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Abstract
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Biomedical Informatics and Medical Education

Cancer is a serious diagnosis and diagnostic delay is correlated with reductions in survival

rates following treatment. For many cancers, providers can only rely on symptoms and signs

to diagnose patients. These details are recorded primarily free text clinical notes. Natural

language processing (NLP) can be used to extract symptoms/signs from these notes for

population level diagnosis screening. This creates opportunity for machine learning to alert

providers earlier in the diagnostic process using existing, but easily overlooked information.

Thus, the focus of this thesis was to determine opportunities for reducing diagnostic delay

in ovarian and lung cancer. A symptom extraction model trained on a primarily COVID-19

population was adapted to lung and ovarian cancer populations. The model then extracted

symptoms/signs from a retrospective case-control study (ovarian) developed as part of this

work as a well a leveraged study (lung). Symptom frequencies for ovarian cancer were then

explored across different routes to diagnosis. Finally, this thesis developed experiments using

machine learning models to predict lung and ovarian cancer prior to diagnosis. This work

showed early prediction using symptoms was only possible on the lung cohort. Nevertheless,

both cohorts had significantly higher “next step” recommendations in cases as compared to

controls, even 6 months prior to diagnosis.
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Chapter 1

INTRODUCTION

Cancer caused the deaths of 609,640 people in the United States in 2018, and is one of

the top causes of death in the United States[22]. That being said, the importance of early

diagnosis cannot be overstated. There are marked differences in survival rates depending on

the stage of cancer at diagnosis[22]. Later stage cancers are generally larger, and many have

metastasized, or spread to surrounding organ systems. Patients diagnosed with later stage

cancers have a worsened prognosis compared to earlier stage cancers[22].

The slow, often hidden, progression of many cancers may result in delays in diagnosis.

The longer the delay before diagnosis, the longer the delay before treatment and the longer

the cancer has to grow. For example, with ovarian cancer, early stage 5 year survival rates are

80-90%, while later stage survival rates are only 20-30%[24]. However, in ovarian cancer the

proportion of patients with a later stage diagnosis (stage 3-4) is close to 70%[24]. Similarly,

with lung cancer, the 5 year survival rate is 40-60% and 10-20% respectively[18]. As many

as 55% of these patients are diagnosed at a later stage[28]. This disconnect is what drives

much of the research into diagnostic delay, with the hopes of improving patient outcomes by

increasing the number of early stage diagnoses.

There are two main sources of diagnostic delay. The first source of delay is the time be-

tween the patient entering the disease state and initial suspicion by a healthcare provider. For

cancers without a screening test, this is the delay between when the patient first experiences

a symptom and when a provider first suspects cancer. In many cases, the first indication

that a provider is suspicious of cancer is when they order or recommend the appropriate

“next step” on the diagnostic pathway. In the case of ovarian cancer, for example, this is

an ultrasound (US), CT, or gynecology referral[19]. In the case of lung cancer, this typically
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is a Chest CT, Chest X-Ray, or Chest MRI[2]. The second segment of delay is between the

first indication of suspicion by the provider and the actual diagnosis. The former aspect of

delay invites automated diagnostic prediction to augment provider intuition.

And so, the primary goal of this work was to ascertain the potential for symptoms/signs

to address the former aspect of delay through machine learning. This was done with two

cancer types: lung and ovarian cancer. Unlike breast or cervical cancer, where a screening

test can start the diagnostic process prior to any symptomatic expression, cancers like ovarian

or lung do not have a recommended general population screening test[23]. This means that,

for now, symptoms/signs are the earliest possible signal to begin the diagnostic process for

these two cancers.

A common way to uncover patterns in symptomatic expression prior to cancer diagnosis

is to use electronic health record (EHR) data. Data stored in the EHR typically follows two

forms: discrete, or coded information, and notes, or textual information[20]. Discrete infor-

mation, such as diagnosis codes in the form of ICD-9 or ICD-10 codes, combine with textual

to form the entire picture of a patient as perceived by the health system. Despite ICD-9 and

ICD-10 including a variety of codes for what typically are known as symptoms/signs, e.g.

“abdominal pain” (R10.9, 789.00), many symptoms/signs tend to be severely undercoded.

In previous work, the author’s lab found that symptoms/signs extracted from the note were

far more prevalent than their coded equivalents on the same patient cohort. This pattern

was found in several other studies, including Chan et. al.[4]. Thus, the note is generally a

richer source of symptoms/signs, but practical considerations limit their use in secondary

purposes due to the need for manual chart review. However, advances in natural language

processing (NLP) allow the extraction of symptoms/signs automatically from the note. This

enables the use of this rich data source in a cost-effective, scalable manner.

In order to accurately predict both ovarian and lung cancer it is important to understand

the diseases and their progression. In 2018, ovarian cancer was diagnosed in approximately

22,240 patients with 14,070 deaths in the United States[26]. Despite only 2.5% of women

diagnosed with cancer experiencing ovarian cancer, it accounted for 5% of the deaths[26]. In
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short, it is a relatively rare disease, but often deadly to the patients it afflicts.

Symptoms/signs of ovarian cancer that have had significant odds ratios in prior work

include fatigue, abdominal pain, pelvic pain, post-menopausal bleeding, distention, ascites,

bloating, loss of appetite, early satiety, weight loss, urinary urgency, incontinence, frequency,

other issues with bowel habits, and nausea [7][1][25]. A discovery of an abdominal or pelvic

mass during exam might also indicate cancer[8][7]. Ovarian cancer symptoms/signs are

easily confused with other, far more common indications, as well as simple menopause and

aging. As an example, menopause can contribute to a loss of appetite, while a UTI or

simple weakening of the bladder muscles can cause many of the symptoms/signs related

to urinary urgency[24]. Nevertheless, from the literature many patients experience these

symptoms/signs 6 or more months prior to diagnosis[8]. In an analysis by Goff et. al., high

frequencies (more than 12 times a month) of pelvic, abdominal pain and bloating all had

positive odds ratios greater than 6 months prior to diagnosis[8].

Lung cancer is a disease that was diagnosed in 234,030 people in the USA in 2018, with

121,680 deaths attributed to lung cancer[22]. While it is common in certain sub-populations

like smokers, it is not exclusive to those patients and the symptoms/signs experienced are

varied and complex[22]. The symptoms/signs that are most consistently mentioned in the

literature include cough, wheezing, dyspnea or shortness of breath (SOB), fever, clubbing,

and weight loss[3]. Other symptoms/signs include various kinds of bone and back pain,

fatigue, and more[3]. To note is that many of these symptoms/signs could be confused with

gastroesophageal reflux disease (coughing), influenza (coughing, fever, fatigue, shortness of

breath), and other more common disease states.

The complexity and confusing nature of the symptomatic expression of both diseases

indicates the potential use case for a machine learning classification task, so long as the

symptoms can be extracted appropriately from the note. In this work, a NLP symptom

extraction model was adapted to these two cancer contexts. An existing case-control dataset

for lung cancer was leveraged and used as a template for a similar retrospective case-control

dataset observing the year prior to diagnosis for patients diagnosed with ovarian cancer. Then
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the symptom extraction model extracted symptoms/signs for both the lung and the ovarian

cancer cohort. Then uni-variate analyses on the ovarian cancer cohort were performed.

Another part of the team developed the lung case-control cohort and performed the uni-

variate analysis of lung cancer, and so that work was not included in this thesis. Finally,

the extracted symptoms/signs were used to develop predictive machine learning models in

experiments on both the ovarian and lung cancer cohorts.

The rest of this thesis is organized in the following manner. First, Chapter 2 (Related

Work) reviews different types of predictive tools and their effectiveness for cancer predic-

tion. It also reviews the different potential mechanisms for symptom information extraction.

Then, Chapter 3 (Methods) discusses the datasets used in this work and the details of the

experiments conducted in this work. Chapter 4 (Results) discusses the direct results from

the experiments. Finally, Chapter 5 (Discussion) explores the potential future work and

proposes some potential rationale for the discoveries unearthed in the results section.
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Chapter 2

RELATED WORK

This chapter reviews both the current body of work related to symptom extraction as

well as work related to early prediction of cancer. Both bodies of knowledge have experienced

several modern advances in the past few years, which in part enables the experimentation

discussed in further chapters.

2.0.1 Symptom Extraction Using NLP

NLP is a body of research that focuses on enabling computers to process human language via

an automated, and thus faster approach. A subfield within NLP is information extraction.

The goal of information extraction is to extract concepts (“information”) consistently and

efficiently through an automated process.

Much of this work focuses on extracting information from textual documents. This

typically follows a multi-step process that starts with creating an annotation schema for the

concepts of interest. An annotation schema is a formal model of the information at hand.

This is similar to ontology work that endeavors to create a consistent frame of reference for

all parties[5]. Using this schema, it is relatively straightforward to construct a gold standard

corpora for a specific extraction task. With this gold standard in hand, designers can test

model architectures of varying complexity and determine their efficacy in a standard and

objective process.

There have been many attempts to extract symptoms/signs from medical text. A sys-

tematic review found several methods currently in use[10]. The simplest method is to use

a “rule-based” approach, such as accomplished by Iqbal et. al. and Greenwald et. al.[10].

These works benefit from simplicity and efficiency, but they lose much of the nuance needed
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in order to accurately interpret the information. For example, while a rule based system is

sufficient to extract the phrase “pain”, further work is needed to determine if pain is negated,

if it is associated with the abdomen or the pelvis, or if it is burning or throbbing in nature.

Needless to say, in order to create an accurate diagnosis, these details are necessary and so

it is insufficient to apply a simpler system.

Another standard approach is to filter the output of a generalized concept extractor,

such as MetaMaps, C-Takes, MedLEE or others, for a certain set of concepts related to

the symptomatic task at hand. Gundlapalli et. al. and Wang X et. al. are all works

that have taken this approach[10]. While this approach takes advantage of prior work and

likely requires less up front cost, it does require a clinical expert to determine the concepts

to analyze. This can be appropriate, but it also can be inappropriate depending on the

downstream task. If the task involves constructing disease definitions, than it can be difficult

to determine which concepts to remove and which to keep.

