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Abstract

Deriving a sociotechnical model for discovery

in genomics-enabled learning health systems

Kathleen Diveny Ferar

Chair of the Supervisory Committee:
David R. Crosslin

Department of Biomedical Informatics and Medical Education

Recent advances in genetic sequencing technologies and analysis tools have made genomic data
widely available for medical research. Despite the expectation that genomic data will
revolutionize medicine, there exist major evidence gaps in demonstrating the utility of clinical
genomics for improving patient outcomes and increasing healthcare efficiency. One promising
avenue for reducing this evidence gap and accelerating the pace of clinically relevant discoveries
is to foster environments in which genomic research and clinical care exist symbiotically.
However, the technical and sociocultural requirements for conducting genomic research in
clinical environments are not well-defined. The learning health system (LHS) framework is one
lens through which the barriers and enablers of clinical genomic discovery can be identified and

organized. Furthermore, drawing on experiences from clinical research consortia like the Clinical



Sequence Evidence-Generating Research (CSER) Consortium and the Electronic Medical
Records and Genomics (eMERGE) Network can help identify requirements that are unique to
genomic research initiatives that straddle the research-clinical boundary. In this work, we sought
to derive a sociotechnical model for clinical genomic discovery in genomics-enabled learning
health systems (GLHSs). We first identified data coordination challenges, strategies, and
recommendations from the clinical genomics research data integration process in the CSER
Consortium and found that the social processes involved in data coordination are tantamount to
the informatics tools used to facilitate data coordination (Aim 1). We then explored medical
geneticist perspectives on clinical genomic discovery by interviewing 20 board-certified medical
geneticists in CSER, eMERGE, and the University of Washington medical system (Aim 2).
Using constructivist grounded theory methods, we developed a preliminary model of GLHS
discovery that utilizes the concepts of representation, responsibility, risks and benefits,
relationships, and resources (“SR”) to capture the negotiations and constraints involved in
clinical-research integration in genomics. To demonstrate the utility of merging electronic health
record (EHR) data with genomic data for discovery, we then conducted a logistic regression-
based genome-wide association study for C. diff. infection (CDI) using merged genetic and EHR
data from 12 clinical sites in the eMERGE Network and found a strong gene-disease association
in the HLA-DRB locus (P=8.06 x 10-'%) that predisposed carriers to CDI (Aim 3). Finally, we
conducted a systematic literature review of proposed enablers of clinical genomic discovery and
synthesized the qualitative results from the literature review and recommendations from Aim 1
with the a priori framework developed in Aim 2 using best-fit framework synthesis (BFFS)
(Aim 4). We found that the vast majority of themes identified in the literature were

accommodated by the a priori framework, suggesting that the SR model of GLHS discovery is



an adequate representation of processes involved in learning health research. Using additional
qualitative evidence identified during BFFS, we developed an enhanced 5R sociotechnical model
to demonstrate how iterative, multidirectional negotiation and tool development can facilitate

virtuous cycles of learning in clinical genomics research.
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CHAPTER 1: INTRODUCTION

1.1 Background

Since the completion of the Human Genome Project in 2003, scientists and clinicians alike have
expected genomics to revolutionize human healthcare. Indeed, genomics has led to
advancements in medicine that would not have been possible without the novel insights into
health, disease, and basic biology that our DNA reveals in such extraordinary detail. Treatments
such as gene therapy and cancer immunotherapy provide hope to patients and families where
hope never seemed like an option, and diagnostic techniques for rare inherited disorders help to
end diagnostic odysseys and pave the way for new treatment options. However, translating
genomics research more broadly into clinical practice remains a challenge despite the already

delivered and expected promises of genomic medicine [1].

One mechanism that has been proposed for realizing the full potential of genomic research and
medicine is to formalize the integration of genomic research and clinical care. It is well-
recognized that large research evidence bases are required to demonstrate the clinical utility and
actionability of genomic variants in different populations and clinical environments [2].
However, a lack of evidence for the economic and clinical utility of using newer genomic
discoveries to guide clinical care has led to low adoption of cutting-edge genomic medicine
among healthcare organizations and a lack of support from healthcare payers and policymakers
to advance genomics-informed clinical care [3]. Integrating genomic research with medical
practice can contribute to an enhanced evidence base for the validity and clinical utility of

genomic findings [4]. Genomic research that is conducted within healthcare organizations is
1



naturally benefited by its close proximity to rich clinical data that can be used to identify disease
associations in large, diverse patient cohorts, and by its proximity to clinical outcomes data that
can be used to monitor patients over time [5]. Nonetheless, a host of technical, social, cultural,
and ethical questions remain regarding how best to conduct genomic discovery in clinical

settings [6].

The learning health system (LHS) framework is a useful lens for investigating the challenges and
enablers of conducting genomic discovery in a clinical context. Proposed by the Institute of
Medicine (IOM, now known as the National Academy of Medicine) in 2007, the LHS
framework champions a healthcare system in which data is generated as a by-product of routine
care, data is transformed into knowledge through research, and new knowledge is iteratively
used to improve the quality of care and improve healthcare efficiency [7]. The core elements of
this model include a robust data infrastructure, care improvement through clinical decision
support, and rewards for high-value care and transparency. LHS systems that are adapted to
accommodate clinically-generated genomic data have previously been referred to as genomics-
enabled learning health systems (GLHSs), and have been strongly supported by a variety of
clinical, research, and policy stakeholders [8]. For example, the 2020 National Human Genome
Research Institute (NHGRI) strategic vision report identified the development and
implementation of GLHSs as an important new research frontier in the field of genomics [9].
However, the basic LHS model must be enhanced to accommodate challenges that are amplified
in genomics, such as the large size and complexity of the raw data, a lack of data standards,
disparities in access to genomic testing, difficulties in implementing effective clinical decision

support tools, and a lack of insurance coverage for genetic testing [8]. The “data to knowledge”
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process in a GLHS is particularly susceptible to these challenges, given its historical exclusivity
to research environments and the novelty of genomic data relative to other forms of clinical data.
While previous studies have identified barriers for incorporating genomic data into an LHS, none

have specifically addressed the challenges of genomic discovery [10-14].

Multi-site clinical genomics research projects are ideal environments for developing and
evaluating genomic data integration and discovery techniques in a clinical context. The Clinical
Sequence Evidence-Generating Research (CSER) Consortium, for example, is an ideal
environment for studying clinical research data integration techniques and evaluating these
techniques in an integrated research-clinical context [15]. In addition, the Electronic Medical
Records and Genomics (¢eMERGE) Network conducts discovery and translational work in
genomics using the combined powers of genomic and EHR data [16]. These projects experience
many of the same challenges that are identified in the LHS model, including data integration
issues, questions of privacy and patient consent, and funding challenges [17]. Clinically
embedded genomic research projects are uniquely positioned at the interface of research and
clinical care and can thus inform strategies for harnessing genomic data for clinical use [18].
They are also ideal environments for generating gene-disease association discoveries using
merged clinical and genetic data and demonstrating the utility of harnessing multiple data types
for medical genomics research. One such disease of interest is Clostridioides difficile (C. diff.)
infection (CDI), formerly known as Clostridium difficile infection, which presents a large
epidemiological and economic burden to the US healthcare system and may be impacted by host

genetic risk factors [19].



Given the complex technical and sociopolitical landscape of clinical research integration in
genomics, in this dissertation we aim to develop a comprehensive sociotechnical model for
GHLS discovery that examines the relationships between individuals and the complex social,
political, and technical environments in which they operate. The development of such a model
warrants the triangulation of multiple research methods, perspectives, and data sources to reveal
and synthesize different aspects of reality [20,21]. We therefore approach the topic of clinical
research integration from four different angles: 1. Researcher perspectives on data integration for
clinical genomic research (Aim 1); 2. Clinician perspectives on genomic knowledge generation
in clinical environments (Aim 2); 3. An applied example of knowledge generation using clinical
data (Aim 3); and 4. Systematic literature review and qualitative evidence synthesis (Aim 4).
The integrative conceptual model that results from this work can be used to facilitate the design
and development of GLHS discovery research programs by ‘“harnessing the natural properties
which emerge (often spontaneously) at the interface between the socio (human behavioural) and
technical components of complex systems” (Braithwaite et al. 2008, p. 37) [22,23]. In this way,
the actual and expected contributions of genomic research to human health can begin to

converge.

1.2 Dissertation Aims

1.2.1 Aim 1: Researcher perspectives on clinical and genomic data coordination

In this aim, we identify 14 lessons learned and 11 broad recommendations for survey, phenotype,
and sequence data coordination through retrospective analysis of digital artifacts generated as a

by-product of the data coordination process in the CSER Consortium. While these



recommendations are grounded in the experiences of a large, NIH-funded research program, they
are thematically interoperable with data coordination initiatives in general, and have practical
implications in the areas of planning, communication, informatics, analytics, and data

governance.

1.2.2 Aim 2: Medical geneticist perspectives on clinically embedded genomic discovery

In this aim, we explore the perspectives of board-certified medical geneticists on integrating
genomic discovery research with clinical care. Using constructivist grounded theory methods
[24,25], we 1dentify perceived drivers and barriers for GLHS discovery, and offer an a priori
theoretical framework for understanding the technical, social, and ethical forces that influence

the shifting boundaries between research and clinical care in genomics.

1.2.3 Aim 3: Discovery of genetic risk factors for C. diff. infection using merged clinical and

genomic data

In this aim, we use merged genomic and clinical data from the eMERGE Network to conduct a
logistic regression based GWAS of CDI cases and controls to identify common genetic variants
associated with higher risk of developing CDI. We also demonstrate the utility of using clinical
data for gene-disease association studies and provide a practical example of clinical genomic

discovery in action.



1.2.4 Aim 4: Development of an integrative sociotechnical model for genomics-enabled learning

health system discovery

The objectives of this aim are twofold. First, we conduct a systematic literature review of studies
that have identified enabling factors of genomic discovery and validation research in the LHS
model and develop a theory of change model to describe the current landscape of this body of
literature. Second, we use best-fit framework synthesis (BFFS) to compare the a priori model
from Aim 2 with qualitative evidence identified in Aim 1 and the systematic literature review to

create an integrative sociotechnical model for GLHS discovery.



CHAPTER 2: RELATED WORK

2.1 Data coordination in clinical research

Sharing rich clinical and genomic datasets within and between institutions is essential for
advancing medical genomics research, and ultimately for achieving the LHS vision [26,27].
However, there are many known technical, ethical, and political challenges with sharing clinical
and genomic data, such as insufficient or nonexistent data harmonization infrastructures,
identifiability concerns, and a lack of trust between the public and healthcare institutions [28].
Several genomics research consortia have identified strategies for improving data coordination in
clinically-embedded environments [16,29,30], but standards and expectations for clinical and
genomic data coordination have yet to be established. In this work, we seek to contribute to the
development of best practices and standards for clinical genomic data coordination, which can be

applied to both LHS environments and multi-site research projects in general.

2.2 Genomic discovery in genomics-enabled learning health systems

While the LHS model has received considerable attention since it was first proposed by the [OM
in 2007, the concept of a genomics-enabled LHS has not been well-defined [8]. The original
LHS model outlines the technical, social, and political requirements for conducting rapid
learning using clinical data, but the novelty and complexity of genomic data necessitate the
development of an enhanced conceptual GLHS model [31]. The line between research and
clinical care in genomics has historically been blurred—perhaps more so than in other medical
disciplines—due to the rapid evolution of technologies in the field and the direct diagnostic

implications of many discoveries, but significant ethical and legal conflicts of interest have
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arisen as genomic research has naturally shifted into clinical spaces, and vice versa [6].
Systematically integrating genomic research into clinical environments therefore has the
potential to exacerbate existing tensions between research and clinical priorities in genomics. In
this work, we seek to identify and relate the components of a novel GLHS model from the
perspectives of medical geneticists, who work at the bleeding edge of research and clinical care

in genomics.

2.3 Electronic health record and genomic data integration for discovery

Leveraging both participant-level clinical data and genomic data is essential for making
clinically relevant genomic discoveries [32]. The eMERGE Network has been a leader in this
area of research, and has successfully developed harmonized clinical phenotypes across a
network of EHRs, which have been used to conduct genome-wide association studies (GWAS)
for diseases such as herpes zoster [33], peripheral arterial disease [34], and dementia [35].
Additional GWAS that leverage rich clinical data are needed to identify opportunities for new
clinical interventions and potential therapeutic targets for diseases that present a significant
burden to patients and health systems [36]. For example, C. diff. infection (CDI) is a leading
infectious cause of nosocomial diarrhea in North America and is associated with a high global
burden of disease [37]. A previous GWAS of 16,464 patients (1,160 CDI cases; 15,304 controls)
from the Geisinger MyCode cohort [38] was conducted using a CDI phenotyping algorithm
developed by the eMERGE Network, and several variants in the human leukocyte antigen (HLA)
region were suggestive of increased CDI risk. In this work, we conduct an additional GWAS in a
cohort of 99,000 eMERGE participants using the eMERGE CDI phenotyping algorithm to

identify genetic risk factors that are significantly associated with CDI.
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2.4 Qualitative evidence synthesis in learning health systems research

Systematically integrating evidence from the literature with a guiding conceptual model can
facilitate a broader understanding of complex research landscapes, such as the LHS research
landscape [39]. While previous systematic literature reviews and scoping reviews have assessed
enabling and inhibiting factors of systems that conform to the original LHS model, none have
assessed the literature surrounding genomics-enabled implementations of the LHS model [40—
44]. Similarly, Enticott et al. (2021) [45] developed an integrative LHS framework for the
Australian healthcare system using evidence synthesis, but additional work is needed to develop
an integrative GLHS model that is tailored to the US healthcare system. In this work, we seek to
systematically synthesize themes from the body of literature that addresses the GLHS concept,
and to leverage qualitative evidence synthesis methods that facilitate the development of an

integrative sociotechnical model for GLHS discovery.



CHAPTER 3: LESSONS LEARNED FROM MULTI-INSTITUTIONAL CLINICAL

RESEARCH DATA INTEGRATION (AIM 1)

3.1 Introduction

Data coordination is foundational to data-driven discovery work. While this process is more
commonly referred to as “data management” [46—48], we use the term “coordination” to
emphasize the communicative and collaborative aspects of managing research data. Significant
collaboration between institutions, clinicians, researchers, policymakers, and patient-participants
is required to yield datasets that advance biomedical research [49]. Few organizations are more
acutely aware of the challenges of data coordination than multi-institutional clinical research
programs, which experience conflicting research and clinical priorities across multiple
institutions. The CSER Consortium [15] was one such multi-site program that consisted of seven
clinically embedded genomic medicine research projects. While all projects shared a common
goal of investigating the utility of integrating genomic sequencing into clinical care, their
specific research aims, methods, patient populations, and clinical environments varied widely.
Over a period of three years, the consortium worked with an internal Data Coordinating Center
(DCC) to harmonize seven distinct survey, phenotype, and sequencing datasets from the second
phase of CSER into a single resource. Neither the first phase nor the second phase of CSER was
originally designed for genomic discovery research. However, investigators from the first phase
of CSER challenged the viability of the traditional research-clinical dichotomy in the rapidly

evolving field of genomics [18]. As one CSER site noted,

We believe [the CSER studies] are intrinsically both [research and clinical care]. Given
the nature of the data generation and analysis process and the regular rates of change in

10



genome interpretation, each family is in a very real sense a research project. However,
the consequences of the results are often of substantial and direct clinical impact, and
thereby these efforts are also clinical care. [Site 4] [18].

Given the fluidity between genomic testing, research, and clinical care in CSER, we argue that
the data coordination experiences of clinical research consortia can reveal challenges that might

be faced by clinically embedded genomic discovery programs and offer potential solutions.

In this aim, we identify 14 lessons learned and 11 broad recommendations for survey, phenotype,
and sequencing data coordination through retrospective analysis of digital artifacts generated as a
by-product of the coordination process. While these recommendations are grounded in the
experiences of a large, NIH-funded research program, they are thematically interoperable with
data coordination initiatives in general, and have practical implications in the areas of planning,
communication, informatics, analytics, and data governance. The content of this chapter is
largely derived from a paper by Muenzen et al. (2022) titled, “Lessons learned and
recommendations for data coordination in collaborative research: The CSER consortium

experience” [50].

3.2 Related work

3.2.1 The promises and perils of data coordination

It is widely recognized that sharing clinical and research data within and between institutions is

essential for advancing medical research and precision medicine [26,27]. Harnessing the ever-
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growing troves of Next-Generation Sequencing data will help elucidate the complex interactions
between genetics, environment, and human health and disease [51]. Combining genomic data
with clinical data is necessary for identifying genetic variants that drive both rare and common
disease, and for characterizing the range of clinical presentations associated with each [52,53].
While there has been significant progress in understanding monogenic disease since the advent
of exome and genome sequencing, the impacts of non-coding, multigenic, and multi-allelic
variation on phenotype are poorly understood [51]. To identify relationships between complex
genetic factors and human health and disease, sufficient genomic and clinical evidence must be
accumulated [53,54]. The “digitalization of medicine” (Auffray et al. 2016, p. 1) [52] through
EHRs has contributed to a collective pool of clinical data that could be used to facilitate genomic
discovery research, but both genomic and EHR data are largely siloed in different testing centers,
research databases, and medical institutions [28]. Improving clinical data integration strategies
within and between healthcare institutions is therefore an important precursor to discovery, but
the standards and expectations for clinical and genomic data coordination are not well

established.

There are known technical, legal, ethical, financial, political, and cultural barriers to sharing and
aggregating health-related data for research purposes. Data collected across heterogeneous
environments are inherently difficult to harmonize because they are likely collected, structured,
and stored using different standards [55]. Across healthcare institutions, incompatible EHR
platforms—or the lack of an EHR altogether—-make automated data integration difficult [56]. Even
if data can be shared between EHRs, health data is largely unstructured and sophisticated Natural

Language Processing (NLP) tools are required to convert clinical text into a format that is useful
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for large-scale research. Data quality is also a major concern when using EHR data for research,
since clinical data are notoriously incomplete, inconsistent, and inaccurate [57,58]. While
technical challenges are most commonly reported in the literature [55,59], many policymakers,
biomedical researchers, and ethicists have argued that the legal and ethical challenges of sharing
clinical data are the most problematic [59,60]. Clinical records contain highly sensitive Protected
Health Information (PHI), which is protected by the federal Health Insurance Portability and
Accountability Act (HIPAA) of 1996. While data containing PHI can be securely transferred
between departments and institutions, the HIPAA Privacy and Security rules significantly restrict
access to health data for research purposes. Patients may object to sharing some or all of their
health data with individuals other than their healthcare providers and may want to be re-
consented for every new use of their data [61]. There are additional privacy risks when sharing
genomic data, which can potentially be used to re-identify individuals [62]. In this way, the
scientific imperative of sharing rich clinical and genomic data across institutions and country
borders conflicts with the moral imperative of protecting individual privacy [63—65]. The ethical
conundrum of sharing clinical and genomic data is heightened in underrepresented minority
communities, where patient trust in the medical and research enterprises are low due to historical
wrongs committed by both enterprises [66]. Additionally, the policy landscape that governs
clinical and research data sharing is fragmented at best, and “despite its abundance, has not
resulted in a cohesive system of incentives able to reconcile the interests and expectations of
different stakeholders” (Blasimme et al. 2018, p. 706) [26]. Finally, the scientific and medical
communities have not yet achieved a “culture” of data sharing, in which trust and reciprocity
between researchers, clinicians, patients, and research participants are central to the mission of

sharing data for research purposes [67]. The number of stakeholders involved in coordinating
13



clinical and genomic data is large, and mutual understanding of the roles, responsibilities, and

capabilities between stakeholders is rare [52].

3.2.2 Current solutions to data coordination challenges

Although many barriers to sharing clinical data have been identified, developing solutions to
mitigate these barriers is challenging. To address the technical challenges of sharing clinical
data, previous research has suggested that standardized metadata models should be developed to
harmonize heterogeneous datasets retrospectively [17,68,69]. Although standardized capture of
electronic health data is preferred, this is a major bottleneck in biomedical data sharing and is
largely driven by EHR vendors [28]. Others have suggested that both data capture and metadata
standards be harmonized internationally, but this solution has its own extensive set of barriers
that all require complex solutions [68,70]. Data anonymization and more sophisticated
cryptology approaches like blockchain have been proposed to alleviate security and privacy
issues of health data sharing [28,68,71]. However, it is well-known that as the privacy of data
increases, the utility of data decreases [72]. This tension is somewhat alleviated by de-identified
public and controlled-access genomic databases like the 1000 Genomes Project [73], the UK
Biobank [74], the National Center for Biotechnology Information (NCBI) Database of
Genotypes and Phenotypes (dbGaP) [75], the NIH All of Us Research Hub [76], and the NHGRI
Analysis Visualization and Informatics Lab-space (AnVIL) [77]. However, these broad data
sharing mechanisms do not eliminate participant privacy issues [64], and do not often satisfy the
need for more detailed clinical information. To address issues of consent, new digital consent
technologies and models like dynamic consent have been proposed [26,71]. These same

approaches might be useful for engaging minority communities in conversations about health
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data and consent for research use and building trust [78,79]. To address issues of policy
fragmentation, studies have suggested that a unified, international policy for health data sharing
be developed that addresses multiple data types, encompasses a broad set of policy themes, and
balances competing values of different data sharing stakeholders [26,71,80,81]. However, the
extreme variability in healthcare networks and policy landscapes across the globe make this
solution difficult. Finally, to increase scientific and healthcare community engagement in data
sharing, some have suggested that academic and healthcare leadership take an active role in
identifying and encouraging best practices in data sharing, maintaining the necessary
infrastructure, and contributing to policy and guideline development [82]. For this approach to be
effective, however, best practices in data coordination and guideline development must first be

identified.

3.2.3 Data coordination in clinical genomics research projects

Clinical genomics research consortia face many of the same data coordination challenges that are
encountered when sharing clinical data for research because they operate at the interface of
research and clinical care. Examining the experiences and approaches of multi-site clinical
genomics consortia is therefore an important precursor to defining best practices for
heterogeneous clinical data coordination. Additionally, the experiences of Coordinating Centers
(CCs) and Data Coordinating Centers (DCCs) within these consortia are valuable to document,
since they are the entities that develop and orchestrate protocols for coordinating clinical
research data [83]. For example, the eMERGE Network CC used centralization storage and data
harmonization, network-wide Data use Agreements (DUAs), and standardized privacy and

security policies to coordinate clinical and genetic data across 18 sites over the history of the
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network [16]. The Li-Fraumeni Exploration (LiFE) Consortium experienced challenges
coordinating communication between international members and harmonizing variant and
clinical data across 8 research sites [29]. The LiFE DCC developed standardized data
dictionaries, data transfer agreements, DUAs, and QA/QC measures to address technical and
communication challenges. The Global Enteric Multicenter Study (GEMS) experienced
challenges coordinating data across 8 different countries and across sites that had “diverse
cultural, social, and technological backgrounds” (Biswas et al. 2012, p. S260) [30]. The GEMS
DCC found it useful to implement a standardized data management software to collect clinical
case reports but found that requiring all sites to use an electronic data capture system was not
culturally appropriate. Although the reported experiences and data coordination strategies of past
clinical research consortia are informative for clinical data integration strategies at a high level, a
more detailed and nuanced look at specific data coordination tools, methods, and motivations
used by clinical research consortia is necessary for building a comprehensive understanding of

both effective and ineffective data coordination strategies.

The second phase of the CSER Consortium has been well-documented in the literature since its
inception in 2018, especially with regards to its position at the research-clinical interface and to
its experiences with harmonizing outcomes measures. Although CSER’s initial goal was to
investigate the clinical implementation of genomic sequencing in diverse populations,
consortium members recognized that the genetic data collected during the study could be used
for discovery purposes [15]. Efforts to make CSER genomic, clinical, and outcomes data
available for future research align with the more generalizable goal of using electronic clinical

data for secondary research, making CSER an excellent case study for post-hoc data
16



harmonization. The consortium also previously experienced challenges developing and
implementing consensus outcomes measures across diverse clinical sites and research projects
and identified the importance of team science approaches to data harmonization [84]. The current
study builds on this previous body of work by contextualizing both harmonization issues and
questions of the research-clinical interface within the organizing framework of multi-site data

coordination in CSER.

3.3 Methods

In this study, we used Fleming’s proposed artifact study model [85] to characterize the culture of
the CSER Consortium through the lens of data coordination, and to ultimately identify cross-
cutting lessons learned, recommendations, and themes in clinical research data coordination.
Fleming proposed this model in 1974 as a method for characterizing human cultures through the
analysis of human-made objects. While artifact analysis has historically been used to study how
physical artifacts like decorative art or hand-made tools reflect the cultures in which they were
developed, digital artifacts such as email exchanges and audio recordings are frequently
generated as a result of computer-based work and are similarly indicative of modern work
culture [86]. For example, Fang et al. (2022) [87] identified digital artifacts as an essential part of
knowledge coordination in distributed teams, where the “technology practices” of team members
are “embedded in digital artefacts” (Fang et al. 2022, p. 537). We therefore used artifact analysis
to systematically uncover the practices and perspectives of those involved in CSER data

coordination.
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3.3.1 Artifact collection

Digital artifacts were identified by the primary investigator (K.F.), who was involved in
development and maintenance of all technical and communicative aspects of the CSER DCC. To
guide artifact collection, we identified five aspects of CSER data coordination that warranted
examination and collected relevant digital artifacts: 1. Consortium structure and communication;
2. Data coordination timeline; 3. Informatics architecture; 4. Survey data harmonization; and 5.
Sequence data collection. For each of the five categories, the primary investigator identified
digital artifacts that were relevant to data coordination, including: 1. Email exchanges between
primary investigator and stakeholders, and official consortium emails; 2. Material from the
CSER Consortium private and public-facing website; 3. Papers previously published by CSER
Consortium members; 4. GitHub code repositories for digital tools; 5. CSER REDCap databases;
6. Documents generated and distributed by the CSER DCC to consortium members; and 7.
Official documents, such as Funding Opportunity Announcements (FOAs) and NIH policy
descriptions. Table 3.1 shows which artifact types were collected for each data coordination

component.
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Data
Coordination
Component

Email

CSER
Website

CSER
Papers

GitHub
Code

REDCap
Database

DCC
Docs

Official
Docs

1. Consortium
structure and
communication

2. Data
coordination
timeline

3. Informatics
architecture

4. Survey data
harmonization

5. Sequence data
collection

Table 3.1. Digital artifacts used for artifact analysis in five areas of CSER data coordination.

3.3.2 Artifact analysis

The five stages of a traditional artifact analysis include identification, evaluation, cultural

analysis, and interpretation [85]. While artifacts were initially evaluated individually based on

their history, form, construction, and function, they were ultimately described in combination

with one another to facilitate the identification of cross-cutting themes in data coordination. The

cultural analysis involved identifying tensions and relationships between the technical,

sociocultural, and political aspects of the data integration process. Identification of those

relationships was facilitated by visually mapping relationships between entities using contextual

design techniques developed by Beyer & Holtzblatt [88]. Finally, a core set of emergent themes

in data integration was identified and interpreted in the context of the core pillars identified in the
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value-creating LHS framework proposed by Menear et al. (2019) [89] to relate the findings to the

LHS model.

3.4 Results

3.4.1 Consortium structure and communication

CSER consisted of a Steering Committee and eight main working groups with members from the
following contact institutions and CSER projects: 1. Baylor College of Medicine (KidsCanSeq);
2. Kaiser Permanente Northwest (CHARM); 3. University of North Carolina at Chapel Hill
(NCGENES 2); 4. Icahn School of Medicine at Mount Sinai (NYCKidSeq); 5. University of
California, San Francisco (P*EGS); 6. HudsonAlpha Institute for Biotechnology (SouthSeq); and
7. The National Human Genome Research Institute (ClinSeq). Consortium activities were
facilitated by a Coordinating Center based at the University of Washington and were guided by
an external committee, the CSER Advisory Panel, consisting of six experts in genomic medicine
and a community advocate. While all CSER sites shared a common goal of investigating the
applications and outcomes of genomic sequencing in clinical care, the patient populations,
specific research aims, and study protocols differed widely between sites (Figure S3.1). Detailed
descriptions of CSER working groups, study populations, and sequencing methodologies are

described in Amendola et al. (2018) [15] and Goddard et al. (2020) [84].

Consortium communication was facilitated through monthly working group video calls,
biweekly Coordinating Center calls, monthly Steering Committee calls, and tri-annual

consortium-wide meetings. At the start of the COVID-19 pandemic in early 2020,
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communications became entirely virtual. However, this did not significantly change
communication between working groups, as communication had been largely virtual to begin
with. The DCC interacted extensively with the Data Wranglers Working Group (established by
the DCC in Fall 2019) and the Project Managers Working Group (established in Spring 2019).
Interactions largely consisted of monthly video calls and ad-hoc calls with individual site

analysts and project managers.

The DCC collaborated with several external organizations that helped maintain the technical
infrastructure that the consortium used to securely manage its aggregated survey and sequence
data. The Institute of Translational Health Sciences (ITHS) at the University of Washington
managed the Research Electronic Data Capture (REDCap) database [90,91] that the DCC used
for centralized CSER data storage, and maintained a secure web server that hosted the
consortium’s R Shiny [92] data management tool. The DCC also collaborated extensively with
the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-Space (AnVIL)
consortium, which was responsible for hosting shared CSER genomic, clinical, survey, and

phenotypic data in the AnVIL cloud computing ecosystem [77].

3.4.2 Timeline of CSER data harmonization, collection, and analysis activities

The second phase of CSER began in August 2017. Harmonized measures were developed
throughout 2018, and sites adopted the harmonized measures in late 2018. As described in
Goddard et al. 2020 [84], sites designed most of their data collection instruments independently
and began recruitment and/or survey administration up to 18 months after the consortium start

date. By the time the consortium had finalized the harmonized measures in late 2018, several
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sites had already begun administering surveys and were tasked with administering some

harmonized items that they had not previously implemented. The DCC developed the initial

harmonized database and custom data collection platform throughout the Fall and Winter of

2019-2020. The DCC began coordinating the centralized intake of common survey measure

responses in early 2020 and continued to collect this data until the end of the recruitment and

follow-up periods at each site. Initial requests for—and preliminary analysis of—harmonized

survey data began in Fall 2020, and the first submissions of genome and exome data to the

AnVIL cloud platform began in Spring 2021, shortly after the AnVIL platform was designated as

an official NIH data repository [93]. A timeline of major consortium-wide activities related to

data harmonization, collection, and analysis is shown in Figure 3.1.

Development Intake

2017

s —— —

2018 2019 2020 2021 2022 2023
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Figure 3.1. CSER Phase 2 data coordination and analysis timeline.
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3.4.3 Informatics architecture

The DCC utilized a suite of informatics tools and platforms to securely store and share

consortium data. These platforms included:

Local site servers and data capture tools. Data was collected and stored locally by each CSER
site before it reached the DCC. Sites collected survey data using platforms including REDCap,
SurveyMonkey, and custom-developed web applications. Some measures (like participant ages)
were pulled directly from the EHR by sites if they were not collected through harmonized
surveys. Methods for survey data storage also varied by site, with some sites using REDCap
databases or similar platforms designed for clinical research, and others using relational or non-
relational database management systems for optimized storage and querying of large datasets.
The vast majority of survey data quality assurance (QA) and quality control (QC) was performed
at CSER sites prior to DCC submission. These QA/QC measures included, but were not limited
to, checks for missing data, range value checks, and outlier analyses. Genomic data was stored
on servers with high disk capacity at each site or using secure cloud storage services like

Amazon S3 or Microsoft Azure.

REDCap database. A secure instance of REDCap was hosted and maintained by the University
of Washington ITHS and populated by CSER sites using data submission tools maintained by the
DCC. All harmonized survey measures, case-level sequencing results, and participant-level
sequencing metrics (e.g., aggregated case-level results) were centrally stored in REDCap and

were linked at the participant level using a unique identifier called a “CSER ID.”
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CSER Data Hub. The DCC used a custom R Shiny web interface called the “Data Hub” to
securely exchange harmonized survey data, case and participant-level sequencing metrics, and
documentation within the consortium. See “Informatics” and “Data De-Identification and

Security” for more details on the architecture and security features of the Data Hub.

AnVIL storage and compute platform. The NIH-funded AnVIL consortium develops and
maintains the AnVIL cloud ecosystem, which was built using Google Cloud storage and
compute resources. The AnVIL is a component of the emerging federated data ecosystem
paradigm in genomics [94], which is meant to improve genomic data sharing and interoperability
without compromising data security or privacy. The AnVIL is authorized to share both open
access (unrestricted) and controlled access (restricted) data derived from human samples [93].
Permission to access and use controlled-access data is granted on a case-by-case basis by a
relevant NIH Data Access committee and is moderated through the database of Genotypes and
Phenotypes (dbGaP) Authorized Access System [95]. CSER sites were required to submit their
genomic Binary Alignment Map (BAM) and Variant Call Format (VCF) files, sequence, and
sample metadata (e.g., reference genome build, sample source), and phenotypic data (e.g.,
disease codes, sex, race/ethnicity) to the AnVIL platform. Data stored in the AnVIL could then
be analyzed in Terra [96], a cloud platform developed by the Broad Institute of MIT and Harvard

to facilitate biomedical research data sharing and analysis.

24



3.4.4 Collection and aggregation of harmonized survey measures

To collect common survey measures administered at each site, the DCC developed a REDCap
database using the harmonized survey measures developed by the consortium in 2018 [97] , and
worked with the Data Wranglers Working Group to map site-specific data models to a

harmonized data model using a three-phase approach:

Phase 1: Model. To facilitate mapping between site datasets and the DCC harmonized database,
the DCC developed tab-delimited import templates and accompanying data dictionaries for six
harmonized survey types (Figure S3.2). All patient surveys were divided into two distinct
variable sets to distinguish between surveys administered to a parent or guardian proxy of a
pediatric participant and those administered to an adult participant. The DCC also developed
standardized import templates and data dictionaries for participant-level and case-level genetic
sequencing metrics (Figure S3.3). All templates and data dictionaries were distributed as

downloadable zip files on the Data Hub.

Phase 2: Map. Site analysts developed semi-automated variable mapping pipelines using the
data handling software(s) of their choice (e.g., Excel, R, Python, Stata, SAS), and used these

pipelines to generate harmonized datasets from the harmonized data model developed in Phase 1.

Phase 3: Upload. Staff at each site shared their harmonized datasets through a custom data
upload interface on the Data Hub, which ensured that the datasets met the specifications of the

models developed during Phase 1, and automatically transferred data to the DCC REDCap
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database using the redcapAPI R package [98]. Initial submissions for each of the harmonized
survey types and sequencing metrics occurred in 2-3-month intervals throughout 2020 and 2021.
All sites repeated Phases 2 and 3 on a quarterly basis until the end of follow-up to update

existing participant records, and to create records for newly recruited participants.

3.4.5 Genomic sequence data collection in the NHGRI Analysis Visualization and Informatics

Lab-space

The CSER DCC facilitated the transfer of genome and exome data and metadata from site
platforms to the AnVIL platform. The DCC developed harmonized metadata models in
collaboration with members of the AnVIL team and other CSER members, using standards
previously developed by dbGaP and The Cancer Genome Atlas (TCGA) Program as references.
To facilitate the transfer of sequence data and metadata to the AnVIL platform, the DCC
developed sample scripts for securely transferring data to Google Cloud buckets and made these
scripts available for download on an SFTP server hosted by the University of Washington
Genome Sciences department. The DCC also provided step-by-step instructions for preparing
data, submitting required data ingest forms, and using sample scripts for batch sequence data

transfers.

3.5 Lessons learned

Throughout 2020 and 2021, the DCC worked to meet the evolving data coordination needs of the
CSER Consortium as it actively collected sequence and survey data from study participants. The
following section describes the approaches that the CSER Consortium used to navigate the

complexities of multi-site data sharing and offers a set of lessons learned from its data
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coordination experiences (Table 3.2). Lessons learned are referenced in the text using numbered
identifiers (e.g., Lesson Learned 1a, Lesson Learned 1b) to exemplify connections between

experiences and lessons learned.
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Category

Lessons Learned

Communication

la. Identify primary points of contact for addressing different data coordination
requirements (e.g., technical infrastructure, data mapping, consortium policy) using
existing communication patterns among working groups and sites

1b. Define the unique roles of different working groups in the data coordination
process, and use those roles to guide inter-group communication

lc. Send periodic update emails with consolidated information (progress, resources,
action items) to key data coordination stakeholders

Harmonization

2a. Provide data managers with standardized data collection instruments (templates)
and specifications for mapping variables to those instruments (data dictionaries)

2b. Deploy rigorous version control methods for data coordination resources that
change over time, and ensure that data managers are informed of changes

2c. Implement standardized protocols and timelines for making changes to data
collection instruments

2d. Engage a multidisciplinary group of consortium members to develop and
approve standardized data models

Informatics

3a. Consolidate informatics tools and resources within a secure, centralized platform
3b. Utilize available IT expertise and resources at participating institutions

3c. Prioritize security of informatics tools and disseminate security information to
consortium members

Compliance

4a. Engage a multidisciplinary group of consortium members to develop a
harmonized set of data sharing consent categories

4b. Use multiple data sharing specifications (e.g., institutional certifications,
informed consents, data use letters) to map site-level consent groups to consortium-
level consent categories

Analytics

5a. Document data quality issues and unique aspects of the harmonized dataset, and
plan to distribute documentation to both current and future data users

5b. Facilitate access to onboarding resources for users of shared data analysis
platforms like the AnVIL

Table 3.2. Data coordination lessons learned in the CSER Consortium.
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3.5.1 Communication

As the DCC integrated with the consortium throughout 2020, additional communication channels
beyond monthly Data Wranglers Working Group calls were formed to fully support the
consortium’s data coordination requirements. While the Data Wranglers primarily served the role
of handling site-level survey and sequence data and developing computational pipelines to
convert data into a harmonized format, the Project Managers provided the necessary project-
level guidance to ensure that data was being shared securely and responsibly, such as tracking
regulatory documents, overseeing data collection, and developing data QA/QC measures.
Together, the two working groups contributed to the development of feasible and efficient DCC
harmonized data upload requests and data dictionaries, assisted in coordinating responses to new
data requests (including site-specific data), assisted in troubleshooting challenging data elements
(e.g., consent categories), responded to requests for project-specific information, and kept track
of data submission timelines (Lesson Learned 1a). The DCC, Data Wranglers, and Project
Managers communicated through an iterative, multi-directional feedback loop throughout the
project period to ensure that all groups were equipped to fulfill their respective data coordination

responsibilities (Lesson Learned 1b).

Multiple working groups requested that the DCC share important data coordination updates with
the rest of the consortium. To increase transparency of ongoing work and maintain an organized
list of action items, the DCC sent update emails to the Data Wranglers Working Group, Project
Managers Working Group, Sequence Analysis and Diagnostic Yield Working Group, and

Principal Investigators (PIs) first on a biweekly and eventually on a monthly basis to
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communicate important DCC activities, inform consortium members of key resources, and track
new data coordination requirements. To communicate DCC activities and goals with the broader
consortium, the DCC also gave regular progress updates during biweekly and monthly
Coordinating Center and Steering Committee calls, respectively. These updates helped other
working groups and consortium stakeholders anticipate availability of shared data, and allowed
consortium members outside of the Project Managers, Data Wranglers, and Sequence Analysis
and Diagnostic Yield Working Groups to regularly provide feedback and ask questions about

current and planned DCC initiatives (Lesson Learned 1c).

Interactions between the DCC and groups external to the consortium were largely facilitated by
weekly or biweekly standing meetings, including those with AnVIL project managers and the
University of Washington ITHS staff. These meetings helped the DCC receive timely assistance
and feedback from technical support teams, and to communicate questions and concerns raised
by CSER members. Figure 3.2 shows the different groups involved in CSER data coordination,
their responsibilities, and the types of communication that took place between different

stakeholders.
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Figure 3.2. Methods of communication between groups involved in CSER data coordination.

