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The advancement of cancer research, patient care and public health currently rely on acquisition 

of data from a variety of sources, information-processing activities, and timely access to data that 

is of acceptable quality for investigators, clinicians and health officials. With cancer patients 

living longer and undergoing multiple rounds of treatment, as well as the rise of molecular data 

that characterize individual patient tumors, there are challenges across all aspect of cancer data 

collection, integration and delivery. Although there have been advances in deployment of 

electronic medical records (EMRs) and use of data from EMRs and related systems to support 

cancer research and patient care, most data needs are still met through costly project specific 

manual abstraction and project specific databases. 



 

This dissertation builds on my previous work on the Caisis cancer research database at 

Memorial Sloan-Kettering Cancer Center, and my assessment of trends in information 

technology (IT) and informatics through site visits and interviews at 60 cancer centers. My 

hypothesis for this dissertation was that new tools and methods from biomedical informatics 

could improve the availability of data for cancer research if they were applied thoughtfully and 

strategically. Within the context of experimenting with the application of selected informatics 

tools and methods in a cancer center, my overarching research question was: how can we 

improve access to clinical and related data about cancer patients for research?  

The first aim of this dissertation was to develop and assess a modern integrated data 

platform to support a wide variety of cancer research, which explored the following questions: 

What are the challenges and opportunities for informatics at Fred Hutch? Do these challenges 

and opportunities align with my previous work and lessons learned? Are there tools and methods 

that others or I have used before that could be successfully applied at Fred Hutch? How can we 

enable new types of research, faster results, and better quality of research data at Fred Hutch? 

How can we improve access to data with tools and methods that are scalable, extensible to new 

projects, sustainable and portable to other centers? What is the impact of the data platform 

developed at Fred Hutch? 

The second aim was to develop and characterize a clinical data processing pipeline that is 

scalable to the cancer center enterprise level, is well-supported and sustainable, and can 

complement or streamline existing manual data abstraction and information-processing activities. 

It explored the following questions: How can we improve the quality, speed, and economics of 

the acquisition, processing, and delivery of clinical data to support cancer researchers? How can 

we make clinical data processing a core competency of Fred Hutch at an enterprise scale? 



 

The fourth aim was to develop, model, and assess database frameworks for cancer, which 

explored the following question: How can we best characterize and compare database models 

and big-data technologies to inform a sensible strategy for cancer research database design and 

technology? 

The fifth aim was to characterize the big-data needs and informatics opportunities for 

cancer surveillance at the national level, which explored the following questions: What 

informatics tools and methods have already been applied successfully in the cancer surveillance 

domain? What are the current and coming opportunities for applying or developing new tools 

and methods for advancing biomedical informatics in this domain? 

The research includes four related papers. The first paper describes the design, 

development and results of the Hutch Integrated Data Repository and Archive (HIDRA), a 

modern data platform that provides data feeds, a high security operational and hosting 

environment, and a self-service data access tool for exploring clinical data as well as associated 

biospecimen, study and molecular or other assay data. An additional chapter following the first 

paper describes the impact of HIDRA. The second paper describes the development, 

implementation and usage of an enterprise pipeline to facilitate the transition from manual data 

collection and information processing to broad use of clinical data processing and machine-

learning methods. The fourth paper characterizes cancer database approaches and big-data 

technologies to support current and next-generation cancer research. The third paper reviews and 

summarizes the need for informatics, clinical data processing and machine learning to advance 

cancer registries at the hospital, state and national level, and reviews current informatics research 

related to cancer surveillance. The results and contribution of this dissertation are new examples 

of approaches to data platforms, data models and a pipeline for clinical data processing for 



 

cancer research and cancer surveillance, as well as explanations of underlying motivations, 

concepts, and tradeoffs for these informatics tools and methods. The contribution of the fourth 

paper is a potential roadmap for application of informatics, clinical data processing and machine-

learning tools and methods to cancer registries and national cancer surveillance. 

The generalizable contributions of Chapter 2 are a working a comprehensive database 

model and associated web-based tool for data abstraction that is temporally organized and has 

the ability to stack into an analytic structure for predictive modeling. This system is freely 

distributed under an open-source license, meets common requirements for IT security, 

extensibility and supportability, and it has already been adopted and extended by numerous other 

cancer centers in the United States and internationally. 

The generalizable contributions of Chapter 3 are the following. First, the volume and 

variety of data elements that can practically be collected through clinical templates is limited. 

Second, given the importance of research and collaboration networks, cancer centers should 

adopt or at least be interoperable with common platforms like REDCap, i2b2, OpenSpecimen 

and OnCore so that we can wrestle with common issues as a community. Third, due to limited 

and variable funding for research, solutions need to scale down to affordable levels for individual 

researchers and labs. Fourth, site visits and active cross-pollination of tools and methods across 

center must extend deeper into all levels of IT and informatics staff rather than just connecting 

senior IT leaders and informatics researchers. Finally, centers should spend time and effort 

resolving social and organizational barriers to progress in informatics and IT. 

The generalizable contributions of Chapters 4–5 are the following: First, the legal, IRB, 

and security framework for HIDRA is relevant to other centers and has been applied to at least 

two similar efforts. Second, HIDRA provides an example of leveraging a clinical data repository 



 

at a broader academic medical center to support a cancer-specific data repository. Third, HIDRA 

provides an example of adopting and extending the IT and informatics work of other groups to 

solve local issues economically.  Fourth, HIDRA provides an example of an overall strategy for 

clinical data acquisition, processing, storage and self service data access. Fifth, HIDRA 

identified the need for a realistic and de-identified testing dataset to facilitate software 

development and system implementation. Sixth, the HIDRA work found that lack of federated 

security for a consortium or matrix cancer center is a critical barrier to progress on an integrated 

data repository. Finally, the HIDRA project found that the Agile approach to software 

engineering and system implementation was critical for project momentum and success. 

The generalizable contribution of Chapter 6 is a tool for shifting the work of manual data 

abstraction so that it generates training and validation data suitable for development of 

automated clinical data processing algorithms (e.g., statistical algorithms, NLP, machine 

learning). This tool was built with a technology partner, LabKey Software, so that it can be 

portable to other clients, scalable, and extensible to different clinical data sources and databases. 

Other groups are already adopting this tool. 

The generalizable contributions of Chapter 8 are the following. First, it provides a 

description of cancer registries and cancer surveillance from an informatics perspective, 

including the case for automation. Second, it contributes a review of informatics tools and 

methods applied to cancer registries that indicates potential for automation of clinical data 

processing. Third, it identifies cancer registries and cancer surveillance as an area for funding 

and advancing biomedical informatics research. 
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Chapter 1 Executive Summary 

1.1 Overview 

Cancer research is fueled by data. The advancement of cancer prevention, diagnostics and 

treatments depend on clinical research and quality improvement efforts, as well as translational 

and broader epidemiologic research. These research and quality improvement efforts, in turn, 

depend on the timely acquisition and processing of increasingly detailed data about patients. In 

the ongoing cycle of advancing patient care and research, the volume, variety and detail of data 

that characterizes patients with cancer and their diseases is growing in multiple dimensions as 

each medical specialty (e.g., radiology, pathology, radiation oncology, surgery, laboratory 

medicine) expands its repertoire of tests and procedures. In addition, we now have access to 

reams of public and commercially available demographic, environmental and consumer data that 

can potentially be used to characterize factors outside of the healthcare delivery system that may 

be associated with cancer development, progression and treatments outcomes.(1) 

Although this growth in biomedical and healthcare data about patients with cancer has 

been emerging for decades, and numerous advances in biomedical informatics have been 

published, the actual level of technology used for the acquisition, processing and management of 

data in cancer centers has not kept pace, at least not at an enterprise scale. The National Cancer 

Institute’s cancer Biomedical Informatics Grids (caBIG) initiative from 2004 through 2010 

attempted to spur the development of scalable and interoperable informatics infrastructure for all 

cancer centers, however this program eventually failed to improve informatics infrastructure for 

most centers.(2) In the post-caBIG years, the big-data challenges at cancer centers have 

continued to grow; however, the value of big cancer informatics initiatives is often met with 



 

 

2 
skepticism. How can we as informatics researchers and professionals help to translate useful 

tools and methods from our field into practice at individual centers? How can we facilitate 

advancements in cancer informatics that are scalable and portable across centers without creating 

another caBIG?  

1.2 Motivation for this Dissertation 

The motivation for this dissertation came from my previous work in developing and extending 

data management systems for cancer research at Baylor College of Medicine and Memorial 

Sloan-Kettering Cancer Center (MSKCC), described in Chapter 2, and from my visits to other 

cancer centers and discussions with clinicians, researchers, and informatics colleagues, described 

in Chapter 3. After rewriting and supporting numerous databases that seemed to overlap and 

wrangling data from those disparate systems into formats suitable for predictive modeling, I 

prototyped and shepherded the development of a more reusable solution to cancer data 

management at MSKCC, the Caisis system.(3) That work naturally led into research on data 

integration, terminologies, user interface design, clinical workflow integration, extensibility and 

other common informatics topics. 

My hypothesis for this dissertation was that new tools and methods from biomedical 

informatics could improve the availability of data for cancer research if they were applied 

thoughtfully and strategically. Specifically, I thought the focus areas to extend my previous work 

should include the following: 

● Clinical natural language processing (NLP), because this technology has been maturing 

rapidly, and there seemed to be practical limits to clinical data acquisition and processing 

through templated documentation, data feeds and manual abstraction efforts. 
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● High security, because multiple grants, contracts and data transfer and use agreements 

that I had seen were trending toward requiring HIPAA business associate agreements, 

FISMA/NIST 800-53 level security controls and thorough documentation of security 

policies, standards and procedures. Moreover, my previous work at MSKCC and with 

other centers had proven to me the value of proactively meeting and exceeding 

anticipated security requirements.  

● A well-designed database model and strategic approach to database technology, because 

as databases scale in multiple dimensions, the limits and tradeoffs of their data models 

tend to rank among the top frustrations of users. 

● Self-service and intuitive access to aggregated data through an elegantly designed user 

interface, because cancer researchers want better access to browse, search and visualize 

data for their projects. Also, in previous work at MSKCC, I had seen the value of 

working with professional software developers and user interface artists. 

 

Over the past few years, I have had the opportunity to apply everything I learned from previous 

work, from discussions with colleagues from other cancer centers, and from coursework and 

training in biomedical informatics, computational biology and computational linguistics at the 

University of Washington (UW) toward the advancement of databases and systems to support 

cancer research. The primary motivation for this work has been to learn how to successfully 

apply these tools, methods and lessons to the ever-increasing big-data problems at individual 

cancer centers and across multiple cancer centers.  
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1.3 Research Questions 

Within the context of experimenting with the application of selected informatics tools and 

methods in a cancer center, my overarching research question has been “How can we improve 

access to clinical and related data about cancer patients for research?” 

 

Each of the following chapters addresses subquestions related to the overall research question: 

● Chapter 2 briefly summarizes my previous work on the Caisis system and aims to answer 

these two questions: What aspects of Caisis are applicable today to current and future 

informatics platforms for cancer research? What are the limits of Caisis that would need 

to be addressed with new tools and methods?  

● Chapter 3 summarizes my previous work in visiting more than 60 cancer centers to 

explore information technology (IT) and informatics trends. In this work, I sought to 

determine the portability of lessons learned from Caisis and at MSKCC to other centers, 

and answer the following question: What are the current opportunities for the strategic 

application of biomedical informatics tools and methods in cancer centers?  

● Chapter 4 describes the application of previous lessons learned from both Caisis and my 

cancer center visits, and the implementation of a new strategy for an integrated data 

repository at a consortium cancer center. The aim of this chapter was to develop and 

assess a modern integrated data platform to support a wide variety of cancer research, 

which explores the following questions: What are the challenges and opportunities for 

informatics at Fred Hutch? Do these challenges and opportunities align with my previous 

work and lessons learned? Are there tools and methods that others or I have used before 

that could be successfully applied at Fred Hutch? How can we enable new types of 
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research, faster results, and better quality of research data at Fred Hutch? How can we 

improve access to data with tools and methods that are scalable, extensible to new 

projects, sustainable and portable to other centers?  

● Chapter 5 is an extension of Chapter 4 that answers the following question: What is the 

impact of the data platform developed at Fred Hutch? It completes the assessment aspect 

of Aim 1 (to develop and assess a modern integrated data platform to support a wide 

variety of cancer research) that was started in Chapter 4. 

● Chapter 6 is also an extension of Chapter 4 that describes a critical component of the 

HIDRA informatics platform and strategy, a scalable pipeline for clinical data processing. 

The aim of this chapter was to develop and characterize a clinical data processing 

pipeline that is scalable to the cancer center enterprise level, is well-supported and 

sustainable, and can complement or streamline existing manual data abstraction and 

information-processing activities. It explores the following questions: How can we 

improve the quality, speed, and economics of the acquisition, processing, and delivery of 

clinical data to support cancer researchers? How can we make clinical data processing a 

core competency of Fred Hutch at an enterprise scale? 

● Chapter 7 returns to a more fundamental exploration of database models. It draws from 

my previous work designing the Caisis database model, anticipated growth of molecular 

data, and the challenges in the previous three chapters of implementing different database 

models and technologies to support data acquisition, information processing, and self-

service data exploration. Given the rise of marketing and discussion of big-data tools in 

cancer centers and their emerging big-data struggles, the aim of this chapter was to 

develop, model, and assess database frameworks for cancer. It explores the following 
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question: How can we best characterize and compare database models and big-data 

technologies to inform a sensible strategy for cancer research database design and 

technology? 

● Chapter 8 explores the challenges in cancer surveillance, particularly the scalability to 

much greater volume and variety of data than any single cancer center would experience. 

The emerging challenges of big data across cancer registries, national cancer surveillance 

efforts, and networks of cancer centers are orders of magnitude greater than those faced 

by any one center. The aim of this chapter was to characterize the big-data needs and 

informatics opportunities for cancer surveillance at the national level, which explores the 

following questions: What informatics tools and methods have already been applied 

successfully in the cancer surveillance domain? What are the current and coming 

opportunities for applying or developing new tools and methods for advancing 

biomedical informatics in this domain?  

● Chapter 9 summarizes the conclusions from previous chapters and returns to the overall 

research question: How can we improve access to clinical and related data about cancer 

patients for research?  

1.4 Outline of this Dissertation 

This section briefly describes the contents of each chapter. 

1.4.1 Chapter 2. Preliminary Work: Caisis 

This chapter describes key points from my work on the design and implementation of the Caisis 

database at MSKCC and my assistance with implementing Caisis at other cancer centers. The 

issues arising in this work are relevant to the strategy and development of HIDRA (Chapters 4–5, 
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focused on the aim to develop and assess a modern integrated data platform to support a wide 

variety of cancer research), the clinical data processing pipeline (Chapter 6, focused on the aim 

to develop and characterize a clinical data processing pipeline that is scalable to the cancer center 

enterprise level, is well-supported and sustainable, and can complement or streamline existing 

manual data abstraction and information-processing activities), and the discussion of database 

models (Chapter 7, focused on the aim to develop, model, and assess database frameworks for 

cancer). 

1.4.2 Chapter 3. Preliminary Work: Recurring Themes in Informatics and IT from 60 Cancer 

Centers 

Building on the work at a single freestanding cancer center summarized in the prior section 1.4.1, 

this chapter describes findings from my 2008–2009 visits to 60 cancer centers around the United 

States and meetings with 394 people at these centers to explore issues and trends in informatics 

and IT. The information gathered from these discussions was organized using a qualitative 

analysis tool, and a number of distinct patterns became evident. This preliminary work includes 

findings regarding EMRs and clinical data repository implementations, the selection and 

implementation of clinical research systems, struggles with biospecimen information 

management, the curation and technical support of research databases, trends in database and 

web development platforms, and social/organizational issues. The findings of this preliminary 

work informed the strategy and implementation of HIDRA (Chapters 4–5, focused on the aim to 

develop and assess a modern integrated data platform to support a wide variety of cancer 

research), and the pipeline for clinical data processing (Chapter 6, focused on the aim to develop 

and characterize a clinical data processing pipeline that is scalable to the cancer center enterprise 
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level, is well-supported and sustainable, and can complement or streamline existing manual data 

abstraction and information-processing activities). 

1.4.3 Chapter 4. Hutch Integrated Data Repository and Archive (HIDRA): Data Platform and 

Clinical Research Informatics Strategy for a Consortium Cancer Center  

Building on the lessons learned from a single freestanding cancer center and the Caisis system 

summarized in section 1.4.1 and across multiple cancer centers as summarized in section 1.4.2, 

this chapter describes HIDRA, an initiative to develop an integrated and modern data platform to 

support current and next-generation clinical and translational research for a consortium cancer 

center. The aim of this chapter was to develop and assess a modern integrated data platform to 

support a wide variety of cancer research. This chapter describes the vision and strategic goals 

for HIDRA, the management approach to planning and implementing the system, several key 

decisions such as developing a legal and IRB framework, a high security environment, an 

enterprise clinical data processing pipeline, and lessons learned. HIDRA currently contains 

information on more than 300,000 patients, a self-service application for data exploration, a data 

request service for access to data through analysts, and a scalable, extensible platform that is 

portable to other centers. Because this chapter has been submitted as a conference paper for the 

2017 AMIA Annual Meeting, the co-authors are included after the title. 

1.4.4 Chapter 5. Evaluation of HIDRA 

This chapter extends the assessment for Chapter 4. It evaluates the outcomes and impact of 

HIDRA at Fred Hutch and in the broader cancer research community, as well as the measures of 

progress such as performance and completion of required features. 
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1.4.5 Chapter 6. Scalable Clinical Data Pipeline for a Cancer Center 

Building on the HIDRA platform work summarized in the prior section (1.4.3), this chapter 

describes the strategy and implementation of a scalable pipeline for processing clinical 

documents into desired discrete data elements through both clinical data processing and manual 

data abstraction. This pipeline is a core component of data acquisition and processing for the 

HIDRA platform described in Chapter 4. The aim of this chapter was to develop and characterize 

a clinical data processing pipeline that is scalable to the cancer center enterprise level, is well-

supported and sustainable, and can complement or streamline existing manual data abstraction 

and information-processing activities. This enterprise clinical data processing pipeline will serve 

to expedite access to usable data that are needed to advance cancer research and improve 

healthcare operations. By reducing redundancy in abstraction and information-processing efforts, 

tracking and reducing variation or bias of the interpretation of data points, and making patient 

history data as up-to-date and complete as possible, this work aims to ease the burden of manual 

abstraction and improve the timeliness, quality, and availability of clinical data. This chapter was 

written to submit for publication, and the co-authors are included after the title. 

1.4.6 Chapter 7. Comparison of Database Models for Cancer Research 

Building on the prior work summarized in sections 1.4.1 and 1.4.2, this chapter describes 

database models selected or designed to support cancer research and the challenges in their 

implementation, usability, and sustainability. With a steady increase in the volume and variety of 

incoming data for cancer research, and the explosion of big-data tools and available database 

platforms, many centers struggle to discuss and understand the issues and tradeoffs between 

different approaches or technologies and to develop attainable, sustainable strategies for data 

management to support research. The aim of this chapter was to develop, model, and assess 
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database frameworks for cancer. This chapter describes database and data quality concepts, 

common issues with a variety of database models in cancer research, and lessons learned about 

the tradeoffs of different modeling and technology approaches. It recommends a general 

approach to thinking about and evaluating database model and technology options. 

1.4.7 Chapter 8. Informatics and Cancer Surveillance: Literature Review and Vision 

Building on all of the prior summarized sections, this chapter describes the cancer surveillance 

data flows, current data collection and information-processing activities, and big-data challenges. 

The aim of this chapter was to characterize the big-data needs and informatics opportunities for 

cancer surveillance at the national level. It is primarily a literature review of informatics tools 

and methods that have been applied to cancer registries, and the identification of opportunities 

for further research or the application of adjacent research to this domain. This review is a 

natural extension of my previous work at Fred Hutch on HIDRA and on the pipeline for clinical 

data processing, as well as the database models work, however it takes these from the individual 

center level back out to a national scale across multiple centers. 

1.4.8 Chapter 9. Conclusions 

This chapter summarizes the findings from each of the previous chapters, extrapolates to 

conclusions that span multiple chapters and describes interesting areas for further research 

related to or derived from this work. 

1.5 Contributions 

This dissertation makes a number of contributions to biomedical informatics and cancer research: 
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● Chapter 2 (Caisis) describes by preliminary work on the Caisis database. The 

generalizable contributions of Chapter 2 are a working a comprehensive database model 

and associated web-based tool for data abstraction that is temporally organized and has 

the ability to stack into an analytic structure for predictive modeling. This system is 

freely distributed under an open-source license, meets common requirements for IT 

security, extensibility and supportability, and it has already been adopted and extended by 

numerous other cancer centers in the United States and internationally. 

● Chapter 3 describes recurring themes in informatics and IT from 60 cancer centers. The 

generalizable contributions of Chapter 3 are the following: First, the volume and variety 

of data elements that can practically be collected through clinical templates is limited. 

Second, given the importance of research and collaboration networks, cancer centers 

should adopt or at least be interoperable with common platforms like REDCap, i2b2, 

OpenSpecimen and OnCore so that we can wrestle with common issues as a community. 

Third, due to limited and variable funding for research, solutions need to scale down to 

affordable levels for individual researchers and labs. Fourth, site visits and active cross-

pollination of tools and methods across center must extend deeper into all levels of IT 

and informatics staff rather than just connecting senior IT leaders and informatics 

researchers. Finally, centers should spend time and effort resolving social and 

organizational barriers to progress in informatics and IT. 

● Chapter 4 (HIDRA) delivers a cancer data integration platform that is modern, scalable, 

extensible, portable to other centers, and sustainable through a technology partner, 

LabKey Software. The lessons learned around the HIDRA legal and IRB framework have 

been applied to develop IRB files for the Hutchinson Institute for Cancer Outcomes 
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Research (HICOR) regional data platform and the SCH Research Informatics Platform. 