Finally, there have been many recent work endeavoring to extract more nuanced phenom-

ena using sophisticated machine learning methods. Lee et. al., Luan et. al., and Wadden

et. al., are all papers that helped developed the framework for generic event extraction with

related attributes [13][15][27]. This work was adapted by Kevin Lybarger et. al.[16] to fit

a symptomatic context. In Lybarger et. al., a model was built to extract symptoms/signs

from medical text, using a large dataset of COVID-19 related patient notes[16]. Crucially,

annotated symptoms were not limited to known COVID-19 symptoms, but included all pos-

sible symptoms in the notes. These symptoms/signs were extracted as events, with a trigger

phrase such as “pain”, and related attributes such as “no” (role of assertion) or “abdomi-

nal” (role of anatomy). Extracted attributes included the symptom trigger, the assertion,

anatomy, characteristics, duration, severity, frequency and change, although the model per-

formance varied depending on the role.

The model created by Lybarger et. al. is span-based; it works end-to-end with a multi-

layer extraction model that predicts all event roles in a joint fashion, including the event

type, spans, argument types, role linkages, and argument labels if any. It functions by first
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encoding sentences using Bio+Clinical BERT, with a bi-LSTM layer to reduce computational

cost. A single classifier predicts non-label arguments, while distinct classifiers predict span

labels for arguments that include labels. Role based scoring is also performed with separate

classifiers for arguments with labels and one boolean classifier for span-only arguments.

The model performance was 0.83 F1 (0.86 F1 annotator agreement) for the symptom

trigger, 0.79 F1 (0.83 F1 annotator agreement) for the assertion, and 0.61 F1 (0.81 F1

for annotator agreement) for anatomy. Other features performed less accurately due to

the dearth and inconsistency of training data, and so were not prioritized in this work or

downstream functions. This model outperformed MetaMapLite++, with a trigger F1 of 0.54

and assertion of 0.44.

Regardless of how symptoms are extracted, the goal is to then use them in a downstream

task such as diagnosis prediction. The fundamental goal of automated diagnosis prediction

is to reduce the time to diagnosis and prevent diagnostic error. This problem is a well known

phenomena in the medical literature, and is especially concerning for cancer. As outlined by

Lyratzopoulos et. al., the specificity of cancer symptoms/signs tend to be quite low, and so

many patients appear in primary care over multiple consultations before they are eventually

diagnosed with cancer[17]. This is because this relatively rare, but serious set of conditions

have symptoms/signs that are easily confused with common, less serious conditions.

One paradigm of automated diagnostic prediction focuses on creating a simple index that

can be easily used in a clinical setting. Answering a set of questions generates a score for

that patient, which might deem the patient high or low risk. This can be a useful method

in low resource settings, as it can typically be accomplished with only pen and paper. A

study developed by Goff et. al. provides an example of this style of risk scoring[8]. In this

work, a questionnaire was developed with scoring logic to create a ovarian cancer risk score.

Using questions like “How long did this symptom persist?” and “How many days per month

did you experience this symptom?”, providers can ascertain information that may not be

uncovered naturally in the patient visit.

An alternative paradigm of diagnostic prediction is using more standard machine learning
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approaches to create a classification algorithm. Ayer T. et. al, and Listgarden J. et. al.

used artificial neural networks (ANN) and support vector machines (SVM) respectively to

predict susceptibility of breast cancer[11]. Waddell M. et. al. performed a similar SVM

based experiment on multiple myeloma[11]. SVM, along with Random Forest and Linear

Regression are all examples of standard classification algorithms that can be easily applied

to clinical data. The input feature set can be driven by lab values, demographic information,

genetic markers, or even less quantitative information like symptoms/signs so long as it is

properly normalized into a matrix.

An example of this style of approach is Levitsky et. al.[14]. In this work, researchers

wished to predict at the time of patients being referred to a lung cancer diagnosis and treat-

ment center whether a patient suspected of lung cancer has lung cancer. To determine this,

they used a variety of features including demographic information, symptomatic informa-

tion, and laboratory values. The gathered this information in a similar fashion as Goff et.

al., through a questionnaire. This questionnaire information served as a feature set that

was fed into a multivariate regression model. They experimented with different sets of fea-

tures, achieving sensitivity in the 76.1-84.8 range at the time the patient was referred to the

diagnosis treatment center and specificity in the 51.9-66.7 range.
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Chapter 3

METHODS

This chapter describes the corpora and datasets that were developed. It also reviews

the relevant details of leveraged corpora. Finally, it discusses the methods proper, namely

first the annotation adaptation experiments, second the case-control study development and

uni-variate analyses, and third the predictive model experimentation.

3.1 Research Datasets

The following sections cover the corpora used to adapt the symptom extraction model devel-

oped in prior work, the case-control dataset developed for ovarian cancer, and the leveraged

case-control dataset for lung cancer.

3.1.1 NLP Corpora for Symptom Extraction

Over the course of this work, one clinical annotated corpora was leveraged and two corpora

were developed. Each corpora describes a separate patient population.

COVID-19 Annotated Text (CACT) Corpus: The CACT was built from clinical

notes of 230,000 patients who received treatment at the University of Washington Medical

Center (UWM) between May-June 2020. The CACT corpus includes telephone encounter

notes, progress notes of all kinds including outpatient and emergency department notes.

Lung Cancer Annotated Text (LACT) Corpus: LACT was built using notes writ-

ten on lung cancer patients in the 24 months prior to diagnosis. LACT utilized notes from

an existing dataset of 4,673 lung cancer patients who were diagnosed with lung cancer at

UWM and Seattle Cancer Care Alliance (SCCA) between 2012-2020. LACT includes the

following note types: outpatient progress notes, admission notes, emergency and discharge
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notes.

Ovarian Cancer Annotated Text (OACT) Corpus: The Ovarian corpus was built

using notes written on ovarian cancer patients in the 12 months prior to diagnosis. OACT

utilized notes from an existing dataset of 173 ovarian cancer patients who were diagnosed at

UWM and SCCA between 2012-2021. OACT included outpatient progress notes, admission,

emergency, discharge, and gynecology notes.

Annotations

In prior work, a symptom annotation schema was created[16]. It was designed to generalize

across domains and serve as a global representation of symptoms/signs and their nuanced

event attributes. This annotation schema was designed in an “event” structure, where one

role, the trigger, is the nexus of the symptom, while other roles serve as nuance providing

detail.

Figure 3.1: Annotation Schema Example

In Table 3.1, there are two required roles, assertion and trigger. The trigger is what makes

the symptom unique, and can be either a single word such as “pain” or an atomic phrase

such as “short of breath”. Other, optional, roles are less common and so less represented in

the corpus. Figure 3.1 shows how symptoms/signs can have related anatomy (“abdominal”),

characteristics (“sharp”), and frequency (“occasional”). Some of these roles, like assertion,

have values associated, while other roles, like anatomy, only have spans associated with the

role.
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Table 3.1: Symptom Annotation Schema

Role Labels Examples

Trigger (required) None “pain”, “cough”

Assertion (required) present, absent, hypothetical “reports”, “no”, “prn”

not patient, possible, conditional

Anatomy None “abdominal”, “chest”

Characteristics None “watery”, “pink”

Severity mild, moderate, severe “mild”, “severe”

Change improving, no change, worsened, resolved “worsening”, “increasing”

Duration None “for 3 days”

Frequency None “every day”

Table 3.2: Corpora Comparison

Characteristics CACT LACT OACT

Dataset Type Baseline New New

Training Size (# notes) 1028 170 110

Test Size (# notes) 444 100 100

Annotator Agreement (Trigger F1) 0.85 0.83 0.82

Annotator Agreement (Assertion F1) 0.83 0.79 0.80

Annotator Agreement (Anatomy F1) 0.8 0.79 0.78

Annotator Agreement (Change F1) 0.51 0.62 0.37

Annotator Agreement (Severity F1) 0.41 0.47 0.38

Annotator Agreement (Frequency F1) 0.65 0.38 0.21

Annotator Agreement (Duration F1) 0.56 0.30 0.55

Annotator Agreement (Characteristics F1) 0.53 0.45 0.41
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To determine annotator agreement and model performance, three different approaches

were used, depending on the type of the role. For the trigger, a true positive was defined

as an exact index match between trigger in the gold and test corpus. For a value role, such

as assertion or change, an exact match on the trigger as well as a value match on the role

(present = present, for example) were both required to count as a true positive. Finally, for

span-only roles such as anatomy, a partial overlap on the anatomy span as well as an exact

match on the trigger was sufficient for a true positive.

Table 3.2 compares the new corpora with the existing corpus for key differences. The

relatively small sizes of training data in LACT and OACT as compared to CACT, 170 and

110 compared to 1028 respectively, are due to the smaller dataset requirements needed to do

transfer learning. The annotator agreements were similar across corpora, between 0.82 and

0.85 trigger level F-1. This agreement serves as a ceiling for model performance, as trigger

accuracy is essential for any other role to be correct.

3.1.2 Case-Control Datasets for Ovarian Cancer and Lung Cancer

As part of this work, one case-control dataset was developed, for ovarian cancer, and one

case-control dataset was leveraged, for lung cancer.

Ovarian Cancer Case-Control Dataset (Ovarian Cancer Cohort): The Ovarian

Cancer Cohort was created using data from University of Washington Medicine (UWM),

which is an academic health science center comprised of ambulatory care clinics, urgent

care facilities, emergency departments, and hospitals primarily serving western Washington,

United States of America (USA). Electronic medical record systems were in use in both the

inpatient and outpatient settings for the duration of the study; data is stored centrally in an

integrated data repository. The UWM hospitals and associated laboratories all participate in

the Cancer Surveillance System/Surveillance, Epidemiology and End Results (CSS/SEER)

tumor registry, which includes data on all the newly-diagnosed cancers (except non-melanoma

skin cancers) in 13 western Washington counties. The Institutional Review Board (IRB) of

the University of Washington approved this research study.
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The Ovarian Cancer Cohort was developed to describe the pre-diagnosis clinical presen-

tation of patients with ovarian cancer in ambulatory settings compared to control patients

without a diagnosis of ovarian cancer that were seen at a similar ambulatory care location.

