evidence for the economic and clinical utility of using newer genomic 

discoveries to guide clinical care has led to low adoption of cutting-edge genomic medicine 

among healthcare organizations and a lack of support from healthcare payers and policymakers 

to advance genomics-informed clinical care [3]. Integrating genomic research with medical 

practice can contribute to an enhanced evidence base for the validity and clinical utility of 

genomic findings [4]. Genomic research that is conducted within healthcare organizations is 
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naturally benefited by its close proximity to rich clinical data that can be used to identify disease 

associations in large, diverse patient cohorts, and by its proximity to clinical outcomes data that 

can be used to monitor patients over time [5]. Nonetheless, a host of technical, social, cultural, 

and ethical questions remain regarding how best to conduct genomic discovery in clinical 

settings [6]. 

 

The learning health system (LHS) framework is a useful lens for investigating the challenges and 

enablers of conducting genomic discovery in a clinical context. Proposed by the Institute of 

Medicine (IOM, now known as the National Academy of Medicine) in 2007, the LHS 

framework champions a healthcare system in which data is generated as a by-product of routine 

care, data is transformed into knowledge through research, and new knowledge is iteratively 

used to improve the quality of care and improve healthcare efficiency [7]. The core elements of 

this model include a robust data infrastructure, care improvement through clinical decision 

support, and rewards for high-value care and transparency. LHS systems that are adapted to 

accommodate clinically-generated genomic data have previously been referred to as genomics-

enabled learning health systems (GLHSs), and have been strongly supported by a variety of 

clinical, research, and policy stakeholders [8]. For example, the 2020 National Human Genome 

Research Institute (NHGRI) strategic vision report identified the development and 

implementation of GLHSs as an important new research frontier in the field of genomics [9]. 

However, the basic LHS model must be enhanced to accommodate challenges that are amplified 

in genomics, such as the large size and complexity of the raw data, a lack of data standards, 

disparities in access to genomic testing, difficulties in implementing effective clinical decision 

support tools, and a lack of insurance coverage for genetic testing [8]. The “data to knowledge” 
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process in a GLHS is particularly susceptible to these challenges, given its historical exclusivity 

to research environments and the novelty of genomic data relative to other forms of clinical data. 

While previous studies have identified barriers for incorporating genomic data into an LHS, none 

have specifically addressed the challenges of genomic discovery [10–14].  

 

Multi-site clinical genomics research projects are ideal environments for developing and 

evaluating genomic data integration and discovery techniques in a clinical context. The Clinical 

Sequence Evidence-Generating Research (CSER) Consortium, for example, is an ideal 

environment for studying clinical research data integration techniques and evaluating these 

techniques in an integrated research-clinical context [15]. In addition, the Electronic Medical 

Records and Genomics (eMERGE) Network conducts discovery and translational work in 

genomics using the combined powers of genomic and EHR data [16]. These projects experience 

many of the same challenges that are identified in the LHS model, including data integration 

issues, questions of privacy and patient consent, and funding challenges [17]. Clinically 

embedded genomic research projects are uniquely positioned at the interface of research and 

clinical care and can thus inform strategies for harnessing genomic data for clinical use [18]. 

They are also ideal environments for generating gene-disease association discoveries using 

merged clinical and genetic data and demonstrating the utility of harnessing multiple data types 

for medical genomics research. One such disease of interest is Clostridioides difficile (C. diff.) 

infection (CDI), formerly known as Clostridium difficile infection, which presents a large 

epidemiological and economic burden to the US healthcare system and may be impacted by host 

genetic risk factors [19]. 
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Given the complex technical and sociopolitical landscape of clinical research integration in 

genomics, in this dissertation we aim to develop a comprehensive sociotechnical model for 

GHLS discovery that examines the relationships between individuals and the complex social, 

political, and technical environments in which they operate. The development of such a model 

warrants the triangulation of multiple research methods, perspectives, and data sources to reveal 

and synthesize different aspects of reality [20,21]. We therefore approach the topic of clinical 

research integration from four different angles: 1. Researcher perspectives on data integration for 

clinical genomic research (Aim 1); 2. Clinician perspectives on genomic knowledge generation 

in clinical environments (Aim 2); 3. An applied example of knowledge generation using clinical 

data (Aim 3); and 4. Systematic literature review and qualitative evidence synthesis (Aim 4). 

The integrative conceptual model that results from this work can be used to facilitate the design 

and development of GLHS discovery research programs by “harnessing the natural properties 

which emerge (often spontaneously) at the interface between the socio (human behavioural) and 

technical components of complex systems” (Braithwaite et al. 2008, p. 37) [22,23]. In this way, 

the actual and expected contributions of genomic research to human health can begin to 

converge. 

1.2 Dissertation Aims 

1.2.1 Aim 1: Researcher perspectives on clinical and genomic data coordination 

In this aim, we identify 14 lessons learned and 11 broad recommendations for survey, phenotype, 

and sequence data coordination through retrospective analysis of digital artifacts generated as a 

by-product of the data coordination process in the CSER Consortium. While these 
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recommendations are grounded in the experiences of a large, NIH-funded research program, they 

are thematically interoperable with data coordination initiatives in general, and have practical 

implications in the areas of planning, communication, informatics, analytics, and data 

governance. 

1.2.2 Aim 2: Medical geneticist perspectives on clinically embedded genomic discovery 

In this aim, we explore the perspectives of board-certified medical geneticists on integrating 

genomic discovery research with clinical care. Using constructivist grounded theory methods 

[24,25], we identify perceived drivers and barriers for GLHS discovery, and offer an a priori 

theoretical framework for understanding the technical, social, and ethical forces that influence 

the shifting boundaries between research and clinical care in genomics. 

1.2.3 Aim 3: Discovery of genetic risk factors for C. diff. infection using merged clinical and 

genomic data 

In this aim, we use merged genomic and clinical data from the eMERGE Network to conduct a 

logistic regression based GWAS of CDI cases and controls to identify common genetic variants 

associated with higher risk of developing CDI. We also demonstrate the utility of using clinical 

data for gene-disease association studies and provide a practical example of clinical genomic 

discovery in action. 
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1.2.4 Aim 4: Development of an integrative sociotechnical model for genomics-enabled learning 

health system discovery 

The objectives of this aim are twofold. First, we conduct a systematic literature review of studies 

that have identified enabling factors of genomic discovery and validation research in the LHS 

model and develop a theory of change model to describe the current landscape of this body of 

literature. Second, we use best-fit framework synthesis (BFFS) to compare the a priori model 

from Aim 2 with qualitative evidence identified in Aim 1 and the systematic literature review to 

create an integrative sociotechnical model for GLHS discovery. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 
 

 

CHAPTER 2: RELATED WORK 

2.1 Data coordination in clinical research 

Sharing rich clinical and genomic datasets within and between institutions is essential for 

advancing medical genomics research, and ultimately for achieving the LHS vision [26,27]. 

However, there are many known technical, ethical, and political challenges with sharing clinical 

and genomic data, such as insufficient or nonexistent data harmonization infrastructures, 

identifiability concerns, and a lack of trust between the public and healthcare institutions [28]. 

Several genomics research consortia have identified strategies for improving data coordination in 

clinically-embedded environments [16,29,30], but standards and expectations for clinical and 

genomic data coordination have yet to be established. In this work, we seek to contribute to the 

development of best practices and standards for clinical genomic data coordination, which can be 

applied to both LHS environments and multi-site research projects in general. 

2.2 Genomic discovery in genomics-enabled learning health systems 

While the LHS model has received considerable attention since it was first proposed by the IOM 

in 2007, the concept of a genomics-enabled LHS has not been well-defined [8]. The original 

LHS model outlines the technical, social, and political requirements for conducting rapid 

learning using clinical data, but the novelty and complexity of genomic data necessitate the 

development of an enhanced conceptual GLHS model [31]. The line between research and 

clinical care in genomics has historically been blurred–perhaps more so than in other medical 

disciplines–due to the rapid evolution of technologies in the field and the direct diagnostic 

implications of many discoveries, but significant ethical and legal conflicts of interest have 
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arisen as genomic research has naturally shifted into clinical spaces, and vice versa [6]. 

Systematically integrating genomic research into clinical environments therefore has the 

potential to exacerbate existing tensions between research and clinical priorities in genomics. In 

this work, we seek to identify and relate the components of a novel GLHS model from the 

perspectives of medical geneticists, who work at the bleeding edge of research and clinical care 

in genomics. 

2.3 Electronic health record and genomic data integration for discovery 

Leveraging both participant-level clinical data and genomic data is essential for making 

clinically relevant genomic discoveries [32]. The eMERGE Network has been a leader in this 

area of research, and has successfully developed harmonized clinical phenotypes across a 

network of EHRs, which have been used to conduct genome-wide association studies (GWAS) 

for diseases such as herpes zoster [33], peripheral arterial disease [34], and dementia [35]. 

Additional GWAS that leverage rich clinical data are needed to identify opportunities for new 

clinical interventions and potential therapeutic targets for diseases that present a significant 

burden to patients and health systems [36]. For example, C. diff. infection (CDI) is a leading 

infectious cause of nosocomial diarrhea in North America and is associated with a high global 

burden of disease [37]. A previous GWAS of 16,464 patients (1,160 CDI cases; 15,304 controls) 

from the Geisinger MyCode cohort [38] was conducted using a CDI phenotyping algorithm 

developed by the eMERGE Network, and several variants in the human leukocyte antigen (HLA) 

region were suggestive of increased CDI risk. In this work, we conduct an additional GWAS in a 

cohort of 99,000 eMERGE participants using the eMERGE CDI phenotyping algorithm to 

identify genetic risk factors that are significantly associated with CDI. 
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2.4 Qualitative evidence synthesis in learning health systems research 

Systematically integrating evidence from the literature with a guiding conceptual model can 

facilitate a broader understanding of complex research landscapes, such as the LHS research 

landscape [39]. While previous systematic literature reviews and scoping reviews have assessed 

enabling and inhibiting factors of systems that conform to the original LHS model, none have 

assessed the literature surrounding genomics-enabled implementations of the LHS model [40–

44]. Similarly, Enticott et al. (2021) [45] developed an integrative LHS framework for the 

Australian healthcare system using evidence synthesis, but additional work is needed to develop 

an integrative GLHS model that is tailored to the US healthcare system. In this work, we seek to 

systematically synthesize themes from the body of literature that addresses the GLHS concept, 

and to leverage qualitative evidence synthesis methods that facilitate the development of an 

integrative sociotechnical model for GLHS discovery. 
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CHAPTER 3:  LESSONS LEARNED FROM MULTI-INSTITUTIONAL CLINICAL 

RESEARCH DATA INTEGRATION (AIM 1) 

3.1 Introduction 

Data coordination is foundational to data-driven discovery work. While this process is more 

commonly referred to as “data management” [46–48], we use the term “coordination” to 

emphasize the communicative and collaborative aspects of managing research data. Significant 

collaboration between institutions, clinicians, researchers, policymakers, and patient-participants 

is required to yield datasets that advance biomedical research [49]. Few organizations are more 

acutely aware of the challenges of data coordination than multi-institutional clinical research 

programs, which experience conflicting research and clinical priorities across multiple 

institutions. The CSER Consortium [15] was one such multi-site program that consisted of seven 

clinically embedded genomic medicine research projects. While all projects shared a common 

goal of investigating the utility of integrating genomic sequencing into clinical care, their 

specific research aims, methods, patient populations, and clinical environments varied widely. 

Over a period of three years, the consortium worked with an internal Data Coordinating Center 

(DCC) to harmonize seven distinct survey, phenotype, and sequencing datasets from the second 

phase of CSER into a single resource. Neither the first phase nor the second phase of CSER was 

originally designed for genomic discovery research. However, investigators from the first phase 

of CSER challenged the viability of the traditional research-clinical dichotomy in the rapidly 

evolving field of genomics [18]. As one CSER site noted,      

We believe [the CSER studies] are intrinsically both [research and clinical care]. Given 
the nature of the data generation and analysis process and the regular rates of change in 
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genome interpretation, each family is in a very real sense a research project. However, 
the consequences of the results are often of substantial and direct clinical impact, and 
thereby these efforts are also clinical care. [Site 4] [18]. 

 

Given the fluidity between genomic testing, research, and clinical care in CSER, we argue that 

the data coordination experiences of clinical research consortia can reveal challenges that might 

be faced by clinically embedded genomic discovery programs and offer potential solutions. 

 

In this aim, we identify 14 lessons learned and 11 broad recommendations for survey, phenotype, 

and sequencing data coordination through retrospective analysis of digital artifacts generated as a 

by-product of the coordination process. While these recommendations are grounded in the 

experiences of a large, NIH-funded research program, they are thematically interoperable with 

data coordination initiatives in general, and have practical implications in the areas of planning, 

communication, informatics, analytics, and data governance. The content of this chapter is 

largely derived from a paper by Muenzen et al. (2022) titled, “Lessons learned and 

recommendations for data coordination in collaborative research: The CSER consortium 

experience” [50]. 

 

3.2 Related work 

3.2.1 The promises and perils of data coordination 

It is widely recognized that sharing clinical and research data within and between institutions is 

essential for advancing medical research and precision medicine [26,27]. Harnessing the ever-
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growing troves of Next-Generation Sequencing data will help elucidate the complex interactions 

between genetics, environment, and human health and disease [51]. Combining genomic data 

with clinical data is necessary for identifying genetic variants that drive both rare and common 

disease, and for characterizing the range of clinical presentations associated with each [52,53]. 

While there has been significant progress in understanding monogenic disease since the advent 

of exome and genome sequencing, the impacts of non-coding, multigenic, and multi-allelic 

variation on phenotype are poorly understood [51]. To identify relationships between complex 

genetic factors and human health and disease, sufficient genomic and clinical evidence must be 

accumulated [53,54]. The “digitalization of medicine” (Auffray et al. 2016, p. 1) [52] through 

EHRs has contributed to a collective pool of clinical data that could be used to facilitate genomic 

discovery research, but both genomic and EHR data are largely siloed in different testing centers, 

research databases, and medical institutions [28]. Improving clinical data integration strategies 

within and between healthcare institutions is therefore an important precursor to discovery, but 

the standards and expectations for clinical and genomic data coordination are not well 

established. 

 

There are known technical, legal, ethical, financial, political, and cultural barriers to sharing and 

aggregating health-related data for research purposes. Data collected across heterogeneous 

environments are inherently difficult to harmonize because they are likely collected, structured, 

and stored using different standards [55]. Across healthcare institutions, incompatible EHR 

platforms–or the lack of an EHR altogether–make automated data integration difficult [56]. Even 

if data can be shared between EHRs, health data is largely unstructured and sophisticated Natural 

Language Processing (NLP) tools are required to convert clinical text into a format that is useful 
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for large-scale research. Data quality is also a major concern when using EHR data for research, 

since clinical data are notoriously incomplete, inconsistent, and inaccurate [57,58]. While 

technical challenges are most commonly reported in the literature [55,59], many policymakers, 

biomedical researchers, and ethicists have argued that the legal and ethical challenges of sharing 

clinical data are the most problematic [59,60]. Clinical records contain highly sensitive Protected 

Health Information (PHI), which is protected by the federal Health Insurance Portability and 

Accountability Act (HIPAA) of 1996. While data containing PHI can be securely transferred 

between departments and institutions, the HIPAA Privacy and Security rules significantly restrict 

access to health data for research purposes. Patients may object to sharing some or all of their 

health data with individuals other than their healthcare providers and may want to be re-

consented for every new use of their data [61]. There are additional privacy risks when sharing 

genomic data, which can potentially be used to re-identify individuals [62]. In this way, the 

scientific imperative of sharing rich clinical and genomic data across institutions and country 

borders conflicts with the moral imperative of protecting individual privacy [63–65]. The ethical 

conundrum of sharing clinical and genomic data is heightened in underrepresented minority 

communities, where patient trust in the medical and research enterprises are low due to historical 

wrongs committed by both enterprises [66]. Additionally, the policy landscape that governs 

clinical and research data sharing is fragmented at best, and “despite its abundance, has not 

resulted in a cohesive system of incentives able to reconcile the interests and expectations of 

different stakeholders” (Blasimme et al. 2018, p. 706) [26]. Finally, the scientific and medical 

communities have not yet achieved a “culture” of data sharing, in which trust and reciprocity 

between researchers, clinicians, patients, and research participants are central to the mission of 

sharing data for research purposes [67]. The number of stakeholders involved in coordinating 
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clinical and genomic data is large, and mutual understanding of the roles, responsibilities, and 

capabilities between stakeholders is rare [52]. 

3.2.2 Current solutions to data coordination challenges 

Although many barriers to sharing clinical data have been identified, developing solutions to 

mitigate these barriers is challenging. To address the technical challenges of sharing clinical 

data, previous research has suggested that standardized metadata models should be developed to 

harmonize heterogeneous datasets retrospectively [17,68,69]. Although standardized capture of 

electronic health data is preferred, this is a major bottleneck in biomedical data sharing and is 

largely driven by EHR vendors [28]. Others have suggested that both data capture and metadata 

standards be harmonized internationally, but this solution has its own extensive set of barriers 

that all require complex solutions [68,70]. Data anonymization and more sophisticated 

cryptology approaches like blockchain have been proposed to alleviate security and privacy 

issues of health data sharing [28,68,71]. However, it is well-known that as the privacy of data 

increases, the utility of data decreases [72]. This tension is somewhat alleviated by de-identified 

public and controlled-access genomic databases like the 1000 Genomes Project [73], the UK 

Biobank [74], the National Center for Biotechnology Information (NCBI) Database of 

Genotypes and Phenotypes (dbGaP) [75], the NIH All of Us Research Hub [76], and the NHGRI 

Analysis Visualization and Informatics Lab-space (AnVIL) [77]. However, these broad data 

sharing mechanisms do not eliminate participant privacy issues [64], and do not often satisfy the 

need for more detailed clinical information. To address issues of consent, new digital consent 

technologies and models like dynamic consent have been proposed [26,71]. These same 

approaches might be useful for engaging minority communities in conversations about health 
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data and consent for research use and building trust [78,79]. To address issues of policy 

fragmentation, studies have suggested that a unified, international policy for health data sharing 

be developed that addresses multiple data types, encompasses a broad set of policy themes, and 

balances competing values of different data sharing stakeholders [26,71,80,81]. However, the 

extreme variability in healthcare networks and policy landscapes across the globe make this 

solution difficult. Finally, to increase scientific and healthcare community engagement in data 

sharing, some have suggested that academic and healthcare leadership take an active role in 

identifying and encouraging best practices in data sharing, maintaining the necessary 

infrastructure, and contributing to policy and guideline development [82]. For this approach to be 

effective, however, best practices in data coordination and guideline development must first be 

identified. 

3.2.3 Data coordination in clinical genomics research projects 

Clinical genomics research consortia face many of the same data coordination challenges that are 

encountered when sharing clinical data for research because they operate at the interface of 

research and clinical care. Examining the experiences and approaches of multi-site clinical 

genomics consortia is therefore an important precursor to defining best practices for 

heterogeneous clinical data coordination. Additionally, the experiences of Coordinating Centers 

(CCs) and Data Coordinating Centers (DCCs) within these consortia are valuable to document, 

since they are the entities that develop and orchestrate protocols for coordinating clinical 

research data [83]. For example, the eMERGE Network CC used centralization storage and data 

harmonization, network-wide Data use Agreements (DUAs), and standardized privacy and 

security policies to coordinate clinical and genetic data across 18 sites over the history of the 
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network [16]. The Li-Fraumeni Exploration (LiFE) Consortium experienced challenges 

coordinating communication between international members and harmonizing variant and 

clinical data across 8 research sites [29]. The LiFE DCC developed standardized data 

dictionaries, data transfer agreements, DUAs, and QA/QC measures to address technical and 

communication challenges. The Global Enteric Multicenter Study (GEMS) experienced 

challenges coordinating data across 8 different countries and across sites that had “diverse 

cultural, social, and technological backgrounds” (Biswas et al. 2012, p. S260) [30]. The GEMS 

DCC found it useful to implement a standardized data management software to collect clinical 

case reports but found that requiring all sites to use an electronic data capture system was not 

culturally appropriate. Although the reported experiences and data coordination strategies of past 

clinical research consortia are informative for clinical data integration strategies at a high level, a 

more detailed and nuanced look at specific data coordination tools, methods, and motivations 

used by clinical research consortia is necessary for building a comprehensive understanding of 

both effective and ineffective data coordination strategies. 

 

The second phase of the CSER Consortium has been well-documented in the literature since its 

inception in 2018, especially with regards to its position at the research-clinical interface and to 

its experiences with harmonizing outcomes measures. Although CSER’s initial goal was to 

investigate the clinical implementation of genomic sequencing in diverse populations, 

consortium members recognized that the genetic data collected during the study could be used 

for discovery purposes [15]. Efforts to make CSER genomic, clinical, and outcomes data 

available for future research align with the more generalizable goal of using electronic clinical 

data for secondary research, making CSER an excellent case study for post-hoc data 
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harmonization. The consortium also previously experienced challenges developing and 

implementing consensus outcomes measures across diverse clinical sites and research projects 

and identified the importance of team science approaches to data harmonization [84]. The current 

study builds on this previous body of work by contextualizing both harmonization issues and 

questions of the research-clinical interface within the organizing framework of multi-site data 

coordination in CSER. 

3.3 Methods 

In this study, we used Fleming’s proposed artifact study model [85] to characterize the culture of 

the CSER Consortium through the lens of data coordination, and to ultimately identify cross-

cutting lessons learned, recommendations, and themes in clinical research data coordination. 

Fleming proposed this model in 1974 as a method for characterizing human cultures through the 

analysis of human-made objects. While artifact analysis has historically been used to study how 

physical artifacts like decorative art or hand-made tools reflect the cultures in which they were 

developed, digital artifacts such as email exchanges and audio recordings are frequently 

generated as a result of computer-based work and are similarly indicative of modern work 

culture [86]. For example, Fang et al. (2022) [87] identified digital artifacts as an essential part of 

knowledge coordination in distributed teams, where the “technology practices” of team members 

are “embedded in digital artefacts” (Fang et al. 2022, p. 537). We therefore used artifact analysis 

to systematically uncover the practices and perspectives of those involved in CSER data 

coordination. 
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3.3.1 Artifact collection 

Digital artifacts were identified by the primary investigator (K.F.), who was involved in 

development and maintenance of all technical and communicative aspects of the CSER DCC. To 

guide artifact collection, we identified five aspects of CSER data coordination that warranted 

examination and collected relevant digital artifacts: 1. Consortium structure and communication; 

2. Data coordination timeline; 3. Informatics architecture; 4. Survey data harmonization; and 5. 

Sequence data collection. For each of the five categories, the primary investigator identified 

digital artifacts that were relevant to data coordination, including: 1. Email exchanges between 

primary investigator and stakeholders, and official consortium emails; 2. Material from the 

CSER Consortium private and public-facing website; 3. Papers previously published by CSER 

Consortium members; 4. GitHub code repositories for digital tools; 5. CSER REDCap databases; 

6. Documents generated and distributed by the CSER DCC to consortium members; and 7. 

Official documents, such as Funding Opportunity Announcements (FOAs) and NIH policy 

descriptions. Table 3.1 shows which artifact types were collected for each data coordination 

component. 
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Data 
Coordination 
Component 

Email CSER 
Website 

CSER 
Papers 

GitHub 
Code 

REDCap 
Database 

DCC 
Docs 

Official 
Docs 

1. Consortium 
structure and 
communication 

! ! !    ! 

2. Data 
coordination 
timeline 

! !   ! !  

3. Informatics 
architecture 

!   ! ! !  

4. Survey data 
harmonization 

! ! ! ! ! !  

5. Sequence data 
collection 

!   !  ! ! 

 
Table 3.1. Digital artifacts used for artifact analysis in five areas of CSER data coordination. 

3.3.2 Artifact analysis 

The five stages of a traditional artifact analysis include identification, evaluation, cultural 

analysis, and interpretation [85]. While artifacts were initially evaluated individually based on 

their history, form, construction, and function, they were ultimately described in combination 

with one another to facilitate the identification of cross-cutting themes in data coordination. The 

cultural analysis involved identifying tensions and relationships between the technical, 

sociocultural, and political aspects of the data integration process. Identification of those 

relationships was facilitated by visually mapping relationships between entities using contextual 

design techniques developed by Beyer & Holtzblatt [88]. Finally, a core set of emergent themes 

in data integration was identified and interpreted in the context of the core pillars identified in the 
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value-creating LHS framework proposed by Menear et al. (2019) [89] to relate the findings to the 

LHS model. 

3.4 Results 

3.4.1 Consortium structure and communication 

CSER consisted of a Steering Committee and eight main working groups with members from the 

following contact institutions and CSER projects: 1. Baylor College of Medicine (KidsCanSeq); 

2. Kaiser Permanente Northwest (CHARM); 3. University of North Carolina at Chapel Hill 

(NCGENES 2); 4. Icahn School of Medicine at Mount Sinai (NYCKidSeq); 5. University of 

California, San Francisco (P3EGS); 6. HudsonAlpha Institute for Biotechnology (SouthSeq); and 

7. The National Human Genome Research Institute (ClinSeq). Consortium activities were 

facilitated by a Coordinating Center based at the University of Washington and were guided by 

an external committee, the CSER Advisory Panel, consisting of six experts in genomic medicine 

and a community advocate. While all CSER sites shared a common goal of investigating the 

applications and outcomes of genomic sequencing in clinical care, the patient populations, 

specific research aims, and study protocols differed widely between sites (Figure S3.1). Detailed 

descriptions of CSER working groups, study populations, and sequencing methodologies are 

described in Amendola et al. (2018) [15] and Goddard et al. (2020) [84]. 

 

Consortium communication was facilitated through monthly working group video calls, 

biweekly Coordinating Center calls, monthly Steering Committee calls, and tri-annual 

consortium-wide meetings. At the start of the COVID-19 pandemic in early 2020, 
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communications became entirely virtual. However, this did not significantly change 

communication between working groups, as communication had been largely virtual to begin 

with. The DCC interacted extensively with the Data Wranglers Working Group (established by 

the DCC in Fall 2019) and the Project Managers Working Group (established in Spring 2019). 

Interactions largely consisted of monthly video calls and ad-hoc calls with individual site 

analysts and project managers. 

 

The DCC collaborated with several external organizations that helped maintain the technical 

infrastructure that the consortium used to securely manage its aggregated survey and sequence 

data. The Institute of Translational Health Sciences (ITHS) at the University of Washington 

managed the Research Electronic Data Capture (REDCap) database [90,91] that the DCC used 

for centralized CSER data storage, and maintained a secure web server that hosted the 

consortium’s R Shiny [92] data management tool. The DCC also collaborated extensively with 

the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-Space (AnVIL) 

consortium, which was responsible for hosting shared CSER genomic, clinical, survey, and 

phenotypic data in the AnVIL cloud computing ecosystem [77]. 

3.4.2 Timeline of CSER data harmonization, collection, and analysis activities 

The second phase of CSER began in August 2017. Harmonized measures were developed 

throughout 2018, and sites adopted the harmonized measures in late 2018. As described in 

Goddard et al. 2020 [84], sites designed most of their data collection instruments independently 

and began recruitment and/or survey administration up to 18 months after the consortium start 

date. By the time the consortium had finalized the harmonized measures in late 2018, several 
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sites had already begun administering surveys and were tasked with administering some 

harmonized items that they had not previously implemented. The DCC developed the initial 

harmonized database and custom data collection platform throughout the Fall and Winter of 

2019-2020. The DCC began coordinating the centralized intake of common survey measure 

responses in early 2020 and continued to collect this data until the end of the recruitment and 

follow-up periods at each site. Initial requests for—and preliminary analysis of—harmonized 

survey data began in Fall 2020, and the first submissions of genome and exome data to the 

AnVIL cloud platform began in Spring 2021, shortly after the AnVIL platform was designated as 

an official NIH data repository [93]. A timeline of major consortium-wide activities related to 

data harmonization, collection, and analysis is shown in Figure 3.1. 

 

 

Figure 3.1. CSER Phase 2 data coordination and analysis timeline. 
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3.4.3 Informatics architecture 

The DCC utilized a suite of informatics tools and platforms to securely store and share 

consortium data. These platforms included: 

 

Local site servers and data capture tools. Data was collected and stored locally by each CSER 

site before it reached the DCC. Sites collected survey data using platforms including REDCap, 

SurveyMonkey, and custom-developed web applications. Some measures (like participant ages) 

were pulled directly from the EHR by sites if they were not collected through harmonized 

surveys. Methods for survey data storage also varied by site, with some sites using REDCap 

databases or similar platforms designed for clinical research, and others using relational or non-

relational database management systems for optimized storage and querying of large datasets. 

The vast majority of survey data quality assurance (QA) and quality control (QC) was performed 

at CSER sites prior to DCC submission. These QA/QC measures included, but were not limited 

to, checks for missing data, range value checks, and outlier analyses. Genomic data was stored 

on servers with high disk capacity at each site or using secure cloud storage services like 

Amazon S3 or Microsoft Azure. 

 

REDCap database. A secure instance of REDCap was hosted and maintained by the University 

of Washington ITHS and populated by CSER sites using data submission tools maintained by the 

DCC. All harmonized survey measures, case-level sequencing results, and participant-level 

sequencing metrics (e.g., aggregated case-level results) were centrally stored in REDCap and 

were linked at the participant level using a unique identifier called a “CSER ID.” 
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CSER Data Hub. The DCC used a custom R Shiny web interface called the “Data Hub” to 

securely exchange harmonized survey data, case and participant-level sequencing metrics, and 

documentation within the consortium. See “Informatics” and “Data De-Identification and 

Security” for more details on the architecture and security features of the Data Hub. 

 

AnVIL storage and compute platform. The NIH-funded AnVIL consortium develops and 

maintains the AnVIL cloud ecosystem, which was built using Google Cloud storage and 

compute resources. The AnVIL is a component of the emerging federated data ecosystem 

paradigm in genomics [94], which is meant to improve genomic data sharing and interoperability 

without compromising data security or privacy. The AnVIL is authorized to share both open 

access (unrestricted) and controlled access (restricted) data derived from human samples [93]. 

Permission to access and use controlled-access data is granted on a case-by-case basis by a 

relevant NIH Data Access committee and is moderated through the database of Genotypes and 

Phenotypes (dbGaP) Authorized Access System [95]. CSER sites were required to submit their 

genomic Binary Alignment Map (BAM) and Variant Call Format (VCF) files, sequence, and 

sample metadata (e.g., reference genome build, sample source), and phenotypic data (e.g., 

disease codes, sex, race/ethnicity) to the AnVIL platform. Data stored in the AnVIL could then 

be analyzed in Terra [96], a cloud platform developed by the Broad Institute of MIT and Harvard 

to facilitate biomedical research data sharing and analysis. 
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3.4.4 Collection and aggregation of harmonized survey measures 

To collect common survey measures administered at each site, the DCC developed a REDCap 

database using the harmonized survey measures developed by the consortium in 2018 [97] , and 

worked with the Data Wranglers Working Group to map site-specific data models to a 

harmonized data model using a three-phase approach: 

 

Phase 1: Model. To facilitate mapping between site datasets and the DCC harmonized database, 

the DCC developed tab-delimited import templates and accompanying data dictionaries for six 

harmonized survey types (Figure S3.2). All patient surveys were divided into two distinct 

variable sets to distinguish between surveys administered to a parent or guardian proxy of a 

pediatric participant and those administered to an adult participant. The DCC also developed 

standardized import templates and data dictionaries for participant-level and case-level genetic 

sequencing metrics (Figure S3.3). All templates and data dictionaries were distributed as 

downloadable zip files on the Data Hub. 

 

Phase 2: Map. Site analysts developed semi-automated variable mapping pipelines using the 

data handling software(s) of their choice (e.g., Excel, R, Python, Stata, SAS), and used these 

pipelines to generate harmonized datasets from the harmonized data model developed in Phase 1. 

 

Phase 3: Upload. Staff at each site shared their harmonized datasets through a custom data 

upload interface on the Data Hub, which ensured that the datasets met the specifications of the 

models developed during Phase 1, and automatically transferred data to the DCC REDCap 
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database using the redcapAPI R package [98]. Initial submissions for each of the harmonized 

survey types and sequencing metrics occurred in 2-3-month intervals throughout 2020 and 2021. 

All sites repeated Phases 2 and 3 on a quarterly basis until the end of follow-up to update 

existing participant records, and to create records for newly recruited participants. 

3.4.5 Genomic sequence data collection in the NHGRI Analysis Visualization and Informatics 

Lab-space 

The CSER DCC facilitated the transfer of genome and exome data and metadata from site 

platforms to the AnVIL platform. The DCC developed harmonized metadata models in 

collaboration with members of the AnVIL team and other CSER members, using standards 

previously developed by dbGaP and The Cancer Genome Atlas (TCGA) Program as references. 

To facilitate the transfer of sequence data and metadata to the AnVIL platform, the DCC 

developed sample scripts for securely transferring data to Google Cloud buckets and made these 

scripts available for download on an SFTP server hosted by the University of Washington 

Genome Sciences department. The DCC also provided step-by-step instructions for preparing 

data, submitting required data ingest forms, and using sample scripts for batch sequence data 

transfers. 