The self-service data exploration tool developed for HIDRA, called Argos, is being 

adopted by at least two other large initiatives. The aim of this chapter was to develop and 

assess a modern integrated data platform to support a wide variety of cancer research, 

which explores the following questions: What are the challenges and opportunities for 

informatics at Fred Hutch? Do these challenges and opportunities align with my previous 

work and lessons learned? Are there tools and methods that others or I have used before 

that could be successfully applied at Fred Hutch? How can we enable new types of 

research, faster results, and better quality of research data at Fred Hutch? How can we 

improve access to data with tools and methods that are scalable, extensible to new 

projects, sustainable and portable to other centers? The generalizable contributions of 

Chapter 4 are the following: First, the legal, IRB, and security framework for HIDRA is 

relevant to other centers and has been applied to at least two similar efforts. Second, 

HIDRA provides an example of leveraging a clinical data repository at a broader 

academic medical center to support a cancer-specific data repository. Third, HIDRA 

provides an example of adopting and extending the IT and informatics work of other 

groups to solve local issues economically.  Fourth, HIDRA provides an example of an 

overall strategy for clinical data acquisition, processing, storage and self service data 

access. Fifth, HIDRA identified the need for a realistic and de-identified testing dataset to 

facilitate software development and system implementation. Sixth, the HIDRA work 

found that lack of federated security for a consortium or matrix cancer center is a critical 

barrier to progress on an integrated data repository. Finally, the HIDRA project found 
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that the Agile approach to software engineering and system implementation was critical 

for project momentum and success. 

● Chapter 5 (assessment of the impact of HIDRA) provides an evaluation of the impact of 

the work done on the HIDRA platform at Fred Hutch, described in Chapter 4.  It answers 

the following question: What is the impact of the data platform developed at Fred Hutch?  

● Chapter 6 (clinical data processing pipeline) delivers a unique pipeline for both clinical 

data processing that can be integrated with any database platform. It is extensible, 

portable to other centers, scalable, and sustainable through partnership with LabKey 

Software. This pipeline technology is anticipated to be adopted by at least two other 

groups and gradually replace existing electronic data capture (EDC), data review, and 

document annotation tools at Fred Hutch once it is completed and deployed into 

production in summer 2016. The aim of this chapter was to develop and characterize a 

clinical data processing pipeline that is scalable to the cancer center enterprise level, is 

well-supported and sustainable, and can complement or streamline existing manual data 

abstraction and information-processing activities. It explores the following questions: 

How can we improve the quality, speed, and economics of the acquisition, processing, 

and delivery of clinical data to support cancer researchers? How can we make clinical 

data processing a core competency of Fred Hutch at an enterprise scale? The 

generalizable contribution of Chapter 6 is a tool for shifting the work of manual data 

abstraction so that it generates training and validation data suitable for development of 

automated clinical data processing algorithms (e.g., statistical algorithms, NLP, machine 

learning). This tool was built with a technology partner, LabKey Software, so that it can 
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be portable to other clients, scalable, and extensible to different clinical data sources and 

databases. This tool is already being adopted by other groups. 

● Chapter 7 (database models) delivers a comparison of commonly discussed database 

models and big-data tools for the cancer research domain. It serves as a framework to 

inform informatics and IT professionals, guide the discussion about these technologies, 

and recommend pilots or overall strategy for big-data platforms at a cancer center. The 

aim of this chapter was to develop, model, and assess database frameworks for cancer, 

which explores the following question: How can we best characterize and compare 

database models and big-data technologies to inform a sensible strategy for cancer 

research database design and technology? 

● Chapter 8 (informatics for cancer surveillance) delivers a description of cancer registry 

operations, a review of informatics that have been applied to automate and facilitate 

cancer registration, and a discussion of the current opportunities for informatics research 

and application in cancer surveillance. The aim of this chapter was to characterize the 

big-data needs and informatics opportunities for cancer surveillance at the national level, 

which explores the following questions: What informatics tools and methods have 

already been applied successfully in the cancer surveillance domain? What are the current 

and coming opportunities for applying or developing new tools and methods for 

advancing biomedical informatics in this domain? The generalizable contributions of 

Chapter 8 are the following. First, it provides a description of cancer registries and cancer 

surveillance from an informatics perspective, including the case for automation. Second, 

it contributes a review of informatics tools and methods applied to cancer registries that 

indicates potential for automation of clinical data processing. Third, it identifies cancer 
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registries and cancer surveillance as an area for funding and advancing biomedical 

informatics research. 

 

Overall, these contributions significantly extend my previous work on data platforms for cancer 

research and create opportunities to accelerate the application of informatics, clinical data 

processing and machine learning in cancer centers and cancer surveillance communities. 
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Chapter 2 Preliminary Work: Caisis 

2.1 Context 

Chapter 2 and the work I describe here serve as background and preliminary to the primary work 

of my dissertation in Chapters 4 to 8. The work described in this chapter was a first attempt to 

begin to explore my hypothesis and to answer the overarching question: how can we improve 

access to clinical and related data about cancer patients for research? It was the genesis of my 

dissertation hypothesis and research question. The questions I sought to answer with the work in 

this chapter were the following: What aspects of Caisis are applicable today to current and future 

informatics platforms for cancer research? What are the limits of Caisis that would need to be 

addressed with new tools and methods? 

2.2 Overview of Caisis Work 

Caisis is a web-based application and relational database built to manage information about 

patients with cancer.(4) Its original intent was to facilitate predictive modeling in prostate cancer 

using clinical data organized temporally and with consistent coding of variables. The details of 

the system and lessons learned from its implementation have been presented and published in 

conference proceedings and a book chapter.(3,5,6) 

The original concept and prototypes of Caisis that I developed in the late 1990s at the 

Memorial Sloan-Kettering Cancer Center (MSKCC) Department of Urology resembled some 

recently developed analytic database models (e.g., OMOP, i2b2).(7,8) The Caisis database was 

organized temporally for scalable and consistently coded patient histories that could be easily fed 

into algorithms that would process patient histories for a variety of predictive modeling projects.  
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At the time it was developed, populating the Caisis database for research required manual 

data abstraction and coding of information from medical records. The original Caisis database 

prototypes were conceived and designed for computer information processing and analysis, and 

were not intuitive for data entry staff. Several iterations of the database model and user interface 

were prototyped in Microsoft Access, and over time the more analytic database model and data 

entry application were refactored to align with the way medical records data were organized 

(e.g., grouped into pathology, procedures, medical therapy, radiation therapy, lab tests, 

diagnostic imaging). The adapted database model and user interface were tested and refined by 

importing and integrating datasets from all cancer treatment modalities (e.g., surgery, radiation, 

chemotherapy, active surveillance), and over time the database model and user interface were 

extended for all cancer types.  

Importantly, although the core tables in Caisis were aligned with clinical data systems, 

the database model retained the ability to stack easily into a temporally organized data model for 

computer algorithms and analytics. This stacking ability was enabled through the consistent 

definition of fields, the application of naming conventions, and the use of data types. The 

stackable fields were defined as required fields and were coded consistently across the Caisis 

database model. To allow extensibility and customization to manage data for new diseases, 

diagnostics, and treatments, the core database model was decorated with disease- and treatment-

specific subtables and forms. A central vocabulary management system was built into Caisis, and 

the application became increasingly driven by metadata to keep pace with the needs for 

configuration and customization. 

Over time the Caisis database was scaled up to handle a higher volume of cases, to 

characterize a greater variety of cancer types, and to keep up with the pace of data requests from 
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investigators. Data feeds for discrete demographic, appointment, and laboratory information 

from the MSKCC enterprise data warehouse were developed to alleviate data entry. Also, the 

application was integrated with the clinical practice workflow within the Department of Urology, 

allowing physicians and clinic staff to collaboratively enter data into web-based forms that 

would both generate clinical notes and populate the database, thereby reducing the work and 

time required for manual abstraction. The system was built with robust security controls and 

audit logs to exceed the requirements for implementation in a HIPAA-regulated environment.(9) 

My experience in conceiving, prototyping and leading the development of Caisis at 

MSKCC from 1998 to 2008 was the foundation for much of the work in this dissertation. Fred 

Hutch cancer center was an early adopter of the Caisis system. For the Hutch Integrated Data 

Repository and Archive (HIDRA) project (described in Chapter 4), Caisis was adopted as a 

stepping stone for a comprehensive cancer database model with a fully functional and extensible 

web-based application for data entry and management. This decision to adopt and adapt Caisis 

allowed the HIDRA project to initially bypass the need to design and develop its own database 

model and data entry application while working instead to implement data feeds, data access 

tools, and a clinical data processing pipeline (described in Chapter 6).  

2.3 Issues with Caisis 

Over time, several weaknesses in the Caisis database model and application became evident. As 

disease- and treatment-specific subtables and fields were added to accommodate different 

disease- and treatment-specific data points, the model became more difficult for new users to 

understand intuitively, and many of the new fields were sparsely populated as research projects 

and priorities shifted. The ability to add “virtual fields” to any table by configuring metadata was 

added to the database and web application, similar to an Entity-Attribute-Value (EAV) database 
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design.(10) Unfortunately, querying data from virtual fields has not been intuitive for Caisis or 

other EAV databases and may not perform well at scale.(11) 

There were practical limits to the integration of Caisis with clinical workflows. Although 

it was possible to capture standardized templated data for both research and clinical practice 

using Caisis, this feature required re-engineering clinical workflows and was difficult to sustain 

because it potentially competes with hospital-wide clinical system advances. Moreover, there 

appeared to be practical limits to the use of templated notes in increasingly busy clinics. 

In addition to the limits to clinical integration and templating, the Caisis database model 

remained difficult to query. As a highly normalized, temporally organized relational database 

model with an expanding number of subtables and fields, common complaints were that queries 

returned multiple rows (as a consequence of having normalized data), and many queries required 

procedures to iterate over rows sorted by time rather than return simple set-based queries.  

As described above, the Caisis database model was designed to be stacked into a simple 

temporally organized analysis model suitable for algorithmic processing and analysis. Originally, 

a set of algorithms was distributed with Caisis and used to generate datasets for analysis. These 

algorithms were similar to the Jigsaw tool for the OMOP common data model.(12) However, the 

domain knowledge and technical skill required to implement these algorithms were too complex 

for most users or developers. Over time, users stopped using algorithms and slipped back to 

developing simple SQL queries to fulfill data requests from Caisis. Without simple tools to query 

the Caisis model and handle the complexities of flattening temporal and normalized data into a 

denormalized view, many potential users opted for simpler solutions to data management. 

In addition to issues with the querying the Caisis database model, most users were more 

familiar and comfortable with entering data into flat database models like Excel, surveys for 
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epidemiology research, or case report forms for clinical trials. Although dedicated data entry 

staff were often able to adapt well to and prefer the Caisis web application, new users and many 

researchers still preferred flatter, customized data entry forms. To fulfill the need for flatter and 

more streamlined data entry for both clinical workflows and research staff, Caisis “EForms” 

were developed. These web-based forms were highly customized, requiring configuration and 

sometimes additional programming. The forms stored data temporarily in an XML format. When 

an EForm was finalized and submitted, Caisis would parse the XML and place each data point in 

the database model. It was an alternative interface, but not an alternative database model.  

2.4 Conclusion 

As a stable and extensible system, Caisis continues to be used, adopted, and extended by 

multiple centers. It has proven useful for data collection and viewing or working with data about 

one patient at a time. However, without sufficient tools to facilitate queries and self-service 

access to data from a rather complex relational database model, it is limited. As the volume and 

variety of available clinical data increases, the Caisis database model is proving a bit inflexible, 

requiring database model changes to accommodate new data elements per disease or 

organization. Also, Caisis was not designed to handle high-dimensional molecular data and 

queries of that data. Staff domain knowledge and technical skill are also limiting factors in its 

adoption and optimal use. 

2.5 Synthesis 

This chapter (sections 2.2 to 2.4) provided an overview of my previous work in designing and 

implementing the Caisis database for managing clinical and research data about patients with 
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cancer, and identified some unresolved issues. This work began to address my overall research 

question: how can we improve access to clinical and related data about cancer patients for 

research? The two questions related to this chapter were [1] What aspects of Caisis are 

applicable today to current and future informatics platforms for cancer research? and [2] What 

are the limits of Caisis that would need to be addressed with new tools and methods? The answer 

to these questions is that the underlying Caisis relational database model and web-based interface 

are applicable to current and future informatics platforms for cancer research in the short term. 

The platform and self-service data access limits of Caisis are addressed in Chapter 4 (HIDRA). 

The limits to the web-based interface for data abstraction are addressed at least partly by the 

pipeline for clinical data processing described in Chapter 6. The limits to the Caisis database 

model and opportunities to improve it are explored further in Chapter 7. 

My experience with dozens of other cancer centers that evaluated or adopted Caisis 

inspired the preliminary work in Chapter 3. Cancer research and informatics appeared to have 

evolved over the decade that Caisis was designed and developed at MSKCC (1998–2008), and I 

wanted to look broadly at IT and informatics trends and lessons learned across multiple centers 

before rethinking the strategy for another single organization. 

Findings from this preliminary work on Caisis are relevant to other cancer centers 

addressing the need to acquire, process and store data about patients with cancer.  

First, there working is a comprehensive and working database model. Its temporal 

structure and ability to stack into an analytic structure for use in predictive modeling is as 

relevant today as it was when the Caisis database model was developed. Moreover, the 

meaningful clinical data elements in the Caisis database model (roughly 2000 unique data 

elements) that were developed from years of bottom-up data import and integration efforts at 
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MSKCC map pretty closely to the clinical data elements developed through a top-down 

comprehensive analysis of cancer data elements conducted at Fred Hutch.(13) Details of the 

alignment of the Caisis database model and the clinical data element analysis at Fred Hutch are 

outside the scope of this dissertation, but could perhaps inform or be included in future work. 

Second, the Caisis system has a working, extensible web-based interface for data entry 

and editing. No matter which database model is designed or adopted by a cancer center, the 

ability for clinicians, researchers and staff to add, edit and view clinical data will be needed. My 

previous work on the Caisis system provides an interim solution (or even a long-term solution) to 

data acquisition, processing and storage using data entry staff and traditional ETL data feeds. 

Third, the Caisis system is freely available under an open-source license. My experience 

has been that funding for research systems, especially for departments and smaller cancer 

centers, is limited and variable.  Most researchers cannot afford an expensive, recurring software 

license and support team. A system like Caisis that is freely available, open-source licensed, and 

can be ported to other centers with little or no technical support fits the needs of many centers. 

Caisis has already had broad impact in the United States and international cancer research 

communities, and it is used by dozens of institutions and groups. Many of these users are listed 

on the Caisis web site(14) and even recently I have spoken with new users who are currently 

adopting or planning to adopt this system. Many adopters of Caisis value the existing system 

because the data structure allows them to easily collaborate with other Caisis users, and because 

most local adaptations of the system require minimal configuration and programming. Finally, in 

Caisis user conferences and in-person discussions (from work in Chapter 3), Caisis adopters have 

told me that its robust security features enable them to pass requirements from their institutional 

IT security offices that may prevent use of other similar systems. 
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Chapter 3 Preliminary Work: Recurring Themes in Informatics and IT 

from 60 Cancer Centers 

3.1 Context 

This chapter is my first attempt to answer the question “How can we improve access to clinical 

and related data about cancer patients for research?” and to test my overall hypothesis that new 

tools and methods from biomedical informatics could improve the availability of data for cancer 

research if they were applied thoughtfully and strategically. 

The question I sought to answer in this chapter was “What are the current opportunities 

for strategic application of biomedical informatics tools and methods in cancer centers?” The 

work that I describe in this chapter was background and preliminary to the work of my 

dissertation (covered in Chapters 4 to 7). The net result of my visits to other centers and analysis 

of my notes from discussions was the realization that I had preliminary data to answer my 

question and validate my hypothesis, but that it would take a dissertation to fully explore the 

hypothesis and question. This chapter was written as a standalone paper, so it has a separate 

acknowledgements section. However, it is not currently intended for publication outside of this 

dissertation. 

3.2 Abstract 

The National Institutes of Health (NIH) is investing considerable funding in National Cancer 

Institute (NCI)-designated cancer centers and Clinical Translational Science Awards (CTSAs). 

Biomedical informatics and IT efforts are often expensive and significantly impact organizations, 

yet leaders and practitioners often know little about the context, efforts and innovations from 



 

 

24 
other centers. From 2008 to 2009, I visited 60 cancer centers around the United States and met 

with 394 people to explore issues and trends in informatics and IT.  

The information gathered from these meetings was organized using a qualitative analysis 

tool, and a number of distinct patterns became evident. This preliminary work included findings 

regarding EMR and clinical data repository implementations, the selection and implementation 

of clinical research systems, struggles with biospecimen information management, curation and 

technical support of research databases, the persistence of Access and Excel databases, the rise of 

caTissue (now OpenSpecimen), Research Electronic Data Capture (REDCap), and Informatics 

for Integrating Biology and the Bedside (i2b2), trends in database and web development 

platforms, and social/organizational issues.  

3.3 Introduction 

The NIH and cancer centers have invested considerable funding into developing informatics and 

IT infrastructure to support patient care and research. The NCI caBIG program invested at least 

$350 million in informatics ($20 million annually for the pilot phase between 2004 and 2006, 

$41.7 million in 2007, $45.8 million in 2008, $43.1 million in 2009, and $100 million for 

2010).(2) The CTSA program also actively funds informatics efforts.(15) More than 75% of the 

current CTSA recipients are also affiliated with NCI funded cancer centers, and almost half of 

NCI-designated cancer centers have CTSA awards.(15,16) By 2009, $92 million of NIH 

stimulus funding went to support informatics projects, and many of the funded centers were 

implementing clinical systems per stimulus-funding incentives.(17) 

Although the caBIG, CTSA, and other funded networks fostered greater collaboration 

and interaction between informatics leaders and practitioners over the past few years, there is 
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still much room for improvement at cancer centers. Explorations of the trends in biomedical 

informatics have mostly been anecdotal or conducted by surveys, literature reviews, 

collaborative authorship, or limited to interviews with local or professional networks.(18,19)  

From summer 2008 to summer 2009, I set out to visit every NCI-designated cancer center 

in the United States. There were several motivations behind and goals for this exploration. This 

10-month exploration was primarily conducted on my own time and at my own personal 

expense. It does not represent the views of MSKCC, Fred Hutch, UW or any other particular 

group or individual. The draft of this paper has been distributed to all of the people and sites I 

visited for their corrections, suggestions, and permissions where appropriate.  

3.4 Objective 

The objective of this work was to form a foundation for my own strategic thinking about the 

application of biomedical informatics in cancer centers. I wanted to take a systematic look across 

the United States, to find out what colleagues in cancer informatics, IT, healthcare and 

biomedical research were thinking, doing, and learning. What were the top issues, struggles, and 

trends in IT and informatics efforts among cancer centers in the United States? Also, I wanted to 

gather and synthesize details and perspectives to evaluate crosscutting programs such as caBIG, 

CTSA grants and the rise of tools like caTissue (now OpenSpecimen), i2b2 and 

REDCap.(8,20,21) 

3.5 Methods 

Between August 27, 2008, and June 29, 2009, I met with more than 394 people at 60 centers 

around the United States (see Appendix A: Sites Visited). A total of 49 of these sites were NCI-
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designated cancer centers, including 32 of the 40 comprehensive cancer centers. I also visited 

colleagues at the NCI, and had phone conversations with informatics colleagues from 2 

additional centers, Indiana and Yale. I was unable to visit 16 of the 65 NCI-designated cancer 

centers, including two in the southeast (Emory and South Carolina) that were added in 2009 after 

I had driven through that part of the country. Figure 3.1 shows the approximate routes of more 

than 30,000 miles of driving and 40 flights. 

 

Figure 3.1. Routes of driving (30,000 miles) and flying (40 flights) 

 

For the interviews, I used a semistructured agenda (Table 3.1). I did not record any 

interviews, but took semistructured notes in notebooks. Because this was an exploration rather 

than an investigation of a focused research question, I did not direct or confine the conversations 

to the agenda unless it was helpful to stimulate discussion. 
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Table 3.1. Semistructured interview agenda 

1. IT/clinical systems 3. Innovation 

1.1. Data center issues 3.1. Telemedicine 

1.2. EMR, LIS, operational systems 3.2. Virtual worlds 

1.3. Data warehouse/clinical data 
repository/de-identified repository 

3.3. Web 2.0 

2. Research informatics 4. DBMS and web development platforms 

2.1. CTMS systems 5. Organization/team structure 

2.2. Biorepository systems 6. Center vision/goals 

2.3. CTSA/genomics data 7. Local struggles/issues 

2.4. caBIG efforts 8. Collaborations/networks 

2.5. SPOREs or large program grants 8.1. Data sharing 

2.6. Bioinformatics tools, platforms, efforts, 
and strategy 

8.2. Project tracking/productivity 

 

The raw data from four notebooks, my Outlook calendar and email were coded into 

PersonalBrain 5.5.2 mind-mapping software to facilitate information retrieval and analysis.(22) 

3.6 Results 

The following findings are roughly organized around the semistructured agenda in Table 3.1: 

3.6.1 Clinical Systems Issues 

At the time of these site visits, most hospitals and cancer centers were still early in the process 

implementing electronic medical records (EMR) systems, with Epic(23) being the most common 

(20 centers). Most sites were also wrestling with the overall complexity of integrating “best of 

breed” clinical systems modules from a variety of leading vendors: Epic, Cerner, GE Centricity, 

Eclipsys (now Allscripts) and McKesson (see Appendix A: Sites Visited).(23–27) One 
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informatics leader stated that “clinical systems are hard to evaluate until they are in-house,” and 

it is well known that what works well in one organization may not translate well to other 

environments.(28) Another described their medical center as a “vendor graveyard.” Between 

EMR implementation teams at different sites, staff expertise and awareness of potential pitfalls 

varied greatly, and interaction or collaboration rarely occurred across sites to share successful 

practices or plan for interinstitutional or widespread interoperability.  