Cases were patients aged 18 years or greater at date of diagnosis, with a first, primary ovar-

ian cancer diagnosed between Jan 1, 2012 and Dec 31, 2020, with an established relationship

with UWM ambulatory care prior to the diagnosis of cancer. The logistics of such a case

selection are described below. For the purposes of this study, ovarian cancer patients were

initially defined as patients with at least one of the relevant ICD-10/ICD-9 codes seen in

Table 3.3.
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Table 3.3: Ovarian Case Inclusion Diagnoses/Control Exclusion Diagnoses

ICD-9 ICD-10

183.0 Malignant neoplasm of ovary C56 Malignant neoplasm of ovary

C56.1 Malignant neoplasm of right ovary

C56.2 Malignant neoplasm of left ovary

C56.9 Malignant neoplasm of unspecified

ovary

183.2 Malignant neoplasm of the fallopian

tube

C57.0 Malignant neoplasm of the fallop-

ian tube

C57.00 Malignant neoplasm of unspecified

fallopian tube

C57.01 Malignant neoplasm of right fal-

lopian tube

C57.02 Malignant neoplasm of left fallop-

ian tube

158.8 Malignant neoplasm of specified

parts of peritoneum

C48.1 Malignant neoplasm of specified

parts of the peritoneum

158.9 Malignant neoplasm of peritoneum,

unspecified

C48.2 Malignant neoplasm of the peri-

toneum, unspecified

236.2 Neoplasm of uncertain or unknown

behaviour of the ovary

D39.1 Neoplasm of uncertain or unknown

behaviour of the ovary

This preliminary cohort was shared securely with CSS/SEER through identifiable infor-

mation on identified cases, such as name, date of birth, Medical Record Number (MRN), and

an ID generated for this study. CSS/SEER matched cancer registry records with primary

ovarian cancer tumors to this cohort. Requested data fields were extracted and de-identified

by CSS/SEER. CSS/SEER de-identified data linked only by the UWM study ID was returned
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to the UW research team. Date of diagnosis of ovarian cancer was defined as the date of

diagnosis listed in CSS/SEER (in most cases, the date of histologic/cytologic confirmation).

The patient cohort was then filtered by the following criteria.

First, patients without notes in the year prior to the CSS/SEER diagnosis date were

removed. Many patients are referred into the UW medical system upon diagnosis of cancer.

Since only patients already active within the UW medical system are useful for this study,

this filter was used to remove many of these “referral” patients.

Second, patients without a documented recommendation showing evidence of suspected

ovarian cancer (a CT, an ultrasound (US), or a referral to Gynecology) were removed. Doc-

umented recommendations were extracted from discrete order data or using NLP. Similar

to symptoms/signs, test or referral recommendations can be far more present in the note

compared to discretely recorded orders. The model used was developed by Wilson et. al. to

classify sentences within radiology notes as recommendations. The recommendations extrac-

tor is a binary classifier implemented with Hierarchical Attention Network[12]. The model

learns to identify a recommendation based on the aggregated attention weights of word con-

texts within the sentences. The model was trained on a multi-modal radiology corpus and

achieved 0.92 F1[12].

The clinic or provider type suggesting the initial recommendation was mapped to as-

sign the patient to a specific diagnosis route. This was accomplished through meta data

about the provider specialty and the location where the notes were written (encounter facil-

ity, department specialty). The provider specialty and department were mapped to one of

four categories: 1) Primary Care, which includes Family Medicine, Internal Medicine, Inter-

national Medicine, and Urgent Care, 2) Women’s Health, which includes Women’s Health

and Obstetrics and Gynecology, 3) Emergency, which includes Emergency Medicine, and 4)

Other, which includes all other encounter or facility types. The earliest mappable recom-

mendation in the year prior to diagnosis was used to determine the patient’s route.

The result of this filtering led to a cohort of size N=136. Controls were randomly selected

from an eligible pool using a 10:1 matched sample. Women were eligible for selection as a



16

control if they had a birthday within 3 years of the case patient, had at least one visit to the

same type of route as the patient, had no history of ovarian, fallopian, or peritoneal cancer

(using the ICD codes noted in Table 3.3), and no history of bilateral salpingo-oophorectomy

Z90.722 (ICD-10) and 656 (ICD-9). The visit to the same route as the patient served as

the lookback date for the data pull, similar to the diagnosis date for the patient. No other

exclusions were used. Figure 3.2 explores the patients removed at each step.

For both control and case patients, the symptom extractor extracted all notes in the year

prior to the relevant lookback date, as well as any orders, labs, radiology reports, and patient

weight. The notes were processed by a symptom extraction model, created in other work

and tuned to the ovarian cancer context, as well as a recommendation extraction model,

used as is.

Figure 3.2: Case-Control Definition for the Ovarian Cancer Cohort
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Lung Cancer Case-Control Dataset (Lung Cancer Cohort): The Lung Cancer

Cohort was developed in prior, as of yet unpublished work by Zigman Suchsland et. al. in

the author’s lab. As part of that unpublished work, uni-variate analyses were conducted

and a case-control cohort was developed. Similar to the Ovarian Cancer Cohort, this was

created with patients attending and diagnosed through UWM, linked to CSS/SEER records,

and then mapped to control patients. The case cohort was filtered differently, but the

intention was identical, with the goal to remove patients who were referred to UWM for lung

cancer treatment. In this cohort, there were 711 case patients and 6841 control patients, or

approximately 10:1 matched sample. Thus, there are several key differences between the lung

and ovarian cancer cohorts. The first is that lung cancer patients are far more numerous and

the resulting dataset size is approximately 5 times larger than the Ovarian Cancer Cohort.

The second is that the patients are not further subdivided into different routes based on

referral patterns. Both of these facts have potential downstream impacts when performing

the same experiments in the two different contexts.

3.2 Experimental Design

The experiments are divided into three main sections. The sections are as follows: the

adaptation of the symptom extraction model, the uni-variate case-control analysis of ovarian

cancer, and finally the prediction task.

Adaptation of a Symptom Extraction Model to Two Separate Corpora: The

original model created by Lybarger et. al. was developed solely on the CACT corpus. As

part of this work, a series of experiments was run. First, the model was trained from scratch

solely on the CACT training set, and then tested it on the CACT, LACT, and OACT test

set. These experiments served as a baseline of performance without domain adaptation.

Subsequently, in-domain training data was included with the out-domain training data, and

then the performance on the respective in-domain test set was considered. The following

experiment combined CACT and LACT training data and tested it on the Lung test set.

The final experiment combined CACT and OACT training data and tested the new model on
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the OACT test set. In all experiments the model was retrained from scratch, but otherwise

no other optimizations of the model’s hyperparameters beyond the parameters derived from

Lybarger et. al. were performed. The goal of this experimentation was to determine the

limitations of the dataset itself, and so the experimentation was designed to avoid tuning

beyond the inclusion of in-domain or out-domain data.

For the domain adaptation experimentation, only trigger level performance was con-

sidered. This is due to the nature of the annotation schema. Without the trigger being

accurate, no other role can be accurate, and so the priority is solely trigger performance in

this experimentation. Finally, as part of the error analysis the impacts of span level trigger

performance changes were explored.

Uni-variate Analysis of Symptoms and Signs in Ovarian Cancer: This part

of the analysis first explored the differences in symptomatic expression between mapped

ICD-10 codes and normalized note-extracted symptoms/signs found in the Ovarian Cancer

Cohort. First, the model adapted using the OACT corpus extracted un-normalized symp-

tomatic events. Then, the unique trigger and anatomy spans were normalized to one of the

core symptoms/signs or relevant anatomy that were known to be affected by ovarian can-

cer. Core symptoms/signs were symptoms that appeared in one or more studies on ovarian

cancer. If the span was not known to be related, it was mapped as Unknown. For complex

symptoms/signs such as “abdominal pain”, a normalized symptom was found if it had both

a trigger mapped to the normalized trigger “Pain” (“pain”, “painful”, “hurts”), and a linked

anatomy role that mapped to the normalized anatomy region “Abdominal Region” (“abd”,

“abdomen”, “abdominal”). In very rare cases, where the trigger was one word and implied

both symptom and anatomy, it was mapped directly (e.g. “spotting”, which uniformly refers

to bleeding from the vaginal region).

This set of core symptoms/signs can be seen in Table 3.4. Uni-variate analyses were

performed for both symptomatic and demographic differences between cases and controls as

well as between early and late stage cancer. Finally, uni-variate symptomatic analyses were

performed across time for both the overall Ovarian Cancer Cohort and the two larger route
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sub-cohorts, Primary Care and Gynecology.

Table 3.4: Ovarian Cancer Core Symptoms and Signs

Symptom (References) ICD-9, ICD-10 Codes Textual Examples

Pain-Abdominal

Region[7][1][25]

789.0, 789.01, 789.03, 789.04, 789.09, R10.9,

R10.1, R10.10, R10.3, R10.30, R10.8, R10.84,

R10.9

“abdominal pain”,

“pain in the abdomen”

Pain-Pelvic Region[7] 789.5, 789.51, 789.59, R18, R18.8, R18.0 “pelvic pain”, “pain in

the pelvic area”

Ascites[7] 789.5, 789.51, 789.59, R18, R18.8, R18.0 “ascites”

Bleeding-Vaginal

Area[1][9][25]

N95.0, N93.9, N93.8, N93, N92.4, N92.3,

627.0, 627, 627.1, 626.7, 626.5

“vaginal bleeding”,

“spotting”

Nausea 787.02, 787.01, 787.04, R11.0, R11, R11.2,

R11.14

“nausea”

Fatigue[7] 780.79, R53, R53.0, R53.1, R53.8, R53.81,

R53.82,R53.83

“tired”, “fatigue”

Distention[7][1][9][25] 787.3, R14.0, R14.1, R14.2, R14.3 “distended”, “disten-

tion”

Bloating[7][1][9][25] 787.3, R14.0, R14.1, R14.2, R14.3 “bloated”

Weight Loss[7] 783.2, R63.4, 783.21 “weight loss”

Change in Bowel

Habits[7][25][9]

787.99, 564.5, 564.00, 564.01, 564.02, R19.4,

787.91, K59.1, R19.7, 564.0, K59.09, K59,

K59.04, K59.01, K59.02, K59.0

“loose bms”, “consti-

pation”

Loss of Appetite[7][1] 783.0, R63.0 “lack of appetite”

Early Satiety[7][1][25] 780.94, R68.81 “feeling full”

Urinary

Frequency[7][9][25]

788.41, R35, R35.1, R35.0, R35.8 “urinary frequency”

Incontinence-

Urinary[7]

R32, 788.30, 788.31, 788.33, 788.38, 625.6,

788.39, R39.81, 788.91

“leaking”

Urinary Urgency[7][25] 788.63, R39.15 “urinary urgency”

Dysuria[7] R30.0, 788.1 “painful urination”

Masses-Abdominal

Region[7][9]

R19.01, R19.02, R19.03, R19.04, R19.00,

R19.09, R19.05, 789.31, 789.32, 789.33,

789.34, 789.30, 789.35, 789.37, 789.39, R19.00,

R19.07, R19.09

“abdominal mass”

Masses-Pelvic

Region[7][9]

R19.00, R19.09, R19.07, 789.3, 789.30, 789.39 “pelvic mass”
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3.2.1 Predictive Model Experimentation

Three distinct experiments of disease classification using both the Ovarian Cancer Cohort

and Lung Cancer Cohort were performed. The primary goal was to determine the potential

for early cancer prediction prior to diagnosis, but also to explore the effect that different

data types and models might have on the predictive task.