3.5.2 Harmonization

3.5.2.a Survey data harmonization

Throughout 2020 and 2021, the DCC developed a variety of strategies to facilitate the
harmonization and intake of common survey measures. As described in Goddard et al. 2020 [84],
the CSER Measures and Outcomes Working Group previously led the consortium through
identifying 31 survey domains across CSER projects that captured measures related to the

common research aim of evaluating the personal and clinical utility of genome and exome
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sequencing, while accommodating natural heterogeneity in study designs and patient
populations. Common survey measures were presented to research participants in a wide variety
of study environments, altered to meet the needs of individual sites, and collected and stored
using different data modeling strategies. As a result, measures were harmonized across many
factors, including question wording, response scales, and variable naming. While measure
harmonization was important for achieving cross-site interoperability of research findings, it was

also a time-consuming effort that required careful planning and use of limited resources.

In CSER’s experience, achieving and sharing semantically interoperable data was far more
complex than simply sharing data. As described in “Consortium structure and communication,”
the seven CSER projects served different patient populations, investigated unique research
questions, and used different clinical sequencing interventions (Figure S3.1). Furthermore, sites
developed their own data collection tools before a clear set of centralized data sharing
expectations was established. To reconcile differences between site-specific implementations of
common survey measures, the DCC developed standardized data import templates and data
dictionaries to guide harmonized survey mapping, as described in “Collection and aggregation of
harmonized survey measures" (Lesson Learned 2a). The complexity of this process is illustrated
in Figure 3.3, which depicts the mapping process for a single variable in the Communication
Satisfaction measure from the first Patient Post-Return of Results (RoR) survey. By the end of
the survey mapping phase for all six harmonized surveys and two sequencing metric reports,

sites had implemented mapping logic for over 1100 variables.
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Figure 3.3. Sample harmonization process for one variable in the Communication Satisfaction measure,
across all seven CSER projects. To map participant responses to the Participant Post-Return of Results
(RoR) Follow-Up #1 harmonized import template, each site created a local mapping between the site-
level variable name and the harmonized variable name (comsatl pful for pediatric surveys,

comsatl aful for adult surveys) and documented any differences in question wording. Some sites were
also required to map alternate response encodings to the harmonized response scale. For example, Site 2
administered the question with a reversed response scale (where 1 =" Very satisfied” on the harmonized
scale, and 4 = ‘Very satisfied’ on the site scale), and modified harmonized responses accordingly (1 =4, 2
=3,3=2,4=1). Similarly, Site 5 administered the question with an additional response option, and was
instructed to map these responses to blank values (5 = * °).

The primary goal of the survey mapping phase (Phase 2) was for each site to develop a semi-
automated pipeline that could be used to quickly update harmonized datasets with new or

modified data on a quarterly basis. However, the pipeline development process was complex and
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time-intensive for each site and involved frequent updates to mapping logic. Updates included
relatively simple changes like variable name modifications and harmonized response scale
adjustments, but also included more complex updates like the addition of new variables that were
deemed necessary for accurate, reliable, and secure downstream analysis of harmonized data
(Table S3.1). For example, the elapsed time since RoR variable was first proposed during a Data
Wranglers Working Group meeting in July 2020, when it was discovered that not all participant
or provider follow-up surveys could be administered or collected within the harmonized time
frames specified (Figure S3.2), and that having more granular elapsed time data could improve
the accuracy of downstream analyses. A placeholder variable was developed and then iteratively
refined before seeking Steering Committee and IRB approval. The finalized variable required
sites to indicate the number of weeks post-RoR that a given survey or measure was administered
to each participant. Sites were then tasked with implementing new mapping logic for as few as
three, and as many as 25 new harmonized variables, depending on whether follow-up measures
were administered according to the harmonized survey groups (Figure S3.4). While not all
change requests were this lengthy or involved, they cumulatively resulted in high demands on

Data Wranglers and Project Managers throughout the harmonized measure mapping process.

To minimize burden placed on Data Wranglers and Project Managers due to change requests and
to maximize transparency, the DCC maintained a “Change Log” page in the Data Hub, which
listed the changes made between import template and data dictionary versions. During the last
quarter of 2020, the DCC began distributing quarterly checklists that documented all new,
removed, and modified variables for each quarterly data resubmission, and made these

documents available for download on the Data Hub (Lesson Learned 2b). Beginning in January
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2021, the DCC also implemented a new “Change Request Schedule,” which specified time
intervals during which consortium members could make change requests and blocked off two-
month intervals before each quarterly resubmission during which site data analysts could modify
mapping pipelines without having to address incoming change requests. These strategies helped
manage the computational and organizational burden of maintaining harmonized mapping
pipelines, but nonetheless did not eliminate all tensions between site-level burden and

consortium-level data sharing expectations (Lesson Learned 2c).

3.5.2.b Sequence metadata harmonization

The AnVIL replaced dbGaP as the primary repository for NHGRI-funded genomic, phenotypic
and survey datasets in mid-2019, during the CSER Phase II funding period [93]. While dbGaP
provided data submitters with standardized templates and instructions for submitting sequence
data and metadata to the platform, the AnVIL consortium was still developing standards when
CSER commenced submissions. As a result, the CSER DCC was tasked with developing
standardized metadata models that captured the necessary details without placing unreasonable
burden on CSER sites. In mid-2020, the DCC convened a subgroup of CSER investigators
(called the “Sequence Metadata Subgroup”) with expertise in sequence data analysis to develop a
harmonized set of sequence and sample metadata fields (Lesson Learned 2d). Prior to the first
subgroup meeting, the DCC compiled a list of candidate variables using a combination of the
dbGaP and TCGA standards. The DCC presented these variables to the Sequence Metadata
Subgroup to assess the feasibility and descriptiveness of the proposed fields. Once the model was

approved by the Sequence Metadata Subgroup, the Data Wranglers Working Group, and the
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AnVIL team, the DCC developed the relevant import templates and data dictionaries and made

these documents available for download on the Data Hub (Table S3.2).

3.5.3 Informatics

The CSER DCC used the Data Hub platform to host data coordination resources in a centralized,
secure, and easily accessible location. The Data Hub made it possible to link multiple data
management platforms with one another (Figure 3.4) and to quickly distribute version-controlled
resources to Data Wranglers and Project Managers (Lesson Learned 3a). To develop and
maintain the Data Hub, the DCC harnessed available information technology expertise and
resources at the University of Washington ITHS (Lesson Learned 3b). These resources took the
form of one-on-one meetings and email exchanges with ITHS personnel, and computing
resources for hosting the Data Hub website. However, they also relied heavily on informatics
expertise within the DCC to develop the application itself and to provide troubleshooting support
to CSER sites. Sample screenshots of the Data Hub user interface are shown in Figures S3.5-

S3.9.
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Figure 3.4. Movement of harmonized survey data (green) and sequence data (purple) between CSER data
platforms. Abbreviations: CDH — CSER Data Hub; CLI — Command Line Interface; DCC — Data
Coordinating Center; M&O — Measures and Outcomes; QPR — Quarterly Progress Report; WS — Web
Services.

3.5.4 Data de-identification and security

Before submitting harmonized data to the Data Hub or sequence data to the AnVIL, all CSER
sites were required to remove personally identifiable information (PII) from their datasets in
accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule
[99]. To retain syntactic integrity of free text, sites were asked to redact all instances of PII and

replace them with the category of identifier within brackets (e.g., “[date],” “[name]”). Measures
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were also taken to protect local study identifiers for each participant. For each new record in the
harmonized database, a unique CSER ID was randomly generated and linked with the
participant’s local study ID. Mappings between CSER IDs and local IDs were then stored within
the DCC REDCap database, accessible only to members of the site from which each CSER ID

originated.

Although the DCC took steps to prevent identifiable information from being uploaded to its
platforms, multiple layers of security were built into the DCC informatics architecture to protect
data in the unlikely event that sensitive, identifiable information were to be uploaded to a DCC
platform (Lesson Learned 3c). First, the Data Hub was deployed on a secure web server hosted
by the University of Washington ITHS. All requested connections from client web browsers
were established using the Apache HTTP Server software, and ITHS required that all hosted web
applications establish encrypted connections between the server and the client browser. Second,
all Data Hub users were required to log in to the Data Hub using University of Washington
credentials, which were sponsored by the DCC team. Third, the Data Hub was designed in
alignment with standards put forth by the HIPAA Security Rule, including the use of activity
logs, password-protected access, automatic password timeout, and HIPAA-compliant data
storage in REDCap. And fourth, the DCC developed standard protocols for removing records of
participants that had withdrawn consent for sharing data, and continuously updated and

distributed a list of CSER IDs that should be removed from previously downloaded datasets.
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3.5.5 Consent group harmonization

CSER did not have a central study Institutional Review Board (IRB), and thus relied on IRBs at
each CSER site (and in some cases additional IRBs at subsites) and the University of
Washington—the Coordinating Center home institution—to make decisions about appropriate
data sharing. All site and Coordinating Center PIs signed a Data Use Agreement in early 2019
detailing the data sharing terms between participating institutions in CSER, and the DCC used
this document to broadly define the terms of data sharing across CSER sites and beyond the

consortium.

While the use of local IRBs facilitated the implementation of varied clinical study designs across
diverse patient populations at each site, the lack of a central CSER IRB also resulted in
substantial heterogeneity in how data sharing consent groups were defined across CSER sites.
Because the dbGaP Authorized Access System typically inherits consent group specifications
from study Institutional Certifications [100], the DCC first surveyed all Institutional
Certifications to determine if they sufficiently represented site-level consent groups. Following
conversations with the CSER Project Managers, the DCC determined that while the Institutional
Certifications provided high-level guidelines for how study data could be shared with non-CSER
investigators, they did not fully represent subtleties of the permissions given by participants for
sequence and/or survey data sharing during informed consent. For example, several CSER sites
allowed participants to opt-out of broad data sharing (e.g., General Research Use or
Health/Medical/Biomedical Research) and to restrict sharing to specified investigators, while

other sites required study participants to consent to broad data sharing if they were to enroll in
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the study. As a result, harmonized consent categories had yet to be developed when CSER sites

were otherwise ready to share data.

To develop consortium-wide data sharing consent categories, the DCC convened a
multidisciplinary “Data Access Subgroup” of data analysts, project managers and data ethicists
to discuss key considerations and requirements for consent harmonization (Lesson Learned 4a).
The subgroup met twice over a period of two months in mid-2020 to develop a plan for mapping
site-level consent categories to harmonized consent groups. Using a combination of standard
NIH consent groups (e.g., General Research Use, Health/Medical/Biomedical research) and data
use limitations (e.g., local IRB approval required, publication required) [101] indicated in the site
Institutional Certifications, and more restrictive data use limitations gleaned from site-specific
informed consents (e.g. CSER-only access), the Data Access Subgroup developed eight
harmonized consent groups for survey and sequence data types (Table S3.3; Lesson Learned
4b) [102]. The Project Managers and Data Wranglers mapped participant-level consent groups to
harmonized consent groups and submitted these consent assignments to the Data Hub in early
2021. These groups were used to determine how sequence and survey data could be stored and

shared with non-CSER investigators in the AnVIL platform.

3.5.6 Cloud data sharing

The movement of data storage and computation to cloud platforms like Google Cloud, Amazon
Web Services (AWS) or Microsoft Azure is widely regarded as a necessary next step in the field
of genomics, given the large volume of genomic data generated daily, the increasing

sophistication and scalability of cloud resources, and the need for extensive collaboration in
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genomic research [103]. While the goal of this transition is to maximize the utility and impact of
human-derived samples and phenotypic data, cloud technology is still relatively novel to most
academic institutions—which have historically used privately managed, secure servers to store
and process genomic data—and to many research participants contemplating broad data sharing.
While the NIH has previously released guidance on best practices for cloud data sharing [104],
the technical aspects of data security and administrative aspects of data privacy in the cloud are
unfamiliar to many investigators. As a result, many institutions approach new cloud data sharing
requirements with caution [105]. The CSER Consortium responded to cloud data sharing
requirements by reviewing informed consent documents at each site and ensuring that research
participants gave their consent to share data in NIH controlled-access repositories other than
dbGaP. The DCC also collaborated with the AnVIL team to compile security documentation into
a single resource that sites could use to personally assess the security of datasets submitted to the
platform, particularly those restricted to use within the consortium. Consistent communication
between the AnVIL team, NIH staff, the DCC, and CSER Working Groups was essential for
building consortium-wide trust in this new technology, and for ensuring the ongoing privacy and
security of de-identified genomic, phenotypic, and survey data in the new era of cloud storage

and computing.

3.5.7 Analytics and documentation

3.5.7.a Harmonized survey data reliability

Given the heterogeneity in how common survey measures were modeled and administered at

each CSER site, the DCC developed strategies to document differences in site-level measure
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implementations. The DCC initially used separate Google Sheet data dictionaries for each site to
document unique implementations of common measures. These site-level data dictionaries were
then compiled into a single “Adaptation Dictionary,” which documented the adaptations made to
each harmonized variable across all CSER sites and was designed to highlight the degree to
which each measure might be subject to data integration or reliability issues during analysis. To
facilitate quick assessments of data reliability, the DCC implemented a cover sheet within the
Adaptation Dictionary that indicated to what extent each measure was adapted (Figure S3.10).
Step-by-step instructions were also included on the first tab of the dictionary to help investigators
consider how adaptations might affect their analyses. To increase adoption within CSER, the
DCC provided a link to the Adaptation Dictionary on the Data Hub and advised CSER members
to reference the dictionary before attempting any cross-site analyses. The Adaptation Dictionary
was intended for use by investigators both within and beyond CSER and was designed to be
shared on platforms like the AnVIL to enhance the usability of CSER data for future research. In
addition to documenting adaptations to harmonized measures, the DCC developed a centralized
help document for current and future users of CSER data. The document contained descriptions
of all CSER projects, explanations for how key variables were harmonized, rationale for and
descriptions of items that were added to the harmonized measures (e.g., vital status, survey

completion dates), and FAQs related to database structure and use (Lesson Learned Sa).

The DCC also implemented several automated, on-demand variable calculation features in the
Data Hub to generate measures that could be programmatically derived from the harmonized
measures. The CSER “Underserved Framework,” developed by members of the CSER Ethical,

Legal, and Social Implications and Diversity Working Group, employed different combinations
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of demographic factors (including language, income, insurance status, residence, race, and
ethnicity) to form nine distinct risk groups, indicating either direct barriers to medical care access
or social factors that might indirectly impede access. Using the Data Hub download tool,
consortium members could elect to download automatically calculated Underserved Framework

variables along with documentation about how each variable was calculated.

3.5.7.b Using the NHGRI Analysis Visualization and Informatics Lab-space platform for

analysis

The AnVIL platform seeks to enable users with scalable compute power, large-scale data access,
and shared resources for analysis [77]. The AnVIL analysis environment was built using the
Terra/Google Cloud platform, so users familiar with this system may experience shorter
onboarding periods. Data exploration and analysis are supported through the use of Jupyter
notebooks [106] and RStudio [107], which are commonly used tools in the field of data analytics
and statistical analysis. AnVIL also supports genomics tools such as Galaxy [108] for users with
less experience in programming who are interested in genomic analysis, and provides access to

standard command line tools like GATK [109] to facilitate advanced data processing.

Although the potential benefits of using a platform like the AnVIL for sequence data storage,
sharing, and analysis are numerous, the unfamiliarity of the platform may limit the ability of
investigators to anticipate exactly how data might be shared and/or used and may therefore make
early-stage decisions about data modeling and sharing difficult. For example, the automatic
linkage of survey, phenotypic, and sequence data in a shared cloud workspace is a novel concept,

and investigators will undoubtedly need to make challenging decisions regarding the best way(s)
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to prepare, share and utilize such data. Large clinical genomics research consortia like the
eMERGE Network and the Implementing Genomics in Practice (IGNITE) Consortium will
likely face similar challenges to those experienced by CSER, and the AnVIL platform will be a
valuable space for investigators from all disciplines to unite and support one another in this new

generation of genomic data sharing and analytics (Lesson Learned Sb).

3.6 Discussion

After dedicating much time and effort to developing and implementing strategies for
harmonizing and coordinating consortium-wide datasets, the CSER Consortium is well-
positioned to contribute an impactful and wide-reaching dataset to facilitate research in medical
genomics. While the DCC developed tailored strategies to facilitate CSER data coordination, the
principles behind these strategies are applicable to other research settings in which data are
pooled from heterogeneous sources. Table 3.3 lists 11 overarching needs and recommendations
for conducting multi-site data coordination at the levels of Planning, Communication,
Informatics, and Data Analytics. The following section explores these recommendations through
the lens of four thematic domains that emerged from this work: 1. Transparency and translation;
2. Team morale, collaboration, and trust building; 3. Iterative design; and 4. Data governance.
We also offer guidance on how these recommendations might generalize to projects of different

sizes with diverse data coordination needs and capabilities.
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Category Needs Recommendations
Planning Clear expectations for internal and 1. Build data sharing expectations into
external data sharing expected scope of work in funding
announcements (NIH)
Sufficient financial resources and time | 2. Budget for data coordination,
for data coordination management, and reporting at individual
research sites (NIH)
Integration between DCC and 3. Establish DCC at start of funding
consortium period, if not before (NIH, DCC)
Communication | Consolidation of communication 4. Consolidate lines of communication
channels from DCC to working groups, and
assign action items appropriately (DCC,
Sites)
Technical specifications for data 5. Maximize transparency of data
sharing coordination expectations and resources
(NIH, DCO)
Efficient use of diverse expertise 6. Facilitate translation of critical
available within the consortium information between stakeholder groups
DCO)
Informatics Consolidation of informatics platforms | 7. Deploy a secure, centralized web
for data coordination resource for data coordination (DCC)
Flexibility in response to unforeseen 8. Build flexibility into central databases
events and changing analysis plans and data management software (DCC)
Correct implementation of site-level 9. Prioritize data privacy and security
security and privacy agreements during platform design (DCC)
Analytics High-quality and reliable data from 10. Provide clear and detailed
heterogeneous sources documentation of shared data resources
(DCC, Sites)
Integration of research and clinical 11. Document approaches to data
practice; Enhanced protection of data governance (DCC, Sites)
from vulnerable populations

Table 3.3. Recommendations for consortium data coordination. Text in bold indicates which entities
should be responsible for each recommendation.
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3.6.1 Transparency and translation

Clear and consistent communication on the part of research leadership and data coordination
teams should be a high priority, from project conception to completion. Ideally, Funding
Opportunity Announcements (FOAs) issued by funding agencies should plan for and
communicate data sharing expectations (Planning, Recommendation 1) to allow research sites
to budget and plan for data coordination activities (Planning, Recommendation 2). When
possible, the DCC should be involved in the research planning phase and should continually
facilitate conversations surrounding data collection, QA/QC, reporting, modeling, and sharing,
so that research sites are sufficiently prepared to participate in data sharing at all project stages
(Planning, Recommendation 3). Given the availability of appropriate experience and expertise,
the DCC may act as a stakeholder proxy across research sites and working groups and facilitate
data coordination conversations and decision-making. As a liaison between project stakeholders,
the CSER DCC was ideally positioned to assume the role of “translator” and facilitate adaptive
communication between groups with unique roles and areas of expertise (Communication,
Recommendation 6). Translation should also take place between the consortium and the greater
scientific community since data in controlled-access repositories is expected to have a lifespan
beyond the consortium from which it originates. As such, clear documentation of shared data and
resources should be developed to encourage appropriate data use, and alert users to any unusual

or unique data elements prior to analysis (Analytics, Recommendation 10).

The translator also has a responsibility to communicate data needs centrally and concisely.

Separate lines of communication that request different (but related) data coordination action
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items should be avoided, and requests should instead be aggregated and contextualized with one
another (Communication, Recommendation 4). The expected contributions of stakeholders to
different data coordination activities should also be transparent, both to increase task
accountability and to assess the equitable distribution of tasks across the consortium
(Communication, Recommendation 5). Stakeholder communication should be a two-way,
responsive process in which DCC processes are adjusted in response to stakeholder feedback,

and vice versa.

3.6.2 Team morale, collaboration, and trust building

An often-overlooked aspect of data coordination is the importance of interpersonal relationships
and team morale within and between stakeholder groups. Making expectations transparent and
achievable is critical to demonstrating respect and appreciation for team members’ time and
efforts (Communication, Recommendation 5). Similarly, giving team members the space and
time to regularly voice ideas and concerns to the leadership and data coordination team is
essential for maintaining a culture of mutual respect and understanding across stakeholder
groups. Decisions that will impact research workflows and workloads of consortium members
should be made mutually and transparently, both to demonstrate respect for one another’s time
and to avoid situations in which stakeholders must retrospectively address issues introduced
earlier in the research process due to a lack of communication or collaborative planning.
Strengthening these interpersonal relationships is essential for building a culture of trust within

the research team and facilitating a positive data sharing experience.
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3.6.3 Iterative design

Access points to important data coordination tools and resources should be consolidated to
minimize burden placed on sites and improve resource transparency (Informatics,
Recommendation 7). Each resource should also be designed to withstand frequent
modifications, both on the database and user interface ends, to accommodate inevitable changes
in consortium needs (Informatics, Recommendation 8). Building iterative design principles
into the platform development process is far more effective at achieving a useful and usable
system than deploying a static, pre-designed system [110]. Based on the Gould & Lewis
principles of design [111], system development should involve: 1. Early focus on end-point
users; 2. Early deployment and usability testing; and 3. Iterative system design. Employing these
principles in practice will help end-users identify critical features and potential issues on a rolling
basis and ensure that the resulting data coordination system is designed appropriately for the
intended user base. However, platform security should remain the highest priority throughout the
design process, and design decisions should never be made at the expense of security features

(Informatics, Recommendation 9).

3.6.4 Data governance

While there is an understanding among scientific communities worldwide that sharing research
data is a necessary component of scientific progress, the mechanisms for protecting against
potential harm while maximizing usefulness are not well-defined [112]. These two aims are often
in tension and lend themselves to diverse data governance strategies across research projects
within and between scientific disciplines. In genomics research studies, data governance

frameworks that promote scientific progress should: 1. Enable data access; 2. Follow national
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laws and international agreements; 3. Support appropriate data use; 4. Promote equity in the
access and analysis of data; and 5. Use data for public benefit [71]. However, when
operationalizing data governance frameworks within research consortia, major tensions exist in
the areas of data access control, de-identification, and consent models. Combined with the
technical challenges of cleaning, harmonizing, and annotating datasets, these tensions contribute
to a disconnect between the intent to share data and real-life data sharing practices [113]. While
it is tempting to trace this disconnect to a lack of clear guidance from national agencies and
project funders, guidelines like those found in the NIH Genomic Data Sharing policy are left
intentionally vague to account for vast contextual differences between research projects. To
develop a reusable set of data governance guidelines that can accommodate different research
settings and contexts, it may therefore be useful for research projects to document their own
approaches to the five components of effective data governance frameworks listed above, and for
funding agencies to then develop comprehensive guidelines that accommodate the unique data

governance requirements of diverse research settings (Analytics, Recommendation 11).

One important tension that arises in clinical research is the need to accommodate varying data
governance expectations across clinical and research settings, particularly for participant privacy
and informed consent for data sharing. For example, the Federal Policy for the Protection of
Human Subjects (also known as the “Common Rule”) is a set of federal regulations that dictates
requirements for the ethical management and distribution of data collected from human research
subjects, while the HIPAA Privacy Rule is a federal law that enforces standards for the
protection of patient medical data. While these regulations are intended to complement one

another in clinical research settings, the details of how each set of rules should be applied to the
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operational components of a data governance strategy are not well-defined, leading to potential
gaps in data protections [114]. The US Department of Health & Human Services itself
recognizes that “institutions, IRBs and investigators are frequently faced with applying both the
Common Rule and the HIPAA Privacy Rule” when making decisions about clinical research
protocols, since there are currently no formalized guidelines for merging these requirements
[115]. The inclusion of genome and exome sequencing in clinical research further complicates
questions of subject and biospecimen identifiability, for which guidance from the Common Rule

and HIPAA is limited [116,117].

In the case of informed consent for data sharing, the details and implications of policies that
govern data protections should be made transparent to clinical research participants who are
asked to consent to broad data sharing, but researchers and policymakers themselves are still
grappling with these details. For example, on the FAQ page of the NIH Genomic Data Sharing
policy description, a common perception among genomic researchers is that the “NIH requires
that investigators obtain consent for broad data sharing and that the participant is disqualified
from participating in the study if consent is not obtained,” although the NIH clarifies on the same
page that this was not the intent of the policy [118]. In addition to questions of appropriate data
sharing, the appropriate breadth and depth of information communicated during the informed
consent process is challenging to pinpoint, given that it is extremely difficult—if not
impossible—to predict exactly how genomic information will be used by researchers in the
future. There is an even greater urgency for clarity in genomic data sharing consent procedures
for patient populations that are historically marginalized and disadvantaged by biomedical

research and medical practice [119]. For example, there is concern among US Indigenous
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communities that participating in genomic research and sharing genomic data may lead to
inappropriate use of that data in the future, leading to imbalanced societal benefits or even harm
to those communities [120]. Data governance frameworks that support paradigms like data
sovereignty for marginalized populations and dynamic consent procedures may help mitigate
some of the risks posed by evolving consent details in medical genomics research [121]. Other
suggestions for addressing misuse concerns include following documented Indigenous
engagement practices, understanding worldviews unique to different Indigenous communities,
and practicing complete transparency in all research partnerships with Indigenous communities

[122]

3.6.5 Generalizability of recommendations

While these recommendations were designed to generalize to other multi-site research projects,
we recognize that smaller or less well-funded projects may not be able—or even need—to
implement all of the recommendations. For example, a smaller project with two homogenous
research sites (e.g., similar participant populations, research aims, and institutional policies) may
not need to establish a formal DCC (Recommendation 3) or deploy a multi-user web application
(Recommendations 7, 8, and 9). However, the same project would still benefit from having a
dedicated group of investigators to oversee data coordination, encourage communication, and
facilitate documentation (Recommendations 4, 5, 6, 10, and 11). While the costs of these
recommendations pale in comparison to funding an entire DCC or developing a web application,
they are nontrivial. A “bare bones” implementation of a data coordination core would require
part-time participation of at least one investigator at each site with data science expertise (similar

to the CSER Data Wranglers), one investigator at each site with detailed knowledge about the
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study (similar to the CSER Project Managers), and one central coordinator to facilitate
communication and track progress. As funding agencies increasingly expect research projects to
contribute high quality, harmonized data to public repositories, funders and researchers alike
should recognize these dedicated groups as an essential component of any research program and

provide appropriate budget support accordingly (Recommendations 1 and 2).

Research projects should consider how the size, complexity, and privacy considerations of their
anticipated datasets impact the relative importance of different data coordination needs (see the
“Needs” column in Table 3.2) and implement recommendations accordingly. While dataset
factors are partly influenced by the number of sites involved in a project, they are not defined by
project size. For example, a project with 2 sites collecting 100 data types (variables, file types,
etc.) might have a greater need for more robust data coordination tools than a project with 100
sites collecting 2 data types. Similarly, smaller consortia collecting data on a large number of
participants at each site may have more complex needs than larger consortia collecting data on a
small number of participants. However, as the CSER Consortium experienced, data coordination
needs evolve as the project evolves. Projects should periodically re-evaluate how well their
current approaches are addressing their needs and seek additional funding and/or personnel to

help implement more rigorous coordination approaches as needed.

Finally, while these recommendations are most translatable to NIH-funded projects within the
US, the basic principles still apply to non-NIH funded and multi-national projects. Other types of
projects may have data sharing expectations and policies that differ considerably from those of

NIH-funded projects but using well-reasoned communication and informatics practices is
52



ubiquitously beneficial for managing heterogeneous datasets. For example, a 2017 report by the
Organisation for Economic Co-operation and Development identified common challenges across
32 international research data networks, including the need for clear roles and responsibilities,
transparency, mutual respect, and clear data governance plans [123]. However, multi-national
consortia like the Global Enteric Multicenter Study (GEMS) and the International Cancer
Genome Consortium (ICGC) have cited additional challenges—Ilike navigating differences in
language, culture, and data transfer policies between countries—that the current
recommendations do not address [30,80]. While privately funded projects may not be required to
share data as a condition of funding, they will likely receive requests from peer-reviewed
journals to share data before publishing. In this way, the evolving culture of data transparency

within the scientific community itself necessitates data coordination.

3.6.6 Applications to the value-creating learning health system framework

The value-creating LHS framework, developed by Menear et al. (2019) [89], explicitly
acknowledges the interconnectedness of social and technical factors in the LHS model This
framework combines multiple LHS frameworks into a transtheoretical model that describes how
different stakeholders can work together to achieve higher value care at lower costs. While this
framework was originally developed to reflect the core values of the Canadian healthcare system
(participatory leadership, equity, solidarity, inclusiveness, scientific rigor and personalization),
these core values have long been a necessary component of healthcare reform internationally
[124]. We therefore propose that this framework can be reasonably applied in the case of US
healthcare reform. The framework builds upon the concept of rapid learning cycles, which

consist of three core processes: 1. Converting data to knowledge; 2. Using knowledge to

53



influence care practices while documenting the impacts of new care practices on health
outcomes; and 3. Generating new data from reformed healthcare practice [125]. The authors of
the framework base their definition of “value” on the quadruple aim of healthcare (enhanced
patient experience, improved population health, reduced costs, and improved working conditions
for healthcare providers) [126], and argue that a variety of socio-technical factors should be
considered throughout the iterative learning process in order to successfully generate value from

an LHS.

Each of the core values and pillars of the value creating LHS framework emerged organically
during the CSER data coordination process, highlighting the generalizability of the framework to
different types of clinical research environments and to the LHS model. The natural alignment
between the LHS pillars and our recommendations also underscores the importance of data
coordination in both clinical research consortia and LHS-aligned clinical settings. Table 3.4
shows how different recommendations from CSER data coordination can be applied to the Core

Value and Pillar components of the value creating LHS framework.
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Framework Component Core Value or Pillar Recommendation(s)

Core Values Adaptability 8
Cooperative and participatory leadership 1,3
Equity 11
Inclusiveness 6
Open innovation 6
Person focused 4,6,11
Privacy 9
Scientific integrity 10
Shared accountability 1,3,4,6
Solidarity 4,6
Transparency 1,5

Pillars Scientific 1,2

Social 3,4,6
Technological 7,8
Political 1,2,3,11
Legal 9
Ethical 11

Table 3.4. Recommendations applied to the Core Values and Pillars of the value-creating learning health
system framework.

3.7 Limitations and future work

While the recommendations from this work are expected to be applicable to different settings in
which data coordination is a key activity, the artifacts and experiences that informed those

recommendations are still specific to the CSER Consortium. Integrating artifacts and experiences
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across clinical research consortia could be useful for improving the generalizability of
recommendations to different research environments with variable participant populations, study
personnel, and financial resources. Additionally, while it is assumed that the recommendations
can be applied to LHS settings based on the alignment between LHS goals and the goals of
clinical research consortia, this work is not a complete substitute for similar analyses in actual
LHS settings. Future studies of clinical research data coordination efforts should expand on and

adapt the recommendations to LHS-aligned environments.

3.8 Conclusion

The artifact analysis methods used in this work uncovered the cultural aspects of data sharing
that are essential for enabling the widely-sought “transition towards a culture of biomedical data
sharing” (Piwowar et al. 2008, p. 1315) [82]. Data coordination is not simply a matter of
algorithms and automation, but also of human communication, translation, mutual respect, and
autonomy. These principles are particularly important to operationalize for projects that straddle
the research-clinical interface, where the ethical and political aspects of data sharing are often in
tension with one another. Identifying common challenges and new solutions to data coordination
that are grounded in the experiences of clinical research projects is a key first step in defining
community standards and expectations. The lessons learned and recommendations identified in
this work reinforce previously identified challenges in clinical research projects and provide both
context-specific and generalizable solutions that can guide the development of best practices
moving forward. In the next chapter, we will transition from a researcher-focused view of data
coordination to a clinician-focused view of knowledge generation. Medical geneticists operate at

the cutting edge of clinically applied genomics research and can help identify the barriers and
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enablers of moving coordinated clinical and research data into the realm of clinically motivated

discovery.
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CHAPTER 4: MEDICAL GENETICIST PERSPECTIVES ON CLINICALLY EMBEDDED

GENOMIC DISCOVERY (AIM 2)

4.1 Introduction

In addition to coordinating clinical and genomic data for research purposes, generating new
knowledge from clinical data is a central process in the LHS model [7]. Knowledge generation
has also been identified by the NHGRI as a key part of developing “virtuous cycles in human
genomics research and clinical care” (Green et al. 2020, p. 689) [9], in which new genomic
discoveries are rapidly integrated into healthcare systems and outcomes data are used to assess
the utility of genomic medicine and ultimately improve disease diagnosis and management.
However, the barriers, drivers, and approaches to generating new knowledge in an LHS have
been sparsely examined, especially in the context of important sociotechnical and ethical factors
that affect research and clinical environments differently [14]. While the foundational
characteristics of an LHS have been defined by the IOM, little has been done to assess the
feasibility of implementing clinically-based discovery programs given the challenging realities of
the US healthcare system [7]. Additional technical, ethical, and social complexities of genomic
data collection and analysis are expected to make knowledge generation in GLHSs even more
challenging to execute [8,31]. Understanding the perspectives of those who work closely with
genetic information in clinical environments is an important step in assessing the feasibility of
generating new genetic knowledge from clinical data, and for examining the implications of

conducting genomic research in clinical environments.
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In this aim, we explore the perspectives of board-certified medical geneticists on integrating
genomic discovery research with clinical care. Using constructivist grounded theory methods, we
identify perceived drivers and barriers for GLHS discovery, and offer an a priori conceptual
model for understanding the technical, social, and ethical forces that influence the shifting

boundaries between research and clinical care in genomics.

4.2 Related Work

4.2.1 The genomics-enabled learning health system

The concept of a “rapid-learning health system” was originally proposed by Lynn Etheredge in
2007 [127] as an approach for improving evidence-based medical care, advancing clinical
research, and maximizing the value gained from healthcare spending in the US. Etheredge
pinpointed the EHR as the driving technology for rapid learning in healthcare because it offered
an inexpensive, queryable, clinically representative, and fast alternative to standard methods for
gathering data in biomedical research. Similar arguments were made at a two-day workshop held
by the IOM Roundtable on Evidence-Based Medicine in July 2007 called “The Learning
Healthcare System,” where participants acknowledged that “the nation needs a healthcare system
that learns" in order to “[get] the right care to people when they need it and then [capture] the
results for improvement” (IOM 2007, p. 3) [128]. During this workshop, participants identified
several pressing needs of the LHS model (Table 4.1), and acknowledged that large, structural
changes in the ways knowledge is developed and managed in clinical research are necessary to
realize the full potential of an LHS. The proposals from this workshop were later formalized into

a book published by the IOM Committee on the Learning Health Care System in America in

59



2013 called Best Care at Lower Cost: The Path to Continuously Learning Health Care in

America [7].

Need

Description

Adaptation to the pace of change

Adaptation to rapid developments in both
technology and the information those technologies
generate

Stronger synchrony of efforts

Coordination of responses to new knowledge to
limit conflict and/or confusion

Culture of shared responsibility

Shared responsibility between patients, providers
in the evolution of new knowledge

New clinical research paradigm

Better integration of clinical research and clinical
practice

Clinical decision support systems

Information support for clinicians

Universal electronic health records

Comprehensive EHRs with all available
capabilities

Tools for database linkage, mining, and use

Tools for searching and interpreting large,
structured databases, and for linking multiple
databases

Notion of clinical data as a public good

Resolutions surrounding the idea of data as a
“proprietary good” and concerns about patient
privacy

Incentives aligned for practice-based evidence

Aligning the incentives of research, clinical
practice, and Information Technology (IT) to
promote learning

Public engagement

Engagement of patients and healthcare
professionals in generating and disseminating new
evidence

Trusted scientific broker

A trusted entity that can guide movement and
priorities in clinical research integration

Leadership

Guidance for developing and executing visions,
strategies, and actions

Table 4.1. Needs for a learning health system identified during the 2007 Institutes of Medicine
Roundtable on Evidence-Based Medicine: The Learning Healthcare System [128]. Needs are worded as
seen in the original text, and descriptions are paraphrased from the text.
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While both Etheredge and the 2007 IOM report acknowledge the potential for pharmacogenetics
to improve patient-level treatment responses, neither discuss needs specific to implementing
genetics more broadly in an LHS. The first draft of the human genome [129] had only been
published several years before the LHS model had been proposed, and the model could not yet
account for the rapid advancements in genomic technologies, including dramatic cost reduction,
that would develop over the next two decades [130]. Healthcare providers, researchers, and
policymakers alike soon recognized the importance of leveraging genomic data to improve
disease prevention, diagnosis, and treatment [131]. However, most healthcare systems in the US
were not equipped to routinely handle genomic data, and the original LHS model did not
explicitly account for the additional complexities of these data. To address these opportunities
and challenges, the IOM Roundtable on Translating Genomic-Based Research for Health hosted
a workshop in December 2014 titled, “Genomics-Enabled Learning Health Care Systems:
Gathering and Using Genomic Information to Improve Patient Care and Research” [8]. This
single-day workshop laid the foundation for the concept of a GLHS as an extension of the
original LHS model that accounted for additional complexities of genetic information in rapid
learning, such as large file size and evolving analysis standards (IOM 2015, pp. 6-7). During the
workshop, Lynn Etheridge himself acknowledged that genomic data is unique from other clinical
data and must be incorporated into a “high-speed, high-performance research system” (IOM
2015, p. 5) that the current LHS model did not explicitly outline. Furthermore, Etheredge warned
that failing to develop GLHSs quickly “may lead to massive amounts of genomic data being paid
for by health systems but not being available for learning” (IOM 2015, p. 5). To further the goal
of integrating genomics into the LHS model and achieving the full potential of genomic

medicine, workshop participants compiled a set of needs and possible next steps for GLHSs
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(Table 4.2). The proposed next steps largely focused on addressing the technical challenges of
integrating genomic data into an LHS, but also acknowledged the important role of human

factors in establishing complex information systems within healthcare settings.

Need Next Steps

Interoperability of EHRs « Ensure that genomic data is accessible and fit
for clinical use

o Support regulations to make EHRs
interoperable with genomic information

« Establish standards for genomic data

o Demonstrate use cases for interoperability

Clinical Decision Support (CDS) « Standardize allele nomenclature for CDS tools

o Create and share CDS tool warehouses

o Measure clinical outcomes of CDS
interventions

o Develop infrastructure to support CDS

Data Sharing « Build information platforms with scalable and
reusable components

« Foster interoperable healthcare systems

« Foster a “data donor” culture

« Integrate data from around the world

o Incorporate patient-provided data

« Consider the use of “personally controlled
health databanks” for secure data sharing

« Support user interface research and
development

Implementation « Engage patients with a particular interest in
genomics to demonstrate value

o Measure and track healthcare outcomes and
disparities

o Conduct social sciences and behavioral
research to understand human factors

Table 4.2. Needs and suggested next steps for developing a genomics-enabled learning health system, as
defined during the 2014 Institutes of Medicine Roundtable on Translating Genomic-Based Research for
Health workshop, “Genomics-Enabled Learning Health Care Systems: Gathering and Using Genomic
Information to Improve Patient Care and Research” (IOM 2015, pp. 54-55) [8]. Needs are worded as seen
in the original text, and next steps are paraphrased from the text.
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Since the 2015 IOM roundtable report was published, little else has been published on the GLHS
concept. The most active champion of the GLHS model thus far has been the Geisinger Health
System in Pennsylvania, which publicly pledged to embrace the LHS model in 2014. They have
since made great strides in the areas of patient-clinician engagement and informatics but have
faced challenges when balancing research and clinical improvement incentives, and in
developing a continuous learning culture [132]. Williams et al. (2018) [13] describes these
successes and challenges in the context of Geisinger’s experience with precision genomic
medicine through the MyCode Community Health Initiative. Geisinger has achieved success in
screening populations for well-known pathogenic and likely pathogenic variants using public
engagement and alignment of incentives across the healthcare system. However, the Geisinger
leadership are careful not to call themselves a fully realized LHS, and even go so far as to
question whether such a goal is fully attainable because “the essence of learning and
improvement is—and always will be—a moving target” (Williams et al. 2018, p. 9) [132].
Nonetheless, they recognize the utility of moving in closer alignment with LHS principles for the

sake of advancing research and improving clinical care.