For the most part, each site was in the process of implementing custom, templated 

clinical notes. The majority of EMR planning and implementation focused on technical system 

integration details and the capture of patient care data for billing and documentation, with little 

consideration of downstream secondary use of clinical data for research or EMR integration with 

research systems. Most sites did not want to “mess up clinical systems with research data.” 

However, a few sites were backtracking to attempt to integrate research data collection into 

clinical system templates or reengineering entire processes.(29) Although many sites were 

wrestling with similar issues, most teams did not seem to apply lessons from the clinical 

informatics literature on system implementations to assess or manage factors that are likely to 

determine success or failure of clinical systems.(30) There was a surprising amount of relearning 

going on rather than leveraging the research, experience and expertise from other similar groups. 

Most sites were planning or implementing enterprise data warehouses (EDWs) or clinical 

data repositories (CDRs) for clinical systems, which would enable administrative and quality 

assessment reporting as well as provide access points for research systems to retrieve relevant 

clinical data from a single source.(31) While most sites were rolling out leading commercial 

clinical systems, MD Anderson, Dana Farber, and Vanderbilt stood out as significant exceptions, 

choosing to build their own homegrown systems to integrate research data capture with clinical 
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practice.(32) Although a couple sites, notably MD Anderson, Northwestern, and the University 

of Chicago, were striving to implement a service-oriented architecture, for the most part 

conventional data warehousing practices and extract-transform-load (ETL) data feeds were the 

dominant approach to EDWs and CDRs. ETL data integration efforts predominantly focused on 

the highly standardized and/or high-volume data sources such as demographics, laboratory 

results, scheduling, billing diagnoses, and procedure codes.  

The collection of detailed patient medical history data through EMRs was much more 

problematic, and no emerging trends or innovative solutions were evident in practice. There was 

an even split between the advocates of structured data capture through standard templates versus 

primarily narrative data capture with post hoc data abstraction or clinical data processing 

employed to extract clinical data elements for reporting and research databases. Although most 

informatics and IT leaders seemed to prefer implementing structured templates in clinical 

systems, many found this approach untenable in their centers and thought that NLP was the only 

practical solution to gleaning structured data elements from EMRs.  

In general, teams were focused more on EMR system selection and timely 

implementation than on longer-term research, evaluation, and engineering of clinical 

processes.(33) More than half of the centers I visited were in early stages (first couple years) of 

EMR and CDR implementation or reimplementation. In almost all cases, teams were pushing 

hard to get their systems implemented as scheduled, and considered clinical systems to be on 

separate tracks from research systems. Most clinical systems groups expected that researchers 

would be able to access and retrieve all of the clinical data they would need from an EDW or 

CDR, however a few strategies were different. From the Vanderbilt experience, Stead 

emphasized a focus on “iterative process of care improvement” over systems 
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implementation.(29) The Partners and MD Anderson teams stood out in their efforts toward 

integrating clinical informatics with research dataset production, using NLP and structured data 

collection, respectively. The different perspectives and focuses of IT and informatics within 

cancer centers was evident, with the former focused on system selection, implementation, and 

support and the latter leaning toward system evaluation, design, and development.(18,34,35) 

3.6.2 Research Systems Issues 

3.6.2.1 Serial Dating with Clinical Research Systems  

Most sites were wrestling with and formalizing research systems, particularly for clinical trials 

and research data management. Implementing a clinical research data management, or clinical 

trials management system (CTMS), took much greater time, effort, and resources than 

anticipated, and many sites seemed to be "serial daters", moving toward new, promising 

solutions after frustrations with current systems. There were no clear winners between 

commercial, open-source, and homegrown systems. For every solution, there were champions 

and supporters, as well as critics and disgruntled users. The one research system that generally 

earned favorable reviews and appeared to gaining ground around the country was REDCap.(21) 

This tool, developed by Paul Harris and his team at Vanderbilt, looked like a simple disruptive 

innovation that was already overtaking more complex and cumbersome commercial CTMS 

software and custom CTMS applications.(36) The only frequent issues mentioned about 

REDCap were the nonstandard license and its lack of some high-end CTMS features. However, 

the rapid and widespread adoption to more than one-third of the sites visited may indicate that 

the license and simplicity of REDCap did not significantly detract from its appeal. Among 

commercial clinical research systems, more than 15 of the sites visited had experience with 

Velos(37) or were in the process of implementing it at an enterprise level. Several people from 
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10 different sites gave rave reviews of Forte OnCore, and mdlogix appeared to be gaining ground 

at 5 sites.(38,39) Several groups gave favorable reviews of Medidata and PhaseForward (now 

owned by Oracle) systems, but these solutions were generally considered too expensive for most 

cancer centers.(40,41) Eight sites had homegrown CTMSs, and a couple sites were using 

OpenClinica.(42) Many sites were working toward their second or third attempts at 

implementing a commercial enterprise CTMS, and no clear winners or leaders emerged except 

for REDCap.  

Tracking of patients for clinical trial eligibility and recruitment were common issues 

mentioned by staff at 10 sites. Tracking of clinical research billing was another frequently 

mentioned problem for IT and informatics, as well as clinical research document management, 

IRB systems, adverse event reporting, and system compliance with policies and regulations. 

Clinical research appeared to be a huge problem domain that most centers wrestle with, as well 

as an opportunity for informatics research and solutions. The OCHRe effort led by Ida Sim at 

UCSF, the Prostate Cancer Clinical Trials Consortium, and the caBIG CTMS workspace were 

noteworthy efforts to develop shared informatics resources for clinical trials.(43–46) 

3.6.2.2 Struggles with Biospecimen Information Management Systems  

Most centers were struggling with a strategy and systems to support biorepositories and 

biospecimen tracking. At least 15 centers had primarily homegrown specimen management 

systems, predominantly in Microsoft Access. There were notable exceptions. Mayo Clinic was 

implementing the LabVantage research laboratory information system (RLIMS) in a broad and 

rigorous effort across their sites in Minnesota, Arizona, and Florida.(47) Their third attempt to 

implement enterprise-level biospecimen information management was well-funded, well-staffed, 

and included 6 months of interviewing and requirements analysis, a staged rollout, and formal 
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project management. The University of New Mexico and City of Hope had successfully 

implemented TissueMetrix and LabWare, respectively.(48) MD Anderson, MSKCC, and 

Stanford had notable homegrown systems. The Stanford STRIDE system was integrated with the 

clinical data repository, to facilitate sample discovery.(49) There were ambivalent views on 

caTissue (now OpenSpecimen) system at most sites. Nevertheless, caTissue seemed to be 

reaching an adoption tipping point and was considered a standard among cancer centers for 

biospecimen information management.(20) Twenty-four sites articulated a caTissue strategy, 

either working to implement it as a production system or as an external interface for data sharing. 

Many sites had implemented or participated in specimen locators and specimen discovery 

tools, however most biospecimen networks had only a small number of participants.(50–55) Like 

EMR and CTMS implementations, the implementations of biospecimen information 

management systems were complex and required more resources and planning than most centers 

estimated. Although good commercial laboratory and biospecimen information management 

systems were available, these were generally financially out of reach or unsustainable for most 

cancer centers biorepositories. The open-source caTissue Suite looked likely to become the most 

widely adopted system among cancer centers. 

3.6.2.3 Curation of and Technical Support for Research Databases 

Many people talked about the resources and processes needed to support research databases, 

particularly those sites considering the implementation of new systems such as Caisis. Almost all 

of the 25 groups I talked with regarding Caisis plus several other sites were interested in 

discussing how many and what kinds of people to hire, and what skills and training would be 

needed to implement and support a research database. The data from clinical systems and clinical 

data repositories were deemed insufficient for research and were often organized and formatted 
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in ways that were difficult for the uninitiated to understand and query.(56) Tumor registry 

databases were mentioned several times as a data source for research, with widely disparate 

views on data quality and suitability of registry data for research. Clinicians generally perceived 

the clinical data in tumor registries to be inadequate for current clinical research. Pathology and 

laboratory-based researchers generally perceived tumor registry data to be a good source of 

clinical data.  

Overall, the employment of research nurses, data managers, and data entry staff to 

abstract information from medical records and curate disease- or study-specific databases was 

common. Some investigators maintained their own databases, but this responsibility frequently 

fell to trainees, staff, and students, with relatively high turnover. Technical and content 

knowledge about databases was often embedded in the original developers. Many groups had 

hired an Access database developer or web programmer and then became dependent on that 

individual for upgrades and queries. Lack of use of (or lack of alignment with) existing 

standards, reinvention of terminologies, variety of design patterns, and divergent system 

implementations made it difficult to sustain and improve systems that would enable collaborative 

science. The development and curation of department-, disease- or study-focused systems to 

support particular research efforts was a need that did not seem to be met by either EDW or CDR 

efforts alone.(56)  

3.6.2.4 Access to and Retrieval of Research Data 

Access to and retrieval of data were chronic and vexing problems within most centers. Data 

repositories were not always optimally structured for research. Although many groups had 

developed or were developing clinical and research data repositories, the processes, methods, 

and tools they used for searching, browsing, and retrieving information typically required 
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knowledge and expertise beyond the level of most investigators or users of data. In some groups, 

statisticians performed the role of stewards of research datasets and preferred to maintain 

databases in spreadsheets or SAS files.(57) In other groups, departments or individual 

investigators supported their own separate data collection and information retrieval efforts. 

Access to data was typically limited to technical staff that supported databases, either 

because of policies, lack of trust, or technical barriers to use. Several of the groups mentioned a 

desire for self-service tools to perform quick queries on databases, as well as for running simple 

statistics, survival curves, frequency tables, and graphs that required minimal technical skills.  

3.6.2.5 Access and Excel Research Databases Will Not Go Away, but Perhaps There Are 

Substitutes 

Although many informatics and IT experts expressed frustration with the widespread use of 

Excel spreadsheets and Access databases, they have continued to proliferate. Many investigators 

and staff stated that it was easier to work with spreadsheet interfaces for small projects, and to 

maintain some local control and malleability by maintaining data in Access. 

“There is a threshold in terms of easy to use.” 

“People hate structured data entry; it’s too slow.” 

“Users are addicted to the quick fix with Excel.” 

“The Excel user interface is attractive, at first...” 

“People get a little money and hire someone to build an Access database.” 

“They want to manage it themselves.” 

While high-end and high-throughput departments and laboratories may have funding and may be 

able to reap the benefits of implementing sophisticated systems, there appeared to be a “long 

tail” of smaller operations and individuals who performed research well with low-cost, simple, 



 

 

35 
and malleable systems.(58) The smaller databases and spreadsheets approach to data 

management seemed to work fine for startup operations (e.g., small trials, experiments, and 

databases). However, when the volume and scope of data and operations increased, the processes 

and systems did not scale well, so the simpler solutions were untenable for growth. 

Unfortunately, few evaluations have been done to understand the role and performance of Access 

and Excel in the biomedical informatics and IT ecosystem. Excel and Access solutions for 

biospecimen management, research billing, retrospective registries of disease, and clinical trials 

management were quite common across cancer centers. 

The prevalence of Excel and Access in research operations as opposed to clinical areas 

may be related to the relative size and budget of hospital IT and clinical systems support versus 

IT and informatics for laboratories and clinical research support. Larger research units were more 

likely to invest in and implement commercial or custom enterprise systems. 

The biomedical and biological investigation community had recently recognized the 

inevitability of spreadsheets in practice and have published TAB-based formats for reporting 

experimental results.(59,60) The rapid and widespread adoption of REDCap seemed to be 

indicative of a need for simpler systems. At the time of the site visits, a few groups were 

experimenting with Ruby on Rails as a modern version of relatively easy and rapid system 

development (where Access has dominated in the past). For smaller cancer centers and 

laboratories, there still seemed to be a need for solutions that were locally developed, controlled, 

or both. Cross-platform, web-based, and open-source solutions that were cheap or free to labs 

and individual investigators were preferred. 
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3.6.3 Technology Trends, Platforms and Tools 

3.6.3.1 Database and Web Development Platforms 

When people were asked about IT and software development tools and platforms, every major 

platform had its proponents and detractors, but there were some trends. On the database side, the 

sites with Oracle site licenses preferred that platform because of its powerful tools and little 

additional costs for new applications. However, most other sites seemed to be shifting toward 

using Microsoft SQL Server due to lower licensing costs and acceptable performance. The next 

most common database platform mentioned was MySQL, and a few groups preferred Postgres. 

Most groups were attempting to move away from Access and Excel where possible, but there 

were still many workhorse Access applications in use, and Excel seemed to be around for the 

long haul, even winning over XML as a data exchange format.  

In terms of web development, the Java/J2EE/Tomcat/Apache platform was strongly 

represented at 14 sites, and there was continued pressure to use that technology stack because of 

the caBIG and i2b2 tools built on it. The next most popular platform (at 7 sites) was Microsoft 

ASP.NET and C#. Python with Zope or Django frameworks followed in prevalence, mentioned 

by 5 sites. Ruby on Rails was mentioned by a couple sites for rapid prototyping of smaller 

applications, but most larger scale projects were aligning with either Java/Tomcat or 

ASP.NET/C# platforms. The use of PHP appeared to be dropping, with notable exceptions such 

as REDCap, and new development using Perl seemed to be falling relative to Python. For 

bioinformatics programming, Python, R, and BioConductor were the most well-regarded and 

frequently mentioned platforms.(61) Although there were many existing Perl and PHP 

applications and libraries, Python seemed to be replacing Perl for bioinformatics data wrangling, 
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and Ruby on Rails seemed to be slowly replacing PHP for rapid application prototyping and 

development. 

3.6.3.2 Open-Source Systems to Promote Collaboration 

The most prevalent open-source research systems were Research Electronic Data Capture 

(REDCap), the Cancer Biomedical Informatics Grid (caBIG), Informatics for Integrating 

Biology and the Bedside (i2b2), and Caisis.(36) Discussions about some of these platforms 

raised strong and mixed responses, both positive and negative. Some people predicted collisions 

ahead for caBIG and i2b2. There were some strong fans of caBIG tools and methods among 

cancer center informatics teams, and although many users and developers expressed 

disillusionment with caBIG, most would continue to participate as long as funding incentives for 

development and adoption were available. Two caBIG applications were well regarded enough 

to consider adoption regardless of financial incentives, caTissue (at 16 sites) and caArray (at 7 

sites). Although many of the software tools developed through the caBIG program were needed 

by the cancer research community, most people found them incomplete and difficult to integrate 

with other systems. Also, most caBIG adopters were piloting these systems rather than “putting 

them on a critical path.” Many people expressed the view that as long as funding and incentives 

for adoption and improvement of these tools continues, they would keep piloting and helping to 

improve the technology. Overall, the most valued contribution of the caBIG program was the 

establishment of a strong social and professional network among biomedical informatics and IT 

teams across cancer centers.  

There was considerable overlap between cancer center informatics and CTSA informatics 

teams, and the collaborative network established through caBIG may have paved the way for 

subsequent success in CTSA informatics efforts. Although there were a handful of mixed views 
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of i2b2, overall the confidence regarding this toolset was very positive, and adoption by 15 

CTSA sites was remarkable, especially without financial incentives for implementation. That 

said, REDCap, described above, was a clear market winner among CTSA sites.(36)  

The Caisis system was widely implemented in cancer centers (16 sites), however it was 

often considered difficult to locally extend and difficult for smaller groups to support. The level 

of technical skill required to create custom EDC forms in Caisis was a major issue, as well as the 

lack of tools for browsing and querying data from within the web application. Overall, Caisis has 

a strong presence among cancer centers, but lack of interoperability with caBIG or i2b2 appeared 

to be stalling its adoption on the high end, and the simpler REDCap system appeared to be a 

substitute for smaller studies and groups. 

Software licensing cost and local extensibility was a major issue for biomedical software 

applications regardless of technology platform or tool. Most people I spoke with strongly favored 

lower-cost and open-source technology. The most widely adopted applications, including caBIG, 

i2b2, Caisis, and BioConductor were all freely distributed under open-source licenses. 

3.6.3.3 Data Storage 

Several sites mentioned data storage issues. Lynn Vogel noted that data storage requirements for 

MD Anderson cancer center were growing at 30-40% per year.(32) There was only one 

surprising finding in terms of data storage, Isilon (Seattle, WA). Isilon was a high-performance 

data storage company with a strong presence in the life sciences and bioinformatics, and the 

company was mentioned repeatedly when discussions turned to data storage technology. Cloud 

computing for data storage did not appear common yet, probably because its price was still 

perceived as high relative to the cost of in-house data storage and computing. 
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3.6.4 Social and Organizational Issues 

A significant part of many conversations pertained to social and organizational issues. caBIG and 

CTSA informatics efforts seemed to be catalysts for discussion and integration efforts across 

hospitals, universities, and cancer centers. Although variation among CTSA sites was 

considerable, most sites were exploring new matrix organizational structures and processes, and 

sometimes crossing organizational barriers that had not been crossed before.  

Although many internal integration and coordination efforts were ongoing at CTSA sites, 

fewer efforts were made to coordinate with other cancer centers. The planning and attention 

given by individual sites to facilitate participation in research networks and extramural 

collaborations seemed to correlate with the ease that I experienced in contacting and scheduling 

site visits. In terms of logistics, it was sometimes difficult - but not impossible - to find the right 

contacts at each site, but most people contacted were responsive and welcoming. Some sites had 

web sites that were more transparent and organized with descriptions and contact information for 

IT and informatics staff. For these centers, it was much easier to find and connect with the 

appropriate people to interview. Also, internal coordination and communication varied between 

sites. Some highly organized visits were more the result of central and highly organized 

individual coordinators than of overall organizational integration, however several leading 

cancer centers were well organized for interaction with external visitors (e.g., Vanderbilt, 

Harvard, Mayo Clinic) 

3.6.4.1 Software Development Patterns: Build, Adopt or Buy 

It is common in informatics circles to proclaim that we are against "reinventing the wheel", but 

then we proceed to either do just that or to argue that “standards are essential”, as long as they 

are locally developed standards. Reinvention was very common for simple web-based surveys 
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and EDC systems. Most groups seemed to prefer to build their own solutions first, adopt open-

source software second, and only buy commercial software for enterprise clinical systems. 

Larger collaborative and open-source software projects like caBIG, i2b2, Caisis, and REDCap 

had attracted attention and adopters, but still a lot of local software development went on with 

little awareness of, few designs around, or lack of plans to integrate with systems or standards 

developed commercially or at other centers. There was generally reluctance to learn foreign 

technology or applications. Fortunately, many informatics solutions in biomedical research and 

healthcare seemed to converge on common patterns because the people wrestling with different 

technology platforms faced the same issues and came up with similar solutions. Unfortunately, 

most of these locally developed solutions were still incompatible with solutions developed at 

other sites. Although informatics researchers and leaders may be aware of efforts at other 

centers, local development teams were generally not. 

3.6.4.2 Lack of Widespread Cross-Pollination 

One of the key factors that contributes to innovation is the cross-pollination of ideas. Although 

many researchers reported their ideas at meetings and in papers, practices looked very different 

in person and in context within organizations. In general, informatics and IT professionals were 

still locally focused and unaware of comparable efforts and people at other centers. After visiting 

more than 60 centers, I could not see that any one center leads in all areas of informatics and IT. 

Each group had strengths and weaknesses, and many projects seemed more impressive and 

innovative in presentations and papers than they did in person. As in The Wizard of Oz, there was 

always something going on behind the curtain.(62) 

The caBIG effort stimulated professional networking and cross-site collaborations, and 

CTSA informatics leaders were catalyzing greater intersite awareness, exchange of tools and 
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ideas, and regional collaborations. However, many leaders and staff at all levels would gain 

valuable perspective from site visits and discussions with their counterparts. I have a much 

greater understanding and respect for the community as a whole and the work being performed at 

other centers than when I started these visits. Having this perspective earlier would have changed 

my strategy for Caisis development at MSKCC toward greater adoption of other ideas and tools 

from other centers. 

3.6.4.3 Learning and Training Issues 

One issue that appeared to work against cross-site collaboration and adoption was an initial 

(almost allergic) reaction by people to foreign systems. I visited a few sites several times, and 

spent some time training and working with data managers who were using or evaluating Caisis. I 

noticed that the first couple times they tried to use the system, they were overwhelmed by 

complexity and immediately saw flaws and gaps or wanted numerous changes and 

customizations to mimic their current interfaces, artifacts and processes. However, after entering 

about 5 to 10 cases together, the unfamiliarity and complexity of Caisis were no longer so 

overwhelming. After entering 50 to 100 cases, users became accustomed to and even attached to 

the system. This initial reaction and learning curve seemed to apply for clinical systems as well. 

Many physicians and staff stated that after 1 year of using a new EMR, they were just as efficient 

as they were before the system was implemented. Developers and project managers may be 

overreacting to initial complaints and frustrations with new clinical and research software, and it 

may be better to perform a little “informatics therapy” rather than immediately rejecting or re-

engineering a solution. 

However, there was still considerable divergence of views, lack of shared understanding 

in communications, frustration, and separation between IT, informatics, physicians, researchers, 
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and staff. Several groups were constrained by high expectations and ambitions, unrealistically 

short project timelines, and inadequate resources, rather than having realistic expectations and a 

strategy of starting small and compounding success over time. 