Each patient’s year prior to diagnosis was represented as an input row in the training and

test sets. The output value was a binary indication of whether the patient belonged to the

case or control cohort. Thus, the classification task was to determine which cohort the patient

belonged given the input features. The input features were modified across the experiments,

but they were all variations of the core symptoms/signs for each cancer generated from a

literature review. Fundamentally, the classification task was to differentiate between cancer

and matched controls at different points in time, most commonly at the time of diagnosis.

In the first set of experiments, performance comparisons were performed with random

forest, SVM, and linear regression models on the same datasets with the goal of using the

model type with the highest sensitivity in the following, more crucial, experiments. In the

experimentation, each patient was represented by the set of core, normalized symptoms/signs

for ovarian cancer. These symptoms/signs were driven by prior literature on symptoms/signs

potentially correlated with either cancer. Given the year prior to diagnosis, a patient would

have a 1 if the present symptom/sign appeared at least once in the year prior to diagnosis.

There would be a 0 for that feature if the present symptom/sign did not appear. A true

positive of the positive class, cases, would indicate that the model predicted the positive class

using the feature set for that patient. NLP-only, ICD-10 only, and features that included

both NLP and ICD-10 expression were considered as sub-categories. The features were the

normalized, present symptoms/signs of ovarian cancer. The effect of the inclusion of NLP

was analyzed through these deviations.

The second series of experiments considered the difference in model performance with the

addition of absent symptomatic information that can be observed using the NLP extracted
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symptoms/signs. Changes in performance were evaluated with the inclusion of explicitly

absent symptoms/signs. Each symptom/sign was represented by two features: a feature for

explicit presence, and a feature for explicit absence. A patient would receive a one in the

present feature if a provider explicitly indicated presence at least once in the time period,

and a one in the absent feature if a provider explicitly indicated absence at least once in

the time period. Thus, a patient could both have a positive indication in explicitly absent

and explicitly present features for the same symptom/sign. Only symptoms/signs extracted

using NLP were included, as discrete data for the Lung Cancer Cohort was not available for

these experiments. This was done in order to appropriately compare across the two cancers.

The third series of experiments considered how model performance changed over different

time series filters, given the normalized symptoms/signs. 5 alternative filters were applied

to both the Lung and Ovarian CAncer Cohorts. Input data was developed given the full

year, only the data from 30-365 days (1 Month) before diagnosis, 60-365 days (2 Months)

before diagnosis, 90-365 days (3 Months) before diagnosis, 180-365 days (6 Months) before

diagnosis, and 270-365 (9 Months) before diagnosis. Thus, the classification task changed

slightly with each dataset, namely predicting cancer at different time points instead of at

the date of diagnosis. Fundamentally, the goal was to determine the potential for prediction

as an early warning system for providers during the initial diagnostic process.

Training and test splits were performed by randomly selecting 20% of the respective

input set and setting it aside as the test dataset. Models were first trained using 10-fold

cross validation (CV). The best underlying designs found in 10-fold CV were used in the

following experiments on the test dataset.
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Chapter 4

RESULTS

This chapter is divided into three major sections, coinciding with the three major exper-

imental themes of this work. First, the results of the adaptation of the symptom extraction

model are discussed. Second, the results of the ovarian cancer uni-variate analyses are re-

viewed. Third, the results of the classification task predicting cancer diagnoses at different

time points are provided.

4.1 Adaptation of a Symptom Extraction Model to Two Separate Corpora

This set of experiments focuses on the adaptation of a symptom extraction model to two

out-domain contexts. The results of the different experiments can be seen below in Table

4.1. When changing to an out-domain, the model trained only on CACT achieves a precision

change of -0.01-0.06, with a recall drop of 0.13-0.14. With the addition of in-domain training

data, recall improves from the prior nadir by 0.11-0.12. This recall drop seems to drive the

overall F1 drop prior to the inclusion of in-domain training data.

Table 4.1: Domain Adaptation Performance for Symptom Trigger Extraction.

Training Test P R F1

CACT CACT 0.76 0.76 0.76

CACT LACT 0.75 0.62 0.68

CACT OACT 0.82 0.63 0.71

CACT, LACT LACT 0.71 0.73 0.72

CACT, OACT OACT 0.82 0.75 0.79
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Table 4.2: Top 15 Symptoms/Signs with Largest Recall Delta Impact. TP represents true
positives. Key symptoms/signs for lung cancer and ovarian cancer are in bold.

Most Improved Triggers in LACT Most Improved Triggers in OACT

Trigger Span ∆ TP Trigger Span ∆ TP

pain 18 (261 → 279) pain 30 (285 → 315)

constipation 9 (14 → 23) nausea 27 (103 → 130)

gallops 8 (1 → 9) vomiting 23 (73 → 96)

lesions 7 (2 → 9) masses 19 (4 → 23)

masses 6 (0 → 6) neuropathy 19 (3 → 22)

problems 6 (1 → 7) ascites 14 (1 → 15)

cyanosis 6 (5 → 11) murmur 11(0 → 11)

edema 5 (40 → 45) bleeding 9 (22 → 31)

rubs 5 (0 → 5) rash 8 (11 → 19)

coughing 5 (3 → 8) incontinence 7 (7 → 14)

weight loss 5 (22 → 27) murmurs 7 (0 → 7)

adenopathy 5 (0 → 5) lesions 7(14 → 21)

murmurs 5 (0 → 5) distended 6 (10 → 16)

suicidal ideation 4 (1 → 5) tenderness 6 (24 → 30)

rash 4 (37 → 41) ulcers 6 (11 → 17)

There are two main patterns when observing the most changed triggers between the

model trained solely on out-domain data and the model trained on both in- and out-domain

data. First, triggers tend to be common symptoms/signs such as pain that appear in new,

uncommon contexts, such as cancer pain management. Second, most improved triggers tend

to be uncommon symptoms/signs that appear more commonly in the new domain, such as

bleeding or adenopathy. In Table 4.2, symptom triggers that have been found in the literature

to be key symptoms/signs for their relevant domains are in bold. To note is how many of

these symptoms/signs are represented in the top 15 most changed symptoms/signs, and thus
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would be under-represented without in-domain training data. Not all of these triggers are

necessarily symptoms associated with the out-domain, but the fact that many of them are

indicates the differences between in- and out-domain data.

Table 4.3: Final Adapted Model Performance on Symptomatic Roles

Roles LACT F1 OACT F1

Trigger 0.72 0.78

Assertion 0.65 0.73

Anatomy 0.61 0.62

Change 0.06 0.16

Severity 0.36 0.45

Frequency 0.59 0.52

Duration 0.27 0.45

Characteristics 0.26 0.27

The performance on all roles for the adapted models are recorded in Table 4.3. These

were the models used in the following uni-variate analysis and early diagnostic prediction.

4.2 Uni-variate Analysis of Symptoms and Signs in Ovarian Cancer

In this section the results from the uni-variate analyses of ovarian cancer symptoms/signs in

the year prior to diagnosis are reviewed. Comparisons include cases and controls, early and

late stage cancer, and changes caused by the inclusion of different symptomatic data types.

Changes in Patient Coverage Due To The Inclusion of NLP Extracted Core Symptoms and

Signs for Ovarian Cancer

In Table 4.4, the combination of both ICD and NLP leads to a higher frequency than either

alone, although for many of the core symptoms/signs NLP significantly outperforms ICD

in recall, with little net benefit from the inclusion of ICD. This lack of benefit is true for



25

symptoms/signs such as Distention, Loss of Appetite, and Early Satiety. Only two symp-

toms/signs, Masses-Abdominal Region and Masses-Pelvic Region, achieves a higher incidence

with ICD than with NLP alone in the cases of the Ovarian Cancer Cohort.