4.2.2 Clinical data to clinical knowledge

One of the more ill-defined aspects of the GLHS concept is the discovery process, through which
clinical and genomic data are transformed into biomedical knowledge with potential care
implications. The current body of LHS literature tends to focus on two extremes: the broad,
structural components of the LHS model, and the individual components of the model (e.g.,
technical, cultural, or ethical) as they relate to discovery. What is missing from the literature is a

Goldilocks understanding of the ways in which individual technical, social, cultural, ethical, and
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political components of clinical discovery interact with one another to form a larger
sociotechnical system [14]. The process of discovery is often thought of as largely technical in
nature, but early implementations of LHS-aligned systems have demonstrated that technical
innovations alone cannot support discovery as it is intended to be used in the LHS model: to
improve patient care [133,134]. The contextual factors that surround the discovery process, such
as system-wide alignment of goals, a learning culture, patient engagement, and a robust IT
infrastructure, are known enablers of discovery, but little is known about how to align these
factors with one another in practice. Additional complexities related to genomic data, such as
privacy concerns, population representation, and questions of clinical validity and utility, make
the operationalization of discovery in a GLHS all the more challenging [31]. Grounding this
discussion in the experiences of clinicians (and clinician-researchers) who regularly work with
genetic data in a healthcare setting is a reasonable approach for clarifying how the various

dimensions of a GLHS might interact with one another.

Previous qualitative studies have identified strategies for sustainable LHS implementation in the
Australian healthcare system [135] and challenges and drivers of implementing LHS models in
social safety net health facilities [136]. However, none of the existing qualitative studies of LHSs
have focused on the perspectives of healthcare providers, let alone genomic medicine providers.
Despite the relative scarcity of qualitative studies in biomedical research, qualitative research
methods such as semi-structured interviews and grounded theory analysis are ideal for
characterizing cultural, social, and personal factors in healthcare that cannot easily be explored
using quantitative methods [137]. Constructivist grounded theory, developed by Charmaz (2014)

[25], diverges from the positivist lens of classical grounded theory in its use of a relativist lens,
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which assumes that people participate in the construction of multiple realities, rather than take
part in an orderly reality that can be objectively studied [138]. Constructivist grounded theory
also recognizes the role of the researcher in constructing theory and employs techniques such as
intensive interviewing and iterative data analysis to construct a plausible snapshot of different
social realities, as opposed to offering a “window” into a single reality. Given the complex
sociotechnical landscape of clinically embedded genomics research, constructivist grounded
theory is a useful approach for holistically evaluating geneticist perspectives on the GLHS

model.

4.3 Methods

4.3.1 Institutional review board approval and participant recruitment

The IRB application for this study was submitted to the UW Human Subjects Division on
January 25th, 2022 and was approved with exempt status on January 27th, 2022. After obtaining
IRB approval, a target sample of 20 study participants was recruited for interviews, based on the
estimate that thematic saturation is typically reached between 20-30 interviews in grounded
theory studies [139]. The inclusion criteria for study participants were as follows:

e MD-trained physician, preferably in a mid-to-senior level position

e An American Board of Medical Genetics and Genomics (ABMGG) certification in

Clinical Genetics and Genomics
e Current or recent member of the eMERGE Network, CSER Consortium, and/or UW

Medical Network
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A preliminary list of interview candidates was compiled using a contact list provided by the
doctoral committee Chair (for eMERGE participants), a private-facing web-based contact list
(for CSER participants), and the public University of Washington (UW) Division of Medical
Genetics faculty list (for UW participants). To determine whether each interview candidate was
board certified in Clinical Genetics and Genomics by the ABMGG, the primary investigator
(K.F.) conducted Google searches such as “[name] board certification” or “[name] clinical
genetics and genomics” for each candidate and searched for information about board
certifications on websites like DocSpot, Zocdoc, and home institution faculty pages. Board
certifications were later confirmed by the participants themselves. The primary investigator then
conducted a 30-minute Zoom call with two doctoral committee members who were familiar with
the potential interviewees to confirm the contact information, home institution, and clinical
specialty (or specialties) of each candidate. The final list consisted of 35 potential interviewees:
16 from the CSER Consortium, 6 from the eMERGE Network, and 13 from the UW Medical
Network. The list was stored in a password-protected file, which was only shared with the two
committee members involved in verifying the information of potential interviewees. Beginning
in March 2022, potential interviewees were contacted via email with invitations to participate in
the study. CSER members were contacted first, followed by eMERGE members, and then by
members of the UW Medical Network. By July 2022, all 35 potential interviewees had been

invited to participate, and 20 had accepted the invitation.

4.3.2 Interviews

The primary investigator developed a preliminary list of questions to ask during a one-hour,

semi-structured interview, and reviewed these questions with the doctoral committee, the

66



Precision Medicine Informatics Group at UW, and a qualitative research expert. An initial
interview guide (Appendix A) was developed based on these discussions. The primary
investigator then conducted a pilot interview with the first study participant to assess the quality
of the interview guide. After the fourth interview, a more comprehensive interview guide was
developed to address emergent concepts of interest (Appendix B). This interview guide was
used for interviews 5-11, after which a third interview guide was written to consolidate questions
and concepts (Appendix C). The third interview guide was used for the remainder of the

interviews.

Each interview was scheduled for one hour, which included time for introductions, study
background, and informed consent. Interviews were conducted using the intensive interviewing
method, as described in Charmaz 2014 [25]. This method encourages the interviewer to follow-
up on interesting or important points made by the interviewee and is intended to generate rich
and meaningful data on interview participants’ perspectives. The key characteristics of intensive
interviewing include (Charmaz 2014, p. 56) [25]:

e Selection of research participants who have first-hand experience that fits the research

topic

e In-depth exploration of participants’ experience and situations

e Reliance on open-ended questions

e Objective of obtaining detailed responses

e Emphasis on understanding the research participant’s perspective, meanings, and

experience
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e Practice of following up on unanticipated areas of inquiry, hints, and implicit views and
accounts of actions
The interview guides were therefore used as tools to guide conversations but were not intended
to dictate the structure of each interview. Once all interviews had been completed, participants
were asked to complete an anonymous REDCap demographics survey (Appendix D). Although
the survey administration procedures were not included in the original IRB application, a
modification request was submitted on September 15th, 2022, and was approved with exempt

status on September 16th, 2022.

With the participant’s verbal consent, each interview was recorded to the primary investigator’s
private Zoom Cloud. The audio (.MP4) file for each recording was exported to an encrypted
device, then uploaded to a password protected Otter.ai account for transcription. Initial
transcriptions were generated automatically using the Otter.ai program, then checked for
accuracy by the primary investigator. Final transcripts were exported to an encrypted device,

then uploaded to a local ATLAS.ti project.

4.3.3 Qualitative data analysis

The following sections describe the approach that was taken to analyze transcript data, including
collaborative and iterative codebook development, inter-coder agreement (ICA) calculations, and
thematic analysis. Although grounded theory studies do not typically involve multiple coders or
ICA calculations, we chose to integrate the perspectives of multiple coders to increase the quality
of codes and limit confirmation bias from the primary coder (K.F.) [140], given the potential

policy implications of the resulting model. To maintain the iterative process of grounded theory
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while involving multiple coders, a codebook development process similar to the one described in
Tsai et al. (2020) [141] was used, where multiple coders developed the codebook and ICA was
measured over successive iterations. Once ICA reached a satisfactory level, an ICA test was
conducted using four additional transcripts that were randomly selected from the 16 transcripts
not yet seen by the secondary coders. The codebook from iteration 4 was used to code all 20 of
the transcripts, and thematic analysis was conducted using the final axial codes, memos, and

semantic domains.

4.3.3.a Codebook development

4.3.3.a.1 Initial and axial coding

An iterative process was used to develop the codebook and evaluate the consistency of coding on
the 20 transcripts. For each transcript, the primary coder assigned initial codes in thematic units.
As described in Burla et al. (2008) [142], thematic unit coding can be used instead of line-by-line
coding when it is important to capture the context of each initial code. Each unit was defined as
having a distinct meaning, message, or sentiment compared with surrounding data. Unit lengths
ranged from several words to several sentences. For example, the contiguous excerpts from the
interview with Participant 10 in Table 4.3 show how three different initial codes with different

meanings and unit lengths were assigned.
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Initial Codes

Axial Codes

Excerpt

Even though there is more

genetic actionability than we
know about, the data to show
that and act upon it is limited

Ensuring patient/research

participant safety and wellbeing:

Generating, collecting, and
applying evidence for variant
interpretation

“Well, yeah, I think, obviously,
the data are flowing much more
rapidly than our ability to digest
it all. There's lots of instances
where we get data back that
we're not quite sure what it
means.”

There are a lot of genetic
discoveries that could be very
useful in real time

Ensuring patient/research

participant safety and wellbeing:

Turning new genetic
associations and technologies
into clinical interventions

“You know, that being said, |
guess before going too far down
that path, there's a lot of data
that's exceedingly useful in real
time.”

Important to focus on genetic
tests/results that can
meaningfully change patient
management (utility)

Ensuring patient/research

participant safety and wellbeing:

Determining variant
actionability, utility, and
returnability in the clinic and
clinical labs

“And, you know, so I don't think
we'd be doing this clinically if
we didn't think there was a
reasonable chance that we might
come up with something that
would actually answer the
question.”

Table 4.3. Initial and axial coding of three contiguous excerpts from an interview with Participant 10.

After each round of five (25%) interviews, the primary coder grouped initial codes into thematic

categories, or axial codes. Categories were developed to reflect important or problematic aspects

of clinically embedded genomic research that emerged from the transcript data. In the process of

developing axial codes, initial codes were constantly compared with one another to reveal

agreements and contradictions. Several examples of axial codes are shown in Table 4.3,

alongside sample initial codes that contributed to axial code development. Axial codes were used

to refine the interview guide and facilitate exploration of emergent categories that held

theoretical promise. Theoretical codes were written in the form of memos throughout the study

but were especially refined during the last two interview cycles as emergent categories began to

reach saturation. Saturation was determined by the inductive thematic saturation approach [143],
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which assumes that saturation is reached when there are few emergent codes or themes.
Specifically, saturation was reached when new initial codes could be reasonably grouped into
existing axial categories, and if new initial codes only marginally expanded on similar initial

codes but did not diverge from existing themes.

4.3.3.a.11 Multiple coding
During each iteration of codebook development, one transcript was selected for multiple coding
based on sufficient representation of axial codes. After initial and axial coding was completed by
the primary coder, the selected transcript was coded by multiple reviewers in a five-step process:
1. The transcript was prepared for multiple coding using the following procedures:
a. The entire ATLAS.ti project (Version 0) was duplicated (Version 1).
b. All transcripts not selected for multiple coding were deleted from Version 1.
c. All memos and identifying information were deleted and replaced with proxies.
d. Initial codes were merged into axial codes, and all comment fields were cleared.
e. Version 1 was saved and duplicated (Version 2).
f. All code assignments from Version 2 were deleted, but the codebook and
highlighted text segments remained the same.
g. Version 2 was exported as an Atlas Version 22 ((ATLPROJ22) file and was
shared with the two secondary coders via UW OneDrive.
2. Two secondary coders independently assigned one code from the codebook to each
previously defined text segment in Version 2, using the methods described in O’Connor

et al. (2020) [144]. For several rounds of codebook development, the primary coder
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shared a document that described the scope and meaning(s) of each code (Appendices E
and F).

3. Once both secondary coders uploaded their coded transcripts to separate UW OneDrive
locations, the primary coder merged the two coded Version 2 projects into Version 1 to
compare codings.

4. Krippendorf's Cu-alpha (o) [145]—the standard agreement measure offered in ATLAS.ti
22 Desktop—was used to assess agreement across semantic domains.

5. The secondary coders met with the primary coder to discuss disagreements, and the

primary coder revised the codebook using feedback from the secondary coders.

This process continued until acceptable agreement (0.667 < a <0.823) [146] was reached across
semantic domains. As described in Burla et al. (2008) [142], codes used for ICA analysis should
“address substantive issues related to the research question” (Burla et a. 2008, p. 115). Because
the semantic domains that axial codes were grouped into formed the basis of the thematic

analysis, ICA was deemed most useful when assessing agreement across those domains.

4.3.3.a.iii Inter-coder agreement test

To evaluate coder consistency on the resulting codebook and on unseen data, four (20%)
transcripts were randomly selected from the remaining transcripts that had not been coded by the
secondary coders. One additional coder used the codebook to assign codes to these transcripts.
Finally, simple percent agreement and Krippendorf’s alpha were calculated across semantic

domains between the two coders.
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4.3.3.b Thematic analysis

All memo titles and axial codes were copied into text boxes in diagrams.net [147] to facilitate
memo and code sorting, as described in Charmaz 2014 (pp. 216-224) [25]. First, relationships
between memos were represented using unidirectional or bidirectional arrows between boxes,
with connection descriptors used as needed. Multiple memo formations were created and
assessed for data representativeness. Once the final memo formation was developed, axial codes
were linked to the memo(s) that they best represented. This helped to ensure that the abstract
theory was re-grounded using interview data and helped elucidate the ways in which thematic
categories interacted with one another in the emergent model. The resulting flow model was
further distilled into components that semantically described distinct groupings of clinical

research operations.

4.4 Results

4.4.1 Participants

Twenty (20) individuals participated in phone or video interviews, which ranged from 27
minutes to 64 minutes, and lasted a median of 54 minutes. As described in Table 4.4, the
majority (80%) of participants worked at academic medical centers and 50% of the participants
were MD/PhD clinician scientists. In addition to a Clinical Genetics and Genomics board
certification, many participants held an additional board certification in Pediatrics or other

specialties such as Internal Medicine and Clinical Molecular Genetics.
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Participant Characteristics

N (%)

Work Environment

Academic Medical Center 16 (80%)

Integrated Care Organization 3 (15%)

Research-Only Hospital 1 (5%)
Credentials

MD 10 (50%)

MD/PhD 10 (50%)

Board Certification(s)
Clinical Genetics and Genomics

20 (100%)

Pediatrics 7 (35%)
Internal Medicine 4 (20%)
Clinical Molecular Genetics 4 (20%)
Clinical Cytogenetics and Genomics 3 (15%)
Medical Biochemical Genetics 2 (10%)
Obstetrics and Gynecology 1 (5%)
Psychiatry and Neurology 1 (5%)
Clinical Informatics 1 (5%)
Preventive Medicine 1 (5%)
Clinical Specialty

Dysmorphology/Structural developmental abnormality 11 (55%)
Cancer 7 (35%)
Neurodevelopmental abnormalities (intellectual disability, autism) 6  (30%)
Cardiovascular disorders (cardiomyopathy, arrhythmia, vascular anomalies) 5 (25%)
CNS disorders (epilepsy, encephalopathy, structural brain malformations, 4  (20%)
neurodegenerative disease)

Neuromuscular disorders (hypotonia, spasticity, neuropathy, myopathy) 3 (15%)
Immunodeficiency 2 (10%)
Metabolic disorders 2 (10%)
Skeletal dysplasias 1 (5%)
Population genomic screening 1 (5%)
Genodermatoses and Turner syndrome 1 (5%)

Race/Ethnicity

White or European American 16 (80%)
Asian 2 (10%)
Middle Eastern of North African/Mediterranean 1 (5%)
American Indian, Native American, Alaska Native 0 (0%)
Black or African American 0 (0%)
Native Hawaiian/Pacific Islander 0 (0%)
Hispanic/Latino(a) 0 (0%)
Prefer not to answer 1 (5%)
Unknown/none of these fully describe me 2 (10%)

Gender
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Woman 10 (50%)

Man 9 (45%)
Prefer not to respond 1 (5%)
Non-binary/non-conforming 0 (0%)

Table 4.4. Characteristics of interview study participants (N = 20).

4.4.2 Identified themes and semantic domains

By the final iteration of codebook development, 1796 initial codes were linked to 2444
quotations across the 20 transcripts, and initial codes were assigned to 28 axial codes across 6
semantic domains: 1. Building a collaborative learning culture in medical systems (8 codes); 2.
Building relationships with patients/research participants (4 codes); 3. Ensuring patient/research
participant safety and wellbeing (5 codes); 4. Evaluating the role of genetics in medicine (6
codes); 5. Participant background (3 codes); and 6. Protecting patient/research participant rights
to privacy and autonomy (2 codes). Table 4.5 lists the axial codes and associated semantic
domains, and Tables S4.1-S4.6 contain detailed descriptions and sample quotes for each axial

code in a given semantic domain.

Semantic Domain Axial Code
Building a collaborative Benefits and drawbacks of using EHR data for research and
learning culture in medical equitably representing diverse populations
systems

Benefits, drawbacks, and realities of operating within integrated
and universalized healthcare systems

Challenges of operating within a stressed and fragmented US
healthcare system

Forming collaborations and support systems within and between
healthcare systems
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Negotiating the roles of medical geneticists, genetic counselors,
and non-genetics providers

Paying for clinical sequencing and clinical research

Sharing and recycling clinical and genomic data

What are the differences (if any) between research, clinical care,
and quality improvement?

Building relationships with
patients/research participants

Building trust with patients, especially from minority communities

Communicating with patients about research/clinical distinctions
and navigating provider/researcher differences

Engaging patients in the research process and being sensitive to
their needs and motivations

Providing incentives or clinical benefits to patients for
participating in research

Ensuring patient/research
participant safety and
wellbeing

Determining variant actionability, utility, and returnability in the
clinic and clinical labs

Educating non-genetics providers about genetic medicine to
prevent misuse and misinterpretation

Ensuring appropriate clinical follow-up after genetic testing

Generating, collecting, and applying evidence for variant
interpretation

Turning new genetic associations and technologies into clinical
interventions

Evaluating the role of genetics
in medicine

Considerations for using population-wide genetic screening in
clinical care

Deciding what types of genetics tests to order based on clinical
indications

Historical advancements in genomic research and technology

Understanding genetic impacts on health and disease
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Using the EHR to represent genomic data and streamline clinical
genomics

Visualizing the best (and worst) uses for genomics in medicine
going forward

Participant background Types of patients they see or environments they do clinical work
in

Types of research they are or were involved in

Where they trained, in what, and for how long

Protecting patient/research Challenges and strategies for ethical oversight and consent in
participant rights to privacy and | clinical research
autonomy

Protecting the privacy and security of clinical data

Table 4.5. Semantic domains and associated axial codes after the fourth iteration of codebook
development.

4.4.3 Inter-coder agreement

Overall ICA reached 75.1% for simple percent agreement between two coders on the four-
transcript test sample, and Krippendorf’s alpha reached 0.669 across semantic domains, which
indicates acceptable agreement. Table 4.6 shows the coding frequency and agreement between
two coders for all semantic domains, both individually and overall. At the time this work was
submitted, results from a third coder were pending. The ICA results in future publications will

reflect agreement between all three coders.
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Semantic Domain Coding Simple Percent Krippendorf’s
Frequency Agreement Alpha

Building a collaborative learning culture | 114 66.8% 0.730
in medical systems
Ensuring patient/research participant 52 53.3% 0.647
safety and wellbeing
Evaluating the role of genetics in 46 57.2% 0.697
medicine
Building relationships with 68 49.5% 0.636
patients/research participants
Participant background 42 76.1% 0.856
Protecting patient/research participant 13 37.9% 0.543
rights to privacy and autonomy
Overall 335 75.1% 0.669

Table 4.6. Semantic domain coding frequency and agreement between two coders on the four-transcript
sample.

4.5 Discussion

From a purely topical standpoint, this study reinforces many of the GLHS needs identified
previously by the IOM, such as EHR interoperability, analysis and CDS tools, patient-participant
engagement, an aligned learning culture, and structural support for combined clinical and
research activities. However, the rich personal and experiential data collected during interviews
offers a more nuanced look at the relationships between facilitators and inhibitors of clinical
research in the context of iterative learning cycles. In the following sections, we describe an
emergent theoretical model that captures these nuanced relationships and offers a high-level

understanding of the essential processes involved in clinically embedded genomics research.
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4.5.1 The Five R’s of Clinical Genomics Research: Representation, Responsibility, Risks and

Benefits, Relationships, and Resources

Previous LHS models have depicted ethical, technical, and social considerations as precursors to
rapid learning cycles [45,89]. In the case of clinical genomic research, we argue that these
elements are not static precursors to successful clinical learning, but rather are integral elements
of dynamic relationships between learning processes. There are five core elements identified in
this study that collectively represent different ethical, technical, and social considerations of
clinical genomic research: Representation, Responsibility, Risks and Benefits, Relationships, and
Resources. We further group these elements into three distinct groups that describe how they
interact with one another and with the existing rapid learning processes: negotiation processes
(Representation, Responsibility, Risks and Benefits), binding factors (Relationships), and

constraining factors (Resources).

Figure 4.1 depicts an emergent theoretical model of rapid learning cycles in GLHS
environments, where the data to knowledge, knowledge to practice, and practice to data
processes are linked to one another through intermediate negotiations of representation,
responsibility, and risks and benefits. The model also depicts community trust and learning
cultures as the relationships that bind rapid learning processes to one another, while the structural
and financial aspects of the healthcare system establish the bounds within which learning cycles
must operate and adapt. The multi-directional, negotiative nature of the model suggests a
constant reconstruction of what data, knowledge, and practice signify in the research and clinical

contexts.
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Figure 4.1. Schematic of the “SR” genomics-enabled learning health system conceptual model.

4.5.1.a Negotiation

This study originally sought to identify enablers and inhibitors of the data to knowledge process
of rapid learning cycles in clinical genomics research, given that few studies had previously
explored this topic in isolation. However, the interviews quickly revealed that it is not possible to
separate knowledge generation from either data production or knowledge application when the
work is being done in a clinical setting, with clinical data and clinical participants. When asked

about the potential pros and cons of using clinical data for genomics research, discussions
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naturally flowed both “backwards” towards the practice to data LHS process, and “forwards”
towards the knowledge to practice LHS process, with neither direction seeming to take
precedence over the other. In the former case, discussions revolved around the representation of
clinical and genomic data in terms of quality, population characteristics, and sample size. In the
latter case, discussions focused on the responsibility aspects of generating new knowledge within
a clinical environment, where perceived and anticipated differences between research and
clinical care imply different responsibilities of researchers, providers, and hospital systems in
balancing the speed, evidence, quality, and safety of knowledge generation and testing. In both
cases, discussions culminated in considerations of the risks and benefits that are constantly
negotiated when conducting both research and clinical care, some shared and some distinct.
These three types of negotiation collectively highlight the interconnectedness of rapid learning
cycle processes and suggest that genomics-enabled learning cycles must be in constant flux as

they evolve with the research and clinical enterprises.

4.5.1.a.1 Representation

Interviewees universally agreed that EHR data is inherently messy and difficult to use for both
clinical and research purposes, which has been well-documented in other studies [148—151].
Some commonly cited technical issues among interviewees were data missingness, difficulty of
data entry, difficulty of data interpretation and extraction, redundancy, inconsistencies in medical
terminologies or descriptions, and the sheer volume of both structured and unstructured data.

However, they also tended to agree that EHR data was more representative of the “real world”
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than many other types of data that could be used for clinical research, as Participant 16
explained:
...if you're trying to minimize ascertainment bias, if you're trying to get real world
data, if you're trying to understand like, where, where people are, how they're seeing
what that natural history is, what that patient journey and experience is, like, [ mean,
that's the real world, you know that that's the way it is. And so that's incredibly
[emphasized] valuable. (Participant 16)
Ideally, EHR systems would be redesigned to be more amenable to data representation for both
research and clinical care, and the systems and devices that produce data would automatically
integrate with EHRs. However, given the slow pace of technological development in medical
information systems compared with that outside of healthcare, significant skill, time, and
financial investment are needed to harness clinical data for research. Participant 1 captured
several of the challenges of representing clinical data from the EHR:
So doing any kind of any kind of research, when, when you're dealing with those types of
data...you...are gonna have missing data, or you have to pay someone who knows
enough to be able to abstract those data out of the chart, which is a pretty specialized
skill. And, and which as a result can be pretty expensive. (Participant 1)
The trade-off between EHR data being a less-than-perfect information source while offering a
broader picture of the lived healthcare experience is a common conflict in clinical research, and
one that has received considerable attention in the healthcare informatics community. As
Participant 16 noted, they are “confident that...smart people are figuring this out together.”
Arguably, the more pressing concern in genomics is the representation of diverse populations
using clinically derived genomic data. While some research projects like CSER have actively

recruited diverse populations for clinical genomic research [15], non-European populations are

still largely unrepresented in genomic databases, which makes the potential benefits of precision
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medicine far less accessible to individuals with diverse ancestral backgrounds [152]. Many
interviewees voiced their concerns that certain populations in genomics would be “left behind”
given the complex social and institutional conditions in the US that lead to underrepresentation
in genomics research, including, but not limited to, systematic racism and the resulting mistrust
in research and medicine, barriers in access to research and clinical care, and concerns about the
privacy, security, and misuse of genomic data. Concerns about population representation are
therefore inextricable from discussions of research engagement if precision medicine is to benefit

the health of the entire population.

Interviewees also discussed the necessity of collating rich clinical and genomic datasets across
healthcare institutions for the sake of conducting statistically viable and representative genomic
analyses. Especially in the case of rare diseases—or common diseases with rare variation—large
sample sizes must be accumulated to achieve sufficient power. For example, research in rare
cancers has historically been driven by cooperative groups that share clinical data across
institutions, as Participant 1 described:
...because especially once you get to rarer cancers, the only way that we have learned
about the treatment of those cancers is through cooperative groups. Because that's the
only way to accumulate enough information. (Participant 1)
However, the barriers to sharing clinical and genomic data between, and even within, healthcare
institutions are significant. There was little debate among interviewees that there are risks
involved in sharing personal health information, but the degree to which those risks supersede
the personal and/or scientific benefits of clinical genomic research was highly contested. Some

interviewees argued that the current barriers to sharing data were unreasonable, given that many
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patient-participants, in their experience, were willing to share their data between institutions, but
that IRBs were not:
And, and, and data sharing, too. That's, yeah, that's just absolutely crucial with this.
And so yes, | mean, it's, it's the only way forward that [ know [emphasized] of, and the
barriers that we have erected between us and and that are really not smart. Much of it is
due to an unreasonable set of fears that have been engendered by a lot of overreactions
to genomics and genetics, and a lot of it is ignorance and fear from IRBs. (Participant
7)
Other interviewees took a more cautious stance, fearing that the risks of data breaches could be
quite significant, especially for patient-participants who have been historically marginalized by
the research and clinical enterprises. Participant 2 described the fears of patients in their
Institution’s catchment area:
So this all comes down to the interests of the patient because why would the patient give
you their genome? And in [city name], there's massive [emphasized] sensitivity about
this. I've actually had patient groups in the last week, saying, Yeah, you want to do
genomics in [city name]. But what you're doing is you're targeting people of color to get
information that could ultimately be used to kill us. So that is from a very sensitive
group who have been discriminated against traditionally and currently. But
everybody is going to have a shade of that, along the scale of, you know, relatively
benign to incredibly concerned. (Participant 2)
Several interviewees discussed the possibility of using strategies like data anonymization to
share data for research without risking the privacy of patient-participants, or continuing to share
data in large, anonymized resources like gnomAD, ClinVar, the UK Biobank, and All of Us.
While this is currently a standard practice to use these types of datasets for large scale genomic
analyses, many interviewees recognized that there is a limit to the amount of clinical data that

can be gleaned from anonymized datasets, thereby limiting the clinical scope of analyses. As

Participant 4 described:
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So it's just to say that we're all trying to create structures so people can do the...initial
research, but at some point...in many [emphasized] of these circumstances, that research
still requires a level of clinical information that's just not in the data, or is only in the
data, when, with enough identifying information that you have to have further consent.
(Participant 4)
In clinical genomics, there is a constant negotiation between the scientific needs of the field for
understanding the impacts of genomics on health and disease, and the need to protect the well-

being and privacy of the patient-participants who are meant to be the beneficiaries of research.

The concept of representation in data systems is central to this negotiation.

4.5.1.a.11 Responsibility

The prospect of generating new genomic knowledge within a clinical environment invariably
caused interviewees to consider the different responsibilities of researchers, providers, and
hospital systems in constructing and using that knowledge. One element at the heart of these
differences is the tension between medical genomics as a clinical indication-based specialty, and
the need for population-level data for research purposes. Aside from payment concerns
associated with population-level sequencing (which are discussed in the section titled,
“Constraining factors”), there is significant concern among geneticists that ordering broad tests
like genomes or exomes on a wider clinical population would lead to more false positives that
could unnecessarily concern participants, or even lead to inappropriate clinical actions. As
Participant 17 described:

I think, to me, it depends on how you phrase it, and how you would implement it, but the

way it is right now, we don't screen the population. [ mean, there's already a lot of

issues...with regular screening in terms of false positives. You know, this is I know,

there's a lot of papers and publications that look at this a lot. And I'm not up on the latest,
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but, you know, I still view genetic testing as a test that requires an indication...
(Participant 17)
Even if results from larger genomic tests do pick up variations that are not false positives, there
are ethical questions surrounding whether those results must be returned to the patient-participant
in a clinical setting. This is a particularly challenging dilemma in the field of pediatrics, where
large-scale screening could potentially save years of diagnostic odysseys but could also result in
diagnoses that might not be entirely clinically meaningful, but nonetheless change the course of a
child’s life. Participant 17 described this challenge alongside their appreciation for the “huge
range of human variation”:
And I am not the type of geneticist who just sequences the world or sequences
everybody, | have to have a good reason to decide to sequence a kid. You know, I had,
I had a pediatrics mentor, who...told me this line, and it stuck with me, which is, you
know, every kid has one chance to be normal. And after you, you go in and do
something, their parents view them as not normal anymore. And I have a great
appreciation for the huge range of human variation. (Participant 17)
The prospect of delivering new genetic information to patient-participants is particularly
controversial when the information is generated from a research study that is conducted using
clinical data. Interviewees expressed a general sense of responsibility for divulging potentially
clinically actionable information, but generally did not feel comfortable returning preliminary
results that had not been functionally validated or backed by several publications. On the other
hand, some interviewees recognized that more harm could potentially be caused by withholding
information gleaned from clinical research than by providing information that could be
potentially misleading. For example, Participant 4 described a situation in which a secondary

research finding was identified using clinical data, and the finding strongly indicated that some

patients in the dataset might have cancer. However, the patients were not consented to receive
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research results, and the interviewee viewed the results as “potentially harmful secrets” that
could needlessly endanger the wellbeing of patients. Other interviewees expressed more
hesitancy, suggesting that the “right not to know” could be just as significant as the “right to
know.” Participant 2 described this tension on the spectrum of pediatric and adult medicine:
...1t's very interesting when you start asking questions like the questions that we hear in
genomics, like the "right not to know," which is a big thing in pediatrics for genomics.
It's also you know, somebody who's a young woman, and they don't need to be starting
their breast mammography for another 10 years, maybe just give them those 10 years.
But you then put in the search term, "Right not to know, cancer." And it's a very, very
different discussion, because obviously, it's a bit more acute. If you don't treat it,
you're probably going to die. But you know, there are situations where there are some
people who are probably sick enough anyway, that, you know, why would you tell
them that they have cancer? And for some reason, people are much more inclined to
say, You must tell them. And I wonder whether that's where we will go in, in genetics
and genomics, or whether it's, I think that it's a really interesting area...to look at.
(Participant 2)
The possession of potentially clinically relevant information within a healthcare system—whether
it was generated in the name of research or medicine—necessitates discussions about whether the
information can or should be returned to the relevant patient-participants. A key factor in the
returnability (and ultimately the clinical utility) of research-generated genetic variant information
is the rigor of variant interpretation and validation. From a legal and procedural standpoint,
interviewees noted that genomic results must be approved by a Clinical Laboratory Improvement
Amendments Act of 1988 (CLIA)-certified diagnostic lab. However, they also noted that
diagnostic labs do not necessarily interpret variants differently than research labs, and that
standards for variant interpretation are remarkably difficult to implement. In fact, it has been
well-documented that variant interpretation agreement between CLIA-accredited labs using the

American College of Medical Genetics and Genomics and Association of Molecular Pathology

(ACMG-AMP) published guidelines is around 35-50% [153,154]. There is a shared
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responsibility between both researchers and clinicians to apply the best available evidence for
variant interpretation, both for the sake of scientific credibility and patient-participant wellbeing:
I think you have to have a standard of what the data [emphasized] is. There has to be a
minimum standard of the data to decide what should be returned and considered
clinically relevant. (Participant 13)
However, many interviewees identified a paradoxical relationship between the need for
community standards and the relative impossibility of applying those standards exactly as they
were intended to be applied. Participant 7 described this paradox in the context of validity and
utility:
And it in the end is a judgment [emphasized] of a threshold of validity, both the gene
disease validity, analytic validity is kind of simple. That's just not that hard. The gene
disease validity is much more complex, and then the utility more complex still. And
again, it's different for every disease and every gene. And one has to apply, has to
genuinely endeavor to apply community accepted standards to that, even though
you can't standardize it. (Participant 7)
Ultimately, gene-disease associations and subsequent variant interpretations are a judgment call
based on currently available evidence. This leads to a second paradox in the process of clinical
genomic discovery: discovery validation and implementation requires accumulated evidence of
validity and utility, but evidence of validity and utility are not fully informative without
implementation. This lack of clinical evidence is a known issue in genomic medicine [155,156]
and has been cited as one of the driving reasons for incorporating genomics into LHSs [8,157].
However, interviewees warned that research labs in LHS models would likely run into the same

evidence paradox that geneticists and diagnostic labs run into every day in medical genetics

practice. Providers, particularly clinician-researchers, who wish to push the envelope of genomic
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medicine must make clinical judgment calls about new gene-disease associations that might be
considered premature by some. As Participant 16 described:
I've often described it as you know, you're building the plane as you're flying it, and
you're trying to use the best evidence and the best data that you have, but you don't
always have complete information. (Participant 16)
From a research perspective, there is an incentive to use new genomic information for clinical
decision-making in an LHS if there is a reasonable expectation that the information could
positively impact patient outcomes, thereby increasing the evidence for its clinical utility and
creating a positive feedback loop of implementation. However, a clinician’s duty is ultimately to
the patient, and protecting the patient’s wellbeing often requires the use of a higher bar for
evidence of safety and utility. The responsibilities of researchers and clinicians to their roles are
not mutually exclusive in this regard, since it is never the intention of the researcher to cause
harm to the participant. Yet the risk benefit calculation appears to operate differently when the

subject is a consented research participant, as opposed to a patient receiving routine clinical care.

4.5.1.a.111 Risks and Benefits

During interviews, discussions of data generation and knowledge implications naturally tended
to shift to contemplations of the risk-reward tradeoff for conducting genomic research in a
clinical setting. On the reward side, many interviewees included historical accounts of how
genomic research has benefited both basic science and understandings of human health and
disease. Genetic research in cancer was often cited as a shining example of rapid learning in a

healthcare context, as described by Participant 10:
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And, you know it, reveals, you know, much of what we know about cellular signaling
pathways started from studying cancers where those pathways were aberrantly
activated, and that revealed the whole thing cascade of genes that then turn out to be
important, not just in cancer, but in normal cellular processes and in development.
(Participant 10)
However, there is a general understanding in research that neither the risks nor the benefits of
research can be fully known, although there are protections in place to mitigate potential harms.
The differences between ethical oversight of research and ethical oversight of clinical care were
therefore a cause of concern for interviewees when considering oversight of clinically embedded
research. Participant 1 noted that these differences might warrant the use of ethical expectations
that are more aligned with clinical standards in an LHS:
...1t's harder to do research or there's more oversight required for research [because]
we don't know as much about potential harms. And we don't know as much about
the potential benefits. So [in an LHS] there does have to be, I think, an establishment
of we there's a very strong expectation, this is going to work in certain populations.
(Participant 1)
Participant 7 noted that research protections were largely established as ‘““a reaction to
malfeasance” in the aftermath of horrific, inhumane, and unethical medical research studies, such
as the medical experiments in Nazi Germany and the Tuskegee syphilis study. Resulting ethical
frameworks like the Nuremberg Code and the Belmont Report have set the expectation among
researchers and participants that participants provide their voluntary consent to be involved in
research, and that researchers and ethics committees do everything in their power to limit harms
while maximizing scientific benefits. The expectation is that potential harms are communicated
to participants, but not that potential harms are eliminated altogether. In the context of clinical

medicine, however, ethical expectations are more straightforward yet less codified than in

research. Interviewees frequently noted historical attempts to codify expectations of protections
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and potential harms in clinical research, but no such attempts were mentioned for clinical
medicine because the standard expectation is that the clinician has a duty to minimize harm and
maximize benefit to the patient at all costs. However, medicine is inherently not risk free, and
patients are at risk for many of the same harms they might experience as clinical research
participants. It is instead the expectation of minimal to no harm among patients, and the sense of
duty among clinicians, that separates care on the premise of medicine from care on the premise
of research. There are constant risk-benefit calculations in genetic medicine, especially when
clinicians must use partial information to make clinical decisions, as Participant 16 described:

So I just, I guess every time [ balance risk and benefit and how important it is to the

clinical care, and if there's any other way of validating what I'm doing. (Participant 16)
There is an undeniable history of harm in clinical medicine, but those harms are largely classified
as unintentional given the sacrosanct relationship between patient and provider, as Participant 1
noted:

...we have historically done some very foolish things, things that seemed reasonable

at the time, and were very well intentioned. But in retrospect, were you know, didn't

have the desired outcomes. (Participant 1)
Risk-reward calculations in genomics-enabled learning healthcare are therefore highly dependent
on the expectations of patient-participants, and the relationships between them and clinicians and
researchers (and clinician-researchers) that shape those expectations. The following section
describes how relationships are the focal point of all LHS processes and intermediate

negotiations.
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4.5.1.b Binding factors

The processes of negotiation that interviewees collectively described were all united by
considerations of the relationships between those involved in learning healthcare. Although it is
simpler to abstract the entities involved in LHS process into representative systems and
institutions, systems and institutions are ultimately composed of people whose interactions with

each other both form new meanings within systems and are products of the systems themselves.

In the case of representation, relationships between patient-participant communities and people
who represent the clinical research and clinical medicine enterprises are the foundation of the
local and shared clinical and genomic data systems that learning healthcare relies on. Without
deeply rooted, trusting relationships between LHSs and the communities they are seeking to
serve, genomic medicine will not advance in a way that benefits populations equitably, as it
must. Interviewees suggested several ways to build these relationships, such as involving a more
diverse and culturally sensitive workforce in patient-participant engagement, as Participant 6
explained:
Yeah, I mean, like, if you're, if you're going to be recruiting from or doing this testing,
you know, at the safety net hospital where most of the patients are Latina. And then you
have a...your research coordinator is a, you know, is Latina also, comes from that
big community and can sort of explain why this is important. In Spanish. In a way
that makes sense. (Participant 6)
Some interviewees also emphasized that community-led data sharing efforts were likely to be

more successful, at least at first. Data sharing for the purposes of research could be managed

more directly by communities, as Participant 16 noted:
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And I've wondered to myself, is that a way to dip your toe in and be able to get
movement and when you [share data], of course, to have it from people in the
community who are doing this. So they own the data, they have the grants that do
this, they have the benefits, they govern it, they watch it, they make sure that people are
using it responsibly, you know what [ mean, but it's coming from the community for
the community, in a way with limitations very much built into it. (Participant 16)
Participant 16 also emphasized that building trust with patient-participant communities cannot be
rushed, and that preliminary steps such as sharing anonymized might help gain traction with
communities, even if the ultimate goal is to share identifiable EHR data to achieve the full
potential of learning healthcare:
...and it'll have to be staged. If you can start with [sharing anonymized data] and then
build the trust and show that you're a responsible partner, you know, over maybe 20
years, but you know, over periods of time, can you build trust. (Participant 16)
The topic of informed consent for participation in clinical research was a recurring discussion
during interviews, and the consensus was that conducting consent in stages throughout the
learning process was preferable to obtaining broad, up-front consent from patient-participants,
but that conducting consent this way was impractical for most health systems. Even if staged
(i.e., dynamic) consent were more practical to implement, some interviewees noted that patient-
participants might not want to be repeatedly asked for their consent to include their clinical
and/or genomic data in new types of studies in an LHS, provided there is sufficient trust between
the patient and the health system conducting the research. One interviewee who works at an
integrated health institution that routinely conducts genomic research said of their patient-
participants:
...there was sufficient trust given that, you know, we, in many cases, because of the
nature of our service area, have long standing relationships with the individuals that
we care for. There's a very high degree of trust. And so they, when they heard about the

overview of the program, they said, We think you guys have the knowledge to be good
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stewards, and do right by us. And so they were very comfortable with a one time
overarching broad consent. (Participant 20)
The comfort level of patient-participants when sharing data for clinical research and consenting
to their data being used for potentially unforeseen purposes, is highly dependent on their
relationship with the local research and healthcare enterprises. If identifiable clinical and
genomic data were to be shared across healthcare institutions, this symbolic relationship would

need to extend to the research and clinical enterprises on a national scale.