IT and informatics skills and expertise varied widely among different groups, as did the 

measurement or enforcement of technical standards for staff. Although clinical research staff and 

data managers were frequently trained and credentialed according to professional groups such as 

Society of Clinical Research Associates (SoCRA),(63) fewer informatics and IT staff had 

comparable training and skill certifications. How can we hire the right people for complex 

technical projects and keep their IT and informatics knowledge and skills up-to-date? There 

appeared to be a need and role for broader and ongoing informatics training and certification 

(e.g., AMIA 10x10 program) as well as IT training and certification.(64)  

3.6.4.4 Rise of Networks and Collaborations 

Overall, there was a rise in active social and professional networking, the development of 

collaborations, and collaborative development. The caBIG and CTSA efforts were catalyzing a 

surge in informatics networks and collaborations within and across sites, and many people were 

connecting to their colleagues using social and professional networking web sites. However, this 

behavior seemed to occur mostly among researchers and leaders who participated in external 

meetings or extramural projects. Within organizations, local teams still demonstrated 

provincialism and a lack of active networking. Sometimes when I met with groups during a site 

visit, it was the first time that local IT and informatics staff had met each other. Perhaps site 

visits and active networking could be catalysts for innovation, adoption of foreign tools and 

ideas, and extramural collaborations. 
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The people that collaborated extensively noted that “collaboration takes energy.” In the 

Caisis team at MSKCC, approximately 20% of the group’s time and effort was dedicated to 

supporting the broader community and collaborations. Also, communication and cognitive load 

are associated with collaboration. Interinstitutional and highly collaborative teams and projects 

used tools to facilitate management and communication, especially web-based conference 

systems like GotoMeeting, WebEx or Adobe CONNECT, and information/document 

management systems such as Microsoft SharePoint or Google Groups. Unfortunately, only a 

handful of centers had enterprise-wide deployment of web conference systems. Individuals 

without enterprise options seemed to be acquiring their own laboratory or department accounts 

for web-based collaboration tools. A few people were using Skype for communication with other 

sites, but in some places, firewall issues were keeping this tool from becoming widespread. 

3.7 Discussion 

3.7.1 Limitations of This Research 

The greatest weakness of this exploration was inadequate sampling. Because these visits were 

largely self-funded, and there were significant challenges in scheduling and planning both 

meetings and a travel itinerary in a pattern that would give me a chance to finish before July 1, 

2009, I had to shorten or forego a few visits along the way. I only managed to visit 49 of the 65 

NCI-designated cancer centers that I had intended to visit, and at many centers I did not meet a 

broad or representative sample of leaders and staff (see Appendix A: Sites Visited).  

At many sites, I initially made contact through my own professional networks, so there 

was some bias and variation in the types of people encountered at each site. I did not reach all of 
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the people with comparable roles at each site due to organizational differences and lack of time. 

Instead, I talked with as many convenient and amenable contacts as possible. 

With a few exceptions (i.e., City of Hope, Johns Hopkins) the visits were short, with little 

time for snowball sampling or multiple meetings. Also, due to travel and meeting constraints, I 

did not have sufficient time and energy to codify and process all of my notes after each visit as is 

customary for more rigorous qualitative research in biomedical informatics. Therefore, the 

observations herein may be somewhat broad rather than deep. However, the goal of this work 

was to explore and assess broad trends from a broad sample rather than to pursue a particular 

research question deeply. Informatics and IT at cancer centers were evolving rapidly and these 

results may already be somewhat dated, though hopefully still relevant. 

3.7.2 Clinical Systems Implications 

Although most sites were rapidly implementing EMRs, relatively little integrated planning for 

downstream research use of clinical data or interoperability with interinstitutional research 

networks existed. This did not bode well for the broad development of research data networks 

and the possibility of comparative effectiveness research across sites. Though it may be easier to 

align data structure and format across institutions that are using the same EMR vendor, most 

teams were only implementing locally customized templates. Given that path, we may still be 

looking at a massive data mapping effort to enable meaningful exchange and comparison of 

patient care and research data. 

All of the centers I visited had a strong research mission, and there seemed to be a huge 

opportunity for cancer centers to partner with each other and for their information system 

vendors to develop common approaches and templates to facilitate data exchange, 

interinstitutional research collaboration and healthcare quality reporting. Several individuals 
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expressed interest in these types of efforts, along with frustration with the current narrow 

(nonresearch) focus of clinical systems implementations. There were opportunities for hospitals 

with similar clinical and research priorities and systems to actively network and cross-pollinate 

successful practices, ideas, innovations, evaluations, and lessons learned. Most centers were 

early in the EMR implementation process compared to the EMR trailblazers like Vanderbilt, 

Kaiser-Permanente, and Partners, and the majority of these technology adopters appeared to be 

relearning painful lessons. Reaching out to, visiting, and partnering with colleagues at other 

centers who are further ahead in aspects of their IT and informatics efforts could enhance 

planning and reduce the risks of current IT and informatics efforts. 

3.7.3 Research Systems Implications 

Overall, clinical research systems were somewhat of a mess. Although there were some good 

commercial research systems available that were suitable for industrial customers, most were 

financially out of reach of academic medical centers and individual departments, laboratories, 

and investigators.  

Many investigators continued to gather data locally within laboratories and departments 

because data supply chains that crossed organizational divisions were neither efficient nor 

reliable. Many researchers could not trust other groups to respond quickly and provide data 

needed for their projects to meet tight deadlines and shifting priorities in a dynamic research 

environment. 

In terms of systems and people, we may need to harmonize and formalize policies, 

standards, and procedures (e.g., consent documents, biorepository standards, data sharing 

policies, access procedures). Although much has been published, presented, and discussed 

around standards, data integration, and the semantic and syntactic alignment of systems, there 
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has been relatively little acknowledgement of (or research into) issues of integration and 

interoperability of people. As with clinical systems, research knowledge, processes, and 

workflows seemed to be largely and tacitly embedded in people rather than in information 

systems. People integrate research systems, but systems could also integrate people. Research 

workflow management and related methods and tools that enhance the integration of 

investigators and diverse research teams could be a fruitful investment at cancer centers. 

Perspectives on large research information system projects like Caisis and caBIG seemed 

to disagree. From central vantage points, these projects looked much more useful and popular 

because most communications to their core teams come from people who are using or want to 

use the system. Most presentations and papers were biased toward views of promoters, 

developers, and adopters. For a more balanced perspective, developers and managers of larger 

projects like Caisis and caBIG should look externally and systematically for minimally biased 

feedback and input. 

3.7.4 Technology Trends, Platforms and Tools Implications 

Information systems are social entities in situ. A beautiful system designed and built in isolation 

may, like its author, work well in isolation and narrow scope, but such a system may not play 

well with other systems and be a social failure. Social systems (e.g., informatics to support 

interinstitutional collaboration) are inherently messy. Boundaries are drawn idiosyncratically 

around system modules in a similar manner to the way boundaries emerge around individuals 

and groups within organizations. There is no perfect technology or superior system, and the grass 

always looks greener on the other side - or when someone is presenting their work in public. 

Informatics leaders and staff at all levels should invest time and effort in understanding 

and leveraging technology from informatics and IT colleagues at other centers, even if candidate 
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foreign solutions do not initially appear to perfectly meet our requirements. It is nearly 

impossible to make great achievements in informatics without standing on the shoulders of 

pioneers. New and foreign platforms and tools can be catalysts for change, even a change of 

requirements. Employing IT and informatics as a catalyst for change can be uncomfortable at 

first and may subject users and developers to learning curves that may take months to traverse. 

In terms of tools, it looked like Java and C# based platforms were still the leading 

platforms for enterprise systems development, and they did not tend to coexist well in 

development teams. There was definitely a role in informatics for rapid prototyping using a good 

scripting language and framework like Ruby on Rails or Python on Django. 

Most academic groups still could not afford professional software development. There 

was a strong preference for open-source and free tools among academic centers and informatics 

teams, though many would pay much more to develop in-house technology or adopt open-source 

software rather than purchase proprietary software or hire professional developers. Some grant or 

contract-funded development efforts at cancer centers outsourced or partnered with software 

development companies, and several of these companies have risen to prominence among cancer 

centers (e.g., ConvergeHealth,(65) 5AM Solutions,(50) and LabKey(66)). Many of their products 

are open-source. What are the respective roles of informatics and software engineering 

businesses versus academia in the current environment? How can we optimize this relationship 

to balance innovation with scalability and sustainability of systems? Regardless of specific tools 

and technology platforms, partnerships between business and cancer centers for software 

development seem to be a trend that is likely to grow. 
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3.7.5 Social and Organizational Implications 

Interestingly, many centers I visited were working toward similar strategic goals, which usually 

took the form of leading the field in certain diagnostic or treatment approaches or growing 

disease-specific programs. However, at most sites, culture seems to eat strategy.(67) 

Some notable and innovative strategies in informatics and IT involved the linking of 

systems and people into data integration and collaboration networks that cross departmental and 

organizational barriers. Several CTSA informatics groups were using EDW and data integration 

efforts to break down internal silos, interacting with their CTSA partner sites and other 

institutions in their region, and leveraging i2b2, caBIG, and other information technology to 

build collaboration networks for sharing research data. The individuals and institutions that 

integrated across silos and lowered barriers to extramural collaborations seemed most likely to 

lead the field. Marked differences are likely to emerge between leading, average, and trailing 

centers in terms of informatics that facilitate integration and connection of data and people across 

organizational boundaries. Sites with strong and growing regional informatics networks (e.g., 

Boston, Chicago, Texas, Pennsylvania, Minnesota, and the Pacific Northwest) appear likely to 

lead. The best competitive strategy for informatics may be to become an organization that 

coordinates and plays well with others both internally and externally. Individuals and groups that 

are self-funded or largely funded by donors may choose to go it alone, but it probably pays off in 

the long run to make systems as open, accessible, and widely applicable as possible, and to build 

collaborative opportunities by helping others catch up. 
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3.7.6 Rise of Design and Visualization 

Last but not least, increasing value is being placed on visual and interaction design. Data 

visualization and making things look good is important for informatics and IT efforts. One of the 

reasons the Caisis system has been successful is its visual appeal. However, most user interfaces 

and reports from enterprise clinical and research systems are not visually appealing. Even minor 

changes in visual design, such as adjustments to layout, fonts, and color palettes can have a large 

effect on user satisfaction.(68) There is a vast need and role for visual artists and designers in 

informatics and IT projects.  

Systems thinking, workflow design, usability, and interaction design are still major issues 

in IT and informatics implementations in practice. Many people I talked with reported 

complaints and annoyances with current systems. Many systems may work as specified but are 

just not visually appealing, particularly complex enterprise-level clinical systems such as EMRs. 

In centers that applied a “best of breed” approach to system selection, individual systems may be 

intuitive, but the overall informatics ecosystem that users encounter in their environment was 

often not intuitive.(6,29) User interface layout and behavior differences seemed to compound 

overall frustration and perceived complexity. I noted numerous complaints about login difficulty, 

password rules, colors, fonts, drop-down lists, tab and field order, excessive clicking in 

navigation, scrolling behavior, layout of fields on screens, and performance issues. We still have 

a long way to go to improve user experience in informatics and IT, and perhaps we should 

consider partnering more graphic artists and interaction designers with developers and 

informatics researchers. 
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3.8 Conclusion 

With the significant investments in the United States on biomedical informatics and healthcare 

IT research, infrastructure development, and systems implementations, we need to better 

understand the overall trends, gaps, and opportunities among leading centers so that we spend 

resources wisely. Otherwise, we may squander the opportunities for progress to improve 

healthcare quality and accelerate collaborative research. Although there are many highly skilled 

and knowledgeable individuals, good informatics methods and tools, and outstanding leaders 

among the NCI-designated cancer centers and CTSA sites, the depth of cross-pollination 

between groups and centers is unfortunately still limited below the senior investigator and leader 

level. We are not yet making the best use of existing expertise and resources. We need to 

actively promote broad and deep interactions, partnerships across sites, and alignment of efforts 

in order to minimize duplication and missed opportunities.  

Although this research was based on interviews - qualitative, but not rigorously so - it 

demonstrates that systematic networking and information gathering across sites is feasible and 

inexpensive relative to the knowledge, perspective, and contacts gained. As these 60 cancer 

centers move forward with systems implementations, organizational and process improvements, 

software and standards development, and biomedical informatics research, there will be many 

opportunities to connect with and learn from colleagues, leverage extramural research and tools, 

and help build infrastructure and relationships that improve our healthcare and research system. 

We should help make that happen. 
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3.10 Synthesis 

This chapter described my visits to 60 cancer centers and conversations with 394 people. It 

identified trends in IT and informatics through the analysis of notes from those visits and the 

review of related literature. The lessons learned from the broad analysis in this chapter informed 

the strategy and design of the HIDRA system at Fred Hutch cancer center described in Chapter 

4. 

Sections 3.2 to 3.8 of this chapter began to address my overall question of “How can we 

improve access to clinical and related data about cancer patients for research?” and also informed 

my development of my overall hypothesis that new tools and methods from biomedical 

informatics could improve the availability of data for cancer research if they were applied 



 

 

52 
thoughtfully and strategically. My specific question for Chapter 3 was “What are the current 

opportunities for strategic application of biomedical informatics tools and methods in cancer 

centers?” The answer lies not in specific tools, but rather in approaches that focus on iterative 

process improvement rather than technology, decoupling or loosely coupling with commercial 

EMR, CTMS, and biorepository system implementations to minimize project risks, focusing on 

high security, open-source and common platforms, the skills and expertise of existing staff, and 

making it easy for groups to play well with other groups and centers. 

The net result of my initial exploration of the question of what we can learn from the 

success and failures of IT and informatics in 60 cancer centers validated my decision to pursue a 

PhD at the University of Washington. It also led to a refinement of my question to “How can we 

improve access to clinical and related data about cancer patients for research?” and the 

generation of the overarching hypothesis that new tools and methods from biomedical 

informatics could improve the availability of data for cancer research if they were applied 

thoughtfully and strategically. The first aim of my dissertation was to apply the lessons learned 

from Caisis (Chapter 2) and my cancer center visits (Chapter 3) to develop and assess a modern 

integrated data platform to support a wide variety of cancer research, which is the focus of the 

next chapter. 

Findings from the preliminary work in Chapter 3 might be relevant to cancer centers 

addressing a variety of common research challenges. 

First, cancer research IT and informatics leaders should not count on clinical templates 

and data warehouses to solve research data problems. Perhaps a portion of cases and a proportion 

of clinical data elements can practically be collected through templates -which is valuable- but 
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the feasibility of obtaining the vast majority of clinical data elements in discrete form through 

clinical templates - at least in the next few years - is low. 

Second, given the rise in and need to participate in research and collaborative networks, 

and the increasing costs of solving IT and informatics problems alone in a single cancer center, it 

will be important for centers to align with technology trends emerging across centers in the 

interest of interoperability, cross-pollination of ideas and lessons learned, and leveraging 

investments. Given that no system will be a perfect solution, rather than "serial dating" and 

looking for a shiny new CTMS or biospecimen management system or writing yet another local 

solution, cancer centers should when possible stick with the systems that are broadly used by 

other cancer centers (e.g., REDCap, i2b2, OpenSpecimen, OnCore) so that we will all wrestle 

with issues together. 

Third, cancer centers should provide solutions that work for smaller labs and yet could 

have economies of scale at the institutional level. Rapid or self-service access to data by staff 

with limited technical skills is a common need, and most researchers favor solutions that use 

common, low cost, open-source technology platforms. Due to limited and variable levels of 

research funding in labs, most researchers cannot and will not commit to paying high, recurring 

software license and support fees. 

Fourth, the awareness of the work of other centers and the commitment to collaborate, 

leverage and be interoperable with the work of other centers - to play well with others - is 

paramount for cancer centers. The cross-pollination of tools and methods should extend beyond 

just participation by leaders and researchers in professional meetings and conferences. Centers 

would benefit from regular IT and informatics related site visits to other centers and deeper 
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involvement of all levels of IT staff who are actually implementing and operating systems rather 

than just connecting senior IT leaders and informatics researchers. 

Finally, centers should spend time and effort on overall technology strategy, 

organizational structure and management. Many of the barriers to progress in informatics and IT 

systems are due to social and organizational issues such as recruiting, retaining and managing 

talented staff, and integration of local staff with external technology partners and collaborating 

institutions. 

  



 

 

55 

Chapter 4 Hutch Integrated Data Repository and Archive (HIDRA): 

Data Platform and Clinical Research Informatics Strategy for a 

Consortium Cancer Center 

4.1 Context 

This chapter is my exploration of Aim 1, to develop and assess a modern integrated data 

platform to support a wide variety of cancer research. To address this aim, I answer the following 

questions for Chapter 4: What are the challenges and opportunities for informatics at Fred 

Hutch? Do these challenges and opportunities align with my previous work and lessons learned? 

Are there tools and methods that others or I have used before that could be successfully applied 

at Fred Hutch? How can we enable new types of research, faster results, and better quality of 

research data at Fred Hutch? How can we improve access to data with tools and methods that are 

scalable, extensible to new projects, sustainable, and portable to other centers? 

Answering these questions helps inform the overall research question "How can we 

improve access to clinical and related data about cancer patients for research?” and Aim 1 is 

logical first step to test my hypothesis that there are new tools and methods from biomedical 

informatics that could improve the availability of data for cancer research if they were applied 

thoughtfully and strategically. The text of the chapter was shortened and submitted on date 

March 8, 2016, as a paper to the AMIA 2016 Annual Symposium, which explains the inclusion 

of the authors and title of the paper after section 4.1. For this paper, I came up with the initial 

strategy for HIDRA, led requirements analysis for HIDRA and Argos, and wrote the paper. The 
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other authors were involved in implementation of HIDRA and edited the paper. Because this is a 

stand-alone paper I have included a separate acknowledgements section.  
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4.2 Abstract 

HIDRA is an initiative to develop a data platform to support current and next-generation clinical 

and translational research for a consortium cancer center. This paper describes the vision and 

strategic goals for the system, the management approach to the planning and implementation of 

the system, several key decisions such as the development of a high-security environment and an 

enterprise clinical data processing pipeline, and lessons learned. HIDRA currently contains 

information on more than 300,000 patients with cancer, a self-service web application and data 

request service for access to data, and a scalable, extensible data integration platform. 

4.3 Background and Rationale 

Advancement of biomedical research and improvement of patient care at cancer centers are 

dependent on ready access to data and the processing of that data into usable information. Many 

clinical trials, correlative studies, and translational research studies that require patient 

information acquire their own copies of these data from source systems (e.g., electronic health 
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records [EHRs]) through abstraction and data exports or reports, or they may implement their 

own customized databases for a particular disease (e.g., breast cancer), treatment modality (e.g., 

surgery, radiation therapy), or individual study. Often, this results in the same patient’s records 

being abstracted repeatedly for different research efforts. This approach is expensive, 

duplicative, and difficult to scale. Moreover, as we increasingly explore molecular data and the 

expression of cancers across populations of patients, the lack of integrated data on a cancer 

center’s patient populations across different diseases, treatment modalities, and studies locks us 

into siloed thinking and outdated models of disease. This legacy structure is a barrier to broad 

data mining, molecular diagnostic modeling and research, and precision medicine. 

In the bioinformatics world, the standardization of the processing, normalization and 

analysis of genomics data have allowed rapid advances in analytic methods and tools. Although 

there are a few advances toward standardized patient phenotyping, in general the acquisition, 

integration, and processing of clinical data is far behind bioinformatics pipelines, and clinical 

research is dependent on project-specific data abstraction, physician data entry (i.e. templated 

notes), and data exports from clinical systems or data warehouses. 

To support current and next-generation clinical, correlative and translational research in 

cancer, there is a need to [1] acquire patient data from disparate sources and integrate it into 

common data model, and [2] provide an easy-to-use front end that allows analysis and 

visualization of patient data while maintaining regulatory compliance. 

The data acquisition goal requires developing and implementing standard and scalable 

methods for acquiring, integrating, and processing patient data into reusable data models and 

structures, and to automate this pipeline for clinical data so that centers can afford and keep pace 

with the increasing volume and variety of information generated. Past efforts to provide a fabric 
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of interoperable data and systems at a national level have had mixed results. Some, like the 

eMerge program,(69) have been relatively successful; others, like the caBIG program,(36) have 

been spectacularly unsuccessful. Most large and academic centers have implemented or are in 

the process of implementing common tools (e.g., REDCap(21) or an enterprise clinical trial 

management system [CTMS]), integrated data repositories with self-service access (e.g., 

i2b2(8)), and common data models (e.g., Caisis, OMOP).(3,70) Although these steps toward 

common data infrastructure, format, and access are important, much of patient information is still 

generated or transferred in narrative or nonstandardized text (e.g., pathology and radiology 

reports, clinical notes, treatment summaries).  

Many centers have ongoing efforts to implement templated medical records with 

standardized fields, terminologies and text in an effort to have more useful data for downstream 

use. However, templated reporting has practical limits, as anyone experienced in such efforts can 

testify. The volume, density, and variety of information conveyed through patient care dialogues 

and the resulting narrative or nonstandardized text in EHRs far exceeds what can practically be 

communicated through standardized templates. Templates and drop-down lists are not an 

adequate medium for communication of rich information. It is frustrating, painful, and limiting 

for physicians to communicate and document in this way, and with the recent maturation of NLP 

and machine-learning tools and methods, this strategy is no longer necessary. Templates and 

standardization are great approaches when used judiciously and for information with relatively 

little variation, volume, or time sensitivity. 

The analysis goal requires the development of easy-to-use tools for narrowing the patient 

population to specific cohorts of interest and analyzing the characteristics of these cohorts via 

domain-specific visualizations and reports. Ideally, these are provided as self-service tools, 
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usable by scientists in a secure environment that protects confidentiality. The system must 

restrict each researcher’s access to the patients and fields required for their research. 

Patient privacy and information security are increasingly important concerns for 

processing cancer center clinical data. The number of healthcare data hacks and breaches is 

rising, and to remain competitive for grants and contracts that involve the hosting of sensitive 

information, as well as mitigating local risks of breaches of patients’ health information, cancer 

centers must have a high-security environment strategy that can evolve with the risk landscape. 

Fred Hutch is a private research institute that leads the Fred Hutch/UW Cancer 

Consortium, an NCI-designated comprehensive cancer center.(71) As a research institute, Fred 

Hutch does not provide patient care or own medical records systems. It is dependent on its 

clinical partners (UW, SCCA, and SCH) for access to data from medical records for the 

Consortium patient population. 

Historically, like most centers, Fred Hutch had a disparate collection of study-specific 

databases, clinical research data systems, and data feeds from clinical systems. The bone marrow 

transplant program at Fred Hutch had a robust data management system developed over 30 

years, but the center had a growing need for adequate data and systems to support research for 

solid tumors and hematologic malignancies that were not associated with transplants. 