Case Control

Symptom ICD, NLP ICD NLP ICD, NLP ICD NLP

Ascites 23.5% (32) 14.0% (19) 16.9% (23) 1.4% (19) 1.2% (17) 0.6% (8)

Bleeding-Vaginal Area 41.2% (56) 15.4% (21) 38.2% (52) 15.4% (209) 7.1% (97) 11.5% (156)

Bloating 52.2% (71) 10.3% (14) 50.7% (69) 9.6% (131) 3.4% (46) 7.2% (98)

Change in Bowel Habits 73.5% (100) 20.6% (28) 71.3% (97) 37.8% (514) 16.2% (221) 30.7% (417)

Distention 55.1% (75) 10.3% (14) 52.2% (71) 7.4% (101) 3.4% (46) 4.7% (64)

Dysuria 12.5% (17) 8.8% (12) 6.6% (9) 14.2% (193) 11.1% (151) 5.6% (76)

Early Satiety 27.2% (37) 2.2% (3) 26.5% (36) 2.4% (33) 0.5% (7) 2.0% (27)

Fatigue 69.9% (95) 23.5% (32) 66.2% (90) 43.2% (588) 19.3% (263) 34.7% (472)

Incontinence-Urinary 16.2% (22) 5.1% (7) 12.5% (17) 12.3% (167) 7.4% (100) 7.4% (101)

Loss of Appetite 46.3% (63) 0.7% (1) 46.3% (63) 11.8% (161) 1.4% (19) 11.4% (155)

Masses-Abdominal Region 62.5% (85) 58.8% (80) 27.9% (38) 4.8% (65) 2.6% (36) 2.5% (34)

Masses-Pelvic Region 60.3% (82) 58.1% (79) 35.3% (48) 2.9% (39) 2.5% (34) 0.8% (11)

Nausea 67.6% (92) 17.6% (24) 61.8% (84) 34.1% (464) 9.7% (132) 30.0% (408)

Pain-Abdominal Region 76.5% (104) 30.9% (42) 74.3% (101) 26.8% (364) 13.1% (178) 18.7% (254)

Pain-Pelvic Region 41.9% (57) 29.4% (40) 27.2% (37) 21.3% (290) 17.3% (235) 7.4% (100)

Urinary Frequency 23.5% (32) 14.7% (20) 16.2% (22) 11.0% (149) 8.8% (120) 3.9% (53)

Urinary Urgency 5.9% (8) 2.2% (3) 5.1% (7) 5.9% (80) 3.7% (50) 2.6% (35)

Weight Loss 31.6% (43) 4.4% (6) 30.9% (42) 14.8% (201) 4.4% (60) 11.8% (161)

Table 4.4: Frequency of Different Core Symptoms and Signs, Ovarian, ICD vs. NLP

In Table 4.5, some symptoms/signs only achieve significant odds ratios with the inclusion

of NLP, namely Change in Bowel Habits, Early Satiety, Fatigue, Incontinence-Urinary, Loss

of Appetite, and Weight Loss. Even in cases where a symptom is significant without NLP, the

inclusion typically increases the odds ratios. In some cases, it increases it to the point that

the confidence intervals no longer overlap, such as Distention and Pain-Abdominal Region.

Only in two cases do the odds ratios drop slightly, namely Masses-Abdominal Region and
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Masses-Pelvic Region, although the confidence intervals continue to overlap.

Table 4.5: Odds Ratios for Cases vs. Controls, Comparison of Different Data Sources

ICD, NLP ICD NLP

Symptom Odds Ratio P-Value Odds Ratio P-Value Odds Ratio P-Value

Ascites 21.7 (11.9-39.6) 0.001 12.8 (6.5-25.4) 0.001 34.4 (15.0-78.7) < 0.001

Bleeding-Vaginal Area 3.9 (2.7-5.6) < 0.001 2.4 (1.4-4.0) 0.002 4.8 (3.3-7.0) < 0.001

Bloating 10.2 (7.0-15.0) < 0.001 3.3 (1.8-6.1) 0.001 13.3 (8.9-19.7) < 0.001

Change in Bowel Habits 4.6 (3.1-6.8) < 0.001 1.3 (0.9-2.1) 0.226 5.6 (3.8-8.3) < 0.001

Distention 15.3 (10.3-22.7) < 0.001 3.3 (1.8-6.1) 0.001 22.1 (14.5-33.7) < 0.001

Dysuria 0.9 (0.5-1.5) 0.698 0.8 (0.4-1.4) 0.473 1.2 (0.6-2.4) 0.562

Early Satiety 15.0 (9.0-25.1) < 0.001 4.4 (1.1-17.1) 0.055 17.8 (10.4-30.5) < 0.001

Fatigue 3.0 (2.1-4.5) < 0.001 1.3 (0.8-2.0) 0.258 3.7 (2.5-5.3) < 0.001

Incontinence-Urinary 1.4 (0.8-2.2) 0.222 0.7 (0.3-1.5) 0.483 1.8 (1.0-3.1) 0.044

Loss of Appetite 6.4 (4.4-9.4) < 0.001 0.5 (0.1-3.9) 1.0 6.7 (4.6-9.8) < 0.001

Masses-Abdominal Region 33.2 (21.7-50.9) < 0.001 52.5 (32.7-84.5) < 0.001 15.1 (9.1-25.1) < 0.001

Masses-Pelvic Region 51.4 (32.2-82.2) < 0.001 54.1 (33.4-87.5) < 0.001 66.9 (33.6-133.3) < 0.001

Nausea 4.0 (2.8-5.9) < 0.001 2.0 (1.2-3.2) 0.007 3.8 (2.6-5.4) < 0.001

Pain-Abdominal Region 8.9 (5.9-13.5) < 0.001 3.0 (2.0-4.4) < 0.001 12.6 (8.4-18.9) < 0.001

Pain-Pelvic Region 2.7 (1.8-3.8) < 0.001 2.0 (1.3-3.0) 0.001 4.7 (3.1-7.2) < 0.001

Urinary Frequency 2.5 (1.6-3.8) < 0.001 1.8 (1.1-3.0) 0.03 4.8 (2.8-8.1) < 0.001

Urinary Urgency 1.0 (0.5-2.1) 1.0 0.6 (0.2-1.9) 0.623 2.1 (0.9-4.7) 0.097

Weight Loss 2.7 (1.8-3.9) < 0.001 1.0 (0.4-2.4) 1.0 3.3 (2.2-5.0) < 0.001

4.2.1 Differences in Demographics Between Cases and Controls and Early and Late Stage

Ovarian Cancer

The Ovarian Cancer Cohort consists of 136 cases and 1360 matched controls. Of the 136

cases, there were 2 patients with Stage 0, 30 patients with Stage 1, 11 patients with Stage

2, 70 patients with Stage 3, and 16 patients with Stage 4. There were 7 patients with no

staging information available.
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Table 4.6: Demographic Analysis of Cases vs. Controls, Ovarian Cancer

Characteristic Cases Controls

Age 60.7 60.3

Race-Ethnicity: African American 8 (5.9%) 95 (7.0%)

Race-Ethnicity: American Indian or Alaska Native 2 (1.5%) 12 (0.9%)

Race-Ethnicity: Asian 13 (9.6%) 108 (7.9%)

Race-Ethnicity: Native Hawaiian or Other Pacific Islander 1 (0.7%) 10 (0.7%)

Race-Ethnicity: Other 1 (0.7%) 8 (0.6%)

Race-Ethnicity: Unknown 3 (2.2%) 158 (11.6%)

Race-Ethnicity: White 104 (76.5%) 927 (68.2%)

Race-Ethnicity: White (Hispanic) 4 (2.9%) 42 (3.1%)

Smoking Status: Former or Current Smoker 37 (27.2%) 336 (24.7%)

Smoking Status: Never Smoker 58 (42.6%) 642 (47.2%)

Smoking Status: Unknown 41 (30.1%) 382 (28.1%)

Mean Number of Consultation Days Per Patient: (-10, 366) Days before Diagnosis 18.83 13.62

Mean Number of Consultation Days Per Patient: (-10, 89) Days before Diagnosis 11.17 6.03

Mean Number of Consultation Days Per Patient: (-10, 29) Days before Diagnosis 8.63 3.41

Mean Number of Consultation Days Per Patient: (30, 59) Days before Diagnosis 1.46 1.44

Mean Number of Consultation Days Per Patient: (60, 89) Days before Diagnosis 1.08 1.18

Mean Number of Consultation Days Per Patient: (90, 179) Days before Diagnosis 2.38 2.81

Mean Number of Consultation Days Per Patient: (180, 269) Days before Diagnosis 2.94 2.42

Mean Number of Consultation Days Per Patient: (270, 366) Days before Diagnosis 2.35 2.36

Elixhauser Comorbidity Mean 3.36 1.61

In Table 4.6, case patients seem to have a higher Elixhauser comorbidity mean than the

control patients. There is also a sharper increase in the number of consultation days in the

last 30 days prior to diagnosis compared to controls, while between 180-365 days there are far

fewer differences between cases and controls. This sparcity of data past 30 days is explored

in a later section.
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Table 4.7: Demographic Analysis of Early vs. Late Stage Ovarian Cancer

Characteristic Stage 1-2 Stage 3-4

Age 61.7 60.1

Race-Ethnicity: African American 0 (0.0%) 8 (9.3%)

Race-Ethnicity: American Indian or Alaska Native 1 (2.3%) 1 (1.2%)

Race-Ethnicity: Asian 6 (14.0%) 7 (8.1%)

Race-Ethnicity: Native Hawaiian or Other Pacific Islander 0 (0.0%) 1 (1.2%)

Race-Ethnicity: Other 0 (0.0%) 1 (1.2%)

Race-Ethnicity: Unknown 0 (0.0%) 2 (2.3%)

Race-Ethnicity: White 36 (83.7%) 62 (72.1%)

Race-Ethnicity: White (Hispanic) 0 (0.0%) 4 (4.7%)

Smoking Status: Former or Current Smoker 11 (25.6%) 24 (27.9%)

Smoking Status: Never Smoker 16 (37.2%) 38 (44.2%)

Smoking Status: Unknown 16 (37.2%) 24 (27.9%)

Mean Number of Consultation Days Per Patient: (-10, 366) Days before Diagnosis 19.65 18.45

Mean Number of Consultation Days Per Patient: (-10, 89) Days before Diagnosis 11.77 11.08

Mean Number of Consultation Days Per Patient: (-10, 29) Days before Diagnosis 8.65 8.78

Mean Number of Consultation Days Per Patient: (30, 59) Days before Diagnosis 1.72 1.3

Mean Number of Consultation Days Per Patient: (60, 89) Days before Diagnosis 1.4 1.0

Mean Number of Consultation Days Per Patient: (90, 179) Days before Diagnosis 2.02 2.48

Mean Number of Consultation Days Per Patient: (180, 269) Days before Diagnosis 3.79 2.48

Mean Number of Consultation Days Per Patient: (270, 366) Days before Diagnosis 2.07 2.42

Elixhauser Comorbidity Mean 2.74 3.62

Table 4.7 provides similar demographic patterns as Table 4.6, with two exceptions. First,

patients diagnosed with later stage cancer seem to generally have a higher Elixhauser co-

morbodity mean. Second, although the size of the cohort is small, it is important to note

that all 12 Hispanic and African American patients are diagnosed with later stage cancer.