3.5 Lessons learned 

Throughout 2020 and 2021, the DCC worked to meet the evolving data coordination needs of the 

CSER Consortium as it actively collected sequence and survey data from study participants. The 

following section describes the approaches that the CSER Consortium used to navigate the 

complexities of multi-site data sharing and offers a set of lessons learned from its data 
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coordination experiences (Table 3.2). Lessons learned are referenced in the text using numbered 

identifiers (e.g., Lesson Learned 1a, Lesson Learned 1b) to exemplify connections between 

experiences and lessons learned. 
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Category Lessons Learned 

Communication 1a. Identify primary points of contact for addressing different data coordination 
requirements (e.g., technical infrastructure, data mapping, consortium policy) using 
existing communication patterns among working groups and sites 
  
1b. Define the unique roles of different working groups in the data coordination 
process, and use those roles to guide inter-group communication 
  
1c. Send periodic update emails with consolidated information (progress, resources, 
action items) to key data coordination stakeholders 

Harmonization 2a. Provide data managers with standardized data collection instruments (templates) 
and specifications for mapping variables to those instruments (data dictionaries) 
  
2b. Deploy rigorous version control methods for data coordination resources that 
change over time, and ensure that data managers are informed of changes 
  
2c. Implement standardized protocols and timelines for making changes to data 
collection instruments 
  
2d. Engage a multidisciplinary group of consortium members to develop and 
approve standardized data models 

Informatics 3a. Consolidate informatics tools and resources within a secure, centralized platform 
  
3b. Utilize available IT expertise and resources at participating institutions 
  
3c. Prioritize security of informatics tools and disseminate security information to 
consortium members 

Compliance 4a. Engage a multidisciplinary group of consortium members to develop a 
harmonized set of data sharing consent categories 
  
4b. Use multiple data sharing specifications (e.g., institutional certifications, 
informed consents, data use letters) to map site-level consent groups to consortium-
level consent categories 

Analytics 5a. Document data quality issues and unique aspects of the harmonized dataset, and 
plan to distribute documentation to both current and future data users 
  
5b. Facilitate access to onboarding resources for users of shared data analysis 
platforms like the AnVIL 

Table 3.2. Data coordination lessons learned in the CSER Consortium. 
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3.5.1 Communication 

As the DCC integrated with the consortium throughout 2020, additional communication channels 

beyond monthly Data Wranglers Working Group calls were formed to fully support the 

consortium’s data coordination requirements. While the Data Wranglers primarily served the role 

of handling site-level survey and sequence data and developing computational pipelines to 

convert data into a harmonized format, the Project Managers provided the necessary project-

level guidance to ensure that data was being shared securely and responsibly, such as tracking 

regulatory documents, overseeing data collection, and developing data QA/QC measures. 

Together, the two working groups contributed to the development of feasible and efficient DCC 

harmonized data upload requests and data dictionaries, assisted in coordinating responses to new 

data requests (including site-specific data), assisted in troubleshooting challenging data elements 

(e.g., consent categories), responded to requests for project-specific information, and kept track 

of data submission timelines (Lesson Learned 1a). The DCC, Data Wranglers, and Project 

Managers communicated through an iterative, multi-directional feedback loop throughout the 

project period to ensure that all groups were equipped to fulfill their respective data coordination 

responsibilities (Lesson Learned 1b). 

 

Multiple working groups requested that the DCC share important data coordination updates with 

the rest of the consortium. To increase transparency of ongoing work and maintain an organized 

list of action items, the DCC sent update emails to the Data Wranglers Working Group, Project 

Managers Working Group, Sequence Analysis and Diagnostic Yield Working Group, and 

Principal Investigators (PIs) first on a biweekly and eventually on a monthly basis to 
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communicate important DCC activities, inform consortium members of key resources, and track 

new data coordination requirements. To communicate DCC activities and goals with the broader 

consortium, the DCC also gave regular progress updates during biweekly and monthly 

Coordinating Center and Steering Committee calls, respectively. These updates helped other 

working groups and consortium stakeholders anticipate availability of shared data, and allowed 

consortium members outside of the Project Managers, Data Wranglers, and Sequence Analysis 

and Diagnostic Yield Working Groups to regularly provide feedback and ask questions about 

current and planned DCC initiatives (Lesson Learned 1c). 

 

Interactions between the DCC and groups external to the consortium were largely facilitated by 

weekly or biweekly standing meetings, including those with AnVIL project managers and the 

University of Washington ITHS staff. These meetings helped the DCC receive timely assistance 

and feedback from technical support teams, and to communicate questions and concerns raised 

by CSER members. Figure 3.2 shows the different groups involved in CSER data coordination, 

their responsibilities, and the types of communication that took place between different 

stakeholders. 
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Figure 3.2. Methods of communication between groups involved in CSER data coordination. 

3.5.2 Harmonization 

3.5.2.a Survey data harmonization 

Throughout 2020 and 2021, the DCC developed a variety of strategies to facilitate the 

harmonization and intake of common survey measures. As described in Goddard et al. 2020 [84], 

the CSER Measures and Outcomes Working Group previously led the consortium through 

identifying 31 survey domains across CSER projects that captured measures related to the 

common research aim of evaluating the personal and clinical utility of genome and exome 
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sequencing, while accommodating natural heterogeneity in study designs and patient 

populations. Common survey measures were presented to research participants in a wide variety 

of study environments, altered to meet the needs of individual sites, and collected and stored 

using different data modeling strategies. As a result, measures were harmonized across many 

factors, including question wording, response scales, and variable naming. While measure 

harmonization was important for achieving cross-site interoperability of research findings, it was 

also a time-consuming effort that required careful planning and use of limited resources. 

 

In CSER’s experience, achieving and sharing semantically interoperable data was far more 

complex than simply sharing data. As described in “Consortium structure and communication,” 

the seven CSER projects served different patient populations, investigated unique research 

questions, and used different clinical sequencing interventions (Figure S3.1). Furthermore, sites 

developed their own data collection tools before a clear set of centralized data sharing 

expectations was established. To reconcile differences between site-specific implementations of 

common survey measures, the DCC developed standardized data import templates and data 

dictionaries to guide harmonized survey mapping, as described in “Collection and aggregation of 

harmonized survey measures'' (Lesson Learned 2a). The complexity of this process is illustrated 

in Figure 3.3, which depicts the mapping process for a single variable in the Communication 

Satisfaction measure from the first Patient Post-Return of Results (RoR) survey. By the end of 

the survey mapping phase for all six harmonized surveys and two sequencing metric reports, 

sites had implemented mapping logic for over 1100 variables. 
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Figure 3.3. Sample harmonization process for one variable in the Communication Satisfaction measure, 
across all seven CSER projects. To map participant responses to the Participant Post-Return of Results 
(RoR) Follow-Up #1 harmonized import template, each site created a local mapping between the site-
level variable name and the harmonized variable name (comsat1_pfu1 for pediatric surveys, 
comsat1_afu1 for adult surveys) and documented any differences in question wording. Some sites were 
also required to map alternate response encodings to the harmonized response scale. For example, Site 2 
administered the question with a reversed response scale (where 1 =’ Very satisfied’ on the harmonized 
scale, and 4 = ‘Very satisfied’ on the site scale), and modified harmonized responses accordingly (1 = 4, 2 
= 3, 3 = 2, 4 = 1). Similarly, Site 5 administered the question with an additional response option, and was 
instructed to map these responses to blank values (5 = ‘ ‘). 
 

The primary goal of the survey mapping phase (Phase 2) was for each site to develop a semi-

automated pipeline that could be used to quickly update harmonized datasets with new or 

modified data on a quarterly basis. However, the pipeline development process was complex and 
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time-intensive for each site and involved frequent updates to mapping logic. Updates included 

relatively simple changes like variable name modifications and harmonized response scale 

adjustments, but also included more complex updates like the addition of new variables that were 

deemed necessary for accurate, reliable, and secure downstream analysis of harmonized data 

(Table S3.1). For example, the elapsed time since RoR variable was first proposed during a Data 

Wranglers Working Group meeting in July 2020, when it was discovered that not all participant 

or provider follow-up surveys could be administered or collected within the harmonized time 

frames specified (Figure S3.2), and that having more granular elapsed time data could improve 

the accuracy of downstream analyses. A placeholder variable was developed and then iteratively 

refined before seeking Steering Committee and IRB approval. The finalized variable required 

sites to indicate the number of weeks post-RoR that a given survey or measure was administered 

to each participant. Sites were then tasked with implementing new mapping logic for as few as 

three, and as many as 25 new harmonized variables, depending on whether follow-up measures 

were administered according to the harmonized survey groups (Figure S3.4). While not all 

change requests were this lengthy or involved, they cumulatively resulted in high demands on 

Data Wranglers and Project Managers throughout the harmonized measure mapping process. 

 

To minimize burden placed on Data Wranglers and Project Managers due to change requests and 

to maximize transparency, the DCC maintained a “Change Log” page in the Data Hub, which 

listed the changes made between import template and data dictionary versions. During the last 

quarter of 2020, the DCC began distributing quarterly checklists that documented all new, 

removed, and modified variables for each quarterly data resubmission, and made these 

documents available for download on the Data Hub (Lesson Learned 2b). Beginning in January 
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2021, the DCC also implemented a new “Change Request Schedule,” which specified time 

intervals during which consortium members could make change requests and blocked off two-

month intervals before each quarterly resubmission during which site data analysts could modify 

mapping pipelines without having to address incoming change requests. These strategies helped 

manage the computational and organizational burden of maintaining harmonized mapping 

pipelines, but nonetheless did not eliminate all tensions between site-level burden and 

consortium-level data sharing expectations (Lesson Learned 2c). 

3.5.2.b Sequence metadata harmonization 

The AnVIL replaced dbGaP as the primary repository for NHGRI-funded genomic, phenotypic 

and survey datasets in mid-2019, during the CSER Phase II funding period [93]. While dbGaP 

provided data submitters with standardized templates and instructions for submitting sequence 

data and metadata to the platform, the AnVIL consortium was still developing standards when 

CSER commenced submissions. As a result, the CSER DCC was tasked with developing 

standardized metadata models that captured the necessary details without placing unreasonable 

burden on CSER sites. In mid-2020, the DCC convened a subgroup of CSER investigators 

(called the “Sequence Metadata Subgroup”) with expertise in sequence data analysis to develop a 

harmonized set of sequence and sample metadata fields (Lesson Learned 2d). Prior to the first 

subgroup meeting, the DCC compiled a list of candidate variables using a combination of the 

dbGaP and TCGA standards. The DCC presented these variables to the Sequence Metadata 

Subgroup to assess the feasibility and descriptiveness of the proposed fields. Once the model was 

approved by the Sequence Metadata Subgroup, the Data Wranglers Working Group, and the 
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AnVIL team, the DCC developed the relevant import templates and data dictionaries and made 

these documents available for download on the Data Hub (Table S3.2). 

3.5.3 Informatics 

The CSER DCC used the Data Hub platform to host data coordination resources in a centralized, 

secure, and easily accessible location. The Data Hub made it possible to link multiple data 

management platforms with one another (Figure 3.4) and to quickly distribute version-controlled 

resources to Data Wranglers and Project Managers (Lesson Learned 3a). To develop and 

maintain the Data Hub, the DCC harnessed available information technology expertise and 

resources at the University of Washington ITHS (Lesson Learned 3b). These resources took the 

form of one-on-one meetings and email exchanges with ITHS personnel, and computing 

resources for hosting the Data Hub website. However, they also relied heavily on informatics 

expertise within the DCC to develop the application itself and to provide troubleshooting support 

to CSER sites. Sample screenshots of the Data Hub user interface are shown in Figures S3.5-

S3.9. 
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Figure 3.4. Movement of harmonized survey data (green) and sequence data (purple) between CSER data 
platforms. Abbreviations: CDH – CSER Data Hub; CLI – Command Line Interface; DCC – Data 
Coordinating Center; M&O – Measures and Outcomes; QPR – Quarterly Progress Report; WS – Web 
Services. 
 

3.5.4 Data de-identification and security 

Before submitting harmonized data to the Data Hub or sequence data to the AnVIL, all CSER 

sites were required to remove personally identifiable information (PII) from their datasets in 

accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule 

[99]. To retain syntactic integrity of free text, sites were asked to redact all instances of PII and 

replace them with the category of identifier within brackets (e.g., “[date],” “[name]”). Measures 
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were also taken to protect local study identifiers for each participant. For each new record in the 

harmonized database, a unique CSER ID was randomly generated and linked with the 

participant’s local study ID. Mappings between CSER IDs and local IDs were then stored within 

the DCC REDCap database, accessible only to members of the site from which each CSER ID 

originated.  

 

Although the DCC took steps to prevent identifiable information from being uploaded to its 

platforms, multiple layers of security were built into the DCC informatics architecture to protect 

data in the unlikely event that sensitive, identifiable information were to be uploaded to a DCC 

platform (Lesson Learned 3c). First, the Data Hub was deployed on a secure web server hosted 

by the University of Washington ITHS. All requested connections from client web browsers 

were established using the Apache HTTP Server software, and ITHS required that all hosted web 

applications establish encrypted connections between the server and the client browser. Second, 

all Data Hub users were required to log in to the Data Hub using University of Washington 

credentials, which were sponsored by the DCC team. Third, the Data Hub was designed in 

alignment with standards put forth by the HIPAA Security Rule, including the use of activity 

logs, password-protected access, automatic password timeout, and HIPAA-compliant data 

storage in REDCap. And fourth, the DCC developed standard protocols for removing records of 

participants that had withdrawn consent for sharing data, and continuously updated and 

distributed a list of CSER IDs that should be removed from previously downloaded datasets. 
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3.5.5 Consent group harmonization 

CSER did not have a central study Institutional Review Board (IRB), and thus relied on IRBs at 

each CSER site (and in some cases additional IRBs at subsites) and the University of 

Washington—the Coordinating Center home institution—to make decisions about appropriate 

data sharing. All site and Coordinating Center PIs signed a Data Use Agreement in early 2019 

detailing the data sharing terms between participating institutions in CSER, and the DCC used 

this document to broadly define the terms of data sharing across CSER sites and beyond the 

consortium. 

 

While the use of local IRBs facilitated the implementation of varied clinical study designs across 

diverse patient populations at each site, the lack of a central CSER IRB also resulted in 

substantial heterogeneity in how data sharing consent groups were defined across CSER sites. 

Because the dbGaP Authorized Access System typically inherits consent group specifications 

from study Institutional Certifications [100], the DCC first surveyed all Institutional 

Certifications to determine if they sufficiently represented site-level consent groups. Following 

conversations with the CSER Project Managers, the DCC determined that while the Institutional 

Certifications provided high-level guidelines for how study data could be shared with non-CSER 

investigators, they did not fully represent subtleties of the permissions given by participants for 

sequence and/or survey data sharing during informed consent. For example, several CSER sites 

allowed participants to opt-out of broad data sharing (e.g., General Research Use or 

Health/Medical/Biomedical Research) and to restrict sharing to specified investigators, while 

other sites required study participants to consent to broad data sharing if they were to enroll in 
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the study. As a result, harmonized consent categories had yet to be developed when CSER sites 

were otherwise ready to share data. 

 

To develop consortium-wide data sharing consent categories, the DCC convened a 

multidisciplinary “Data Access Subgroup” of data analysts, project managers and data ethicists 

to discuss key considerations and requirements for consent harmonization (Lesson Learned 4a). 

The subgroup met twice over a period of two months in mid-2020 to develop a plan for mapping 

site-level consent categories to harmonized consent groups. Using a combination of standard 

NIH consent groups (e.g., General Research Use, Health/Medical/Biomedical research) and data 

use limitations (e.g., local IRB approval required, publication required) [101] indicated in the site 

Institutional Certifications, and more restrictive data use limitations gleaned from site-specific 

informed consents (e.g. CSER-only access), the Data Access Subgroup developed eight 

harmonized consent groups for survey and sequence data types (Table S3.3; Lesson Learned 

4b) [102]. The Project Managers and Data Wranglers mapped participant-level consent groups to 

harmonized consent groups and submitted these consent assignments to the Data Hub in early 

2021. These groups were used to determine how sequence and survey data could be stored and 

shared with non-CSER investigators in the AnVIL platform. 

3.5.6 Cloud data sharing 

The movement of data storage and computation to cloud platforms like Google Cloud, Amazon 

Web Services (AWS) or Microsoft Azure is widely regarded as a necessary next step in the field 

of genomics, given the large volume of genomic data generated daily, the increasing 

sophistication and scalability of cloud resources, and the need for extensive collaboration in 
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genomic research [103]. While the goal of this transition is to maximize the utility and impact of 

human-derived samples and phenotypic data, cloud technology is still relatively novel to most 

academic institutions—which have historically used privately managed, secure servers to store 

and process genomic data—and to many research participants contemplating broad data sharing. 

While the NIH has previously released guidance on best practices for cloud data sharing [104], 

the technical aspects of data security and administrative aspects of data privacy in the cloud are 

unfamiliar to many investigators. As a result, many institutions approach new cloud data sharing 

requirements with caution [105]. The CSER Consortium responded to cloud data sharing 

requirements by reviewing informed consent documents at each site and ensuring that research 

participants gave their consent to share data in NIH controlled-access repositories other than 

dbGaP. The DCC also collaborated with the AnVIL team to compile security documentation into 

a single resource that sites could use to personally assess the security of datasets submitted to the 

platform, particularly those restricted to use within the consortium. Consistent communication 

between the AnVIL team, NIH staff, the DCC, and CSER Working Groups was essential for 

building consortium-wide trust in this new technology, and for ensuring the ongoing privacy and 

security of de-identified genomic, phenotypic, and survey data in the new era of cloud storage 

and computing. 

3.5.7 Analytics and documentation 

3.5.7.a Harmonized survey data reliability 

Given the heterogeneity in how common survey measures were modeled and administered at 

each CSER site, the DCC developed strategies to document differences in site-level measure 
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implementations. The DCC initially used separate Google Sheet data dictionaries for each site to 

document unique implementations of common measures. These site-level data dictionaries were 

then compiled into a single “Adaptation Dictionary,” which documented the adaptations made to 

each harmonized variable across all CSER sites and was designed to highlight the degree to 

which each measure might be subject to data integration or reliability issues during analysis. To 

facilitate quick assessments of data reliability, the DCC implemented a cover sheet within the 

Adaptation Dictionary that indicated to what extent each measure was adapted (Figure S3.10). 

Step-by-step instructions were also included on the first tab of the dictionary to help investigators 

consider how adaptations might affect their analyses. To increase adoption within CSER, the 

DCC provided a link to the Adaptation Dictionary on the Data Hub and advised CSER members 

to reference the dictionary before attempting any cross-site analyses. The Adaptation Dictionary 

was intended for use by investigators both within and beyond CSER and was designed to be 

shared on platforms like the AnVIL to enhance the usability of CSER data for future research. In 

addition to documenting adaptations to harmonized measures, the DCC developed a centralized 

help document for current and future users of CSER data. The document contained descriptions 

of all CSER projects, explanations for how key variables were harmonized, rationale for and 

descriptions of items that were added to the harmonized measures (e.g., vital status, survey 

completion dates), and FAQs related to database structure and use (Lesson Learned 5a). 

 

The DCC also implemented several automated, on-demand variable calculation features in the 

Data Hub to generate measures that could be programmatically derived from the harmonized 

measures. The CSER “Underserved Framework,” developed by members of the CSER Ethical, 

Legal, and Social Implications and Diversity Working Group, employed different combinations 
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of demographic factors (including language, income, insurance status, residence, race, and 

ethnicity) to form nine distinct risk groups, indicating either direct barriers to medical care access 

or social factors that might indirectly impede access. Using the Data Hub download tool, 

consortium members could elect to download automatically calculated Underserved Framework 

variables along with documentation about how each variable was calculated. 

3.5.7.b Using the NHGRI Analysis Visualization and Informatics Lab-space platform for 

analysis 

The AnVIL platform seeks to enable users with scalable compute power, large-scale data access, 

and shared resources for analysis [77]. The AnVIL analysis environment was built using the 

Terra/Google Cloud platform, so users familiar with this system may experience shorter 

onboarding periods. Data exploration and analysis are supported through the use of Jupyter 

notebooks [106] and RStudio [107], which are commonly used tools in the field of data analytics 

and statistical analysis. AnVIL also supports genomics tools such as Galaxy [108] for users with 

less experience in programming who are interested in genomic analysis, and provides access to 

standard command line tools like GATK [109] to facilitate advanced data processing. 

 

Although the potential benefits of using a platform like the AnVIL for sequence data storage, 

sharing, and analysis are numerous, the unfamiliarity of the platform may limit the ability of 

investigators to anticipate exactly how data might be shared and/or used and may therefore make 

early-stage decisions about data modeling and sharing difficult. For example, the automatic 

linkage of survey, phenotypic, and sequence data in a shared cloud workspace is a novel concept, 

and investigators will undoubtedly need to make challenging decisions regarding the best way(s) 
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to prepare, share and utilize such data. Large clinical genomics research consortia like the 

eMERGE Network and the Implementing Genomics in Practice (IGNITE) Consortium will 

likely face similar challenges to those experienced by CSER, and the AnVIL platform will be a 

valuable space for investigators from all disciplines to unite and support one another in this new 

generation of genomic data sharing and analytics (Lesson Learned 5b). 

3.6 Discussion 

After dedicating much time and effort to developing and implementing strategies for 

harmonizing and coordinating consortium-wide datasets, the CSER Consortium is well-

positioned to contribute an impactful and wide-reaching dataset to facilitate research in medical 

genomics. While the DCC developed tailored strategies to facilitate CSER data coordination, the 

principles behind these strategies are applicable to other research settings in which data are 

pooled from heterogeneous sources. Table 3.3 lists 11 overarching needs and recommendations 

for conducting multi-site data coordination at the levels of Planning, Communication, 

Informatics, and Data Analytics. The following section explores these recommendations through 

the lens of four thematic domains that emerged from this work: 1. Transparency and translation; 

2. Team morale, collaboration, and trust building; 3. Iterative design; and 4. Data governance. 

We also offer guidance on how these recommendations might generalize to projects of different 

sizes with diverse data coordination needs and capabilities. 
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Category Needs Recommendations 

Planning Clear expectations for internal and 
external data sharing 
 

1. Build data sharing expectations into 
expected scope of work in funding 
announcements (NIH) 

Sufficient financial resources and time 
for data coordination 
 

2. Budget for data coordination, 
management, and reporting at individual 
research sites (NIH) 

Integration between DCC and 
consortium 

3. Establish DCC at start of funding 
period, if not before (NIH, DCC) 

Communication Consolidation of communication 
channels 
 

4. Consolidate lines of communication 
from DCC to working groups, and 
assign action items appropriately (DCC, 
Sites) 

Technical specifications for data 
sharing 
 

5. Maximize transparency of data 
coordination expectations and resources 
(NIH, DCC) 

Efficient use of diverse expertise 
available within the consortium 
 

6. Facilitate translation of critical 
information between stakeholder groups 
(DCC) 

Informatics Consolidation of informatics platforms 
for data coordination 
 

7. Deploy a secure, centralized web 
resource for data coordination (DCC) 

Flexibility in response to unforeseen 
events and changing analysis plans 

8. Build flexibility into central databases 
and data management software (DCC) 

Correct implementation of site-level 
security and privacy agreements 

9. Prioritize data privacy and security 
during platform design (DCC) 

Analytics High-quality and reliable data from 
heterogeneous sources 
 

10. Provide clear and detailed 
documentation of shared data resources 
(DCC, Sites) 

Integration of research and clinical 
practice; Enhanced protection of data 
from vulnerable populations 

11. Document approaches to data 
governance (DCC, Sites) 

 
Table 3.3. Recommendations for consortium data coordination. Text in bold indicates which entities 
should be responsible for each recommendation. 
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3.6.1 Transparency and translation 

Clear and consistent communication on the part of research leadership and data coordination 

teams should be a high priority, from project conception to completion. Ideally, Funding 

Opportunity Announcements (FOAs) issued by funding agencies should plan for and 

communicate data sharing expectations (Planning, Recommendation 1) to allow research sites 

to budget and plan for data coordination activities (Planning, Recommendation 2). When 

possible, the DCC should be involved in the research planning phase and should continually 

facilitate conversations surrounding data collection, QA/QC, reporting, modeling, and sharing, 

so that research sites are sufficiently prepared to participate in data sharing at all project stages 

(Planning, Recommendation 3). Given the availability of appropriate experience and expertise, 

the DCC may act as a stakeholder proxy across research sites and working groups and facilitate 

data coordination conversations and decision-making. As a liaison between project stakeholders, 

the CSER DCC was ideally positioned to assume the role of “translator” and facilitate adaptive 

communication between groups with unique roles and areas of expertise (Communication, 

Recommendation 6). Translation should also take place between the consortium and the greater 

scientific community since data in controlled-access repositories is expected to have a lifespan 

beyond the consortium from which it originates. As such, clear documentation of shared data and 

resources should be developed to encourage appropriate data use, and alert users to any unusual 

or unique data elements prior to analysis (Analytics, Recommendation 10). 

 

The translator also has a responsibility to communicate data needs centrally and concisely. 

Separate lines of communication that request different (but related) data coordination action 
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items should be avoided, and requests should instead be aggregated and contextualized with one 

another (Communication, Recommendation 4). The expected contributions of stakeholders to 

different data coordination activities should also be transparent, both to increase task 

accountability and to assess the equitable distribution of tasks across the consortium 

(Communication, Recommendation 5). Stakeholder communication should be a two-way, 

responsive process in which DCC processes are adjusted in response to stakeholder feedback, 

and vice versa. 

3.6.2 Team morale, collaboration, and trust building 

An often-overlooked aspect of data coordination is the importance of interpersonal relationships 

and team morale within and between stakeholder groups. Making expectations transparent and 

achievable is critical to demonstrating respect and appreciation for team members’ time and 

efforts (Communication, Recommendation 5). Similarly, giving team members the space and 

time to regularly voice ideas and concerns to the leadership and data coordination team is 

essential for maintaining a culture of mutual respect and understanding across stakeholder 

groups. Decisions that will impact research workflows and workloads of consortium members 

should be made mutually and transparently, both to demonstrate respect for one another’s time 

and to avoid situations in which stakeholders must retrospectively address issues introduced 

earlier in the research process due to a lack of communication or collaborative planning. 

Strengthening these interpersonal relationships is essential for building a culture of trust within 

the research team and facilitating a positive data sharing experience. 



48 
 

 

3.6.3 Iterative design 

Access points to important data coordination tools and resources should be consolidated to 

minimize burden placed on sites and improve resource transparency (Informatics, 

Recommendation 7). Each resource should also be designed to withstand frequent 

modifications, both on the database and user interface ends, to accommodate inevitable changes 

in consortium needs (Informatics, Recommendation 8). Building iterative design principles 

into the platform development process is far more effective at achieving a useful and usable 

system than deploying a static, pre-designed system [110]. Based on the Gould & Lewis 

principles of design [111], system development should involve: 1. Early focus on end-point 

users; 2. Early deployment and usability testing; and 3. Iterative system design. Employing these 

principles in practice will help end-users identify critical features and potential issues on a rolling 

basis and ensure that the resulting data coordination system is designed appropriately for the 

intended user base. However, platform security should remain the highest priority throughout the 

design process, and design decisions should never be made at the expense of security features 

(Informatics, Recommendation 9). 

3.6.4 Data governance 

While there is an understanding among scientific communities worldwide that sharing research 

data is a necessary component of scientific progress, the mechanisms for protecting against 

potential harm while maximizing usefulness are not well-defined [112]. These two aims are often 

in tension and lend themselves to diverse data governance strategies across research projects 

within and between scientific disciplines. In genomics research studies, data governance 

frameworks that promote scientific progress should: 1. Enable data access; 2. Follow national 



49 
 

 

laws and international agreements; 3. Support appropriate data use; 4. Promote equity in the 

access and analysis of data; and 5. Use data for public benefit [71]. However, when 

operationalizing data governance frameworks within research consortia, major tensions exist in 

the areas of data access control, de-identification, and consent models. Combined with the 

technical challenges of cleaning, harmonizing, and annotating datasets, these tensions contribute 

to a disconnect between the intent to share data and real-life data sharing practices [113]. While 

it is tempting to trace this disconnect to a lack of clear guidance from national agencies and 

project funders, guidelines like those found in the NIH Genomic Data Sharing policy are left 

intentionally vague to account for vast contextual differences between research projects. To 

develop a reusable set of data governance guidelines that can accommodate different research 

settings and contexts, it may therefore be useful for research projects to document their own 

approaches to the five components of effective data governance frameworks listed above, and for 

funding agencies to then develop comprehensive guidelines that accommodate the unique data 

governance requirements of diverse research settings (Analytics, Recommendation 11). 

 

One important tension that arises in clinical research is the need to accommodate varying data 

governance expectations across clinical and research settings, particularly for participant privacy 

and informed consent for data sharing. For example, the Federal Policy for the Protection of 

Human Subjects (also known as the “Common Rule”) is a set of federal regulations that dictates 

requirements for the ethical management and distribution of data collected from human research 

subjects, while the HIPAA Privacy Rule is a federal law that enforces standards for the 

protection of patient medical data. While these regulations are intended to complement one 

another in clinical research settings, the details of how each set of rules should be applied to the 
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operational components of a data governance strategy are not well-defined, leading to potential 

gaps in data protections [114]. The US Department of Health & Human Services itself 

recognizes that “institutions, IRBs and investigators are frequently faced with applying both the 

Common Rule and the HIPAA Privacy Rule” when making decisions about clinical research 

protocols, since there are currently no formalized guidelines for merging these requirements 

[115]. The inclusion of genome and exome sequencing in clinical research further complicates 

questions of subject and biospecimen identifiability, for which guidance from the Common Rule 

and HIPAA is limited [116,117]. 

 

In the case of informed consent for data sharing, the details and implications of policies that 

govern data protections should be made transparent to clinical research participants who are 

asked to consent to broad data sharing, but researchers and policymakers themselves are still 

grappling with these details. For example, on the FAQ page of the NIH Genomic Data Sharing 

policy description, a common perception among genomic researchers is that the “NIH requires 

that investigators obtain consent for broad data sharing and that the participant is disqualified 

from participating in the study if consent is not obtained,” although the NIH clarifies on the same 

page that this was not the intent of the policy [118]. In addition to questions of appropriate data 

sharing, the appropriate breadth and depth of information communicated during the informed 

consent process is challenging to pinpoint, given that it is extremely difficult—if not 

impossible—to predict exactly how genomic information will be used by researchers in the 

future. There is an even greater urgency for clarity in genomic data sharing consent procedures 

for patient populations that are historically marginalized and disadvantaged by biomedical 

research and medical practice [119]. For example, there is concern among US Indigenous 
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communities that participating in genomic research and sharing genomic data may lead to 

inappropriate use of that data in the future, leading to imbalanced societal benefits or even harm 

to those communities [120]. Data governance frameworks that support paradigms like data 

sovereignty for marginalized populations and dynamic consent procedures may help mitigate 

some of the risks posed by evolving consent details in medical genomics research [121]. Other 

suggestions for addressing misuse concerns include following documented Indigenous 

engagement practices, understanding worldviews unique to different Indigenous communities, 

and practicing complete transparency in all research partnerships with Indigenous communities 

[122] 

3.6.5 Generalizability of recommendations 

While these recommendations were designed to generalize to other multi-site research projects, 

we recognize that smaller or less well-funded projects may not be able–or even need–to 

implement all of the recommendations. For example, a smaller project with two homogenous 

research sites (e.g., similar participant populations, research aims, and institutional policies) may 

not need to establish a formal DCC (Recommendation 3) or deploy a multi-user web application 

(Recommendations 7, 8, and 9). However, the same project would still benefit from having a 

dedicated group of investigators to oversee data coordination, encourage communication, and 

facilitate documentation (Recommendations 4, 5, 6, 10, and 11). While the costs of these 

recommendations pale in comparison to funding an entire DCC or developing a web application, 

they are nontrivial. A “bare bones” implementation of a data coordination core would require 

part-time participation of at least one investigator at each site with data science expertise (similar 

to the CSER Data Wranglers), one investigator at each site with detailed knowledge about the 
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study (similar to the CSER Project Managers), and one central coordinator to facilitate 

communication and track progress. As funding agencies increasingly expect research projects to 

contribute high quality, harmonized data to public repositories, funders and researchers alike 

should recognize these dedicated groups as an essential component of any research program and 

provide appropriate budget support accordingly (Recommendations 1 and 2). 

 

Research projects should consider how the size, complexity, and privacy considerations of their 

anticipated datasets impact the relative importance of different data coordination needs (see the 

“Needs” column in Table 3.2) and implement recommendations accordingly. While dataset 

factors are partly influenced by the number of sites involved in a project, they are not defined by 

project size. For example, a project with 2 sites collecting 100 data types (variables, file types, 

etc.) might have a greater need for more robust data coordination tools than a project with 100 

sites collecting 2 data types. Similarly, smaller consortia collecting data on a large number of 

participants at each site may have more complex needs than larger consortia collecting data on a 

small number of participants. However, as the CSER Consortium experienced, data coordination 

needs evolve as the project evolves. Projects should periodically re-evaluate how well their 

current approaches are addressing their needs and seek additional funding and/or personnel to 

help implement more rigorous coordination approaches as needed. 