In the process of producing new knowledge within a healthcare environment, several types of
relationships underpin the notion of responsibility for both scientific and clinical excellence.
First, the question of how geneticists, genetic counselors, and non-genetics healthcare providers
should work together to order, interpret, and communicate genetic testing results (whether in the
name of research or clinical care) was a topic of consistent disagreement. Although most
interviewees acknowledged the inevitability that the demand for genomic medicine will likely
expand beyond the capacities of genomic specialists, they often expressed discomfort with the
idea of all healthcare providers ordering and interpreting genetic tests, especially if the results are
preliminary or not backed by a wealth of experimental evidence. However, they also
acknowledged that certain genetic conditions will become the “domain” of other specialties
when the condition has specific indications within that medical specialty, as Participant 19
described:

And so for a lot of patients, if they have already seen a neurologist who said that this is a

myopathy, or a neuropathy, like, I'm not going to come in and change that diagnosis

after meeting them for 15 minutes, compared to a neurologist who has followed
them over time has sent their own studies has their own area of expertise in that
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area. And so if that person needs a neuropathy panel, because a neurologist says they
have a neuropathy, I feel like that, that's kind of their lane. (Participant 19)
Along with genetics becoming a routine practice in other medical specialties, interviewees
imagined that genetic specialists would be more highly involved in the cases that eluded current
knowledge of genetics. In this way, genetics specialists would transition into more of a
“research” role when working with patients, for the sake of solving difficult cases and pushing
the boundaries of what is known in genomic medicine, as Participant 16 noted:
I still think there are going to need to be at the core...people will, there needs to be people
that are going to be at the cutting edge and think about the first way of doing things. And
those are likely to be people who are still, you know, I think of them as the faithful...who
know enough about the broad field to be able to know what you can pull in and how to
think about this broadly and how to think about the implementation challenges and
not do things recklessly. So those first movers, I think, largely, are going to be, you
know, medical geneticists. (Participant 16)
During interviews, discussions of the relationship between genetics specialists and non-genetics
care providers then naturally shifted to the question of the researcher-clinician relationship. In
the field of genomic medicine, it has long been the case that geneticists play a dual research-
clinical role in the sense that many of their patients present with indications that suggest a
genetic etiology of disease, but for which the current body of evidence does not provide a clear
diagnosis or treatment pathway. The genetic provider must then make judgment calls to
understand the case and make the best decisions possible for the patient, as Participant 11
described:
You know, one of our previous chairs once said, that we should not see a single patient
in our genetics clinic that was not a research subject. And what he meant by that was
that everybody [emphasized] that we see, we should be thinking about in a way that
we learn from them, and we move forward from them. And that if you know that, that

we certainly have still questions to be answered about the diseases with which we are
dealing or the situations with which we're dealing or the treatment that we, that every
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[emphasized] single patient should be, should provide something that most moves us
forward. And I think that that's actually true. (Participant 11)

In this case, the definition of research is “unofficial” in the sense that research is defined as a
way of thinking or approaching a clinical problem. The patient-participant-provider relationship
becomes more complicated when the research is “official,” i.e., the provider is involved in an
IRB-monitored research study and using clinical data for research purposes. Interviewees who
were involved in both research and clinical care in the official sense mentioned that they must be
very transparent about their dual roles when interacting with patients, so as not to compromise
either the patient-provider relationship or the participant-researcher relationship. As Participants
1 and 5 described:
I, when I've done this with patients that I have seen in both a clinical and research
perspective, I try to be almost almost ridiculously clear about, I will, in part, probably
partially my pediatric training, but I will say, Okay, I'm taking off my clinician hat now
and, I will like mime I'm taking off the hat and I'm putting on my researcher hat. And
in this point, I'm talking about things where I have less certainty about what it
means, ['m talking about things that are completely optional for you to participate in,
it's not going to affect your, you know, it's not going to affect how I would take care of

you as a as a clinical patient. And I do that, because I really want to emphasize those
points. (Participant 1)

And so I think this is like, the critical thing you always have to imagine is that when
you're doing research, you have [emphasized] to truly try your hardest to disentangle
your hat as their provider from your hat as their researcher, because those are two
very, very different sort of roles that you're in, and they sometimes have conflicting
incentives. (Participant 5)

As described in the previous section (‘“Responsibility”), there are different expectations of the
patient-provider relationship than of the participant-researcher relationship, in part due to

different historical contexts. Even if the potential risks and benefits of participating in genomics

research are not entirely different from those of receiving genomics-based clinical care, the
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symbolic meanings of research and clinical care—and the implications for the relationship
between the patient-participant and research and healthcare professionals—must be considered

when engaging patient-participants in clinical research.

However, in a learning health model, those conducting research and those providing clinical care
are not necessarily the same people. Although it is useful for dually trained clinician-scientists to
be involved in the rapid learning process, it is not feasible for all people who are conducting
research to also be trained in medicine, and vice versa. Instead, the boundaries between
clinicians and researchers must be broken down to achieve seamless clinical research integration.
While there are certainly structural facilitators for increasing collaboration between research and
clinical personnel—such as dedicated time and funding for such collaborations—the relationships
themselves are ultimately not dictated by structure or policy. Instead, they are driven by a shared
curiosity and excitement for learning, mutual understanding of peoples’ respective roles and
expertise, and passion for the wellbeing of patient-participants and populations. These are
essential components of what has previously been referred to as a “continuous learning culture”
in an LHS (Davis et al. 2020, p. 3) [132]. Participant 18 described the researcher-clinician
relationship as such:
I think at academic places, there's probably a lot of collaboration between the clinical
people and the researchers, because they both need each other probably, right?
Like, the researchers need the clinical people for samples and for, you know, clinical
information and things like that. And I think the clinicians, it's nice for them to have the
researchers involved to help them best care for their patients and learn new things
about them. (Participant 18)

Fostering a continuous learning culture is also highly dependent on the relationship between

institutional leadership and those who work at a clinical research institution. Because it is not
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typical for researchers and clinicians to work in a truly integrated fashion with one another, the
nature of those relationships should be facilitated by a leadership team with guiding values, as
Participant 14 described:
And [ find...that people are resistant to change overall, you know, if it's not broken,
don't fix it. Right. It's more, more that and in leadership, I see this happen a lot, where
you have to get the team motivated for the why [emphasized] before you even start
doing anything. And that takes a lot of TLC [laughs]. It takes a lot of people owning
it before you start kind of shaking their trees, you know. (Participant 14)
A key part of facilitating these collaborations is integrating ethical oversight of research and
clinical care. When considering the potential risks and benefits of clinical genomics research,
IRBs determine the scope of research, whereas a clinician’s commitment to the patient
determines the scope of clinical practice. Many interviewees expressed frustration with the
process of obtaining IRB approval for conducting clinical research, acknowledging that although
IRBs were in place for very good reasons, they sometimes constricted clinical research to the
point of complete obstruction. As Participant 11 described, the discordance between traditional
ethical oversight of research and the goals of clinical research raises questions of whether
traditional methods of research oversight are truly protecting patient-participants, if potentially
life-saving research is obstructed completely:
Well, I think...the IRB whose mission is, is laudable...on the ground is, as one of my
colleagues said, inimical to research. It is so [emphasized] time consuming, and, and
frustrating. And I think that that, [ mean, sometimes you think I'd like to do this project,
but I'm just not going to do the IRB. So I'm not going to do the project. It's just, it's
just too much work...[provides example]. So that's the kind of thing where you go, You
know, seriously, guys? Who are we protecting here? What are we doing here?
(Participant 11)

However, some interviewees cited instances in which ethical oversight of clinically integrated

research worked particularly well at their institution. Participant 12 described the role of one
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person who facilitates the relationship between the institution’s IRB and the clinicians and
researchers leading clinical research studies:
...she kind of coordinates human subjects, including for studies that employ genomic
data. And that's all she does. And she has kind of core responsibilities, and then people
can pay her for the hours that she devotes to particular projects. And she stays abreast of
all this and has a strong working relationship with the IRB. So the interface with the
IRB has been pretty good at [institution name]. And I would say that that's not been a
barrier. In general. It's handled pretty well. (Participant 12)
If there is a strong relationship between IRBs and those leading clinical research studies—either
through a facilitator who has working knowledge of and relationships with the ethical and
clinical research teams, or through the people who compose both teams—the perceived
discordance between the responsibilities of ethics committees and the responsibilities of those
conducting clinical research and working with patients can begin to be resolved. However, the

two entities must be willing to evolve with one another as the pace and clinical implications of

genomics research continue to change.

4.5.1.c Constraining factors

Systems are composed of people. However, people interact with their environments in ways that
are not extricable from the characteristics of the larger systems in which they operate. In general,
the US healthcare and research enterprises are financially separate from one another, which
dictates the ways in which researchers and healthcare providers can bill research and clinical
activities. The financial separation necessitates distinguishing research from clinical care, even if
there is significant overlap between the two approaches in their processes and intentions. There

was near consensus among participants that achieving true research-clinical integration was
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nearly impossible without merging payers and providers. Participants 16 and 17 discussed this

issue in the context of billing fraud, and the ways in which billing dictates the boundaries of

clinical practice:
Well, I think that's actually the most sensitive issue. And I think it has, and I give people
the benefit of the doubt, but it has to do with billing fraud, right? And there have
historically been cases, right, where there were issues of double dipping. So a single
patient where they were double billed, their insurance was billed for something and
then a grant was billed for something and the institution was double dipping, and
double billing, and, you know, concerns on both sides, that there was fraud being
committed. And so if there's any place where people are really [emphasized]
concerned, it's actually around that issue. And, anyway, it's just, that's the way I've

seen it evolve in terms of people being very, very careful about that issue specifically.
(Participant 16)

...so when you want to fix a lot of this stuff, all you...it's a very simple solution, all you
need to do is radically change the healthcare system of the United States, probably
into a single payer system. And that’ll fix everything. So I'm just kidding. But [ mean, I
do think that's kind of a part of it, like, you want to know, what the barriers are, is that
like, a lot of our practice of medicine ends up being dictated by the billing.
(Participant 17)
Because the US healthcare system is driven by a mixed financial model of privatized health
insurance coverage and publicly funded insurance coverage, there is little incentive for payers to
invest in clinical genomics research. As several interviewees described, different payers are
consistently aiming to pass costs off onto one another because it is very likely that patients will
switch between insurance providers throughout their lifetime. Single payer models have the
luxury of deciding how funds get distributed between research and clinical activities, whereas
separate payer-provider models require that funding for research come from an entity other than

the healthcare institution. This results in a disincentive for healthcare payers to invest in research

that could potentially improve the efficiency of care and decrease costs in the long run, since
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those cost benefits will likely benefit a different insurance provider, as Participants 7 and 20
described:

And so, in our healthcare system, of course, everyone is trying to pass off costs onto
someone else. That's how the healthcare game is played, right? Etna is hoping that
Cigna will pay for the genome so they don't have to. Now in a country like England,
where you have a national health service, they're not playing that game. And that's
why they're so far ahead of us. And they're thinking, look, we own these people's health
care for their entire lifetime, every problem, every healthcare problem they have until
they die, is our [emphasized] problem. How are we going to address that problem?
Well, one of the solutions to that is to know as much about their health care liabilities
as you can, because they're all your problem, you might as well, you're better off
knowing. Whereas Cigna says, I don't want to know, because odds are in five years,
they're going to be on somebody else's insurance plan. And it's not my problem.
(Participant 7)

But if you're parsed out, if you have the insurer over here, and the hospital over here, you
can't play those games, everybody's out to try and maximize the margin that they're
[emphasized] making. And so the insurance says, Okay, we're going to impose these,
you know, y'all have to do these guidelines. The hospitals lose money, the insurance
company is great. And in other situations, you know, the hospitals do stuff that, you
know, costs insurance companies money, and I mean it's just this insanity, but it is our
system. (Participant 20)
The mixed insurance model in the US also propagates the need to maintain indication-based
testing for genomic medicine, because insurance companies generally do not reimburse large-
scale genomic tests without having a clear clinical indication for doing so. Therefore, while the
tension between medical genetics as an indication-based specialty and the need for population-
wide research genomes and exomes is partially driven by the Bayesian logic of limiting false
positives, it is also exacerbated by the fact that genomes and exomes are not routinely collected
due to insurance limitations. If one of the goals of learning healthcare is to use clinically

generated data for research purposes, this payment model limits the number of patient-

participants whose data can be used for research, and may also limit the ways in which the
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existing data can be used for research. For example, Participants 11 and 19 noted that insurance
companies must be “convinced” both of the clinical appropriateness of ordering a genomic test,
and of the utility of conducting research using that data for the sake of maximizing the insurance
company’s profit:

And if we're, you know, if we get it under clinical [emphasized] dollars, it's because
it's clinically appropriate to do but you might do something with that information
that would be research based. So for example, we did exomes in 27 people
sequentially, because they were indicated. And the outcomes were, we got four results.
And you might say, Okay, let's write a paper about screening in the clinic. And what's
going to be, you know, where are we likely to get results? And where don't we get
results? Or what are the hitches in getting that testing done? Or what did I, is it research if
you go, I'm writing a paper about how insurance companies dealt with saying yes or no to
getting exomes? So you know, it's, you know, if the insurance company covers it, it's
because we've managed to convince them that it's clinically appropriate to do so.
(Participant 11)

I love [emphasized] research genomes and just the availability of, kind of being able to
really look at the data in new and different ways. But for things like my clinical utility
question, where we're trying to show the like, the, both the utility but also the financial
aspects and the economic utility of genome sequencing, I think we have to think about
the clinical arm of that. And so if you're trying to say that insurance should pay for
this, then you need to model your study around the product that insurance is
getting. (Participant 19)
An additional layer of complexity in the discussion of healthcare and research reimbursement is
the question of how funding should be distributed within and between research and clinical
efforts, regardless of the source of funding. Interviewees agreed that money was a relatively
finite resource, and that funding limitations informed many of the cost-benefit tradeoffs that are
routinely made in medicine. There is a spectrum of costs in clinical testing and management, and

within that spectrum there are patients on their own spectrum of lowest clinical need to highest

clinical need, as Participants 17 and 6 described:
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I heard someone give a talk and they said, they were talking about a health care system
and they said, Well, no one's healthy, they don't care, and it's certainly not a system.
And I think that's, I think with something like genetics when you get into tests that are
really expensive, it's unfortunate when they get overused because every health care
dollar comes from someplace else. (Participant 6)

And, you know, when you ask, I don't think that research and, and clinical
management are two different things. But when it comes to genetic testing, we do
make a big distinction between them, because, you know, we have, we don't have
enough money for everyone right now to get everything that they need. So we have to
ration it out to the people who need it the most. (Participant 17)
While the costs of exome and genome sequencing have dropped significantly in the past decade,
and will continue to drop, interviewees expressed concerns that obtaining population-wide
genomic data would overwhelm the healthcare system in terms of the follow-up implications of
that data. Providers have a responsibility to provide the best care possible to their patients given
the best possible information, but the implications of having the best possible data for all people
in a healthcare system are morally sticky when there are limited resources to ensure appropriate
clinical follow-up. As Participant 8 described:
...1if you have a population of 700,000, and one in 100, or one in 200 has a BRCA 1 or 2
pathogenic variant, what does that mean when you identify all those patients, in terms of
the bolus that's going to come to your surgical teams, to your screening teams, and
all of that...so I've seen extensive spreadsheets, about, you know, people being so
concerned about what that bolus is. (Participant 8)
Finally, the ways in which clinical and genomic data can be shared for research are partially
dictated by the national funding and data governance model. In a monolithic system where data
1s shared across many participating institutions, it is easier to conduct population-wide research

using those data. Interviewees cited programs like Deciphering Developmental Disorders (DDD)

in the UK as examples of national research projects that have harnessed vast repositories of
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clinical and genomic data shared across a nationalized health system, and subsequently
contributed potentially clinically actionable discoveries at a rapid pace:
And so the huge GWAS studies...which might have over a million participants, are only
possible in large governmental health care models that we don't have in the states.
(Participant 12)
However, as previously discussed, the legal, technical, and financial aspects of sharing clinical
and genomic data are far from the only challenges of sharing data. Arguably, the more pressing
challenge in the US is gaining the trust and willing participation of the people whose data would
be shared both within and across institutions. In this way, there are constant interactions between
the structural, ethical, and social aspects of conducting clinical research that necessitate a

continuous process of evaluating the local and national ideas of what healthcare and research

stand for as institutions.

4.5.2 Dynamic meanings of data, knowledge, and practice

Tensions at the research-clinical interface are at the root of the challenges in a GLHS model.
From the symbolic interactionist perspective, “language and symbols play a crucial role in
forming and sharing our meanings and actions” (Charmaz 2014, p. 262) [25,158]. Interviewees
offered several alternate definitions of research and clinical care to explain the motives and goals
behind them. Phrases such as “[studying] a question,” “[increasing] the knowledge for the field

29 ¢

as a whole,” “[hypothesizing] something,” and “[doing] something novel” were used to describe
research. The only definition of clinical care that was offered was “trying to save [a] life.” The

collection of definitions that describe research is not necessarily separable from the Hippocratic

104



oath of medicine when the goal of research is to improve human health. External structures may
constrain clinical research integration, but people with a common goal can work together to
adapt to structural constraints, as the symbolic interactionist perspective suggests:

Structures exist and persist but some individuals may resist, circumvent, or ignore

these constraints or use them for their own purposes. Institutionalized values and

practices precede and constrain individuals and set the conditions for possible actions,

although how they respond to these conditions can vary (Charmaz 2014, p. 269) [25].
Genomic medicine may not be the singular saving grace of humanity, but if it is guided in a
direction where the research is well-designed, clinically relevant, and representative of all
populations, it can vastly improve medicine. Participant 16 described their vision for the future
of genomic medicine as follows:

So I do have this fantasy, that I'm trying to make reality, but this fantasy that the next

generation will grow up differently. And so it'll start with the diagnosis, early

diagnosis at a time when you can actually prevent and treat conditions. So it won't just
be reactive, but it'll be more proactive. (Participant 16)

4.6 Limitations and future work

Although the data gathered during this project were in-depth for each participant, a relatively
small number of participants were interviewed. However, code groups did appear to reach
theoretical saturation after about 15 interviews, which indicates that including a larger number of
participants may not have altered the dataset significantly. A lack of racial and ethnic diversity
among interviewees was also a limitation of this work, given that 80% of the participants self-
identified as White. While this is reflective of an overall lack of diversity in the human genetics
and genomics workforce [159], efforts should be made to include a diverse group of geneticists,

patient-participants, researchers, and other stakeholders in future conversations. It is also
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important to recognize the role of the primary investigator (K.F.) in this project. Although the
final model was grounded in the available data, the interpretation of those data was highly
dependent on the ways in which the primary investigator interpreted and synthesized the data.
The model presents one possible interpretation of the data, but there are many more possible

interpretations.

4.7 Conclusion

The conceptual model developed during this study offers a novel approach to understanding the
research-clinical interface in genomics. The tensions at the interface of clinical care and research
in genomics are the basis for the GLHS model. They manifest in questions of data and human
representation, in questions of ethical and occupational responsibilities, and in questions of risk-
reward tradeoffs. They are embodied in the real and symbolic relationships that people form as
they occupy roles that are created by and for them. In the end, the research-clinical interface is
defined by those who participate in constructing its meaning and is bounded by the structures
and cultural expectations that emerge from history to right historical wrongs. In the next chapter,
we will demonstrate the power of using merged clinical and genomic data for gene-disease
association discoveries, using C. diff. infection as a clinical use case. These types of studies
could be conducted on a routine basis in LHS environments and could rapidly offer insights into

potential biological mechanisms and treatment targets for common and complex diseases.
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CHAPTER 5: DISCOVERY OF GENETIC RISK FACTORS FOR CLOSTRIDIOIDIES

DIFFICILE INFECTION USING MERGED CLINICAL AND GENOMIC DATA (AIM 3)

5.1 Introduction

One major goal of integrating research and clinical care in genomics is to more rapidly and
accurately detect new gene-disease associations, which are critical for advancing genomic
medicine. In contrast with rare monogenic disorders, susceptibility to common health issues and
diseases like diabetes and hypertension is primarily driven by multiple genetic and
environmental factors [160]. Characterizing gene-disease associations is an important first step in
identifying causal variants associated with complex diseases, and ultimately in developing
targeted therapies and treatments for those diseases [161]. Genome-wide association studies
(GWAS), which screen for gene-disease or disease-trait associations across the entire genome
without a prior hypothesis, are commonly used to detect new associations [162]. Larger sample
sizes, enhanced genome annotations, and improved sequencing and analysis technologies are
expected to drive the prevalence and impact of GWAS. Additionally, analyzing genetic data with
EHR data can allow for richer and more cost-effective GWAS [36]. Research programs like the
Electronic Medical Records and Genomics (eMERGE) Network have demonstrated the utility of
using EHR data to detect genetic loci associated with conditions like hypothyroidism and type 2
diabetes [163—165] and with clinical traits like erythrocyte sedimentation rate and white blood
cell count [166,167]. The network has developed and validated 68 clinical phenotypes across

multiple EHR systems since its inception in 2007 [16].
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CDI is one such clinical phenotype developed by the eMERGE Network. In this aim, we use
merged genetic and clinical data from the eMERGE Network to conduct a logistic regression
based GWAS of CDI cases and controls to identify common genetic variants associated with
higher risk of developing CDI. We also demonstrate the utility of using clinical data for gene-
disease association studies and provide a practical example of clinical genetic discovery in

action.

5.2 Related work

5.2.1 History and future directions of gene-disease associations

Genetic association studies are designed to identify genetic variants that are associated with a
particular disease or phenotype, typically by comparing genotypes in affected and unaffected
individuals using a case-control design [168]. Since the advent of large-scale genotyping and
genomic sequencing, it has become clear that genetic contributions to human health and disease
are extremely variable, especially in the case of complex and common disease [169].

Evolutionary forces have generally caused variants with large phenotypic consequences to be
removed from the population and have allowed variants with small individual phenotypic effects
but large cumulative effects to reach higher population frequencies [161]. Although there are

exceptions to this trend, it has nonetheless impacted the ways that variants associated with rare

and common diseases are typically detected. Because the variants contributing to rare monogenic

(Mendelian) diseases with severe phenotypic effects are most commonly found in coding regions

of the genome, exome sequencing is commonly used to determine the causal variants for

Mendelian diseases [170,171]. Detecting the causative gene typically involves duo, trio, or

108



extended family sequencing [172]. Common disease risk, on the other hand, is driven by many
variants that may or may not be in coding regions of the genome, which necessitates the use of
genome or DNA microarray data for risk variant identification [173,174]. GWAS are currently
the standard method for detecting variants associated with non-Mendelian disease because they
offer a relatively unbiased approach to identifying common marker variants in disease [175].
Although other methods must be used to infer variant causality and identify rare variants
associated with common disease, GWAS results lay the groundwork for targeted analyses of

potential genetic drivers in many common diseases [176].

5.2.2 Gene-disease associations using electronic health record data

Given the small effect sizes of variants associated with common diseases, large sample sizes are
required to run sufficiently powered GWAS [177]. Traditionally, GWAS are conducted using
“purpose-built cohorts” where high-quality genetic and phenotypic data are collected using ““self-
report questionnaires and/or clinical staff” (Wei & Denny 2015, p. 1) [178]. Although the costs
of large-scale genotyping and genome sequencing have decreased over the past decade, this
prospective approach can be time-consuming, expensive, and yield insufficient sample sizes.
Large, pre-existing biorepositories, like the UK Biobank [74], can be used to conduct genetic
association studies much more cost-effectively, and using sufficiently large patient cohorts [174].
Although public repositories like the UK Biobank typically offer granular phenotype information
like International Classification of Disease (ICD) codes, complex phenotypes may not be
accurately captured using only a de-identified subset of clinical data [179]. Linking genetic data
with EHR data has therefore been proposed as a cost-effective and clinically relevant approach to

prospective gene-disease association research [36,178].
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Although EHRs are not immediately amenable to research due to data quality and accessibility
limitations, they contain a wealth of information that can be extracted using an interdisciplinary
set of tools. Because most EHRs were designed to support billing and routine clinical care, rather
than research, they support a patchwork of structured and unstructured data in the form of billing
codes, laboratory test results, ICD diagnosis codes, procedure codes, prescription information,
and narrative reports [180]. Each of these data types can be leveraged to construct rich clinical
phenotypes that can be used in case-control GWAS. The eMERGE Network has led this field of
research by demonstrating the value of iterative phenotyping algorithm development and
validation, during which informaticists, clinical content experts, epidemiologists, and geneticists
collaborate to refine the algorithm and enhance its accuracy [181]. EHR-driven genetic analyses
are expected to become more routine in the coming decades, but additional studies demonstrating
their utility and laying out best practices in EHR phenotyping are required to advance research in

this area [36].

5.2.3 Pathophysiology and genetic susceptibility to C. diff. infection

CDlI is the leading infectious cause of nosocomial diarrhea in North America and is associated
with a high global burden of disease [37]. Once acquired, this reemerging, Gram-positive, spore-
producing bacteria secretes a toxin that causes watery diarrhea, and can progress to severe
pseudomembranous colitis, toxic megacolon, and sepsis [182]. In the early 2000s, the emergence
of C. diff. strain NAP1/BI/027 led to increased incidence, prevalence, morbidity, and mortality
associated with CDI [183,184]. This epidemic strain produces more toxin, has a higher resistance
to common treatments, and causes more recurrent infections than other common C. diff. strains.

Despite aggressive antibiotic treatment (e.g. vancomycin, metronidazole) and fecal transplant
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[185,186], outcomes of NAP1/BI/027 CDI include significant morbidity across all age groups,
5% mortality in individuals older than 65 years of age, and an estimated $1.1 billion dollars per

year in health care costs [182].

Asymptomatic colonization with C. diff. is common among patients in acute care and long-term
care settings, with an estimated prevalence of 3%-26% in younger adults and 5%-7% in older
adults [187]. Progression from C. diff. colonization to acute CDI is generally associated with one
or more risk factors [188], including new exposure to C. diff., older age, hospitalization or
nursing home residency, chemotherapy, severe comorbid illness, proton pump inhibitor,
transplant medication or corticosteroid use, or prior use of high-risk antibiotics such as
fluoroquinolones or cephalosporins [189—-191]. Antibiotic use and proton pump inhibitor use are
also risk factors for recurrent CDI [192]. Despite having one or more risk factors, some C. diff.
carriers either do not develop CDI or successfully clear an initial infection, while some
individuals are burdened by severe and/or recurrent CDI. This differential susceptibility may
have a genetic component, given that genetic variation underlying susceptibility to infectious
disease is well documented for other infections, including enteric infections such as Helicobactor
pylori [193]. Identification of genetic susceptibility loci could yield methods for prevention

and/or treatment of this important pathogen [194,195].

Previous studies have identified candidate risk loci for primary and recurrent CDI in small
patient populations using a combination of genetic and clinical data. Apewokin et al. (2018)
[196] performed a genome-wide logistic regression analysis of CDI in 646 patients (57 cases;

589 controls) undergoing stem cell transplantation for multiple myeloma, and found several
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single nucleotide variants (SNVs) in the RLBPIL1, ASPH, and P7B genes that were associated
with higher risk of CDI. Shen et al. (2020) [197] identified two alleles in in the extended major
histocompatibility complex (MHC; HLA-DRB1*07:01 and HLA-DQAI*02:01) that were
associated with a reduction in CDI recurrence among 704 patients who achieved initial clinical
cure with bezlotoxumab treatment in the MODIFY clinical trials. Several studies have also
suggested that common SNVs in the promoter region of the interleukin-8 (IL-8) gene may confer
increased risk for CDI by altering neutrophil recruitment during disease pathogenesis [198,199].
While these results are collectively suggestive of genetic involvement in CDI risk, the
aforementioned studies had small sample sizes and did not always control for major risk factors
such as previous antibiotic use or corticosteroid use in their association models. GWAS that
properly control for known risk factors and include a large number of participants are needed to
identify risk loci with sufficient power and reliability. One such study identified 16,464 patients
(1,160 cases; 15,304 controls) from the Geisinger MyCode cohort [38] using a C. diff.
phenotyping algorithm developed by the Electronic Medical Records and Genomics (eMERGE)
Network. The authors identified several MHC variants with predicted functional impacts on
nearby genes among European-ancestry patients treated with antibiotics, but these variants did
not reach genome-wide significance. Additional validation studies in other large patient cohorts

are needed to evaluate the role of factors in CDI risk.
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5.3 Methods

5.3.1 Participants

Cases and controls were selected from among the ~99,000 participants of the eMERGE
Network. Participating sites included the following: 1. The Children’s Hospital of Philadelphia,
Philadelphia, PA; 2. Cincinnati Children’s Medical Hospital, Cincinnati, OH; 3. Columbia
University, New York, NY; 4. Geisinger, Danville, PA; 5. Mass General Brigham, Boston, MA;
6. Kaiser Permanente Washington (formerly Group Health Cooperative) and University of
Washington partnership, Seattle, WA; 7. Marshfield Clinic, Marshfield, WI; 8. Mayo Clinic,
Rochester, MN; 9. Meharry Medical College, Nashville, TN; 10. Mount Sinai, New York, NY;
11. Northwestern University, Evanston, IL; and 12. Vanderbilt University, Nashville, TN.
Informed consent was obtained from participants by each eMERGE site. The eMERGE study

was approved by each participating site’s institutional review board.

5.3.2 Case-control selection using C. diff. phenotyping algorithm

C. diff. cases and controls were selected using a variety of information contained in the EHR,
including International Classification of Disease (ICD) Clinical Modification (CM) codes 9" and
10™ editions, lab and medication data, and clinician progress notes. The C. diff. phenotyping
algorithm used in this study was designed collaboratively by University of Washington, Group
Health and Vanderbilt as part of the eMERGE Network and was published in the Phenotyping
KnowledgeBase (PheKB) in 2012 [200,201]. Case/control selection and exclusion criteria are

depicted as a flowchart in Figure 5.1.
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Figure 5.1. eMERGE C. diff. phenotyping algorithm flowchart.

For participants aged two years or older, there were four combinations of EHR data considered
for case selection. First, individuals with a positive C. diff. antigen or toxin test were selected.
Second, those with one or more inpatient or outpatient diagnoses of C. diff. (ICD-9-CM code
008.45; ICD-10-CM code A047), followed by one or more days of medication for treatment
(metronidazole, oral vancomycin, fidaxomicin, or linezolid), followed by another inpatient or

outpatient C. diff. diagnosis code, were selected. Third, individuals with at least one C. diff. ICD-
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CM code combined with at least one affirmative mention (unqualified by negation, uncertainty,
or historical reference) of C. diff. infection in a clinical progress note as identified through
natural language processing (NLP), were selected. The C. diff. mentions used by the NLP
algorithm are listed in Table S5.1. Finally, individuals with two or more affirmative mentions of
C. diff- infection on separate calendar days in clinical progress notes, identified by NLP, were
selected. To exclude severely immune-compromised participants from the test population,
participants meeting one of the four above criteria were excluded from being cases if they had a
diagnosis of bone marrow cancer in the two-year period prior to their C. diff. case index date (i.e.
the first positive lab test, diagnosis code or progress note mention), or within seven days
following their index date. Participants were also excluded from being cases if they had received
chemotherapy in the 180-day period prior to their C. diff. index date, or within seven days

following their index date. Using these criteria, 1,598 cases were selected.

Controls were selected from eMERGE participants two years of age or older who had no known
test for and no diagnosis codes for C. diff. in their records. Since C. diff. toxin tests have
sensitivities ranging from 60 to 70% [202], a single test does not rule out disease, and multiple
tests could signal a concern that disease exists. Additionally, controls must have had at least one
hospital admission with a prior exposure to a high-or moderate-risk antibiotic (Table S5.2) in the
7 to 62-day period before admission. Alternatively, they must have had exposure to a high or
moderate-risk antibiotic and had five or more years of documented clinical visits following
exposure with no mention of C. diff. infection in their progress notes. Participants meeting the
control criteria were excluded if they had chemotherapy or bone marrow cancer in the 180-day

period prior to the C diff. control index date (i.e., the earliest hospital admission with antibiotic
115



exposure or earliest antibiotic exposure with five years of follow-up), or within seven days
following the index date. These criteria resulted in the selection of 23,061 eMERGE participants
as controls. We excluded 202 cases and 2,723 controls that were missing genotype data. An
additional 31 cases and 889 controls were excluded because the genotype imputation quality

failed to meet our quality control (QC) threshold (mean R? > 0.3) [33].

Cryptic relatedness was assessed in all participants by calculating the probabilities of sharing
alleles identical by descent (IBD), where Z0 is the probability of sharing zero alleles IBD and Z1
is the probability of sharing one allele IBD. Families were constructed when sample pairs had
70 <0.83 and Z1 > 0.1 [33]. When study participants were found to be in the same family, we
prioritized the inclusion of cases. In situations where two or more cases or two or more controls
were found to be in the same family, one participant was selected at random, and the others were
excluded. For participants selected via the C. diff. phenotyping algorithm, 9 cases and 937

controls were excluded due to cryptic relatedness.

5.3.3 Covariates identified for phenotyping algorithm sample

The following covariates were identified for all cases and controls using structured EHR data: 1.
Age at index date (index age); 2. Body mass index (BMI); 3. Sex; 4. Genetically determined
ancestry; 5. Nursing home status (y/n); 6. Chemotherapy (y/n); 7. Diabetes mellitus (y/n); 8.
Human immunodeficiency virus (HIV) positive status (y/n); 9. Any transplant medications (y/n);
10. Any corticosteroid medications (y/n); and 11. Any medium or high-risk antibiotic exposure
(y/n). We used the median BMI record for the age year that matched most closely to the

participant’s index age. Nursing home status was determined either by structured data on skilled
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nursing facility residence, or by mentions of nursing home status in social work and case
management notes, as identified by NLP (Table S5.3). We flagged chemotherapy using Current
Procedural Terminology (CPT) codes 96400, 96408, 96409, 96411-96425, 96520, and 96530.
We flagged participants as having diabetes mellitus if they had at least two of the following three
indications: 1. An ICD-CM code from ICD-9-CM 250.* or ICD-10-CM E08-E13.*; 2.
Prescriptions for diabetes medications including insulin (Table S5.4); or 3. A hemoglobin A1C
(HbA1C) reading > 6.5% or a glucose reading of > 200 mg/dL. Participants were flagged as
having HIV infection if they had one instance of ICD-9-CM 042.*, ICD-10-CM B20-B24.* or
721.*. Patients were flagged as having been exposed to transplant or corticosteroid medications

if any medication listed in Table S5.4 was administered outside of the exclusionary time range.

5.3.4 Genotyping and imputation

Genotypes for all participant samples from eMERGE-I, eMERGE-II and eMERGE-III were
imputed using the Michigan Imputation Server [203]. The server uses the Minimac3 algorithm to
impute missing genotypes and uses the Haplotype Reference Consortium reference panels [204]
(HRC1.1) as the reference set. The majority of samples from the 13 eMERGE sites were
genotyped on the Human 660 Quad (eMERGE-I). Other genotyping platforms included the
CytoSNP-850K BeadChip, the OmniExpress chip, the Affymetrix 6.0 array, and the [llumina
MEGA among others. In this analysis, variants with an allelic R> >= 0.3 and minor allele
frequency (MAF) >= 0.05 were included. Additional QC filters were applied as described in

case-control selection.
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5.3.5 Genetically determined ancestry

The set of ~99,000 unique imputed samples was analyzed by Principal Component Analysis
(PCA) using the PLINK 2.0 software [205]. Variants with >= 0.05 MAF, missingness of <= 0.1
and LD-pruned R? threshold of 0.7 were included in the multisample analysis. K-means
clustering of Principal Component (PC) 1 and PC2 identified three groups (corresponding to
African ancestry, Asian ancestry, and European ancestry) was used to find genetically
determined ancestry (GDA) of each sample. GDA and self-described ancestry were checked for
concordance, and samples were ultimately grouped into African ancestry, Asian ancestry and
European ancestry clusters, respectively. IBD was calculated for all pairwise sample
comparisons using the plink --genome function, and cryptic relatedness between samples was

assessed as described in case/control selection.

5.3.6 Genome-wide association study

To identify genetic variants associated with CDI, we performed logistic regression-based
association analyses for the case/control curated phenotype using PLINK 1.90 [206]. All
covariates and genotypes were used in the joint analysis of all participants, whereas the PC1 and
PC2 covariates for the African and European ancestry-stratified analyses were derived from
ancestry specific PCA analyses. An additive genotypic model of SNV genotypes coded as 0, 1 or
2 copies of the minor allele was used. The regional linkage disequilibrium (LD) plots of the
index SNV were created using the LocusZoom web-based tool [207]. Following the initial

stratified analyses, an additional logistic regression-based association analysis was performed in
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the European sample using the index SNV as a covariate to determine whether this SNV was

truly driving the risk association.

5.3.7 Human leukocyte antigen association analyses

Classical HLA alleles were imputed against four ancestry-specific reference panels (African,
Asian, European, and Hispanic) using the HIBAG software [208]. HLA-DRB3, 4 and 5 gene
dosages were inferred based on the HLA-DRBI alleles present in each individual, as described in

Habets et al. (2018) [209]. Calls were quality-filtered for a HIBAG posterior probability of > 0.5.

To test for haplotype-specific effects of the most significantly associated SNVs, four overlapping
participant subgroups were selected from the European ancestry sample based on the presence of
at least one of the following: (1) DRB3 gene; (2) DRB4 gene; (3) DRBS gene; or (4) any of the
above genes in each participant. Haplotype subgroups were further divided into DR15 and DR16
haplotype carriers (stemming from the DRBS5 gene carriers, or DR51 haplotype family), and
DRB1*15:01 carriers (stemming from the DR15 haplotype). Logistic regression-based
association analysis was performed separately in each haplotype subgroup, using the same

covariates described in “Methods: GWAS” for the European ancestry sample.

To test for HLA alleles driving the association, case-control logistic regression-based association
analysis was performed in the European ancestry population sample for 276 classical HLA
alleles, using the same covariates described in “Methods: GWAS” for the European ancestry
sample. The CEU Chromosome 6 LD dataset from the HapMap 3 project was used to assess LD

of the most significantly associated SNVs among classical HLA alleles.
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5.4 Results

5.4.1 Demographics

After all exclusions, there were 1,349 cases and 18,512 controls identified via the eMERGE C.

diff. phenotyping algorithm (Table 5.1). Approximately 74% of cases and controls self-identified

as White, and 19% self-identified as Black or African American. Although older age is a known

risk factor for C. diff. infection [191], controls tended to be older than cases (z=14.37, P=2.20 x

10-'%), which reflected the patient populations of the participating eMERGE study sites. Controls

also tended to have higher BMIs than cases (z=14.58, P=2.20 x 107!%). Cases had slightly higher

exposure to Class 1 (high-risk) antibiotics than controls (28% vs. 21%), yet they had much less

exposure to Class 2 (moderate risk) antibiotics than controls (11% vs. 26%). More cases received

chemotherapy outside of the exclusionary time period than did controls.