This paper describes a five-year strategic initiative of the people, processes, and 

technology applied to raise the level of data and informatics capabilities of the center and to 

make patient and related data more readily available to Consortium investigators in a way that 

minimizes long-term costs and risks and provides a scalable, extensible platform for current and 

future research. 
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4.4 Methods 

In 2011, Fred Hutch leadership initiated a project to develop a cancer research data warehouse to 

provide a competitive data and informatics platform for its Cancer Consortium with UW, Seattle 

Cancer Care Alliance (SCCA), and Seattle Children’s Hospital (SCH). At that time, through its 

CTSA informatics core, the UW had recently implemented a clinical data repository (CDR) 

based on the Microsoft Amalga system (now Caradigm CIP, Bellevue, WA). Fred Hutch had the 

opportunity to partner with and leverage the expertise and data integration work of UW.  

In early 2012, strategic and high-level requirements and use cases were gathered from a 

representative sample of Fred Hutch and Consortium investigators involved with clinical, 

correlative, and translational research for the Consortium cancer patient population from UW, 

SCCA, and SCH. These requirements and use cases were augmented through literature review, 

information gathered from visits to more than 60 other cancer centers in 2008–2009, and 

searches for publicly available information on web sites of NCI-designated cancer centers. 

The HIDRA platform was envisioned as a system to integrate data about [1] patients and 

research subjects, [2] biospecimens, [3] clinical trials and other studies, and [4] molecular assay 

results or other associated datasets. The initial scope was the Consortium patient population, but 

the infrastructure was intended to scale to other uses.  

 

The initial strategic goals of HIDRA were to: 

● Enable the Consortium to learn from every patient who comes through the door, and 

integrate that knowledge back into the clinical care. This goal includes use of clinical 

data for research, research operations, healthcare operations, quality improvement, and 

public health reporting purposes. 
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● Provide an integrated approach to data, with easy access for clinicians and investigators. 

This goal includes integration of data and systems across all cancer types, linkage of 

specimen and molecular data with clinical data, and integration with Consortium study 

and biospecimen management systems. 

● Automate or facilitate human information processing. This goal includes scalable manual 

data abstraction, EDC, data feeds and clinical data processing from medical records. It 

also includes the acquisition and linkage of outcomes data (e.g., from tumor registry, 

long-term follow-up, patient-reported data) 

● Provide a strong competitive platform that is ready to meet HIPAA, FISMA, or FDA 

regulatory reviews or audits. 

 

The IT and informatics goals for this resource were to: 

● Provide a reliable and scalable hosting environment from storage through database and 

application servers 

● Provide a FISMA-ready security environment that would meet or exceed HIPAA 

business associate requirements 

● Consolidate data feeds from UW clinical systems through the UW CDR 

● Provide a self-service interface for Consortium investigators to find, filter, and acquire 

data 

● Provide the ability to integrate biospecimen data 

● Provide the ability to integrate with an enterprise CTMS 

● Provide the ability to link to and query a variety of molecular or other related datasets 
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● Develop an enterprise clinical data processing pipeline to extract and process information 

from narrative reports and text fields 

● Integrate clinical data processing with human abstraction and review workflows, to 

enable a gradual transition to automated techniques and increase the reliability of these 

algorithms 

● Provide the ability for this system to play well with other systems and collaborative 

partners so that is not just a Fred Hutch solution 

● Provide an affordable and sustainable solution through use of lower cost or open-source 

options if viable 

 

In spring 2012, the HIDRA steering group issued an RFI to five potential technology partners to 

assist with requirements analysis and development of the platform. In summer 2012, LabKey 

Software (Seattle, WA) was selected as the technology partner based on their clear understanding 

of the requirements and demonstrated ability to develop large-scale biomedical data management 

systems. Project governance was established, including a HIDRA steering committee and a 

vision committee to align IT and informatics with the goals of investigators and institutional 

initiatives. Detailed requirements working groups were initiated in fall 2012 with Fred Hutch IT 

and informatics staff, technical partners from LabKey Software, as well as counterparts from 

UW, SCCA, and SCH. This team engaged in a 90-day planning effort for the HIDRA core 

infrastructure and a data transport layer from the UW CDR system. The detailed requirements 

analysis for HIDRA began with a map of existing systems, such as the UW CDR, the Gateway 

bone marrow transplant database, a variety of disease- and project-specific solid tumor and 

hematologic malignancy databases, the Cancer Surveillance System (CSS) SEER registry,(72) 
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survivorship program databases, and other research data sources and applications associated with 

the Consortium patient population. Requirements analysis covered data feeds and connections 

between these systems, as well as data, relevant terminology standards, input/output, site-specific 

integration, data access (e.g., user interfaces, application program interfaces), information 

security, regulatory compliance, operations, communications, training, and documentation. The 

current state of data and informatics at Fred Hutch, high-level Consortium data requirements, 

and an initial vision and strategy for an integrated data repository were presented in October 

2012 to the Consortium external advisory board. Detailed requirements and an implementation 

plan for the HIDRA core platform were completed by December 2012, and the core platform and 

data feeds from UW CDR were started in 2013. It was estimated as a 3- to 5-year project. 

To facilitate the development of HIDRA, the Caisis database system was used as an 

initial data model that could accommodate data from all cancer types and as an existing set of 

user interfaces for data entry and management. Fred Hutch had used the Caisis system for 

prostate cancer data management since 2003, and the informatics staff was very familiar with 

operating and configuring it. Moreover, the data model and metadata-driven user interface in 

Caisis were remarkably compatible with the LabKey Server platform.(73) 

Two key efforts that provided the legal and human subjects protection foundation for 

HIDRA implementation were [1] the establishment of a legal memorandum of understanding 

(MOU) for data sharing among the Consortium partner institutions and [2] the consolidation and 

rationalization of IRB files for data repositories (see Figure 4.1).  

The MOU document contains a very clear description of the intended scope of HIDRA 

and principles of data sharing for Fred Hutch, UW, SCCA, and SCH. The document formalizes 

allowable activities (e.g., research and research operations, healthcare operations, quality 
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improvement, public health reporting), a detailed list of clinical data feeds (e.g., labs, clinical 

notes, demographics, radiology, pathology), the purpose for each of these data types in HIDRA, 

a data security agreement, and a HIPAA-compliant business associate agreement (BAA). It took 

one full year to develop this MOU, which was approved in December 2013. 

Once the MOU was completed, a HIDRA IRB file for the data repository was created. 

This file described the scope, operations, and uses of HIDRA, including a summary of data 

access and use procedures and a description of the high-security environment. The HIDRA IRB 

file does not have its own foundational informed consent form. Rather, it relies on the MOU 

terms, BAA, waiver of consent, and waiver of HIPAA authorization to allow the transfer of 

records for the entire Consortium patient population into its high-security environment (see left 

side of Figure 4.1). However, any access to or provision of these data must meet requirements of 

both the MOU and IRB. Many of the patients in the HIDRA database have signed foundational 

consents to use their health information for research. The HIDRA IRB file references these 

foundational consents. Any data request from HIDRA, through an analyst or through self-service 

access, must either be for completely coded data with no protected health information (PHI), or 

must have IRB approval (see right side of Figure 4.1). After establishing the HIDRA IRB file, at 

least nine other data repository IRB files were modified to allow the consolidation of their data 

into the HIDRA system and to allow access to their data through the HIDRA gatekeeping 

process for data access and use. It took another full year to develop and approve all of these IRB 

files and modifications, which were completed in December 2014. 
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Figure 4.1. Conceptual diagram of the legal and IRB framework for HIDRA. A legal 
memorandum of understanding (MOU) and business associate agreements (BAA) between 
Consortium partners created the basis for data sharing for a variety of uses, the terms of use, and 
the requirements for high-security environment. The HIDRA IRB file and additional data 
transfer and use agreements (DTUA) are aligned with the MOU and describe the operation of 
HIDRA as a data source for other IRB-approved studies. 

 

As a result of the MOU agreement, and the combined security and regulatory goals of the 

project, while the technical teams were advancing on implementation, a document policy and 

training program were developed, which resulted in 66 people completing 790 online trainings 

on more than 76 policies and procedures. An exhaustive Data Access Training was developed in 

conjunction with all Consortium regulatory partners to ensure that all users entering the system 

and requesting data had a thorough understanding of the proper handling and use of the data. 
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For self-service access to data, detailed requirements analysis, design, and 

implementation planning began in summer 2013. The planning team consisted of informatics 

personnel, IT project management, and senior LabKey Software staff. Over a six-month period 

ending December 2013, the planning team met with 13 disease groups, 28 subgroups, 133 

participants distributed over 66 meetings. From the original interviews and use cases, similar 

projects at other cancer centers, and suggestions about features that would be most desired, the 

team developed a survey to guide discussion in meetings to solicit priorities from participants. 

The requirements analysis and design proceeded in three waves: detailed gathering of 

requirements with the first wave of meetings, refinement of requirements and priorities with the 

second, and validation of approach with the third wave. At each meeting, the design team 

collected examples of use cases, queries and questions potential users would like from the 

system, requested data dictionaries or lists of desired data elements, and presented emerging 

design concepts for feedback and refinement.  

Also in summer 2013, the team evaluated 14,220 data elements from the 18 data 

dictionaries and wish lists compiled from meetings with disease groups as described above.(13) 

Each data element was normalized to a standard concept and then traced back to its source (e.g., 

laboratory, pathology report, patient reported in clinical visit). Per their source, the data elements 

were classified as being unstructured (e.g., path report) or structured (e.g., lab value, race, CPT 

code), known or brought in by the patient (patient reportable), or computable from other data 

elements. The purpose of this analysis was to determine where to focus automation efforts in the 

HIDRA design. We condensed more than 14,000 existing and desired fields from 13 different 

disease groups into just under 4,000 individual elements. Conservatively, 65% of data elements 

came from unstructured sources, 15% of data elements could be patient reported (about 75% of 
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these elements were currently coming from unstructured sources), and 15% of data elements 

were computed from other elements. Based on this analysis, the team prioritized the 

development of a clinical data processing pipeline for extracting and processing information 

from unstructured notes into usable data elements over other possible automation and facilitation 

functions such as acquiring patient-reported data.  

Midway through this requirements analysis in September 2013, the HIDRA steering 

committee arranged an external review with informatics experts from other cancer centers. From 

the feedback on this external review, the team continued the development of the core HIDRA 

infrastructure, but limited the user interface pilot to one disease. 

In January 2014, implementation of the self-service user interface for HIDRA, called 

Argos, was initiated, focusing on brain cancer. The Argos application was built on the widely 

used open-source LabKey Server data management platform and the Caisis data model. This 

approach allowed simultaneous development of core HIDRA infrastructure and data feeds, 

ongoing data entry and operations using the Caisis system, and implementation and testing of the 

Argos pilot for data exploration. The brain cancer pilot of Argos was completed in Summer 

2014. From fall 2014 to spring 2016, the Argos application was extended to support all disease 

groups, and a clinical data processing pipeline and workflow were developed by LabKey 

Software and Fred Hutch clinical data processing experts to support both automated and human 

data abstraction. 

The HIDRA core infrastructure and data feeds project, which was initially started as a 

Waterfall method project, was re-baselined in 2014. Its core functionality was completed in 2015 

after shifting the Fred Hutch internal team to an Agile methodology, and its performance and 
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features have been improved through 2016. The Argos application was developed at LabKey 

Software using an Agile methodology. 

The HIDRA core and Argos projects have involved approximately seven FTEs 

distributed over approximately 15 IT staff, not counting LabKey staff. In addition, numerous 

research, clinical, and administrative staff across all Consortium partner institutions have been 

involved in this project. 

4.5 Results 

As of December 2015, the UW/SCCA population selected for inclusion into HIDRA included 

309,239 patients, approximately 10% of the overall population in the UW CDR database. Each 

of these patients was selected for inclusion in HIDRA because of a cancer-related encounter 

(e.g., by ICD code), so this population includes some screening and consult patients as well as 

those diagnosed or treated for cancer. Table 4.1 shows that a significant number of patients had 

records associated with at least two types of cancer.  
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Table 4.1. As of December 2015, count of patients for each cancer for which they had related 
events in the medical record (in bold on diagonal), and counts of patients associated with at least 
two cancer types. The total number of patients in HIDRA was 309,239. Some patients may have 
three or more cancer types associated with events. 

 Brain Breast GI GU Gyn H&N Heme Renal Sarcoma Skin Thoracic 
Brain 16832           
Breast 1960 86508          

GIl 2537 16639 73397         
GU 815 2152 6349 12868        
Gyn 1011 19282 12188 2480 47025       

H&N 2622 2629 4312 991 1551 23474      
Heme 3016 12093 15163 5177 8461 4669 82013     
Renal 796 716 1768 1635 492 505 1669 6785    

Sarcoma 2859 3269 5655 2327 2138 2551 5169 1033 23023   
Skin 2481 12371 12827 3450 8077 4128 10724 1056 5402 72104  

Thoracic 2275 2439 4397 1333 1402 2504 5249 1116 3460 2576 18710 
GI, gastrointestinal; GU, genitourinary; H&N, head and neck 

HIDRA has more than 800 million rows of data, 380 GB of total storage space for 

clinical data, 150 million lab chemistry results from 26 million orders, 48 million encounter 

events, 3 million diagnostic imaging orders and their results. 

In line with the original strategic goals, these data are available for research and research 

operations, healthcare operations, quality improvement and public health reporting. These data 

span all cancer-related disease groups, and are integrated through data feeds and into the Caisis 

data model to facilitate easy access by clinicians and investigators. The data and infrastructure 

are ready for integration with enterprise CTMS, biospecimen management, and assay data 

management, and planning for those systems is underway. 

The Caisis database was used for its unified database model for all of these different 

cancer types, as well as to support new and ongoing data abstraction and data quality 

management activities for different disease groups. 

The basic clinical data processing pipeline for automated and facilitated information 

processing was presented in October 2015.(74,75) A fully functional enterprise clinical data 
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processing pipeline will be complete by summer 2016.(76) In addition, outcomes data from the 

CSS tumor registry has been integrated with the HIDRA platform. 

HIDRA and Argos are currently running in an initial high-security environment with 

documented technical and operational controls that map to the NIST 800-53 standards for 

FISMA compliance. A next-generation high-security environment that includes federated 

authentication with Consortium partners is underway. Through the Argos requirements analysis, 

the team determined that FDA regulatory compliance (21 CFR Part 11) was not a high priority 

requirement for the entire system, but rather a potential requirement for specific trials that would 

be better served through sponsor systems or dedicated processes. 

In terms of the IT and informatics goals, the HIDRA and Argos system are hosted on a 

reliable and scalable environment, and investigation of cloud hosting is underway. The high-

security environment and operations (including training and documentation) have been 

implemented and have met HIPAA BAA requirements.  

At this point, Consortium investigators can more readily access data through a data 

request service. More than 500 faculty and key personnel Consortium members who may use 

this resource. A standardized HIDRA data request form has been created and requests are 

processed by a team of analysts. Since the service opened for business, more than 50 data 

requests have been processed and delivered to researchers.  

The Argos application for self-service access to data was launched in March 2015.(77) It 

was initially available to Fred Hutch network users. Federated authentication to allow access to 

users with UW, SCCA, and SCH credentials is underway and anticipated in 2016. Argos is 

populated with clinical data from all cancer-related disease groups, and allows search by clinical, 

specimen, and study parameters (see Figure 4.2). Discussions are ongoing regarding the 
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expansion of self-service data access through Argos or other LabKey tools, as well as access 

through programmers and analysts. 

 
Figure 4.2. Ability for user to search by clinical parameters in Argos self-service application 

 

For the Argos application, the top functional requirements identified and developed were the 

following: 

● Identify subsets of patients by different parameters (e.g., clinical tumor markers and 

mutations) 

● Search across combined data from multiple data sources 

● Query and extract combined data as spreadsheets or datasets 

● Provide automated abstraction (i.e. NLP) of data from notes 

● Generate summary statistics for selected subsets 

● Find available specimens based on patient and sample criteria 
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● Query based on event sequences (e.g., chemo within 30 days of death) 

● Evaluate expected trial enrollment 

● Explore or run queries on de-identified view of full database 

● Generate survival curves for selected subsets 

Argos also addressed critical nonfunctional requirements, focused on protecting patient data 

consistent with HIPAA and FISMA requirements: 

● Data portals that restrict access to subsets of patients based on disease group, institution, 

study protocol, and other categories 

● Access controls that limit users to the data portals, roles, and PHI levels appropriate to 

their organizational roles 

● User declarations of role, IRB, and PHI level required for each analysis session, and 

agreement to appropriate terms of use 

● Adaptive schema that restricts PHI column visibility based on each user’s access controls 

and PHI level declarations 

● Restrictions on extraction of patient data from the system via export or API 

● Logging of all important user activities in a form easily queried by reviewers and 

auditors; logged activities include all: 

○ Logins to the application 

○ Declarations of required role, IRB, and PHI level plus agreed terms of use 

○ SQL queries executed against patient data 

○ Patient IDs and PHI columns viewed with each query 

○ Sharing of data grids, filters, and reports with other users 
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Implementation of enterprise biospecimen management and CTMS for the Cancer 

Consortium is underway, and the HIDRA platform and Argos application are ready to integrate 

with these systems as described in their original vision. 

For the five-year period of the project, Fred Hutch has engaged LabKey Software as a 

technical partner and primary software developer for Argos and the clinical data processing 

pipeline. A portion of internal IT and informatics staff have been dedicated to this project. As the 

development phase of this project comes to a close, the Consortium personnel are transitioning to 

operations and more incremental or specific improvements.  

4.6 Discussion 

Throughout this initiative, there has been value in partnering a research center (Fred Hutch) with 

a technology company (LabKey) for scope management, scalability, and reliable support. 

Developing HIDRA with LabKey rather than developing it with only internal resources was a 

strategic decision to maximize the ability to support the system over the long term and to make 

this solution portable to other centers. Both internal Fred Hutch staff and external technology 

partner staff from LabKey developed a healthy dynamic while implementing HIDRA. This 

dynamic has helped the team control project scope and prioritize development, and both sides 

have learned from each other. Some of the core security components - the Argos tool and 

operational preparations for LabKey to sign a HIPAA BAA - have proven useful for other 

LabKey clients, who in turn are extending the platform and applications. Moreover, partnering 

with all Consortium members has been increasingly rewarding. For example, the co-

development of algorithms using ICD codes and other variables for selecting and tagging the 
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cancer patient population and attributing patients to different disease teams has been an effective 

and valuable Consortium collaboration.  

One of the typically challenging and time-consuming tasks of building a useful data 

repository is the data model. A data warehouse approach that leaves data close to the format of 

their original source systems may allow for simpler extract-transform-load (ETL) processes to 

acquire data, but to query effectively, this generally requires detailed domain knowledge of 

sources. Alternatively, developing different data models or marts for each disease, treatment 

modality, or study may limit the ability to mine clinical data broadly. Adopting and adapting the 

Caisis data model has proven a useful strategy and allowed the team to focus on other aspects of 

design and implementation. In addition to the Caisis data model, the team adopted and reused 

multiple modules from LabKey Server that were developed for its other clients. For example, 

much of the user interface design for Argos came from or was inspired by the Collaborative 

DataSpace project, an HIV vaccine research data portal funded by the Gates Foundation and 

developed by LabKey. 

Implementing Agile methodology using short, iterative development cycles (sprints) is 

critical even for large IT projects. This approach motivates the team to make steady progress in 

the face of daunting challenges, to control scope and project focus, and to adapt to challenges 

without analysis paralysis. Over the five years of this project, the team has increasingly 

formalized the development, testing, and production environments, as well as its project 

management and development processes. 

An integrated data repository for cancer research relies on information, especially the 

tracking of consents from clinical trials and data or specimen repositories. To facilitate 

translational research it is also dependent on biospecimen management information, and the 
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management of molecular data for its patient population. Like EHRs and other clinical systems, 

enterprise CTMS and biospecimen management systems are intertwined with their respective 

complex workflows and may be out of scope for a data repository initiative. However, an 

integrated repository for current and next-generation research cannot be complete without 

information from these systems. 

Although numerous commercial, academic, and open-source tools for clinical data 

processing are currently available, the rate-limiting factor for enterprise deployment of clinical 

data processing is the ongoing development of training and validation data. Rethinking the 

clinical data supply chain and developing the tooling for an enterprise approach to clinical data 

processing is a significant challenge. The Fred Hutch and LabKey approach has been to integrate 

existing manual abstraction workflows into the development of these training and validation data 

and this approach will be described and published separately. 

The decision to develop an enterprise approach to high security, including implementing 

technology, training, operations, and documentation for a HIPAA- and FISMA-ready 

environment was initially daunting. However, after several iterations, the entire team has become 

more adept at thinking through the NIST 800-53 security requirements and operating in a high-

security environment. Simply, the upfront investment and learning curve has been worth the 

effort. However, providing federated authentication and controls to allow users at each 

Consortium site to access the Argos self-service application using their home institution 

credentials (username and password) has proven more difficult and more resource- and time-

consuming than anticipated, and is still underway. 
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The upfront decision to develop an MOU for data sharing and matching IRB files for the 

HIDRA repository that involved all Consortium partners was also worthwhile. These documents 

are referenced frequently and have guided numerous design and implementation decisions. 

Managing the history and documentation of this project so that the team, especially new 

members and project managers, can recall or find detailed requirements and decisions, has been 

an ongoing struggle. Most of the documentation is currently managed in an institutional instance 

of Microsoft SharePoint. 

Performance of HIDRA data feeds and the Argos self-service application has been more 

of a struggle than anticipated. Over time, the ETL processes have been refactored to improve 

performance, and although most researchers do not yet require real-time data, much room for 

improvement remains. Developing a de-identified dataset that is equivalent in volume and 

variety to the production dataset has been key to scaling the system. The Argos developers load 

these large de-identified datasets into their local deployments, allowing them to mimic real-

world performance as they develop and test the system, with no risk of exposing real patient 

information.  