 

Finally, while these recommendations are most translatable to NIH-funded projects within the 

US, the basic principles still apply to non-NIH funded and multi-national projects. Other types of 

projects may have data sharing expectations and policies that differ considerably from those of 

NIH-funded projects but using well-reasoned communication and informatics practices is 
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ubiquitously beneficial for managing heterogeneous datasets. For example, a 2017 report by the 

Organisation for Economic Co-operation and Development identified common challenges across 

32 international research data networks, including the need for clear roles and responsibilities, 

transparency, mutual respect, and clear data governance plans [123]. However, multi-national 

consortia like the Global Enteric Multicenter Study (GEMS) and the International Cancer 

Genome Consortium (ICGC) have cited additional challenges—like navigating differences in 

language, culture, and data transfer policies between countries—that the current 

recommendations do not address [30,80]. While privately funded projects may not be required to 

share data as a condition of funding, they will likely receive requests from peer-reviewed 

journals to share data before publishing. In this way, the evolving culture of data transparency 

within the scientific community itself necessitates data coordination. 

3.6.6 Applications to the value-creating learning health system framework 

The value-creating LHS framework, developed by Menear et al. (2019) [89], explicitly 

acknowledges the interconnectedness of social and technical factors in the LHS model This 

framework combines multiple LHS frameworks into a transtheoretical model that describes how 

different stakeholders can work together to achieve higher value care at lower costs. While this 

framework was originally developed to reflect the core values of the Canadian healthcare system 

(participatory leadership, equity, solidarity, inclusiveness, scientific rigor and personalization), 

these core values have long been a necessary component of healthcare reform internationally 

[124]. We therefore propose that this framework can be reasonably applied in the case of US 

healthcare reform. The framework builds upon the concept of rapid learning cycles, which 

consist of three core processes: 1. Converting data to knowledge; 2. Using knowledge to 
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influence care practices while documenting the impacts of new care practices on health 

outcomes; and 3. Generating new data from reformed healthcare practice [125]. The authors of 

the framework base their definition of “value” on the quadruple aim of healthcare (enhanced 

patient experience, improved population health, reduced costs, and improved working conditions 

for healthcare providers) [126], and argue that a variety of socio-technical factors should be 

considered throughout the iterative learning process in order to successfully generate value from 

an LHS. 

 

Each of the core values and pillars of the value creating LHS framework emerged organically 

during the CSER data coordination process, highlighting the generalizability of the framework to 

different types of clinical research environments and to the LHS model. The natural alignment 

between the LHS pillars and our recommendations also underscores the importance of data 

coordination in both clinical research consortia and LHS-aligned clinical settings. Table 3.4 

shows how different recommendations from CSER data coordination can be applied to the Core 

Value and Pillar components of the value creating LHS framework. 
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Framework Component Core Value or Pillar Recommendation(s) 

Core Values Adaptability 8 

Cooperative and participatory leadership 1, 3 

Equity 11 

Inclusiveness 6 

Open innovation 6 

Person focused 4, 6, 11 

Privacy 9 

Scientific integrity 10 

Shared accountability 1, 3, 4, 6 

Solidarity 4, 6 

Transparency 1, 5 

Pillars Scientific 1, 2 

Social 3, 4, 6 

Technological 7, 8 

Political 1, 2, 3, 11 

Legal 9 

Ethical 11 

 
Table 3.4. Recommendations applied to the Core Values and Pillars of the value-creating learning health 
system framework. 
 

3.7 Limitations and future work 

While the recommendations from this work are expected to be applicable to different settings in 

which data coordination is a key activity, the artifacts and experiences that informed those 

recommendations are still specific to the CSER Consortium. Integrating artifacts and experiences 
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across clinical research consortia could be useful for improving the generalizability of 

recommendations to different research environments with variable participant populations, study 

personnel, and financial resources. Additionally, while it is assumed that the recommendations 

can be applied to LHS settings based on the alignment between LHS goals and the goals of 

clinical research consortia, this work is not a complete substitute for similar analyses in actual 

LHS settings. Future studies of clinical research data coordination efforts should expand on and 

adapt the recommendations to LHS-aligned environments. 

3.8 Conclusion 

The artifact analysis methods used in this work uncovered the cultural aspects of data sharing 

that are essential for enabling the widely-sought “transition towards a culture of biomedical data 

sharing” (Piwowar et al. 2008, p. 1315) [82]. Data coordination is not simply a matter of 

algorithms and automation, but also of human communication, translation, mutual respect, and 

autonomy. These principles are particularly important to operationalize for projects that straddle 

the research-clinical interface, where the ethical and political aspects of data sharing are often in 

tension with one another. Identifying common challenges and new solutions to data coordination 

that are grounded in the experiences of clinical research projects is a key first step in defining 

community standards and expectations. The lessons learned and recommendations identified in 

this work reinforce previously identified challenges in clinical research projects and provide both 

context-specific and generalizable solutions that can guide the development of best practices 

moving forward. In the next chapter, we will transition from a researcher-focused view of data 

coordination to a clinician-focused view of knowledge generation. Medical geneticists operate at 

the cutting edge of clinically applied genomics research and can help identify the barriers and 
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enablers of moving coordinated clinical and research data into the realm of clinically motivated 

discovery. 
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CHAPTER 4: MEDICAL GENETICIST PERSPECTIVES ON CLINICALLY EMBEDDED 

GENOMIC DISCOVERY (AIM 2) 

4.1 Introduction 

In addition to coordinating clinical and genomic data for research purposes, generating new 

knowledge from clinical data is a central process in the LHS model [7]. Knowledge generation 

has also been identified by the NHGRI as a key part of developing “virtuous cycles in human 

genomics research and clinical care” (Green et al. 2020, p. 689) [9], in which new genomic 

discoveries are rapidly integrated into healthcare systems and outcomes data are used to assess 

the utility of genomic medicine and ultimately improve disease diagnosis and management. 

However, the barriers, drivers, and approaches to generating new knowledge in an LHS have 

been sparsely examined, especially in the context of important sociotechnical and ethical factors 

that affect research and clinical environments differently [14]. While the foundational 

characteristics of an LHS have been defined by the IOM, little has been done to assess the 

feasibility of implementing clinically-based discovery programs given the challenging realities of 

the US healthcare system [7]. Additional technical, ethical, and social complexities of genomic 

data collection and analysis are expected to make knowledge generation in GLHSs even more 

challenging to execute [8,31]. Understanding the perspectives of those who work closely with 

genetic information in clinical environments is an important step in assessing the feasibility of 

generating new genetic knowledge from clinical data, and for examining the implications of 

conducting genomic research in clinical environments. 
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In this aim, we explore the perspectives of board-certified medical geneticists on integrating 

genomic discovery research with clinical care. Using constructivist grounded theory methods, we 

identify perceived drivers and barriers for GLHS discovery, and offer an a priori conceptual 

model for understanding the technical, social, and ethical forces that influence the shifting 

boundaries between research and clinical care in genomics. 

4.2 Related Work 

4.2.1 The genomics-enabled learning health system 

The concept of a “rapid-learning health system” was originally proposed by Lynn Etheredge in 

2007 [127] as an approach for improving evidence-based medical care, advancing clinical 

research, and maximizing the value gained from healthcare spending in the US. Etheredge 

pinpointed the EHR as the driving technology for rapid learning in healthcare because it offered 

an inexpensive, queryable, clinically representative, and fast alternative to standard methods for 

gathering data in biomedical research. Similar arguments were made at a two-day workshop held 

by the IOM Roundtable on Evidence-Based Medicine in July 2007 called “The Learning 

Healthcare System,” where participants acknowledged that “the nation needs a healthcare system 

that learns'' in order to “[get] the right care to people when they need it and then [capture] the 

results for improvement” (IOM 2007, p. 3) [128]. During this workshop, participants identified 

several pressing needs of the LHS model (Table 4.1), and acknowledged that large, structural 

changes in the ways knowledge is developed and managed in clinical research are necessary to 

realize the full potential of an LHS. The proposals from this workshop were later formalized into 

a book published by the IOM Committee on the Learning Health Care System in America in 
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2013 called Best Care at Lower Cost: The Path to Continuously Learning Health Care in 

America [7]. 

Need Description 

Adaptation to the pace of change Adaptation to rapid developments in both 
technology and the information those technologies 
generate 

Stronger synchrony of efforts Coordination of responses to new knowledge to 
limit conflict and/or confusion 

Culture of shared responsibility Shared responsibility between patients, providers 
in the evolution of new knowledge 

New clinical research paradigm Better integration of clinical research and clinical 
practice 

Clinical decision support systems Information support for clinicians 

Universal electronic health records Comprehensive EHRs with all available 
capabilities 

Tools for database linkage, mining, and use Tools for searching and interpreting large, 
structured databases, and for linking multiple 
databases 

Notion of clinical data as a public good Resolutions surrounding the idea of data as a 
“proprietary good” and concerns about patient 
privacy 

Incentives aligned for practice-based evidence Aligning the incentives of research, clinical 
practice, and Information Technology (IT) to 
promote learning 

Public engagement Engagement of patients and healthcare 
professionals in generating and disseminating new 
evidence 

Trusted scientific broker A trusted entity that can guide movement and 
priorities in clinical research integration 

Leadership Guidance for developing and executing visions, 
strategies, and actions 

 
Table 4.1. Needs for a learning health system identified during the 2007 Institutes of Medicine 
Roundtable on Evidence-Based Medicine: The Learning Healthcare System [128]. Needs are worded as 
seen in the original text, and descriptions are paraphrased from the text. 



61 
 

 

While both Etheredge and the 2007 IOM report acknowledge the potential for pharmacogenetics 

to improve patient-level treatment responses, neither discuss needs specific to implementing 

genetics more broadly in an LHS. The first draft of the human genome [129] had only been 

published several years before the LHS model had been proposed, and the model could not yet 

account for the rapid advancements in genomic technologies, including dramatic cost reduction, 

that would develop over the next two decades [130]. Healthcare providers, researchers, and 

policymakers alike soon recognized the importance of leveraging genomic data to improve 

disease prevention, diagnosis, and treatment [131]. However, most healthcare systems in the US 

were not equipped to routinely handle genomic data, and the original LHS model did not 

explicitly account for the additional complexities of these data. To address these opportunities 

and challenges, the IOM Roundtable on Translating Genomic-Based Research for Health hosted 

a workshop in December 2014 titled, “Genomics-Enabled Learning Health Care Systems: 

Gathering and Using Genomic Information to Improve Patient Care and Research” [8]. This 

single-day workshop laid the foundation for the concept of a GLHS as an extension of the 

original LHS model that accounted for additional complexities of genetic information in rapid 

learning, such as large file size and evolving analysis standards (IOM 2015, pp. 6-7). During the 

workshop, Lynn Etheridge himself acknowledged that genomic data is unique from other clinical 

data and must be incorporated into a “high-speed, high-performance research system” (IOM 

2015, p. 5) that the current LHS model did not explicitly outline. Furthermore, Etheredge warned 

that failing to develop GLHSs quickly “may lead to massive amounts of genomic data being paid 

for by health systems but not being available for learning” (IOM 2015, p. 5). To further the goal 

of integrating genomics into the LHS model and achieving the full potential of genomic 

medicine, workshop participants compiled a set of needs and possible next steps for GLHSs 
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(Table 4.2). The proposed next steps largely focused on addressing the technical challenges of 

integrating genomic data into an LHS, but also acknowledged the important role of human 

factors in establishing complex information systems within healthcare settings. 

Need Next Steps 

Interoperability of EHRs ● Ensure that genomic data is accessible and fit 
for clinical use 

● Support regulations to make EHRs 
interoperable with genomic information 

● Establish standards for genomic data 
● Demonstrate use cases for interoperability 

Clinical Decision Support (CDS) ● Standardize allele nomenclature for CDS tools 
● Create and share CDS tool warehouses 
● Measure clinical outcomes of CDS 

interventions 
● Develop infrastructure to support CDS 

Data Sharing ● Build information platforms with scalable and 
reusable components 

● Foster interoperable healthcare systems 
● Foster a “data donor” culture 
● Integrate data from around the world 
● Incorporate patient-provided data 
● Consider the use of “personally controlled 

health databanks” for secure data sharing 
● Support user interface research and 

development 

Implementation ● Engage patients with a particular interest in 
genomics to demonstrate value 

● Measure and track healthcare outcomes and 
disparities 

● Conduct social sciences and behavioral 
research to understand human factors 

 
Table 4.2. Needs and suggested next steps for developing a genomics-enabled learning health system, as 
defined during the 2014 Institutes of Medicine Roundtable on Translating Genomic-Based Research for 
Health workshop, “Genomics-Enabled Learning Health Care Systems: Gathering and Using Genomic 
Information to Improve Patient Care and Research” (IOM 2015, pp. 54-55) [8]. Needs are worded as seen 
in the original text, and next steps are paraphrased from the text. 
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Since the 2015 IOM roundtable report was published, little else has been published on the GLHS 

concept. The most active champion of the GLHS model thus far has been the Geisinger Health 

System in Pennsylvania, which publicly pledged to embrace the LHS model in 2014. They have 

since made great strides in the areas of patient-clinician engagement and informatics but have 

faced challenges when balancing research and clinical improvement incentives, and in 

developing a continuous learning culture [132]. Williams et al. (2018) [13] describes these 

successes and challenges in the context of Geisinger’s experience with precision genomic 

medicine through the MyCode Community Health Initiative. Geisinger has achieved success in 

screening populations for well-known pathogenic and likely pathogenic variants using public 

engagement and alignment of incentives across the healthcare system. However, the Geisinger 

leadership are careful not to call themselves a fully realized LHS, and even go so far as to 

question whether such a goal is fully attainable because “the essence of learning and 

improvement is–and always will be–a moving target” (Williams et al. 2018, p. 9) [132]. 

Nonetheless, they recognize the utility of moving in closer alignment with LHS principles for the 

sake of advancing research and improving clinical care. 

4.2.2 Clinical data to clinical knowledge 

One of the more ill-defined aspects of the GLHS concept is the discovery process, through which 

clinical and genomic data are transformed into biomedical knowledge with potential care 

implications. The current body of LHS literature tends to focus on two extremes: the broad, 

structural components of the LHS model, and the individual components of the model (e.g., 

technical, cultural, or ethical) as they relate to discovery. What is missing from the literature is a 

Goldilocks understanding of the ways in which individual technical, social, cultural, ethical, and 
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political components of clinical discovery interact with one another to form a larger 

sociotechnical system [14]. The process of discovery is often thought of as largely technical in 

nature, but early implementations of LHS-aligned systems have demonstrated that technical 

innovations alone cannot support discovery as it is intended to be used in the LHS model: to 

improve patient care [133,134]. The contextual factors that surround the discovery process, such 

as system-wide alignment of goals, a learning culture, patient engagement, and a robust IT 

infrastructure, are known enablers of discovery, but little is known about how to align these 

factors with one another in practice. Additional complexities related to genomic data, such as 

privacy concerns, population representation, and questions of clinical validity and utility, make 

the operationalization of discovery in a GLHS all the more challenging [31]. Grounding this 

discussion in the experiences of clinicians (and clinician-researchers) who regularly work with 

genetic data in a healthcare setting is a reasonable approach for clarifying how the various 

dimensions of a GLHS might interact with one another. 

 

Previous qualitative studies have identified strategies for sustainable LHS implementation in the 

Australian healthcare system [135] and challenges and drivers of implementing LHS models in 

social safety net health facilities [136]. However, none of the existing qualitative studies of LHSs 

have focused on the perspectives of healthcare providers, let alone genomic medicine providers. 

Despite the relative scarcity of qualitative studies in biomedical research, qualitative research 

methods such as semi-structured interviews and grounded theory analysis are ideal for 

characterizing cultural, social, and personal factors in healthcare that cannot easily be explored 

using quantitative methods [137]. Constructivist grounded theory, developed by Charmaz (2014) 

[25], diverges from the positivist lens of classical grounded theory in its use of a relativist lens, 
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which assumes that people participate in the construction of multiple realities, rather than take 

part in an orderly reality that can be objectively studied [138]. Constructivist grounded theory 

also recognizes the role of the researcher in constructing theory and employs techniques such as 

intensive interviewing and iterative data analysis to construct a plausible snapshot of different 

social realities, as opposed to offering a “window” into a single reality. Given the complex 

sociotechnical landscape of clinically embedded genomics research, constructivist grounded 

theory is a useful approach for holistically evaluating geneticist perspectives on the GLHS 

model. 

4.3 Methods 

4.3.1 Institutional review board approval and participant recruitment 

The IRB application for this study was submitted to the UW Human Subjects Division on 

January 25th, 2022 and was approved with exempt status on January 27th, 2022. After obtaining 

IRB approval, a target sample of 20 study participants was recruited for interviews, based on the 

estimate that thematic saturation is typically reached between 20-30 interviews in grounded 

theory studies [139]. The inclusion criteria for study participants were as follows: 

● MD-trained physician, preferably in a mid-to-senior level position 

● An American Board of Medical Genetics and Genomics (ABMGG) certification in 

Clinical Genetics and Genomics 

● Current or recent member of the eMERGE Network, CSER Consortium, and/or UW 

Medical Network 
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A preliminary list of interview candidates was compiled using a contact list provided by the 

doctoral committee Chair (for eMERGE participants), a private-facing web-based contact list 

(for CSER participants), and the public University of Washington (UW) Division of Medical 

Genetics faculty list (for UW participants). To determine whether each interview candidate was 

board certified in Clinical Genetics and Genomics by the ABMGG, the primary investigator 

(K.F.) conducted Google searches such as “[name] board certification” or “[name] clinical 

genetics and genomics” for each candidate and searched for information about board 

certifications on websites like DocSpot, Zocdoc, and home institution faculty pages. Board 

certifications were later confirmed by the participants themselves. The primary investigator then 

conducted a 30-minute Zoom call with two doctoral committee members who were familiar with 

the potential interviewees to confirm the contact information, home institution, and clinical 

specialty (or specialties) of each candidate. The final list consisted of 35 potential interviewees: 

16 from the CSER Consortium, 6 from the eMERGE Network, and 13 from the UW Medical 

Network. The list was stored in a password-protected file, which was only shared with the two 

committee members involved in verifying the information of potential interviewees. Beginning 

in March 2022, potential interviewees were contacted via email with invitations to participate in 

the study. CSER members were contacted first, followed by eMERGE members, and then by 

members of the UW Medical Network. By July 2022, all 35 potential interviewees had been 

invited to participate, and 20 had accepted the invitation.  

4.3.2 Interviews 

The primary investigator developed a preliminary list of questions to ask during a one-hour, 

semi-structured interview, and reviewed these questions with the doctoral committee, the 
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Precision Medicine Informatics Group at UW, and a qualitative research expert. An initial 

interview guide (Appendix A) was developed based on these discussions. The primary 

investigator then conducted a pilot interview with the first study participant to assess the quality 

of the interview guide. After the fourth interview, a more comprehensive interview guide was 

developed to address emergent concepts of interest (Appendix B). This interview guide was 

used for interviews 5-11, after which a third interview guide was written to consolidate questions 

and concepts (Appendix C). The third interview guide was used for the remainder of the 

interviews. 

 

Each interview was scheduled for one hour, which included time for introductions, study 

background, and informed consent. Interviews were conducted using the intensive interviewing 

method, as described in Charmaz 2014 [25]. This method encourages the interviewer to follow-

up on interesting or important points made by the interviewee and is intended to generate rich 

and meaningful data on interview participants’ perspectives. The key characteristics of intensive 

interviewing include (Charmaz 2014, p. 56) [25]: 

● Selection of research participants who have first-hand experience that fits the research 

topic 

● In-depth exploration of participants’ experience and situations 

● Reliance on open-ended questions 

● Objective of obtaining detailed responses 

● Emphasis on understanding the research participant’s perspective, meanings, and 

experience 
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● Practice of following up on unanticipated areas of inquiry, hints, and implicit views and 

accounts of actions 

The interview guides were therefore used as tools to guide conversations but were not intended 

to dictate the structure of each interview. Once all interviews had been completed, participants 

were asked to complete an anonymous REDCap demographics survey (Appendix D). Although 

the survey administration procedures were not included in the original IRB application, a 

modification request was submitted on September 15th, 2022, and was approved with exempt 

status on September 16th, 2022. 

 

With the participant’s verbal consent, each interview was recorded to the primary investigator’s 

private Zoom Cloud. The audio (.MP4) file for each recording was exported to an encrypted 

device, then uploaded to a password protected Otter.ai account for transcription. Initial 

transcriptions were generated automatically using the Otter.ai program, then checked for 

accuracy by the primary investigator. Final transcripts were exported to an encrypted device, 

then uploaded to a local ATLAS.ti project. 

4.3.3 Qualitative data analysis 

The following sections describe the approach that was taken to analyze transcript data, including 

collaborative and iterative codebook development, inter-coder agreement (ICA) calculations, and 

thematic analysis. Although grounded theory studies do not typically involve multiple coders or 

ICA calculations, we chose to integrate the perspectives of multiple coders to increase the quality 

of codes and limit confirmation bias from the primary coder (K.F.) [140], given the potential 

policy implications of the resulting model. To maintain the iterative process of grounded theory 
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while involving multiple coders, a codebook development process similar to the one described in 

Tsai et al. (2020) [141] was used, where multiple coders developed the codebook and ICA was 

measured over successive iterations. Once ICA reached a satisfactory level, an ICA test was 

conducted using four additional transcripts that were randomly selected from the 16 transcripts 

not yet seen by the secondary coders. The codebook from iteration 4 was used to code all 20 of 

the transcripts, and thematic analysis was conducted using the final axial codes, memos, and 

semantic domains. 

4.3.3.a Codebook development 

4.3.3.a.i Initial and axial coding 

An iterative process was used to develop the codebook and evaluate the consistency of coding on 

the 20 transcripts. For each transcript, the primary coder assigned initial codes in thematic units. 

As described in Burla et al. (2008) [142], thematic unit coding can be used instead of line-by-line 

coding when it is important to capture the context of each initial code. Each unit was defined as 

having a distinct meaning, message, or sentiment compared with surrounding data. Unit lengths 

ranged from several words to several sentences. For example, the contiguous excerpts from the 

interview with Participant 10 in Table 4.3 show how three different initial codes with different 

meanings and unit lengths were assigned. 
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Initial Codes Axial Codes Excerpt 

Even though there is more 
genetic actionability than we 
know about, the data to show 
that and act upon it is limited 

Ensuring patient/research 
participant safety and wellbeing: 
Generating, collecting, and 
applying evidence for variant 
interpretation 

“Well, yeah, I think, obviously, 
the data are flowing much more 
rapidly than our ability to digest 
it all. There's lots of instances 
where we get data back that 
we're not quite sure what it 
means.” 

There are a lot of genetic 
discoveries that could be very 
useful in real time 

Ensuring patient/research 
participant safety and wellbeing: 
Turning new genetic 
associations and technologies 
into clinical interventions 

“You know, that being said, I 
guess before going too far down 
that path, there's a lot of data 
that's exceedingly useful in real 
time.” 

Important to focus on genetic 
tests/results that can 
meaningfully change patient 
management (utility) 

Ensuring patient/research 
participant safety and wellbeing: 
Determining variant 
actionability, utility, and 
returnability in the clinic and 
clinical labs 

“And, you know, so I don't think 
we'd be doing this clinically if 
we didn't think there was a 
reasonable chance that we might 
come up with something that 
would actually answer the 
question.” 

 
Table 4.3. Initial and axial coding of three contiguous excerpts from an interview with Participant 10. 

 

After each round of five (25%) interviews, the primary coder grouped initial codes into thematic 

categories, or axial codes. Categories were developed to reflect important or problematic aspects 

of clinically embedded genomic research that emerged from the transcript data. In the process of 

developing axial codes, initial codes were constantly compared with one another to reveal 

agreements and contradictions. Several examples of axial codes are shown in Table 4.3, 

alongside sample initial codes that contributed to axial code development. Axial codes were used 

to refine the interview guide and facilitate exploration of emergent categories that held 

theoretical promise. Theoretical codes were written in the form of memos throughout the study 

but were especially refined during the last two interview cycles as emergent categories began to 

reach saturation. Saturation was determined by the inductive thematic saturation approach [143], 
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which assumes that saturation is reached when there are few emergent codes or themes. 

Specifically, saturation was reached when new initial codes could be reasonably grouped into 

existing axial categories, and if new initial codes only marginally expanded on similar initial 

codes but did not diverge from existing themes. 

 

4.3.3.a.ii Multiple coding 

During each iteration of codebook development, one transcript was selected for multiple coding 

based on sufficient representation of axial codes. After initial and axial coding was completed by 

the primary coder, the selected transcript was coded by multiple reviewers in a five-step process: 

1. The transcript was prepared for multiple coding using the following procedures: 

a. The entire ATLAS.ti project (Version 0) was duplicated (Version 1). 

b. All transcripts not selected for multiple coding were deleted from Version 1. 

c. All memos and identifying information were deleted and replaced with proxies. 

d. Initial codes were merged into axial codes, and all comment fields were cleared. 

e. Version 1 was saved and duplicated (Version 2). 

f. All code assignments from Version 2 were deleted, but the codebook and 

highlighted text segments remained the same. 

g. Version 2 was exported as an Atlas Version 22 (.ATLPROJ22) file and was 

shared with the two secondary coders via UW OneDrive. 

2. Two secondary coders independently assigned one code from the codebook to each 

previously defined text segment in Version 2, using the methods described in O’Connor 

et al. (2020) [144]. For several rounds of codebook development, the primary coder 
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shared a document that described the scope and meaning(s) of each code (Appendices E 

and F). 

3. Once both secondary coders uploaded their coded transcripts to separate UW OneDrive 

locations, the primary coder merged the two coded Version 2 projects into Version 1 to 

compare codings. 

4. Krippendorf's Cu-alpha (α) [145]—the standard agreement measure offered in ATLAS.ti 

22 Desktop—was used to assess agreement across semantic domains. 

5. The secondary coders met with the primary coder to discuss disagreements, and the 

primary coder revised the codebook using feedback from the secondary coders. 

 

This process continued until acceptable agreement (0.667 ≤ α ≤0.823) [146] was reached across 

semantic domains. As described in Burla et al. (2008) [142], codes used for ICA analysis should 

“address substantive issues related to the research question” (Burla et a. 2008, p. 115). Because 

the semantic domains that axial codes were grouped into formed the basis of the thematic 

analysis, ICA was deemed most useful when assessing agreement across those domains. 

 

4.3.3.a.iii Inter-coder agreement test 

To evaluate coder consistency on the resulting codebook and on unseen data, four (20%) 

transcripts were randomly selected from the remaining transcripts that had not been coded by the 

secondary coders. One additional coder used the codebook to assign codes to these transcripts. 

Finally, simple percent agreement and Krippendorf’s alpha were calculated across semantic 

domains between the two coders. 
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4.3.3.b Thematic analysis 

All memo titles and axial codes were copied into text boxes in diagrams.net [147] to facilitate 

memo and code sorting, as described in Charmaz 2014 (pp. 216-224) [25]. First, relationships 

between memos were represented using unidirectional or bidirectional arrows between boxes, 

with connection descriptors used as needed. Multiple memo formations were created and 

assessed for data representativeness. Once the final memo formation was developed, axial codes 

were linked to the memo(s) that they best represented. This helped to ensure that the abstract 

theory was re-grounded using interview data and helped elucidate the ways in which thematic 

categories interacted with one another in the emergent model. The resulting flow model was 

further distilled into components that semantically described distinct groupings of clinical 

research operations. 

4.4 Results 

4.4.1 Participants 

Twenty (20) individuals participated in phone or video interviews, which ranged from 27 

minutes to 64 minutes, and lasted a median of 54 minutes. As described in Table 4.4, the 

majority (80%) of participants worked at academic medical centers and 50% of the participants 

were MD/PhD clinician scientists. In addition to a Clinical Genetics and Genomics board 

certification, many participants held an additional board certification in Pediatrics or other 

specialties such as Internal Medicine and Clinical Molecular Genetics. 
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Participant Characteristics N (%) 

Work Environment 
Academic Medical Center 
Integrated Care Organization 
Research-Only Hospital 

 
16     (80%) 
3       (15%) 
1         (5%) 

Credentials 
MD 
MD/PhD 

 
10     (50%) 
10     (50%) 

Board Certification(s) 
Clinical Genetics and Genomics 
Pediatrics 
Internal Medicine 
Clinical Molecular Genetics 
Clinical Cytogenetics and Genomics 
Medical Biochemical Genetics 
Obstetrics and Gynecology 
Psychiatry and Neurology 
Clinical Informatics 
Preventive Medicine 

 
20   (100%) 
7       (35%) 
4       (20%) 
4       (20%) 
3       (15%) 
2       (10%) 
1         (5%) 
1         (5%) 
1         (5%) 
1         (5%) 

Clinical Specialty 
Dysmorphology/Structural developmental abnormality 
Cancer 
Neurodevelopmental abnormalities (intellectual disability, autism) 
Cardiovascular disorders (cardiomyopathy, arrhythmia, vascular anomalies) 
CNS disorders (epilepsy, encephalopathy, structural brain malformations, 
neurodegenerative disease) 
Neuromuscular disorders (hypotonia, spasticity, neuropathy, myopathy) 
Immunodeficiency 
Metabolic disorders 
Skeletal dysplasias 
Population genomic screening 
Genodermatoses and Turner syndrome 

 
11     (55%) 
7       (35%) 
6       (30%) 
5       (25%) 
4       (20%) 
 
3       (15%) 
2       (10%) 
2       (10%) 
1         (5%) 
1         (5%) 
1         (5%) 

Race/Ethnicity    
White or European American 
Asian 
Middle Eastern of North African/Mediterranean 
American Indian, Native American, Alaska Native 
Black or African American 
Native Hawaiian/Pacific Islander     
Hispanic/Latino(a) 
Prefer not to answer 
Unknown/none of these fully describe me  

 
16     (80%) 
2       (10%) 
1         (5%) 
0         (0%) 
0         (0%) 
0         (0%) 
0         (0%) 
1         (5%) 
2       (10%) 

Gender  
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Woman 
Man 
Prefer not to respond 
Non-binary/non-conforming 

10     (50%) 
9       (45%) 
1         (5%) 
0         (0%) 

 
Table 4.4. Characteristics of interview study participants (N = 20). 

 

4.4.2 Identified themes and semantic domains 

By the final iteration of codebook development, 1796 initial codes were linked to 2444 

quotations across the 20 transcripts, and initial codes were assigned to 28 axial codes across 6 

semantic domains: 1. Building a collaborative learning culture in medical systems (8 codes); 2. 

Building relationships with patients/research participants (4 codes); 3. Ensuring patient/research 

participant safety and wellbeing (5 codes); 4. Evaluating the role of genetics in medicine (6 

codes); 5. Participant background (3 codes); and 6. Protecting patient/research participant rights 

to privacy and autonomy (2 codes). Table 4.5 lists the axial codes and associated semantic 

domains, and Tables S4.1-S4.6 contain detailed descriptions and sample quotes for each axial 

code in a given semantic domain. 

 

Semantic Domain Axial Code 

Building a collaborative 
learning culture in medical 
systems 

Benefits and drawbacks of using EHR data for research and 
equitably representing diverse populations 

Benefits, drawbacks, and realities of operating within integrated 
and universalized healthcare systems 

Challenges of operating within a stressed and fragmented US 
healthcare system 

Forming collaborations and support systems within and between 
healthcare systems 
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Negotiating the roles of medical geneticists, genetic counselors, 
and non-genetics providers 

Paying for clinical sequencing and clinical research 

Sharing and recycling clinical and genomic data 

What are the differences (if any) between research, clinical care, 
and quality improvement? 

Building relationships with 
patients/research participants 

Building trust with patients, especially from minority communities 

Communicating with patients about research/clinical distinctions 
and navigating provider/researcher differences 

Engaging patients in the research process and being sensitive to 
their needs and motivations 

Providing incentives or clinical benefits to patients for 
participating in research 

Ensuring patient/research 
participant safety and 
wellbeing 

Determining variant actionability, utility, and returnability in the 
clinic and clinical labs 

Educating non-genetics providers about genetic medicine to 
prevent misuse and misinterpretation 

Ensuring appropriate clinical follow-up after genetic testing 

Generating, collecting, and applying evidence for variant 
interpretation 

Turning new genetic associations and technologies into clinical 
interventions 

Evaluating the role of genetics 
in medicine 

Considerations for using population-wide genetic screening in 
clinical care 

Deciding what types of genetics tests to order based on clinical 
indications 

Historical advancements in genomic research and technology 

Understanding genetic impacts on health and disease 
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Using the EHR to represent genomic data and streamline clinical 
genomics 

Visualizing the best (and worst) uses for genomics in medicine 
going forward 

Participant background Types of patients they see or environments they do clinical work 
in 

Types of research they are or were involved in 

Where they trained, in what, and for how long 

Protecting patient/research 
participant rights to privacy and 
autonomy 

Challenges and strategies for ethical oversight and consent in 
clinical research 

Protecting the privacy and security of clinical data 

 
Table 4.5. Semantic domains and associated axial codes after the fourth iteration of codebook 
development. 
 