Case Control Overall
N n=1,349 n=18,512 n=19,861
Site
Children's Hospital of Philadelphia 11% (149) 1.4% (265) 2.1% (414)
Cincinnati Children’s Medical Hospital 1.0% (14) 0.0% (0) 0.1% (14)
Columbia 5.6% (76) 0.5% (88) 0.8% (164)
Geisinger 4.2% (57) 4.9% (899) 4.8% (956)
Kaiser Permanente/UW 4.2% (57) 11% (2128) 11% (2185)
Mass General Brigham 3.5% (47) 8.8% (1623) 8.4% (1670)
Mayo Clinic 7.2% (97) 17% (3127) 16% (3224)
Marshfield 2.4% (32) 4.7% (861) 4.5% (893)
Mt. Sinai 7.9% (106) 15% (2776) 15% (2882)
Northwestern 5.6% (76) 2.0% (362) 2.2% (438)
Vanderbilt 47% (638) 34% (6383) 35% (7021)
Sex (female) 51% (690) 55% (10232) 55% (10922)
Median BMI (kg/m?)* 20.8,25.2,29.8 24.4,28.1,32.9 24.2,28.0,32.8
Median age* 39.7,57.3,70.0 51.1,64.9,76.1 50.4,64.4,76.0
Self-identified race
American Indian or Alaska Native 0.2% (3) 0.2% (40) 0.2% (43)
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Black or African American 15% (196) 19% (3562) 19% (3758)
Asian 0.8% (11) 0.8% (142) 0.8% (153)
Native Hawaiian or other Pacific Islander | 0.07% (1) 0.02% (2) 0.02% (3)
White 75% (1008) 74% (13716) 74% (14724)
Unknown 9.2% (124) 5.0% (933) 5.3% (1057)
Not reported 0.4% (6) 0.6% (117) 0.6% (123)
Self-reported ethnicity
Hispanic or Latino 6.0% (81) 4.8% (895) 4.9% (976)
Not Hispanic or Latino 88% (1193) 92% (17120) 92% (18313)
Unknown 5.6% (75) 2.7% (497) 2.9% (572)
Genetically determined ancestry
African 17% (235) 21% (3849) 21% (4084)
Asian 2.4% (32) 1.6% (287) 1.6% (319)
European 80% (1082) 78% (14376) 78% (15458)
>=] HLA-DRB3, 4 OR 5 gene 71% (955) 72% (13336) 72% (14291)
>=] HLA-DRB3 gene (DR52) 41% (559) 50% (8328) 45% (8887)
>=] HLA-DRB4 gene (DR53) 36% (507) 40% (7356) 40% (7863)
>=] HLA-DRBS5 gene (DR51) 22% (299) 21% (3831) 21% (4130)
Antibiotic exposure (Within 7-62 days
prior to index date) 28% (376) 21% (3832) 21% (4208)
High risk 11% (147) 26% (4838) 25% (4985)
Moderate risk 1.9% (25) 1.5% (284) 1.6% (309)
Low risk 59% (801) 52% (9558) 52% (10359)
No exposure
Cancer (First record to index date + 7 days) | 20% (272) 14% (2520) 14% (2792)
Chemotherapy (Before 180 days prior to 20% (270) 12% (2263) 13% (2533)
index date, after 7 days following index
date) 24% (326) 25% (4700) 25% (5026)
Diabetes Mellitus (Ever) 3.0% (44) 2.0% (302) 2.0% (346)
HIV (Ever) 11% (147) 2.0% (393) 3.0% (540)
Nursing Home Status (Within 90 days
prior to index date) 17% (227) 10% (1848) 10% (2075)
Corticosteroid medications (Within 21
days prior to index date) 19% (250) 6.0% (1059) 7.0% (1309)
Transplant medications (First record to
index date + 7 days)

Table 5.1. Summary statistics of demographic data and phenotypes for C. diff cases and controls selected
using the C. diff phenotyping algorithm. Significant differences between case and control distributions (as
determined by chi-squared test for binary variables and two-sided Z-tests for continuous variables) are
shown in bold. *The three numbers for body mass index (BMI) and age represent the 25th, 50th and 75th
quartiles of the distribution.
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5.4.2 Genome-wide association study

Table 5.2 summarizes the logistic regression association results that reached genome-wide
significance in the combined and European ancestry-only samples, with corresponding summary
statistics for those findings in the African ancestry-only sample. A strong association in the
human leukocyte antigen (HLA) region was found in the European and joint ancestry samples
(Figure 5.2; Figure S3.2) but was not found in the African ancestry sample. The lack of
association in the African ancestry sample could be due to either insufficient detection power as
a result of small sample size or different haplotype or LD structures compared to individuals of
European ancestry. Manhattan plots and corresponding QQ plots for the European, joint, and
African ancestry GWAS analyses are provided (Figures S5.1-S5.5). The five most significantly
associated SN'Vs driving the association in the European sample (rs68148149, P=8.06 x 10°'4;
3828840, P=9.96 x 10°'%; rs35882239, P=8.18 x 10!2; rs35882239, P=5.12 x 10°'!;
135222480, P=9.88 x 10°!'") mapped to the intergenic region between the HLA-DRB5 and HLA-
DRBI genes in the beta block of the MHC Class II region. Three of the five most significant
SNVs (rs3828840, rs35882239, and rs35222480), with minor allele frequencies (MAFs) of 0.17,

0.17 and 0.20, respectively, also mapped to the 3’ end of the HLA-DRB6 pseudogene.
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Table 5.2. Index SNV results from logistic regression-based genome wide analysis for joint ancestry
(n=19,861), European ancestry (n=15,458), and African ancestry (n=4,084) samples. An additive model
was used to assess the disease susceptibility impact of the minor (coded) allele at each position, while
controlling for age, BMI, sex, ancestry, nursing home status, chemotherapy, diabetes, HIV, transplant
medications, corticosteroids, and medium or high-risk antibiotic exposure as covariates. Results meeting
the genome-wide significance threshold (P < 5 x 10®) are displayed in bold. Abbreviations: Chr =
Chromosome; SNV = Single Nucleotide Variant; Ref = Reference Allele; Alt = Alternate Allele; CA =
Coded Allele; BP = Base Pair; CAF = Coded Allele Frequency; OR = Odds Ratio.
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Figure 5.2. Manhattan plot of P-values generated using logistic regression analysis in the European
ancestry sample (n=15,458). An additive model was used to assess the disease susceptibility impact of the
minor (coded) allele at each position, while controlling for age, BMI, sex, ancestry, nursing home status,
chemotherapy, diabetes, HIV, transplant medications, corticosteroids, and medium or high-risk antibiotic
exposure as covariates. Genomic coordinates are displayed along the X-axis, and the negative logarithm
of logistic regression P-values are displayed on the Y-axis. Each dot represents a SNV in the regression
model, with associated P-values plotted accordingly, while the triangle represents the most significantly
associated SNV. The dotted line represents the negative logarithm of the genome-wide significance
threshold (P < 5 x 10°®). Colors are used to distinguish between SNVs in adjacent chromosomes.
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Given the well-known presence of high LD within the HLA region [210], a regional LD plot
with reference to the index SNV (rs68148149) was generated using P-values from the European
logistic regression analysis and using the 2014 1000 Genomes European superpopulation as a
reference group (Figure 5.3). This step was taken to assess the possibility that variants other than
the index SNV might better explain disease association in terms of functional impact. While the
second two most significant SNVs were in high LD with the index SNV (R?> 0.8), the index
SNV had the highest regulatory potential among the most significantly associated SNVs, as

annotated by RegulomeDB [211]. To assess the possibility that the lack of disease association in
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the African ancestry sample is a result of different regional LD structures, a regional LD plot
with reference to the index SNV was generated using the 1000 Genomes African
superpopulation as a reference (Figure S5.6). The second two most significant SNVs in the
European-ancestry sample were also in high LD with the index SNV in the African-ancestry
superpopulation, but higher LD was observed with more SNV in the HLA-DRB1/5 intergenic
region in the African superpopulation (R?> 0.4) than in the European superpopulation (R?> 0.2).
On the other hand, lower LD was observed with SNVs in the region spanning HLA-DRB1 and
HLA-DQALI in the African superpopulation (R?> 0.6) than in the European superpopulation (R?
> (0.8). Differences in regional LD patterns between the European-ancestry and African-ancestry
samples could therefore have contributed to the observed differences in gene-disease association

patterns, in addition to insufficient detection power.
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Figure 5.3. Regional LD plot of SNVs evaluated in the European-ancestry logistic regression analysis,
using the European 1000 Genomes superpopulation as a reference group. Genomic coordinates spanning
the HLA-DRB region and surrounding genes are shown on the X-axis in both subplots. Negative
logarithms of P-values from the European-ancestry logistic regression analysis are shown on the Y-axis in
the upper sublot, and annotated gene transcripts are distributed along the Y-axis in the lower subplot.
Each dot represents a SNV in the regression model, with associated P-values plotted accordingly. SNVs
in high LD with reference to the index SNV (rs68148149) are colored in red. The LD plot was generated
with the LocusZoom [207] tool using default parameters and the 1000 Genomes Project 2014 EUR
reference panel.

A follow-up GWAS using the index SNV as a covariate revealed several new SNVs associated

at genome-wide significance (rs116603449, P=4.54 x 10”; rs9270896, P=6.09 x 10,
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r$9270894, P=1.12 x 10%; rs9270895, P=2.32 x 10'%; rs618095, P=3.71 x 10'%) (Table 5.2;
Figures S5.7-S5.8). While suggestive peaks were observed in chromosomes 14 and 22 using the
unadjusted model, the elimination of these peaks in models that included the genome-wide
significant index SNV suggests that they were spuriously associated with the tagged region in
chromosome 6. However, no SNVs of interest on chromosomes 14 or 22 were in high LD with

any the index SN'Vs on chromosome 6, therefore the nature of the associated remains unknown.

5.4.3 Human leukocyte antigen association analyses

All 14,620 European ancestry participants had high quality imputed HLA genotypes available
for association analyses. Table 5.1 summarizes the number of participants in the European
ancestry group possessing at least one HLA-DRB3, 4 and/or 5 gene (corresponding to haplotype
families (HLA-)DRS52, 53 and 51, respectively) [212] (Figure S5.9). The most significant SNVs
from the GWAS reached genome-wide significance among individuals with at least one DRB3, 4
or 5 genes collectively (rs68148149, P=1.26 x 10°'%; rs3828840, P=1.49 x 107'3; rs35882239,
P=2.37x10""; 1s71534541, P=1.67 x 107'!; rs35222480, P=3.17 x 10!"), and among individuals
with at least one DRBS5 gene only, or DR51 haplotype carriers (rs68148149, P=1.55 x 10°!;
rs3828840, P=1.72 x 10°'!; rs35882239, P=2.62 x 107'°; rs71534541, P=1.56 x 10°';
135222480, P=4.68 x 10°'") (Table 5.3, Figure S5.10). Among DR51 haplotype carriers, the
most significantly associated SN'Vs only reach genome-wide significance among carriers of the
DR15 haplotype (rs68148149, P=2.08 x 107'!; rs3828840, P=2.27 x 10°!!; rs35882239, P=4.14 x

10°1%; rs71534541, P=1.75 x 107'2; rs35222480, P=5.81 x 10°'?), and more specifically, carriers
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of the HLA-DRB1*15:01 allele (rs68148149, P=7.45 x 10-'!; rs3828840, P=8.11 x 10°!;
35882239, P=1.42 x 107, rs71534541, P=7.37 x 107'2; 1s35222480, P=1.43 x 10-'!). No SNVs
reached genome-wide significance among participants with at least one DRB3 or DRB4 gene
only, suggesting that the HLA-DRS51 haplotype in combination with variants in the HLA-
DRB1/5 intergenic region may singularly drive genetic risk for CDI in the European ancestry
population. However, examining the risk allele frequencies of the index SNV (rs68148149) in
cases and controls across DR51, DR52, and DR53 haplotype-enriched groups showed that the
risk allele frequency was higher in European-ancestry cases than controls in all haplotype
groups, suggesting that the SNV may indeed drive risk in all HLA-DR haplotype groups but that
the low frequency in the DR52 and DR53 haplotype groups limits the power to detect the
association in these groups (Figure S5.11). The same pattern was not observed in African-
ancestry cases and controls, indicating that haplotype differences between ancestry groups may

indeed play a role in differentially conferring risk.
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Table 5.3. Index SNV results from logistic regression-based analysis of the HLA region in European
samples enriched for each HLA-DRB haplotype or haplotype family: DR51, DR52, DR53, DR15,
DRB1*15:01, and any of the above. An additive model was used to assess the disease susceptibility
impact of the minor (coded) allele at each position in the genomic region that yielded highly associated
SNVs in the genome-wide analysis (chr6:32400001-32600000). Age, BMI, sex, ancestry, nursing home
status, chemotherapy, diabetes, HIV, transplant medications, corticosteroids, and medium or high-risk
antibiotic exposure were included as covariates in the model. Results meeting the genome-wide
significance threshold (P < 5 x 10®) are displayed in bold. Abbreviations: Chr = Chromosome; SNV =
Single Nucleotide Variant; Ref = Reference Allele; Alt = Alternate Allele; CA = Coded Allele; BP =
Base Pair; CAF = Coded Allele Frequency; OR = Odds Ratio.

To assess the possibility that one or more HLA alleles themselves were driving the risk
association in the European ancestry sample, rather than the most significantly associated SNVs
identified in the GWAS, we performed a separate logistic regression analysis using the HIBAG-
imputed HLA genotypes in the European ancestry sample. None of the imputed HLA alleles
reached genome-wide significance. Using the classical HLA tags identified by de Bakker et al.
(2006) [213] and the NCI LDMatrix tool [214], it was also confirmed that none of the GWAS-
identified SNVs were in high LD (R? > 0.5) with any classical HLA alleles in either the
European ancestry or African ancestry 1000 Genomes superpopulations. The index SNV was in
moderate LD with the tag SNV for the DRB1*15:01-DRB5*01:01 haplotype in the European
ancestry superpopulation (rs3135388; R?>=0.186) and low LD with the tag SNV in the African

ancestry superpopulation (rs443623; R?>=0.002).
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5.5 Discussion

Using a robust EHR-based phenotyping algorithm, we identified a large, multi-institutional
corpus of patients with a history of at least one episode of CDI and controls without CDI. Our
results suggest that genetic variation in the (HLA-)DRB locus of the HLA region may increase
risk of infection in European ancestry populations. In this study, European participants who
possessed the minor allele among the most significantly associated SNVs had 56% greater odds
of having at least one episode of CDI. As the key beta-subunits of MHC Class II surface
receptors on antigen presenting cells (APCs), the proteins encoded by DRB genes play a critical
role in stimulating the host adaptive immune response against foreign peptides and are therefore

excellent candidates for future studies of host immunity to C. diff. [215].

The MHC (HLA) Class I and II loci are among the most polymorphic coding regions in the
human genome, and DRB genes are particularly variable in copy and combination. Although
there is only one monomorphic DRA gene per (HLA-)DR haplotype, there are five common DR
haplotype families composed of different combinations of protein coding DRB genes (DRBI,
DRB3, DRB4 and DRBJS) and pseudogenes (DRB2, DRB6, DRBS and DRBY9) [212]. DRBI is
present in all haplotypes, but any given individual may have as few as two protein coding DRB
genes (2 copies of DRBI), or as many as four genes (2 copies of DRBI + 1 or 2 copies of DRB3,
4 or 5) between homologs. The unique combination of DRB genes on each haplotype is
remarkably conserved and has been maintained in ancestral DNA since before the divergence of
human and gorilla lineages over 5 million years ago [216]. Although having a diverse set of

MHC II molecules may confer a selective advantage against infection [217], each additional
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DRB gene is nonetheless susceptible to intragenic and/or regulatory mutations in the highly
polymorphic HLA region and may paradoxically increase susceptibility to other diseases. In the
case of gastrointestinal infections, protective effects of the HLA-DRB1*04:05 allele against
enteric infection caused by Salmonella typhi or Salmonella paratyphi have been observed in
Vietnamese and Nepalese patients [218]. Conversely, the DRBI gene has also been implicated in
increasing host susceptibility to a number of inflammatory diseases, including Crohn’s disease,
type I diabetes mellitus, rheumatoid arthritis, multiple sclerosis (MS), ulcerative colitis and

Alzheimer's disease, primarily in European populations [219-224].

Haplotype effects appear to play a critical role in conferring risk for CDI. In this study, CDI
susceptibility was highly correlated with the most significantly associated SNVs only among
individuals possessing at least one haplotype in the rarer DR51 haplotype family, in which a
DRBI1*15 or *16 allele is paired with a coding DRBS5 gene (Table 5.3, Figure S5.9). The risk
association was exclusively observed in individual carrying at least one copy of the
DRBI1*15:01-DRB5*01:01 haplotype [225], and individuals in this group had 200% higher odds
of developing CDI on average. These results indicate that the DRBI1*15:01-DRB5*01:01
haplotype is involved in conferring CDI risk among individuals with common genetic variants in
the tagged DRBI-DRB) intergenic region (Figure S5.12). However, it is also possible that the
comparatively low risk allele frequency in the DR52 and DR53 haplotype groups limited the
power to detect a true risk association in other HLA-DR haplotype groups (Figure S5.11).

One possible explanation for increased CDI risk among these individuals is that differential
MHC II gene expression impacts the baseline composition of their gut microbiota, thereby

influencing colonization resistance to opportunistic enteric pathogens like C. diff. Secretory
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Immunoglobulin A (IgA) antibodies play an essential role in shaping an individual’s gut
microbial community and maintaining a homeostatic balance of microbes within the mucosal
immune system [226], and the interactions between APCs and CD4+ T-follicular helper (Tth)
cells are key to driving the production of IgA by plasma cells [227]. Studies in mouse models
have previously demonstrated that MHC 11 polymorphisms directly affect antibody-mediated
microbiota composition, and that the unique microbial communities formed under the influence
of different MHC genotypes can impact an organism’s susceptibility to opportunistic pathogens
like Salmonella enterica typhimurium when treated with antibiotics [228,229]. The
DRBI*15:01-DRB5*01:01 haplotype has also been identified as the major genetic risk factor for
MS--a disease that has been increasingly associated with taxa imbalances within the gut
microbiome [225,230-232]. This association lends support to the hypothesis that the gut
microbiota mediates susceptibility to CDI in a genetically determined manner, assuming that the
composition of the microbiota is indeed a key driver of resistance to disease in both CDI and
MS. However, it is currently unknown exactly which symbiotic microbe lineages or consortia
might contribute to colonization resistance against C. diff. after a major disruption to the gut
microbiota [233]. Understanding the unique interactions between commensal microbe antigens
presented by APCs, the MHC Il molecules encoded by the DRBI*15:01-DRB5*01:01
haplotype, and Tth cells may provide valuable insights into how host genetics impact the
composition of gut microbial communities in individuals susceptible to enteric infection,

compared with those who are resistant to infection.

Alternatively, increased CDI risk among these individuals may be driven by differential T-cell

mediated responses to the TcdA and TcdB toxins produced by C. diff. bacteria. In addition to
133



sculpting the host microbiota, high affinity IgA helps to neutralize bacterial toxins [234]. Unique
interactions between T-cells and C. diff. toxins specifically bound by DRBI1*15:01-DRB5*01:01
MHC II molecules may impact the host anti-toxin IgA response differently than other T-cell-
MHC II interactions, thus influencing the host’s ability to clear circulating toxins. Recent Phase
II, placebo-controlled clinical trials of the monoclonal antibody treatments actoxumab (anti-
TcdA) and bezlotoxumab (anti-TcdB) showed that TcdB toxin neutralization alone could
decrease CDI recurrence by 38% among patients receiving standard antibiotic therapy for initial
or recurrent CDI [235]. Naturally occurring anti-TcdB antibodies in the placebo group also
conferred protection against recurrent CDI, recapitulating the importance of neutralizing TcdB in
controlling infection [236]. However, other studies have failed to replicate these results when
comparing healthy controls with CDI patients, suggesting that anti-toxin antibody concentrations

may not fully explain susceptibility to initial and/or recurrent infection [237].

Although the MHC II region is strongly associated with CDI in this study, the SN'Vs that confer
risk are neither located in coding regions, nor in high LD with SNVs in coding regions,
suggesting that the mechanism for altered gene expression may be regulatory. One possible
mechanism for altered expression of the DRBI1*15:01-DRB5*01:01 haplotype is allele-specific
DNA methylation (ASM) of the DRBI and/or DRBS regulatory regions, given that the two most
significantly associated SNV (rs68148149 and rs3828840) overlap with CpG dinucleotides and
may therefore be involved in altering DNA methylation patterns in those regions. It is well
known that cytosine residues at CpG sites are disproportionately targeted for DNA methylation,
which directly impacts gene expression at the level of transcription [238,239]. SNVs that overlap

with CpG sites account for 38%-88% of ASM regions [240], and disruptions to normal DNA
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methylation patterns have been known to modulate susceptibility to a number of human diseases
[241,242]. For example, in the case of DRB1*15:01-DRB5*01:01-associated MS, DNA
hypermethylation in exon 2 of HLA-DRBI confers protection against the major risk allele and is
driven by several SN'Vs in high LD with one another that overlap with CpG sites [243]. It is
possible that disrupted methylation patterns at or near the regulatory regions of DRBI1*15:01
and/or DRB5*01:01 also contribute to differential expression of these MHC II proteins, thus
impacting the landscape of the host adaptive immune response via microbiome-mediated and/or
toxin-mediated mechanisms. To test this hypothesis, local bisulfite sequencing or methylation
quantitative trait loci (mQTL) analysis of the HLA region could be performed in DRBI1*15:01-
DRB5*01:01 heterozygotes to assess differential methylation patterns in the DRBI-DRBS5
intergenic region. These experimental data could then be superimposed on GWAS data to
determine whether the GWAS peaks identified in this study are suggestive of true regulatory
SNVs, and to subsequently prioritize these SNVs for downstream validation experiments in
animal models [244]. It is also worth noting that the additional SNVs identified using the top
SNV-corrected model were all located in the DRBI-DQA I intergenic region near several histone
H3K27ac marks, which are often located near active regulatory elements [245]. This observation
lends additional support to the hypothesis that MHC molecules involved in CDI pathogenesis are

transcriptionally regulated.

Our findings suggest that genetic variation in the MHC 11 locus of the HLA region drives
susceptibility to CDI and highlights the importance of the adaptive immune response in
combating opportunistic pathogens. To better understand how host genetics might confer

microbiome-mediated risk for opportunistic enteric infections, future studies should explore the
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mechanisms of interaction between commensal microbe antigens presented by APCs and the
MHC II molecules encoded by the DRB1*15:01-DRB5*01:01 haplotype. Interactions between
DRBI1*15:01-DRB5*01:01 MHC 11, C. diff. exotoxins and T-cells may alternately play a critical
role in CDI pathogenesis, and additional work is needed to understand whether and how the host
IgA response is differentially impacted by the combined effects of haplotype and transcriptional
modifications. Finally, future work should address the possibility that ASM is a driver of
epigenetic transcriptional regulation of the DRBI and/or DRBJ genes. If this mechanism is
experimentally validated, therapeutics that modulate MHC II molecule transcription levels could
potentially be developed to decrease the incidence of CDI among individuals that carry the risk

genotype.

5.6 Limitations and future work

This study has several important limitations. First, sample size and statistical power were
severely limited among non-European ancestry samples, which may have contributed to the lack
of significant associations in the African ancestry analyses. Second, replicate studies are needed
to confirm the identified association. However, the large, multi-site biobank of linked EHR and
genotype data used in this study supports the replicability and reliability of these results, and
future association studies would benefit immensely from these types of biobanks. Third, C. diff.
cases were not stratified by primary and recurrent CDI and is it possible that the genetic variants
driving pathogenesis are different between these two forms of infection. Fourth, the length and
severity of infection were not considered in the current study, but future analyses would benefit
from continuous trait regression association analyses to identify genetic variants associated with

increased CDI severity, rather than susceptibility. Additionally, C. diff. cases in this study
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partially included individuals with a positive antigen test as their only criterion for infection. The
C. diff. antigen test cannot accurately distinguish between toxigenic and non-toxigenic strains
and may falsely identify asymptomatic carriers as C. diff. cases. Finally, the specific toxigenic
ribotype that each case was exposed to was not included in the analysis, and it is possible that

different C. diff. ribotypes are associated with different genetically determined host responses.

5.7 Conclusion

In this study, we identified a potential genetic driver for CDI in the HLA-DRB locus, offered
several directions for future functional studies, and demonstrated the utility of merging genetic
and EHR data for gene-disease association studies of infectious disease. Routinely conducting
genetics association studies using EHR data is a promising avenue for advancing our
understanding of how common genetic variation impacts human health and disease. In the next
chapter, we will explore how the existing LHS literature characterizes the barriers and enablers
of conducting routine genomic discovery studies in clinical settings and integrate these results

with the SR GLHS model developed in the previous chapter.
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CHAPTER 6: DEVELOPMENT OF AN INTEGRATIVE SOCIOTECHNICAL MODEL FOR

GENOMICS-ENABLED LEARNING HEALTH SYSTEM DISCOVERY (AIM 4)

6.1 Introduction

The types of genomic research studies that can be conducted using merged clinical and genomic
data hold great promise for the future of genomic medicine and human health, but routine
implementation of genomics research in clinical environments remains elusive. While the current
literature on genomic discovery in LHS-aligned models appears limited, its sheer complexity
speaks to the practical challenges of achieving the learning healthcare vision. In the closing
remarks of their 2020 progress update, investigators at Geisinger—one of the world’s most fully-
formed LHS-aligned healthcare institutions to date-recognized the eternal challenge of

implementing a successful LHS:

We will close by reflecting on our position and our prospects as we seek to move along
“the developmental path toward a fully realized LHS.” Although we do, indeed, hope and
intend to move further along that path, we have come to question whether the goal of a
fully realized LHS is ever fully attainable. For we suspect that the reality is that in light
of the ongoing dynamic evolution of technologies, the growth of evidence, and other
forces of change, the goal of a fully realized LHS, much like the paradox of Achilles
and the tortoise, can never fully be achieved because the essence of learning and
improvement is—and always will be—a moving target (Davis et al. 2020, p. 9) [132].

Although there may be no discernable endpoint in the LHS model, the iterative process of
learning and improvement can only benefit a healthcare system that is in great need of change.
To facilitate a broader understanding of the GLHS concept and move towards actual
implementations of learning cycles, it is useful to ground available evidence in a conceptual

model. In this case, the vast majority of insights on clinically embedded genomic discovery exist
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in qualitative studies. Qualitative evidence synthesis (QES) is a collection of methods that can be
used to integrate findings from qualitative studies to “establish a greater understanding of issues,
often of a subtle or sensitive nature, that primary qualitative research frequently addresses”
(Flemming et al. 2018, p. 1) [39]. The multiplicity of technical, social, ethical, political, and
structural elements that support a GLHS may individually be moving targets in the context of
constant shifts in the US healthcare and research enterprises, but this movement should not
preclude researchers, clinicians, and policymakers from seeking a more cohesive understanding
of how these elements interact with one another. QES methods can help achieve this cohesive
vision and ground the complexity of the GLHS concept in a conceptual model to inspire tangible

changes in approaches to healthcare research and delivery.

The objectives of this aim are twofold. First, we conduct a systematic literature review of studies
that have identified enabling factors of genomic discovery and validation research in the LHS
model and describe this literature landscape using a theory of change model. Second, we use
best-fit framework synthesis (BFFS) to synthesize the a priori SR model from Aim 2 with
themes identified in Aim 1 and the systematic literature review to create an integrative

sociotechnical model for GLHS discovery.
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6.2 Related Work

6.2.1 Systematic reviews of enabling factors for clinical genomic discovery research in learning

health systems

Previous systematic literature reviews of LHS models have focused on the outcomes of such
models and their impacts on different aspects of care. Enticott et al. (2021) conducted a
systematic review of studies across 23 LHS environments in six different countries [11]. They
investigated the reported health impacts achieved through LHS-aligned healthcare models and
found that such systems yielded benefits such as improved longitudinal patient tracking,
enhanced access to personal health records, and improved adherence to clinical guidelines. Other
in-progress reviews are investigating the impacts of LHS models on pediatric health outcomes
[40], and investigating strategies used to implement LHS models in existing healthcare systems
[42]. Lim et al. (2022) [41] conducted a systematic review of data analytics approaches in LHS-
aligned models and found that challenges were widely faced when implementing EHR data
analytics in an LHS. In the most recent review of LHS literature, Ellis et al. (2022) [43] used the
PubMed and Scopus databases to survey the available LHS research through an implementation
science lens. They found that, unsurprisingly, there is little empirical research on LHS
implementations and outcomes since very few LHS-aligned systems exist worldwide.
Systematically investigating the enablers and barriers of clinically embedded discovery is an
important precursor to implementation and outcomes measurement. However, no systematic
reviews have investigated barriers and drivers for accelerating genomic discovery in LHS

models.
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6.2.2 Qualitative evidence synthesis and framework development in learning health systems

research

Several studies have previously used QES (or similar) methods to seek clarity from the complex
body of LHS literature. Enticott et al. (2021) [45] developed an LHS framework for the
Australian health system by synthesizing evidence from expert panels, stakeholder workshops,
and a systematic literature review of studies showing explicit health impacts from LHS-aligned
implementations. While the authors report utility in integrating multiple perspectives for
developing a sustainable and scalable framework, they do not describe how the evidence
synthesis was conducted. Easterling et al. (2022) [44] recognizes that the “LHS concept has been
defined in broad terms, which makes it challenging for health system leaders to determine
exactly what is required to transform their organization into an LHS” (Easterling et al. 2022, p.
1). To address this gap in proposed requirements, they developed a 94-part taxonomy of LHS
elements, then calculated the frequency of each element in 79 publications that discussed
organizational characteristics or actual implementations of LHSs. This process aligns with the
description of framework synthesis as described in Flemming & Noyes (2021) [246]. Their
approach successfully integrated salient results from a large, complex body of research, and
clearly revealed “specific types of work that need to be launched and supported in order to
operate according to the principles of an LHS” (Easterling et al. 2022, p. 12). Although few
studies have addressed the LHS concept using QES methods, the two aforementioned studies
demonstrate that framework synthesis is a useful approach for clarifying and integrating complex

concepts for the sake of inspiring action within healthcare organizations.
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6.3 Methods

6.3.1 Systematic literature review

The systematic literature review plan was developed using the Cochrane Reviews of
Interventions guidelines [247]. However, because the goal of the review was not to assess the
outcomes of comparative-effectiveness research, but rather to integrate published perspectives
and experiences, some suggested procedures such as statistical meta-analysis and systematic bias
assessment were not conducted. Given the known paucity of literature on actual implementations
of LHSs [11], and even more limited evidence on LHS factors that enable genomic discovery
efforts specifically, the scope of this review was left intentionally broad and qualitative to

incorporate as much evidence as possible in the analysis.

6.3.1.a Scope

The purpose of the review was to survey the proposed and observed enabling factors for
accelerating translational genomic discovery research in LHSs. Specifically, the review centered
around the following question: What technical, social, political, and/or cultural factors
enable and improve genomic innovation, discovery, or validation research in an LHS-
aligned model? The Population, Intervention, Comparison, and Outcome (PICO) [248] strategy

of the review was defined as follows:

1. Population: Any population receiving healthcare in a country where LHSs have been
proposed as a model for improving care, advancing research, and decreasing healthcare

costs.
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2. Intervention: Technical, social, political, and/or cultural changes to healthcare systems
or research operations within healthcare systems that are intended to enhance clinically
meaningful genomic discovery.

3. Comparison: Enabling factors for genomic discovery research that occurs outside the
context of a healthcare providing organization.

4. Outcome: Expected (or observed) improvements and/or accelerations of clinically

meaningful genomic discovery research.

6.3.1.b Ethical considerations

Because this field of research is in its infancy and there is little empirical evidence to support the
perspective pieces that comprise the majority of this body of research, it is important to frame the
results of this review as a survey of potential next steps for integrating genomics research into
the LHS model, rather than as fully supported evidence of effective interventions. These
potential next steps should be systematically applied and tested in combination with one another
in different healthcare and research contexts to empirically identify enablers of clinical genomic
discovery in LHSs. There is also a risk of disseminating suggestions that are not feasible to
implement in other countries or in communities in the US that lack adequate financial or political
support, potentially worsening health disparities. It is therefore important to consider questions
of health equity as a core category of the analysis, and to prioritize the inclusion of papers with a

focus on health equity in LHS discovery research.
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6.3.1.c Search strategy and data collection

Databases used in the literature search included PubMed, Embase (via Elsevier), the Public
Affairs Information Service (PAIS, via ProQuest), the Health Technology Assessment Database,
the Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Science,
PsycINFO, and Medline. Initial searches were limited to peer-reviewed, English language
articles that had been published since 2008—the year following the publication of Etheredge’s
rapid-learning health system concept [127]. Given the scope of the review, articles were also
required to include mentions of the LHS concept and of genetics or genomics, because it is
known that requirements for conducting research with genomic data in a healthcare setting are
similar to but distinct from requirements for conducting research with other types of health-
related data [8,31]. Table 6.1 displays the search queries used to identify relevant literature in

each of the eight surveyed databases.
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Database Search Query

PubMed (("learning health system") OR ("learning healthcare system") OR ("learning
health care system")) AND ((genomic) OR (genome) OR (genetic) OR (gene)
OR (genes)) AND ("2008"[Date - Publication] : "3000"[Date - Publication])
AND (English[Language])

Embase ('learning health system' OR 'learning healthcare system' OR 'learning health
care system') AND (genomic OR genetic OR gene OR genes OR genome)
AND [english]/lim AND [2008-2022]/py

PAIS (("learning health system") OR ("learning healthcare system") OR ("learning
health care system")) AND ((genomic) OR (genetic) OR (gene) OR (genes)
OR (genome))

Health Technology ("learning health system™) OR ("learning healthcare system") OR ("learning
Assessment Database | health care system'")

CINAHL (("learning health system") OR ("learning healthcare system") OR ("learning
health care system")) AND ((genomic) OR (genetic) OR (gene) OR (genes)
OR (genome))

Web of Science (("learning health system") OR ("learning healthcare system") OR ("learning
health care system")) AND ((genomic) OR (genetic) OR (gene) OR (genes)
OR (genome))

PsycINFO (("learning health system") OR ("learning healthcare system") OR ("learning
health care system")) AND ((genomic) OR (genetic) OR (gene) OR (genes)
OR (genome))

Medline (("learning health system") OR ("learning healthcare system") OR ("learning
health care system")) AND ((genomic) OR (genetic) OR (gene) OR (genes)
OR (genome))

Table 6.1. Search queries used to identify eligible articles in each database. For searches where
publication date and/or language could not be included in the search wuery (all databases other than
PubMed and Embase), results were manually filtered by English language and publication date after the
initial search.

Following each search, reference lists were exported as Research Information Systems (.RIS)

files, which were then imported into the EPPI-Reviewer Web 4.0 literature review management
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system [249]. Duplicate articles were removed using the EPPI-Reviewer duplicate checking tool.
All remaining screening and data extraction activities were conducted by one reviewer (K.F.)

using EPPI-Reviewer.

6.3.1.d Inclusion and exclusion criteria

Publications were first screened by title and abstract content to exclude publications that clearly
met the exclusion criteria. Titles and abstracts were excluded if they met one or more of the
following conditions:

1. No mention of the LHS model

2. No mention of genetic or genomic data

3. Conference abstract

4. Table of contents

5. Dissertation/thesis

6. Protocol article

7. Review article

8. No peer review

9. Not in English

10. Published before 2008

Publications that passed the title and abstract screening phase were then screened on the full text.
Articles were excluded if they met one or more of the following conditions:
1. Minimal to no discussion of discovery research in the context of the LHS model

2. No suggested needs, actions, or opportunities for discovery research identified
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3. Minimal to no discussion of genetic or genomic data

Publications that passed both the title and abstract screening and the full text screening were

included for data extraction.

6.3.1.e Data extraction

Data extraction was conducted in two phases: 1. Background extraction; and 2. Content

extraction. During the background extraction phase, the following information was gathered:

1. Article type (e.g., Special Report, Commentary, Methodology)
2. Study design

3. Country

4. Home institution name

5. [Institution type

6. Medical domain

7. Source(s) of funding

8. Conflicts of interest

During the content extraction phase, enabling factors explicitly identified by authors throughout
the text (with phrases such as, “this would require...” or “crucial to this approach is...”) or
summarized in lists or tables were identified. Codes representing these factors were iteratively
created and sorted into topical categories, such as “Funding and incentives” or “Policy and
governance.” While codes were re-used between publications when possible, new codes with

similar sentiments to existing codes were written when there were nuances in the publication that
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the existing code did not capture. This process continued until all publications had been
evaluated for content. Separate reports were generated for Study Characteristics/Background and

Outcomes using the EPPI-Reviewer configurable reports tool.

6.3.1.f Data synthesis

Because the studies included in the review involved a variety of methods and did not report
comparable quantitative findings, narrative synthesis was used to combine the results into a
textual narrative. The analysis was conducted using the process for narrative synthesis proposed
by Popay et al. (2006) [250]: 1. Preliminary synthesis; 2. Theory of change development; 3.

Relationship exploration; and 4. Assessment of robustness.

1. Preliminary synthesis: Initial data synthesis was conducted during the data extraction
process, during which emerging codes were grouped into descriptive themes. Once data
extraction was complete, codes were re-grouped based on their similarities and
differences with respect to their relationships with the outcome of interest (clinical
research integration), and descriptive themes were rephrased to better describe codes
assigned to each theme.

2. Theory of change development: Flow diagramming was used to develop an initial
theory of change using the descriptive themes identified during preliminary synthesis, as
described in Weiss 1998 [251] and White 2017 [252]. Weiss describes the theory of
change as “the chain of causal assumption that [links] programme resources, activities,

intermediate outcomes and ultimate goals™ that is used to better understand “how the
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intervention works, why, and for whom” (Weiss 1998, as cited in Popay et al. 2006, p.
12). The initial theory was modified as needed during the relationship exploration.

. Relationship exploration: Concept mapping was used to relate descriptive themes and
the properties of those themes (e.g., codes) with one another. Relationships identified
through concept mapping were incorporated into an updated theory of change model,
which was then used to write the final narrative synthesis.

. Assessment of robustness: Methodological limitations of each study were identified and
described in aggregate. The most common sources of bias and assumption were also
identified, both for the publications included in the review and for the investigator
conducting the review. Discrepancies and uncertainties between study results were also
considered, in addition to contextual factors of each study that may have influenced

outcomes.

6.3.2 Qualitative evidence synthesis

BFFS is a QES method that has previously been used to address “applied policy or clinical

questions in a specific setting or context” (Flemming & Noyes 2021, p. 6) [246], and QES

methods have been well established as effective aids in health policy and healthcare decision-

making [253,254]. BFFS was first described by Carroll, Booth, & Cooper in 2011 [255], and an

updated method was described by Carroll et al. (2013) [256]. The following measures were taken

based on proposed steps of BFSS: 1. Framework identification; 2. Systematic literature review;

3. Evidence comparison; and 4. Evidence synthesis.

. Framework identification: An a priori model for GLHSs was developed using the

grounded theory approach, as described in Aim 2.
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2. Systematic literature review: Primary research studies were chosen for inclusion in the
evidence synthesis using the methods described in section 6.3.1 (“Systematic Literature
Review”).