29

4.2.2 Odds Ratios Comparing Cases and Controls and Early and Late Stage Ovarian Can-

cer, Entire Year Prior to Diagnosis

Table 4.8 shows significant differences (in bold) between cases and controls when observing

patients with at least one symptom in ICD or NLP in the year prior to diagnosis. This

is true across all symptoms/signs, with the exception of Dysuria, Urinary Urgency and

Incontinence-Urinary.

Table 4.8: Odds Ratios for Cases vs. Controls (merged NLP and ICD Codes)

Symptom Case Control Odds Ratio P-Value

Masses-Pelvic Region 60.3% (82) 2.9% (39) 51.4 ( 32.2 - 82.2 ) < 0.001

Masses-Abdominal Region 62.5% (85) 4.8% (65) 33.2 ( 21.7 - 50.9 ) < 0.001

Ascites 23.5% (32) 1.4% (19) 21.7 ( 11.9 - 39.6 ) < 0.001

Distention 55.1% (75) 7.4% (101) 15.3 ( 10.3 - 22.7 ) < 0.001

Early Satiety 27.2% (37) 2.4% (33) 15.0 ( 9.0 - 25.1 ) < 0.001

Bloating 52.2% (71) 9.6% (131) 10.2 ( 7.0 - 15.0 ) < 0.001

Pain-Abdominal Region 76.5% (104) 26.8% (364) 8.9 ( 5.9 - 13.5 ) < 0.001

Loss of Appetite 46.3% (63) 11.8% (161) 6.4 ( 4.4 - 9.4 ) < 0.001

Change in Bowel Habits 73.5% (100) 37.8% (514) 4.6 ( 3.1 - 6.8 ) < 0.001

Nausea 67.6% (92) 34.1% (464) 4.0 ( 2.8 - 5.9 ) < 0.001

Bleeding-Vaginal Area 41.2% (56) 15.4% (209) 3.9 ( 2.7 - 5.6 ) < 0.001

Fatigue 69.9% (95) 43.2% (588) 3.0 ( 2.1 - 4.5 ) < 0.001

Pain-Pelvic Region 41.9% (57) 21.3% (290) 2.7 ( 1.8 - 3.8 ) < 0.001

Weight Loss 31.6% (43) 14.8% (201) 2.7 ( 1.8 - 3.9 ) < 0.001

Urinary Frequency 23.5% (32) 11.0% (149) 2.5 ( 1.6 - 3.8 ) < 0.001

Incontinence-Urinary 16.2% (22) 12.3% (167) 1.4 ( 0.8 - 2.2 ) 0.222

Urinary Urgency 5.9% (8) 5.9% (80) 1.0 ( 0.5 - 2.1 ) 1.0

Dysuria 12.5% (17) 14.2% (193) 0.9 ( 0.5 - 1.5 ) 0.698



30

Table 4.9: Odds Ratios in Stage 0-2 vs. Stage 3-4 (merged NLP and ICD Codes)

Symptom Stage 0-2 Stage 3-4 Odds Ratio P-Value

Dysuria 18.6% (8) 8.1% (7) 2.6 ( 0.9 - 7.7 ) 0.09

Bleeding-Vaginal Area 58.1% (25) 36.0% (31) 2.5 ( 1.2 - 5.2 ) 0.023

Distention 60.5% (26) 53.5% (46) 1.3 ( 0.6 - 2.8 ) 0.573

Masses-Pelvic Region 65.1% (28) 59.3% (51) 1.3 ( 0.6 - 2.7 ) 0.569

Pain-Pelvic Region 46.5% (20) 40.7% (35) 1.3 ( 0.6 - 2.6 ) 0.574

Bloating 55.8% (24) 52.3% (45) 1.2 ( 0.6 - 2.4 ) 0.852

Masses-Abdominal Region 65.1% (28) 62.8% (54) 1.1 ( 0.5 - 2.4 ) 0.848

Fatigue 69.8% (30) 69.8% (60) 1.0 ( 0.5 - 2.2 ) 1.0

Incontinence-Urinary 16.3% (7) 17.4% (15) 0.9 ( 0.3 - 2.5 ) 1.0

Urinary Urgency 4.7% (2) 7.0% (6) 0.7 ( 0.1 - 3.4 ) 0.718

Change in Bowel Habits 69.8% (30) 76.7% (66) 0.7 ( 0.3 - 1.6 ) 0.4

Early Satiety 23.3% (10) 31.4% (27) 0.7 ( 0.3 - 1.5 ) 0.411

Nausea 62.8% (27) 72.1% (62) 0.7 ( 0.3 - 1.4 ) 0.316

Urinary Frequency 16.3% (7) 25.6% (22) 0.6 ( 0.2 - 1.5 ) 0.27

Pain-Abdominal Region 67.4% (29) 81.4% (70) 0.5 ( 0.2 - 1.1 ) 0.12

Loss of Appetite 30.2% (13) 53.5% (46) 0.4 ( 0.2 - 0.8 ) 0.015

Weight Loss 20.9% (9) 38.4% (33) 0.4 ( 0.2 - 1.0 ) 0.049

Ascites 11.6% (5) 30.2% (26) 0.3 ( 0.1 - 0.9 ) 0.028

In Table 4.9 Stage 0-2 and Stage 3-4 in the cohort are compared. To note is that only four

symptoms/signs achieve significant odds ratios distinguishing earlier and later stages: Weight

Loss, Ascites, Bleeding-Vaginal Area and Loss of Appetite. Out of these, only Bleeding-

Vaginal Area is more strongly associated with earlier stage than later stage ovarian cancer.

Given the demographics of the patient population, with an average age of 61.7, instances of

Bleeding-Vaginal Area most commonly refer to post-menopausal bleeding.
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4.2.3 Odds Ratios Comparing Cases and Controls and Early and Late Stage Ovarian Cancer

Over Different, Overlapping Time Intervals

In Figure 4.1, odds ratios are significant across almost all symptoms/signs when considering

the entire year, they lose significance after 30 days, with the exception of Pain-Abdominal

Region, Masses-Abdominal Region, and Masses-Pelvic Region. This somewhat contradicts

prior research into the length and severity of symptoms/signs prior to diagnosis. It would

be expected that the majority of symptoms show no significant odds ratios past, 6 months,

as that follows findings provided by Goff et. al.[8]. However, the fact that significant odds

ratios are not present at 30 days does contradict prior research.

Figure 4.1: Odds Ratios for Ovarian Cancer, Entire Cohort, Across the Year

When the Ovarian Cancer Cohort is further subdivided into the two main routes, Primary

Care (N=60) and Gynecology (N=57), a two definitely different patterns emerge from the

odds ratios across different time intervals.
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Figure 4.2: Odds Ratios for Ovarian Cancer, Gynecology Route, Across the Year

Figure 4.3: Odds Ratios for Ovarian Cancer, Primary Care Route, Across the Year

As can be seen in the figures above, the two largest route sub-cohorts provide significantly

different patterns in sign/symptoms over time. In Figure 4.2, covering Gynecology, almost

all symptoms/signs are not significant past 30 days. Patients on the Gynecology route, for
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whatever reason, do not have significant odds ratios compared to their matched controls in

earlier months. However, in 4.3, many symptoms/signs are significant even 270 days prior

to diagnosis. Primary Care patients have a symptomatic expression that coincides with the

literature, but because both cohorts are about equal in size, the significance is lost in the

undivided cohort. The other two smaller cohorts, Emergency and Other, are too small to

gain significant insights from their performance.

In the 270-365 Day time window, Bleeding-Vaginal Area, Bloating, Change in Bowel

Habits, Distention, Fatigue, Nausea, Pain-Abdominal Region, and Urinary Frequency all

have significant odds ratios. In the 180-365 Day Bleeding-Vaginal Area, Bloating, Change

in Bowel Habits, Distention, Fatigue, Nausea, Pain-Abdominal Region, Pain-Pelvic Region,

and Urinary Frequency all have significant odds ratios. All told, there are 9 symptoms/signs

that have significant odds ratios 6 months prior to diagnosis in the primary care context, and

8 symptoms/signs with significant odds ratios 9 months prior to diagnosis in the primary

care context.

4.3 Predictive Model Experimentation

This section reviews the 3 experiments undertaken around diagnostic prediction. First, a pre-

liminary set of experiments were conducted to determine the appropriate model framework

to use, as well as observe differences in how NLP and ICD can be useful for symptomatic

prediction. Second, a set of experiments were performed around the inclusion of explicit

absence in models predicting both lung and ovarian cancer. Finally, time series experiments

were performed to determine how early prior to diagnosis a given model can predict cancer.

4.3.1 NLP vs. ICD for Explanatory Power

Across all model types there is better performance with the inclusion of both ICD and NLP

information, as can be seen in Table 4.10. Understanding the causes of this hinges on the

fact that while the majority of symptoms/signs, NLP achieves a higher incidence than ICD

alone, in almost all symptoms/signs the combination of both NLP and ICD has a higher
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incidence than either separate. This can be observed in Table 4.4. The specificity range

(recall of the negative class) is quite high regardless of the experiment, between 0.97-1.0 for

all experimental combinations, but this may be due to the relatively high ratio of positive

to negative samples compared to prior work.

A Random Forest model achieves the best sensitivity, at 0.68. For the following exper-

iments, only Random Forest models were used due to its higher sensitivity in this experi-

mentation.

Model Type Data Types Sensitivity (Training) Specificity (Training) Precision (Training)

Random Forest ICD, NLP 0.68 ( 0.449 ) 0.99 ( 0.977 ) 0.85 ( 0.682 )

Random Forest ICD 0.47 ( 0.55 ) 0.99 ( 0.973 ) 0.79 ( 0.687 )

Random Forest NLP 0.39 ( 0.454 ) 0.98 ( 0.98 ) 0.65 ( 0.75 )

SVM ICD, NLP 0.56 ( 0.428 ) 1.0 ( 0.985 ) 0.93 ( 0.744 )

SVM ICD 0.25 ( 0.396 ) 0.99 ( 0.981 ) 0.73 ( 0.696 )

SVM NLP 0.39 ( 0.382 ) 0.99 ( 0.989 ) 0.79 ( 0.806 )

Linear Regression ICD, NLP 0.64 ( 0.481 ) 0.99 ( 0.981 ) 0.89 ( 0.724 )

Linear Regression ICD 0.47 ( 0.572 ) 0.97 ( 0.978 ) 0.65 ( 0.74 )

Linear Regression NLP 0.39 ( 0.436 ) 0.99 ( 0.989 ) 0.79 ( 0.823 )

Table 4.10: 1-Hot Core Present symptoms/signs for Ovarian, Entire Year, Different Data
Sources

4.3.2 Presence and Absence in Lung and Ovarian

In this next set of experiments, 1-Hot feature sets were constructed for both present and

absent symptoms/signs in both Lung and Ovarian cohorts. To ensure direct comparisons

across cancers, these experiments were performed using only NLP extracted symptoms/signs.