Further work on the HIDRA platform will involve scaling the patient population and 

associated clinical data elements, as well as using this infrastructure for other projects. As 

enterprise biospecimen management, clinical trial management, and experimental results data 

systems are implemented, they will need to be integrated with HIDRA and Argos to facilitate 

ready access to data for investigators. The adoption and extension of this technology by other 

LabKey clients is also anticipated. 
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4.7 Conclusion 

The development of the integrated data repository for a consortium cancer center can be 

facilitated through the approach used for HIDRA. Creating a legal and an IRB foundation for the 

repository, a high-security environment, and operations to support the repository are important to 

be able to scale up quickly. Having a reliable and competent technical partner may ease the 

pressures on local staff and may lead to creative solutions and learning opportunities. However, 

local staff must be deeply engaged for a successful and sustainable solution. Healthy dynamics 

between project leadership, internal staff, and an external technical partner helps to prioritize 

development and control scope. Also, adopting and adapting tools from other centers for key 

functions can speed up and lower total development cost. The development or adoption of a self-

service data access interface is important to investigators and staff. However, there is a great 

need for customization for each disease group.  

4.8 Acknowledgements 

This project was partially supported by the FHCRC/UW Cancer Consortium Cancer Center 

Support Grant of the NIH under Award Number P30 CA015704, and the National Center For 

Advancing Translational Sciences of the NIH under Award Number UL1TR000423. The content 

is solely the responsibility of the authors and does not necessarily represent the official views of 

the NIH.  

4.9 Synthesis 

This chapter described the strategic goals, design and implementation of the HIDRA system at 

Fred Hutch and lessons learned from this work. The rationale and design of a pipeline for clinical 
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data processing was briefly described in this chapter, however because of the strategic 

importance of the pipeline and the amount of research and development involved, it is described 

separately and more fully in Chapter 6. Chapters 4–6 can be considered two parts of the overall 

story of developing a next-generation research data repository at Fred Hutch cancer center. 

Sections 4.2 to 4.7 addressed my Chapter 4 questions: What are the challenges and 

opportunities for informatics at Fred Hutch? Do these challenges and opportunities align with my 

previous work and lessons learned? Are there tools and methods that others or I have used before 

that could be successfully applied at Fred Hutch? How can we enable new types of research, 

faster results, and better quality of research data at Fred Hutch? How can we improve access to 

data with tools and methods that are scalable, extensible to new projects, sustainable, and 

portable to other centers? Together, these questions tie back to the overarching research question 

for this dissertation: how can we improve access to clinical and related data about cancer patients 

for research? They also tie back to the overall hypothesis (that there are new tools and methods 

from biomedical informatics that could improve the availability of data for cancer research if 

they were applied thoughtfully and strategically) and to Aim 1 from Chapter 4 (to develop and 

assess a modern integrated data platform to support a wide variety of cancer research). This work 

on HIDRA logically leads to Aim 2 in Chapter 6. Aim 2 was to develop and characterize a 

clinical data processing pipeline that is scalable to the cancer center enterprise level, is well-

supported and sustainable, and can complement or streamline existing manual data abstraction 

and information-processing activities. As mentioned above, Chapters 4 and 5 can be considered 

two parts of the same overall story of developing a next-generation research data repository at 

Fred Hutch cancer center. 
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Findings from Chapter 4 are relevant to other cancer centers addressing the need to 

integrate a variety of clinical, specimen, study and molecular data to improve the ease and 

quality of research. 

First, the legal, IRB and security framework from HIDRA is relevant to other centers. 

Already, this framework has been used to rewrite IRB files for the Hutchinson Institute for 

Cancer Outcomes Research (HICOR) and the SCH Research Informatics Platform. I have 

already received questions and requests from other cancer centers about using the HIDRA IRB 

files as a model and framework for their own database and data integration initiatives. The way 

that the regulations and policies were implemented in Argos (the self service data access tool) 

are also relevant to other centers. In the Argos application, we integrated and included all 

constraints, controls, and terms of use for all included data sources (e.g., medical records, cancer 

registry data, consumer data) in one framework that makes it easy for researchers to do the right 

thing and comply with pertinent legal, IRB and IT security regulations and policies. 

Second, for consortium or matrix cancer centers that are part of a broader academic or 

community medical center, HIDRA provides an example of leveraging the data warehouse and 

clinical data repository work of a broader medical center for the purposes of the cancer center.   

Third, HIDRA provides an example of adopting and extending the work from various 

other groups to speed up and reduce costs of implementing and integrated data repository. We 

used the database model and user interface of Caisis to provide data collection, processing and 

storage functionality  without having to reinvent those components within HIDRA. We also 

adopted and adapted LabKey Server functionality developed for infectious diseases populations 

to provide the core features of the Argos self service data access application. 
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Fourth, the HIDRA project provides an example of a system not just for manual data 

entry, or data feeds, or clinical templates, but an overall strategy and pipeline for clinical data 

processing that can include and integrate different manual and automated forms of clinical data 

acquisition and processing to support research. 

Fifth, a lesson learned from the HIDRA work that can be applied at other centers is the 

need for a system performance evaluation and improvement strategy, including providing a 

realistic and de-identified testing dataset for software developers and system operations staff. 

Sixth, the HIDRA work identified federated security (the ability for users in a consortium 

or matrix cancer center to log into a system using any of their institutional username and 

password credentials) as a critical point of potential failure. Identifying the preferred credentials 

of the targeted user base is an key requirement for any similar system implemented at another 

center. 

Finally, the Agile approach to software engineering and system implementation was 

challenging to implement in teams who were unaccustomed to it, but critical for project 

momentum and success. Breaking projects down to very small tasks that can be implemented in 

weeks rather than months or years allow the developers and implementers to keep up 

momentum, reduce over-analysis, and stay focused. 
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Chapter 5 Evaluation of HIDRA 

5.1 Context 

This chapter continues my exploration of Aim 1, adding further assessment to the HIDRA data 

platform covered in Chapter 4. To address the evaluation aspect of Aim 1, I answer the following 

question: What is the impact of the data platform developed at Fred Hutch? 

For this chapter, I guided and conducted much of the original HIDRA and Argos 

requirements analysis, and as Director of the developing Biomedical Informatics resource for the 

Fred Hutch/UW Cancer Consortium, I was responsible for assuring that the system implemented 

was aligned with the overall vision and would support the biomedical informatics strategy for the 

consortium. Because this chapter is an extension to Chapter 4 rather than a freestanding work, 

the additional background and rationale of this chapter is minimal. 

5.2 Background and Rationale 

One important aspect of biomedical informatics research such as the HIDRA platform described 

in Chapter 4 is the impact of this work on research, and ultimately on improving the health of 

patients with cancer. Since the HIDRA platform was developed to support research, ultimately 

the impact of this system could be evaluated according to its effects on publications and 

presentations, clinical trials and other studies initiated or in progress, as well as grants, contracts 

and philanthropic funding. Because the HIDRA platform and its self-service data access tool 

(Argos) have not been fully deployed due to delays in implementing federated security access to 

the system, performance issues, and changes to the Fred Hutch IT and informatics organization 

and priorities, the assessment possible at this stage is limited.  
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Ideally, to measure impact, we would be able to attribute datasets produced from HIDRA to 

publications, presentations, grants, contracts, clinical trials and other studies or to philanthropic 

gifts. However, with limited outcomes to measure at this point, we can look at intermediate 

outcomes or measures of impact related to the development and implementation process. The 

measures of impact are described under the methods section, and the findings of this evaluation 

are described under the results and findings section. 

5.3 Methods 

5.3.1 Evaluation of Features 

To determine the use cases and features for Argos that would provide the greatest value across 

all disease groups, we asked each disease group to rank a list of proposed features, and to 

validate that these were indeed the features desired. This list (shown in Figure 5.1) was then 

sorted to prioritize development and implementation efforts for a brain cancer pilot of Argos, and 

for the full implementation. To evaluate that the system developed reflected the requirements and 

priorities of researchers, we went back and reviewed each feature and each disease group to 

confirm that the functionality implemented in Argos matched the user requirements. 

 In addition to the requirements from users within disease groups, we reviewed the system 

features against the NIST 800-53 security controls to check that it conformed to appropriate 

HIPAA- and FISMA-level security requirements. 
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Figure 5.1. Ranked user requirements and features for the Argos self-service data access tool 

5.3.2 Evaluation of Performance 

One of the critical outcomes of a system such as HIDRA and data access tool such as Argos is 

the performance of data feeds and the user interface.  Users are likely to become frustrated with 

or form a poor perception of a system that has significant lag times when browsing for data. To 

measure performance of the data feeds in HIDRA, we asked all potential users in the disease 

groups what would be an acceptable lag time between generation of information in the EMR and 

the delivery of that information for research in HIDRA. The researchers we interviewed 

unanimously agreed that a 24 hour to 1 week lag time for data feeds from the EMR into HIDRA 

would be acceptable for their purposes. 

 To evaluate the performance of the Argos self-service data access tool, we named each of 

the measurable components of the web-based user interface, and created a matrix of expected 

performance for each component, measured in seconds of lag time. The minimal, acceptable and 

desired performance expectations for each component were documented. A sample of the 
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performance expectation matrix is in Table 5.1. For each version of Argos released from 

LabKey, we installed the software in a staging environment identical to the production system, 

and assessed performance against the performance expectations. 

 

Table 5.1. Sample of performance criteria matrix for the Argos self-service data access tool 
(times in seconds) 

Feature Performance Criteria (times in seconds) 

Page/Feature Desired 
Performance 

Acceptable 
Performance 

Minimum 
Performance 

Portals Page 1 2 3 

Activity Dialog 1 1.1 2 

Terms of Use screen 0.5 1 1.1 

Dashboard Page (all components) 4 8 10 

Dashboard Chart 1 3 4 

Dashboard Table 1 2.5 3 

Overall Counts 2 2.5 3.1 

Filter Summary Page (Patients) 2 3.1 4 

Individual Explorer Page (Patients) 1 2 3 

Column Chooser (Patients) 1.5 3 4 

View Page (Patients) 2 5 10.1 

Data Grid Sorting (Patients) 1 1.1 2 

Column Chooser Filter Dialog on 
Data Grid (Patients) 

0.5 1 1.1 

Save Data Grid Dialog (Patients) 0.5 1 1.1 

Action of Saving Data Grid 
(Patients) 

1 2.1 3 
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5.3.3 Evaluation of Usability 

In addition to the evaluation of features relative to requirements and the evaluation of 

performance, a system like HIDRA should be assessed for usability. Unfortunately, due to the 

delays in implementing a federated security environment across the Fred Hutch/UW Cancer 

Consortium and the performance issues discovered after quickly scaling up the data feeds into 

HIDRA, the actual user base has remained small. Except for the IT and informatics staff 

developing and implementing HIDRA and Argos, there are only six end users. These end users 

are from the brain cancer group, because that was the original small pilot of Argos and HIDRA. 

The system performance issues have been resolved by engineers, and these fixes should soon be 

promoted to the HIDRA and Argos production environments. However, the federated security 

work is still in progress. 

 Given the delays in making the system available to more end users, we conducted a 

preliminary usability evaluation with a set of potential new users at SCCA that were able to 

obtain Fred Hutch security credentials. In this evaluation, we briefly described HIDRA and the 

Argos self-service data access tool, and then presented the users with a set of tasks to attempt to 

accomplish using Argos. These tasks included finding subsets of patients that meet certain 

criteria, and other tasks that mapped closely to the original requirements and features requested 

by disease groups (described under Evaluation of Features and in Figure 5.1). During this 

usability evaluation, users were encouraged to “think out loud”(78) when encountering a 

challenge with the system. Each user was paired with a LabKey software engineer. Findings 

from that evaluation are still being compiled so will not be covered in this chapter, and similar 

follow-up usability evaluation sessions are currently being scheduled. 
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5.3.4 Evaluation of Outcomes and Impact 

The outcomes or impact of HIDRA could eventually be evaluated in terms of its contribution to 

publications, presentations, and grants. In addition to support of academic output, HIDRA could 

be evaluated by its perception by peers and the public and its adoption by other groups. 

Given the current stage of HIDRA deployment, the academic output is limited. However, in the 

result and findings section I will describe the 62 HIDRA data requests that have been submitted 

since the system went live. I will also describe to the best of my ability to the current peer and 

public perception and adoption of this system by other groups. 

5.4 Results/Findings 

5.4.1 Results of Requirements and Feature Evaluation 

The requirements that were identified and prioritized by researchers were used to guide all 

development of HIDRA and Argos. The first phase of development focused on a subset of the 

requirements and a subset of data that characterize patients with brain cancer. All of the features 

identified for the brain cancer pilot were completed by summer 2014. The remaining features are 

described in Chapter 4 and were completed in 2015 and 2016. We reviewed all of the original 

requirements gathering documentation from meetings with individual disease groups to confirm 

that what has been built includes the features and requirements that were specified.  

5.4.2 Results of Performance Evaluation 

The performance of HIDRA data feeds and the Argos self-service tool for data access are 

evaluated after each new release is completed in our staging environment, before it is released 

into the production environment. 
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The HIDRA data feeds initially performed well (within 24 hours) for the brain cancer pilot 

completed in summer 2014. However, when the entire cancer patient population was added to 

HIDRA in 2015 (over 300,000 patients and associated clinical data), the performance lagged 

considerably. Much of the HIDRA data feeds infrastructure has been enhanced or rewritten to 

get performance of data feeds for the entire population to an acceptable lag time, which is back 

under 24 hours. 

The performance of the Argos tool has been evaluated by Fred Hutch business analysts with each 

monthly software release from LabKey Software. When the underlying population was expanded 

from the brain cancer pilot to all disease groups, performance of Argos suffered considerably. 

Results of one of the Argos performance tests is shown in Table 5.2.  

In order to bring the Argos user interface performance down to acceptable lag times, we had to 

create a testing dataset with realistic volume and variety of data and that was completely de-

identified so that it could be safely used by software engineers at LabKey for development and 

testing. 

The performance of the most recent release of Argos is acceptable according to our performance 

matrix. This version is not yet in production but will be promoted soon to the production HIDRA 

and Argos environment. 
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Table 5.2. Example of results from performance evaluation (times in seconds) 

 How Long it Took to Run (in seconds) 

Page/Feature All Patients Brain GI Thoracic Head and 
Neck 

Portals Page 2.39 2.39 2.39 2.39 2.39 

Activity Dialog 0.349 0.031 0.445 0.046 0.048 

Terms of Use screen 0.759 0.024 0.043 0.083 0.028 

Dashboard Page (all 
components) 

4.54 4.77 5.09 5.24 4.05 

Dashboard Chart 3.02 3.62 3.7 2.78 2.62 

Dashboard Table 4.54 4.07 5.09 5.24 4.05 

Overall Counts 3.02 3.02 1.15 2.23 1.91 

Filter Summary Page (Patients) 5.87 3.3 6.23 5.27 3.081 

Individual Explorer Page 
(Patients) 

0.251 0.189 0.245 0.314 0.191 

Column Chooser (Patients) 7.516 6.03 7.122 6.431 5.019 

View Page (Patients) 0.883 0.223 0.51 0.407 0.455 

Data Grid Sorting (Patients) 0.533 0.208 0.381 0.274 0.272 

Column Chooser Filter Dialog on 
Data Grid (Patients) 

1.2 1.82 2.07 1.78 1.8 

Save Data Grid Dialog (Patients) 0.04 0.04 0.04 0.04 0.04 

Action of Saving Data Grid 
(Patients) 

1.188 0.329 0.462 0.411 0.689 

Patients - Survival Page 
(Patients) 

6.7 1.66 2.788 2.272 1.642 

Patients - Survival Page Apply 
Filters (Patients) 

3.413 1.74 2.39 1.73 1.633 
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5.4.3 Results of Usability Evaluation 

As the number of current end users is minimal (only 6 users from the brain cancer disease 

group), and the results from the recent usability evaluation are still being compiled, the usability 

findings are minimal. 

However, I helped to design and conduct the usability evaluation, and in asking users to 

think out loud while attempting to perform selected tasks in Argos, I found that there is some 

confusion between the patient filters (Figure 4.2) and a feature that allows patients deeper access 

into the underlying database. Also, the labels used (e.g., medical therapy "agents", "histologies", 

"KPS") are not understood by all staff. 

There is a tendency by many software engineers to overreact to user feedback, so I have 

cautioned the engineers and IT staff involved to rethink the usability evaluation process and 

repeat the evaluation with another set of potential users before making changes to the 

application. Also, some usability issues can be addressed through training rather than 

modifications to the application. In the next round of usability evaluation, LabKey will be 

providing a short training session, and more realistic scenarios.  

5.4.4 Results of Outcomes and Impact Evaluation 

Of the 62 data requests for the HIDRA system, 44 were to support research and 18 were to 

support healthcare operations, quality improvement, and clinical care/treatment activities. 

The data delivered from HIDRA for clinical care/treatment activities included delivery of 

reports to support testing of ICD-10 reports, statistics on patients with head, neck and prostate 

cancer. Two of the requests for data to support clinical and treatment activities were removed 

from the HIDRA data request queue and routed to the SCCA clinical data analytics team. Data 

delivered for for healthcare operations included lists of referring physicians for solid tumor 
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cancers aand long-term follow-up reports for patients with head and neck cancers. For quality 

improvement, the HIDRA team provided data to compute survival for patients with stage IV non 

small cell lung cancer, data to determine consent status of the genitourinary cancer patient 

populatio, and data to support internal auditing efforts. 

For research, the HIDRA system and team have provided data to support a a study of 

docetaxel medical therapy for genitourinary cancers, a study of  temozolamide medical therapy 

for glioblastoma cancer, identified rare lymphoma cases and acute myeloid leukemia cases. 

Overall, to date most of the HIDRA data requests have been to identify populations of patients in 

preparation for research or to aid in cleanup of disease specific databases. 

5.5 Discussion 

Now that the basic functionality of HIDRA and Argos is completed, future requirements and 

feature development will focus on advancing individual disease groups (e.g., the hematologic 

malignancy research group) and be prioritized by Fred Hutch senior leadership as well as 

through direct collaboration of IT and informatics staff with researchers. As of summer 2016, the 

basic functionality of HIDRA and Argos will be considered complete. 

The previous lack of de-identified testing data with realistic volume and variety was a 

barrier to performance evaluation. However, this lack has been remedied. All developers and 

testers have access to realistic but safe testing data, and performance evaluation is ongoing. 

The usability evaluation of HIDRA and Argos has been limited due to the lack of 

federated security and performance issues. HIDRA and Argos performance issues have largely 

been resolved, and a solution for federated security is underway to allow users from UW, SCCA 

and SCH to access the systems hosted at Fred Hutch. This federated security solution is 

anticipated to be finished in the next 4 to 6 months. 
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It is still too early to evaluate the impact of HIDRA on research (e.g., publications, 

presentations, trials, studies, grants, contracts). However, the data requests from HIDRA have 

begun to support research and related activities at Fred Hutch and its consortium partners.  

Anecdotally, public perception seems to be that HIDRA is up and running and is an 

example of a successful integrated research data repository for cancer. I have spoken with 

several researchers at other institutions who have heard about and requested additional 

information about HIDRA. Moreover, the HIDRA and Argos tools that have been implemented 

in LabKey Server software are being adopted and adapted by other groups, including Genomic 

England, the NCI, and a group of other cancer research centers.  
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5.7 Synthesis 

This chapter described the assessment of the HIDRA system at Fred Hutch. It is an extension of 

the work of Chapter 4, and is limited due to the lack of users pending resolution of security and 

performance issues as well as restructuring and reprioritization within Fred Hutch IT department.  

Sections 5.2 to 5.5 address my Chapter 5 question: What is the impact of the data platform 

developed at Fred Hutch? As in Chapter 4, this question ties back to the overarching research 

question for this dissertation: how can we improve access to clinical and related data about 

cancer patients for research? It also ties back to the overall hypothesis (that there are new tools 
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and methods from biomedical informatics that could improve the availability of data for cancer 

research if they were applied thoughtfully and strategically) and to Aim 1 from Chapter 4 (to 

develop and assess a modern integrated data platform to support a wide variety of cancer 

research). 

Findings from Chapter 5 are relevant to other cancer centers implementing similar integrated 

data repositories to support research. It underscores the need to resolve federated security issues 

for consortium or matrix cancer centers.  It identifies the need for a realistic development and 

testing dataset to find and resolve performance issues. It supports the importance of usability 

testing, and integrating usability testing and enhancements with user training. Finally, it 

describes the desired impact of efforts like HIDRA and how that impact can be evaluated. 
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Chapter 6 Scalable Clinical Data Pipeline for a Cancer Center 

6.1 Context 

Chapter 6 is my exploration of Aim 2, to develop and characterize a clinical data processing 

pipeline that is scalable to the cancer center enterprise level, is well-supported and sustainable, 

and can complement or streamline existing manual data abstraction and information-processing 

activities. To explore this aim, I answer the following questions for Chapter 6: How can we 

improve the quality, speed, and economics of the acquisition, processing, and delivery of clinical 

data to support cancer researchers? How can we make clinical data processing a core 

competency of Fred Hutch at an enterprise scale? 

Answering these questions helps inform the overall research question for this dissertation 

(How can we improve access to clinical and related data about cancer patients for research?) 

because much of the clinical data needed for cancer research comes from narrative medical 

reports and because improving access for research requires the extraction and coding of that 

information into more distinct data elements.  

Aim 2 is also a logical next step to test my overall hypothesis that there are new tools and 

methods from biomedical informatics that could improve the availability of data for cancer 

research if they were applied thoughtfully and strategically. Specifically, this chapter addresses 

the strategic application of clinical data processing and software engineering tools and methods 

to improve the availability of data for research.  

Aim 2 flows from Aim 1 (to develop and assess a modern integrated data platform to 

support a wide variety of cancer research). The pipeline for clinical data processing (Aim 2) is 

part of an overall integrated data platform, specifically for the acquisition and processing of data 
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from medical record documents, and the pipeline is foretold in Chapter 4 (the chapter on HIDRA 

that addresses Aim 1). 