4.4.3 Inter-coder agreement 

Overall ICA reached 75.1% for simple percent agreement between two coders on the four-

transcript test sample, and Krippendorf’s alpha reached 0.669 across semantic domains, which 

indicates acceptable agreement. Table 4.6 shows the coding frequency and agreement between 

two coders for all semantic domains, both individually and overall. At the time this work was 

submitted, results from a third coder were pending. The ICA results in future publications will 

reflect agreement between all three coders. 
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Semantic Domain Coding 
Frequency 

Simple Percent 
Agreement 

Krippendorf’s 
Alpha 

Building a collaborative learning culture 
in medical systems 

114 66.8% 0.730 

Ensuring patient/research participant 
safety and wellbeing 

52 53.3% 0.647 

Evaluating the role of genetics in 
medicine 

46 57.2% 0.697 

Building relationships with 
patients/research participants 

68 49.5% 0.636 

Participant background 
 

42 76.1% 0.856 

Protecting patient/research participant 
rights to privacy and autonomy 

13 37.9% 0.543 

Overall 335 75.1% 0.669 

 
Table 4.6. Semantic domain coding frequency and agreement between two coders on the four-transcript 
sample. 

4.5 Discussion 

From a purely topical standpoint, this study reinforces many of the GLHS needs identified 

previously by the IOM, such as EHR interoperability, analysis and CDS tools, patient-participant 

engagement, an aligned learning culture, and structural support for combined clinical and 

research activities. However, the rich personal and experiential data collected during interviews 

offers a more nuanced look at the relationships between facilitators and inhibitors of clinical 

research in the context of iterative learning cycles. In the following sections, we describe an 

emergent theoretical model that captures these nuanced relationships and offers a high-level 

understanding of the essential processes involved in clinically embedded genomics research. 
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4.5.1 The Five R’s of Clinical Genomics Research: Representation, Responsibility, Risks and 

Benefits, Relationships, and Resources 

 
Previous LHS models have depicted ethical, technical, and social considerations as precursors to 

rapid learning cycles [45,89]. In the case of clinical genomic research, we argue that these 

elements are not static precursors to successful clinical learning, but rather are integral elements 

of dynamic relationships between learning processes. There are five core elements identified in 

this study that collectively represent different ethical, technical, and social considerations of 

clinical genomic research: Representation, Responsibility, Risks and Benefits, Relationships, and 

Resources. We further group these elements into three distinct groups that describe how they 

interact with one another and with the existing rapid learning processes: negotiation processes 

(Representation, Responsibility, Risks and Benefits), binding factors (Relationships), and 

constraining factors (Resources). 

 

Figure 4.1 depicts an emergent theoretical model of rapid learning cycles in GLHS 

environments, where the data to knowledge, knowledge to practice, and practice to data 

processes are linked to one another through intermediate negotiations of representation, 

responsibility, and risks and benefits. The model also depicts community trust and learning 

cultures as the relationships that bind rapid learning processes to one another, while the structural 

and financial aspects of the healthcare system establish the bounds within which learning cycles 

must operate and adapt. The multi-directional, negotiative nature of the model suggests a 

constant reconstruction of what data, knowledge, and practice signify in the research and clinical 

contexts. 
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Figure 4.1. Schematic of the “5R” genomics-enabled learning health system conceptual model. 

4.5.1.a Negotiation 

This study originally sought to identify enablers and inhibitors of the data to knowledge process 

of rapid learning cycles in clinical genomics research, given that few studies had previously 

explored this topic in isolation. However, the interviews quickly revealed that it is not possible to 

separate knowledge generation from either data production or knowledge application when the 

work is being done in a clinical setting, with clinical data and clinical participants. When asked 

about the potential pros and cons of using clinical data for genomics research, discussions 
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naturally flowed both “backwards” towards the practice to data LHS process, and “forwards” 

towards the knowledge to practice LHS process, with neither direction seeming to take 

precedence over the other. In the former case, discussions revolved around the representation of 

clinical and genomic data in terms of quality, population characteristics, and sample size. In the 

latter case, discussions focused on the responsibility aspects of generating new knowledge within 

a clinical environment, where perceived and anticipated differences between research and 

clinical care imply different responsibilities of researchers, providers, and hospital systems in 

balancing the speed, evidence, quality, and safety of knowledge generation and testing. In both 

cases, discussions culminated in considerations of the risks and benefits that are constantly 

negotiated when conducting both research and clinical care, some shared and some distinct. 

These three types of negotiation collectively highlight the interconnectedness of rapid learning 

cycle processes and suggest that genomics-enabled learning cycles must be in constant flux as 

they evolve with the research and clinical enterprises. 

 

4.5.1.a.i Representation 

Interviewees universally agreed that EHR data is inherently messy and difficult to use for both 

clinical and research purposes, which has been well-documented in other studies [148–151]. 

Some commonly cited technical issues among interviewees were data missingness, difficulty of 

data entry, difficulty of data interpretation and extraction, redundancy, inconsistencies in medical 

terminologies or descriptions, and the sheer volume of both structured and unstructured data. 

However, they also tended to agree that EHR data was more representative of the “real world” 
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than many other types of data that could be used for clinical research, as Participant 16 

explained: 

…if you're trying to minimize ascertainment bias, if you're trying to get real world 
data, if you're trying to understand like, where, where people are, how they're seeing 
what that natural history is, what that patient journey and experience is, like, I mean, 
that's the real world, you know that that's the way it is. And so that's incredibly 
[emphasized] valuable. (Participant 16) 
 

Ideally, EHR systems would be redesigned to be more amenable to data representation for both 

research and clinical care, and the systems and devices that produce data would automatically 

integrate with EHRs. However, given the slow pace of technological development in medical 

information systems compared with that outside of healthcare, significant skill, time, and 

financial investment are needed to harness clinical data for research. Participant 1 captured 

several of the challenges of representing clinical data from the EHR: 

So doing any kind of any kind of research, when, when you're dealing with those types of 
data…you…are gonna have missing data, or you have to pay someone who knows 
enough to be able to abstract those data out of the chart, which is a pretty specialized 
skill. And, and which as a result can be pretty expensive. (Participant 1) 

 

The trade-off between EHR data being a less-than-perfect information source while offering a 

broader picture of the lived healthcare experience is a common conflict in clinical research, and 

one that has received considerable attention in the healthcare informatics community. As 

Participant 16 noted, they are “confident that…smart people are figuring this out together.” 

Arguably, the more pressing concern in genomics is the representation of diverse populations 

using clinically derived genomic data. While some research projects like CSER have actively 

recruited diverse populations for clinical genomic research [15], non-European populations are 

still largely unrepresented in genomic databases, which makes the potential benefits of precision 
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medicine far less accessible to individuals with diverse ancestral backgrounds [152]. Many 

interviewees voiced their concerns that certain populations in genomics would be “left behind” 

given the complex social and institutional conditions in the US that lead to underrepresentation 

in genomics research, including, but not limited to, systematic racism and the resulting mistrust 

in research and medicine, barriers in access to research and clinical care, and concerns about the 

privacy, security, and misuse of genomic data. Concerns about population representation are 

therefore inextricable from discussions of research engagement if precision medicine is to benefit 

the health of the entire population. 

 

Interviewees also discussed the necessity of collating rich clinical and genomic datasets across 

healthcare institutions for the sake of conducting statistically viable and representative genomic 

analyses. Especially in the case of rare diseases–or common diseases with rare variation–large 

sample sizes must be accumulated to achieve sufficient power. For example, research in rare 

cancers has historically been driven by cooperative groups that share clinical data across 

institutions, as Participant 1 described: 

…because especially once you get to rarer cancers, the only way that we have learned 
about the treatment of those cancers is through cooperative groups. Because that's the 
only way to accumulate enough information. (Participant 1) 

 

However, the barriers to sharing clinical and genomic data between, and even within, healthcare 

institutions are significant. There was little debate among interviewees that there are risks 

involved in sharing personal health information, but the degree to which those risks supersede 

the personal and/or scientific benefits of clinical genomic research was highly contested. Some 

interviewees argued that the current barriers to sharing data were unreasonable, given that many 
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patient-participants, in their experience, were willing to share their data between institutions, but 

that IRBs were not: 

And, and, and data sharing, too. That's, yeah, that's just absolutely crucial with this. 
And so yes, I mean, it's, it's the only way forward that I know [emphasized] of, and the 
barriers that we have erected between us and and that are really not smart. Much of it is 
due to an unreasonable set of fears that have been engendered by a lot of overreactions 
to genomics and genetics, and a lot of it is ignorance and fear from IRBs. (Participant 
7) 

 

Other interviewees took a more cautious stance, fearing that the risks of data breaches could be 

quite significant, especially for patient-participants who have been historically marginalized by 

the research and clinical enterprises. Participant 2 described the fears of patients in their 

institution’s catchment area: 

So this all comes down to the interests of the patient because why would the patient give 
you their genome? And in [city name], there's massive [emphasized] sensitivity about 
this. I've actually had patient groups in the last week, saying, Yeah, you want to do 
genomics in [city name]. But what you're doing is you're targeting people of color to get 
information that could ultimately be used to kill us. So that is from a very sensitive 
group who have been discriminated against traditionally and currently. But 
everybody is going to have a shade of that, along the scale of, you know, relatively 
benign to incredibly concerned. (Participant 2) 

 

Several interviewees discussed the possibility of using strategies like data anonymization to 

share data for research without risking the privacy of patient-participants, or continuing to share 

data in large, anonymized resources like gnomAD, ClinVar, the UK Biobank, and All of Us. 

While this is currently a standard practice to use these types of datasets for large scale genomic 

analyses, many interviewees recognized that there is a limit to the amount of clinical data that 

can be gleaned from anonymized datasets, thereby limiting the clinical scope of analyses. As 

Participant 4 described: 
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So it's just to say that we're all trying to create structures so people can do the…initial 
research, but at some point...in many [emphasized] of these circumstances, that research 
still requires a level of clinical information that's just not in the data, or is only in the 
data, when, with enough identifying information that you have to have further consent. 
(Participant 4) 

 

In clinical genomics, there is a constant negotiation between the scientific needs of the field for 

understanding the impacts of genomics on health and disease, and the need to protect the well-

being and privacy of the patient-participants who are meant to be the beneficiaries of research. 

The concept of representation in data systems is central to this negotiation. 

 

4.5.1.a.ii Responsibility 

The prospect of generating new genomic knowledge within a clinical environment invariably 

caused interviewees to consider the different responsibilities of researchers, providers, and 

hospital systems in constructing and using that knowledge. One element at the heart of these 

differences is the tension between medical genomics as a clinical indication-based specialty, and 

the need for population-level data for research purposes. Aside from payment concerns 

associated with population-level sequencing (which are discussed in the section titled, 

“Constraining factors”), there is significant concern among geneticists that ordering broad tests 

like genomes or exomes on a wider clinical population would lead to more false positives that 

could unnecessarily concern participants, or even lead to inappropriate clinical actions. As 

Participant 17 described: 

I think, to me, it depends on how you phrase it, and how you would implement it, but the 
way it is right now, we don't screen the population. I mean, there's already a lot of 
issues…with regular screening in terms of false positives. You know, this is I know, 
there's a lot of papers and publications that look at this a lot. And I'm not up on the latest, 
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but, you know, I still view genetic testing as a test that requires an indication… 
(Participant 17) 

 

Even if results from larger genomic tests do pick up variations that are not false positives, there 

are ethical questions surrounding whether those results must be returned to the patient-participant 

in a clinical setting. This is a particularly challenging dilemma in the field of pediatrics, where 

large-scale screening could potentially save years of diagnostic odysseys but could also result in 

diagnoses that might not be entirely clinically meaningful, but nonetheless change the course of a 

child’s life. Participant 17 described this challenge alongside their appreciation for the “huge 

range of human variation”: 

And I am not the type of geneticist who just sequences the world or sequences 
everybody, I have to have a good reason to decide to sequence a kid. You know, I had, 
I had a pediatrics mentor, who…told me this line, and it stuck with me, which is, you 
know, every kid has one chance to be normal. And after you, you go in and do 
something, their parents view them as not normal anymore. And I have a great 
appreciation for the huge range of human variation. (Participant 17) 

 

The prospect of delivering new genetic information to patient-participants is particularly 

controversial when the information is generated from a research study that is conducted using 

clinical data. Interviewees expressed a general sense of responsibility for divulging potentially 

clinically actionable information, but generally did not feel comfortable returning preliminary 

results that had not been functionally validated or backed by several publications. On the other 

hand, some interviewees recognized that more harm could potentially be caused by withholding 

information gleaned from clinical research than by providing information that could be 

potentially misleading. For example, Participant 4 described a situation in which a secondary 

research finding was identified using clinical data, and the finding strongly indicated that some 

patients in the dataset might have cancer. However, the patients were not consented to receive 
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research results, and the interviewee viewed the results as “potentially harmful secrets” that 

could needlessly endanger the wellbeing of patients. Other interviewees expressed more 

hesitancy, suggesting that the “right not to know” could be just as significant as the “right to 

know.” Participant 2 described this tension on the spectrum of pediatric and adult medicine: 

…it's very interesting when you start asking questions like the questions that we hear in 
genomics, like the "right not to know," which is a big thing in pediatrics for genomics. 
It's also you know, somebody who's a young woman, and they don't need to be starting 
their breast mammography for another 10 years, maybe just give them those 10 years. 
But you then put in the search term, "Right not to know, cancer." And it's a very, very 
different discussion, because obviously, it's a bit more acute. If you don't treat it, 
you're probably going to die. But you know, there are situations where there are some 
people who are probably sick enough anyway, that, you know, why would you tell 
them that they have cancer? And for some reason, people are much more inclined to 
say, You must tell them. And I wonder whether that's where we will go in, in genetics 
and genomics, or whether it's, I think that it's a really interesting area…to look at. 
(Participant 2) 

 

The possession of potentially clinically relevant information within a healthcare system–whether 

it was generated in the name of research or medicine–necessitates discussions about whether the 

information can or should be returned to the relevant patient-participants. A key factor in the 

returnability (and ultimately the clinical utility) of research-generated genetic variant information 

is the rigor of variant interpretation and validation. From a legal and procedural standpoint, 

interviewees noted that genomic results must be approved by a Clinical Laboratory Improvement 

Amendments Act of 1988 (CLIA)-certified diagnostic lab. However, they also noted that 

diagnostic labs do not necessarily interpret variants differently than research labs, and that 

standards for variant interpretation are remarkably difficult to implement. In fact, it has been 

well-documented that variant interpretation agreement between CLIA-accredited labs using the 

American College of Medical Genetics and Genomics and Association of Molecular Pathology 

(ACMG-AMP) published guidelines is around 35-50% [153,154]. There is a shared 
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responsibility between both researchers and clinicians to apply the best available evidence for 

variant interpretation, both for the sake of scientific credibility and patient-participant wellbeing: 

I think you have to have a standard of what the data [emphasized] is. There has to be a 
minimum standard of the data to decide what should be returned and considered 
clinically relevant. (Participant 13) 
 

However, many interviewees identified a paradoxical relationship between the need for 

community standards and the relative impossibility of applying those standards exactly as they 

were intended to be applied. Participant 7 described this paradox in the context of validity and 

utility: 

And it in the end is a judgment [emphasized] of a threshold of validity, both the gene 
disease validity, analytic validity is kind of simple. That's just not that hard. The gene 
disease validity is much more complex, and then the utility more complex still. And 
again, it's different for every disease and every gene. And one has to apply, has to 
genuinely endeavor to apply community accepted standards to that, even though 
you can't standardize it. (Participant 7) 

 

Ultimately, gene-disease associations and subsequent variant interpretations are a judgment call 

based on currently available evidence. This leads to a second paradox in the process of clinical 

genomic discovery: discovery validation and implementation requires accumulated evidence of 

validity and utility, but evidence of validity and utility are not fully informative without 

implementation. This lack of clinical evidence is a known issue in genomic medicine [155,156] 

and has been cited as one of the driving reasons for incorporating genomics into LHSs [8,157]. 

However, interviewees warned that research labs in LHS models would likely run into the same 

evidence paradox that geneticists and diagnostic labs run into every day in medical genetics 

practice. Providers, particularly clinician-researchers, who wish to push the envelope of genomic 
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medicine must make clinical judgment calls about new gene-disease associations that might be 

considered premature by some. As Participant 16 described: 

I've often described it as you know, you're building the plane as you're flying it, and 
you're trying to use the best evidence and the best data that you have, but you don't 
always have complete information. (Participant 16)  

 

From a research perspective, there is an incentive to use new genomic information for clinical 

decision-making in an LHS if there is a reasonable expectation that the information could 

positively impact patient outcomes, thereby increasing the evidence for its clinical utility and 

creating a positive feedback loop of implementation. However, a clinician’s duty is ultimately to 

the patient, and protecting the patient’s wellbeing often requires the use of a higher bar for 

evidence of safety and utility. The responsibilities of researchers and clinicians to their roles are 

not mutually exclusive in this regard, since it is never the intention of the researcher to cause 

harm to the participant. Yet the risk benefit calculation appears to operate differently when the 

subject is a consented research participant, as opposed to a patient receiving routine clinical care. 

 

4.5.1.a.iii Risks and Benefits 

During interviews, discussions of data generation and knowledge implications naturally tended 

to shift to contemplations of the risk-reward tradeoff for conducting genomic research in a 

clinical setting. On the reward side, many interviewees included historical accounts of how 

genomic research has benefited both basic science and understandings of human health and 

disease. Genetic research in cancer was often cited as a shining example of rapid learning in a 

healthcare context, as described by Participant 10: 



90 
 

 

And, you know it, reveals, you know, much of what we know about cellular signaling 
pathways started from studying cancers where those pathways were aberrantly 
activated, and that revealed the whole thing cascade of genes that then turn out to be 
important, not just in cancer, but in normal cellular processes and in development. 
(Participant 10) 

 

However, there is a general understanding in research that neither the risks nor the benefits of 

research can be fully known, although there are protections in place to mitigate potential harms. 

The differences between ethical oversight of research and ethical oversight of clinical care were 

therefore a cause of concern for interviewees when considering oversight of clinically embedded 

research. Participant 1 noted that these differences might warrant the use of ethical expectations 

that are more aligned with clinical standards in an LHS: 

…it's harder to do research or there's more oversight required for research [because] 
we don't know as much about potential harms. And we don't know as much about 
the potential benefits. So [in an LHS] there does have to be, I think, an establishment 
of we there's a very strong expectation, this is going to work in certain populations. 
(Participant 1) 

 

Participant 7 noted that research protections were largely established as “a reaction to 

malfeasance” in the aftermath of horrific, inhumane, and unethical medical research studies, such 

as the medical experiments in Nazi Germany and the Tuskegee syphilis study. Resulting ethical 

frameworks like the Nuremberg Code and the Belmont Report have set the expectation among 

researchers and participants that participants provide their voluntary consent to be involved in 

research, and that researchers and ethics committees do everything in their power to limit harms 

while maximizing scientific benefits. The expectation is that potential harms are communicated 

to participants, but not that potential harms are eliminated altogether. In the context of clinical 

medicine, however, ethical expectations are more straightforward yet less codified than in 

research. Interviewees frequently noted historical attempts to codify expectations of protections 
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and potential harms in clinical research, but no such attempts were mentioned for clinical 

medicine because the standard expectation is that the clinician has a duty to minimize harm and 

maximize benefit to the patient at all costs. However, medicine is inherently not risk free, and 

patients are at risk for many of the same harms they might experience as clinical research 

participants. It is instead the expectation of minimal to no harm among patients, and the sense of 

duty among clinicians, that separates care on the premise of medicine from care on the premise 

of research. There are constant risk-benefit calculations in genetic medicine, especially when 

clinicians must use partial information to make clinical decisions, as Participant 16 described: 

So I just, I guess every time I balance risk and benefit and how important it is to the 
clinical care, and if there's any other way of validating what I'm doing. (Participant 16) 

 

There is an undeniable history of harm in clinical medicine, but those harms are largely classified 

as unintentional given the sacrosanct relationship between patient and provider, as Participant 1 

noted: 

…we have historically done some very foolish things, things that seemed reasonable 
at the time, and were very well intentioned. But in retrospect, were you know, didn't 
have the desired outcomes. (Participant 1) 

 

Risk-reward calculations in genomics-enabled learning healthcare are therefore highly dependent 

on the expectations of patient-participants, and the relationships between them and clinicians and 

researchers (and clinician-researchers) that shape those expectations. The following section 

describes how relationships are the focal point of all LHS processes and intermediate 

negotiations. 
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4.5.1.b Binding factors 

The processes of negotiation that interviewees collectively described were all united by 

considerations of the relationships between those involved in learning healthcare. Although it is 

simpler to abstract the entities involved in LHS process into representative systems and 

institutions, systems and institutions are ultimately composed of people whose interactions with 

each other both form new meanings within systems and are products of the systems themselves. 

 

In the case of representation, relationships between patient-participant communities and people 

who represent the clinical research and clinical medicine enterprises are the foundation of the 

local and shared clinical and genomic data systems that learning healthcare relies on. Without 

deeply rooted, trusting relationships between LHSs and the communities they are seeking to 

serve, genomic medicine will not advance in a way that benefits populations equitably, as it 

must. Interviewees suggested several ways to build these relationships, such as involving a more 

diverse and culturally sensitive workforce in patient-participant engagement, as Participant 6 

explained: 

Yeah, I mean, like, if you're, if you're going to be recruiting from or doing this testing, 
you know, at the safety net hospital where most of the patients are Latina. And then you 
have a…your research coordinator is a, you know, is Latina also, comes from that 
big community and can sort of explain why this is important. In Spanish. In a way 
that makes sense. (Participant 6) 

 

Some interviewees also emphasized that community-led data sharing efforts were likely to be 

more successful, at least at first. Data sharing for the purposes of research could be managed 

more directly by communities, as Participant 16 noted: 
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And I've wondered to myself, is that a way to dip your toe in and be able to get 
movement and when you [share data], of course, to have it from people in the 
community who are doing this. So they own the data, they have the grants that do 
this, they have the benefits, they govern it, they watch it, they make sure that people are 
using it responsibly, you know what I mean, but it's coming from the community for 
the community, in a way with limitations very much built into it. (Participant 16) 
 

Participant 16 also emphasized that building trust with patient-participant communities cannot be 

rushed, and that preliminary steps such as sharing anonymized might help gain traction with 

communities, even if the ultimate goal is to share identifiable EHR data to achieve the full 

potential of learning healthcare: 

…and it'll have to be staged. If you can start with [sharing anonymized data] and then 
build the trust and show that you're a responsible partner, you know, over maybe 20 
years, but you know, over periods of time, can you build trust. (Participant 16) 

 

The topic of informed consent for participation in clinical research was a recurring discussion 

during interviews, and the consensus was that conducting consent in stages throughout the 

learning process was preferable to obtaining broad, up-front consent from patient-participants, 

but that conducting consent this way was impractical for most health systems. Even if staged 

(i.e., dynamic) consent were more practical to implement, some interviewees noted that patient-

participants might not want to be repeatedly asked for their consent to include their clinical 

and/or genomic data in new types of studies in an LHS, provided there is sufficient trust between 

the patient and the health system conducting the research. One interviewee who works at an 

integrated health institution that routinely conducts genomic research said of their patient-

participants: 

…there was sufficient trust given that, you know, we, in many cases, because of the 
nature of our service area, have long standing relationships with the individuals that 
we care for. There's a very high degree of trust. And so they, when they heard about the 
overview of the program, they said, We think you guys have the knowledge to be good 
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stewards, and do right by us. And so they were very comfortable with a one time 
overarching broad consent. (Participant 20) 

 

The comfort level of patient-participants when sharing data for clinical research and consenting 

to their data being used for potentially unforeseen purposes, is highly dependent on their 

relationship with the local research and healthcare enterprises. If identifiable clinical and 

genomic data were to be shared across healthcare institutions, this symbolic relationship would 

need to extend to the research and clinical enterprises on a national scale. 

 

In the process of producing new knowledge within a healthcare environment, several types of 

relationships underpin the notion of responsibility for both scientific and clinical excellence. 

First, the question of how geneticists, genetic counselors, and non-genetics healthcare providers 

should work together to order, interpret, and communicate genetic testing results (whether in the 

name of research or clinical care) was a topic of consistent disagreement. Although most 

interviewees acknowledged the inevitability that the demand for genomic medicine will likely 

expand beyond the capacities of genomic specialists, they often expressed discomfort with the 

idea of all healthcare providers ordering and interpreting genetic tests, especially if the results are 

preliminary or not backed by a wealth of experimental evidence. However, they also 

acknowledged that certain genetic conditions will become the “domain” of other specialties 

when the condition has specific indications within that medical specialty, as Participant 19 

described: 

And so for a lot of patients, if they have already seen a neurologist who said that this is a 
myopathy, or a neuropathy, like, I'm not going to come in and change that diagnosis 
after meeting them for 15 minutes, compared to a neurologist who has followed 
them over time has sent their own studies has their own area of expertise in that 
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area. And so if that person needs a neuropathy panel, because a neurologist says they 
have a neuropathy, I feel like that, that's kind of their lane. (Participant 19) 

 

Along with genetics becoming a routine practice in other medical specialties, interviewees 

imagined that genetic specialists would be more highly involved in the cases that eluded current 

knowledge of genetics. In this way, genetics specialists would transition into more of a 

“research” role when working with patients, for the sake of solving difficult cases and pushing 

the boundaries of what is known in genomic medicine, as Participant 16 noted: 

I still think there are going to need to be at the core...people will, there needs to be people 
that are going to be at the cutting edge and think about the first way of doing things. And 
those are likely to be people who are still, you know, I think of them as the faithful…who 
know enough about the broad field to be able to know what you can pull in and how to 
think about this broadly and how to think about the implementation challenges and 
not do things recklessly. So those first movers, I think, largely, are going to be, you 
know, medical geneticists. (Participant 16) 

 

During interviews, discussions of the relationship between genetics specialists and non-genetics 

care providers then naturally shifted to the question of the researcher-clinician relationship. In 

the field of genomic medicine, it has long been the case that geneticists play a dual research-

clinical role in the sense that many of their patients present with indications that suggest a 

genetic etiology of disease, but for which the current body of evidence does not provide a clear 

diagnosis or treatment pathway. The genetic provider must then make judgment calls to 

understand the case and make the best decisions possible for the patient, as Participant 11 

described: 

You know, one of our previous chairs once said, that we should not see a single patient 
in our genetics clinic that was not a research subject. And what he meant by that was 
that everybody [emphasized] that we see, we should be thinking about in a way that 
we learn from them, and we move forward from them. And that if you know that, that 
we certainly have still questions to be answered about the diseases with which we are 
dealing or the situations with which we're dealing or the treatment that we, that every 
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[emphasized] single patient should be, should provide something that most moves us 
forward. And I think that that's actually true. (Participant 11) 

 

In this case, the definition of research is “unofficial” in the sense that research is defined as a 

way of thinking or approaching a clinical problem. The patient-participant-provider relationship 

becomes more complicated when the research is “official,” i.e., the provider is involved in an 

IRB-monitored research study and using clinical data for research purposes. Interviewees who 

were involved in both research and clinical care in the official sense mentioned that they must be 

very transparent about their dual roles when interacting with patients, so as not to compromise 

either the patient-provider relationship or the participant-researcher relationship. As Participants 

1 and 5 described: 

I, when I've done this with patients that I have seen in both a clinical and research 
perspective, I try to be almost almost ridiculously clear about, I will, in part, probably 
partially my pediatric training, but I will say, Okay, I'm taking off my clinician hat now 
and, I will like mime I'm taking off the hat and I'm putting on my researcher hat. And 
in this point, I'm talking about things where I have less certainty about what it 
means, I'm talking about things that are completely optional for you to participate in, 
it's not going to affect your, you know, it's not going to affect how I would take care of 
you as a as a clinical patient. And I do that, because I really want to emphasize those 
points. (Participant 1) 
 

And so I think this is like, the critical thing you always have to imagine is that when 
you're doing research, you have [emphasized] to truly try your hardest to disentangle 
your hat as their provider from your hat as their researcher, because those are two 
very, very different sort of roles that you're in, and they sometimes have conflicting 
incentives. (Participant 5) 

 

As described in the previous section (“Responsibility”), there are different expectations of the 

patient-provider relationship than of the participant-researcher relationship, in part due to 

different historical contexts. Even if the potential risks and benefits of participating in genomics 

research are not entirely different from those of receiving genomics-based clinical care, the 
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symbolic meanings of research and clinical care–and the implications for the relationship 

between the patient-participant and research and healthcare professionals–must be considered 

when engaging patient-participants in clinical research. 

 

However, in a learning health model, those conducting research and those providing clinical care 

are not necessarily the same people. Although it is useful for dually trained clinician-scientists to 

be involved in the rapid learning process, it is not feasible for all people who are conducting 

research to also be trained in medicine, and vice versa. Instead, the boundaries between 

clinicians and researchers must be broken down to achieve seamless clinical research integration. 

While there are certainly structural facilitators for increasing collaboration between research and 

clinical personnel–such as dedicated time and funding for such collaborations–the relationships 

themselves are ultimately not dictated by structure or policy. Instead, they are driven by a shared 

curiosity and excitement for learning, mutual understanding of peoples’ respective roles and 

expertise, and passion for the wellbeing of patient-participants and populations. These are 

essential components of what has previously been referred to as a “continuous learning culture” 

in an LHS (Davis et al. 2020, p. 3) [132]. Participant 18 described the researcher-clinician 

relationship as such: 

I think at academic places, there's probably a lot of collaboration between the clinical 
people and the researchers, because they both need each other probably, right? 
Like, the researchers need the clinical people for samples and for, you know, clinical 
information and things like that. And I think the clinicians, it's nice for them to have the 
researchers involved to help them best care for their patients and learn new things 
about them. (Participant 18) 

 

Fostering a continuous learning culture is also highly dependent on the relationship between 

institutional leadership and those who work at a clinical research institution. Because it is not 
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typical for researchers and clinicians to work in a truly integrated fashion with one another, the 

nature of those relationships should be facilitated by a leadership team with guiding values, as 

Participant 14 described: 

And I find…that people are resistant to change overall, you know, if it's not broken, 
don't fix it. Right. It's more, more that and in leadership, I see this happen a lot, where 
you have to get the team motivated for the why [emphasized] before you even start 
doing anything. And that takes a lot of TLC [laughs]. It takes a lot of people owning 
it before you start kind of shaking their trees, you know. (Participant 14) 

 

A key part of facilitating these collaborations is integrating ethical oversight of research and 

clinical care. When considering the potential risks and benefits of clinical genomics research, 

IRBs determine the scope of research, whereas a clinician’s commitment to the patient 

determines the scope of clinical practice. Many interviewees expressed frustration with the 

process of obtaining IRB approval for conducting clinical research, acknowledging that although 

IRBs were in place for very good reasons, they sometimes constricted clinical research to the 

point of complete obstruction. As Participant 11 described, the discordance between traditional 

ethical oversight of research and the goals of clinical research raises questions of whether 

traditional methods of research oversight are truly protecting patient-participants, if potentially 

life-saving research is obstructed completely: 

Well, I think…the IRB whose mission is, is laudable…on the ground is, as one of my 
colleagues said, inimical to research. It is so [emphasized] time consuming, and, and 
frustrating. And I think that that, I mean, sometimes you think I'd like to do this project, 
but I'm just not going to do the IRB. So I'm not going to do the project. It's just, it's 
just too much work…[provides example]. So that's the kind of thing where you go, You 
know, seriously, guys? Who are we protecting here? What are we doing here? 
(Participant 11) 

 

However, some interviewees cited instances in which ethical oversight of clinically integrated 

research worked particularly well at their institution. Participant 12 described the role of one 
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person who facilitates the relationship between the institution’s IRB and the clinicians and 

researchers leading clinical research studies: 

…she kind of coordinates human subjects, including for studies that employ genomic 
data. And that's all she does. And she has kind of core responsibilities, and then people 
can pay her for the hours that she devotes to particular projects. And she stays abreast of 
all this and has a strong working relationship with the IRB. So the interface with the 
IRB has been pretty good at [institution name]. And I would say that that's not been a 
barrier. In general. It's handled pretty well. (Participant 12) 

 

If there is a strong relationship between IRBs and those leading clinical research studies–either 

through a facilitator who has working knowledge of and relationships with the ethical and 

clinical research teams, or through the people who compose both teams–the perceived 

discordance between the responsibilities of ethics committees and the responsibilities of those 

conducting clinical research and working with patients can begin to be resolved. However, the 

two entities must be willing to evolve with one another as the pace and clinical implications of 

genomics research continue to change. 