3. Evidence comparison: Individual codes generated from the systematic literature review
were imported into ATLAS.ti, along with thematic codes generated from the
Recommendations section in Aim 1. All codes were compared with the primary themes
of the a priori model using the constant comparison method [257]. Codes that were
sufficiently related to the a priori model themes were grouped accordingly, and codes
that did not sufficiently relate to existing themes were grouped into new thematic
categories.

4. Evidence synthesis: Concept mapping was used to identify relationships between
existing themes in the a priori model and new themes identified during evidence
comparison. New properties of the a priori themes were also identified using the code
groupings from the evidence comparison. A final diagram of the synthesized model was

created, along with a narrative description of the model.

6.4 Results

6.4.1 Systematic review

Of a total of 291 records identified through database searches, 152 duplicates were removed. Of
the 139 remaining records, 75 were excluded on Title & Abstract screening. Of the 64 recordings

remaining after screening, 64 records were included for eligibility assessment. After 21 records
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were excluded due to either insufficient discussion of genomics or LHS models, or insufficient

identification of needs or opportunities, 43 records were included in the review (Figure 6.1).

2 ™
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Figure 6.1. PRISMA [258] flow diagram of study Identification, Screening, Eligibility, and Inclusion for
the systematic literature review.

Included

Detailed study characteristics and results can be found in Table S6.1. Thirty-six (36) of the
studies were written by investigators solely in the United States [13,31,132,259-291]. Two (2)
were written by an international group of authors [292,293], 2 were written by Canadian authors
[294,295], and 3 publications were written about health systems in Australia, Denmark, and the
Netherlands, respectively [10,296,297]. Nineteen (19) publications were qualitative expert

analyses [10,270-282,293,295,297], 8 were experience self-assessments from actual LHS
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implementations [13,132,265-269,292], 6 were conference or workshop summaries [260—
264,294], 4 were qualitative analyses of original interview or focus group data [283-286], 4 were
system development and evaluation studies [287-290], 1 was a pilot study [291], and 1 was a
case study [259]. Twenty-nine (29) publications were condition-agnostic, 11 focused on
oncology, and individual studies focused on aneurysms, asthma, and inflammatory bowel

disease.

During outcomes data extraction, 14 descriptive themes were iteratively identified among 291
codes. These themes were grouped into 4 higher-level analytical themes: 1. Data and standards;
2. Culture and acceptance; 3. Engaging with and protecting patients; and 4. Political and

institutional support (Table 6.2).
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Analytical Theme

Descriptive Theme

Number of Codes

medicine and learning

Data and standards Collecting, integrating, and sharing genomic and | 26
(Table S6.2) phenotype data
Analyzing data for discovery 27
Developing standards 17
Culture and acceptance Building a collaborative learning culture 27
(Table S6.3)
Demonstrating value and feasibility 14
Aligning learning with existing healthcare 10
improvement models
Engaging with and Advancing health equity 16
protecting patients
(Table S6.4) Prioritizing patient-centeredness 15
Obtaining consent for clinical research 13
Safety measures and outcomes monitoring 19
Privacy and security protections 9
Political and institutional Funding and incentives 17
support
(Table S6.5) Policy and governance 23
Building institutional capacity for genomic 58

Table 6.2. Analytical and descriptive themes generated during systematic literature review content

extraction.

A high-level exploration of the 14 descriptive themes identified during the literature review

revealed how the current literature characterizes the inputs, activities, and intermediate outputs of

clinical genomic discovery (Figure 6.2). Funding, policy, and governance were identified as

requisite inputs to the activities that comprise clinical genomic discovery, which span the areas

of support-building, cultural acceptance, patient-participant engagement, and data analysis and

standardization. Demonstrating the value and feasibility of clinically embedded genomics
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research to stakeholders was identified as an intermediate output of these activities that could
potentially fuel the input of additional resources into the change process. The desired outcome
was defined as the enhancement of clinically meaningful genomic discovery, as specified by the
study PICO. Desired impacts were based on the expected outcomes of an effectively
implemented LHS: better patient outcomes, better scientific understandings of health and

disease, and decreased healthcare costs [7].
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Figure 6.2. Initial theory of change diagram, based on 14 descriptive themes identified during the
systematic literature review and desired outcomes and impacts defined by the study PICO.
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After exploring the properties of each theme and identifying relationships between them through

concept mapping, a new theory of change model was developed to better represent the spectrum

of identified enabling factors for clinical genomic discovery in the literature (Figure 6.3). The

literature tended to characterize themes as requisite inputs for a functioning LHS, rather than

components of learning activities themselves. Enablers of learning activities depended on diverse

combinations of different inputs. The intermediate output of LHS activities (demonstration of

value) did not change between Figure 6.2 and Figure 6.3.
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Figure 6.3. Updated theory of change diagram, based on property and relationship exploration of 14
descriptive themes identified during the literature review.
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6.4.2 Best-fit framework synthesis

A total of 291 qualitative codes were created using the codes identified during the systematic
literature review, and 12 codes were created from the “Needs” column in Aim 1, Table 3.3.
These codes were grouped into the 5 major themes from the a priori SR model developed in Aim
2 (Representation, Responsibility, Risks and Benefits, Relationships, and Resources), and new
themes were iteratively created to accommodate codes that did not sufficiently relate to the a
priori model themes. Four (4) new thematic codes were created after constant comparison of
framework themes and the 303 total codes from Aim 1 and the literature review. All other codes
were grouped into the 5 existing a priori themes. Descriptions of the new themes are included in

Table 6.3.
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Theme Codes Description

Analysis approaches 18 Suggestions for specific analysis tools and
approaches that can be used to represent clinical and
genomic data, such as rigorous statistical models,
scalable data extraction methods, platform-agnostic
tools, and functional effect prediction

Automation approaches 15 Suggestions for automated approaches to
implementing new knowledge in clinical practice,
such as mass customization, FHIR tools, predictive
models, and usability labs

Outcomes monitoring 16 Suggestions for approaches to monitoring the
approaches outcomes of clinical research and implementation,
such as the use of patient-reported outcomes,
mechanisms for routinely following up with patient-
participants, and definition of consensus outcomes
measures

Standardization approaches 21 Different approaches to standardizing aspects of
clinically embedded research, such as unified data
architectures, standards for capturing diversity,
semantic interoperability of biomarker data, and
regulated diagnostic approaches using sequencing
technologies

Value assessment approaches 7 Tools for assessing and demonstrating the value of
genomic medicine to diverse stakeholders, including
patients, organizations, and payers

Table 6.3. New themes identified using best-fit framework synthesis.

6.5 Discussion

6.5.1 Systematic literature review

Overall, the volume of peer-reviewed literature on the enabling factors of clinically embedded
genomic discovery was limited, but the suggestions made across articles were broad and spanned
many disciplines (Table S6.1). The vast majority of articles were perspective pieces or

commentaries based on limited implementation experiences or content expert suggestions.
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Several articles were written by investigators from countries with nationalized health systems
such as Canada, Australia, Denmark, and the Netherlands, but the majority were written in the
context of the US healthcare system. Few articles focused solely on the data to knowledge aspect
of LHSs, but rather discussed discovery in the context of other learning processes. The lack of
comparative-effectiveness research on enablers of clinical genomic discovery suggests that this
area of research is still in its infancy and speaks to the immense challenge of implementing such

systems in practice.

As defined in the scope of this review, the ultimate vision of genomics-enabled learning
healthcare is to improve population health, increase the public understanding of how genomics
impacts human health and disease, and increase the efficiency of the healthcare system by
enhancing disease diagnosis and prevention [8]. Unsurprisingly, the literature collectively
suggested a lofty and complex set of inputs and activities that would likely be necessary to
achieve this ambitious vision. While the chain of literature review themes depicted in Figure 6.3
is not strictly linear, it approximates the ways in which inputs and activities build upon one
another in the process of conceptualizing a model of clinically embedded research, preparing to
implement the model, implementing the model, and demonstrating the value of the

implementation.

The literature unanimously asserted the importance of national policy, funding, and incentive
systems in providing a foundation on which learning systems could be built (Table S6.5).
Several publications suggested that harmonizing government policies relating to health data use

and data sharing [261,294] could relieve the burden placed on both health institutions and
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patient-participants to decode separate but overlapping policies. Policy prioritization was also
identified as having significant potential for enabling desired downstream effects, such as
implementation of patient-centered systems, genomics education initiatives, data sharing
networks, and global collaboration in clinical research. One publication also suggested that
health research policies recognize the various dimensions and conceptions of value that an LHS
could provide [263]. The concept of value was a recurring theme in many publications and was
identified as a key component in creating virtuous learning cycles. Policymakers have the
authority to both define measures of value and judge whether value is being produced in LHSs,
which makes it all the more important to encourage nuanced understandings of value in the
clinical, research, and policy communities. Initiatives deemed as having value, either potential or
observed, receive funding, which is the lifeblood of the research enterprise and publicly financed
healthcare institutions. Several publications suggested that incentive systems should be used to
fuel desired innovations in healthcare research and practice [263,272,291], such as tools and
processes for maximizing patient-centeredness. The literature collectively suggests that policy
and funding provide both the means and the motivation for institutions to begin preparing for

clinical research integration.

Because the preparation and activities involved in genomics-enabled learning healthcare are
labor intensive and sometimes require controversial decisions, a cultural commitment to
learning, communication, and improvement within and between healthcare institutions is widely
recognized as necessary for LHS development (Table S6.3). Only once institutions are invested
in change can they be earnestly involved in developing and adopting standards, building

institutional capacity, and adopting and implementing privacy and security measures. Many
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studies deemed standards essential for the full spectrum of LHS preparations and activities, given
the current heterogeneity in research and clinical approaches across healthcare institutions in the
US and the need for large scale collaboration (Table S6.2). The technical, procedural, and
collaborative systems that institutions develop to enable learning healthcare are ideally based on
these standards to maximize the safety and efficiency of such systems. Many studies also
suggested making a patient-participant-centered approach the backbone of all learning health
infrastructures and activities, which necessitates a focus on building technical and procedural
capacities for privacy and security protections of patient-participant data. However, the current
legal protections of genomic data under HIPAA are still unclear and should be clarified [261]

(Table S6.4).

All subsequent LHS activities identified in the literature build upon the basic tenets of funding,
prioritization, culture, standardization, patient-centeredness, institutional infrastructure, and data
security. However, the suggested approaches to different activities are diverse and sometimes in
tension with one another. Several publications focused on the role of clinical learning
environments in advancing (or impeding) health equity [31,272,274,276,277], suggesting that
significant efforts should be made to form trusting and sustainable relationships between health
systems and diverse patient-participant communities. With increased engagement of diverse
individuals will come more and potentially higher quality clinical and genomic data from diverse
communities, which can be used to advance clinical genomics research that truly gives back to
those communities. Using appropriate analysis methods for diverse genomic datasets should
become a standard practice in LHSs, but it is possible that individuals from backgrounds that

have historically been marginalized and mistreated by the medical and research enterprises will
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only feel comfortable sharing data for research if it is de-identified. One publication suggested
that new models be developed to enhance the research utility of de-identified data [31], but there
is debate among the literature over whether the full potential of LHS research can be reached
using de-identified clinical data. A related tension is the debate over whether federated data
sharing of clinical and genomic data can be used in place of all-access data sharing for genomic
discovery research [291]. Generating high-quality, representative clinical and genomic datasets is
widely recognized as an essential part of the learning process, but the policies and moral systems

that dictate the level of detail available to different clinical researchers remain highly debated.

Different perspectives exist regarding the appropriate methods of consenting patient-participants
for clinically embedded genomics research. Some publications advise the use of prospective,
broad consent to reap the full benefits of clinical research [262,268], while other advise the use
of new and creative models of consent, such as dynamic consent, to best respect the wishes of
patient-participants [10,13,294,297]. However, most publications agreed that widespread
education on the potential risks and benefits of genomic data sharing should be publicly funded,
and that communication between patient-participants and those consenting them to clinical

research be as clear as possible, regardless of the consent model used.

The literature was in broad agreement that more advanced, representative, and accurate tools for
clinical and genomic data analysis are needed. Methods should be developed by an
interdisciplinary network of researchers and clinicians, given the interdisciplinary origins of the
data and broad implications for use in a medical context. Some publications also stressed the

importance of communicating research findings between LHSs and the broader research
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community through peer-reviewed publications [263,276,283]. However, for LHS research that
1s more quality-improvement oriented, many publications suggested using existing principles and
tools from comparative-effectiveness research (CER), quality improvement (QI), health
technology assessment (HTA), and implementation science, rather than developing new tools
altogether [132,261,263,267,271,279,282,294,296]. The only stipulation of these publications is
that existing tools be evaluated for effectiveness in a learning health environment, and that they

cater to the patient-centered approach of GLHSs.

The literature was in wide agreement that any changes made to clinical practice based on
research findings should be heavily documented and monitored. For patient safety reasons,
centralized ethical oversight should be used to weigh the risks and benefits of clinical research.
However, this would require a complex merging of moral systems used to differentially guide
research and clinical decision-making [277]. While the current models of ethical oversight for
clinical research are deeply embedded in research culture, some publications propose that new
models of ethical oversight for routine, clinically-embedded research be developed [10,132,261].
For the purposes of measuring and demonstrating value, a diverse set of clinical, economic, and
patient-reported outcomes should be continuously measured in an LHS. If definitions of value
are to be dynamic and context-specific, the outcome measures used to inform value assessments
should be dynamic as well. Ultimately, demonstrating value to a diverse group of stakeholders
could help fuel the necessary inputs of LHS development, leading to virtuous cycles of clinically

embedded genomics research.

162



As previously mentioned, most articles included in the literature review were perspectives and
experience reports (Table S6.1). This limits the empirical strength of the assertions made in the
literature review, and necessitates that all results be viewed as suggestive, rather than
prescriptive. Many studies also disclosed sources of funding that were not strictly academic, or
disclosed conflicts of interest such as involvement with pharmaceutical companies or for-profit
healthcare organizations. While this partially speaks to the understanding in the literature that
partnerships with for-profit organizations make learning healthcare more feasible [13], it also
warrants a critical examination of whether such partnerships are truly necessary, or whether
company involvement in academic discussions biases the literature towards that understanding. It
is also important to recognize that very few publications referenced the “genomics-enabled
learning health system” as a singular concept in their analyses. Instead, the primary investigator
assumed that publications that both considered the LHS model and recognized genomic data as
unique from other clinical data could be referred to as studies that discussed the core concepts of
a GLHS. Additional studies that discuss the GLHS model as a discrete entity are needed to fully

capture the challenges and opportunities of the model.

6.5.2 Best-fit framework synthesis

Evidence from the literature review and Aim 1 could largely be grouped into the existing themes
of the a priori model from Aim 2, suggesting that the SR model is a reasonable representation of
the factors involved in learning healthcare. However, two new insights were gained from the
BFFS process: 1. The literature offers potential tools that can be used to facilitate negotiations;
and 2. The inputs of the theory of change model developed from the literature review do not

necessarily need to be complete prior to LHS implementation (Figure 6.4).
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Figure 6.4. 5R sociotechnical model of discovery in a genomics-enabled learning health system, based on
best-fit framework synthesis of the a priori model from Aim 2, a systematic literature review, and Aim 1
results.

While the in-depth interview study approach is useful for characterizing relationships between
LHS processes and deconstructing the roles, expectations, and tensions involved, surveying the
available literature is useful for brainstorming approaches to resolving tensions and
reconstructing the operational picture of an LHS. There was widespread consensus in the
literature that standards can facilitate many aspects of the learning process, including
infrastructure development, analysis, clinical and research protocols, implementation, and

outcomes measurement. The recommendations from CSER data coordination in Aim 1
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corroborated this finding, given that standardizing and streamlining both the informatics and
communication aspects of data coordination were key to successful implementation. If the space
between data generation and knowledge generation is considered an “entry point” into LHS
learning cycles, standardization efforts could be focused at that entry point and then propagated
forward through the learning process. Novel approaches to clinical and genomic data analysis
were also suggested across the literature, including ontology-driven approaches to omics data
extraction and analysis, scalable and platform-agnostic tool development, methods for using de-
identified clinical and genomic data, and improved data visualization techniques. In this way,
both standardization and creative data analysis could facilitate the scientific and workflow-
dependent aspects of representation. However, building relationships between patient-participant
communities and health research institutions is still at the core of improving representation in

clinical genomics research.

The literature identified automation as the primary tool for facilitating the path from knowledge
to practice in an LHS. The use of genomic CDS tools and predictive models to sustain
innovation and encourage evidence-based practice was widely suggested, which aligned with a
recurring suggestion from interviewees in Aim 2 that CDS tools could help curb inappropriate
use of genomic knowledge in clinical decision-making. Automated processes for variant
interpretation that systematically use the best available evidence, even if limited or preliminary,
could assist researchers and clinicians in adjudicating variant validity, actionability, and utility.
However, automation will not eliminate differences in the meaning of “research” given different
research and clinical histories and expectations in genomics. Ethical limitations in the

production, validation, and use of new knowledge are ultimately at the whims of social evolution
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in the research and clinical traditions, and automation will likely have little to do with the mutual
understandings that must form between researchers and clinicians when negotiating

responsibility for patient-participant wellbeing.

In the case of negotiating risks and benefits, systematically measuring a variety of outcomes was
identified as the primary method for determining both the risks and benefits of conducting
genomic research in a healthcare setting. Because value is defined differently by different
stakeholders (e.g., patient-participants, researchers, providers, payers, policymakers), multiple
types of information that could be used to measure value should be captured (e.g., patient-
reported outcomes, scientific outcomes, clinical outcomes, economic outcomes). These
measurements can be used to inform risk and reward negotiations on the part of researchers and
clinicians in future learning cycles and can also be used to justify policies that sustain funding
and incentives for learning healthcare. The question of how ethical oversight of clinical research
could be improved, however, is still dependent on the evolving relationships between embedded

ethics committees and those conducting clinical research.

While the literature tends to characterize processes like standards development and institutional
capacity building as prerequisites for conducting learning activities in an LHS, the updated
GLHS model proposed in this study suggests that these processes do not necessarily need to be
fully fleshed out before beginning the learning process, in much the same way that “clinical
research need not be complete prior to implementation” (Williams et al. 2018, p. 763) [13].
Instead, preliminary implementations of genomics-enabled LHS cycles that incorporate early

versions of the technical, social, ethical, and structural components identified broadly in the
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literature can be used as a way to dip the world’s proverbial toe into clinically embedded
research. This approach should be taken with great caution at first, because there should be a
widely held understanding that learning cycles will improve with time as components of the
learning process generate better understandings of themselves. Heeding the processes of
negotiation that will likely shape the evolution of learning systems can help instill a culture of
respect and vigilance in those systems and can help ensure that research and clinical traditions
evolve together into something that is greater than the sum of their parts. They may never reach a
state of true equilibrium, but they can continually learn from one another for the sake of

improving human health.

6.6 Limitations and future work

6.7 Conclusion

In this aim, we demonstrated that the number of studies addressing the topic of clinically
embedded genomic discovery is small, but that the complexity of suggestions made by those
studies is disproportionately large. Proposed enablers of clinical genomics research can be
roughly organized into a set of interdependent inputs and activities that enable continuous
learning that is participant-centric, value-oriented, and equitable. The integrative SR
sociotechnical GLHS model developed using BFFS methods offers a conceptual basis for the
ways in which proposed enablers of clinical genomics research integration can facilitate
negotiations between the (sometimes conflicting) priorities of research and clinical care.
Progressively developing and testing the suggested components of genomics-enabled learning

cycles can elicit additional resources and fuel virtuous cycles of learning.
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CHAPTER 7: CONCLUSIONS AND SUMMARY OF CONTRIBUTIONS

In this work, we derived an integrative conceptual model for GLHS discovery (the “5R” model)
that represents clinical research integration in genomics as an iterative and multidirectional
process involving constant negotiations between research and clinical stakeholders, exploratory
informatics tool development and adoption, and relationship building. The SR GLHS model
offers a genomics-specific enhancement of the original LHS model and provides a conceptual
foundation upon which future GLHS implementation frameworks can be built. Through careful
consideration of the sociotechnical factors involved in building virtuous cycles of learning and
improvement in health systems, genomics research and genomic medicine can co-evolve to

improve population health equitably, safely, and effectively.

This work offers several contributions to the fields of biomedical informatics, immunogenetics,
and learning health systems research:

1. Recommendations for best practices in multi-institutional clinical and genomic data
coordination work that can be generalized to projects with diverse patient-participant
populations, sizes, and funding capacities (Aim 1).

2. A novel conceptual model for understanding the research-clinical interface in the context
of GLHSs, from the perspective of genomic medicine experts (Aim 2).

3. A novel gene-disease association in the HLA-DRB locus that may predispose individuals
to C. diff. infection, and mechanistic hypotheses for the association that span multiple
immunological perspectives (microbiome-mediated, T-cell mediated, methylation-

mediated) (Aim 3).

168



4. A novel, integrative genomics-enabled learning health system conceptual model that
incorporates enabling factors for clinical genomic discovery identified by a Cochrane-

style systematic literature review (Aim 4).
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APPENDIX

Appendix A. First interview guide for Aim 2 interview study.
Intro
1. Background
a. Genomic medicine is becoming more widely recognized as useful and important,
but widespread clinical adoption is lacking
b. Genomic discovery activities are typically conducted in research settings using
research data, rather than clinical settings using clinical data
c. Embedding genomic research within clinical environments could both increase
pace of clinically meaningful discoveries, and increase evidence for utility needed
for wider adoption
1. In a genomic learning healthcare system model:

1. Implementation of new genomic medicine practices = collection
and analysis of outcomes data (and genomic data?) - new
genomic knowledge - quality improvement strategies - cycle
starts over

ii.  Idea is to rapidly move genomic discoveries into clinical care, then bring
clinical observations back to research setting, then use those observations
to inform discovery efforts, and so on

d. The only question is: how?
2. Informed consent for participation
3. Informed consent for interview recording

Discussion Points

e Personal background (clinical training and focus, work setting, etc.)

e What kinds of genetic/genomic tests do you currently use, if any? In what types of
clinical situations?

e Are there any clinical areas that might particularly benefit from rapid genomic discovery
efforts (and subsequent applications)?

e How might clinically-based genomic discovery research (e.g. GWAS, PHEWAS) that is
conducted as a by-product of clinical care differ from discovery work that is conducted in
purely research settings?

e What are some benefits and/or drawbacks of embedding genomic discovery research
programs within clinical environments?
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e What are some of the supporting elements that would need to be in place to facilitate
clinically-based genomic discovery research (technical, legal, social, ethical, structural,

etc.)?

e What information would you need to determine if a new clinical genomic discovery (e.g.
a gene-disease association) is ready to be put to clinical use? What safeguards would
need to be in place?

Appendix B. Second interview guide for Aim 2 interview study.

Intro

1. Background

a.

C.

We know there is a lack of evidence for the outcomes of implementing genomic
medicine (exactly the kind of thing that CSER is trying to address...large, multi-
site research consortia can help address this evidence gap)
I’m interested in exploring another way that we can start to close this evidence
gap and bring useful discoveries into the clinic more quickly - through a learning
healthcare system model, where genomic research is just embedded within
clinical environments, and new discoveries are used to iteratively inform care, and
we can collect outcomes data through the healthcare system
Interested in exploring

1. Is this a good idea? Are there any major red flags we should be looking

for?

ii.  And if some healthcare systems do start to implement this model, how?
There are likely many ethical, technical, social components that need to be
considered, but it’s not exactly clear what those components are and how
they should be addressed

2. Informed consent for participation

a.

b.

This will be completely anonymous, your name won’t be used in relation to any
of your responses, either within the study team or in writeups

You can remove yourself from the study at any time (including during this
interview), and request that your responses be removed from the study as long as
it’s possible to extract them from aggregate analyses

3. Informed consent for interview recording

a.

b.

Will transcribe and qualitatively code the interview data, which will be
anonymized
You can choose to stop the recording any time

171



Discussion Points
e Background

O

O

Can you tell me a bit about your personal background as a clinician-researcher
(clinical training and focus, work setting, day to day, etc.)?
m  What kinds of genetic/genomic tests do you currently use? In what types
of clinical situations?
Can you tell me more about your research at [institution name]?

e Challenges related to the data itself

O

What are some challenges you might run into when using clinical data for
research (both genomic and otherwise) vs. using data collected as part of a
dedicated research process? An example of research could just be something like
a GWAS or PHEWAS, looking at genotype-phenotype correlations.

Conversely, what are some potential benefits of using this type of data for
research?

What might make it difficult to collect clinical outcomes of clinical decision-
making that has potentially changed due to a new genomic discovery, for example
a new gene-disease or variant-disease association?

Where does that evidence for actionability come from? How would this work in a
LHS?

o Potential for clinical benefit?

O

Thinking about the LHS model that I mentioned earlier, are there any clinical
areas that might particularly benefit from rapid genomic discovery efforts
(and subsequent applications)?

Conversely, are there clinical areas where it might be more dangerous and/or
challenging than others to introduce things like new gene-disease associations
into clinical practice more quickly?

What are some benefits and/or drawbacks of embedding genomic discovery
research programs more broadly within clinical environments?

m  We already see a lot of this type of discovery work done in oncology. Can
(and should) we use clinical genetics research in oncology to inform
research models in other clinical areas?

Is the LHS model a reasonable one for increasing the evidence base for
genomic medicine, where genomic discoveries might be implemented more
swiftly than they otherwise would?

Do you think genomic surveillance or population screening should be
implemented more widely in a healthcare system? An example of such an
existing system is prenatal screening, which seems pretty widely applied.

e Differences in discovery practice between research and clinic
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o How might clinically-based genomic discovery research (e.g. GWAS, PHEWAS,
gene-drug interactions, etc.) that is conducted as a by-product of clinical care
differ from discovery work that is conducted in purely research settings?

o Do you think there is a reason that genomics research and medical genomics
practice should be carried out in two separate venues, potentially using
different funding sources? Why or why not?

m [s there anything specific about genomics that would make it more or less
amenable to integrating research into a clinical setting?
e Requirements for implementing clinically-based genomics discovery programs

o What are some of the supporting elements that would need to be in place to
facilitate clinically-based genomic discovery research (technical, legal, social,
ethical, structural, etc.)?

m  What do we need to make data better?

o What information would you need to determine if a new clinical genomic
discovery (e.g. a gene-disease association) is ready to be put to clinical
use/actionable? What safeguards would need to be in place?

m  How would/should this “clinical use” be identified, verified, tested, and
ultimately validated?

o How should the roles of patient and research participant be balanced in
something like a learning healthcare system, especially for genomics research?

m  How might consent models need to change to accommodate this dual role?
m  What do you think about dynamic consent? Should it be just forward
based? Or always backwards based?
e FEthics in genomics

o How do you think medical genomics fits in with the notion of distributive justice
in healthcare system (the assumption that if you’re spending money one place,
you’re not spending it somewhere else, where it might be needed more urgently)

e “Futuristic” thinking

o What is your personal vision for the future of genomic medicine? How can it
best be used to equitably improve healthcare?

o How do you think third party vendor data should fit into the healthcare system?
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Appendix C. Third interview guide for Aim 2 interview study

Intro
1. Background
a. We know there is a lack of evidence for the outcomes of implementing genomic
medicine, and like most areas of research, it takes a long time for new discoveries
to come to fruition in a clinical setting
b. I’m interested in exploring one model we might be able to use to start to close
this evidence gap and bring useful discoveries into the clinic more quickly:
1. Through a learning healthcare system model (originally proposed by
IOM/NAM in the early 2000s), where genomic research is just embedded
within clinical environments, and new discoveries are used to iteratively
inform care, and we can collect outcomes data through the healthcare
system
c. Interested in exploring
1. Is this a good idea? Are there any major red flags we should be looking
for?
ii.  And if some healthcare systems do start to implement this model, how?
There are likely many ethical, technical, social components that need to be
considered, but it’s not exactly clear what those components are and how
they should be addressed
2. Informed consent for participation
a. This will be completely anonymous, your name won’t be used in relation to any
of your responses, either within the study team or in writeups
b. You can remove yourself from the study at any time (including during this
interview), and request that your responses be removed from the study as long as
it’s possible to extract them from aggregate analyses
3. Informed consent for interview recording
a. Will transcribe and qualitatively code the interview data, which will be
anonymized
b. You can choose to stop the recording any time
4. Any questions for me before we get started?

Discussion Points

Background
e Could you tell me about your professional background? Clinical training, research
training (if any), clinical specialties, etc.
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Are you currently seeing patients in a medical genetics clinic? If so, what types of genetic
tests do you typically order, and for what indications?
Do you currently do any clinical research? If so, what does that research look like?

Using clinical data for research

What are some of the challenges you might run into when using clinical data for research,
as opposed to using data collected as part of a dedicated research study or data in public
or controlled access databases?

Conversely, what would make clinical data better for genetics research than research data
or public/controlled-access data?

If “healthy” individuals were to be broadly sequenced in a healthcare system, what are
some downstream effects that should be considered (if any)?

What are the pros and cons of using clinical data to monitor longitudinal patient
outcomes?

Consent for clinical research

Are there other models of consent (other than broad, up-front consent) that should be
considered for clinically embedded genetics research? If so, what would those models
look like? If not, why not?

Should patients receive incentives (monetary or otherwise) to participate in clinical
research, or to consent to data sharing in a clinical research institution? If so, why, and
what types of incentives? If not, why not?

Use and return of research results

Roles

If you found a potential disease-associated variant during a clinical research study, what
would need to happen to deem it clinically actionable? Where would the evidence for that
decision come from? Who would/should be making that decision?

Should new genetic discoveries be used to impact care in a healthcare system? If so,
how? If not, why not?

Do research patients typically expect results to come back to them? If so, should there be
efforts on the part of researchers and/or clinicians to manage patient expectations?

If there is a secondary finding from a purely clinical test (e.g., NIPT), should those results
be returned to patients? If so, under what protocols (if any)? If not, why?

If genetic research activities were conducted more routinely in clinical settings, what
would need to be done (if anything) to reconcile the dual role of patients as both patients
and research participants? Do you foresee any challenges or benefits of this dual role?
Who should be conducting genetic research in clinical settings? What types of
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collaborations would need to be in place to make clinical research successful (if any)?

Payment and distributive justice

Where do you think medical genetics stands with regards to distributive justice (the idea
that if you are spending money one place, you are not spending it somewhere else that
may or may not need it more) in the US healthcare system?

Do you think there should continue to be separate funding sources for research and
clinical care if the activities become synchronous? If so, why? If not, what might new
funding models look like?

Defining “clinical research”

How would you distinguish between research and routine quality improvement if
genetics research were embedded in clinical environments (if at all)?

Do you feel like the research and clinical enterprises are separate entities? If yes, in what
ways? If not, why?

The future of genetics in medicine

Do you have any concerns about genetics being used more broadly in other medical
disciplines? If so, what are your concerns? If not, why?

Should certain types of genetics research be prioritized to improve population health? If
so, what might that prioritization look like? If not, why not?

What is your personal vision for the future of genetics in medicine? How do you think
genetics can be used to have the greatest impact on individual and population health?
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Appendix D. REDCap demographics survey for Aim 2 interview study.

Clinical Genomics Discovery Project - Interview e

Participant Information

Thank you for participating in my intendew study! | am collecting some basic demographic information to include in a
summary table for the progect write-up. Please see below for a few quick questions, which will be cobocted
anonymously.

What type of medical andfor research environment do you currently work in?

O Academic Medical Center
Integrated Care Organization
Research-Only Hospital

O Cther (please specify)

Other (please specify the type of medical and/or research selting you currently work in):

What are your cregentials?

O MD
) MD, PhD
(O Cther {please specify)

Other (please specify your credentials):

What board certification(s) do you have in addition to Medical/Clinical Genetics and Genomics (if any)? Please check
all that apply:

] Cinical Cytogenetics and Genomics
] Chinical Molecular Genetics

] Internal Medicine

] Medical Biochemical Genetics

() Cbstetrics and Gynecology

] Pediatrics
C] Preventive Medicine

Other (please specify any board certification(s) you have in addition to Medical/Clinical Genetics and Genomics)

10142022 4:30pm sy REDCap
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Page 2

What typels) of genetic disorders do you speciaiize in? Please check all that apply:
] Cardiovascular gisorders (cardiomyopathy, arrhythmia)

(] CNS disorders (eplepsy. encephalopathy, structural brain malformations, newrcdegenerative discase)
(] Dysmorphology/Structural developmental abnormality
] Immunodeficiency

] Newrodevelopmental abnormalities (intellectual disability, autism)
8 mcw disorders (hypotonia, spasticty, neuropathy, myopathy)

Other (please specify the type(s) of genetic disorder that you specialize in):

What category or categories best describe you? Check all that apply:
] American Ingian, Native American, Alaska Native
] Aslan

[] Black or African American

(] Native Hawasan/Pacific Islander

(7] White or European American

] Middle Eastern of North African/Mediterranean
(] Hispanicilatinola)

O Cether {please specify)
Other [please specify how you describe your gender identity):

11142022 4:30sm powcsaney  REDCap



Appendix E. Axial code descriptions for iteration 3 of codebook development.

Code Group

Code

Definition

Consent

Avoiding coercion and respecting
patient wishes during consent

Strategies for protecting patients during the
research consent process

Considering the pros and cons of broad,
up-front consent

Descriptions of what broad consent might look
like in clinical research settings, and the potential
implications for people and research processes

Considering the pros and cons of
dynamic consent

Descriptions of what dynamic consent might look
like in clinical research settings, and the potential
implications for people and research processes

Maintaining transparency and setting
expectations in consents

Considerations for explaining research objectives
to patients and documenting the consent process

Merging ethical oversight of research
and clinical care

Thoughts about whether it would be feasible or
useful to combine the forces of IRB monitoring
and clinical oversight for clinical research studies

Using technology to aid the consent
processes

Suggestions for using technology to our
advantage when consenting patients for clinical
research

Working with IRBs to conduct clinical
research

Observations from working with IRBs on clinical
research projects in the past: the good, the bad,
and the ugly

Current Practices

Deciding between broader and narrower
tests for different indications

How things like Bayesian logic and uncertain
results factor into clinicians’ decisions about
ordering certain types of genetic tests

Doing clinical research in integrated and
universal health systems

Personal experiences and observations of what
it’s like to do clinical research in settings like
Kaiser, Mayo, and Geisinger, or nationalized
healthcare systems

Doing clinical research in non-
integrated healthcare systems and
research hospitals

Personal experiences and observations of what
it’s like to do clinical research and clinical care in
the fragmented US healthcare system

Ordering different types of genetic tests

The types of genetic tests that geneticists typically
order for different indications

Data

Getting data into the EHR

Problems with how genetic and clinical data gets
into commercial EHRs

Getting data out of the EHR

Problems with finding and extracting useful data
out of the EHR
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Protecting the privacy and security of
clinical data

Techniques for anonymizing patient data, and
concerns about who can and should access patient
data

Sharing and recycling clinical and
genomic data

Experiences with accessing and transferring
patient data across institutions

Using clinical diagnostic lab data for
secondary research

Experiences and perceived pros/cons of using
data from clinical diagnostic labs for research

Using commercial genomic data in the
clinic

Considerations for using direct-to-consumer
testing reported by patients in a clinical setting

Using EHR and clinical genomic data
for research

Things that make EHR data both better and worse
for research than other types of clinical data

Using large databases for genomic
research

Considerations for using large, de-identified
genetic databases (like gnomAD, UK Biobank
and All of Us) for clinical research

Using traditional clinical research data
for research

Things that make it easier to use data collected as
part of a dedicated research project for clinical
research

Discovery Contextualizing current knowledge with | Musings on where we are now in genetic research
past discoveries vs. the very recent past
Studying rare vs. common genetic Arguments about the merits and drawbacks of
variation/disease studying common diseases vs. rare diseases with a
genetic etiology
Understanding genetic impacts on Allusions to the vastness of potential genetic
health and disease impacts on human health and how much we still
don’t know
Using clinical tests for secondary How purely clinical tests (like prenatal genetic
research screening) can or cannot be used for secondary
research
Engagement Educating communities about genetics Issues with teaching basic genetic concepts to the

general population, and strategies for doing so

Educating non-genetics specialists about
genetic medicine

Needs and suggestions for getting more non-
genetic medical specialists interested in
comfortable with using genetics as a tool

Engaging underrepresented
communities in genetics research

Observations and ethical considerations for
engaging underserved and underrepresented
communities in genetics research

Forming collaborations within and
between hospital systems

Current challenges with forming collaborations
within healthcare research institutions, and
strategies for building relationships
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Generating excitement and interest in
clinical research

Reasons why researchers and clinicians do and
don’t get involved in clinical research

Incentivizing and compensating
research participants

Pros and cons of altruism vs. using incentives to
engage and/or compensate research participants

Implementation Comparing and contrasting research and | Opinions about whether or not the research-
clinical care clinical divide is real or imagined
Developing clinical guidelines from Observations about the current state of translating
genetic discoveries new genetic discoveries into clinical guidelines
that impact care practices
Distinguishing between research and Observations of differences and/or similarities
quality improvement between research and clinical quality
improvement
Embedding genetic research in routine Potential pros and cons of embedding genetic
clinical care discovery research within clinical environments
Following up with patients after genetic | Downstream implications of genetic tests or
testing screens, and what patients are owed in terms of
clinical follow-up
Misusing and misinterpreting genetic Concerns about genetic tests being
tests for clinical care inappropriately ordered or interpreted by either
non-genetics or genetics specialists
Testing new clinical interventions Current standards for testing out new clinical
interventions, and concerns about implementing
new knowledge or tools too quickly
Using population-wide genetic Pros and cons of using population-de genetic
screening in clinical care screening to guide clinical care and improve
public health
Using the EHR to streamline clinical Current challenges with integrating genomic CDS
genomics into EHRs, and hopes for the future of CDS
integration
Utilizing remote medicine and Pros and cons of using remote medicine and/or
eConsults in genomics eConsults to practice genetic medicine
Participant Clinical Practice Current and past experiences in clinical practice
Background

Leadership, Teaching, and

Current and past experiences with leadership,

Entrepreneurship teaching, or industry
Research Current and past experiences with research
Training Past areas of study in research and/or medicine
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Payment and
Reimbursement

Comparing and contrasting single-payer
and multi-payer healthcare funding
models

Observations or personal experiences in
accountable care organizations or nationalized
health systems, and how those opportunities and
services compare with most health systems in the
Us

Evaluating the role of genetics in the
investment and distribution of
healthcare funds

Discussions about the ethics and utility of
spending money on genetic services and research
within the US healthcare system

Funding research and clinical testing
through outside organizations and
companies

Observations of non-government organizations
(pharma companies, philanthropy, etc.) funding
genetics research

Negotiating costs from integrated
clinical research

Discussions about who is or should be responsible
for different clinical or research-related genetic
costs in a healthcare system

Returning Results

Clinical regulations for returning
research results

Current clinical standards for returning genetic
results to patients in a clinical context

Deciding what types of results to return
to patients, and when

Clinician and researcher considerations for
returning genetic results to patients/research
participants

Managing patient expectations and
understanding before and after testing

Observations about how patients typically react to
receiving genetic testing results, and those
reactions can be managed with pre and post-
return of results counseling

Roles Comparing and contrasting the duties Understandings about how researchers and
and motivations of researchers and clinicians have different stakes in the research and
clinicians clinical processes, and how those motivations
should influence types of involvement
Navigating the medical system as both a | Hopes and concerns about the overlap between
patient and a research participant patient and research participant roles in learning
health systems
Negotiating the roles of medical Debates about how involved each type of
geneticists, genetic counselors, and non- | clinician should be in the genetic medicine
genetics providers process (test ordering, interpretation, return of
results)
Utility Adopting genetics into other medical Arguments for integrating genomics more broadly

domains

into medicine, rather than having it remain its
own specialty

Understanding personal utility of
genetics for patients

Reasons why patients themselves might want to
get genetic testing done, clinical or otherwise

Using genetics vs. other medical tests or
interventions

Decisions that go into ordering genetic tests or
using genetic interventions as opposed to other
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“standard” tests or interventions in medicine

Visualizing the best uses for genomics
in medicine

Hopes for the future of genomics in medicine, and
predictions of how it can be used to maximally
benefit individual and population health

Variant
Actionability and
Validity

Determining variant actionability and
utility in the clinic and clinical labs

Current processes for interpreting genetic variants
given other clinical information

Generating, collecting, and applying
evidence for variant interpretation

Processes and needs for collecting information
that can be used for variant interpretation and
actionability assessments

Standardizing and curating variant
interpretations

How external bodies and resources like ACMG,
ClinGen, and ClinVar contribute to variant
interpretation and actionability assessments

Weighing analytic validity, gene-disease
validity, and utility

Complexities associated with determining clinical
validity, analytic validity, actionability, utility,
etc. of genetic variants
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Appendix F. Axial code descriptions for iteration 4 of codebook development.