I intend to submit this paper for publication by September 2016 after the clinical data 

processing pipeline is fully implemented and tested. Thus, the co-authors are included as well as 

the paper title after section 6.1. For this work, I initiated and led the clinical data processing 

strategy at Fred Hutch and wrote the first draft of the paper. The co-authors contributed to design 

and implementation of the clinical data processing pipeline and edited the paper. Because this is 

a standalone paper, I have included a separate acknowledgements section. 

The pipeline for clinical data processing is my contribution. None of the NLP algorithms 

developed at Fred Hutch are my contribution or part of this dissertation, however they are 

described briefly in the Approach section at the requests of my reading committee. The pipeline 

is currently nearing completion and will be in production at Fred Hutch by summer 2016. Our 

intention is that the NLP interns for summer 2016 will implement algorithms into the clinical 

data processing pipeline in order to test it and provide input for further enhancements. 

 

  



 

 

96 

Scalable Clinical Data Pipeline for a Cancer Center 

 

Paul A. Fearn, MBA1,2, Emily Silgard, MS1, Tony Galuhn3, Sarah Ramsay, MPH1 

1Fred Hutchinson Cancer Research Center, Seattle, WA; 2University of Washington, Department 

of Biomedical Informatics and Medical Education, Seattle, WA; 3LabKey Software, Seattle, WA  

6.2 Abstract 

Fred Hutch and LabKey Software have designed a scalable pipeline for processing clinical 

documents into usable data elements through both clinical data processing. This pipeline was 

developed initially for the Hutch Integrated Data Repository and Archive (HIDRA), a 

collaborative effort across the Fred Hutch/UW Cancer Consortium to create an integrated 

database that would enable scientists and physicians to learn from new and long-term patients 

across the consortium, where historically siloed data management has led to the duplication of 

abstraction and information-processing efforts and has hindered access to valued information. 

The proposed enterprise clinical data processing pipeline will serve to expedite access to usable 

data that is needed for improving healthcare operations and advancing cancer research. By 

reducing redundancy in abstraction and information-processing efforts, tracking and reducing 

variation/bias of interpretation, and making patient history data as up-to-date and complete as 

possible, this research aims to ease the burden of manual abstraction and improve the timeliness 

and quality of clinical data. 
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6.3 Background and Rationale 

Scaling and acceleration of clinical and translational research is dependent on the acquisition and 

processing of information from EHRs and other clinical systems. However, even with recent 

advances in EHRs, text processing, and machine learning, obtaining clinical data for research is 

still largely dependent on manual data abstraction. Clinical trials still depend on manual data 

abstraction of clinical data from EHRs into EDC systems, often with duplicate data entry for 

quality assurance. Correlative research still relies on manual data entry from clinical systems into 

project-specific forms or questionnaires and project-specific data management systems. 

Personnel in outcomes research, cancer survivorship, quality improvement, care pathways, and 

cancer registration may all abstract similar data from EHRs into dedicated systems. For 

hospitals, some of these programs (e.g., cancer registries) are typically cost centers. With 

ongoing pressure from consumers, payers, and policymakers to decrease costs and increase the 

value of care, the current management of clinical data is unsustainable. 

Most hospitals and research centers have recognized the issue of duplication of clinical 

data abstraction efforts across different projects, and there is an emerging consensus that the 

majority of information needed for operational and research activities is currently documented in 

narrative or unstandardized text in clinical systems.(13,79–81)  

In summer 2013, the Fred Hutch NLP staff and interns evaluated 14,220 data elements 

from the 18 data dictionaries and wish lists compiled from meetings with disease groups as 

described above.(72) Each data element was normalized to a standard concept and then traced 

back to its source (e.g., laboratory, pathology report, patient reported in clinical visit). Per their 

source, the data elements were classified as being unstructured (e.g., path report) or structured 

(e.g., lab value, race, CPT code), known or brought in by the patient (patient reportable), or 
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computable from other data elements. The purpose of this analysis was to determine where to 

focus automation efforts in the HIDRA design. We condensed more than 14,000 existing and 

desired fields from 13 different disease groups into just under 4,000 individual elements. 

Conservatively, 65% of data elements came from unstructured sources, 15% of data elements 

could be patient reported (about 75% of these elements were currently coming from unstructured 

sources), and 15% of data elements were computed from other elements. Based on this analysis, 

we prioritized the development of a clinical data processing pipeline for extracting and 

processing information from unstructured notes into usable data elements over other possible 

automation and facilitation functions such as acquiring patient-reported data. 

Another reason for prioritizing development of a clinical data processing pipeline is that 

other approaches (e.g., templates, manual data entry) do not scale. Based on my experience of 

implementing clinical templates at MSKCC to collect both research and clinical data during the 

clinical workflow, broad use of templates requires drastic reengineering of clinical workflows so 

that data collection is distributed across a variety of staff in a comprehensively designed data 

supply chain. Although some clinical data such as medication orders may be collected effectively 

using templates, it is frustrating for clinical staff to communicate the majority of clinical 

information in templated formats. Templated communication is mind-numbing in a high-volume 

clinic. It is difficult to distinguish between different cases when they are templated, whereas in 

narrative text a patient's story is more unique and memorable. Also, getting templates rolled out 

for all staff and all patients is problematic, so for the foreseeable future narrative text is likely to 

remain in the medical record. Based on findings from my visits to other cancer centers (described 

in Chapter 3), every cancer center has the same struggles with scaling the implementation of 

templates. Many centers have ongoing efforts to implement templated medical records with 



 

 

99 
standardized fields, terminologies and text in an effort to have more useful data for downstream 

use. However, templated reporting has practical limits, as anyone experienced in such efforts can 

testify. The volume, density, and variety of information conveyed through patient care dialogues 

and the resulting narrative or nonstandardized text in EHRs far exceeds what can practically be 

communicated through standardized templates. Templates and drop-down lists are not an 

adequate medium for communication of rich information. It is frustrating, painful, and limiting 

for physicians to communicate and document in this way, and with the recent maturation of NLP 

and machine-learning tools and methods, this strategy is no longer necessary. Templates and 

standardization are great approaches when used judiciously and for information with relatively 

little variation, volume, or time sensitivity. 

Manual data abstraction does not scale well because of the variable reliability of humans 

for information processing, the costs of manual data abstraction and data quality assurance, and 

the intense training required for data entry staffs. Manual data abstractors regularly experience 

fatigue, and their perceptions of information may change over time as well as be affected by 

external factors. These factors can introduce shifts and biases in data interpretation that are 

exacerbated as volume their work increases. With limited and variable funding for research, it is 

often difficult to hire and retain data entry staff. We can and do take advantage of the lower costs 

of offshore data abstraction by outsourcing some data abstraction and data quality assurance 

work to dedicated data abstraction companies. However, this is only a temporary fix, and incurs 

the costs of setting up and overseeing contract data entry work. Because cancer clinical data can 

be complex to interpret, training data entry staff can take quite a long time and become 

expensive. The training requirements make the costs of acquiring (and the costs of losing) 

personnel pretty steep. 
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Importantly, the volume and variety of information communicated during the care of 

patients either pushes the boundaries or exceeds most methods of communication. Medical 

language contains numerous information-dense terms and expressions. Narrative communication 

between healthcare providers and in medical records is often difficult to unpack and is 

represented in lay language or in discrete, standardized vocabulary and data fields. Physicians in 

clinic often communicate at a rate and manner that far exceeds the ability of patients to fully 

comprehend, and medical records also reflect this information-dense communication.(82) 

In healthcare IT and informatics, there have been a number of common approaches to 

more efficiently obtain and process the information from EHRs into desired systems and 

structures such as databases to support research, clinical analytics, quality improvement, and 

public health reporting (e.g., cancer registries). These include implementing [1] templated notes 

or synoptic reports to capture information in structured form as it is generated, [2] data feeds into 

a data warehouse, data repository, or destination system, [3] low-cost outsourced or offshore data 

abstraction, and [4] clinical data processing. Each of these approaches has tradeoffs and practical 

limits.  

From a data perspective, forcing physicians to shift to templated or synoptic medical 

records seems attractive. However, because standard terminologies and templates restrict the 

expressiveness of communication, they can severely hinder medical practice. Moreover, 

templated notes place the burden of translating clinical stories into a standard language on the 

physicians and other clinical staff, and may limit their ability to distinguish between and 

remember many different patient stories seen in clinics. There may be other practical limits to 

implementing templated, standardized forms for medical communication and documentation. 
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Data feeds from source systems into a data warehouse, data repository, or other desired 

downstream system and format may work quite well for data that are natively well structured and 

standardized (e.g., clinical laboratory results, demographics, billing diagnosis and procedure 

codes, medication orders). However, unless healthcare providers use templates for systems like 

pathology, radiology, surgery, radiation oncology, and clinical encounter notes, there are limits 

to how much data acquisition and information processing can be addressed using data feeds. 

Outsourcing or offshoring data abstraction to a lower cost operation can save money in 

the short term, but this approach just postpones the problem and may not address the issue of 

duplication of abstraction efforts across multiple activities (e.g., research, quality improvement, 

cancer registry). Also, outsourcing and transfer-of-information processing to another group does 

not address the variations in human information processing, or the biases introduced by each 

project or task. Moreover, outsourcing data abstraction is ultimately not scalable for larger 

programs that require extraction and processing of patient information from many healthcare 

providers and facilities, like the CDC’s National Program of Cancer Registries (NPCR),(83) the 

Commission on Cancer National Cancer Data Base (NCDB),(84) NCI’s SEER program,(85) and 

ASCO CancerLinQ.(86) 

For more than a decade, NLP and machine-learning methods and tools to extract clinical 

information have been developed and evaluated, and with sufficient training data and methods, 

the performance of these tools has approached the performance of human data abstractors and 

domain experts. The application of clinical data processing tools and methods at an enterprise 

scale in a hospital or research center is attractive in that it may reduce the current trend of 

shifting the burden of generating structured data onto healthcare providers through templates. 
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Also, clinical data processing algorithms may generate more reliable, reproducible, and 

measurable results. 

In the world of sequence and other assay data, bioinformatics pipelines, data standards, 

and toolkits have been developed to transform data from their raw format into standard tables of 

aligned and normalized data that are amenable to data mining. However, pipelines for clinical 

data have not yet evolved to this point. Clinical NLP research projects tend to focus on either 

information retrieval and extraction tools or on the performance of specific rule-based and 

machine-learning algorithms. End-to-end substitutes for manual data abstraction and 

complementary systems to facilitate manual and automated information extraction and 

processing from text medical records into desired end formats are lacking, although the current 

generation of tools and approaches are getting close.(87,88) 

The current barriers to implementing clinical data processing and machine-learning 

methods that scale out to cover an entire healthcare enterprise or network will likely require 

workflows and features that are analogous to the activities of manual data abstraction and data 

quality assurance, as well as activities to train and evaluate clinical data processing algorithms. A 

complete enterprise pipeline to facilitate or automate data abstraction using clinical data 

processing would need to include tooling for the annotation of documents, performing quality 

assurance, monitoring, and comparing the performance of human and algorithm abstraction, 

search and information extraction, information consolidation, and processing into ultimately 

desired systems and formats. 
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6.4 Objective 

The objective of this research was to design and implement an end-to-end pipeline of tools and 

methods to facilitate shared information processing by both algorithms and human staff, shifting 

the burdens of manual to automated clinical data processing over time in order to achieve 

scalability, consistency, and sustainability. This solution should support ongoing abstraction, 

ongoing generation of training and validation data, ongoing monitoring, and the opportunity to 

tune performance of both people and algorithms. For initial affordability, sustainability and 

broad applicability, such a solution should be based on an open-source platform so that 

algorithms and all components of the workflow are interchangeable, portable, and extensible. 

Finally, it should be scalable to an ever-increasing volume and variety of documents while 

complying with the high security requirements of clinical information processing. The intention 

of this work is to provide a framework for developing and deploying any kind of clinical data 

processing algorithm: commercial, open-source, or homegrown. 

The Fred Hutch and LabKey clinical data processing pipeline is meant to be a platform 

not only for the deployment of clinical data processing algorithms to automatically extract data 

elements from clinical narratives, but also for the assignment, tracking, and completion of 

manual abstraction tasks, ongoing and systematic quality assurance of both manually abstracted 

and automatically extracted data, and the iterative creation of training data and clinical corpora 

through the linking of structured and unstructured data. The pipeline is designed to gradually 

take the place of a wide variety of EDC systems and databases currently used for manual 

abstraction. 
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6.5 Approach 

The concept of an enterprise clinical data processing pipeline at Fred Hutch was initiated in 2012 

as part of the Hutch Integrated Data Repository and Archive (HIDRA) program, a multiyear 

project to develop a data platform to support clinical and translational research. LabKey 

Software was selected as a technical and software development partner based on their clear 

understanding of the requirements and demonstrated ability to develop large-scale biomedical 

data management systems. At the time that HIDRA was initiated, staff at Fred Hutch had 

minimal practical knowledge and expertise around the practical application of NLP tools and 

methods. To gain expertise and build practical understanding of NLP through the center, the 

HIDRA leaders began presenting the basic concepts of NLP and how it could be applied to 

disease research teams and IT staff.(89) Fred Hutch began an NLP summer internship program 

that would bring in at least one graduate-level computational linguistics expert per summer and 

match them with research groups to explore a specific problem or opportunity that seemed 

amenable to an clinical data processing solution. These projects either leveraged existing datasets 

that had been previously abstracted for research or developed training data as part of the project. 

To date, two of these NLP interns have been employed fulltime at the cancer center. 

Clinical data processing tools and methods were not useful without staff who had the 

knowledge and expertise to apply them locally, so developing a talent pipeline for NLP experts 

was a critical first step. Fred Hutch is part of a consortium NCI-designated comprehensive 

cancer center with its partners UW, SCCA, and SCH. To advance clinical data processing 

expertise at Fred Hutch, the NLP leadership team collaborated with the UW Computational 

Linguistics program, which has a practical and well-regarded Master’s level training program for 

NLP tools and methods. Obstacles in clinical data acquisition and opportunities to advance 
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cancer research at Fred Hutch using clinical NLP were presented annually to UW Computational 

Linguistics students.  

A series of projects was used both to explore the application of clinical data processing 

tools and methods across different disease groups (e.g., specialists in cancers of breast, brain, 

pancreas, lung, sarcoma, blood) and to give cancer center faculty and staff practical exposure to 

NLP concepts, tools, and methods. These projects included extraction and computation of 

pancreatic and lung cancer staging information,(90,91) extracting clinical timelines of patients 

with brain cancer(92), an assessment of inter-abstractor agreement for breast cancer pathology 

data elements from the same patient population abstracted for different research databases, 

determining chemotherapy administered within 30 days of death for patients with acute myeloid 

leukemia (AML),(93) developing a method to automatically classify patients with sarcoma from 

pathology report text,(94) parsing karyotypes from cytogenetic reports and classifying risk levels 

in patients with AML,(95) and determining the smoking history of patients with cancer from 

clinical notes. In addition, a project for extracting lung cancer biomarker results (e.g., ALK, 

EGFR) from pathology reports is underway. 

The algorithms developed to determine chemotherapy regimens administered within 30 

days prior to death in AML patients was trained with documents from 24 patients with AML 

who came to SCCA between January 2010 and December 2012, were at least 18 years old, and 

received chemotherapeutic agents within 30 days of death. The algorithms were tested using 

records from an additional 30 patients. Rules-based NLP algorithms were developed for date of 

death and chemotherapeutic agents. The recall for date of death and chemotherapeutic agent 

algorithms was 92% in the training sample. In the testing sample, accuracy was 96% and recall 

was 73% for both algorithms. 
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The algorithms developed to extract clinical events to facilitate patient timeline creation 

were trained with clinic notes from 330 patients with brain cancer from SCCA. These notes were 

divided into training and testing datasets of 165 patients. A statistical and rules-based NLP 

algorithm was developed to extract key words. As this work was unfinished, I do not have 

performance measures. However, NLP algorithm development is not intended to be part of this 

dissertation or this chapter anyway. 

The algorithms developed to supplement service line classification of patients with 

sarcoma was a very simple rule-based program that employed a gazetter of sarcoma histologies 

and pattern matching to identify non-negated mentions of sarcoma in the final diagnosis section 

of pathology reports. The algorithms were developed using 42 pathology reports, 19 of which 

came from known sarcoma patients, and 23 of which came from known non-sarcoma patients.  

The algorithm had 100% precision, but only 89% recall.   

The algorithms for pancreatic cancer diagnosis and staging were developed using medical 

oncology and procedure notes from UW and SCCA selected using ICD-9 codes 157-157.9.  63 

notes were selected for training, and 26 were set aside for testing.  The algorithms were rules-

based, and developed using the pyConTextNLP toolkit. The algorithms has 61.5% recall, and 

95.5% precision.   

The algorithms for extracting lung cancer stages from free-text clinical notes were 

developed using a corpus of 21,535 clinic notes from 485 lung cancer patients from SCCA.  60% 

of the patients were used for training, and 40% were set aside for testing. The algorithms were all 

rules-based and has a recall of 96% and precision of 90%. 

As the HIDRA planning team reached out to every disease group at the cancer center for 

requirements analysis, they collected data dictionaries from existing databases. In cases where no 
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databases existed in a disease group, the team collected lists of data elements that would be 

desired to support their respective clinical and translational research goals. In total, the HIDRA 

team collected 14,220 data elements from 13 major disease groups, including 28 subgroups. 

Over a 10-week period and 600 person-hours of effort, NLP experts and interns normalized the 

14,220 field names into concepts and then condensed them to a single list of 4,000 elements that 

covered all disease groups. Each of these data elements was then traced back to its source system 

to determine if it was natively structured (e.g., from clinical labs, demographics, procedure and 

billing codes) or unstructured (e.g., from pathology reports, radiology notes, surgery notes, 

clinical visit notes). The research goal was to determine the potential impact of various forms of 

automation, including developing clinical data processing for narrative medical records, 

providing a mechanism for patient-reported data, and developing algorithms to derive data 

elements from other source data (e.g., age at surgery derived from date of birth and date of 

surgery). With a conservative estimate, the team found that 65% of desired data elements to 

support cancer research come from unstructured sources, 15% could be patient reported, and 

15% could be derived from other data elements. These categories were not mutually exclusive. 

In terms of document sources, 50% of the data elements came from clinical visit notes, 20% 

from pathology reports, 15% from surgery notes, 5% from radiology reports, and 10% from 

other sources. This analysis provided validation that investment in an enterprise clinical data 

processing pipeline could yield value for research across all disease groups and was in line with 

similar analyses at other institutions that found the number of clinical data elements from 

unstructured notes to be anywhere from 45% to 80%.(76,79–81) Based on this analysis of data 

elements and data sources, the theoretical maximum proportion of desired clinical data elements 
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that could be obtained in discrete form from electronic clinical systems (including templated 

notes) was around 35%. 

The clinical data processing team also conducted a preliminary comparison of existing 

commercial, academic, and open-source tools. The team evaluated and continues to track 

existing open-source and commercial technologies for the development of clinical data 

processing pipelines. There were numerous existing clinical data processing platforms for 

processing unstructured clinical text, such as cTAKES(88) and OpenDMAP.(96) However, these 

did not include parallel manual annotation and quality assurance work streams to facilitate the 

creation of training data for clinical data processing algorithms or auditing of automatically or 

manually extracted data. While these tools and other existing open-source biomedical language 

processing algorithms may be used for developing automated information extraction at numerous 

points within the clinical data processing pipeline, Fred Hutch also required the ability to 

incorporate manual annotation, quality assurance, and task management in one high-throughput 

system.  

In addition, the team evaluated many well-known and widely used annotation toolkits, 

such as Brat(97) and Knowtator,(98) but these tools did not have any built-in clinical data 

processing algorithms or tools. GATE(99) is a platform that can be used for both the automated 

processing of raw text and the manual annotation of corpora. However, not all of its components 

were free and open-source, and while its flexibility was extremely helpful in the development 

process, it may not be user-friendly enough to provide an efficient tool for large-scale manual 

annotation and abstraction tasks for a variety of users. Commercial NLP packages like 

Linguamatics(100) offered some out-of-the-box solutions for linguistic queries and information 

retrieval, but the limited output and overall flexibility was not conducive to the growth and 
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change of a portfolio of algorithms over time, and it did not provide a platform for the creation of 

high-quality labeled data for training and validation of clinical data processing algorithms.  

The initial model for structuring and storing information from the Fred Hutch and 

LabKey clinical data processing pipeline was based on the Caisis(4) system, which is an open-

source, web-based cancer data management system and clinical data management system widely 

used by data abstractors at Fred Hutch.  

Although there were numerous commercial and open-source options for components of a 

clinical data processing pipeline, the goals for the pipeline at Fred Hutch were more 

comprehensive and integrated than any existing platform could provide and required that the 

solution scale to support growing usage of NLP at an enterprise level. To facilitate current data 

abstraction and support a transition to a more facilitated and automated approach to information 

processing, the platform would need to support the following activities: 

● Intake and management of a variety of documents and related clinical information 

● Simultaneous EDC and annotation of source documents to provide tools for abstractors as 

well as high-volume training and validation data 

● Ability to configure, manage, and evaluate the performance of a variety of ongoing data 

abstraction, annotation, and clinical data processing algorithm validation tasks within an 

integrated platform 

● Scalability to support high volume (5,000 - 6,000 new cases diagnosed or treated at the 

Fred Hutch/UW Cancer Consortium per year, and more than double that amount of 

follow-up encounters, consults and other cancer-related visits to process) 

● Extensibility of the platform with costs that are affordable and sustainable for centers 

with varying and unpredictable levels of funding 
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● End-to-end security appropriate for HIPAA-compliant and FISMA-ready environments, 

including access controls, and the ability to train and run algorithms within a high-

performance computing environment that also provides robust access controls, 

encryption, de-identification, and audit logging 

● Ease of use for a small IT and clinical data processing team to manage 

 

In fall 2014, after the HIDRA core data platform, clinical data feeds, high-security 

environment, and a pilot self-service data access tool (Argos) were developed, the Fred Hutch 

informatics team began work on the clinical data processing pipeline in collaboration with 

LabKey Software. The clinical data processing pipeline vision and high-level requirements were 

articulated so that it would be a distinct module within the LabKey Server data integration 

platform,(73) and also would meet all the high-security, performance, ease-of-use, and 

integration requirements for the HIDRA enterprise data platform. The initial design for the 

pipeline leveraged LabKey experience and existing tools for bioinformatics pipelines (e.g., 

proteomics, genomics, flow cytometry) so that users would have a common approach within 

LabKey Server to develop and configure both clinical data processing and bioinformatics 

pipelines.  