 

4.5.1.c Constraining factors 

Systems are composed of people. However, people interact with their environments in ways that 

are not extricable from the characteristics of the larger systems in which they operate. In general, 

the US healthcare and research enterprises are financially separate from one another, which 

dictates the ways in which researchers and healthcare providers can bill research and clinical 

activities. The financial separation necessitates distinguishing research from clinical care, even if 

there is significant overlap between the two approaches in their processes and intentions. There 

was near consensus among participants that achieving true research-clinical integration was 
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nearly impossible without merging payers and providers. Participants 16 and 17 discussed this 

issue in the context of billing fraud, and the ways in which billing dictates the boundaries of 

clinical practice: 

Well, I think that's actually the most sensitive issue. And I think it has, and I give people 
the benefit of the doubt, but it has to do with billing fraud, right? And there have 
historically been cases, right, where there were issues of double dipping. So a single 
patient where they were double billed, their insurance was billed for something and 
then a grant was billed for something and the institution was double dipping, and 
double billing, and, you know, concerns on both sides, that there was fraud being 
committed. And so if there's any place where people are really [emphasized] 
concerned, it's actually around that issue. And, anyway, it's just, that's the way I've 
seen it evolve in terms of people being very, very careful about that issue specifically. 
(Participant 16) 

 

…so when you want to fix a lot of this stuff, all you...it's a very simple solution, all you 
need to do is radically change the healthcare system of the United States, probably 
into a single payer system. And that’ll fix everything. So I'm just kidding. But I mean, I 
do think that's kind of a part of it, like, you want to know, what the barriers are, is that 
like, a lot of our practice of medicine ends up being dictated by the billing. 
(Participant 17) 

 

Because the US healthcare system is driven by a mixed financial model of privatized health 

insurance coverage and publicly funded insurance coverage, there is little incentive for payers to 

invest in clinical genomics research. As several interviewees described, different payers are 

consistently aiming to pass costs off onto one another because it is very likely that patients will 

switch between insurance providers throughout their lifetime. Single payer models have the 

luxury of deciding how funds get distributed between research and clinical activities, whereas 

separate payer-provider models require that funding for research come from an entity other than 

the healthcare institution. This results in a disincentive for healthcare payers to invest in research 

that could potentially improve the efficiency of care and decrease costs in the long run, since 
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those cost benefits will likely benefit a different insurance provider, as Participants 7 and 20 

described: 

And so, in our healthcare system, of course, everyone is trying to pass off costs onto 
someone else. That's how the healthcare game is played, right? Etna is hoping that 
Cigna will pay for the genome so they don't have to. Now in a country like England, 
where you have a national health service, they're not playing that game. And that's 
why they're so far ahead of us. And they're thinking, look, we own these people's health 
care for their entire lifetime, every problem, every healthcare problem they have until 
they die, is our [emphasized] problem. How are we going to address that problem? 
Well, one of the solutions to that is to know as much about their health care liabilities 
as you can, because they're all your problem, you might as well, you're better off 
knowing. Whereas Cigna says, I don't want to know, because odds are in five years, 
they're going to be on somebody else's insurance plan. And it's not my problem. 
(Participant 7) 
 

But if you're parsed out, if you have the insurer over here, and the hospital over here, you 
can't play those games, everybody's out to try and maximize the margin that they're 
[emphasized] making. And so the insurance says, Okay, we're going to impose these, 
you know, y'all have to do these guidelines. The hospitals lose money, the insurance 
company is great. And in other situations, you know, the hospitals do stuff that, you 
know, costs insurance companies money, and I mean it's just this insanity, but it is our 
system. (Participant 20) 
 

The mixed insurance model in the US also propagates the need to maintain indication-based 

testing for genomic medicine, because insurance companies generally do not reimburse large-

scale genomic tests without having a clear clinical indication for doing so. Therefore, while the 

tension between medical genetics as an indication-based specialty and the need for population-

wide research genomes and exomes is partially driven by the Bayesian logic of limiting false 

positives, it is also exacerbated by the fact that genomes and exomes are not routinely collected 

due to insurance limitations. If one of the goals of learning healthcare is to use clinically 

generated data for research purposes, this payment model limits the number of patient-

participants whose data can be used for research, and may also limit the ways in which the 
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existing data can be used for research. For example, Participants 11 and 19 noted that insurance 

companies must be “convinced” both of the clinical appropriateness of ordering a genomic test, 

and of the utility of conducting research using that data for the sake of maximizing the insurance 

company’s profit: 

And if we're, you know, if we get it under clinical [emphasized] dollars, it's because 
it's clinically appropriate to do but you might do something with that information 
that would be research based. So for example, we did exomes in 27 people 
sequentially, because they were indicated. And the outcomes were, we got four results. 
And you might say, Okay, let's write a paper about screening in the clinic. And what's 
going to be, you know, where are we likely to get results? And where don't we get 
results? Or what are the hitches in getting that testing done? Or what did I, is it research if 
you go, I'm writing a paper about how insurance companies dealt with saying yes or no to 
getting exomes? So you know, it's, you know, if the insurance company covers it, it's 
because we've managed to convince them that it's clinically appropriate to do so. 
(Participant 11) 
 

I love [emphasized] research genomes and just the availability of, kind of being able to 
really look at the data in new and different ways. But for things like my clinical utility 
question, where we're trying to show the like, the, both the utility but also the financial 
aspects and the economic utility of genome sequencing, I think we have to think about 
the clinical arm of that. And so if you're trying to say that insurance should pay for 
this, then you need to model your study around the product that insurance is 
getting. (Participant 19) 

 

An additional layer of complexity in the discussion of healthcare and research reimbursement is 

the question of how funding should be distributed within and between research and clinical 

efforts, regardless of the source of funding. Interviewees agreed that money was a relatively 

finite resource, and that funding limitations informed many of the cost-benefit tradeoffs that are 

routinely made in medicine. There is a spectrum of costs in clinical testing and management, and 

within that spectrum there are patients on their own spectrum of lowest clinical need to highest 

clinical need, as Participants 17 and 6 described: 
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I heard someone give a talk and they said, they were talking about a health care system 
and they said, Well, no one's healthy, they don't care, and it's certainly not a system. 
And I think that's, I think with something like genetics when you get into tests that are 
really expensive, it's unfortunate when they get overused because every health care 
dollar comes from someplace else. (Participant 6) 
 

And, you know, when you ask, I don't think that research and, and clinical 
management are two different things. But when it comes to genetic testing, we do 
make a big distinction between them, because, you know, we have, we don't have 
enough money for everyone right now to get everything that they need. So we have to 
ration it out to the people who need it the most. (Participant 17) 

 

While the costs of exome and genome sequencing have dropped significantly in the past decade, 

and will continue to drop, interviewees expressed concerns that obtaining population-wide 

genomic data would overwhelm the healthcare system in terms of the follow-up implications of 

that data. Providers have a responsibility to provide the best care possible to their patients given 

the best possible information, but the implications of having the best possible data for all people 

in a healthcare system are morally sticky when there are limited resources to ensure appropriate 

clinical follow-up. As Participant 8 described: 

…if you have a population of 700,000, and one in 100, or one in 200 has a BRCA 1 or 2 
pathogenic variant, what does that mean when you identify all those patients, in terms of 
the bolus that's going to come to your surgical teams, to your screening teams, and 
all of that…so I've seen extensive spreadsheets, about, you know, people being so 
concerned about what that bolus is. (Participant 8) 

 

Finally, the ways in which clinical and genomic data can be shared for research are partially 

dictated by the national funding and data governance model. In a monolithic system where data 

is shared across many participating institutions, it is easier to conduct population-wide research 

using those data. Interviewees cited programs like Deciphering Developmental Disorders (DDD) 

in the UK as examples of national research projects that have harnessed vast repositories of 
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clinical and genomic data shared across a nationalized health system, and subsequently 

contributed potentially clinically actionable discoveries at a rapid pace: 

And so the huge GWAS studies…which might have over a million participants, are only 
possible in large governmental health care models that we don't have in the states. 
(Participant 12) 

 

However, as previously discussed, the legal, technical, and financial aspects of sharing clinical 

and genomic data are far from the only challenges of sharing data. Arguably, the more pressing 

challenge in the US is gaining the trust and willing participation of the people whose data would 

be shared both within and across institutions. In this way, there are constant interactions between 

the structural, ethical, and social aspects of conducting clinical research that necessitate a 

continuous process of evaluating the local and national ideas of what healthcare and research 

stand for as institutions. 

 

4.5.2 Dynamic meanings of data, knowledge, and practice 

Tensions at the research-clinical interface are at the root of the challenges in a GLHS model. 

From the symbolic interactionist perspective, “language and symbols play a crucial role in 

forming and sharing our meanings and actions” (Charmaz 2014, p. 262) [25,158]. Interviewees 

offered several alternate definitions of research and clinical care to explain the motives and goals 

behind them. Phrases such as “[studying] a question,” “[increasing] the knowledge for the field 

as a whole,” “[hypothesizing] something,” and “[doing] something novel” were used to describe 

research. The only definition of clinical care that was offered was “trying to save [a] life.” The 

collection of definitions that describe research is not necessarily separable from the Hippocratic 
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oath of medicine when the goal of research is to improve human health. External structures may 

constrain clinical research integration, but people with a common goal can work together to 

adapt to structural constraints, as the symbolic interactionist perspective suggests: 

Structures exist and persist but some individuals may resist, circumvent, or ignore 
these constraints or use them for their own purposes. Institutionalized values and 
practices precede and constrain individuals and set the conditions for possible actions, 
although how they respond to these conditions can vary (Charmaz 2014, p. 269) [25]. 

 

Genomic medicine may not be the singular saving grace of humanity, but if it is guided in a 

direction where the research is well-designed, clinically relevant, and representative of all 

populations, it can vastly improve medicine. Participant 16 described their vision for the future 

of genomic medicine as follows: 

So I do have this fantasy, that I'm trying to make reality, but this fantasy that the next 
generation will grow up differently. And so it'll start with the diagnosis, early 
diagnosis at a time when you can actually prevent and treat conditions. So it won't just 
be reactive, but it'll be more proactive. (Participant 16) 

 

4.6 Limitations and future work 

Although the data gathered during this project were in-depth for each participant, a relatively 

small number of participants were interviewed. However, code groups did appear to reach 

theoretical saturation after about 15 interviews, which indicates that including a larger number of 

participants may not have altered the dataset significantly. A lack of racial and ethnic diversity 

among interviewees was also a limitation of this work, given that 80% of the participants self-

identified as White. While this is reflective of an overall lack of diversity in the human genetics 

and genomics workforce [159], efforts should be made to include a diverse group of geneticists, 

patient-participants, researchers, and other stakeholders in future conversations. It is also 
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important to recognize the role of the primary investigator (K.F.) in this project. Although the 

final model was grounded in the available data, the interpretation of those data was highly 

dependent on the ways in which the primary investigator interpreted and synthesized the data. 

The model presents one possible interpretation of the data, but there are many more possible 

interpretations. 

 

4.7 Conclusion 

The conceptual model developed during this study offers a novel approach to understanding the 

research-clinical interface in genomics. The tensions at the interface of clinical care and research 

in genomics are the basis for the GLHS model. They manifest in questions of data and human 

representation, in questions of ethical and occupational responsibilities, and in questions of risk-

reward tradeoffs. They are embodied in the real and symbolic relationships that people form as 

they occupy roles that are created by and for them. In the end, the research-clinical interface is 

defined by those who participate in constructing its meaning and is bounded by the structures 

and cultural expectations that emerge from history to right historical wrongs. In the next chapter, 

we will demonstrate the power of using merged clinical and genomic data for gene-disease 

association discoveries, using C. diff. infection as a clinical use case. These types of studies 

could be conducted on a routine basis in LHS environments and could rapidly offer insights into 

potential biological mechanisms and treatment targets for common and complex diseases. 
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CHAPTER 5: DISCOVERY OF GENETIC RISK FACTORS FOR CLOSTRIDIOIDIES 

DIFFICILE INFECTION USING MERGED CLINICAL AND GENOMIC DATA (AIM 3) 

5.1 Introduction 

One major goal of integrating research and clinical care in genomics is to more rapidly and 

accurately detect new gene-disease associations, which are critical for advancing genomic 

medicine. In contrast with rare monogenic disorders, susceptibility to common health issues and 

diseases like diabetes and hypertension is primarily driven by multiple genetic and 

environmental factors [160]. Characterizing gene-disease associations is an important first step in 

identifying causal variants associated with complex diseases, and ultimately in developing 

targeted therapies and treatments for those diseases [161]. Genome-wide association studies 

(GWAS), which screen for gene-disease or disease-trait associations across the entire genome 

without a prior hypothesis, are commonly used to detect new associations [162]. Larger sample 

sizes, enhanced genome annotations, and improved sequencing and analysis technologies are 

expected to drive the prevalence and impact of GWAS. Additionally, analyzing genetic data with 

EHR data can allow for richer and more cost-effective GWAS [36]. Research programs like the 

Electronic Medical Records and Genomics (eMERGE) Network have demonstrated the utility of 

using EHR data to detect genetic loci associated with conditions like hypothyroidism and type 2 

diabetes [163–165] and with clinical traits like erythrocyte sedimentation rate and white blood 

cell count [166,167]. The network has developed and validated 68 clinical phenotypes across 

multiple EHR systems since its inception in 2007 [16]. 
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CDI is one such clinical phenotype developed by the eMERGE Network. In this aim, we use 

merged genetic and clinical data from the eMERGE Network to conduct a logistic regression 

based GWAS of CDI cases and controls to identify common genetic variants associated with 

higher risk of developing CDI. We also demonstrate the utility of using clinical data for gene-

disease association studies and provide a practical example of clinical genetic discovery in 

action. 

5.2 Related work 

5.2.1 History and future directions of gene-disease associations 

Genetic association studies are designed to identify genetic variants that are associated with a 

particular disease or phenotype, typically by comparing genotypes in affected and unaffected 

individuals using a case-control design [168]. Since the advent of large-scale genotyping and 

genomic sequencing, it has become clear that genetic contributions to human health and disease 

are extremely variable, especially in the case of complex and common disease [169]. 

Evolutionary forces have generally caused variants with large phenotypic consequences to be 

removed from the population and have allowed variants with small individual phenotypic effects 

but large cumulative effects to reach higher population frequencies [161]. Although there are 

exceptions to this trend, it has nonetheless impacted the ways that variants associated with rare 

and common diseases are typically detected. Because the variants contributing to rare monogenic 

(Mendelian) diseases with severe phenotypic effects are most commonly found in coding regions 

of the genome, exome sequencing is commonly used to determine the causal variants for 

Mendelian diseases [170,171]. Detecting the causative gene typically involves duo, trio, or 
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extended family sequencing [172]. Common disease risk, on the other hand, is driven by many 

variants that may or may not be in coding regions of the genome, which necessitates the use of 

genome or DNA microarray data for risk variant identification [173,174]. GWAS are currently 

the standard method for detecting variants associated with non-Mendelian disease because they 

offer a relatively unbiased approach to identifying common marker variants in disease [175]. 

Although other methods must be used to infer variant causality and identify rare variants 

associated with common disease, GWAS results lay the groundwork for targeted analyses of 

potential genetic drivers in many common diseases [176]. 

5.2.2 Gene-disease associations using electronic health record data 

Given the small effect sizes of variants associated with common diseases, large sample sizes are 

required to run sufficiently powered GWAS [177]. Traditionally, GWAS are conducted using 

“purpose-built cohorts” where high-quality genetic and phenotypic data are collected using “self-

report questionnaires and/or clinical staff” (Wei & Denny 2015, p. 1) [178]. Although the costs 

of large-scale genotyping and genome sequencing have decreased over the past decade, this 

prospective approach can be time-consuming, expensive, and yield insufficient sample sizes. 

Large, pre-existing biorepositories, like the UK Biobank [74], can be used to conduct genetic 

association studies much more cost-effectively, and using sufficiently large patient cohorts [174]. 

Although public repositories like the UK Biobank typically offer granular phenotype information 

like International Classification of Disease (ICD) codes, complex phenotypes may not be 

accurately captured using only a de-identified subset of clinical data [179]. Linking genetic data 

with EHR data has therefore been proposed as a cost-effective and clinically relevant approach to 

prospective gene-disease association research [36,178]. 
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Although EHRs are not immediately amenable to research due to data quality and accessibility 

limitations, they contain a wealth of information that can be extracted using an interdisciplinary 

set of tools. Because most EHRs were designed to support billing and routine clinical care, rather 

than research, they support a patchwork of structured and unstructured data in the form of billing 

codes, laboratory test results, ICD diagnosis codes, procedure codes, prescription information, 

and narrative reports [180]. Each of these data types can be leveraged to construct rich clinical 

phenotypes that can be used in case-control GWAS. The eMERGE Network has led this field of 

research by demonstrating the value of iterative phenotyping algorithm development and 

validation, during which informaticists, clinical content experts, epidemiologists, and geneticists 

collaborate to refine the algorithm and enhance its accuracy [181]. EHR-driven genetic analyses 

are expected to become more routine in the coming decades, but additional studies demonstrating 

their utility and laying out best practices in EHR phenotyping are required to advance research in 

this area [36]. 

5.2.3 Pathophysiology and genetic susceptibility to C. diff. infection 

CDI is the leading infectious cause of nosocomial diarrhea in North America and is associated 

with a high global burden of disease [37]. Once acquired, this reemerging, Gram-positive, spore-

producing bacteria secretes a toxin that causes watery diarrhea, and can progress to severe 

pseudomembranous colitis, toxic megacolon, and sepsis [182]. In the early 2000s, the emergence 

of C. diff. strain NAP1/BI/027 led to increased incidence, prevalence, morbidity, and mortality 

associated with CDI [183,184]. This epidemic strain produces more toxin, has a higher resistance 

to common treatments, and causes more recurrent infections than other common C. diff. strains. 

Despite aggressive antibiotic treatment (e.g. vancomycin, metronidazole) and fecal transplant 
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[185,186], outcomes of NAP1/BI/027 CDI include significant morbidity across all age groups, 

5% mortality in individuals older than 65 years of age, and an estimated $1.1 billion dollars per 

year in health care costs [182]. 

 

Asymptomatic colonization with C. diff. is common among patients in acute care and long-term 

care settings, with an estimated prevalence of 3%-26% in younger adults and 5%-7% in older 

adults [187]. Progression from C. diff. colonization to acute CDI is generally associated with one 

or more risk factors [188], including new exposure to C. diff., older age, hospitalization or 

nursing home residency, chemotherapy, severe comorbid illness, proton pump inhibitor, 

transplant medication or corticosteroid use, or prior use of high-risk antibiotics such as 

fluoroquinolones or cephalosporins [189–191]. Antibiotic use and proton pump inhibitor use are 

also risk factors for recurrent CDI [192]. Despite having one or more risk factors, some C. diff. 

carriers either do not develop CDI or successfully clear an initial infection, while some 

individuals are burdened by severe and/or recurrent CDI. This differential susceptibility may 

have a genetic component, given that genetic variation underlying susceptibility to infectious 

disease is well documented for other infections, including enteric infections such as Helicobactor 

pylori [193]. Identification of genetic susceptibility loci could yield methods for prevention 

and/or treatment of this important pathogen [194,195]. 

 

Previous studies have identified candidate risk loci for primary and recurrent CDI in small 

patient populations using a combination of genetic and clinical data. Apewokin et al. (2018) 

[196] performed a genome-wide logistic regression analysis of CDI in 646 patients (57 cases; 

589 controls) undergoing stem cell transplantation for multiple myeloma, and found several 
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single nucleotide variants (SNVs) in the RLBP1L1, ASPH, and P7B genes that were associated 

with higher risk of CDI. Shen et al. (2020) [197] identified two alleles in in the extended major 

histocompatibility complex (MHC; HLA-DRB1*07:01 and HLA-DQA1*02:01) that were 

associated with a reduction in CDI recurrence among 704 patients who achieved initial clinical 

cure with bezlotoxumab treatment in the MODIFY clinical trials. Several studies have also 

suggested that common SNVs in the promoter region of the interleukin-8 (IL-8) gene may confer 

increased risk for CDI by altering neutrophil recruitment during disease pathogenesis [198,199]. 

While these results are collectively suggestive of genetic involvement in CDI risk, the 

aforementioned studies had small sample sizes and did not always control for major risk factors 

such as previous antibiotic use or corticosteroid use in their association models. GWAS that 

properly control for known risk factors and include a large number of participants are needed to 

identify risk loci with sufficient power and reliability. One such study identified 16,464 patients 

(1,160 cases; 15,304 controls) from the Geisinger MyCode cohort [38] using a C. diff. 

phenotyping algorithm developed by the Electronic Medical Records and Genomics (eMERGE) 

Network. The authors identified several MHC variants with predicted functional impacts on 

nearby genes among European-ancestry patients treated with antibiotics, but these variants did 

not reach genome-wide significance. Additional validation studies in other large patient cohorts 

are needed to evaluate the role of factors in CDI risk. 
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5.3 Methods 

5.3.1 Participants 

Cases and controls were selected from among the ~99,000 participants of the eMERGE 

Network. Participating sites included the following: 1. The Children’s Hospital of Philadelphia, 

Philadelphia, PA; 2. Cincinnati Children’s Medical Hospital, Cincinnati, OH; 3. Columbia 

University, New York, NY; 4. Geisinger, Danville, PA; 5. Mass General Brigham, Boston, MA; 

6. Kaiser Permanente Washington (formerly Group Health Cooperative) and University of 

Washington partnership, Seattle, WA; 7. Marshfield Clinic, Marshfield, WI; 8. Mayo Clinic, 

Rochester, MN; 9. Meharry Medical College, Nashville, TN; 10. Mount Sinai, New York, NY; 

11. Northwestern University, Evanston, IL; and 12. Vanderbilt University, Nashville, TN. 

Informed consent was obtained from participants by each eMERGE site. The eMERGE study 

was approved by each participating site’s institutional review board.  

5.3.2 Case-control selection using C. diff. phenotyping algorithm 

C. diff. cases and controls were selected using a variety of information contained in the EHR, 

including International Classification of Disease (ICD) Clinical Modification (CM) codes 9th and 

10th editions, lab and medication data, and clinician progress notes. The C. diff. phenotyping 

algorithm used in this study was designed collaboratively by University of Washington, Group 

Health and Vanderbilt as part of the eMERGE Network and was published in the Phenotyping 

KnowledgeBase (PheKB) in 2012 [200,201]. Case/control selection and exclusion criteria are 

depicted as a flowchart in Figure 5.1.  
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Figure 5.1. eMERGE C. diff. phenotyping algorithm flowchart. 

 

For participants aged two years or older, there were four combinations of EHR data considered 

for case selection. First, individuals with a positive C. diff. antigen or toxin test were selected. 

Second, those with one or more inpatient or outpatient diagnoses of C. diff. (ICD-9-CM code 

008.45; ICD-10-CM code A047), followed by one or more days of medication for treatment 

(metronidazole, oral vancomycin, fidaxomicin, or linezolid), followed by another inpatient or 

outpatient C. diff. diagnosis code, were selected. Third, individuals with at least one C. diff. ICD-
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CM code combined with at least one affirmative mention (unqualified by negation, uncertainty, 

or historical reference) of C. diff. infection in a clinical progress note as identified through 

natural language processing (NLP), were selected. The C. diff. mentions used by the NLP 

algorithm are listed in Table S5.1. Finally, individuals with two or more affirmative mentions of 

C. diff. infection on separate calendar days in clinical progress notes, identified by NLP, were 

selected. To exclude severely immune-compromised participants from the test population, 

participants meeting one of the four above criteria were excluded from being cases if they had a 

diagnosis of bone marrow cancer in the two-year period prior to their C. diff. case index date (i.e. 

the first positive lab test, diagnosis code or progress note mention), or within seven days 

following their index date. Participants were also excluded from being cases if they had received 

chemotherapy in the 180-day period prior to their C. diff. index date, or within seven days 

following their index date. Using these criteria, 1,598 cases were selected. 

 

Controls were selected from eMERGE participants two years of age or older who had no known 

test for and no diagnosis codes for C. diff. in their records. Since C. diff. toxin tests have 

sensitivities ranging from 60 to 70% [202], a single test does not rule out disease, and multiple 

tests could signal a concern that disease exists. Additionally, controls must have had at least one 

hospital admission with a prior exposure to a high-or moderate-risk antibiotic (Table S5.2) in the 

7 to 62-day period before admission. Alternatively, they must have had exposure to a high or 

moderate-risk antibiotic and had five or more years of documented clinical visits following 

exposure with no mention of C. diff. infection in their progress notes. Participants meeting the 

control criteria were excluded if they had chemotherapy or bone marrow cancer in the 180-day 

period prior to the C diff. control index date (i.e., the earliest hospital admission with antibiotic 
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exposure or earliest antibiotic exposure with five years of follow-up), or within seven days 

following the index date. These criteria resulted in the selection of 23,061 eMERGE participants 

as controls. We excluded 202 cases and 2,723 controls that were missing genotype data. An 

additional 31 cases and 889 controls were excluded because the genotype imputation quality 

failed to meet our quality control (QC) threshold (mean R2 > 0.3) [33]. 

 

Cryptic relatedness was assessed in all participants by calculating the probabilities of sharing 

alleles identical by descent (IBD), where Z0 is the probability of sharing zero alleles IBD and Z1 

is the probability of sharing one allele IBD.  Families were constructed when sample pairs had 

Z0 < 0.83 and Z1 > 0.1 [33]. When study participants were found to be in the same family, we 

prioritized the inclusion of cases. In situations where two or more cases or two or more controls 

were found to be in the same family, one participant was selected at random, and the others were 

excluded. For participants selected via the C. diff. phenotyping algorithm, 9 cases and 937 

controls were excluded due to cryptic relatedness. 

5.3.3 Covariates identified for phenotyping algorithm sample 

The following covariates were identified for all cases and controls using structured EHR data: 1. 

Age at index date (index age); 2. Body mass index (BMI); 3. Sex; 4. Genetically determined 

ancestry; 5. Nursing home status (y/n); 6. Chemotherapy (y/n); 7. Diabetes mellitus (y/n); 8. 

Human immunodeficiency virus (HIV) positive status (y/n); 9. Any transplant medications (y/n); 

10. Any corticosteroid medications (y/n); and 11. Any medium or high-risk antibiotic exposure 

(y/n). We used the median BMI record for the age year that matched most closely to the 

participant’s index age. Nursing home status was determined either by structured data on skilled 
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nursing facility residence, or by mentions of nursing home status in social work and case 

management notes, as identified by NLP (Table S5.3). We flagged chemotherapy using Current 

Procedural Terminology (CPT) codes 96400, 96408, 96409, 96411-96425, 96520, and 96530. 

We flagged participants as having diabetes mellitus if they had at least two of the following three 

indications: 1. An ICD-CM code from ICD-9-CM 250.* or ICD-10-CM E08-E13.*; 2. 

Prescriptions for diabetes medications including insulin (Table S5.4); or 3. A hemoglobin A1C 

(HbA1C) reading > 6.5% or a glucose reading of > 200 mg/dL. Participants were flagged as 

having HIV infection if they had one instance of ICD-9-CM 042.*, ICD-10-CM B20-B24.* or 

Z21.*. Patients were flagged as having been exposed to transplant or corticosteroid medications 

if any medication listed in Table S5.4 was administered outside of the exclusionary time range.           

5.3.4 Genotyping and imputation 

Genotypes for all participant samples from eMERGE-I, eMERGE-II and eMERGE-III were 

imputed using the Michigan Imputation Server [203]. The server uses the Minimac3 algorithm to 

impute missing genotypes and uses the Haplotype Reference Consortium reference panels [204] 

(HRC1.1) as the reference set. The majority of samples from the 13 eMERGE sites were 

genotyped on the Human 660 Quad (eMERGE-I). Other genotyping platforms included the 

CytoSNP-850K BeadChip, the OmniExpress chip, the Affymetrix 6.0 array, and the Illumina 

MEGA among others. In this analysis, variants with an allelic R2 >= 0.3 and minor allele 

frequency (MAF) >= 0.05 were included. Additional QC filters were applied as described in 

case-control selection.  
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5.3.5 Genetically determined ancestry 

The set of ~99,000 unique imputed samples was analyzed by Principal Component Analysis 

(PCA) using the PLINK 2.0 software [205]. Variants with >= 0.05 MAF, missingness of <= 0.1 

and LD-pruned R2 threshold of 0.7 were included in the multisample analysis. K-means 

clustering of Principal Component (PC) 1 and PC2 identified three groups (corresponding to 

African ancestry, Asian ancestry, and European ancestry) was used to find genetically 

determined ancestry (GDA) of each sample. GDA and self-described ancestry were checked for 

concordance, and samples were ultimately grouped into African ancestry, Asian ancestry and 

European ancestry clusters, respectively. IBD was calculated for all pairwise sample 

comparisons using the plink --genome function, and cryptic relatedness between samples was 

assessed as described in case/control selection.   

5.3.6 Genome-wide association study 

To identify genetic variants associated with CDI, we performed logistic regression-based 

association analyses for the case/control curated phenotype using PLINK 1.90 [206]. All 

covariates and genotypes were used in the joint analysis of all participants, whereas the PC1 and 

PC2 covariates for the African and European ancestry-stratified analyses were derived from 

ancestry specific PCA analyses. An additive genotypic model of SNV genotypes coded as 0, 1 or 

2 copies of the minor allele was used. The regional linkage disequilibrium (LD) plots of the 

index SNV were created using the LocusZoom web-based tool [207]. Following the initial 

stratified analyses, an additional logistic regression-based association analysis was performed in 
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the European sample using the index SNV as a covariate to determine whether this SNV was 

truly driving the risk association. 

5.3.7 Human leukocyte antigen association analyses 

Classical HLA alleles were imputed against four ancestry-specific reference panels (African, 

Asian, European, and Hispanic) using the HIBAG software [208]. HLA-DRB3, 4 and 5 gene 

dosages were inferred based on the HLA-DRB1 alleles present in each individual, as described in 

Habets et al. (2018) [209]. Calls were quality-filtered for a HIBAG posterior probability of > 0.5. 

 

To test for haplotype-specific effects of the most significantly associated SNVs, four overlapping 

participant subgroups were selected from the European ancestry sample based on the presence of 

at least one of the following: (1) DRB3 gene; (2) DRB4 gene; (3) DRB5 gene; or (4) any of the 

above genes in each participant. Haplotype subgroups were further divided into DR15 and DR16 

haplotype carriers (stemming from the DRB5 gene carriers, or DR51 haplotype family), and 

DRB1*15:01 carriers (stemming from the DR15 haplotype). Logistic regression-based 

association analysis was performed separately in each haplotype subgroup, using the same 

covariates described in “Methods: GWAS” for the European ancestry sample. 

 

To test for HLA alleles driving the association, case-control logistic regression-based association 

analysis was performed in the European ancestry population sample for 276 classical HLA 

alleles, using the same covariates described in “Methods: GWAS” for the European ancestry 

sample. The CEU Chromosome 6 LD dataset from the HapMap 3 project was used to assess LD 

of the most significantly associated SNVs among classical HLA alleles. 
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5.4 Results 

5.4.1 Demographics 

After all exclusions, there were 1,349 cases and 18,512 controls identified via the eMERGE C. 

diff. phenotyping algorithm (Table 5.1). Approximately 74% of cases and controls self-identified 

as White, and 19% self-identified as Black or African American. Although older age is a known 

risk factor for C. diff. infection [191], controls tended to be older than cases (z=14.37, P=2.20 x 

10-16), which reflected the patient populations of the participating eMERGE study sites. Controls 

also tended to have higher BMIs than cases (z=14.58, P=2.20 x 10-16). Cases had slightly higher 

exposure to Class 1 (high-risk) antibiotics than controls (28% vs. 21%), yet they had much less 

exposure to Class 2 (moderate risk) antibiotics than controls (11% vs. 26%). More cases received 

chemotherapy outside of the exclusionary time period than did controls. 