Code Group Code Definition
Building a Benefits and drawbacks of using EHR data for Benefits, challenges, and implications of
collaborative research and equitably representing diverse collecting and using routine clinical data
learning culture | populations and genomic data for research, and how that
in medical data may or may not be representative of the
systems populations that should benefit from that
research
Benefits, drawbacks, and realities of operating Observations or personal experiences with
within integrated and universalized healthcare doing clinical research and/or clinical care
systems in integrated US healthcare system (like
Kaiser, Geisinger, Mayo, the VA), or in
countries with universalized healthcare
systems
Challenges of operating within a stressed and Personal experiences with doing clinical
fragmented US healthcare system research and/or clinical care under the
typical US healthcare model, which is
generally disconnected and under resourced
Forming collaborations and support systems Examples and observations of healthcare
within and between healthcare systems providers, researchers, and leadership
working together (or not) to conduct
genomic medicine and/or research
Negotiating the roles of medical geneticists, Discussions of who should or could be
genetic counselors, and non-genetics providers ordering/interpreting genetic tests among
genetic specialists (GCs and geneticists) and
non-genetic specialists (neurologists,
oncologists, cardiologists, etc.)
Paying for clinical sequencing and clinical Discussions of who (healthcare systems,
research insurers, federal/state governments,
commercial entities, patients) should be
paying for different types of clinical genetic
research or care, and observations of what
types of funding models currently exist in
genetics
Sharing and recycling clinical and genomic data | Benefits and challenges of sharing
participant-level genomic and clinical data
within and between institutions
What are the differences (if any) between Discussions of how research and clinical
research, clinical care, and quality improvement? | care overlap and/or diverge, and how
routine quality improvement might be
distinct from both
Building Building trust with patients, especially from How researchers and healthcare providers
relationships minority communities can respectfully engage with
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with
patients/research
participants

patients/research participants, especially
from backgrounds that have been
historically disadvantaged in medicine
and/or genetics research

Communicating with patients about
research/clinical distinctions and navigating
provider/researcher differences

How researchers and clinicians do, can, or
should help research participants/patients
navigate the research-clinical boundary,
including clarifying the roles of researchers
vs. providers

Engaging patients in the research process and
being sensitive to their needs and motivations

Discussions of how involved patients
should be during the research process,
particularly for receiving preliminary
research results or bringing their own third-
party data (e.g. from 23andme) to the table.
This code also addresses why people might
be interested in genetic testing in the first
place, and how they can or can’t access
genetic medicine resources

Providing incentives or clinical benefits to
patients for participating in research

Discussions of whether people should
receive monetary or healthcare incentives or
compensation for participating in clinical
research, or if they should be participating
in research altruistically (or a mix of both,
depending on the situation)

Ensuring
patient/research
participant
safety and
wellbeing

Determining variant actionability, utility, and
returnability in the clinic and clinical labs

Current clinical processes for deeming
genetic variants clinically actionable (e.g.,
through a CLIA lab), and what criteria are
or should be used to determine if a variant is
clinically actionable (e.g. it could impact
their care in a meaningful way) and/or
should be returned to a patient

Educating non-genetics providers about genetic
medicine to prevent misuse and misinterpretation

Observations of how genetic medicine is
currently misused by healthcare providers,
and strategies of training and aiding
providers to prevent misuse from happening

Ensuring appropriate clinical follow-up after
genetic testing

Considerations for what clinical follow up is
needed after genetic testing

Generating, collecting, and applying evidence for
variant interpretation

Discussion of current authoritative bodies
that develop variant interpretation standards
(e.g., ClinGen, ACMG), and how
accumulated evidence of variant
pathogenicity can and should be used to aid
variant interpretation

Turning new genetic associations and
technologies into clinical interventions

Benefits, challenges, and safety
considerations for “fast tracking” potentially
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actionable genetic variants and tools into
clinical use, either using standard clinical
trial methods or other implementation
models

Evaluating the
role of genetics
in medicine

Considerations for using population-wide genetic
screening in clinical care

Pros and cons of doing routine, population-
wide genomic screening

Deciding what types of genetics tests to order
based on clinical indications

Current practices in ordering genetic tests
for specific indications (e.g., developmental
delay, family history), and considerations of
whether broader (e.g. exome) or narrow
(e.g. targeted panel) tests should be ordered
in different clinical situations

Historical advancements in genomic research and
technology

Ways that genomic research and genomic
medicine have progressed over the past ~50
years, and how those advancements have
impacted other scientific discoveries and
developments

Understanding genetic impacts on health and
disease

Discussions of how much we do or don’t
know about how genetics impacts human
health and disease, and why that knowledge
is important for science and for healthcare
in general

Using the EHR to represent genomic data and
streamline clinical genomics

Examples of genomics CDS in EHRs (e.g.,
through the Epic genomics module), and
current challenges with getting genetics data
into and out of the EHR

Visualizing the best (and worst) uses for
genomics in medicine going forward

Considerations of trade-offs between
genetic testing and other medical tests, and
predictions of the best uses for genomics in
advancing science and population health

Participant
Background

Types of patients they see or environments they
do clinical work in

The participant’s typical patient populations
(e.g., adults, pediatrics, oncology,
OBGYN), and where/how they used to or
currently work (e.g. institution name,
institution type, position)

Types of research they are or were involved in

Past and current areas of research (e.g., data
science, family communication,
implementation science), and how they split
time between research and clinical care

Where they trained, in what, and for how long

Institution names, types of degrees, lengths
of degrees, people they trained with, reasons
for choosing certain career paths, etc.
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Protecting
patient/research
participant
rights to privacy
and autonomy

Challenges and strategies for ethical oversight
and consent in clinical research

Benefits and challenges of different consent
models (e.g., broad consent, dynamic
consent) for merging research and clinical
care, and experiences working with IRBs to
do clinical research

Protecting the privacy and security of clinical
data

Considerations for protecting the privacy
and security of clinical and genetic data that
is used for research in clinical settings
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Figure S3.1. CSER projects, site populations and sequencing modalities.
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Figure S3.2. Survey administration timepoints for CSER harmonized survey measures.
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Figure S3.3. Reporting timepoints for genomic sequencing results, both at the participant level
and at the case level.
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Figure S3.4. Timeline of the harmonized measure change proposal process and implementation
of the post-Return of Results (RoR) to follow-up survey elapsed time variables.
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Figure S3.5. Data upload interface on the CSER Data Hub website.
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Figure S3.6. Multi-site harmonized data download interface on the CSER Data Hub website.
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Figure S3.7. CSER ID management interface on the CSER Data Hub website.
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Figure S3.8. Sequence data upload instructions on the CSER Data Hub website.
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Figure S3.9. Change log documentation on the CSER Data Hub website.

Data Dictionary and Import Template Change Logs

L. Data Dictionanes

- — v e
B e R P

e e e .
A ) Bam— — —— 0 4
W ) Ba— . Sn— | $o 0
D r— -
| G, . S— §
C—— ) Ba— — — 0 -
W | —— . oy A

196



Figure S3.10. Reference sheet for Baseline Measures in the CSER cross-site Adaptation
Dictionary.
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Figure S5.1. Quantile-Quantile (Q-Q) plot for logistic regression analysis in the European
ancestry sample (n=15,458). Expected P-values from a theoretical y2-distribution are plotted on
the X-axis and observed P-values for each SNV in the logistic regression model are plotted on
the Y-axis. The red line represents the null hypothesis that the theoretical and observed P-values
correspond with one another.
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Figure S5.2. Manhattan plot of P-values generated using logistic regression analysis in the joint
ancestry sample (n=19,861). An additive model was used to assess the disease susceptibility
impact of the minor (coded) allele at each position, while controlling for age, BMI, sex, ancestry,
nursing home status, chemotherapy, diabetes, HIV, transplant medications, corticosteroids, and
medium or high-risk antibiotic exposure as covariates. Genomic coordinates are displayed along
the X-axis, and the negative logarithm of logistic regression P-values are displayed on the Y-
axis. Each dot represents a SNV in the regression model, with associated P-values plotted
accordingly, while the diamond represents the most significantly associated SNV. The dotted
line represents the negative logarithm of the genome-wide significance threshold (P < 5 x 10°%).
Colors are used to distinguish between SNVs in adjacent chromosomes.
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Figure S5.3. Q-Q plot for logistic regression analysis in the joint ancestry sample (n=19,861).
Expected P-values from a theoretical y2-distribution are plotted on the X-axis and observed P-
values for each SNV in the logistic regression model are plotted on the Y-axis. The red line
represents the null hypothesis that the theoretical and observed P-values correspond with one
another.
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Figure S5.4. Manhattan plot of P-values generated using logistic regression analysis in the
African ancestry sample (n=4,084). An additive model was used to assess the disease
susceptibility impact of the minor (coded) allele at each position, while controlling for age, BMI,
sex, ancestry, nursing home status, chemotherapy, diabetes, HIV, transplant medications,
corticosteroids, and medium or high-risk antibiotic exposure as covariates. Genomic coordinates
are displayed along the X-axis, and the negative logarithm of logistic regression P-values are
displayed on the Y-axis. Each dot represents a SNV in the regression model, with associated P-
values plotted accordingly. The dotted line represents the negative logarithm of the genome-wide
significance threshold (P < 5 x 10°®). Colors are used to distinguish between SNVs in adjacent
chromosomes.

-

. o - . .
g > v ) ;"",,‘c E* L o
’ - » - " -

!

..l )

-y
-

.
4 & . .
s e ' . > .
o g, Y Be 3%y e :
¥ o By.a, .. . RN P
- o ~ A . - .
s . " £ 2 = 2 RN

-

e ]

201



Figure S5.5. Q-Q plot for logistic regression analysis in the African ancestry sample (n=4,084).
Expected P-values from a theoretical y2-distribution are plotted on the X-axis and observed P-
values for each SNV in the logistic regression model are plotted on the Y-axis. The red line
represents the null hypothesis that the theoretical and observed P-values correspond with one
another.
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Figure S5.6. Regional LD plot of SNVs evaluated in the African-ancestry logistic regression
analysis, using the African 1000 Genomes superpopulation as a reference group. Genomic
coordinates spanning the HLA-DRB region and surrounding genes are shown on the X-axis in
both subplots. Negative logarithms of P-values from the African-ancestry logistic regression
analysis are shown on the Y-axis in the upper sublot, and annotated gene transcripts are
distributed along the Y-axis in the lower subplot. Each dot represents a SNV in the regression
model, with associated P-values plotted accordingly. SNVs in high LD with reference to the
index SNV (rs68148149) are colored in red. The LD plot was generated with the LocusZoom
[207] tool using default parameters and the 1000 Genomes Project 2014 AFR reference panel.
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Figure S5.7. Manhattan plot of P-values generated using logistic regression analysis in the
European ancestry sample (n=15,458), controlling for the index SNV identified in the joint and
European-ancestry genome-wide logistic regression analyses (rs68148149). An additive model
was used to assess the disease susceptibility impact of the minor (coded) allele at each position,
while controlling for the index SNV, age, BMI, sex, ancestry, nursing home status,
chemotherapy, diabetes, HIV, transplant medications, corticosteroids, and medium or high-risk
antibiotic exposure as covariates. Genomic coordinates are displayed along the X-axis, and the
negative logarithm of logistic regression P-values are displayed on the Y-axis. Each dot
represents a SNV in the regression model, with associated P-values plotted accordingly. The
dotted line represents the negative logarithm of the genome-wide significance threshold (P <5 x
10-®). Colors are used to distinguish between SNVs in adjacent chromosomes.
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Figure S5.8. Q-Q plot for logistic regression analysis in the European ancestry sample
(n=15,458), controlling for the index SNV identified in the joint and European-ancestry genome-
wide logistic regression analyses (rs68148149). Expected P-values from a theoretical y2-
distribution are plotted on the X-axis and observed P-values for each SNV in the logistic
regression model are plotted on the Y-axis. The red line represents the null hypothesis that the
theoretical and observed P-values correspond with one another.
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Figure S5.9. Regional Manhattan plot of P-values generated using logistic regression analysis of
SNVs in the chr6:32400001-32600000 region for 4 participant groups: participants with >=1
copies of the DR51, 52 or 53 haplotype (top left, n=14,291), participants with >=1 copies of the
DRS51 haplotype (top right, n=4,130), participants with >=1 copies of the DR52 haplotype
(bottom left, n=8,887), and participants with >=1 copies of DR53 haplotype (bottom right,
n=7,863). An additive model was used to assess the disease susceptibility impact of the minor
(coded) allele at each position within each participant group, while controlling for age, BMI, sex,
ancestry, nursing home status, chemotherapy, diabetes, HIV, transplant medications,
corticosteroids, and medium or high-risk antibiotic exposure as covariates. Genomic coordinates
are displayed along the X-axis, and the negative logarithm of logistic regression P-values are
displayed on the Y-axis of each plot. Each dot represents a SNV in the regression model, with
associated P-values plotted accordingly. The red line in each plot represents the negative
logarithm of the genome-wide significance threshold (P < 5 x 10®), and the blue line represents a
suggestive genome-wide significance threshold (P < 5 x 107%). Significantly associated SNVs
from Table 5.2 are colored in green.
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Figure S5.10. Flowchart of regional Manhattan plots of P-values generated using logistic
regression analysis of SNVs in the chr6:32400001-32600000 region, categorized by the
following haplotype subsamples: DR51(+) (n=4,130), DR15(+) (n=3,791), DR16(+) (n=381),
and DRB1*15:01(+) (n=3,608). An additive model was used to assess the disease susceptibility
impact of the minor (coded) allele at each position within each participant group, while
controlling for age, BMI, sex, ancestry, nursing home status, chemotherapy, diabetes, HIV,
transplant medications, corticosteroids, and medium or high-risk antibiotic exposure as
covariates. Genomic coordinates are displayed along the X-axis, and the negative logarithm of
logistic regression P-values are displayed on the Y-axis of each plot. Each dot represents a SNV
in the regression model, with associated P-values plotted accordingly. The red line in each plot
represents the negative logarithm of the genome-wide significance threshold (P < 5 x 10®), and
the blue line represents a suggestive genome-wide significance threshold (P < 5 x 1079).
Significantly associated SNVs from Table 5.2 are colored in green.
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Figure S5.11. Flowchart of coding allele frequencies (CAFs) of the index SNV identified in the
joint and European-ancestry genome-wide logistic regression analyses (rs68148149) in different
HLA-DR haplotype-enriched groups (DR51, DR52, and DR53).
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Figure S5.12. Relational flowchart of the HLA-DRB haplotypes identified in the eMERGE C.
diff. cohort.
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Table S3.1. Examples of modifications, additions, and transformations to the harmonized CSER

SUPPLEMENTAL TABLES

survey measures and outcomes database.

Change Type Fleld Type Detalls Ratlonale
FIX typo(s) in variable name Enbance Interpeetability and oot
Modication Multiple Gelds T~ N tency of database )
Fix typols) in resposse scale Ensure consistency of common data
moded
Change radio buttons to checkboxoms Allow sites o report multi-sedoction
in rospossn list responses, even o others collected
slngle resposses
Podiatric age Roplace original harmonized ago vasi-  Accurately capture pediatric sgos
abde I pedistric survey (truncated with appropeiate granulanty, given
year) with two variables: 1) numeric raage of participant ages across
value, traditional roundisg, 2) units CSER sites (pewborns 1o young
. for numeric vaboe (months or yoars) adults)
Presatal statos Add tledd that distinguishes between Prenatal testing should be distin.
podiatric and peesatal peobands guisbed froen podistsic testing due to
unknown effocts on construct validity
of barmonized measures
Addition Pregnancy status Add fNledd that indicates whether o Pasticipast's undergoing prenatal
participant’s pregnascy s cegoing or testing and adminivored differest
terminated at follow-up surveys, depending on whetber the
pregnancy ks ongolng or terminated
Survey /messure com- Add fledd that indicates the comnple- Allow for fstero resoarch oo how the
pletion date tion date for each survey type, or COVID-19 pandemic may or may pot
for cach measure if surveys were not have impacted follow.up responses
grouped accoeding 10 harmonkved
Elapsed time since Add fiedd that (ndicates the mamber Allow for feture use of elapsed time
return of results of woeks post-RoR 1hat a survey or variable as a covariate or exclusiosary
(RoR) s time of sur- meswure was sdministerod criterion
vey /1essure
Lasguage (Spaniah) Add fickd that indicates whotber o Capture impacts of transln-
survey was originally administered in tion /mizvey language on warvoy re-
Spanish sults, if any
Vital status Add fidd thmt indicates whetber Alow data asalysts to distinguish be-
the proband s alive, doad, stillbeen tween kow Lo follow-up due 1o death,
{pregnaacy) or terminated (preg: and loss to follow-up dwe to other
nancy), and at what age the peoband  reascas
Consent group Add fiedd that Indicates which har- Contrally track how wurvey and
montzed survey /soguence consest sequence data should be access
group a participanst is is (see “Con- controlled is the AnVIL platfoem
wert Group Harmonization® for de-
talls)
Patlent or parent Add fiedd that distinguishes between Cestenlly track study 1Ds foe pasests
paent snd patiest rocords with sequence samplos
Provider 1D Add fiedd that uniquely idestifies » Allow for futere analyses of provider
clinical provider withia &« CSER site characterinies and effocts, while
svoiding duplicates
Continued on next page
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Continuod fram previous page
Rationale

Change Type Field Type Details
Diata collection Add Beld that indscates whether a m&mmu
method provider follow-ap survey was admin-  on data collection method
tered Lo providers or collectod via
chart review
Tramnsformation Zip Codo Replace 2ip code with rural /urban Avoid collection of identifiable infor-
designation using the Health Re- mation

woaroes & Servicos Admisistration
Federal Office of Rural Health Policy
Joakup table
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Table S3.2. CSER harmonized sequence and sample metadata model.

Tablels) Flobd Doscrl; numerations Delimiter

: subject d mla N/A ‘l%’

Subject

and

Ssauple

Sample  subject.id Subject Local ID (Op-  idestifier 3 N/A NJA “subject!”

Jocal tional; ONLY peo-
vide If sufficlently
dio-ident ified )

Sample sample.id JdemtiSer for sample Idemidier 1 N/A N/A 114483

and Se- “Sample. 20"

quence

Sample subosttor id  CSER site name onemweration 1 PIEGS N/A

TexnKidsCanSeq
NYCKdSeg
SouthSeq
NCGENES2
CHARM
ClinSeq
Sample dbgapsample  Sample sdentifior used  idestifier 1 N/A N/A
M in dbGaP (ff previe
ously submittod)

Sample samplesource  Tisuve type of sample  string 2 N/A N/A “basal cell
(Lo, melanccytes, carcinoana”
keratinocytes, baccal “skin®
cells, embeyanic sem
celly)

Sample  body site Callection site of the  string 1 N/A N/A “lymph node”
sample (Lo, skin,
breast, peripheral
blood, inswer oral cav-
ity)

Sample tisuo affected  1If applicable to dis- boolean 2 Yow N/A

Status oase, s the tissue from No
an affectod source or
an unaffected sosrce?
Sample s Aumor Is thin samplo from & boolean 1 Yow N/A
No
Sample primary Prisnasy tumor, coumeration 1 Primary N/A
anetastatic metastasls, of trass. Metastasis
Aumaor foemmed cell line (if Transformed
applicable)
Sammple peimary tumor Prisnasy tumor loca- string ] N/A N/A *right-sido
Jocation tion (If applicable) oodon”™

Sample tumor stage Tumor stage of sampde  string 1 N/A N/A “stagn HIA®
(I applicabie)

Sample tumor.grade  Tumor grade of sam- Integer 1 N/A N/A 2
pile (M applicabie)

Continued on next page
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Comtinued from provious page

Tublo(s) Field Description Field Type Priority Enumerations  Delimiter Exnmple
Sequence target depth mw soquencing integer 1 N/A N/A 20
t
Seguence  sequencing Paired vs singhe end wiring I N/A N/A “paited end®
srategy (or mate pair)
Soquence  read length Sequencod read demgth  integer 1 N/A N/A 100
(bp)
Sequence mumber_of Number of indepen- integer 1 N/A N/A 1
independost  dent Bhrarios so-
Jibraries quenced

Table S3.3. CSER harmonized consent groups. DUC = dbGaP Data Use Category; DUR = Data
Use Restriction; GRU = General Research Use; HMB = Health/medical/biomedical research;
IRB = Ethics Approval Required.

Consent Group Survey DUC Survey DUR Sc;a\,m DUC Sequence DUR
i GRU Noae G Nooe

2 GRU IRB GRU IRB

3 IRU IRB N/A CSER-ONLY
7Y “GRU IRB N/A NA

5 N/A CSER-ONLY GRU IRB

6 N/A CSER-ONLY N/A CSER-ONLY

7 N/A CSER-ONLY N/A N/A

8 HAB Nose HMB Nowe
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Table S4.1. Descriptions and quotation examples of axial codes in the “Building a collaborative

learning culture in medical systems” semantic domain.

Axinl Code Description Quotations
“Bonefits and drawbacks of Benclits, challenges, and implications OB, the data @ terrible. EHHA aro god-awdul. 5o the
usieg EHR data for research of collecting and using routine clinical  amount of, how data is structured in an electronic medi.
and equitably representing data and gesomic data for research, cal record Is terrible.” (Participan 5)
diverse populations and how that data may or may not
be representative of the populations “So you know, enfoctunately, [ do worry [omphasized| o
that shoudd benefit from that research  be quite honest, that certaln are golng to be
left behind.” (Participant 16)
Benefits, drawbacks, and re Observations or personal “And Kalser. | mean, | think, you know, Kalser is a
alition of operating within with doing dinical research and for model where they can study scene of these things over
intograted and usiversalized dinical care in intograted US health- time, becauso patients tesd 1o stay in the Kaiser sys-
healthoare systemss care system (ke Kaiser, Gesinger, tem.” (Participant )
Mayo, the VA), or in countries with
universalizod bealtheare systoms “And Estonis actually bas a small genome projoct. Amd
so thoy have several, several publications out about
what they're dolmg. And it's, | mean, It's, it's pretty
darn cool.” (Participant 20)
Challenges of operating Personal experiences with doing clin- “But it's not it's not an arca that | have enough encrgy,
within & stressed and frag- ical rosensch and for clinical care un- puychic energy 1o roally be, to thiak about it really crit-
mented US healtheare systesn  der the typical US healtheare moded, seally. Beyond the system sucks, we got to do soenething
which s generally disconnected and better.”
under resourced
“And so the, you ksow, the nihilivis amsong e are sy-
kg, well it's goisg to require & system collapse and re-
build for this to actually get fixed., But we'll we'll see.”
(Participant 20)
Forming collaborations and En-p&uundmuomo(hedtb- “It’s part of the, you know, 1 feel like, you know, part of
support systesss within and care pr hers, and Jead- what happess in healthenro in getting these sikon. Yeah,
between healthoare systesss mhlpmlmgmba(otm)to you know, silo the researchers away from the clinicians.”

conduct genoméc medicine and for re-

(Participant §)

“1 thisk it's, 1 think it's golag to require soveral people
1 do think, 1 mean, certainly the, the clinical persos
who's a part of it would probably need to bave their
hand in research, of, of some other reseasch Solks kind of
n-odndwuhlt' (P-mclpau 18)

‘Notudl. Ymm'lhwaw-mm

this, there's not esough, plus there's not enough train.
ing prospocts for getting enough of ue” (Participant 5)

“1 mean, they're always going to need geneticists to
help them interpret it, and the nuances to the result.”
(Pasticipamt 13)

Paying for clinical sequescing
and clinical resensch

Discussions of who (healthcare sys-
toms, insarers, foderal /state govern-
ments, commercial entities, patiests)
should be paying for differemt types of
dlinical genetic resoarch or care, and
observations of what types of funding
models currently exist In genetics

*So if 1 want 1o order a test, it doosn’t got approved by
an issurance company with pre suthorization because
it gets approved by our , which
means that | can order anything.” (and;nm?)

“Well, because, you know, the whole premise of bealth
insurance Is that you enroll a bunch of people becanse
you dom't know who's likely to get wick and you spread
the costs across the prople who aron't likely to get sick
versus the people who are likely to get siek.” (Partscl.
pant 7)

Comtinued on next page
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Contised from previous page

Axinl Code Description Quotations
Sharing and recycling clinical  Benefits and challenges of sharing “Su, they ve now figured out how to make that data
and genomic data participant-level geacmic and clinical  avallable 1o you, without violating the consents of the

data within and betwoen isstitutions  original thing. But agxin, it's a wery large effort with a
whale busch of software enginecrs and geneticists and
stuff, that's setting up the infrastructure.” (Participam
4)

“We are glad 10 share it now, we just don’t have the
resousoes 10 do 30 o the seale that that would reguire”
(Participant 10)

What are the differences (if Discusssons of how research and clin- “And the answer s, Well, really, it's both and they're

any) between research, clinical  Seal earo overlap and/oe diverge, and not, they're oot separable.” (Participant 11)

care, and quality Improves how routine guality lmpeovement

vent? might bo distinet from both “Yeah, I Senl Eke wo're a bit of an odd...1 foel liko clin-

jeal and research is o well integeated where we are foe
the patients that are dolng clinical stedies.” (Participant
15)
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Table S4.2. Descriptions and quotation examples of axial codes in the “Building relationships

with patients/research participants” semantic domain.

Axial Code Description Quotations
“Bullding trust with patients, Tow researchers and healthcare “I mean, [ think you don't know and | think it's very, it
mspocially from mincerity com-  providers can rspectfully engage would have to be firly trusting on the Exmily's bebalf,
runition with patients/research pasticipasis, You know what 1 mean 1o say, Hey, you can hawe my
especially from backgrounds that data and it doesn't really matter what you do with it.”
bave been historically disadvantaged {Participant 3)
in modicine and /or geootion research
“Right. Right., You do bave to you have to get the en-
gagement, for historical, ethical reasons.” (Participant
13}
Communicating with pa- How researchers and clinicians do, “Right, and the jargon is awhsl [emphasized]. Papers are

tients about research/clinkeal
distinctions and navigating
provider/ rosearcher differonces

can, or sioald help research partici-

pants/patients pavigate the research-
clinical boundary, inclading cariflying
the rales of resoarchers va. providers

written in jargon. [t's all of those things. | think if we
can, If we had a chance of cleaning that up, it would be
groat,” (Participam 9)

“And 80 sometimes, that's a little bit difficult with with
Just like trying to help families undorstand the process
1o publication, and how thero are cases whero it's taken
years to, to move things forward. And and so we try to
met those expectations carly,” (Participant 19)

Engaging paticots in the re
soarch process and being sen-
sitive 1o their neods and mots.

ical bemefits to patients for
pasticipating in research

Discussions of bow invalved patients
should be during the resoarch proces,
partioularly for receiving peellminary
research results or bringing thelr own
third party data (e.g. from 23andme)
1o the table. This code also addresses
why people might be Interested in
prnetic testing im the finst place, and
Bow they can of can't accos genetic

receive monetary or healthcare in-
ceptivos or compensation for partici-
pating in climical research, oe if they
should be participating in research
altruistically {(or & mix of both, de-
peading on the sitaation)

“So the patient, the patient has two roles to fulfill here,
Ono is just to selfl advocate, as a patient, and to survive
the inefficiendies and s0 oo And then they're also hav-
ing 10 deal with the poteatial lssues and bemefits that
are involved with having given their DNA to the health
system.” (Participamt 2)

“Umn, I've soem it both ways befare, | think that really
spoaks Lo the importanco of peotest cosnseling and like,
expectation setting * (Participant 19)

“Well, It's implicit that everyone is there, and contribut-
ing to gemeralizable knowledge for everyone else's bene-
fit. 1 mean, that's why they're all thero,” (Participast 7)

“And you're gonna know [emphasized|, and knowledge
# power. Even if you do mothing with it, #t's still your
gene, you own i, you know what it & and makes a dif-
ference to people.” (Participant 11)
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Table S4.3. Descriptions and quotation examples of axial codes in the “Ensuring patient/research
participant safety and wellbeing” semantic domain.

Axial Code Description Quotations
Detormining variant action- Current dinical processes for doen- 5o 1 coudd Tive with the fact that i takes a whilo to
ability, utility, and returnabdl.  ing genetic variants clinically action- make these, you know, to get to the point where these
ity in the clinkc and clinical able (eg. through a CLIA lab), and wvariants are viewed as as reliable and clinically wseful.”
labs what criteria aro or should be used {Participant 10)
1o determine if & variant is clinically
actionable (e.g. It conld impact thelr “Nevertheless, there's a tremendous rode for the art [em-
care (n a meaningful way) and /or phasized] of medicine as well, and using cliniclan discre
should be returned to a pationt tiTudimMmddunudw'(MHpu
12
Educating mon-genetics Olwervatioss of bow genetic medicine  “And that's hard, you know, that procms is not easy
peoviders about genetic s currently misused by bealtheare for everybody, even the geneticists, they don't grow up
medicine 1o peevent misuse providers, and strategles of training thinking about peroteins and that soet of stutf. So, but |
and misinterpretation and aiding providers to prevent mis- think that those are important,” (Particpant 9)
wse from happening
“Yeah, | think we'll sever have be able to train enough
of us 10 be clinical geneticists are genetic cousselos.
So we do have to bave some sort of training for other
providers.” (Participant 13}
Ensuring appropriate clinical Consaderations for what clinical fol- “One of the other problems will be determining, you
follow-up after genetic testing  Jow up is noedod after genotic testing  know, what are the downstroam implications if it's

now relevant to health? Do you have to do the moni-
toring, you have to do survelllance? Do youa have treats
mem? Do you have a clinical trial? Do you have a swap
wroap?™ (Pasticipant 3)

“Yeah. If you have a BRCA one, the recommendations
are completely differont. And your risk is quite, you
know, it's, it's ost of proportion, right to what you
would i you were to be in the geseral population. So
if you get a mammogram age 40 and up, it's not, it's
not goimg to do the trick,” (Participant 14)

Generating, collecting, and

“But In genetics, what you know really, | think that

applying evidenco for variant bodies that develop variant inter- these tests shoukd be soet of investigated and studied
interpretation pretation sandards (eg. ClinGen, and explored imitially, in probably, you know, soet of
ACMGQG), and bow accamulated ev- centers of excellence or academic places where there is
ence of wariant pathogenicity can lemphasized| the requisite expertise to sort of under-
and should be used to aid variast in-  stand and where data & collected.” (Participant 6)
terpeetation
“And sometimes it's, you know, sometimes it's one off
and you have some biochemical data, or you have some,
you ksow, have some functiooal data that it makes
metme,” (Participant 9)
Turning new genetic mesoci- Benefits, challongos, and safoty con- “And muybe that's the maybe that's, yom know, [ think
ations and technologhes into siderations for “fast tracking” po- that the fact that you're not doing quote unguote re-
clinical imterventions tentially actionabde genetic yariants search, doesn't mean that you still don't need to set

and tools into clinical use, elther us
ing mandard clinical trial mothods or

other implementation models

abead of time, what are your expected outcomes™ (Pare
ticipant 1)

“And | guess ome of the things you do about it is you
try to quickly policy make some kind of, as quickly as
possible make soene kind of gaideline about it.” (Partic-
pant 4)
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Table S4.4. Descriptions and quotation examples of axial codes in the “Evaluating the role of
genetics in medicine” semantic domain.

Axinl Code Description Quotations
Cossiderations for using Pros and cons of doing routine, “And what happens in medicine is that you could have
population-wide genetic population-wide gemomic scroeming a porfect test, but it needs to be thoroughly evaluated
scrvesing in clisical care by everyome in tersmns of actually showing that this s a
test that shoald be used In a screening methodology in
this population, and that you actually have scane sort of
tangible outcoenes.” (Participant 5)
*“And yeah, that would that would serve people’s
health. Because thes you, you spare them the disgnostic
» A , - - od)-ty(hmwodynq (’Pulklp-.l&)
Deciding what types of ge Currestt practices in crdering go- “Bat 1, lmdwnrd.lhcﬁeol.la-bemdnllhwl
netics tests to order based on netic tests for specific Indicathons what we test for. Let's be carcful about what we test for
chinical indications (eg. dovelopanestal delay, family his  whether it's bocause of the clinical indication or what,

tary), and considerations of whother
beoader (e.g. exome) or narrow (e.g.
targeted pancl) tests should be or-

dered in different clinical situstions

or if it's because of a population, population based
risk” (Participant 1)

“So we, you know, we're doing bese and less targeted
testing, more and more, more panels and more general
oxomes and genomes. So that's at the clinical interface.”
(Participant 11)

Historical advanoements in Ways that genomic resoarch and ge- “So the ability, of courso, the ability to study cancer at
genomic research and techmol.  nomie medicine bave progressed over the genombe Jevel has also exploded with sequencing.
oRy the past 50 yoars, and how those ad-  Becawse, you know, we were really still in the ose gene
vancements have impacted other sci- at a tisee mode, but many of those genmes stood out.”
cotific discoveries and developments (Participant 10)
“Well people didn't want to put that much money be-
hind this, becasse you had like five patients & year.
Which, which I think is changing quite a bit now, espe-
cally given that the the differest models for genetic, yom
know, implications, genetic.. how genetics is involved in
disease, common disease and rare discase right? (Par-
ticipant 14)
Understanding genetic im- Discussions of how meach wo do or “You know, 1 foel like it's like the boginning of, you
pacts on health and discsse don’t keow about how gesetios bm- know, mapping the woeld” (Participant 8)

pacts baman health and discase, and
why that knowledge is important for
science and for healthease in general

“I dom't think it's going to kappen in my jemphasized|
lifetizne, bt 1 think should our spocies survive all the
other challenges that await i1, that the definition of

whnnmwbohﬂmnkmwbenddimdln
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Coetinued from previoes page

Axinl Code Description Quotations

Using the EHR to represent Examplos of genomics CDS in EHRs *So, you know, what you really noed to make this work
genomic data and streamline (eg. through the Epic genomics mod-  well, is some kind of, you know, soet of turnkey system
clinical genomics ule), and carrent challenges with get-  that takes a lot of the friction out, you know, and where
ting genetics data into and out of the o resudt comes back automatically to the EHR. And
EHR it what Is lmportant 1o allow these knds of things 1o
Bagpen, & extractod astomatically and placed into &
place whero it's availalile 1o everybody.” (Participant
10)

“T'he second plece was we encoaraged the system to
fmvest in the genomic indicators module that Epic has
that allows us to repeesent variant and geoe data as
stroctured data so that we have the ability them to
soarch.” (Participasa 20)

Vissalizing the best (and Comslderations of trade-offs between “But 1 think that | think that msedicine will have much
worst) uses for genomios in genethe testing and other medical more of a genetio component to it. Or gemetios will have
medicine going forward tosts, and predictioos of the best uses  mouch moce of & medicine component to " (Participant
for gemomics in advancing sclesce and  9)
population health

“A b of people now are talking about polygenic risk
soores, and maybe we could use those more to assess
risk and that obviously could belp with lifestyle changes
and things that you need.” (Partscipant 13)
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Table S4.5. Descriptions and quotation examples of axial codes in the “Participant background”
semantic domain.

Axial Code Deseription Quotations
Types of paticats they see ar The s typical patient pop-  “Yes, so | do both inpatient and outpatient genetic ser-
eoviromments they do climical ulations (e sdubts, pediatrics, on- vices, and we do all gamut of geaetic tosting from kary-
work in cology, OBGYN), snd whero/how otype, chromoscanal microasrays, smsall panclx, single
they used to or currently work (e.g gene testiog, large pancls, exomes.” (Participam 13)
institution mame, nstitution type, po-
wition) “Okxy, s0 1'm a modical geseticist in pediatric derma-
tology and | traised in pediatrics first, then medical
genetics and then dermatology and the majority of my
practicing careor bas beon bifurcated isto standard po-
diatric dermatology and the other half has beon medical
genwticn.” (Participant 11)
Types of rescarch they are or Past and currest arcas of research *“And I've been imvolved in & namber of stuadies that sort
wore involved in (e.g. data science, fumily comnmusi- of Lry o ook at this interface of clinical medicine versus
cation, Implementation sciesce), and research, wsing clinical data 10 try to make new gone
how they split thme between rosearch discoverios as well as giving results back to physicians ™
and clisical care (Pasticipant 4)
"But my b now i focused on post, the lmpact of post-
xygotic mutatioss, sot just os cancer, but an congemital
malformations or birth defocts™ (Participant 17)
Where they tralned, in what, lestitution names, types of degrees, “Then after that, | went out to [city name] and did a
and for how long Jengths of degrees, people they combimed internal medicine and medical genetics clin-

trained with, reasoss for chooming
certaln career paths, etc.

ical trafning out there, through [hospital same) in the
[institution name] combined genetios tralming program.*
(Participant 5)

“And so ['ve had both formal tralning and (nformal ex-
posure to change management and quality improvement
and all that sort of saall, which of course, has then soor-
phed more into the resoarch focus of lmplementation
sciemce.” (Participant 20)
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Table S4.6. Descriptions and quotation examples of axial codes in the “Protecting
patient/research participant rights to privacy and autonomy” semantic domain.

Axial Code N Description Quotations
Challonges and strategios for Benofits and challemgos of diflerent “But of you're really talking about trying to do a big
ethical oversight and consemt consent models (e.g. broad comsent, study, there's certainly evidence that people want to
o clinkcal rosearch dymamic cossent) for merging re- please thelr doctors, and you need to have some ability

scarch and clinical care, and experi- for despite you saying, Oh, it's fine if you doa't pantici-

onces working with TREs to do clink pate, right? If they sense that It's your stady and your

cal resenrch name’s on the cossent form and everything, thes, you
know, they're going 1o feel a certaln nmownt of coer-
cion,” {Participant 4)

“It is w0 [emphasized] time consuming, and, and frus-
tratisng. And [ think that that, [ sean, sometimes you
think I'd like to do this project, but I'm just not going
1o do the IRE. So I'm not going to do the project. It's
Just, it's just too msch work.” (Participant 11}

Protecting the privacy and Considerations for protecting the “Um, and so that's what | mean by truly [emphasieed)

wocurity of climical data peirvncy and security of clinical and ascmymizing. And truly anooymizing obviously has
geoetic data that s used for rescarch downstroam effects, like we couldn't go back and then
im clinical settings offer to onroll, even tell them that they had it, or offor

10, you know, study, you know, loarn somethisg new
about what was then a relatively nowly described vark
ast” (Participant 4)

“And they woem to be able to, at one point, ancther
hack a lot of things, yeak. You can say, Oh, | promise,
it's all secure. And I'm like, is it a8 secure & you can
make 1?7 Beeause that's not 100" (Participan 17)

Table S5.1. C. diff. progress note mentions used by the natural language processing algorithm.
The commonly used abbreviation for clostridioides/clostridium is the single letter “c.” This is
difficult to implement in a word search or dictionary look up and was therefore omitted from the
NLP algorithm.

Mentions
difficile colitis
diff colitis
dif colitis
difficile diarrhea
diff diarrhea
dif diarrhea
difficile infection
diff infection
dif infection
difficile enteritis
diff enteritis
dif enteritis
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Table S5.2. Class 1 (high risk) and Class 2 (moderate risk) antibiotics, as defined by the
eMERGE C. diff. phenotyping algorithm [201].