The inclusion of absent core symptoms/signs improved sensitivity from 0.39 to 0.6 and 0.37

to 0.54 for Ovarian and Lung, respectively. This can be observed in Table 4.11. Specificity

remained approximately the same regardless of the experimentation, oscillating between 0.96

and 0.99.
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Model Type Data Types Sensitivity (Training) Specificity (Training) Precision (Training)

Ovarian

Random Forest Present 0.39 ( 0.454 ) 0.98 ( 0.98 ) 0.65 ( 0.75 )

Random Forest Absent, Present 0.6 ( 0.366 ) 0.97 ( 0.985 ) 0.72 ( 0.728 )

Lung

Random Forest Present 0.37 ( 0.365 ) 0.96 ( 0.971 ) 0.54 ( 0.611 )

Random Forest Absent, Present 0.54 ( 0.593 ) 0.99 ( 0.988 ) 0.87 ( 0.865 )

Table 4.11: 1-Hot Core Present Symptoms/Signs vs. Core All Assertion symptoms/signs for
Both Lung and Ovarian, NLP Only, Entire Year

The following shap plots, Figures 4.4 and 4.5, explore the features that the Absent,Present

models determined to be the most relevant in both cancer contexts. In shap plots, the color

indicates the value of the feature while the x-axis indicates how strong the impact, whether

positive or negative, on the probability that the patient belongs to the positive class.

Figure 4.4: Key Features for Lung Cancer, Absent and Present Model
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Figure 4.5: Key Features for Ovarian Cancer, Absent and Present Model

In Figure 4.4, both explicitly absent and present wheezing, explicitly absent and present

cough, and several other explicitly absent symptoms/signs like night sweats, clubbing, and

lymphadenopathy have a strong positive impact on the model when present, and a mild

negative impact when absent. Similarly, in Figure 4.5, explicitly absent Nausea, Masses-

Pelvic Region, and Bleeding-Vaginal Area have a positive indication when positive, while

other symptoms/signs like explicitly absent Pain-Abdominal Region are more mixed.

Table 4.12: Feature Level Performance for Some Ovarian Absent Indicators

Symptom Correct Incorrect A Template

Bleeding-Vaginal Area (Absent) 49 1 0

Nausea (Absent) 45 2 3

In Table 4.12, the precision performance for the specific symptom-assertion combination

for two randomly sampled sets of 50 indications. In both Bleeding-Vaginal Area and Nausea,
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there is minimal error, with at least 0.9 in precision. It seems unlikely that model inaccuracy

is driving the pattern where the presence of explicit absence has a positive impact on the

likelihood a patient is a case patient. Another possible explanation is that the models are

intuiting provider diagnostic logic. For example, anecdotally “night sweats” is not a routine

symptom in a typical patient exam. The fact that the provider is bothering to record the

absence of an uncommon symptom could imply concern about an uncommon illness, such

as cancer.

4.3.3 Overtime Prediction for Lung and Ovarian

The final experiment undertook comparisons of a random forest model, trained on both

present and absent core symptoms/signs, and performance over time.

Table 4.13: 1-Hot Core symptoms/signs, Present and Absent, With Different Duration Fil-
ters

Model Type Data Types Sensitivity (Training) Specificity (Training) Precision (Training)

Random Forest Full Year, Ovarian 0.6 ( 0.366 ) 0.97 ( 0.985 ) 0.72 ( 0.728 )

Random Forest Full Year, Lung 0.54 ( 0.593 ) 0.99 ( 0.988 ) 0.87 ( 0.865 )

Random Forest Day 30-365, Ovarian 0.0 ( 0.0 ) 1.0 ( 0.994 ) 0 ( 0.0 )

Random Forest Day 30-365, Lung 0.32 ( 0.332 ) 0.97 ( 0.977 ) 0.62 ( 0.64 )

Random Forest Day 60-365, Ovarian 0.0 ( 0.0 ) 0.99 ( 0.989 ) 0.0 ( 0.0 )

Random Forest Day 60-365, Lung 0.24 ( 0.337 ) 0.97 ( 0.976 ) 0.49 ( 0.648 )

Random Forest Day 90-365, Ovarian 0.0 ( 0.0 ) 1.0 ( 0.991 ) 0 ( 0.0 )

Random Forest Day 90-365, Lung 0.3 ( 0.281 ) 0.97 ( 0.976 ) 0.56 ( 0.616 )

Random Forest Day 180-365, Ovarian 0.09 ( 0.0 ) 1.0 ( 0.995 ) 0.67 ( 0.0 )

Random Forest Day 180-365, Lung 0.2 ( 0.254 ) 0.99 ( 0.983 ) 0.69 ( 0.66 )

Random Forest Day 270-365, Ovarian 0.0 ( 0.0 ) 0.99 ( 0.992 ) 0.0 ( 0.0 )

Random Forest Day 270-365, Lung 0.25 ( 0.214 ) 0.98 ( 0.983 ) 0.58 ( 0.634 )

To note in Table 4.13 is that while lung cancer achieves diminishing returns for pre-

dictability past 30 days prior to diagnosis, sensitivity and precision drops to essentially 0
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for predicting the positive class of the Ovarian Cancer Cohort. This indicates that with the

Ovarian Cancer Cohort, the model assigns all instances to the negative class using these fea-

tures prior to 30 days. This is likely due to variety of compounding factors, but the strongest

hypothesis is explored in the subsequent section.

As for lung cancer, the important features change over time across the different time

windows, with the sensitivity remaining more or less stable up until 6 months prior to

diagnosis.

Figure 4.6: Key Features for Lung Cancer, 90-365 Days

As seen in Figure 4.6, by 90 days, absent night sweats is no longer a key symptom, despite

its strong impact in the prior experimentation. On the other hand, absent lymphadenopathy

and clubbing remain key features even until 180 days (6 months) prior to diagnosis, seen in

4.7. If these explicit absences are indeed an indication that the doctor is concerned about case
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patients more than controls, that could imply that for a strong minority of patients, doctors

are concerned even 6 months prior to diagnosis. This topic of concern and recommendation

is explored in the Discussion chapter.

Figure 4.7: Key Features for Lung Cancer, 180-365 Days
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Chapter 5

DISCUSSION

Both lung and ovarian cancer have complex symptomatic profiles which lend themselves

to delays in diagnosis.This work has delved deeply into the symptomatic profile of ovarian

cancer across the year prior to diagnosis. Experimentation was performed in order to explore

how symptoms can be useful for prediction of both lung and ovarian cancer. Several findings

remain difficult to explain. First, what is causing the lack of predictability of ovarian cancer

past 30 days from diagnosis? Second, if the usefulness of explicit absent symptoms/signs

indeed implies that the model is inferring cancer from provider suspicion, are there other

forms of delay more readily reduced? If a provider is indeed already concerned, than it

becomes harder to justify a predictive model alerting the provider to such a concern.

5.1 Explanatory Factors for Lack of Predictability for Ovarian Cohort Past
30 Days

A main finding in the Results is the lack of predictive capability more than 30 days prior to

diagnosis with the Ovarian Cancer Cohort. This is strikingly different from the Lung Cancer

Cohort. The following differences in route types for present symptoms/signs in the note may

indicate an explanation.

As one can see in Figure 5.1, there is very little noticeable difference between cases and

controls when considering all patients as a whole past 30 days. When further subdividing

across different routes in Figures 5.2 and 5.3, Primary Care case patients have a distinctly

different symptomatic curve than their relevant controls as compared to Gynecology. At 6

months, Primary Care patients have 46.6% of their cohort with at least one symptom vs.

23% for controls; while Gynecology patients have 15.8% percent of their cohort with at least
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one symptom vs. 20.7% for controls. There is a different diagnosis pattern for these two

sub-cohorts, which cumulatively provide the pattern seen in the overall cohort.

Figure 5.1: Frequency of At Least One Symptom/Sign in Ovarian Cancer. In Notes, Cases
and Controls, Year Prior to Diagnosis

Figure 5.2: Frequency of At Least One Symptom/Sign in Ovarian Cancer (Gynecology). In
Notes, Cases and Controls, Year Prior to Diagnosis
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Figure 5.3: Frequency of At Least One Symptom/Sign in Ovarian Cancer (Primary Care).
Notes, Cases and Controls, Year Prior to Diagnosis

One potential explanatory factor is patient visit rates. Note frequencies are very different

in the Overall, Primary Care, and Gynecology cohorts, as seen in the Figures 5.4, 5.6, and

5.5.

Figure 5.4: Frequency of At Least One Note in Ovarian Cancer. In Notes, Cases and
Controls, Year Prior to Diagnosis
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Figure 5.5: Frequency of At Least One Note in Ovarian Cancer (Gynecology). In Notes,
Cases and Controls, Year Prior to Diagnosis

Figure 5.6: Frequency of At Least One Note in Ovarian Cancer (Primary Care). Notes,
Cases and Controls, Year Prior to Diagnosis

By 30 days, only 36.8% of Gynecology case patients have a clinical note, while 88.3% of

Primary Care patients have one. Further research is needed to determine why Gynecology
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patients visits differ from Primary Care patients. Some potential explanations may be pa-

tients with an external referral, Gynecology route patients receiving primary care outside the

UW system, or other reasons. This variation in routes, combined with the small sample size,

conspires to prevent the model from correctly predicting Ovarian cancer given the symptom

feature set.