 
N 

Case 
n=1,349 

Control 
n=18,512 

Overall 
n=19,861 

Site 
     Children's Hospital of Philadelphia 
     Cincinnati Children’s Medical Hospital 
     Columbia 
     Geisinger 
     Kaiser Permanente/UW 
     Mass General Brigham 
     Mayo Clinic 
     Marshfield 
     Mt. Sinai 
     Northwestern 
     Vanderbilt 

 
11% (149) 
1.0% (14) 
5.6% (76) 
4.2% (57) 
4.2% (57) 
3.5% (47) 
7.2% (97) 
2.4% (32) 
7.9% (106) 
5.6% (76) 
47% (638) 

 
1.4% (265) 
0.0% (0) 
0.5% (88) 
4.9% (899) 
11% (2128) 
8.8% (1623) 
17% (3127) 
4.7% (861) 
15% (2776) 
2.0% (362) 
34% (6383) 

 
2.1% (414) 
0.1% (14) 
0.8% (164) 
4.8% (956) 
11% (2185) 
8.4% (1670) 
16% (3224) 
4.5% (893) 
15% (2882) 
2.2% (438) 
35% (7021) 

Sex (female) 
Median BMI (kg/m2)* 
Median age* 

51% (690) 
20.8,25.2,29.8 
39.7,57.3,70.0 

55% (10232) 
24.4,28.1,32.9 
51.1,64.9,76.1 

55% (10922) 
24.2,28.0,32.8 
50.4,64.4,76.0 

Self-identified race 
     American Indian or Alaska Native 

 
0.2% (3) 

 
0.2% (40) 

 
0.2% (43) 
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     Black or African American 
     Asian 
     Native Hawaiian or other Pacific Islander 
     White 
     Unknown 
     Not reported 

15% (196) 
0.8% (11) 
0.07% (1) 
75% (1008) 
9.2% (124) 
0.4% (6) 

19% (3562) 
0.8% (142) 
0.02% (2) 
74% (13716) 
5.0% (933) 
0.6% (117) 

19% (3758) 
0.8% (153) 
0.02% (3) 
74% (14724) 
5.3% (1057) 
0.6% (123) 

Self-reported ethnicity 
     Hispanic or Latino 
     Not Hispanic or Latino 
     Unknown 

 
6.0% (81) 
88% (1193) 
5.6% (75) 

 
4.8% (895) 
92% (17120) 
2.7% (497) 

 
4.9% (976) 
92% (18313) 
2.9% (572) 

Genetically determined ancestry 
     African 
     Asian 
     European 
          >=1 HLA-DRB3, 4 OR 5 gene 
          >=1 HLA-DRB3 gene (DR52) 
          >=1 HLA-DRB4 gene (DR53) 
          >=1 HLA-DRB5 gene (DR51) 

 
17% (235) 
2.4% (32) 
80% (1082) 
   71% (955) 
   41% (559) 
   36% (507) 
   22% (299) 

 
21% (3849) 
1.6% (287) 
78% (14376) 
   72% (13336) 
   50% (8328) 
   40% (7356) 
   21% (3831) 

 
21% (4084) 
1.6% (319) 
78% (15458) 
   72% (14291) 
   45% (8887) 
   40% (7863) 
   21% (4130) 

Antibiotic exposure (Within 7-62 days 
prior to index date) 
     High risk 
     Moderate risk 
     Low risk 
     No exposure 

 
28% (376) 
11% (147) 
1.9% (25) 
59% (801) 

 
21% (3832) 
26% (4838) 
1.5% (284) 
52% (9558) 

 
21% (4208) 
25% (4985) 
1.6% (309) 
52% (10359) 

Cancer (First record to index date + 7 days) 
Chemotherapy (Before 180 days prior to 
index date, after 7 days following index 
date) 
Diabetes Mellitus (Ever) 
HIV (Ever) 
Nursing Home Status (Within 90 days 
prior to index date) 
Corticosteroid medications (Within 21 
days prior to index date) 
Transplant medications (First record to 
index date + 7 days) 

20% (272) 
20% (270) 
 
24% (326) 
3.0% (44) 
11% (147) 
 
17% (227) 
 
19% (250) 

14% (2520) 
12% (2263) 
 
25% (4700) 
2.0% (302) 
2.0% (393) 
 
10% (1848) 
 
6.0% (1059) 

14% (2792) 
13% (2533) 
 
25% (5026) 
2.0% (346) 
3.0% (540) 
 
10% (2075) 
 
7.0% (1309) 

 

Table 5.1. Summary statistics of demographic data and phenotypes for C. diff cases and controls selected 
using the C. diff phenotyping algorithm. Significant differences between case and control distributions (as 
determined by chi-squared test for binary variables and two-sided Z-tests for continuous variables) are 
shown in bold. *The three numbers for body mass index (BMI) and age represent the 25th, 50th and 75th 
quartiles of the distribution. 
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5.4.2 Genome-wide association study 

Table 5.2 summarizes the logistic regression association results that reached genome-wide 

significance in the combined and European ancestry-only samples, with corresponding summary 

statistics for those findings in the African ancestry-only sample. A strong association in the 

human leukocyte antigen (HLA) region was found in the European and joint ancestry samples 

(Figure 5.2; Figure S3.2) but was not found in the African ancestry sample. The lack of 

association in the African ancestry sample could be due to either insufficient detection power as 

a result of small sample size or different haplotype or LD structures compared to individuals of 

European ancestry. Manhattan plots and corresponding QQ plots for the European, joint, and 

African ancestry GWAS analyses are provided (Figures S5.1-S5.5). The five most significantly 

associated SNVs driving the association in the European sample (rs68148149, P=8.06 x 10-14; 

rs3828840, P=9.96 x 10-14; rs35882239, P=8.18 x 10-12; rs35882239, P=5.12 x 10-11; 

rs35222480, P=9.88 x 10-11) mapped to the intergenic region between the HLA-DRB5 and HLA-

DRB1 genes in the beta block of the MHC Class II region. Three of the five most significant 

SNVs (rs3828840, rs35882239, and rs35222480), with minor allele frequencies (MAFs) of 0.17, 

0.17 and 0.20, respectively, also mapped to the 3’ end of the HLA-DRB6 pseudogene. 
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Table 5.2. Index SNV results from logistic regression-based genome wide analysis for joint ancestry 
(n=19,861), European ancestry (n=15,458), and African ancestry (n=4,084) samples. An additive model 
was used to assess the disease susceptibility impact of the minor (coded) allele at each position, while 
controlling for age, BMI, sex, ancestry, nursing home status, chemotherapy, diabetes, HIV, transplant 
medications, corticosteroids, and medium or high-risk antibiotic exposure as covariates. Results meeting 
the genome-wide significance threshold (P < 5 x 10-8) are displayed in bold. Abbreviations: Chr = 
Chromosome; SNV = Single Nucleotide Variant; Ref = Reference Allele; Alt = Alternate Allele; CA = 
Coded Allele; BP = Base Pair; CAF = Coded Allele Frequency; OR = Odds Ratio. 
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Figure 5.2. Manhattan plot of P-values generated using logistic regression analysis in the European 
ancestry sample (n=15,458). An additive model was used to assess the disease susceptibility impact of the 
minor (coded) allele at each position, while controlling for age, BMI, sex, ancestry, nursing home status, 
chemotherapy, diabetes, HIV, transplant medications, corticosteroids, and medium or high-risk antibiotic 
exposure as covariates. Genomic coordinates are displayed along the X-axis, and the negative logarithm 
of logistic regression P-values are displayed on the Y-axis. Each dot represents a SNV in the regression 
model, with associated P-values plotted accordingly, while the triangle represents the most significantly 
associated SNV. The dotted line represents the negative logarithm of the genome-wide significance 
threshold (P < 5 x 10-8). Colors are used to distinguish between SNVs in adjacent chromosomes. 

 

Given the well-known presence of high LD within the HLA region [210], a regional LD plot 

with reference to the index SNV (rs68148149) was generated using P-values from the European 

logistic regression analysis and using the 2014 1000 Genomes European superpopulation as a 

reference group (Figure 5.3). This step was taken to assess the possibility that variants other than 

the index SNV might better explain disease association in terms of functional impact. While the 

second two most significant SNVs were in high LD with the index SNV (R2 > 0.8), the index 

SNV had the highest regulatory potential among the most significantly associated SNVs, as 

annotated by RegulomeDB [211]. To assess the possibility that the lack of disease association in 
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the African ancestry sample is a result of different regional LD structures, a regional LD plot 

with reference to the index SNV was generated using the 1000 Genomes African 

superpopulation as a reference (Figure S5.6). The second two most significant SNVs in the 

European-ancestry sample were also in high LD with the index SNV in the African-ancestry 

superpopulation, but higher LD was observed with more SNVs in the HLA-DRB1/5 intergenic 

region in the African superpopulation (R2 > 0.4) than in the European superpopulation (R2 > 0.2). 

On the other hand, lower LD was observed with SNVs in the region spanning HLA-DRB1 and 

HLA-DQA1 in the African superpopulation (R2 > 0.6) than in the European superpopulation (R2 

> 0.8). Differences in regional LD patterns between the European-ancestry and African-ancestry 

samples could therefore have contributed to the observed differences in gene-disease association 

patterns, in addition to insufficient detection power. 
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Figure 5.3. Regional LD plot of SNVs evaluated in the European-ancestry logistic regression analysis, 
using the European 1000 Genomes superpopulation as a reference group. Genomic coordinates spanning 
the HLA-DRB region and surrounding genes are shown on the X-axis in both subplots. Negative 
logarithms of P-values from the European-ancestry logistic regression analysis are shown on the Y-axis in 
the upper sublot, and annotated gene transcripts are distributed along the Y-axis in the lower subplot. 
Each dot represents a SNV in the regression model, with associated P-values plotted accordingly. SNVs 
in high LD with reference to the index SNV (rs68148149) are colored in red. The LD plot was generated 
with the LocusZoom [207] tool using default parameters and the 1000 Genomes Project 2014 EUR 
reference panel. 

 

A follow-up GWAS using the index SNV as a covariate revealed several new SNVs associated 

at genome-wide significance (rs116603449, P=4.54 x 10-9; rs9270896, P=6.09 x 10-9; 
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rs9270894, P=1.12 x 10-8; rs9270895, P=2.32 x 10-8; rs618095, P=3.71 x 10-8) (Table 5.2; 

Figures S5.7-S5.8). While suggestive peaks were observed in chromosomes 14 and 22 using the 

unadjusted model, the elimination of these peaks in models that included the genome-wide 

significant index SNVs suggests that they were spuriously associated with the tagged region in 

chromosome 6. However, no SNVs of interest on chromosomes 14 or 22 were in high LD with 

any the index SNVs on chromosome 6, therefore the nature of the associated remains unknown. 

 

5.4.3 Human leukocyte antigen association analyses 

All 14,620 European ancestry participants had high quality imputed HLA genotypes available 

for association analyses. Table 5.1 summarizes the number of participants in the European 

ancestry group possessing at least one HLA-DRB3, 4 and/or 5 gene (corresponding to haplotype 

families (HLA-)DR52, 53 and 51, respectively) [212] (Figure S5.9). The most significant SNVs 

from the GWAS reached genome-wide significance among individuals with at least one DRB3, 4 

or 5 genes collectively (rs68148149, P=1.26 x 10-13; rs3828840, P=1.49 x 10-13; rs35882239, 

P=2.37 x 10-11; rs71534541, P=1.67 x 10-11; rs35222480, P=3.17 x 10-11), and among individuals 

with at least one DRB5 gene only, or DR51 haplotype carriers (rs68148149, P=1.55 x 10-11; 

rs3828840, P=1.72 x 10-11; rs35882239, P=2.62 x 10-10; rs71534541, P=1.56 x 10-11; 

rs35222480, P=4.68 x 10-11) (Table 5.3, Figure S5.10). Among DR51 haplotype carriers, the 

most significantly associated SNVs only reach genome-wide significance among carriers of the 

DR15 haplotype (rs68148149, P=2.08 x 10-11; rs3828840, P=2.27 x 10-11; rs35882239, P=4.14 x 

10-10; rs71534541, P=1.75 x 10-12; rs35222480, P=5.81 x 10-12), and more specifically, carriers 



128 
 

 

of the HLA-DRB1*15:01 allele (rs68148149, P=7.45 x 10-11; rs3828840, P=8.11 x 10-11; 

rs35882239, P=1.42 x 10-9; rs71534541, P=7.37 x 10-12; rs35222480, P=1.43 x 10-11). No SNVs 

reached genome-wide significance among participants with at least one DRB3 or DRB4 gene 

only, suggesting that the HLA-DR51 haplotype in combination with variants in the HLA-

DRB1/5 intergenic region may singularly drive genetic risk for CDI in the European ancestry 

population. However, examining the risk allele frequencies of the index SNV (rs68148149) in 

cases and controls across DR51, DR52, and DR53 haplotype-enriched groups showed that the 

risk allele frequency was higher in European-ancestry cases than controls in all haplotype 

groups, suggesting that the SNV may indeed drive risk in all HLA-DR haplotype groups but that 

the low frequency in the DR52 and DR53 haplotype groups limits the power to detect the 

association in these groups (Figure S5.11). The same pattern was not observed in African-

ancestry cases and controls, indicating that haplotype differences between ancestry groups may 

indeed play a role in differentially conferring risk. 



129 
 

 

 



130 
 

 

Table 5.3. Index SNV results from logistic regression-based analysis of the HLA region in European 
samples enriched for each HLA-DRB haplotype or haplotype family: DR51, DR52, DR53, DR15, 
DRB1*15:01, and any of the above. An additive model was used to assess the disease susceptibility 
impact of the minor (coded) allele at each position in the genomic region that yielded highly associated 
SNVs in the genome-wide analysis (chr6:32400001-32600000). Age, BMI, sex, ancestry, nursing home 
status, chemotherapy, diabetes, HIV, transplant medications, corticosteroids, and medium or high-risk 
antibiotic exposure were included as covariates in the model. Results meeting the genome-wide 
significance threshold (P < 5 x 10-8) are displayed in bold. Abbreviations: Chr = Chromosome; SNV = 
Single Nucleotide Variant; Ref = Reference Allele; Alt = Alternate Allele; CA = Coded Allele; BP = 
Base Pair; CAF = Coded Allele Frequency; OR = Odds Ratio. 

 

To assess the possibility that one or more HLA alleles themselves were driving the risk 

association in the European ancestry sample, rather than the most significantly associated SNVs 

identified in the GWAS, we performed a separate logistic regression analysis using the HIBAG-

imputed HLA genotypes in the European ancestry sample. None of the imputed HLA alleles 

reached genome-wide significance. Using the classical HLA tags identified by de Bakker et al. 

(2006) [213] and the NCI LDMatrix tool [214], it was also confirmed that none of the GWAS-

identified SNVs were in high LD (R2 > 0.5) with any classical HLA alleles in either the 

European ancestry or African ancestry 1000 Genomes superpopulations. The index SNV was in 

moderate LD with the tag SNV for the DRB1*15:01-DRB5*01:01 haplotype in the European 

ancestry superpopulation (rs3135388; R2=0.186) and low LD with the tag SNV in the African 

ancestry superpopulation (rs443623; R2=0.002). 
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5.5 Discussion 

Using a robust EHR-based phenotyping algorithm, we identified a large, multi-institutional 

corpus of patients with a history of at least one episode of CDI and controls without CDI. Our 

results suggest that genetic variation in the (HLA-)DRB locus of the HLA region may increase 

risk of infection in European ancestry populations. In this study, European participants who 

possessed the minor allele among the most significantly associated SNVs had 56% greater odds 

of having at least one episode of CDI. As the key beta-subunits of MHC Class II surface 

receptors on antigen presenting cells (APCs), the proteins encoded by DRB genes play a critical 

role in stimulating the host adaptive immune response against foreign peptides and are therefore 

excellent candidates for future studies of host immunity to C. diff. [215]. 

 

The MHC (HLA) Class I and II loci are among the most polymorphic coding regions in the 

human genome, and DRB genes are particularly variable in copy and combination. Although 

there is only one monomorphic DRA gene per (HLA-)DR haplotype, there are five common DR 

haplotype families composed of different combinations of protein coding DRB genes (DRB1, 

DRB3, DRB4 and DRB5) and pseudogenes (DRB2, DRB6, DRB8 and DRB9) [212]. DRB1 is 

present in all haplotypes, but any given individual may have as few as two protein coding DRB 

genes (2 copies of DRB1), or as many as four genes (2 copies of DRB1 + 1 or 2 copies of DRB3, 

4 or 5) between homologs. The unique combination of DRB genes on each haplotype is 

remarkably conserved and has been maintained in ancestral DNA since before the divergence of 

human and gorilla lineages over 5 million years ago [216]. Although having a diverse set of 

MHC II molecules may confer a selective advantage against infection [217], each additional 
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DRB gene is nonetheless susceptible to intragenic and/or regulatory mutations in the highly 

polymorphic HLA region and may paradoxically increase susceptibility to other diseases. In the 

case of gastrointestinal infections, protective effects of the HLA-DRB1*04:05 allele against 

enteric infection caused by Salmonella typhi or Salmonella paratyphi have been observed in 

Vietnamese and Nepalese patients [218]. Conversely, the DRB1 gene has also been implicated in 

increasing host susceptibility to a number of inflammatory diseases, including Crohn’s disease, 

type I diabetes mellitus, rheumatoid arthritis, multiple sclerosis (MS), ulcerative colitis and 

Alzheimer's disease, primarily in European populations [219–224]. 

 

Haplotype effects appear to play a critical role in conferring risk for CDI. In this study, CDI 

susceptibility was highly correlated with the most significantly associated SNVs only among 

individuals possessing at least one haplotype in the rarer DR51 haplotype family, in which a 

DRB1*15 or *16 allele is paired with a coding DRB5 gene (Table 5.3, Figure S5.9). The risk 

association was exclusively observed in individual carrying at least one copy of the 

DRB1*15:01-DRB5*01:01 haplotype [225], and individuals in this group had 200% higher odds 

of developing CDI on average. These results indicate that the DRB1*15:01-DRB5*01:01 

haplotype is involved in conferring CDI risk among individuals with common genetic variants in 

the tagged DRB1-DRB5 intergenic region (Figure S5.12). However, it is also possible that the 

comparatively low risk allele frequency in the DR52 and DR53 haplotype groups limited the 

power to detect a true risk association in other HLA-DR haplotype groups (Figure S5.11). 

One possible explanation for increased CDI risk among these individuals is that differential 

MHC II gene expression impacts the baseline composition of their gut microbiota, thereby 

influencing colonization resistance to opportunistic enteric pathogens like C. diff. Secretory 
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Immunoglobulin A (IgA) antibodies play an essential role in shaping an individual’s gut 

microbial community and maintaining a homeostatic balance of microbes within the mucosal 

immune system [226], and the interactions between APCs and CD4+ T-follicular helper (Tfh) 

cells are key to driving the production of IgA by plasma cells [227]. Studies in mouse models 

have previously demonstrated that MHC II polymorphisms directly affect antibody-mediated 

microbiota composition, and that the unique microbial communities formed under the influence 

of different MHC genotypes can impact an organism’s susceptibility to opportunistic pathogens 

like Salmonella enterica typhimurium when treated with antibiotics [228,229]. The 

DRB1*15:01-DRB5*01:01 haplotype has also been identified as the major genetic risk factor for 

MS--a disease that has been increasingly associated with taxa imbalances within the gut 

microbiome [225,230–232]. This association lends support to the hypothesis that the gut 

microbiota mediates susceptibility to CDI in a genetically determined manner, assuming that the 

composition of the microbiota is indeed a key driver of resistance to disease in both CDI and 

MS. However, it is currently unknown exactly which symbiotic microbe lineages or consortia 

might contribute to colonization resistance against C. diff. after a major disruption to the gut 

microbiota [233]. Understanding the unique interactions between commensal microbe antigens 

presented by APCs, the MHC II molecules encoded by the DRB1*15:01-DRB5*01:01 

haplotype, and Tfh cells may provide valuable insights into how host genetics impact the 

composition of gut microbial communities in individuals susceptible to enteric infection, 

compared with those who are resistant to infection. 

 

Alternatively, increased CDI risk among these individuals may be driven by differential T-cell 

mediated responses to the TcdA and TcdB toxins produced by C. diff. bacteria. In addition to 
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sculpting the host microbiota, high affinity IgA helps to neutralize bacterial toxins [234]. Unique 

interactions between T-cells and C. diff. toxins specifically bound by DRB1*15:01-DRB5*01:01 

MHC II molecules may impact the host anti-toxin IgA response differently than other T-cell-

MHC II interactions, thus influencing the host’s ability to clear circulating toxins. Recent Phase 

III, placebo-controlled clinical trials of the monoclonal antibody treatments actoxumab (anti-

TcdA) and bezlotoxumab (anti-TcdB) showed that TcdB toxin neutralization alone could 

decrease CDI recurrence by 38% among patients receiving standard antibiotic therapy for initial 

or recurrent CDI [235]. Naturally occurring anti-TcdB antibodies in the placebo group also 

conferred protection against recurrent CDI, recapitulating the importance of neutralizing TcdB in 

controlling infection [236]. However, other studies have failed to replicate these results when 

comparing healthy controls with CDI patients, suggesting that anti-toxin antibody concentrations 

may not fully explain susceptibility to initial and/or recurrent infection [237]. 

 

Although the MHC II region is strongly associated with CDI in this study, the SNVs that confer 

risk are neither located in coding regions, nor in high LD with SNVs in coding regions, 

suggesting that the mechanism for altered gene expression may be regulatory. One possible 

mechanism for altered expression of the DRB1*15:01-DRB5*01:01 haplotype is allele-specific 

DNA methylation (ASM) of the DRB1 and/or DRB5 regulatory regions, given that the two most 

significantly associated SNVs (rs68148149 and rs3828840) overlap with CpG dinucleotides and 

may therefore be involved in altering DNA methylation patterns in those regions. It is well 

known that cytosine residues at CpG sites are disproportionately targeted for DNA methylation, 

which directly impacts gene expression at the level of transcription [238,239]. SNVs that overlap 

with CpG sites account for 38%-88% of ASM regions [240], and disruptions to normal DNA 
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methylation patterns have been known to modulate susceptibility to a number of human diseases 

[241,242]. For example, in the case of DRB1*15:01-DRB5*01:01-associated MS, DNA 

hypermethylation in exon 2 of HLA-DRB1 confers protection against the major risk allele and is 

driven by several SNVs in high LD with one another that overlap with CpG sites [243]. It is 

possible that disrupted methylation patterns at or near the regulatory regions of DRB1*15:01 

and/or DRB5*01:01 also contribute to differential expression of these MHC II proteins, thus 

impacting the landscape of the host adaptive immune response via microbiome-mediated and/or 

toxin-mediated mechanisms. To test this hypothesis, local bisulfite sequencing or methylation 

quantitative trait loci (mQTL) analysis of the HLA region could be performed in DRB1*15:01-

DRB5*01:01 heterozygotes to assess differential methylation patterns in the DRB1-DRB5 

intergenic region. These experimental data could then be superimposed on GWAS data to 

determine whether the GWAS peaks identified in this study are suggestive of true regulatory 

SNVs, and to subsequently prioritize these SNVs for downstream validation experiments in 

animal models [244]. It is also worth noting that the additional SNVs identified using the top 

SNV-corrected model were all located in the DRB1-DQA1 intergenic region near several histone 

H3K27ac marks, which are often located near active regulatory elements [245]. This observation 

lends additional support to the hypothesis that MHC molecules involved in CDI pathogenesis are 

transcriptionally regulated. 

 

Our findings suggest that genetic variation in the MHC II locus of the HLA region drives 

susceptibility to CDI and highlights the importance of the adaptive immune response in 

combating opportunistic pathogens. To better understand how host genetics might confer 

microbiome-mediated risk for opportunistic enteric infections, future studies should explore the 
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mechanisms of interaction between commensal microbe antigens presented by APCs and the 

MHC II molecules encoded by the DRB1*15:01-DRB5*01:01 haplotype. Interactions between 

DRB1*15:01-DRB5*01:01 MHC II, C. diff. exotoxins and T-cells may alternately play a critical 

role in CDI pathogenesis, and additional work is needed to understand whether and how the host 

IgA response is differentially impacted by the combined effects of haplotype and transcriptional 

modifications. Finally, future work should address the possibility that ASM is a driver of 

epigenetic transcriptional regulation of the DRB1 and/or DRB5 genes. If this mechanism is 

experimentally validated, therapeutics that modulate MHC II molecule transcription levels could 

potentially be developed to decrease the incidence of CDI among individuals that carry the risk 

genotype. 

5.6 Limitations and future work 

This study has several important limitations. First, sample size and statistical power were 

severely limited among non-European ancestry samples, which may have contributed to the lack 

of significant associations in the African ancestry analyses. Second, replicate studies are needed 

to confirm the identified association. However, the large, multi-site biobank of linked EHR and 

genotype data used in this study supports the replicability and reliability of these results, and 

future association studies would benefit immensely from these types of biobanks. Third, C. diff. 

cases were not stratified by primary and recurrent CDI and is it possible that the genetic variants 

driving pathogenesis are different between these two forms of infection. Fourth, the length and 

severity of infection were not considered in the current study, but future analyses would benefit 

from continuous trait regression association analyses to identify genetic variants associated with 

increased CDI severity, rather than susceptibility. Additionally, C. diff. cases in this study 
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partially included individuals with a positive antigen test as their only criterion for infection. The 

C. diff. antigen test cannot accurately distinguish between toxigenic and non-toxigenic strains 

and may falsely identify asymptomatic carriers as C. diff. cases. Finally, the specific toxigenic 

ribotype that each case was exposed to was not included in the analysis, and it is possible that 

different C. diff. ribotypes are associated with different genetically determined host responses. 

5.7 Conclusion 

In this study, we identified a potential genetic driver for CDI in the HLA-DRB locus, offered 

several directions for future functional studies, and demonstrated the utility of merging genetic 

and EHR data for gene-disease association studies of infectious disease. Routinely conducting 

genetics association studies using EHR data is a promising avenue for advancing our 

understanding of how common genetic variation impacts human health and disease. In the next 

chapter, we will explore how the existing LHS literature characterizes the barriers and enablers 

of conducting routine genomic discovery studies in clinical settings and integrate these results 

with the 5R GLHS model developed in the previous chapter. 
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CHAPTER 6: DEVELOPMENT OF AN INTEGRATIVE SOCIOTECHNICAL MODEL FOR 

GENOMICS-ENABLED LEARNING HEALTH SYSTEM DISCOVERY (AIM 4) 

6.1 Introduction 

The types of genomic research studies that can be conducted using merged clinical and genomic 

data hold great promise for the future of genomic medicine and human health, but routine 

implementation of genomics research in clinical environments remains elusive. While the current 

literature on genomic discovery in LHS-aligned models appears limited, its sheer complexity 

speaks to the practical challenges of achieving the learning healthcare vision. In the closing 

remarks of their 2020 progress update, investigators at Geisinger–one of the world’s most fully-

formed LHS-aligned healthcare institutions to date–recognized the eternal challenge of 

implementing a successful LHS: 

We will close by reflecting on our position and our prospects as we seek to move along 
“the developmental path toward a fully realized LHS.” Although we do, indeed, hope and 
intend to move further along that path, we have come to question whether the goal of a 
fully realized LHS is ever fully attainable. For we suspect that the reality is that in light 
of the ongoing dynamic evolution of technologies, the growth of evidence, and other 
forces of change, the goal of a fully realized LHS, much like the paradox of Achilles 
and the tortoise, can never fully be achieved because the essence of learning and 
improvement is—and always will be—a moving target (Davis et al. 2020, p. 9) [132]. 

 

Although there may be no discernable endpoint in the LHS model, the iterative process of 

learning and improvement can only benefit a healthcare system that is in great need of change. 

To facilitate a broader understanding of the GLHS concept and move towards actual 

implementations of learning cycles, it is useful to ground available evidence in a conceptual 

model. In this case, the vast majority of insights on clinically embedded genomic discovery exist 
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in qualitative studies. Qualitative evidence synthesis (QES) is a collection of methods that can be 

used to integrate findings from qualitative studies to “establish a greater understanding of issues, 

often of a subtle or sensitive nature, that primary qualitative research frequently addresses” 

(Flemming et al. 2018, p. 1) [39]. The multiplicity of technical, social, ethical, political, and 

structural elements that support a GLHS may individually be moving targets in the context of 

constant shifts in the US healthcare and research enterprises, but this movement should not 

preclude researchers, clinicians, and policymakers from seeking a more cohesive understanding 

of how these elements interact with one another. QES methods can help achieve this cohesive 

vision and ground the complexity of the GLHS concept in a conceptual model to inspire tangible 

changes in approaches to healthcare research and delivery. 

 

The objectives of this aim are twofold. First, we conduct a systematic literature review of studies 

that have identified enabling factors of genomic discovery and validation research in the LHS 

model and describe this literature landscape using a theory of change model. Second, we use 

best-fit framework synthesis (BFFS) to synthesize the a priori 5R model from Aim 2 with 

themes identified in Aim 1 and the systematic literature review to create an integrative 

sociotechnical model for GLHS discovery. 
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6.2 Related Work 

6.2.1 Systematic reviews of enabling factors for clinical genomic discovery research in learning 

health systems 

Previous systematic literature reviews of LHS models have focused on the outcomes of such 

models and their impacts on different aspects of care. Enticott et al. (2021) conducted a 

systematic review of studies across 23 LHS environments in six different countries [11]. They 

investigated the reported health impacts achieved through LHS-aligned healthcare models and 

found that such systems yielded benefits such as improved longitudinal patient tracking, 

enhanced access to personal health records, and improved adherence to clinical guidelines. Other 

in-progress reviews are investigating the impacts of LHS models on pediatric health outcomes 

[40], and investigating strategies used to implement LHS models in existing healthcare systems 

[42]. Lim et al. (2022) [41] conducted a systematic review of data analytics approaches in LHS-

aligned models and found that challenges were widely faced when implementing EHR data 

analytics in an LHS. In the most recent review of LHS literature, Ellis et al. (2022) [43] used the 

PubMed and Scopus databases to survey the available LHS research through an implementation 

science lens. They found that, unsurprisingly, there is little empirical research on LHS 

implementations and outcomes since very few LHS-aligned systems exist worldwide. 

Systematically investigating the enablers and barriers of clinically embedded discovery is an 

important precursor to implementation and outcomes measurement. However, no systematic 

reviews have investigated barriers and drivers for accelerating genomic discovery in LHS 

models. 
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6.2.2 Qualitative evidence synthesis and framework development in learning health systems 

research 

Several studies have previously used QES (or similar) methods to seek clarity from the complex 

body of LHS literature. Enticott et al. (2021) [45] developed an LHS framework for the 

Australian health system by synthesizing evidence from expert panels, stakeholder workshops, 

and a systematic literature review of studies showing explicit health impacts from LHS-aligned 

implementations. While the authors report utility in integrating multiple perspectives for 

developing a sustainable and scalable framework, they do not describe how the evidence 

synthesis was conducted. Easterling et al. (2022) [44] recognizes that the “LHS concept has been 

defined in broad terms, which makes it challenging for health system leaders to determine 

exactly what is required to transform their organization into an LHS” (Easterling et al. 2022, p. 

1). To address this gap in proposed requirements, they developed a 94-part taxonomy of LHS 

elements, then calculated the frequency of each element in 79 publications that discussed 

organizational characteristics or actual implementations of LHSs. This process aligns with the 

description of framework synthesis as described in Flemming & Noyes (2021) [246]. Their 

approach successfully integrated salient results from a large, complex body of research, and 

clearly revealed “specific types of work that need to be launched and supported in order to 

operate according to the principles of an LHS” (Easterling et al. 2022, p. 12). Although few 

studies have addressed the LHS concept using QES methods, the two aforementioned studies 

demonstrate that framework synthesis is a useful approach for clarifying and integrating complex 

concepts for the sake of inspiring action within healthcare organizations. 
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6.3 Methods 

6.3.1 Systematic literature review 

The systematic literature review plan was developed using the Cochrane Reviews of 

Interventions guidelines [247]. However, because the goal of the review was not to assess the 

outcomes of comparative-effectiveness research, but rather to integrate published perspectives 

and experiences, some suggested procedures such as statistical meta-analysis and systematic bias 

assessment were not conducted. Given the known paucity of literature on actual implementations 

of LHSs [11], and even more limited evidence on LHS factors that enable genomic discovery 

efforts specifically, the scope of this review was left intentionally broad and qualitative to 

incorporate as much evidence as possible in the analysis. 

6.3.1.a Scope 

The purpose of the review was to survey the proposed and observed enabling factors for 

accelerating translational genomic discovery research in LHSs. Specifically, the review centered 

around the following question: What technical, social, political, and/or cultural factors 

enable and improve genomic innovation, discovery, or validation research in an LHS-

aligned model? The Population, Intervention, Comparison, and Outcome (PICO) [248] strategy 

of the review was defined as follows: 

1. Population: Any population receiving healthcare in a country where LHSs have been 

proposed as a model for improving care, advancing research, and decreasing healthcare 

costs. 
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2. Intervention: Technical, social, political, and/or cultural changes to healthcare systems 

or research operations within healthcare systems that are intended to enhance clinically 

meaningful genomic discovery. 

3. Comparison: Enabling factors for genomic discovery research that occurs outside the 

context of a healthcare providing organization. 

4. Outcome: Expected (or observed) improvements and/or accelerations of clinically 

meaningful genomic discovery research. 