Drug Name Risk Ca Risk Code
AmOX Moderate 2
amoxicillin Moderate Risk 2
amoxicillin-clsvulanate Moderate Risk 2
amoxil Moderate Risk 2
ampicillin Moderate Risk 2
AMPICILLIN / MEROPENEM Moderate Risk 2
AMPICILLIN SODIUM Moderate Risk 2
ampicillin-sulbactam Moderate Risk 2
ancel Moxclerate Risk 2
augmentin Moderate Risk 2
AVALOX High Risk 1
avelox High Risk 1
azactam Moderate Risk 2
azithromycin Moderate Risk 2
azithromyein : zithromax Moderate Risk 2
axtreonam Moderate Risk 2
biaxin Moderate Risk 2
BIAXIN / PENICILLIN Moderate Risk 2
BIAXIN XL Moderate Risk 2
BICILLIN Moxderate Risk 2
ceclor Moderate Risk 2
cedax High Risk 1
cefaclor Moderate Risk 2
CEFADROXIL Moderate Risk 2
cefazolin Moderate Risk 2
CEFAZOLIN / CLINDAMYCIN High Risk 1
cefdiniy High Rk 1
CEFDINIR : OMNICEF High Risk 1
cefepime High Risk 1
cefixime High Risk 1
CEFOTAN Moderate Risk 2
cefotaxime High Risk 1
cefotetan Moderate Risk 2
cefoxitin High Risk 1
cefpodoxime High Risk 1
CEFPROZIL Moderate Risk 2
ceftazidime High Risk 1
ceftin Moxlerste Risk 2
ceftrinxone High Risk 1
ceftrinxone w/lidocaine High Risk 1
cefuroxime Moderate Risk 2
cefuroxime : ceftin Moderate Risk 2
cefuroxime axetil Moderate Risk 2
cefuroxime axetil ( ceftin ) Moderate Risk 2
cefzil Moderate Risk 2
cephalexin Moderate Risk 2
CEPHALEXIN ( KEFLEX ) Modderate Risk 2
CEPHALEXIN HCL Moderate Risk 2
CEPHALOTHIN Moderate Risk 2
cipro High Risk 1
CIPRO / LEVOFLOXACIN High Risk 1
CIPRO XR High Risk 1
CIPROFLAXACIN High Risk 1
ciproflcxacin High Risk 1
ciprofloxacin : cipro High Risk 1

Continued on next page
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Continued from previous page
Drug Name Risk Category Risk Code

O ) High Risk 1
CIPROFLOXIN High Risk 1
claforan Moderate Risk 2
clarithromycin Moderate Risk 2
CLARITHROMYCIN ( GENERIC ) Moderate Risk 2
CLARITHROMYCIN / AMIKACIN Moderate Risk 2
CLAVULANATE ({ AUGMENTIN ) High Risk 1
cleocin High Risk 1
cleocin t High Risk 1
clindamycin High Risk 1
clindamycin : cleocin High Risk 1
clindamycin hcl High Risk 1
CLINDAMYCIN HCL ( CLEOCIN ) High Risk 1
CLINDAMYCIN PHOSPHATE High Risk 1
dicloxacillin Moderate Risk 2
e-mycin Moderate Risk 2
oes Moderate Risk 2
ertapenem Moderate Risk 2
ERYTHROCIN Moderate Risk 2
erythromyein Moderate Risk 2
orythromyein base Moderate Risk 2
ERYTHROMYCIN ETHYLSUCCINATE Moderate Risk 2
ERYTHROMYCIN LACTOBIONATE Moderate Risk 2
erythromycin stearate Moderate Risk 2
floxacillin Moderate Risk 2
floxin High Risk 1
fortaz High Risk 1
Imipenem Modoerate Risk 2
imipenem / cilastatin Moderate Risk 2
imipenem-cilastatin Moderate Risk 2
imipenem-cilastatin injection Moderate Risk 2
invanz Moderate Risk 2
keflex Moderate Risk 2
kefzol Moderate Risk 2
KETEK Moderate Risk 2
levaquin High Risk 1
levaquin / ibuprofen High Risk 1
levaquin Jeva-pak High Risk 1
levofloxacin High Risk 1
levofloxacin : High Risk 1
LORABID Moderate Risk 2
maxipime High Risk 1
MEFOXIN High Risk 1
MERONEM Moderate Risk 2
meropenem Moderate Risk 2
MEROPENEM : MERREM Moderate Risk 2
merrem Moderate Risk 2
methicillin Moderate Risk 2
maoxifloxacin High Risk 1
nafcillin Moderate Risk 2
omnicef High Risk 1
oxacillin Moderate Risk 2
pen vk Moderate Risk 2
PEN-VEE K Moderate Risk 2
PEN-VK Moderate Risk 2

Continwed on next page
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Continued from previous
Risk éode

Drug Name Risk Category
penicillin Moderate Risk 2
PENICILLIN G Moderate Risk 2
PENICILLIN G BENZATHINE Moderate Risk 2
PENICILLIN G POTASSIUM Moderate Risk 2
penicillin v potassium Moderate Risk 2
penicillins Moderate Risk 2
piperacillin Moderate Risk 2
piperacillin / tazobactam Maoderate Risk 2
piperacillintazobactam Moderate Risk 2
piperacillin-tazobactam inj Moderate Risk 2
primaxin Moderate Risk 2
rocephin High Risk 1
SUPTAX Moderate Risk 2
tequin High Risk 1
ticar Moderate Risk 2
ticarcillin Moderate Risk 2
ticarcillin / clavulanate Moderate Risk 2
timentin Moderate Risk 2
trimox / amox Moderate Risk 2
TROVAFLOXACIN High Risk 1
TROVAN High Risk 1
ULTRACEF Moderate Risk 2
unasyn Moderate Risk 2
vanc / cefepime High Risk 1
VANC / DORIPENEM Moderate Risk 2
vane / rocephin High Risk 1
vanc / zosyn Moderate Risk 2
VANCOMYCIN / CEFOTAXIME High Risk 1
vancomycin / doripenem Moderate Risk 2
vancomycin / ertapenem Moderate Risk 2
vantin High Risk 1
ZARTAN Moderate Risk 2
zinaocefl Moderate Risk 2
zithromax Moderate Risk 2
ZITHROMAX ( ZPAK ) Moderate Risk 2
zithromax / rocephin High Risk 1
zithromax z-pak Moderate Risk 2
208y Moderate Risk 2
zosyn [/ cipro High Risk 1
zosyn [ nsaids Moderate Risk 2
ZPACK Moderate Risk 2
zpak Moderate Risk 2
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Table S5.3. Nursing home mentions used by the natural language processing algorithm.

Name Type Examples
Genernic NH
NSH
nursing home
SNF
skilled nursing facility
Hospice
NHC

Proper (area specific) Cumberland Manor
Ida Culver House
ote.
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Table S5.4. Medications used for case-control exclusion and covariate analysis.

Medication Class

Examples

“Mransplant Medlcations

Cellcopt
munoloc
mycophenylate mofetil
Tacrolimus
k-506

x5

k506
tacarolimus
tacrolimus hydrate
fujimycin
lep-tacro
prograf
protopic
Cyclosporine
ciclosporin
cyclosporin
cyclosporin a
geagraf
neoral
restasis
sandimmune
sangeya
azxothioprine
azathioprin
azathioprine sodium
azatioprin
azamun
azanin
aznsan
ccucol
imuran

Corti id

Cortisone

Cortisone Acetate

Hydrocortisone

Hydrocortisone Sodium Phosphate
Hydrocortisone Sodium Succinate
Hydrocortisone Acetate
Hydrocortisone Cypionate
Prednisone

Prednisolone

Prednisolone Sodium Phosphate
Methylprednisolone
Methylprednisolone Sodium Succinate
Methylprednisolone Acetate
Triamcinolone

Triamcinolone Acetonide
Triamcinolone Discetate
Triamcinolone Hexacetonide
Dexamothssone

Dexamethasone Acetate Dexamethasone Sodium
Phosphate

Betamethasone

Botamethasone Sodium Phosphate
Betamethasone Acetate

Continued on pext page
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Continued from previous page

“Medication Class

Examples

Diabetes Mellitus

Insulin

glucagon
glucagon-like peptide-1 (GLP-1)
roceplor agonists
biguanides
sulfonylurea
thiazolidinediones
meglitinides
biguanides
a-glucose inhibitor
DPP-4 inhibitors
SGLT2 inhibitors
Cyclosot
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Table S6.1. Study characteristics of references included in the systematic literature review.

Short Tithe Article Type  Study Design Country Meodical Domain(s) Conflicts of Interest
Abernethy (2014) Special Conlerence s Ouncology oard member for
Tteport or workshop healthcare or pharma-
FRIATY ceutical company
Blizinaky (2018) Experience Expert deter- Us Musltiple None disclosod
Report mination
Braithwaito (2020) Opinion Expert detor- Australia Multiple None disclosed
minatios
Bubela (2019) Exporiesco Conference Canada Multiple Nooo disclosed
Repont or woekabop
SUIIIBATY
Chambers (2016) Viewpaint Expert deter- Us Multiple None disclosed
mination
Chuong (2018) Expert Expert deter- Canada Infammatory None disclosed
Analy- mination Bowel Discase
s
David (2015) Reflection Conferenc Us Multiple Scientific advisor for
or workshop healthcare company
MATImATY
Davis (2021) Exporience Experienco Us Multiple None disclosed
Report o - maseveeament
Etherodge (2000) Export Export detor- Us Owcology None disclosed
Analy- mination
Exberodge (2014) Expert Expert deter- us Musltiple Nooe disclosed
Analy. mination
.
Finlsywom (2016) System System devel- Us Opcology None disclosed
Ewaluea opment, imple-
thom mestation, and
M
Glnsburg (2018) Overview Expert deters Us Multiple None disclosed
mination
Glasgow (2018) Special Expert deter. Us Multiple None disclosed
Teport mination
Hindorfl (2015) Perspective Expert detor- Us Multiple Sclentific advisor for
mination pharmaceutical com-
I S . e ————"— aeeas————
Hirseh (2012) Perspective Expert deter- us Mishtiple Selentific advisor for
mination bealthcare company
Scientific advisor for
pharmaceutical com-
pany
Equity holder of
healthcare company
Holm (2017) Symposium Export detor- Denmark Multiple None disclosed
mination
Continued on next page
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e o T
T Short Title Article Type  Study Design Country Medical Domain(s)
Hau (2015) Experience System deved- us Ancuryses Nome disclosed
Heport opment, lmple-
mentation, and
evaluation
TOM (201)) Workshop Conference uUs Mubtiple Nome disclosad
Series ar workshop
Sum- sumtnary
many
Jones (2020) Interview Qualitative us Oncology Scientific advisor far
Study analyss of healthcare
interview or Scentific advisor for
focus group pharmacoutical com-
data pany
Equity bolder of
healthcare
Employee of bealth-
care or pharmaceutical
company
Jooew (2022) Interview Qualitative Us Oncalogy Scientific mlvisor for
Stady analysés of healthcare
Interview or Schemtific advisor for
focus group pharmaceutical com-
data pany
Equity bolder of
healthcare
Employee of bealth.
caro or pharmaceutical
company
Kehl (2019) Original Systom dovel- s Oncology Scientific advisor for
Tnvesti- opteent,, implo- healthcare
gation mentation, asd Sciestific advisor for
evaluathon pharmaceutical com.
pany
Equity balder of
healtheare comspany
Rescarch support froen
bealthcare or pharma-
coutical company
Key (2018) Commentary Experience s Multiple Nome disclosed
e lf-amrsaenem
Khalifa (2021) Interview Qualitative Us Multiple Employee of bealth.
Stody analysis of care or pharmaceutical
interview or company
focus group Research suppoet froem
data healthcare or pharma
coutical company

Contlzmed om mext page
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Contimued from previous page

mination

~ Short Title Artlcle Type  Study Deslgn Country Medlcal Domaln(s)  Confllcts of Intorest
Khalifa (2021) Isterviow Qualitative us Multiple Employeo of health-
Study analysis of care or pharmaceutical
interview or company
focus group Resoarch support from
data healthcare or pharma-
ooutical company
Krumbholx (2014) Perspective Expert deter- uUs Maultipe Research support fromn
mination healthoare oe pharss-
ceutical company
Mand] (2020) Pilot Us Maultiple Board member for
Study healtheare o phar-
maceutical company
Scientific advisor for
healthcarw company
Sclemtific advisor for
pharmaceutical com-
pany
Research support from
healthcare or pharma-
ceutical company
McGinnis (2021) Perspective Expert deter- us Multiple None disclosed
mination
Mclnnes (2021) Perspective Expert deter. Us Multiple Nome disclosed
mination
Nwaru (2017) Correspondence  Expert deter- Imternational Asthama Board member for
minatios healtheare oe pharma-
ceutical company
Potter (2020) Software Experience uUs Ouncology Equity holder of
wlf-sssersanent hoaltheare company
Employee of health-
care or pharmaceutical
company
Hesearch support from
healthcare or pharma-
coutical compasy
Preston (2022) Soltware Systemn deved- us Multiphe Scientific advisor for
opment, lmple- healthcare company
mestation, and Employeo of health-
evaluation care o pharmaceutical
company
Schwartz (2018) Original Experieace Us Multiple Board member for
Tervewti- wolf-saseveanent healthcare o pharms-
gathon ceutical company
Rescarch support from
healtheare or pharms-
ceutical company
Scollen (2017) Perspective Expert deter. us Multiple Nane disclosed

Contizaed on next page
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Short Title Article Type  Study Design Country
Shaikh (2014) Pasnel Caonfervncn Us Oncclogy Employow of health-
Diss- or workshop caro or pharmaceutical
cussion SEINATY cosspasy
Sum-
mary
Simaon (2020) Crse Case study us Oncology Scientific advisor for
Stody hoalthcare
Scientific advisor foe
pharmacoutical com-
pany
Hesearch suppoet froen
hoaltheare or pharmas-
ceutical company
Trifiletti (2015) Perspective Expert doter- Us Oncology Nome disclosed
minaton
Wallsce (2014) Experionce Experionce us Multiple Emplayoe of health-
Repont self-asscsscnent care or
_ N N compasy
Wikey (2016) Perspect ive Confervnce Us Multiphe Nome disclosed
ot workshop
BammATY
Williass (2018) Experience Expericnce us Mubtigle Notwe disclosed
Repart wolf-asmevecrent
Williams (2019) Expeticnce Expetiece us Multigde Research suppoet from
Report wolf-assawecment hoalthcare or pharmas-
ceutical company
Wouters (2021) Perspective Expert deter-  Netberlands Multiple Nome dischosed
WONA0Nn
Yang (2019) Expetience Experience Iaternational Mudtiple None disclosed
Report o lf-anmemaamee it
Yu (2015) Perspoctive Expert doter- uUs Omncology Nate disclosed
manaton
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Table S6.2. Data and standards study outcomes of references included in the systematic
literature review.

“Short Collecting, intograting, and Analyzing data for discovery  Developing standards
Tithe sharing genomic and pheno-
type dota
Abernethy Methodologically rigorons analy-  Standards for communicating
(2014) Py rescarch findings between the
public and private sectors
Blizinsky Inclusion of additional sociodemo-  Development of CDS that consid-  International standards for classs.
(2018) graphic, psychologic, bebavioral, ers social, enviroaments, ances- fying populations
and environmental data in EHRs tral, genetic factors
Flow of information between the
bloenedical research community
and LHSs
Bubela Networked approach to data shar-
(2019) ing
Clear processes and pathways foe
data access, integration, and use
within and between systems
Creative and collabarative strate-
wiow for cdata intoegration
Data sharing betwoen government
B agencies andd rosearch entitios
Chuong Considerations of how big data
(2018) can be intogratod and stoeod in
the EHR
David Combinatson of multiple biorepos-  Use of nssays that can survey Informed comsent stasdards for
(2015) itorles across [nstitutions multiple importast genotypes BENOme sequencing
offectively amd inexpensively
Easy access to genoanie informa- Standardized protocols for data
tion in the EHR roturn
Standardiznd order sots and or-
dering protocols
Standardized protocols for evalu.
ation gemomic medicine applica-
tioms
Etheredge Biobanks that link clinical, go-
(200M) notic, and environmental data
Etherodge Large, de-identified, shareable Developenent of a strategy to
(2014) datasets standardize, store and protect

grnomic data
Standardized federally subsidized

Costinued on next page
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Contimued fram previous page

~Short Collecting, Integrating, and Analyzing data for discovery  Developing standards
Title sharing genomic and pheno-
type data
Combination of multiple blorepos-  Inclusion of coboet seloction, out-
(2016) itortes ncross lnstitations comes analysis, and examination
of raw data as core functionalities
of analysis
Appropriately designed statistical
models
Expest engagemont in interpeot-
ing results
Comparison of results with cur-
rent liutu\:n
Gizabury Caombination of multiple biotopos-
(2018) itoehes noross institutions Data
democratization
Hindoefl Standards for using case reports
(2018) and observational studies to im-
peove clinical decision making
Standardized criteria for including
multiple lines of evidesce from
underrepeosentod popalatioss
Standards for measuring clinical
utility
Stasdards for capturing diversity
in health system data
Standards for collecting social
and onvironmental data
Development and use of standards
fox s geivecy
Hirsch Combination of multiple bioropes-  Improvement of data visualization
(2012) itosios across institutions tochiniques

Input of genomic data reliably
into the EHR

Integration of biological data with
patient-reported and wearablo
device data

Alternative data collection plat.
forms that are Sexible and afford-
able

Cantisued on pext page
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Continued from previous page

“Short Collocting, integrating, and Annlyzing data for discovery  Dewveloping standards
Tithe sharing genomic and pheno-
type data
Hsu (2013)  Mechanisms to routinely follow Ontology-driven approaches to
up with patients 1o collect addi- data extraction, standardization,
tional relevant data and analysis
Consideration of context when
integrating longitudinal data
10M Standards for distributed querios
(2011) acroes systems Consensiss on
standards for care, quality, public
health, and research
Development and use of standards
for data peivacy
Jones Publication of all LHS findings Development and use of standards
(2022) for data privacy
Kehl Scalable methods for extracting
(2019) data from EHRs
Khalifa Genetlc reports that are both Prioritization of data to be stan-
(2021) clinically useful (e.g. contaln pa- dardized
tient case characteristics) and
computationally friesly
Khablifa Prioritization of data to be stan-
(2021) dardized
Krumbolx Developement of criteria that Developraent and use of standards
(2014) guide interpretation of enormoss for data peivacy
data wets
Rpulhn&hﬂo.
Mandl Data sharing agreoments that are Prioritization of data to be stan-
(2020) based on reciprocity and interop- dardized
erability
Use of federated data sharing,
where individual sites have nocess
to their own data but other sites
have sccoss to de-identified data
McGinnis Standards for commumnicating
(221) research Bndings between the
public and private sectors
Melnnes Trassparent dats sharing expoec- Alternative methods for deter- Developoent and use of standards
(2021) tations across all loveds of partici-  mining and predicting functional for data privacy
pation effects of genetic variants
Use of whole-population datasets

Continwed on next page
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Caontinued from previous page

metadata and interpretations

" Short Collecting, Integrating, and Analyzing data for discovery  Developing standards
Title sharlng genomlic and pheno-
type data
Nwaru Framewocks for data harmoniza- Methodologically rigorous analy- Development and use of standards
(2017) tion, standardization, tramsforma.  sis for data privacy
tion, and linkage
Impeovement of data visualization
techinlques
Potter Input of genomic data reliably Impeovement of data visualization
(2020) into the EHR Frameworks for techniques
data harmonization, standardiza-
tion, transformation, and Bnkage
Schwartz Preliminary bicinformatics ns- Development and use of standards
(2018) sessznents (o bouse with maltiple foe data privacy
partner laks
Scollen Combination of multiple biorepos-
(2017) itories across institutions
Sharing of genomic data interna-
tiooally using FAIR (findable, ac-
cossible, interoperable, reusable)
principles
Wallnce Methodologically rigorous anal-
(2014) yuis Use of analytics tochniques
wsed by other disciplines, like
brusinces
Plans for dissemination of re-
soarch findisgs as & part of the
resoarch project’s design
Validate research Bodings through
poer roview
Wikey Requirement that omics data be Use of a standing expert commit-
(2016) returned in comuputer-readable tee to identify necossary metadata
formats as part of the Clinical elements for omic data reanalysis
Laboratory Improvement Amend-  and reinterpretation as new tech.
ment certification nologies emerge
Research oa the lmpact of docu-
mentation errors om the reuse of
medical record data by computa-
tional methodologies
Definition of who bears ethical
and legal responsibilities for re
analysés of raw data
Resecarch adequacy of existing
omtologies and identify additional
meods to capture omics-related

Continued on next page
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" Short Collecting, integrating, and Ananlyzing data for discovery  Developing standards
Title sharing genomic and pheno-
type data
Willinms Processes 1o re-analyze previously  Deweloprmest amd use of standards
(2018) analyzod soquences foe data privacy

Williams Data sharing to combine genomie
(2019) knowledge

Use of a global unique identifier
for cach participant

Yang

(2019)

Yu (2015) Integration of biomarker data
into the EHR data in & way that
allows for CDS and population
bealth studies

Appropeistely dosigmed siatistical
models

Semantic interoperability of
bicenarkor data
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Table S6.3. Culture and acceptance study outcomes of references included in the systematic
literature review.

“Short Building a collaborative Demonstrating value and Aligning learning with oxist-
Title learning culture feasibility ing bealtheare Improvement
models
A Alignment of value ssosments New approaches lor defining and Algnment of CER and HTA with
(2014) with patient needs and rapid sci- demonstrating "value” in health- patient noeds, values, and charac-
entific advancements care teristios
Communication and lovolvement
across stakeholder groups
A collaborative multidisciplinary
ecosystem
Partnerships between stakebolders
Braithwaite Commitment to improvement Notwork and complexity science
(2020) driven understanding of health
Readiness and preparedness for systoems
change
Understanding of available imple-
Recognition of the capacities and mentation stratogios
Bubela Culture of trust and mitigation of  Proof of concept models/case Implementation chocklists
(2019) risk aversion by data e stidlion using existing health
records
Procosses that sustain trust at
the individual and institutional
Tovels
Chambers  Commitment to Improvement Considerations of context and
(2016) theoretical models from imple-
Communication and lavolvement mentations science
acroos stakeholder groups
David Institutional advisory committees  Demonstration that the cost of
(2015) with sensor leadership testing & not necessarily pro-
hibitive
Partnerships with medical sab-
specialists with content expertise Uso of institutional quality im-
provement analysis to assoss value
Gradual demosstration to pa-
tients and healtheare commusnities
of the value of genomic medicine
Davis Strong commitment to making Use of patient-reparted outcomes Alignment of research, quality
(2021) culture change a central part of to measare progross and success improvement, innovation, and the
the LHS tramsition clinical enterprise
Communication about initiatives
Close, sustained alignment be- that successfully implement cyclic
twoen multiple levels of leadership  Improvensest
Etheredge Uso of patiest-reported outcomes
(2009) to mensire progross and success
Cammitment to im Prool of concept models/case Definition of CER priorities
(2014) Public-private and international studies using existing health
collabaration rocoeds

Continued o next pagn
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Continued from previous page

“Short Building a collaborative Domonsteating value and Aligning loarning with exist-
Title learning culture feasibility ing healthcare improvement
modoll
G Emphasis on the ability of preci-
{2018) sion medicine to benefit the entire
population (" precision public
health*)
Evidence of valuo
Demosstration of econotmic value
to both patients and organien-
tions
Collaboration between payers and
industry to develop evidence base
for economic waloe of procision
medicine
Hindorff Comamunication and involvemment
(2018) across stakeholder groups
Participation of different types of
healthcare systems in the LHS
Hirsch Proof of concept models/ cose
{2012) studies using existing health
records
Hesu (2015)  Trust among stakeholders
10M Cammunication and involvement Prool of concept models/case
{2011) scross stakoholder groups studies using existing health
records
New approaches for defining and
demonstrating "wvalue” in health-
- e — W ——— ) g 3 &, S D S m
Janes Trust amang stakeholders
(2020)
Jones Trst among stakeholders
(2022)
Key (2018)  Trust among stakeholders
Khalifa Increased motivation for data
{2021) standards adoption through in-
creased clinlcal demand
Krumbolz A clinical research community Demnossstration of economic value
(2014) that realizms the promise of big 1o both patiests and organiza-
data tions
Climlcian comfort with evidence
generated from big data
Comanunication and involvement
mnnhudumn

Continued on mext page
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“Short
Title

Building a collaborative
learning culture

Continued from provious
Demonstrating value and Aligning learning ;m';y—
feasibility ing healthcare improvement

Mandl
(2020)

Communication and involvement
ncross stakeholder groups

Close, sustalsed alignment bo-

tween multiple levels of leadership

McGinnis
(2021)

Cultural commitment to learning

Communication and involvement
ncross stakehokder groups

Local and global communieation
Accountability for quality care

Nwaru

(2017)

Communication and involvement
across stakeholder groups

(2018)

Organizational dedication to cre-
ating an LHS

Communication and involverent

Shiaikh
(2014)

Trifiletti

(2015)

Combination of big data with
CER

Wallace
(2014)

Wikey
(2016)

Mechanisms to transition QI
projects to research designations

Williams
(2018)

Multidisciplinary working group
that represents key ceganizational
functions

Coupling of ge-
nomics/multidisciplinary exper-
tise with & non-traditional com-
munication strategy that cromses
institutional boundaries

Demonstration that rescarch does
not need to be complete prior to
implementation

Continued on next page
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Continwed from provioss Poge
“Short Bullding a coliaborative Demonstrating value and with exlst-
Title learning culture feasibility ing healthcare improvement
models
Williams Eogagement of diverse stake- Use of implementation sclence
(2019) holders to understand the valve frameworks to understand the
peoposition for gencmle medicine  barriers and facilitators of using
genomle medicine bn the clinic
Yu (2015) Communication and isvolvement

across stakeholder groups
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Table S6.4. Engaging with and protecting patients study outcomes of references included in the

systematic literature review.

“Short
Tithe

Advancing boalth
equity

Safoly moeasures
and monitoring

Privacy and secu-
rity protections

A
(2014)

" Blizinsky
(2018)

Reection of di
vorsity and cnical
complexity in the
EHR

Use of more complex
measures in place
of crude proxios for
racial and ethnic
categories

Commitment to un-
detstanding gesetic
varistion among an-
cestral groups

Development of
Bew models 1o en-
Banco the we of
de-sdemtified clinical
data from diverse

Development of sus-
talmable, respectful
relstionships with
diverse communitios
L0 encourage -
search participation,
and develop appro-
priste recruitment
seratogies

Improved capture of
population diversity
measuros inm EHRs

Moostoring of avail-
able genotype and
phenotype data from
diverse populations

Lemgitudinal out-
COMes THEASUTVINeTA

Sharing of data is
A privacy-peotectoed

Continued 06 pext page
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Contiznmed froen previous page

“Short Advancing bealth  Prioritizing Obtaining con- Safoty moensures and secu-
Title equity patient. sent for clinical and monitoring rity protections
contorodnoss research
Bubela Participant-centric Creative and ethical
(2010) approach approsches 1o con-
ent
Patient and famsily Careful consider-
(2018) cogagrment atica of patient
privacy and confi-
dentiality
David Impeoved strategies Prospective obtais.
(2015) for comsunication ment of informed
with at-risk families  consent
Research on ressons
for refusal of condir-
matory testing
Davis Communication Avgmentation of
(2021) with patients about the [RB with an
the importance of advisory body that
patiost-redated and fncilitatos and tracks
provided data foe the spectrum of
learning and m- Jearning activities
provement
Ethervdge Information caplure
{2009) about elinical proto-
cols
Ghansbearyg Understandisng
(2018) of how
medicine works to
incrense of decrense
historical health dis-
paritios
Glasgow Political commit- Imvostigation of best
(2018) ment to providieg uses for patient-
patient-centered, reported measares
personalized care and outeomes
using the best awall
able ovidenco
Infrastructure that
supports the value
of patiest-centered,
persanalized care

Continved on next page
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Caontinued from

" Short Adwancing health  Prioritizing Obtaining con- Safoty measuros vacy and socu-
Title equity pationt- sondt for clinical and monitoring rity protections
conteredness rosearch
Hindoff Doveloposent of Shasing of data in
(2018) LHSs in underserved A privacy-protected
bealth systems mannes
Improvement of ac- Comsideration of
o Lo care, includ- hoterogenwity of
lng for uninsured peioeities and chal-
populations longes across the
spoctram of US
Inclusion of data healthoare (st
from diverso indi- tutions when ox-
viduals in routine data and
analywis and obser- protecting pationt
wational studios peivncy
Dowlopaent of
practices within
clinical kabs to in-
clude ascestry in
analyzing resalts
Understanding
of how precision
medicine works to
Increase or decroase
historical health dis-
parities
Inclusion of more
nnd better data
from underrepre-
sented populations
Carrect documenta-
tive of race, ethnie-
Ity, gender identity,
social detorminasts
of health
Moree and better
data from diverse
individuals
Hirsch Pationt and Exmily Collection of Carefisl consider-
(2012) engagement patient-reportod ation of patient
outoomes privacy and coafi-
dentinlity

Continued ca next page
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Continued from peevious page

“Short Advancing health  Prioritizing Obtaining con- Safety measures vacy and secu-
Tithe oquity pationt- sont for clinical and monitoring rity protections
conterodness resoarch
Holm Infrastructure that
(2017) supposts now mod-
els of consest (eg
dynamic consent,
meta-consent )
Comsideration of a
meta-consent model
that allows partici-
pants to choose how
they should be con-
sented
10M Definition of con- Careful comsidor-
(2011) TS OULCOSDeS ation of patient
measres peivacy and confi.
dentiality
Use & comsortium
approach to make
patients securely
identifiable
Jones Clear explanation of
(2020) data security mea-
sures 1o patlents
during consent
Commmunication of
societal benofits
1o patiemts during
consent
Jones Distribution of LHS
(2022) informational mate-
rials to paticnts
Focus on trans
parency and com-
munication with
patients to mprove
Lrust
Koy (2018) Comanunity engage-
mesd 00 & comin.
uum during the re
wearch process
Fooas on trans-
parency and com-
munication with
patients to Enpeove
Lrust

Continued on pext page
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Continued from previous page

Tithe equity patient- sent for clinleal and monitoring rity protections
centorodness research
McGinnis Improvesnent of no- Infrastructure that
(2021) Cess 10 oare, Iaelud- supports the value
log for uninsared of patiest-contered,
populations personalized care
Mclunes Comparison of Balance between Better
(2021) screemed indinviduals individual control aof the moral syw
with wider wnequal and public good tetes cmbedded in
social mystem rescarch and clinical
care
Inclusion of more
nnd better data
froan wnderropro-
sented popalatices
Nwaru Careful consider-
(2017) atiom of paticst
privacy and confi-
Seeninlit
Schwnrtz Broad consem that Careful selection of
(2018) allows results to be meodically actionable
retierned over tlee genes for return
Steingent variast
Interpretation to
misimize false posi-
tives
P s =
(2020) thon of care expers-
wuon from patient
navigatoes into 4R
(right foomation,
treatment, patient,
Lime) care soquesce
temmplates
Wallace Community engage- Scrwtinization of
(2014) mont ot A contin. existing legal foun-
wum during the re dations for privacy
soarch process protection foe their
applicatility to
Jenrning coviron-
ments

Costinued on next page
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“Short Advancing health  Prioritizing Obtalning con- measures vacy and socu-
Tithe oquity pationt- went for clinical and monitoring rity protections
centeredness
Wiley Clarification of the Use of public edu- Movemont towards Clamsification of
(2016) patient's right un. cathon funds froes centralized IRE so- non-inteeventional
der HIPAA to access  the Department of lutions rescarch as appropei
raw bicenalecular Health and Humas ate use of PHI under
data collectod by Services 1o develop HIPAA regulations
care providers when pablic awaroness
those data are not campaigns 1o accu- Clarification of
stored in the medi- rately communicate whether omics data
cal recoed benefits and risks of are considered bio-
data sharing metrse idestificrs
National discus- under HIPAA Aug-
sice o the rights of mestation of logal
patients to go be protections to safe-
yond reading theis gusrd deidentified
medical records as data from misuse
assared by HIPAA and attempried rei-
to having the abil- destification of sub-
ity to add data to Jocts
the recoed to iden-
1y and correct er-
rors without going
through a physécian
mtermediary
Willsams Patient engagement Process for re- Evalustion of the
(2018) Maistenance of trast  cossenting partic- impact of repoctiog
with the community  Ipasts, if peed be varfansts to patient.
by involvisg the participants and to
commenity the system
Collection of out-
comes data to incoe-
porate into ecomomic
models and evaluate
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Table S6.5. Political and institutional support study outcomes of references included in the
systematic literature review.

Short Funding and Incentlves Policy and governance Bullding Institutional capacity for
Title nomic medicine and learnin
Abernethy  Fusding for basic and applied  Policies that recognize and 1o belp efloctively dissemminate clini-
(2014) rescarch in the public and support different dimensions el information to patients and physécians
private sectors of clinical value (cost /clinseal
elBeacy, QOL, productivity, Support for clinical data infrastructure
Developenent of evidence- pationt preference) foe resoarch
based tools amd incontives for
patient-centered care Policien that encourage inno-
wation
Discussions about the cost of
Cchre Policies that are aligned with
the dysamic and fast-pace
nature of seientific discovery
Policies that stimulate
private-public partnenships
Palicies that addeess concerss
about integrating clinical ro-
search and clinical care
Palicies that facilitate data
Tiquidity
Bralthwaite  Allocation of resources to
(2020) fast-paced Jearning
Bubela Balance between over and Single health systom Platforms that en-
(2019) under-contralization of dats able system learning
Infrastrocture that supports real-time
Harmonized government pal- and real-world data analytios
ey for hoalth data use and
development of inpovative
technologios
Chambers Allocation of resources to Strategies to Implement evidence-based
(2016) fast-paced Jearning practicos
Infrastrocturo that supports real-time
and reab-world data analytics
Adaptable governance ap-
(2018) proaches
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Comtinued from previous

“Short Funding and incentives Policy and governance Bullding institutional capacity for
Title _genomic medicine and learning
David Use of internal pilot study New genomic oducation cbjec-  [nvestiment in research personnel and
(2015) funding to conduct pilot stud-  tives set by the NHGRI resourcos 1o epsure research quality is

s and increase acceptance

Fuanding for interim testing
between discovery and adop-
tios

Internal funding to prevert
patients from getting charged

equal to clinical quality

Allocation of suffickent personnel to man-
Age consent

Supporet for biobanking to aid clinical
confirmatary sequescing
Anticipation of rises in interprotive
(rather than testing) costs
Establishment of expected involversent of

healthcare institution with family mem-
bers after testing proband

Establishment of GCs and geneticists in
noa gesetics clinical services

Uso of genomic moedicine teams, rathor
than primary care clinicians, to follow up
with patients after testing

Education for non-genetics personnel
on how to order, interpret, and act on
genetic tests

Climician oversight for trainoes who are
ordering genetic tests

Expanded institutional CLIA-compliant
Renotyping
Development of a usability lab to assess

usabllity of genomic medicine applica-
tioes In the EHR

Development of CDS tools in interdisci-
plinary groups

Focws groups with patients, clinicians,
and other key stakeholders to identify
educational peeds

Continued on next page
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Continued from previous page

“Short Funding and incentives Policy and governance Bullding institutional capacity for
Title genomic meodicine and learning
Davis Automated proomsses
(2021)

Unified data architecture
Deflnitbon of enterprise-wide strategies for
Al/ML tools
Involvemnent of patients and clinicians in
the development process to baild empa-
thy into systems
Etheredge Paymont models that reward Requirements for publicly-
(2000) high-quality care funded studies to report de-
identified data to a natiomal
research database
Legislative authority and §-
nancing of research and pay-
ment reforms
Research priorities and mea-
sures set by HHS
Prioritization of research as-
sessments of new techsologies
Et Funding for rescarch programs  Attention to Medicare and Modernization of clinical trial and reg-
(2014) that address national priocity Medicaid needs istry systems
questions
Development of governing Development of predictive models to beldp
principles, prioritios, system climicians at the point of care
spocifications, amd cooperative
stratogios
Ginsburg Incentives for data sharing Development of an appeoach Duevelopment of secure and interoperable
(2018) for regulating dingmostics genomics-enablod I'T systoms in health
that incorporate sequencing care and community settings
technologies by FDA and
CMS Global leadership and
) perseverance
Glasgow New funding priorities Understanding of bow to train patients
(2018) and healthcare workers to make the best
use of new tools and data
Hindorff Maximization of the use of existing
(2018) health infrastructare while building new

capacities

Famillarszation of providers with autho-
rization processes for gemetic testing us-
ing different insurance providers

Continued on next page
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“Short “Funding and Incentives
Title

Pollcy and governance

Potter
{2020)

lmplementation of FHIR in EHRs

(2022)

Infrastructure for guiding researchers

through complex variant curation guide-
lines and stasdards

{2018)

Clinkcal processes that support clinicians
and patlents post return of genetic results

lmplementation of mass custonstzation
to spoed up results return but maintain
subject-specilic factors

Scallen
(2017)

Research commons where Investigators
can share and refine tools asd dats

Uncoaventional models for
(2014) Incentivizing lnnovation, like
prizes and challenges

(2014)

Increased awareness of the muances and

challenges of the care delivery process
among researchers

Balance between overall goal of general-
keable knowledge and institutional needs
for rapidly implemsentable knowledge

Reframing of innovations to fit specifios
of difforent healthoare environments

of interventions with the pri-
orities and capabilities of the healthcare
system

Wiley
(2016)

Harmonization of state and
federal laws on consent re-
quirements to reduce the burs
den placed on patients who
are willing to share their data

Williams
{2018)

Coordination with the payer to make
sure that recommended treatments after
testing are covered

Williams
oy

Development of systems that support the
use of gemomic medicine in EHRs

Yang
(2019)

U:o?;pmocoltnd:inandw
ment system to track and manage the lifo
cycle of clinical research

Use of an electronsc data capture and

study management system to collect,
integrate, and standardize rescarch data

Use of a specimen system
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“Short Funding and incentives Policy and governance Bullding Institutional capacity for
Title genomic medicine and learning
Hirsch Continued adogtion of EHRs
(2012)
Familiarization of providers with autho-
rization processes for genetic testing us-
0 W mom—ch yevi :
Holm Teaining for chers in ch ethics
(2017)
_ Hsu (2015) o o o Single health system -
1OM Development of governing Consideration of the ultrn-large-system
(2011) peinciples, priorities, system (ULS) approach
specifications, and cooperative
strategies Interdisciplinary collaboration to develop
IT infrastrecture
Jones Funding for additiosal trans- Ioclusion of relationship-building nnd
(2022) parency and commmunication shared decision making education in med-
moods ical school curricula
Krumbalz Funding for "umcoeventional®  Attestion to implementation Research commons where lnvestigators
(2014) rescarch and new types of on the part of leaders can share and refine tools and data
e — e B e ——pE———————————————————————————
Mand| Iscontives for dovelopoaent of Decentralized goversance Doveloptzest of both techinical and aca-
(2020) computational phenotypes model demic frameworks for sestaizing collabo-
ratsons
Provision of local benefit to
participating sites Central tracking of proposed resonrch
projects so that there are “no surpeises”
McGinnis Unified data architecture
(2021)
Duvoloposest of securo and isteroperable
gonomics-enablod [T systemns in bealth
caro and community settings
Research commons whero investigators
can shave and refine tooks and data
Nwaru Development of "knowledge to practice”
(2017) infrastructures

Shared digital infrastructure that sup-
ports both individual needs and improves
the overall system

Enbancemmest of currest platforms to
etiable theen to capture and integrate
multiple formma of information

Delinition of entorpriso-wideo strategios foe
AI/ML tools

Platlorm-agnostic analysis tooks
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Continued from
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Tithe

genomic medicine and learning
Yu (2015) 'Aunumwkplﬂ:mb Use of & specimen tracking system
roen othor countries 1o undes-
stand the ethical complexity
of bicenarkor testing amid
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