5.2 Other Causes of Delay in Lung and Ovarian Cancer Diagnosis

In the following section provider recommendations for the “next step” on the patient’s diag-

nosis pathway were analyzed to determine if there were any significant differences between

cases and controls. As part of this work, the recommendation extraction model extracted

recommendation sentences from the notes belonging to both cases and controls in both Co-

horts. These sentences were normalized for references to “Chest CT”, “Chest MRI”, and

“Chest X-Ray” for the Lung Cancer Cohort, and “CT”, “Ultrasound” and “Gynecology” for

the Ovarian Cancer Cohort. Then, odds ratio and frequency analyses were performed when

considering patients with at least one of the relevant recommendations.

The proportion of patients with at least one recommendation in the Ovarian and Lung

Cancer Cohort is consistently higher in cases than the respective controls, despite the diffi-

culty discerning symptoms/signs past 30 days. The proportion in the Ovarian cases is 20.6%

at 6 months prior to diagnosis compared to 11.1% at 6 months for controls. Similarly, the

proportion is 38.2% at 6 months for Lung cases compared to 26.7% for Lung controls. In

Table 5.1 the odds ratios for Ovarian (Primary Care) and Ovarian overall continue to be sig-

nificant well into 9 months, similar to Lung. However, patients in the Ovarian (Gynecology)

route do not have significant odds ratios even at 3 months, implying a dramatically different

route pattern.

When the Ovarian cohort is divided further, Primary Care route patients experience a

far higher incidence of recommendations than their Gynecology counterparts. At 6 months,

Primary Care case patients have 78.3% with at least one recommendation, while Gynecology

route patients have 14%. At 9 months, Primary Care case patients have 66.6% with at least
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one recommendation, while Gynecology route patients have 8.7%. Thus, the majority of the

difference in the overall Ovarian Cancer Cohort likely driven by the Primary Care route.

Further research is needed to determine if this overall pattern of delay holds true across

other cancers and disease states in the UW context, or if it is only for the Lung and Ovarian

cohorts. There also needs to be research determining the proportion of potentially spurious

recommendations, as in both Cohorts controls receive non-zero relevant “next step” recom-

mendation levels, which could imply conservative recommendations on the part of UWM

physicians. That being said, if this pattern holds true across several disease states, than

operational stakeholders need to be engaged in order to prevent this potentially life altering

delay in care.

Patient Cohort Full Year OR 3 Month OR 6 Month OR 9 Month OR

Lung 18.7 (15.5 - 22.4) 6.1 (4.8 - 7.8) 5.2 (3.8 - 7.1) 4.1 (2.7 - 6.3)

Ovarian 35.8 (19.1 - 67.1) 2.0 (1.3 - 3.2) 2.3 (1.4 - 3.8) 3.2 (1.8 - 5.6)

Ovarian (Gynecology) 65.8 (15.9 - 272.9) 1.1 (0.5 - 2.3) 1.4 (0.6 - 3.2) 1.6 (0.6 - 4.2)

Ovarian (Primary Care) 29.0 (13.4 - 62.7) 3.8 (2.1 - 7.2) 4.8 (2.3 - 9.6) 5.4 (2.3 - 12.5)

Table 5.1: Odds Ratios for At Least One Recommendation Across Year Prior to Diagnosis

5.3 Limitations

There are several limitations to this work. A primary limitation is in the adaptation of the

recommendation extraction model. This model, while it has the necessary precision, has an

unknown recall in the context of non-radiology notes. Since the use of this model was up-

stream at the point of creating the case routes, a lower recall could have downstream impacts

on the results. Similarly, much of the results are driven by the output of adapted symptom

extraction models, which, while achieving similar performance as human annotators, are not

perfect by any means. For example, although other roles were extracted, such as duration,

they were not used in the final analysis because of both the poor annotator agreement and
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subsequently poor performance of the extraction model on such roles. This means that much

of the nuance around duration, frequency, and other roles present in the free text of the note

was ignored during normalization.

Another limitation is the ultimate size of the Ovarian cohort and the nature of the

UWM dataset. Ovarian cancer is relatively rare, and unfortunately as a major referral

center, many ovarian cancer patients diagnosed at the University of Washington experienced

the majority of their care prior to diagnosis elsewhere. The use of recommendations is

intended to eliminate some of these direct referral patients, but it is possible that patients

in the Gynecology route experienced lower odds ratios not because they experience fewer

symptoms/signs relative to their matched controls, but because some of them may have been

referred into the UWM system midway through their diagnostic process. Thus, similarly to

the size of the dataset, the selection of cases and controls likely contributed to variations in

the results. Reasons for exclusion or inclusion of patients were well intentioned but could

easily have introduced bias into the dataset. As especially seen through analysis of the

Gynecology route, the absence of evidence is not evidence of absence when it comes to data

in the EHR. This makes it difficult to draw conclusions about the generalizable nature of

our study population. Indeed, many of the findings related to recommendation and route

patterns may simply be an artifact of the UWM system.

A final limitation is in the underlying bias within the notes themselves. This limitation

is two fold. First, the implication that the extraction model uses explicit absence of symp-

toms/signs as a marker for cancer. If it is true that this implies that the model is picking

up on provider suspicion, than potentially any model using extracted symptoms/signs from

the note to do early prediction is fraught, because it would be difficult to unwind a true

indication of a disease or provider suspicion of a disease. If the model is simply predicting

based on provider suspicion, the model would be limited in usefulness. Second, as seen in

prior work by Goff, for ovarian cancer the duration and frequency of the symptoms/signs

matter. However, both duration and frequency are not always explicitly recorded in the

note. While some information is better than no information at all, such inconsistency makes
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building a model difficult. Finally, absence of evidence is not evidence of absence. Many

patients receive care outside of any given system, and so gaps in care are normal and even

the default. These gaps make it difficult to determine if the patient is asymptomatic, but

instead is receiving care elsewhere and is symptomatic.

5.4 Conclusions and Future Work

This work explores the importance of information extraction in work that relies on symp-

tomatic information for analyses. Many symptoms that are known to be correlated with

ovarian cancer do not have significant odds ratios when observing only the ICD-10 codes,

such as weight loss. This work underscores the finding that analyses of coded symptoms are

incomplete without the inclusion of symptoms present within the note. Any work that solely

relies on coded information for symptomatic analyses would likely be an incomplete profile

of the patient population, to the detriment of the work.

To that effect, this work also quantifies the difficulty of transfering a symptom extraction

model to a new domain. Adapting the model to a new domain does require new data from the

out-domain in order to avoid a drop in recall. This adapation process is important, because

much of the change in recall is driven by symptoms associated with the out-domain. Using

a model without adapting it to the new domain could potentially mean missing symptoms

crucial to that new domain that are relatively rare in other domains.

This work also undertook the creation of a case-control dataset of the year prior to diag-

nosis for ovarian cancer. It endeavored to avoid patients that are “referral” patients through

the use of recommendations for the “next step” in the diagnosis pathway. It endeavored

to match patients appropriately to their controls through the use of the route – the type

of clinic or provider that had the initial suspicion of the diagnosis in the year prior. This

clustering of patients in different routes uncovered significant differences in symptoms/signs,

recommendation, and note expression between routes. These differences were masked when

observing the cohort as a whole. The differences uncovered indicate the need for caution

when observing patterns in patient population data. If these variations are so large, and
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so easily hidden, it begs the question what other variations might be hidden, caused by the

relative proportions of different clinical referral patterns. When observing solely the Primary

Care route, several symptoms/signs are significantly higher up to 270 days prior to diagnosis.

In the Gynecology route, such symptoms/signs are not significant. However, this may be

due to a dearth in data in these Gynecology patients, and not a dearth of symptoms/signs

within those patients, because the note proportions indicate that a higher proportion of the

Gynecology case patients receive care outside the UWM system.

Finally, the Ovarian Cancer Cohort and the Lung Cancer Cohort were leveraged to

perform predictive experimentation. In both Lung and Ovarian, the inclusion of explicit

absence for core symptoms has a positive impact on positive class recall (sensitivity). One

hypothesis is that the models are correlating relevant provider suspicion and diagnostic

thinking with case patients. Thus, it may be that the models are not simply predicting

cancer, but predicting suspicion of cancer. Ultimately, in Lung the prediction of patients

was possible, although with deteriorating quality, several months prior to diagnosis. In

Ovarian, however, prediction was not possible even 30 days prior to diagnosis. It seems very

likely that the lack of predictability in Ovarian is due to differences in symptom expression

across routes.

The future work can be divided into a handful of sub-categories. First, it would be

extremely useful to attempt to improve symptom model extraction performance on certain

key roles, such as duration. The use of symptom duration could be crucial in reducing

the impact that lack of data has on observing symptoms over time. So long as providers

were explicit about the duration of a certain symptom, it would not matter that prior visits

occurred outside the system. The relevant data could still be processed appropriately. If

such duration information could be extracted reliably, a re-evaluation of the uni-variate and

prediction experiments on ovarian cancer, specifically the overtime concerns, may be advised.

Second, given that it is unclear when such roles could be reliably extracted, and whether

they appear in the notes enough to provide value, other avenues should be considered. It

does appear that provider recommendations for the “next step” in cancer diagnoses appear
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at far higher rates in cases than controls, even 6 or 9 months prior to diagnosis. Of course,

further research is needed to determine whether this correlation is spurious or rooted in fact.

If it is rooted in fact, deliberation must be made on what policy changes might be useful, if

any, to reduce this potential source of delay. One consideration is that too much ordering

can be equally problematic as ordering too little. While recommendations are higher in

case patients, they are still present in control patients, potentially indicating a conservative

recommendation pattern by providers.

All cancers are very serious diagnoses, and time is of the essence in preventing poor

outcomes. Thus, it behooves everyone to remove as much diagnostic delay as possible from

our healthcare system. One potential route is to improve our capabilities of prediction as a

clinical decision support tool for overworked providers. This might reduce the time between a

patient first reports a symptom and when a provider indicates suspicion of cancer. Another

potential route is by reducing the time between when a provider first indicates suspicion

and when the patients is finally diagnosed. Both intervention points have potential for

improvement, and further work is needed to determine when and how the system could

intervene. However, this work does seem to indicate that there are several points of concern

that make it difficult to address the former. The most effective change point might be the

latter, depending on the root causes behind the delay between initial suspicion and ultimate

diagnosis.
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