6.3.1.b Ethical considerations 

Because this field of research is in its infancy and there is little empirical evidence to support the 

perspective pieces that comprise the majority of this body of research, it is important to frame the 

results of this review as a survey of potential next steps for integrating genomics research into 

the LHS model, rather than as fully supported evidence of effective interventions. These 

potential next steps should be systematically applied and tested in combination with one another 

in different healthcare and research contexts to empirically identify enablers of clinical genomic 

discovery in LHSs. There is also a risk of disseminating suggestions that are not feasible to 

implement in other countries or in communities in the US that lack adequate financial or political 

support, potentially worsening health disparities. It is therefore important to consider questions 

of health equity as a core category of the analysis, and to prioritize the inclusion of papers with a 

focus on health equity in LHS discovery research. 
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6.3.1.c Search strategy and data collection 

Databases used in the literature search included PubMed, Embase (via Elsevier), the Public 

Affairs Information Service (PAIS, via ProQuest), the Health Technology Assessment Database, 

the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Science, 

PsycINFO, and Medline. Initial searches were limited to peer-reviewed, English language 

articles that had been published since 2008–the year following the publication of Etheredge’s 

rapid-learning health system concept [127]. Given the scope of the review, articles were also 

required to include mentions of the LHS concept and of genetics or genomics, because it is 

known that requirements for conducting research with genomic data in a healthcare setting are 

similar to but distinct from requirements for conducting research with other types of health-

related data [8,31]. Table 6.1 displays the search queries used to identify relevant literature in 

each of the eight surveyed databases. 

 

 

 

 

 

 

 



145 
 

 

Database Search Query 

PubMed (("learning health system") OR ("learning healthcare system") OR ("learning 
health care system")) AND ((genomic) OR (genome) OR (genetic) OR (gene) 
OR (genes)) AND ("2008"[Date - Publication] : "3000"[Date - Publication]) 
AND (English[Language]) 

Embase ('learning health system' OR 'learning healthcare system' OR 'learning health 
care system') AND (genomic OR genetic OR gene OR genes OR genome) 
AND [english]/lim AND [2008-2022]/py 

PAIS (("learning health system") OR ("learning healthcare system") OR ("learning 
health care system")) AND ((genomic) OR (genetic) OR (gene) OR (genes) 
OR (genome)) 

Health Technology 
Assessment Database 

("learning health system") OR ("learning healthcare system") OR ("learning 
health care system") 

CINAHL (("learning health system") OR ("learning healthcare system") OR ("learning 
health care system")) AND ((genomic) OR (genetic) OR (gene) OR (genes) 
OR (genome)) 

Web of Science (("learning health system") OR ("learning healthcare system") OR ("learning 
health care system")) AND ((genomic) OR (genetic) OR (gene) OR (genes) 
OR (genome)) 

PsycINFO (("learning health system") OR ("learning healthcare system") OR ("learning 
health care system")) AND ((genomic) OR (genetic) OR (gene) OR (genes) 
OR (genome)) 

Medline (("learning health system") OR ("learning healthcare system") OR ("learning 
health care system")) AND ((genomic) OR (genetic) OR (gene) OR (genes) 
OR (genome)) 

 

Table 6.1. Search queries used to identify eligible articles in each database. For searches where 
publication date and/or language could not be included in the search wuery (all databases other than 
PubMed and Embase), results were manually filtered by English language and publication date after the 
initial search. 

 

Following each search, reference lists were exported as Research Information Systems (.RIS) 

files, which were then imported into the EPPI-Reviewer Web 4.0 literature review management 



146 
 

 

system [249]. Duplicate articles were removed using the EPPI-Reviewer duplicate checking tool. 

All remaining screening and data extraction activities were conducted by one reviewer (K.F.) 

using EPPI-Reviewer. 

6.3.1.d Inclusion and exclusion criteria 

Publications were first screened by title and abstract content to exclude publications that clearly 

met the exclusion criteria. Titles and abstracts were excluded if they met one or more of the 

following conditions: 

1. No mention of the LHS model 

2. No mention of genetic or genomic data 

3. Conference abstract 

4. Table of contents 

5. Dissertation/thesis 

6. Protocol article 

7. Review article 

8. No peer review 

9. Not in English 

10. Published before 2008 

 

Publications that passed the title and abstract screening phase were then screened on the full text. 

Articles were excluded if they met one or more of the following conditions: 

1. Minimal to no discussion of discovery research in the context of the LHS model 

2. No suggested needs, actions, or opportunities for discovery research identified 
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3. Minimal to no discussion of genetic or genomic data 

 

Publications that passed both the title and abstract screening and the full text screening were 

included for data extraction. 

6.3.1.e Data extraction 

Data extraction was conducted in two phases: 1. Background extraction; and 2. Content 

extraction. During the background extraction phase, the following information was gathered: 

1. Article type (e.g., Special Report, Commentary, Methodology) 

2. Study design 

3. Country 

4. Home institution name 

5. Institution type 

6. Medical domain 

7. Source(s) of funding 

8. Conflicts of interest 

During the content extraction phase, enabling factors explicitly identified by authors throughout 

the text (with phrases such as, “this would require…” or “crucial to this approach is…”) or 

summarized in lists or tables were identified. Codes representing these factors were iteratively 

created and sorted into topical categories, such as “Funding and incentives” or “Policy and 

governance.” While codes were re-used between publications when possible, new codes with 

similar sentiments to existing codes were written when there were nuances in the publication that 
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the existing code did not capture. This process continued until all publications had been 

evaluated for content. Separate reports were generated for Study Characteristics/Background and 

Outcomes using the EPPI-Reviewer configurable reports tool. 

6.3.1.f Data synthesis 

Because the studies included in the review involved a variety of methods and did not report 

comparable quantitative findings, narrative synthesis was used to combine the results into a 

textual narrative. The analysis was conducted using the process for narrative synthesis proposed 

by Popay et al. (2006) [250]: 1. Preliminary synthesis; 2. Theory of change development; 3. 

Relationship exploration; and 4. Assessment of robustness. 

 

1. Preliminary synthesis: Initial data synthesis was conducted during the data extraction 

process, during which emerging codes were grouped into descriptive themes. Once data 

extraction was complete, codes were re-grouped based on their similarities and 

differences with respect to their relationships with the outcome of interest (clinical 

research integration), and descriptive themes were rephrased to better describe codes 

assigned to each theme. 

2. Theory of change development: Flow diagramming was used to develop an initial 

theory of change using the descriptive themes identified during preliminary synthesis, as 

described in Weiss 1998 [251] and White 2017 [252]. Weiss describes the theory of 

change as “the chain of causal assumption that [links] programme resources, activities, 

intermediate outcomes and ultimate goals” that is used to better understand “how the 
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intervention works, why, and for whom” (Weiss 1998, as cited in Popay et al. 2006, p. 

12). The initial theory was modified as needed during the relationship exploration. 

3. Relationship exploration: Concept mapping was used to relate descriptive themes and 

the properties of those themes (e.g., codes) with one another. Relationships identified 

through concept mapping were incorporated into an updated theory of change model, 

which was then used to write the final narrative synthesis. 

4. Assessment of robustness: Methodological limitations of each study were identified and 

described in aggregate. The most common sources of bias and assumption were also 

identified, both for the publications included in the review and for the investigator 

conducting the review. Discrepancies and uncertainties between study results were also 

considered, in addition to contextual factors of each study that may have influenced 

outcomes. 

6.3.2 Qualitative evidence synthesis 

BFFS is a QES method that has previously been used to address “applied policy or clinical 

questions in a specific setting or context” (Flemming & Noyes 2021, p. 6) [246], and QES 

methods have been well established as effective aids in health policy and healthcare decision-

making [253,254]. BFFS was first described by Carroll, Booth, & Cooper in 2011 [255], and an 

updated method was described by Carroll et al. (2013) [256]. The following measures were taken 

based on proposed steps of BFSS: 1. Framework identification; 2. Systematic literature review; 

3. Evidence comparison; and 4. Evidence synthesis. 

1. Framework identification: An a priori model for GLHSs was developed using the 

grounded theory approach, as described in Aim 2. 



150 
 

 

2. Systematic literature review: Primary research studies were chosen for inclusion in the 

evidence synthesis using the methods described in section 6.3.1 (“Systematic Literature 

Review”). 

3. Evidence comparison: Individual codes generated from the systematic literature review 

were imported into ATLAS.ti, along with thematic codes generated from the 

Recommendations section in Aim 1. All codes were compared with the primary themes 

of the a priori model using the constant comparison method [257]. Codes that were 

sufficiently related to the a priori model themes were grouped accordingly, and codes 

that did not sufficiently relate to existing themes were grouped into new thematic 

categories. 

4. Evidence synthesis: Concept mapping was used to identify relationships between 

existing themes in the a priori model and new themes identified during evidence 

comparison. New properties of the a priori themes were also identified using the code 

groupings from the evidence comparison. A final diagram of the synthesized model was 

created, along with a narrative description of the model. 

6.4 Results 

6.4.1 Systematic review 

Of a total of 291 records identified through database searches, 152 duplicates were removed. Of 

the 139 remaining records, 75 were excluded on Title & Abstract screening. Of the 64 recordings 

remaining after screening, 64 records were included for eligibility assessment. After 21 records 
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were excluded due to either insufficient discussion of genomics or LHS models, or insufficient 

identification of needs or opportunities, 43 records were included in the review (Figure 6.1). 

 

Figure 6.1. PRISMA [258] flow diagram of study Identification, Screening, Eligibility, and Inclusion for 
the systematic literature review. 
 
 
Detailed study characteristics and results can be found in Table S6.1. Thirty-six (36) of the 

studies were written by investigators solely in the United States [13,31,132,259–291]. Two (2) 

were written by an international group of authors [292,293], 2 were written by Canadian authors 

[294,295], and 3 publications were written about health systems in Australia, Denmark, and the 

Netherlands, respectively [10,296,297]. Nineteen (19) publications were qualitative expert 

analyses [10,270–282,293,295,297], 8 were experience self-assessments from actual LHS 
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implementations [13,132,265–269,292], 6 were conference or workshop summaries [260–

264,294], 4 were qualitative analyses of original interview or focus group data [283–286], 4 were 

system development and evaluation studies [287–290], 1 was a pilot study [291], and 1 was a 

case study [259]. Twenty-nine (29) publications were condition-agnostic, 11 focused on 

oncology, and individual studies focused on aneurysms, asthma, and inflammatory bowel 

disease. 

 

During outcomes data extraction, 14 descriptive themes were iteratively identified among 291 

codes. These themes were grouped into 4 higher-level analytical themes: 1. Data and standards; 

2. Culture and acceptance; 3. Engaging with and protecting patients; and 4. Political and 

institutional support (Table 6.2). 
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Analytical Theme Descriptive Theme Number of Codes 

Data and standards 
(Table S6.2) 

Collecting, integrating, and sharing genomic and 
phenotype data 

26 

Analyzing data for discovery 27 

Developing standards 17 

Culture and acceptance 
(Table S6.3) 

Building a collaborative learning culture 27 

Demonstrating value and feasibility 14 

Aligning learning with existing healthcare 
improvement models 

10 

Engaging with and 
protecting patients 
(Table S6.4) 

Advancing health equity 16 

Prioritizing patient-centeredness 15 

Obtaining consent for clinical research 13 

Safety measures and outcomes monitoring 19 

Privacy and security protections 9 

Political and institutional 
support 
(Table S6.5) 

Funding and incentives 17 

Policy and governance 23 

Building institutional capacity for genomic 
medicine and learning 

58 

 
Table 6.2. Analytical and descriptive themes generated during systematic literature review content 
extraction. 
 

A high-level exploration of the 14 descriptive themes identified during the literature review 

revealed how the current literature characterizes the inputs, activities, and intermediate outputs of 

clinical genomic discovery (Figure 6.2). Funding, policy, and governance were identified as 

requisite inputs to the activities that comprise clinical genomic discovery, which span the areas 

of support-building, cultural acceptance, patient-participant engagement, and data analysis and 

standardization. Demonstrating the value and feasibility of clinically embedded genomics 
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research to stakeholders was identified as an intermediate output of these activities that could 

potentially fuel the input of additional resources into the change process. The desired outcome 

was defined as the enhancement of clinically meaningful genomic discovery, as specified by the 

study PICO. Desired impacts were based on the expected outcomes of an effectively 

implemented LHS: better patient outcomes, better scientific understandings of health and 

disease, and decreased healthcare costs [7].  

 

Figure 6.2. Initial theory of change diagram, based on 14 descriptive themes identified during the 
systematic literature review and desired outcomes and impacts defined by the study PICO. 
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After exploring the properties of each theme and identifying relationships between them through 

concept mapping, a new theory of change model was developed to better represent the spectrum 

of identified enabling factors for clinical genomic discovery in the literature (Figure 6.3). The 

literature tended to characterize themes as requisite inputs for a functioning LHS, rather than 

components of learning activities themselves. Enablers of learning activities depended on diverse 

combinations of different inputs. The intermediate output of LHS activities (demonstration of 

value) did not change between Figure 6.2 and Figure 6.3. 

 

 

Figure 6.3. Updated theory of change diagram, based on property and relationship exploration of 14 
descriptive themes identified during the literature review. 
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6.4.2 Best-fit framework synthesis 

A total of 291 qualitative codes were created using the codes identified during the systematic 

literature review, and 12 codes were created from the “Needs” column in Aim 1, Table 3.3. 

These codes were grouped into the 5 major themes from the a priori 5R model developed in Aim 

2 (Representation, Responsibility, Risks and Benefits, Relationships, and Resources), and new 

themes were iteratively created to accommodate codes that did not sufficiently relate to the a 

priori model themes. Four (4) new thematic codes were created after constant comparison of 

framework themes and the 303 total codes from Aim 1 and the literature review. All other codes 

were grouped into the 5 existing a priori themes. Descriptions of the new themes are included in 

Table 6.3. 
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Theme Codes Description 

Analysis approaches 18 Suggestions for specific analysis tools and 
approaches that can be used to represent clinical and 
genomic data, such as rigorous statistical models, 
scalable data extraction methods, platform-agnostic 
tools, and functional effect prediction 

Automation approaches 15 Suggestions for automated approaches to 
implementing new knowledge in clinical practice, 
such as mass customization, FHIR tools, predictive 
models, and usability labs 

Outcomes monitoring 
approaches 

16 Suggestions for approaches to monitoring the 
outcomes of clinical research and implementation, 
such as the use of patient-reported outcomes, 
mechanisms for routinely following up with patient-
participants, and definition of consensus outcomes 
measures 

Standardization approaches 21 Different approaches to standardizing aspects of 
clinically embedded research, such as unified data 
architectures, standards for capturing diversity, 
semantic interoperability of biomarker data, and 
regulated diagnostic approaches using sequencing 
technologies 

Value assessment approaches 7 Tools for assessing and demonstrating the value of 
genomic medicine to diverse stakeholders, including 
patients, organizations, and payers 

 
Table 6.3. New themes identified using best-fit framework synthesis. 

6.5 Discussion 

6.5.1 Systematic literature review 

Overall, the volume of peer-reviewed literature on the enabling factors of clinically embedded 

genomic discovery was limited, but the suggestions made across articles were broad and spanned 

many disciplines (Table S6.1). The vast majority of articles were perspective pieces or 

commentaries based on limited implementation experiences or content expert suggestions. 
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Several articles were written by investigators from countries with nationalized health systems 

such as Canada, Australia, Denmark, and the Netherlands, but the majority were written in the 

context of the US healthcare system. Few articles focused solely on the data to knowledge aspect 

of LHSs, but rather discussed discovery in the context of other learning processes. The lack of 

comparative-effectiveness research on enablers of clinical genomic discovery suggests that this 

area of research is still in its infancy and speaks to the immense challenge of implementing such 

systems in practice. 

 

As defined in the scope of this review, the ultimate vision of genomics-enabled learning 

healthcare is to improve population health, increase the public understanding of how genomics 

impacts human health and disease, and increase the efficiency of the healthcare system by 

enhancing disease diagnosis and prevention [8]. Unsurprisingly, the literature collectively 

suggested a lofty and complex set of inputs and activities that would likely be necessary to 

achieve this ambitious vision. While the chain of literature review themes depicted in Figure 6.3 

is not strictly linear, it approximates the ways in which inputs and activities build upon one 

another in the process of conceptualizing a model of clinically embedded research, preparing to 

implement the model, implementing the model, and demonstrating the value of the 

implementation. 

 

The literature unanimously asserted the importance of national policy, funding, and incentive 

systems in providing a foundation on which learning systems could be built (Table S6.5). 

Several publications suggested that harmonizing government policies relating to health data use 

and data sharing [261,294] could relieve the burden placed on both health institutions and 
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patient-participants to decode separate but overlapping policies. Policy prioritization was also 

identified as having significant potential for enabling desired downstream effects, such as 

implementation of patient-centered systems, genomics education initiatives, data sharing 

networks, and global collaboration in clinical research. One publication also suggested that 

health research policies recognize the various dimensions and conceptions of value that an LHS 

could provide [263]. The concept of value was a recurring theme in many publications and was 

identified as a key component in creating virtuous learning cycles. Policymakers have the 

authority to both define measures of value and judge whether value is being produced in LHSs, 

which makes it all the more important to encourage nuanced understandings of value in the 

clinical, research, and policy communities. Initiatives deemed as having value, either potential or 

observed, receive funding, which is the lifeblood of the research enterprise and publicly financed 

healthcare institutions. Several publications suggested that incentive systems should be used to 

fuel desired innovations in healthcare research and practice [263,272,291], such as tools and 

processes for maximizing patient-centeredness. The literature collectively suggests that policy 

and funding provide both the means and the motivation for institutions to begin preparing for 

clinical research integration. 

 

Because the preparation and activities involved in genomics-enabled learning healthcare are 

labor intensive and sometimes require controversial decisions, a cultural commitment to 

learning, communication, and improvement within and between healthcare institutions is widely 

recognized as necessary for LHS development (Table S6.3). Only once institutions are invested 

in change can they be earnestly involved in developing and adopting standards, building 

institutional capacity, and adopting and implementing privacy and security measures. Many 
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studies deemed standards essential for the full spectrum of LHS preparations and activities, given 

the current heterogeneity in research and clinical approaches across healthcare institutions in the 

US and the need for large scale collaboration (Table S6.2). The technical, procedural, and 

collaborative systems that institutions develop to enable learning healthcare are ideally based on 

these standards to maximize the safety and efficiency of such systems. Many studies also 

suggested making a patient-participant-centered approach the backbone of all learning health 

infrastructures and activities, which necessitates a focus on building technical and procedural 

capacities for privacy and security protections of patient-participant data. However, the current 

legal protections of genomic data under HIPAA are still unclear and should be clarified [261] 

(Table S6.4). 

 

All subsequent LHS activities identified in the literature build upon the basic tenets of funding, 

prioritization, culture, standardization, patient-centeredness, institutional infrastructure, and data 

security. However, the suggested approaches to different activities are diverse and sometimes in 

tension with one another. Several publications focused on the role of clinical learning 

environments in advancing (or impeding) health equity [31,272,274,276,277], suggesting that 

significant efforts should be made to form trusting and sustainable relationships between health 

systems and diverse patient-participant communities. With increased engagement of diverse 

individuals will come more and potentially higher quality clinical and genomic data from diverse 

communities, which can be used to advance clinical genomics research that truly gives back to 

those communities. Using appropriate analysis methods for diverse genomic datasets should 

become a standard practice in LHSs, but it is possible that individuals from backgrounds that 

have historically been marginalized and mistreated by the medical and research enterprises will 
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only feel comfortable sharing data for research if it is de-identified. One publication suggested 

that new models be developed to enhance the research utility of de-identified data [31], but there 

is debate among the literature over whether the full potential of LHS research can be reached 

using de-identified clinical data. A related tension is the debate over whether federated data 

sharing of clinical and genomic data can be used in place of all-access data sharing for genomic 

discovery research [291]. Generating high-quality, representative clinical and genomic datasets is 

widely recognized as an essential part of the learning process, but the policies and moral systems 

that dictate the level of detail available to different clinical researchers remain highly debated. 

 

Different perspectives exist regarding the appropriate methods of consenting patient-participants 

for clinically embedded genomics research. Some publications advise the use of prospective, 

broad consent to reap the full benefits of clinical research [262,268], while other advise the use 

of new and creative models of consent, such as dynamic consent, to best respect the wishes of 

patient-participants [10,13,294,297]. However, most publications agreed that widespread 

education on the potential risks and benefits of genomic data sharing should be publicly funded, 

and that communication between patient-participants and those consenting them to clinical 

research be as clear as possible, regardless of the consent model used. 

 

The literature was in broad agreement that more advanced, representative, and accurate tools for 

clinical and genomic data analysis are needed. Methods should be developed by an 

interdisciplinary network of researchers and clinicians, given the interdisciplinary origins of the 

data and broad implications for use in a medical context. Some publications also stressed the 

importance of communicating research findings between LHSs and the broader research 
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community through peer-reviewed publications [263,276,283]. However, for LHS research that 

is more quality-improvement oriented, many publications suggested using existing principles and 

tools from comparative-effectiveness research (CER), quality improvement (QI), health 

technology assessment (HTA), and implementation science, rather than developing new tools 

altogether [132,261,263,267,271,279,282,294,296]. The only stipulation of these publications is 

that existing tools be evaluated for effectiveness in a learning health environment, and that they 

cater to the patient-centered approach of GLHSs. 

 

The literature was in wide agreement that any changes made to clinical practice based on 

research findings should be heavily documented and monitored. For patient safety reasons, 

centralized ethical oversight should be used to weigh the risks and benefits of clinical research. 

However, this would require a complex merging of moral systems used to differentially guide 

research and clinical decision-making [277]. While the current models of ethical oversight for 

clinical research are deeply embedded in research culture, some publications propose that new 

models of ethical oversight for routine, clinically-embedded research be developed [10,132,261]. 

For the purposes of measuring and demonstrating value, a diverse set of clinical, economic, and 

patient-reported outcomes should be continuously measured in an LHS. If definitions of value 

are to be dynamic and context-specific, the outcome measures used to inform value assessments 

should be dynamic as well. Ultimately, demonstrating value to a diverse group of stakeholders 

could help fuel the necessary inputs of LHS development, leading to virtuous cycles of clinically 

embedded genomics research. 

 



163 
 

 

As previously mentioned, most articles included in the literature review were perspectives and 

experience reports (Table S6.1). This limits the empirical strength of the assertions made in the 

literature review, and necessitates that all results be viewed as suggestive, rather than 

prescriptive. Many studies also disclosed sources of funding that were not strictly academic, or 

disclosed conflicts of interest such as involvement with pharmaceutical companies or for-profit 

healthcare organizations. While this partially speaks to the understanding in the literature that 

partnerships with for-profit organizations make learning healthcare more feasible [13], it also 

warrants a critical examination of whether such partnerships are truly necessary, or whether 

company involvement in academic discussions biases the literature towards that understanding. It 

is also important to recognize that very few publications referenced the “genomics-enabled 

learning health system” as a singular concept in their analyses. Instead, the primary investigator 

assumed that publications that both considered the LHS model and recognized genomic data as 

unique from other clinical data could be referred to as studies that discussed the core concepts of 

a GLHS. Additional studies that discuss the GLHS model as a discrete entity are needed to fully 

capture the challenges and opportunities of the model. 

6.5.2 Best-fit framework synthesis 

Evidence from the literature review and Aim 1 could largely be grouped into the existing themes 

of the a priori model from Aim 2, suggesting that the 5R model is a reasonable representation of 

the factors involved in learning healthcare. However, two new insights were gained from the 

BFFS process: 1. The literature offers potential tools that can be used to facilitate negotiations; 

and 2. The inputs of the theory of change model developed from the literature review do not 

necessarily need to be complete prior to LHS implementation (Figure 6.4). 
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Figure 6.4. 5R sociotechnical model of discovery in a genomics-enabled learning health system, based on 
best-fit framework synthesis of the a priori model from Aim 2, a systematic literature review, and Aim 1 
results. 
 

While the in-depth interview study approach is useful for characterizing relationships between 

LHS processes and deconstructing the roles, expectations, and tensions involved, surveying the 

available literature is useful for brainstorming approaches to resolving tensions and 

reconstructing the operational picture of an LHS. There was widespread consensus in the 

literature that standards can facilitate many aspects of the learning process, including 

infrastructure development, analysis, clinical and research protocols, implementation, and 

outcomes measurement. The recommendations from CSER data coordination in Aim 1 
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corroborated this finding, given that standardizing and streamlining both the informatics and 

communication aspects of data coordination were key to successful implementation. If the space 

between data generation and knowledge generation is considered an “entry point” into LHS 

learning cycles, standardization efforts could be focused at that entry point and then propagated 

forward through the learning process. Novel approaches to clinical and genomic data analysis 

were also suggested across the literature, including ontology-driven approaches to omics data 

extraction and analysis, scalable and platform-agnostic tool development, methods for using de-

identified clinical and genomic data, and improved data visualization techniques. In this way, 

both standardization and creative data analysis could facilitate the scientific and workflow-

dependent aspects of representation. However, building relationships between patient-participant 

communities and health research institutions is still at the core of improving representation in 

clinical genomics research. 

 

The literature identified automation as the primary tool for facilitating the path from knowledge 

to practice in an LHS. The use of genomic CDS tools and predictive models to sustain 

innovation and encourage evidence-based practice was widely suggested, which aligned with a 

recurring suggestion from interviewees in Aim 2 that CDS tools could help curb inappropriate 

use of genomic knowledge in clinical decision-making. Automated processes for variant 

interpretation that systematically use the best available evidence, even if limited or preliminary, 

could assist researchers and clinicians in adjudicating variant validity, actionability, and utility. 

However, automation will not eliminate differences in the meaning of “research” given different 

research and clinical histories and expectations in genomics. Ethical limitations in the 

production, validation, and use of new knowledge are ultimately at the whims of social evolution 
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in the research and clinical traditions, and automation will likely have little to do with the mutual 

understandings that must form between researchers and clinicians when negotiating 

responsibility for patient-participant wellbeing. 

 

In the case of negotiating risks and benefits, systematically measuring a variety of outcomes was 

identified as the primary method for determining both the risks and benefits of conducting 

genomic research in a healthcare setting. Because value is defined differently by different 

stakeholders (e.g., patient-participants, researchers, providers, payers, policymakers), multiple 

types of information that could be used to measure value should be captured (e.g., patient-

reported outcomes, scientific outcomes, clinical outcomes, economic outcomes). These 

measurements can be used to inform risk and reward negotiations on the part of researchers and 

clinicians in future learning cycles and can also be used to justify policies that sustain funding 

and incentives for learning healthcare. The question of how ethical oversight of clinical research 

could be improved, however, is still dependent on the evolving relationships between embedded 

ethics committees and those conducting clinical research. 

 

While the literature tends to characterize processes like standards development and institutional 

capacity building as prerequisites for conducting learning activities in an LHS, the updated 

GLHS model proposed in this study suggests that these processes do not necessarily need to be 

fully fleshed out before beginning the learning process, in much the same way that “clinical 

research need not be complete prior to implementation” (Williams et al. 2018, p. 763) [13]. 

Instead, preliminary implementations of genomics-enabled LHS cycles that incorporate early 

versions of the technical, social, ethical, and structural components identified broadly in the 
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literature can be used as a way to dip the world’s proverbial toe into clinically embedded 

research. This approach should be taken with great caution at first, because there should be a 

widely held understanding that learning cycles will improve with time as components of the 

learning process generate better understandings of themselves. Heeding the processes of 

negotiation that will likely shape the evolution of learning systems can help instill a culture of 

respect and vigilance in those systems and can help ensure that research and clinical traditions 

evolve together into something that is greater than the sum of their parts. They may never reach a 

state of true equilibrium, but they can continually learn from one another for the sake of 

improving human health. 

6.6 Limitations and future work 

6.7 Conclusion 

In this aim, we demonstrated that the number of studies addressing the topic of clinically 

embedded genomic discovery is small, but that the complexity of suggestions made by those 

studies is disproportionately large. Proposed enablers of clinical genomics research can be 

roughly organized into a set of interdependent inputs and activities that enable continuous 

learning that is participant-centric, value-oriented, and equitable. The integrative 5R 

sociotechnical GLHS model developed using BFFS methods offers a conceptual basis for the 

ways in which proposed enablers of clinical genomics research integration can facilitate 

negotiations between the (sometimes conflicting) priorities of research and clinical care. 

Progressively developing and testing the suggested components of genomics-enabled learning 

cycles can elicit additional resources and fuel virtuous cycles of learning. 
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CHAPTER 7: CONCLUSIONS AND SUMMARY OF CONTRIBUTIONS 

In this work, we derived an integrative conceptual model for GLHS discovery (the “5R” model) 

that represents clinical research integration in genomics as an iterative and multidirectional 

process involving constant negotiations between research and clinical stakeholders, exploratory 

informatics tool development and adoption, and relationship building. The 5R GLHS model 

offers a genomics-specific enhancement of the original LHS model and provides a conceptual 

foundation upon which future GLHS implementation frameworks can be built. Through careful 

consideration of the sociotechnical factors involved in building virtuous cycles of learning and 

improvement in health systems, genomics research and genomic medicine can co-evolve to 

improve population health equitably, safely, and effectively. 

 

This work offers several contributions to the fields of biomedical informatics, immunogenetics, 

and learning health systems research: 

1. Recommendations for best practices in multi-institutional clinical and genomic data 

coordination work that can be generalized to projects with diverse patient-participant 

populations, sizes, and funding capacities (Aim 1). 

2. A novel conceptual model for understanding the research-clinical interface in the context 

of GLHSs, from the perspective of genomic medicine experts (Aim 2). 

3. A novel gene-disease association in the HLA-DRB locus that may predispose individuals 

to C. diff. infection, and mechanistic hypotheses for the association that span multiple 

immunological perspectives (microbiome-mediated, T-cell mediated, methylation-

mediated) (Aim 3). 
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4. A novel, integrative genomics-enabled learning health system conceptual model that 

incorporates enabling factors for clinical genomic discovery identified by a Cochrane-

style systematic literature review (Aim 4). 
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APPENDIX 

Appendix A. First interview guide for Aim 2 interview study. 
Intro 

1. Background 
a. Genomic medicine is becoming more widely recognized as useful and important, 

but widespread clinical adoption is lacking 
b. Genomic discovery activities are typically conducted in research settings using 

research data, rather than clinical settings using clinical data 
c. Embedding genomic research within clinical environments could both increase 

pace of clinically meaningful discoveries, and increase evidence for utility needed 
for wider adoption 

i. In a genomic learning healthcare system model: 
1. Implementation of new genomic medicine practices → collection 

and analysis of outcomes data (and genomic data?) → new 
genomic knowledge → quality improvement strategies → cycle 
starts over 

ii. Idea is to rapidly move genomic discoveries into clinical care, then bring 
clinical observations back to research setting, then use those observations 
to inform discovery efforts, and so on 

d. The only question is: how? 
2. Informed consent for participation 
3. Informed consent for interview recording 

 
 
Discussion Points 

● Personal background (clinical training and focus, work setting, etc.) 
● What kinds of genetic/genomic tests do you currently use, if any? In what types of 

clinical situations? 
● Are there any clinical areas that might particularly benefit from rapid genomic discovery 

efforts (and subsequent applications)? 
● How might clinically-based genomic discovery research (e.g. GWAS, PHEWAS) that is 

conducted as a by-product of clinical care differ from discovery work that is conducted in 
purely research settings? 

● What are some benefits and/or drawbacks of embedding genomic discovery research 
programs within clinical environments? 
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● What are some of the supporting elements that would need to be in place to facilitate 
clinically-based genomic discovery research (technical, legal, social, ethical, structural, 
etc.)? 

● What information would you need to determine if a new clinical genomic discovery (e.g. 
a gene-disease association) is ready to be put to clinical use? What safeguards would 
need to be in place? 

 
Appendix B. Second interview guide for Aim 2 interview study. 
 
Intro 

1. Background 
a. We know there is a lack of evidence for the outcomes of implementing genomic 

medicine (exactly the kind of thing that CSER is trying to address…large, multi-
site research consortia can help address this evidence gap) 

b. I’m interested in exploring another way that we can start to close this evidence 
gap and bring useful discoveries into the clinic more quickly - through a learning 
healthcare system model, where genomic research is just embedded within 
clinical environments, and new discoveries are used to iteratively inform care, and 
we can collect outcomes data through the healthcare system 

c. Interested in exploring 
i. Is this a good idea? Are there any major red flags we should be looking 

for? 
ii. And if some healthcare systems do start to implement this model, how? 

There are likely many ethical, technical, social components that need to be 
considered, but it’s not exactly clear what those components are and how 
they should be addressed 

2. Informed consent for participation 
a. This will be completely anonymous, your name won’t be used in relation to any 

of your responses, either within the study team or in writeups 
b. You can remove yourself from the study at any time (including during this 

interview), and request that your responses be removed from the study as long as 
it’s possible to extract them from aggregate analyses 

3. Informed consent for interview recording 
a. Will transcribe and qualitatively code the interview data, which will be 

anonymized 
b. You can choose to stop the recording any time 
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Discussion Points 
● Background 

○ Can you tell me a bit about your personal background as a clinician-researcher 
(clinical training and focus, work setting, day to day, etc.)? 

■ What kinds of genetic/genomic tests do you currently use? In what types 
of clinical situations? 

○ Can you tell me more about your research at [institution name]? 
● Challenges related to the data itself 

○ What are some challenges you might run into when using clinical data for 
research (both genomic and otherwise) vs. using data collected as part of a 
dedicated research process? An example of research could just be something like 
a GWAS or PHEWAS, looking at genotype-phenotype correlations. 

○ Conversely, what are some potential benefits of using this type of data for 
research? 

○ What might make it difficult to collect clinical outcomes of clinical decision-
making that has potentially changed due to a new genomic discovery, for example 
a new gene-disease or variant-disease association? 

○ Where does that evidence for actionability come from? How would this work in a 
LHS? 

● Potential for clinical benefit? 
○ Thinking about the LHS model that I mentioned earlier, are there any clinical 

areas that might particularly benefit from rapid genomic discovery efforts 
(and subsequent applications)? 

○ Conversely, are there clinical areas where it might be more dangerous and/or 
challenging than others to introduce things like new gene-disease associations 
into clinical practice more quickly? 

○ What are some benefits and/or drawbacks of embedding genomic discovery 
research programs more broadly within clinical environments? 

■ We already see a lot of this type of discovery work done in oncology. Can 
(and should) we use clinical genetics research in oncology to inform 
research models in other clinical areas? 

○ Is the LHS model a reasonable one for increasing the evidence base for 
genomic medicine, where genomic discoveries might be implemented more 
swiftly than they otherwise would? 

○ Do you think genomic surveillance or population screening should be 
implemented more widely in a healthcare system? An example of such an 
existing system is prenatal screening, which seems pretty widely applied. 

● Differences in discovery practice between research and clinic 
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○ How might clinically-based genomic discovery research (e.g. GWAS, PHEWAS, 
gene-drug interactions, etc.) that is conducted as a by-product of clinical care 
differ from discovery work that is conducted in purely research settings? 

○ Do you think there is a reason that genomics research and medical genomics 
practice should be carried out in two separate venues, potentially using 
different funding sources? Why or why not? 

■ Is there anything specific about genomics that would make it more or less 
amenable to integrating research into a clinical setting? 

● Requirements for implementing clinically-based genomics discovery programs 
○ What are some of the supporting elements that would need to be in place to 

facilitate clinically-based genomic discovery research (technical, legal, social, 
ethical, structural, etc.)? 

■ What do we need to make data better? 
○ What information would you need to determine if a new clinical genomic 

discovery (e.g. a gene-disease association) is ready to be put to clinical 
use/actionable? What safeguards would need to be in place? 

■ How would/should this “clinical use” be identified, verified, tested, and 
ultimately validated? 

○ How should the roles of patient and research participant be balanced in 
something like a learning healthcare system, especially for genomics research? 

■ How might consent models need to change to accommodate this dual role? 
■ What do you think about dynamic consent? Should it be just forward 

based? Or always backwards based? 
● Ethics in genomics 

○ How do you think medical genomics fits in with the notion of distributive justice 
in healthcare system (the assumption that if you’re spending money one place, 
you’re not spending it somewhere else, where it might be needed more urgently) 

● “Futuristic” thinking 
○ What is your personal vision for the future of genomic medicine? How can it 

best be used to equitably improve healthcare? 
○ How do you think third party vendor data should fit into the healthcare system? 
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Appendix C. Third interview guide for Aim 2 interview study 
 
Intro 

1. Background 
a. We know there is a lack of evidence for the outcomes of implementing genomic 

medicine, and like most areas of research, it takes a long time for new discoveries 
to come to fruition in a clinical setting 

b. I’m interested in exploring one model we might be able to use to start to close 
this evidence gap and bring useful discoveries into the clinic more quickly: 

i. Through a learning healthcare system model (originally proposed by 
IOM/NAM in the early 2000s), where genomic research is just embedded 
within clinical environments, and new discoveries are used to iteratively 
inform care, and we can collect outcomes data through the healthcare 
system 

c. Interested in exploring 
i. Is this a good idea? Are there any major red flags we should be looking 

for? 
ii. And if some healthcare systems do start to implement this model, how? 

There are likely many ethical, technical, social components that need to be 
considered, but it’s not exactly clear what those components are and how 
they should be addressed 

2. Informed consent for participation 
a. This will be completely anonymous, your name won’t be used in relation to any 

of your responses, either within the study team or in writeups 
b. You can remove yourself from the study at any time (including during this 

interview), and request that your responses be removed from the study as long as 
it’s possible to extract them from aggregate analyses 

3. Informed consent for interview recording 
a. Will transcribe and qualitatively code the interview data, which will be 

anonymized 
b. You can choose to stop the recording any time 

4. Any questions for me before we get started? 
 
 
Discussion Points 
 
Background 

● Could you tell me about your professional background? Clinical training, research 
training (if any), clinical specialties, etc. 
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● Are you currently seeing patients in a medical genetics clinic? If so, what types of genetic 
tests do you typically order, and for what indications? 

● Do you currently do any clinical research? If so, what does that research look like? 
  
Using clinical data for research 

● What are some of the challenges you might run into when using clinical data for research, 
as opposed to using data collected as part of a dedicated research study or data in public 
or controlled access databases? 

● Conversely, what would make clinical data better for genetics research than research data 
or public/controlled-access data? 

● If “healthy” individuals were to be broadly sequenced in a healthcare system, what are 
some downstream effects that should be considered (if any)? 

● What are the pros and cons of using clinical data to monitor longitudinal patient 
outcomes? 

  
 Consent for clinical research 

● Are there other models of consent (other than broad, up-front consent) that should be 
considered for clinically embedded genetics research? If so, what would those models 
look like? If not, why not? 

● Should patients receive incentives (monetary or otherwise) to participate in clinical 
research, or to consent to data sharing in a clinical research institution? If so, why, and 
what types of incentives? If not, why not? 

  
Use and return of research results 

● If you found a potential disease-associated variant during a clinical research study, what 
would need to happen to deem it clinically actionable? Where would the evidence for that 
decision come from? Who would/should be making that decision? 

● Should new genetic discoveries be used to impact care in a healthcare system? If so, 
how? If not, why not? 

● Do research patients typically expect results to come back to them? If so, should there be 
efforts on the part of researchers and/or clinicians to manage patient expectations? 

● If there is a secondary finding from a purely clinical test (e.g., NIPT), should those results 
be returned to patients? If so, under what protocols (if any)? If not, why? 

  
Roles 

● If genetic research activities were conducted more routinely in clinical settings, what 
would need to be done (if anything) to reconcile the dual role of patients as both patients 
and research participants? Do you foresee any challenges or benefits of this dual role? 

● Who should be conducting genetic research in clinical settings? What types of 
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collaborations would need to be in place to make clinical research successful (if any)? 
  
 Payment and distributive justice 

● Where do you think medical genetics stands with regards to distributive justice (the idea 
that if you are spending money one place, you are not spending it somewhere else that 
may or may not need it more) in the US healthcare system? 

● Do you think there should continue to be separate funding sources for research and 
clinical care if the activities become synchronous? If so, why? If not, what might new 
funding models look like? 

  
Defining “clinical research” 

● How would you distinguish between research and routine quality improvement if 
genetics research were embedded in clinical environments (if at all)? 

● Do you feel like the research and clinical enterprises are separate entities? If yes, in what 
ways? If not, why? 

  
The future of genetics in medicine 

● Do you have any concerns about genetics being used more broadly in other medical 
disciplines? If so, what are your concerns? If not, why? 

● Should certain types of genetics research be prioritized to improve population health? If 
so, what might that prioritization look like? If not, why not? 

● What is your personal vision for the future of genetics in medicine? How do you think 
genetics can be used to have the greatest impact on individual and population health? 
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Appendix D. REDCap demographics survey for Aim 2 interview study. 
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Appendix E. Axial code descriptions for iteration 3 of codebook development. 
 

Code Group Code Definition 

Consent Avoiding coercion and respecting 
patient wishes during consent 

Strategies for protecting patients during the 
research consent process 

Considering the pros and cons of broad, 
up-front consent 

Descriptions of what broad consent might look 
like in clinical research settings, and the potential 
implications for people and research processes 

Considering the pros and cons of 
dynamic consent 

Descriptions of what dynamic consent might look 
like in clinical research settings, and the potential 
implications for people and research processes 

Maintaining transparency and setting 
expectations in consents 

Considerations for explaining research objectives 
to patients and documenting the consent process 

Merging ethical oversight of research 
and clinical care 

Thoughts about whether it would be feasible or 
useful to combine the forces of IRB monitoring 
and clinical oversight for clinical research studies 

Using technology to aid the consent 
processes 

Suggestions for using technology to our 
advantage when consenting patients for clinical 
research 

Working with IRBs to conduct clinical 
research 

Observations from working with IRBs on clinical 
research projects in the past: the good, the bad, 
and the ugly 

Current Practices Deciding between broader and narrower 
tests for different indications 

How things like Bayesian logic and uncertain 
results factor into clinicians’ decisions about 
ordering certain types of genetic tests 

Doing clinical research in integrated and 
universal health systems 

Personal experiences and observations of what 
it’s like to do clinical research in settings like 
Kaiser, Mayo, and Geisinger, or nationalized 
healthcare systems 

Doing clinical research in non-
integrated healthcare systems and 
research hospitals 

Personal experiences and observations of what 
it’s like to do clinical research and clinical care in 
the fragmented US healthcare system 

Ordering different types of genetic tests The types of genetic tests that geneticists typically 
order for different indications 

Data Getting data into the EHR Problems with how genetic and clinical data gets 
into commercial EHRs 

Getting data out of the EHR Problems with finding and extracting useful data 
out of the EHR 
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Protecting the privacy and security of 
clinical data 

Techniques for anonymizing patient data, and 
concerns about who can and should access patient 
data 

Sharing and recycling clinical and 
genomic data 

Experiences with accessing and transferring 
patient data across institutions 

Using clinical diagnostic lab data for 
secondary research 

Experiences and perceived pros/cons of using 
data from clinical diagnostic labs for research 

Using commercial genomic data in the 
clinic 

Considerations for using direct-to-consumer 
testing reported by patients in a clinical setting 

Using EHR and clinical genomic data 
for research 

Things that make EHR data both better and worse 
for research than other types of clinical data 

Using large databases for genomic 
research 

Considerations for using large, de-identified 
genetic databases (like gnomAD, UK Biobank 
and All of Us) for clinical research 

Using traditional clinical research data 
for research 

Things that make it easier to use data collected as 
part of a dedicated research project for clinical 
research 

Discovery Contextualizing current knowledge with 
past discoveries 

Musings on where we are now in genetic research 
vs. the very recent past 

Studying rare vs. common genetic 
variation/disease 

Arguments about the merits and drawbacks of 
studying common diseases vs. rare diseases with a 
genetic etiology 

Understanding genetic impacts on 
health and disease 

Allusions to the vastness of potential genetic 
impacts on human health and how much we still 
don’t know 

Using clinical tests for secondary 
research 

How purely clinical tests (like prenatal genetic 
screening) can or cannot be used for secondary 
research 

Engagement Educating communities about genetics Issues with teaching basic genetic concepts to the 
general population, and strategies for doing so 

Educating non-genetics specialists about 
genetic medicine 

Needs and suggestions for getting more non-
genetic medical specialists interested in 
comfortable with using genetics as a tool 

Engaging underrepresented 
communities in genetics research 

Observations and ethical considerations for 
engaging underserved and underrepresented 
communities in genetics research 

Forming collaborations within and 
between hospital systems 

Current challenges with forming collaborations 
within healthcare research institutions, and 
strategies for building relationships 
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Generating excitement and interest in 
clinical research 

Reasons why researchers and clinicians do and 
don’t get involved in clinical research 

Incentivizing and compensating 
research participants 

Pros and cons of altruism vs. using incentives to 
engage and/or compensate research participants 

Implementation Comparing and contrasting research and 
clinical care 

Opinions about whether or not the research-
clinical divide is real or imagined 

Developing clinical guidelines from 
genetic discoveries 

Observations about the current state of translating 
new genetic discoveries into clinical guidelines 
that impact care practices 

Distinguishing between research and 
quality improvement 

Observations of differences and/or similarities 
between research and clinical quality 
improvement 

Embedding genetic research in routine 
clinical care 

Potential pros and cons of embedding genetic 
discovery research within clinical environments 

Following up with patients after genetic 
testing 

Downstream implications of genetic tests or 
screens, and what patients are owed in terms of 
clinical follow-up 

Misusing and misinterpreting genetic 
tests for clinical care 

Concerns about genetic tests being 
inappropriately ordered or interpreted by either 
non-genetics or genetics specialists 

Testing new clinical interventions Current standards for testing out new clinical 
interventions, and concerns about implementing 
new knowledge or tools too quickly 

Using population-wide genetic 
screening in clinical care 

Pros and cons of using population-de genetic 
screening to guide clinical care and improve 
public health 

Using the EHR to streamline clinical 
genomics 

Current challenges with integrating genomic CDS 
into EHRs, and hopes for the future of CDS 
integration 

Utilizing remote medicine and 
eConsults in genomics 

Pros and cons of using remote medicine and/or 
eConsults to practice genetic medicine 

Participant 
Background 

Clinical Practice Current and past experiences in clinical practice 

Leadership, Teaching, and 
Entrepreneurship 

Current and past experiences with leadership, 
teaching, or industry 

Research Current and past experiences with research 

Training Past areas of study in research and/or medicine 
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Payment and 
Reimbursement 

Comparing and contrasting single-payer 
and multi-payer healthcare funding 
models 

Observations or personal experiences in 
accountable care organizations or nationalized 
health systems, and how those opportunities and 
services compare with most health systems in the 
US 

Evaluating the role of genetics in the 
investment and distribution of 
healthcare funds 

Discussions about the ethics and utility of 
spending money on genetic services and research 
within the US healthcare system 

Funding research and clinical testing 
through outside organizations and 
companies 

Observations of non-government organizations 
(pharma companies, philanthropy, etc.) funding 
genetics research 

Negotiating costs from integrated 
clinical research 

Discussions about who is or should be responsible 
for different clinical or research-related genetic 
costs in a healthcare system 

Returning Results Clinical regulations for returning 
research results 

Current clinical standards for returning genetic 
results to patients in a clinical context 

Deciding what types of results to return 
to patients, and when 

Clinician and researcher considerations for 
returning genetic results to patients/research 
participants 

Managing patient expectations and 
understanding before and after testing 

Observations about how patients typically react to 
receiving genetic testing results, and those 
reactions can be managed with pre and post-
return of results counseling 

Roles Comparing and contrasting the duties 
and motivations of researchers and 
clinicians 

Understandings about how researchers and 
clinicians have different stakes in the research and 
clinical processes, and how those motivations 
should influence types of involvement 

Navigating the medical system as both a 
patient and a research participant 

Hopes and concerns about the overlap between 
patient and research participant roles in learning 
health systems 

Negotiating the roles of medical 
geneticists, genetic counselors, and non-
genetics providers 

Debates about how involved each type of 
clinician should be in the genetic medicine 
process (test ordering, interpretation, return of 
results) 

Utility Adopting genetics into other medical 
domains 

Arguments for integrating genomics more broadly 
into medicine, rather than having it remain its 
own specialty 

Understanding personal utility of 
genetics for patients 

Reasons why patients themselves might want to 
get genetic testing done, clinical or otherwise 

Using genetics vs. other medical tests or 
interventions 

Decisions that go into ordering genetic tests or 
using genetic interventions as opposed to other 
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“standard” tests or interventions in medicine 

Visualizing the best uses for genomics 
in medicine 

Hopes for the future of genomics in medicine, and 
predictions of how it can be used to maximally 
benefit individual and population health 

Variant 
Actionability and 
Validity 

Determining variant actionability and 
utility in the clinic and clinical labs 

Current processes for interpreting genetic variants 
given other clinical information 

Generating, collecting, and applying 
evidence for variant interpretation 

Processes and needs for collecting information 
that can be used for variant interpretation and 
actionability assessments 

Standardizing and curating variant 
interpretations 

How external bodies and resources like ACMG, 
ClinGen, and ClinVar contribute to variant 
interpretation and actionability assessments 

Weighing analytic validity, gene-disease 
validity, and utility 

Complexities associated with determining clinical 
validity, analytic validity, actionability, utility, 
etc. of genetic variants 
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Appendix F. Axial code descriptions for iteration 4 of codebook development. 
 

Code Group Code Definition 

Building a 
collaborative 
learning culture 
in medical 
systems 

Benefits and drawbacks of using EHR data for 
research and equitably representing diverse 
populations 

Benefits, challenges, and implications of 
collecting and using routine clinical data 
and genomic data for research, and how that 
data may or may not be representative of the 
populations that should benefit from that 
research 

Benefits, drawbacks, and realities of operating 
within integrated and universalized healthcare 
systems 

Observations or personal experiences with 
doing clinical research and/or clinical care 
in integrated US healthcare system (like 
Kaiser, Geisinger, Mayo, the VA), or in 
countries with universalized healthcare 
systems 

Challenges of operating within a stressed and 
fragmented US healthcare system 

Personal experiences with doing clinical 
research and/or clinical care under the 
typical US healthcare model, which is 
generally disconnected and under resourced 

Forming collaborations and support systems 
within and between healthcare systems 

Examples and observations of healthcare 
providers, researchers, and leadership 
working together (or not) to conduct 
genomic medicine and/or research  

Negotiating the roles of medical geneticists, 
genetic counselors, and non-genetics providers 

Discussions of who should or could be 
ordering/interpreting genetic tests among 
genetic specialists (GCs and geneticists) and 
non-genetic specialists (neurologists, 
oncologists, cardiologists, etc.) 

Paying for clinical sequencing and clinical 
research 

Discussions of who (healthcare systems, 
insurers, federal/state governments, 
commercial entities, patients) should be 
paying for different types of clinical genetic 
research or care, and observations of what 
types of funding models currently exist in 
genetics 

Sharing and recycling clinical and genomic data Benefits and challenges of sharing 
participant-level genomic and clinical data 
within and between institutions 

What are the differences (if any) between 
research, clinical care, and quality improvement? 

Discussions of how research and clinical 
care overlap and/or diverge, and how 
routine quality improvement might be 
distinct from both 

Building 
relationships 

Building trust with patients, especially from 
minority communities 

How researchers and healthcare providers 
can respectfully engage with 
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with 
patients/research 
participants 

patients/research participants, especially 
from backgrounds that have been 
historically disadvantaged in medicine 
and/or genetics research 

Communicating with patients about 
research/clinical distinctions and navigating 
provider/researcher differences 

How researchers and clinicians do, can, or 
should help research participants/patients 
navigate the research-clinical boundary, 
including clarifying the roles of researchers 
vs. providers 

Engaging patients in the research process and 
being sensitive to their needs and motivations 

Discussions of how involved patients 
should be during the research process, 
particularly for receiving preliminary 
research results or bringing their own third-
party data (e.g. from 23andme) to the table. 
This code also addresses why people might 
be interested in genetic testing in the first 
place, and how they can or can’t access 
genetic medicine resources 

Providing incentives or clinical benefits to 
patients for participating in research 

Discussions of whether people should 
receive monetary or healthcare incentives or 
compensation for participating in clinical 
research, or if they should be participating 
in research altruistically (or a mix of both, 
depending on the situation) 

Ensuring 
patient/research 
participant 
safety and 
wellbeing 

Determining variant actionability, utility, and 
returnability in the clinic and clinical labs 

Current clinical processes for deeming 
genetic variants clinically actionable (e.g., 
through a CLIA lab), and what criteria are 
or should be used to determine if a variant is 
clinically actionable (e.g. it could impact 
their care in a meaningful way) and/or 
should be returned to a patient 

Educating non-genetics providers about genetic 
medicine to prevent misuse and misinterpretation 

Observations of how genetic medicine is 
currently misused by healthcare providers, 
and strategies of training and aiding 
providers to prevent misuse from happening 

Ensuring appropriate clinical follow-up after 
genetic testing 

Considerations for what clinical follow up is 
needed after genetic testing 

Generating, collecting, and applying evidence for 
variant interpretation 

Discussion of current authoritative bodies 
that develop variant interpretation standards 
(e.g., ClinGen, ACMG), and how 
accumulated evidence of variant 
pathogenicity can and should be used to aid 
variant interpretation 

Turning new genetic associations and 
technologies into clinical interventions 

Benefits, challenges, and safety 
considerations for “fast tracking” potentially 
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actionable genetic variants and tools into 
clinical use, either using standard clinical 
trial methods or other implementation 
models 

Evaluating the 
role of genetics 
in medicine 

Considerations for using population-wide genetic 
screening in clinical care 

Pros and cons of doing routine, population-
wide genomic screening 

Deciding what types of genetics tests to order 
based on clinical indications 

Current practices in ordering genetic tests 
for specific indications (e.g., developmental 
delay, family history), and considerations of 
whether broader (e.g. exome) or narrow 
(e.g. targeted panel) tests should be ordered 
in different clinical situations 

Historical advancements in genomic research and 
technology 

Ways that genomic research and genomic 
medicine have progressed over the past ~50 
years, and how those advancements have 
impacted other scientific discoveries and 
developments 

Understanding genetic impacts on health and 
disease 

Discussions of how much we do or don’t 
know about how genetics impacts human 
health and disease, and why that knowledge 
is important for science and for healthcare 
in general 

Using the EHR to represent genomic data and 
streamline clinical genomics 

Examples of genomics CDS in EHRs (e.g., 
through the Epic genomics module), and 
current challenges with getting genetics data 
into and out of the EHR 

Visualizing the best (and worst) uses for 
genomics in medicine going forward 

Considerations of trade-offs between 
genetic testing and other medical tests, and 
predictions of the best uses for genomics in 
advancing science and population health 

Participant 
Background 

Types of patients they see or environments they 
do clinical work in 

The participant’s typical patient populations 
(e.g., adults, pediatrics, oncology, 
OBGYN), and where/how they used to or 
currently work (e.g. institution name, 
institution type, position) 

Types of research they are or were involved in Past and current areas of research (e.g., data 
science, family communication, 
implementation science), and how they split 
time between research and clinical care 

Where they trained, in what, and for how long Institution names, types of degrees, lengths 
of degrees, people they trained with, reasons 
for choosing certain career paths, etc. 
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Protecting 
patient/research 
participant 
rights to privacy 
and autonomy 

Challenges and strategies for ethical oversight 
and consent in clinical research 

Benefits and challenges of different consent 
models (e.g., broad consent, dynamic 
consent) for merging research and clinical 
care, and experiences working with IRBs to 
do clinical research 

Protecting the privacy and security of clinical 
data 

Considerations for protecting the privacy 
and security of clinical and genetic data that 
is used for research in clinical settings 
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SUPPLEMENTAL FIGURES 

Figure S3.1. CSER projects, site populations and sequencing modalities. 
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Figure S3.2. Survey administration timepoints for CSER harmonized survey measures. 
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Figure S3.3. Reporting timepoints for genomic sequencing results, both at the participant level 
and at the case level. 
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Figure S3.4. Timeline of the harmonized measure change proposal process and implementation 
of the post-Return of Results (RoR) to follow-up survey elapsed time variables. 
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Figure S3.5. Data upload interface on the CSER Data Hub website. 
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Figure S3.6. Multi-site harmonized data download interface on the CSER Data Hub website. 
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Figure S3.7. CSER ID management interface on the CSER Data Hub website. 
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Figure S3.8. Sequence data upload instructions on the CSER Data Hub website. 
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Figure S3.9. Change log documentation on the CSER Data Hub website. 
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Figure S3.10. Reference sheet for Baseline Measures in the CSER cross-site Adaptation 
Dictionary. 

 
 
 
 
 
 
 
 
 
 
 
 
 



198 
 

 

Figure S5.1. Quantile-Quantile (Q-Q) plot for logistic regression analysis in the European 
ancestry sample (n=15,458). Expected P-values from a theoretical χ2-distribution are plotted on 
the X-axis and observed P-values for each SNV in the logistic regression model are plotted on 
the Y-axis. The red line represents the null hypothesis that the theoretical and observed P-values 
correspond with one another. 
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Figure S5.2. Manhattan plot of P-values generated using logistic regression analysis in the joint 
ancestry sample (n=19,861). An additive model was used to assess the disease susceptibility 
impact of the minor (coded) allele at each position, while controlling for age, BMI, sex, ancestry, 
nursing home status, chemotherapy, diabetes, HIV, transplant medications, corticosteroids, and 
medium or high-risk antibiotic exposure as covariates. Genomic coordinates are displayed along 
the X-axis, and the negative logarithm of logistic regression P-values are displayed on the Y-
axis. Each dot represents a SNV in the regression model, with associated P-values plotted 
accordingly, while the diamond represents the most significantly associated SNV. The dotted 
line represents the negative logarithm of the genome-wide significance threshold (P < 5 x 10-8).  
Colors are used to distinguish between SNVs in adjacent chromosomes. 
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Figure S5.3. Q-Q plot for logistic regression analysis in the joint ancestry sample (n=19,861). 
Expected P-values from a theoretical χ2-distribution are plotted on the X-axis and observed P-
values for each SNV in the logistic regression model are plotted on the Y-axis. The red line 
represents the null hypothesis that the theoretical and observed P-values correspond with one 
another. 
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Figure S5.4. Manhattan plot of P-values generated using logistic regression analysis in the 
African ancestry sample (n=4,084). An additive model was used to assess the disease 
susceptibility impact of the minor (coded) allele at each position, while controlling for age, BMI, 
sex, ancestry, nursing home status, chemotherapy, diabetes, HIV, transplant medications, 
corticosteroids, and medium or high-risk antibiotic exposure as covariates. Genomic coordinates 
are displayed along the X-axis, and the negative logarithm of logistic regression P-values are 
displayed on the Y-axis. Each dot represents a SNV in the regression model, with associated P-
values plotted accordingly. The dotted line represents the negative logarithm of the genome-wide 
significance threshold (P < 5 x 10-8).  Colors are used to distinguish between SNVs in adjacent 
chromosomes. 
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Figure S5.5. Q-Q plot for logistic regression analysis in the African ancestry sample (n=4,084). 
Expected P-values from a theoretical χ2-distribution are plotted on the X-axis and observed P-
values for each SNV in the logistic regression model are plotted on the Y-axis. The red line 
represents the null hypothesis that the theoretical and observed P-values correspond with one 
another. 
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Figure S5.6. Regional LD plot of SNVs evaluated in the African-ancestry logistic regression 
analysis, using the African 1000 Genomes superpopulation as a reference group. Genomic 
coordinates spanning the HLA-DRB region and surrounding genes are shown on the X-axis in 
both subplots. Negative logarithms of P-values from the African-ancestry logistic regression 
analysis are shown on the Y-axis in the upper sublot, and annotated gene transcripts are 
distributed along the Y-axis in the lower subplot. Each dot represents a SNV in the regression 
model, with associated P-values plotted accordingly. SNVs in high LD with reference to the 
index SNV (rs68148149) are colored in red. The LD plot was generated with the LocusZoom 
[207] tool using default parameters and the 1000 Genomes Project 2014 AFR reference panel. 
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Figure S5.7.  Manhattan plot of P-values generated using logistic regression analysis in the 
European ancestry sample (n=15,458), controlling for the index SNV identified in the joint and 
European-ancestry genome-wide logistic regression analyses (rs68148149). An additive model 
was used to assess the disease susceptibility impact of the minor (coded) allele at each position, 
while controlling for the index SNV, age, BMI, sex, ancestry, nursing home status, 
chemotherapy, diabetes, HIV, transplant medications, corticosteroids, and medium or high-risk 
antibiotic exposure as covariates. Genomic coordinates are displayed along the X-axis, and the 
negative logarithm of logistic regression P-values are displayed on the Y-axis. Each dot 
represents a SNV in the regression model, with associated P-values plotted accordingly. The 
dotted line represents the negative logarithm of the genome-wide significance threshold (P < 5 x 
10-8).  Colors are used to distinguish between SNVs in adjacent chromosomes. 
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Figure S5.8. Q-Q plot for logistic regression analysis in the European ancestry sample 
(n=15,458), controlling for the index SNV identified in the joint and European-ancestry genome-
wide logistic regression analyses (rs68148149). Expected P-values from a theoretical χ2-
distribution are plotted on the X-axis and observed P-values for each SNV in the logistic 
regression model are plotted on the Y-axis. The red line represents the null hypothesis that the 
theoretical and observed P-values correspond with one another. 
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Figure S5.9. Regional Manhattan plot of P-values generated using logistic regression analysis of 
SNVs in the chr6:32400001-32600000 region for 4 participant groups: participants with >=1 
copies of the DR51, 52 or 53 haplotype (top left, n=14,291), participants with >=1 copies of the 
DR51 haplotype (top right, n=4,130), participants with >=1 copies of the DR52 haplotype 
(bottom left, n=8,887), and participants with >=1 copies of DR53 haplotype (bottom right, 
n=7,863). An additive model was used to assess the disease susceptibility impact of the minor 
(coded) allele at each position within each participant group, while controlling for age, BMI, sex, 
ancestry, nursing home status, chemotherapy, diabetes, HIV, transplant medications, 
corticosteroids, and medium or high-risk antibiotic exposure as covariates. Genomic coordinates 
are displayed along the X-axis, and the negative logarithm of logistic regression P-values are 
displayed on the Y-axis of each plot. Each dot represents a SNV in the regression model, with 
associated P-values plotted accordingly. The red line in each plot represents the negative 
logarithm of the genome-wide significance threshold (P < 5 x 10-8), and the blue line represents a 
suggestive genome-wide significance threshold (P < 5 x 10-6). Significantly associated SNVs 
from Table 5.2 are colored in green. 
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Figure S5.10. Flowchart of regional Manhattan plots of P-values generated using logistic 
regression analysis of SNVs in the chr6:32400001-32600000 region, categorized by the 
following haplotype subsamples: DR51(+) (n=4,130), DR15(+) (n=3,791), DR16(+) (n=381), 
and DRB1*15:01(+) (n=3,608). An additive model was used to assess the disease susceptibility 
impact of the minor (coded) allele at each position within each participant group, while 
controlling for age, BMI, sex, ancestry, nursing home status, chemotherapy, diabetes, HIV, 
transplant medications, corticosteroids, and medium or high-risk antibiotic exposure as 
covariates. Genomic coordinates are displayed along the X-axis, and the negative logarithm of 
logistic regression P-values are displayed on the Y-axis of each plot. Each dot represents a SNV 
in the regression model, with associated P-values plotted accordingly. The red line in each plot 
represents the negative logarithm of the genome-wide significance threshold (P < 5 x 10-8), and 
the blue line represents a suggestive genome-wide significance threshold (P < 5 x 10-6). 
Significantly associated SNVs from Table 5.2 are colored in green. 
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Figure S5.11. Flowchart of coding allele frequencies (CAFs) of the index SNV identified in the 
joint and European-ancestry genome-wide logistic regression analyses (rs68148149) in different 
HLA-DR haplotype-enriched groups (DR51, DR52, and DR53). 
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Figure S5.12. Relational flowchart of the HLA-DRB haplotypes identified in the eMERGE C. 
diff. cohort. 
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SUPPLEMENTAL TABLES 

Table S3.1. Examples of modifications, additions, and transformations to the harmonized CSER 
survey measures and outcomes database. 
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Table S3.2. CSER harmonized sequence and sample metadata model. 
 

 
 
 
 
 
 
 
 



213 
 

 

 
 
 
 
Table S3.3. CSER harmonized consent groups. DUC = dbGaP Data Use Category; DUR = Data 
Use Restriction; GRU = General Research Use; HMB = Health/medical/biomedical research; 
IRB = Ethics Approval Required. 
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Table S4.1. Descriptions and quotation examples of axial codes in the “Building a collaborative 
learning culture in medical systems” semantic domain. 
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Table S4.2. Descriptions and quotation examples of axial codes in the “Building relationships 
with patients/research participants” semantic domain. 
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Table S4.3. Descriptions and quotation examples of axial codes in the “Ensuring patient/research 
participant safety and wellbeing” semantic domain. 
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Table S4.4. Descriptions and quotation examples of axial codes in the “Evaluating the role of 
genetics in medicine” semantic domain. 
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Table S4.5. Descriptions and quotation examples of axial codes in the “Participant background” 
semantic domain. 
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Table S4.6. Descriptions and quotation examples of axial codes in the “Protecting 
patient/research participant rights to privacy and autonomy” semantic domain. 
 

 
 
 
Table S5.1. C. diff. progress note mentions used by the natural language processing algorithm. 
The commonly used abbreviation for clostridioides/clostridium is the single letter “c.” This is 
difficult to implement in a word search or dictionary look up and was therefore omitted from the 
NLP algorithm. 
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Table S5.2. Class 1 (high risk) and Class 2 (moderate risk) antibiotics, as defined by the 
eMERGE C. diff. phenotyping algorithm [201]. 
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Table S5.3. Nursing home mentions used by the natural language processing algorithm. 
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Table S5.4. Medications used for case-control exclusion and covariate analysis. 
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Table S6.1. Study characteristics of references included in the systematic literature review. 
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Table S6.2. Data and standards study outcomes of references included in the systematic 
literature review. 

 



233 
 

 

 



234 
 

 

 



235 
 

 

 
 



236 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



237 
 

 

Table S6.3. Culture and acceptance study outcomes of references included in the systematic 
literature review. 
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Table S6.4. Engaging with and protecting patients study outcomes of references included in the 
systematic literature review. 
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Table S6.5. Political and institutional support study outcomes of references included in the 
systematic literature review. 
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