Detailed planning and development of the clinical data processing pipeline began in fall 

2014. The clinical data processing pipeline development team consisted of an NLP research 

engineer, LabKey Software developers and project managers, and informatics leaders from Fred 

Hutch. It followed LabKey’s Agile software development methodology that had been employed 

successfully for the development of the Argos self-service data exploration tool for HIDRA. 

Throughout the development of the clinical data processing pipeline, this team engaged with 
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Fred Hutch IT staff and experts to understand data sources, input and output requirements, 

application program interfaces (APIs), and security requirements. The team also engaged with 

researchers and data entry staff in disease groups to understand workflow and usability 

requirements for data abstraction, annotation, and clinical data processing algorithm validation.  

6.6 Results 

Fred Hutch and LabKey Software have designed an enterprise clinical data pipeline to serve as 

an integrated platform for: 

● Automated information extraction 

● Manual abstraction and verification 

● Workflow and task management 

● Generating training data for algorithm development 

 

Conceptually (see Figure 6.1), source documents such as pathology reports are retrieved 

and fed from a clinical source system or data repository - in this case HIDRA - into a staging 

area. Clinical data processing pipeline jobs configured in LabKey Server pick up the source data 

and provide the tracking and tools to process the incoming clinical documents. The clinical data 

processing engine, as depicted in Figure 6.1, provides for interchangeable algorithms for 

information extraction and processing, and LabKey Server provides user interfaces for manual 

information extraction and processing or human verification of algorithm outputs. The clinical 

data processing engine is modular so that over time components or even the entire engine can be 

upgraded or replaced with commercial or open-source engines and algorithms. The output from 
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the clinical data processing engine is shepherded by LabKey Server to a downstream staging area 

for subsequent ETL processes to move data into other systems. 

 
Figure 6.1. Conceptual diagram of a clinical data processing pipeline as deployed at Fred Hutch 
cancer center 

 

The clinical data processing engine, shown conceptually in Figure 6.1, is intended to be 

interchangeable with different commercial, open-source, and academic engines to allow for 

innovation. The clinical data processing engine used in the Fred Hutch deployment was 

developed in Python; its architecture is depicted in further detail in Figure 6.2. The engine can be 

called as a Python script with command line arguments, which are configured in a LabKey 

Server clinical data processing pipeline task. Internally, the engine has a hierarchical design 

where each level of the pipeline represents a separate physical directory that contains the Python 

scripts and modules, text file gazetteers, dictionaries, and other metadata needed to extract the 

targeted set of data elements. The engine is controlled through a high-level script, and consists of 

multiple component scripts that are organized by document type (e.g., clinic notes, radiology 
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notes, pathology notes) and disease group (e.g., lung cancer, brain cancer, breast cancer). 

Because the formats and some of the language of different documents is specialized, document 

parsers may be specialized to document type. 

Furthermore, some of the fields to be extracted may be common to a document type and 

not vary widely by disease group. For example, in a pathology note, algorithms to extract the 

accession number, date of pathology evaluation, and pathologist could exist at the document 

level. This organization allows for document- or disease-specific terminologies or gazetteers, 

data dictionaries of elements to be extracted, and other specific information-processing 

components. Final logic to integrate results from disease-specific modules works at the 

document level. This organization of Python scripts has proven to be easy for various clinical 

data processing engineers, NLP interns, IT operations staff, and software developers to 

understand and extend. Moreover, the vast majority of bioinformatics pipeline and scientific 

computing jobs running on the Fred Hutch high-performance computing cluster are Python or R 

scripts. Having a common Java-based platform (LabKey) for data integration and security, and 

information-processing programs written in a common language (Python) across both clinical 

data processing and bioinformatics jobs, allows the center to find synergies and leverage data 

science expertise broadly. 
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Figure 6.2. General architecture of the clinical data processing engine 

 

The clinical data processing pipeline is engineered to support all of the interactions and 

typical combinations between human data abstractors, reviewers, and algorithms (Figure 6.3). 

The overall pipeline includes setup for abstraction, annotation, automated information 

processing, and review tasks through a configurable workflow module. The user interface for 

manual data entry (Figure 6.4) can also be used for general abstraction, quality assurance of 

automatically extracted data elements, audits of manually abstracted data, and creating NLP 
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training corpora through multiple parallel abstraction/annotation resources. This multipurpose 

user interface is part of LabKey Server, an open-source platform that helps translational research 

teams integrate, analyze, and share clinical data. 

 
Figure 6.3. Detailed workflow diagram of the clinical data processing pipeline mediated through 
LabKey Server 

 

One of the central and most important user interfaces for the clinical data processing 

pipeline is the data abstraction, annotation, and review interface (Figure 6.4). This interface 

provides a way to view and search clinical documents (left side of Figure 6.4), as well as to 

highlight features in the text such as keywords or phrases. It also provides an EDC tool (right 

side of Figure 6.4) to enter or review the abstracted or algorithm-populated output from the 

clinical source documents. The data elements for this EDC tool are driven by importable 

metadata rather than hard coded in LabKey Server. The character offsets (e.g., exact location of 

each keyword or phrase) and the associations between each highlighted feature in the source 

document with the entered or computed output values are all stored and accessible to NLP 
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engineers for training, validation, and quality improvement. Over time, the current EDC 

interfaces that are used by data abstractors and their workflows are anticipated to migrate over to 

this framework. 

 
Figure 6.4. Data abstraction, annotation, and review interface. The source documents appear on 
the left, and a web form for the data elements to extract or review is on the right. Features in the 
source document that correspond to each data element are highlighted and stored so that links 
and locations can be used for algorithm training and tuning. 

 
For a phased approach to development, a pilot demonstrating at least the minimal 

functions of the pipeline for a subset of reports was developed first. In October 2015, the use of 

algorithms for extracting lung cancer pathology data elements from pathology reports was 

demonstrated at the LabKey User Conference,(75) presented at Cancer Informatics for Cancer 

Centers (CI4CC),(74) and presented as a poster at the 2015 AMIA Annual Conference.(76) 

Subsequent work from Fall 2015 through Spring 2016 has been to implement all of the major 

pipeline functions in preparation for production implementation. The fully functional clinical 

data processing pipeline work includes [1] upstream integration to pull documents from clinical 

system sources and feed them to the pipeline, [2] configurable tasks for abstraction and 
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annotation and for running clinical data processing algorithms to populate data elements, [3] the 

ability to produce statistics to evaluate inter-abstractor agreement and performance of algorithms, 

and [4] downstream system integration to push results from staging area to other databases (see 

Figure 6.1). 

 

Early clinical data processing algorithms to be deployed in the version 1.0 in production include: 

● Assigning reports to disease groups 

● Pathology report data element extraction for a variety of disease groups 

● Karyotype parsing and risk classification in patients with AML 

● Prognostic staging for lung cancer 

6.7 Discussion 

The understanding and application of clinical data processing has evolved at Fred Hutch and the 

Cancer Consortium, from early debates over what it actually is and what to even call it (e.g., 

“NLP”, “text mining”, “text processing”) and whether it would actually be useful at the cancer 

center to an increasing volume of collaborative research around NLP and requests for clinical 

data processing to facilitate a variety of data collection and data retrieval efforts. Although for 

the first couple years the intentional and consistent communications and ongoing collaborations 

around clinical data processing were challenging to setup, they have been worthwhile and are 

resulting in increasing demand from and value delivered to researchers. 

The project required professional software engineers (at LabKey Software) to learn more 

about clinical data processing and NLP experts (at Fred Hutch) to adapt to Agile software 

development methodology and an enterprise data integration platform, which was a healthy 
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dynamic. Both groups have gained valuable experience, and the resulting module for the LabKey 

Server platform is now sustainable and portable to other centers. The clinical data processing 

engine developers do not have to maintain the system and then figure out if and how to 

commercialize and sustain it, which is a common problem with many tools developed at 

academic centers.  

Many existing clinical data processing tools and cancer center efforts have tended to 

focus on NLP algorithm development or information retrieval (e.g., ability to search full text of 

reports). There do not appear to be other groups focused on the entire integrated data supply 

chain and framework to facilitate ongoing advancements in both clinical data processing 

algorithms and their implementation at the enterprise level. Also, annotation and EDC tool 

efforts at other centers seem to be disconnected from an overall clinical data processing pipeline. 

The collaborative work of Fred Hutch and LabKey Software appears to fill a gap in the field of 

biomedical informatics and in the landscape of commercial or open-source clinical data 

processing tools that are widely available, well-supported, and readily portable to other centers. 

The approach of modeling the clinical data processing pipeline on bioinformatics 

pipelines and working with a technical partner and leveraging that expertise has accelerated 

mutual understanding of what and how to develop. Implementing a robust and configurable 

workflow engine within LabKey Server was deemed necessary given the complexity of possible 

workflows and the need for regular adjustments to configurations over time. The requirements 

for information security have proven increasingly important. Because the bioinformatics 

pipelines on which this clinical data processing pipeline was based did not have HIPAA- and 

FISMA (NIST 800-53)-level security controls, these critical features would have been difficult to 

build in if they had not been articulated upfront and if the team had not been able to leverage 
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parallel security work in LabKey Server to create a high-security platform for the HIDRA 

system. Because both teams were intimately familiar with HIPAA- and FISMA-level security 

requirements, numerous security issues were identified upfront and addressed in the pipeline 

implementation.  

An interesting issue encountered was the storage of language models for machine-

learning algorithms in a high-security environment. It was impractical to eliminate potentially 

sensitive information from the algorithms themselves, so the high-security platform controls and 

data hygiene practices for potentially confidential information had to be extended to both the 

clinical data processing engine and the computing environment that runs the engine. Clinical data 

processing algorithms would potentially require high-performance computing resources, 

however the clusters previously developed for bioinformatics pipelines did not require or provide 

HIPAA- and FISMA-level security controls. Moreover, version control of algorithms for the 

clinical data processing engine (see Figure 6.1) would need to be secure, and clinical data 

processing pipeline components in their own version control software would need to be regularly 

integrated and tested with the clinical data processing engine to produce versioned releases of the 

entire integrated platform. 

As part of the development of the HIDRA database and its Argos self-service data access 

tool built on LabKey Server, the team found the need for realistic datasets for development and 

testing that could be considered completely de-identified. Although the clinical data processing 

pipeline is developed with security controls for PHI, such as the identifiers found in clinical 

documents, the team found use cases for de-identified clinical documents. Those use cases 

include the ability to provide full-text search of clinical documents without exposing identifiers, 

the ability to provide realistic de-identified training and validation data for clinical data 
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processing algorithm development, and the ability to provide a corpus of de-identified 

documents with realistic format, volume, and variety of content that can be used for further 

development, testing, and performance tuning for the entire pipeline. 

The clinical data processing engine (Figure 6.1) and the visual abstraction and review 

tool (Figure 6.4) required the development of flexible data structures and user interface 

components to handle multiple specimens in a pathology report (or multiple findings in a 

radiology report). The output of clinical data processing algorithms is JavaScript Object Notation 

(JSON) structures, and the LabKey user interface for EDC (right side of Figure 6.4) was adapted 

to interpret JSON objects from the clinical data processing engine. The data elements are driven 

by metadata rather than being hard-coded into LabKey Server. 

Several known problems with existing upstream parsers for pathology reports had a 

negative impact on clinical data processing engine performance; these problems are currently 

being investigated and remedied. For instance, an upstream parser may duplicate the records or 

lines in a pathology report. If the parser maintains the order of the duplicate records or lines, it 

poses little problem for the clinical data processing algorithm. Since the context is essentially the 

same, it just looks like the same thing was said twice. However, if the parser inserts a duplicate 

record or line in a different part of the report, the context for that line (its preceding and 

subsequent lines) may have changed, which could change its meaning. For example, if a line 

reads “1. High grade adenocarcinoma present”, and that line gets duplicated and inserted in a 

different location in the pathology report, it may appear that there was adenocarcinoma in two 

different specimens, rather than just one that the original report stated. 

 

There are several next steps planned for this work: 
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● Full deployment and operation of the pipeline in the Fred Hutch high-security 

environment 

● Gradual transition of the work of abstractors. Having outsourced data entry under a 

centralized service-level agreement (SLA) and centralized data quality management may 

facilitate this transition because contracts and SLAs can be modified incrementally and 

consistently over time. Transition may be more difficult in the situation of decentralized 

data abstraction and information-processing work.  

● Ongoing clinical data processing algorithm development for potentially hundreds or 

thousands of algorithms to cover the range of desired data elements for cancer research 

● Extension of the clinical data processing pipeline to multiple disease groups. Ideally, 

many of the algorithms will be common across diseases to minimize the development of 

disease-specific algorithms and dictionaries, however the clinical data processing engine 

architecture (Figure 6.2) also allows for disease- and document-specific extensions. The 

algorithms will need to be extended to cover multiple document types (e.g., cytogenetic 

reports, clinic notes, surgery and radiation oncology treatment notes, microbiology and 

virology lab reports). Some report types are inherently more homogeneous across all 

patient populations and will therefore require less disease-specific algorithm 

development. For cancer, several types of reports differ among diseases because of 

anatomic descriptions. In the case of pathology reports, there are varying histologies and 

related findings. In contrast, some of the anticipated data elements to extract from clinic 

visit notes involve social and family histories that may differ greatly from person to 

person, but are not substantially different across disease groups. 
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Because of the open and agnostic approach to the engine within the clinical data 

processing pipeline, LabKey Server could be used with a variety of clinical data processing 

engines, while keeping overall workflows and framework for annotation, review, quality 

assurance, and task management the same. This will allow the platform to support more rapid 

advancements in the practical application of clinical data processing in cancer centers or other 

organizations. The clinical data processing pipeline is portable to other centers, scalable to the 

enterprise level, and extensible both through the substitution of different clinical data processing 

engines and through the addition or configuration of different modules within or interoperable 

with the LabKey Server data integration platform. This platform and approach is also amenable 

to cloud-based implementation. Because of the requirements for implementing HIPAA- and 

FISMA-level security controls and the need to scale the storage and computational capacity to 

run a clinical data processing pipeline across the enterprise, a cloud-based implementation may 

be the most affordable and sustainable strategy for many centers. 

The intent is that this platform would be relatively portable to any group or institution. 

The initial parsing and preprocessing of clinical document may have to be adapted to match 

organization-specific sources and document formats, however the data elements needed for 

cancer research should remain relatively similar. 

6.8 Conclusion 

Fred Hutch and LabKey Software have developed a platform that provides a secure and open-

source pipeline for the acquisition and processing of clinical documents and performs automated 

information extraction and case data consolidation through the use of a clinical data processing 

engine (e.g., locally developed algorithms or other commercial or open-source tools). This 
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pipeline also provides a framework for manual information-processing tasks such as abstraction 

from raw reports for ongoing annotation projects as well as verification and performance 

evaluation of clinical data processing algorithms. The LabKey Server clinical data processing 

pipeline can be used to integrate multiple automated processing solutions within a single open-

source but well-supported architecture. Integrating the LabKey clinical data processing pipeline 

with existing data abstraction workflows has the potential to incrementally decrease staff time 

and efforts through automations and increase the amount of annotated training data available for 

future clinical data processing algorithm development. 
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6.10 Synthesis 

Chapter 6 described the pipeline for clinical data processing and is closely related to Chapter 4 

about the HIDRA system. Rather than designing a new database model for HIDRA and the 

clinical data processing pipeline, we initially relied on the Caisis database model as a target. 

However, some performance and usability issues have become increasingly evident with the 

Caisis database model, both through the self-service data access tool, Argos, and through the 

development of the information-processing pipeline for clinical data. These previously known 

and emerging database model issues as well as potential solutions and avenues for further 

research are explored in Chapter 7. 
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Sections 6.2 to 6.8 addressed my Chapter 6 questions: How can we improve the quality, 

speed, and economics of the acquisition, processing, and delivery of clinical data to support 

cancer researchers? How can we make clinical data processing a core competency of Fred Hutch 

at an enterprise scale? This work ties back to the overarching question for this dissertation (how 

can we improve access to clinical and related data about cancer patients for research?). Getting 

clinical data from source documents into formats usable for most research requires extraction 

and transformation from narrative medical records into discrete, coded data elements, which is 

the purpose of the pipeline for clinical data processing. Chapter 6 also ties back to the overall 

hypothesis that there were new tools and methods from biomedical informatics that could 

improve the availability of data for cancer research if they were applied thoughtfully and 

strategically, and to Aim 2 to develop and characterize a clinical data processing pipeline that is 

scalable to the cancer center enterprise level, is well-supported and sustainable, and can 

complement or streamline existing manual data abstraction and information-processing activities. 

All of this work logically leads to Aim 3 (Chapter 7) - to develop, model, and assess 

database frameworks for cancer - because the data integration and self-service data access from 

Caisis (Chapter 2), HIDRA (Aim 1, Chapters 4 and 5), and the document-oriented clinical data 

processing pipeline (Aim 2, Chapter 6) have run into potential performance and usability issues 

related to their underlying data models and database technologies. 

Findings from this chapter are relevant to other cancer centers addressing the need to 

transition from manual data entry of information from medical records into database to 

automated approaches to data processing. 

First, one of the greatest barriers to advancing automation of clinical data processing is 

the limited availability of training and validation datasets that have been annotated for use by 
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statistical algorithms, NLP or machine learning tools and methods. The work in Chapter 6 

provides a solution to this problem that is agnostic to the automation tools. 

Second, the work in this chapter is generalizable to other centers because the clinical data 

processing pipeline was developed with a technology partner, LabKey Software. Because of 

LabKey's—and our—desire to make this solution portable to other centers, it was not tightly 

coupled to the IT and informatics infrastructure or data elements. Rather, it was designed and 

built from the ground up a portable, scalable, extensible pipeline. The work in this chapter is 

already being adopted by the NCI SEER program for developing training and validation data for 

collaborative NLP and predictive modeling research with the Department of Energy laboratories, 

and may be adopted by a large research network of over a dozen cancer centers. Other cancer 

centers and LabKey customers have expressed interest in adopting this pipeline tool. 
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Chapter 7 Comparison of Database Models for Cancer Research 

7.1 Context 

This chapter is my exploration of Aim 3, to develop, model, and assess database frameworks for 

cancer. To explore this aim, I answer the following question: How can we best characterize and 

compare database models and big-data technologies to inform a sensible strategy for cancer 

research database design and technology? Because database models, design, and technology can 

both enhance and hinder ready access to data, answering these questions helps inform the 

question "How can we improve access to clinical and related data about cancer patients for 

research?” Aim 3 is a logical next step to test my overall hypothesis that there are new tools and 

methods from biomedical informatics that could improve the availability of data for cancer 

research if they were applied thoughtfully and strategically. There are numerous database 

designs promoted in the biomedical informatics community (e.g., i2b2, OMOP, BRIDG) and 

numerous big-data companies and technologies that promise solutions for healthcare and 

biomedical research data. However, these solutions are not necessarily applied thoughtfully and 

strategically. This chapter was my attempt to get my head around these options in order to guide 

the discussion and evaluation of database models and big-data technologies. 

Aim 3 flows from Aim 2 (to develop and characterize a clinical data processing pipeline 

that is scalable to the cancer center enterprise level, is well-supported and sustainable, and can 

complement or streamline existing manual data abstraction and information-processing 

activities), from Aim 1 (to develop and assess a modern integrated data platform to support a 

wide variety of cancer research), and from Chapters 2 and 3 as well. 
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I wrote this chapter as an exploratory paper to expand on observations of the Caisis 

database model in Chapter 2 and emerging alternative models (e.g., i2b2) introduced in Chapter 

3, and to guide strategy for data models to support the expansion of HIDRA and Argos from 

Chapter 4 and the clinical data processing pipeline in Chapter 6. However, after finishing this 

work, I do not think it is publishable yet as a distinct journal article. Rather, I plan to use some of 

this material in papers about related work and seek to publish this work after doing further 

database model experiments outlined in next steps. Because this chapter was originally written as 

a standalone paper, I have included a separate acknowledgements section.  

7.2 Abstract 

Database models selected or designed to support biomedical research can result in challenges for 

system implementation, usability, and sustainability. With a steady increase in volume and 

variety of incoming data for cancer research, and the explosion of big-data tools and database 

platforms, many centers struggle to understand and articulate issues and tradeoffs between 

approaches and to develop attainable, sustainable strategies for data management to support 

research. This chapter describes database and data quality concepts, common issues with 

database models in cancer research, and lessons learned about the tradeoffs of different modeling 

approaches. It recommends a general approach to thinking about and evaluating database model 

options. 

7.3 Background and Rationale 

Current and next-generation cancer research relies on ready-access to and use of data about 

patients from a variety of sources. The story of each cancer patient as they go through life and 
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their various encounters with the healthcare delivery system is expressed in data from medical 

records that document episodes of care (e.g., clinic visits, diagnostic imaging and lab results, 

procedures and medications, outcomes or complications of medical interventions) and in 

consumer and environmental data that may indicate exposures, behaviors, and other factors that 

could affect the development and progression of cancer or the outcomes of treatment.(1) 

The bulk of these clinical, consumer, and environmental data are not collected for the 

purpose of research. Clinical data from patients’ encounters with healthcare providers are 

typically documented in EMRs and related clinical systems, and the purpose of those systems is 

to record patients’ histories from the perspective of physicians and other providers, to provide 

medical documentation for billing and legal purposes, and to operate a healthcare facility. 

Secondary use of the information from clinical systems for research has required manual data 

abstraction (chart review) and information processing (filling out paper or web-based forms for 

specified data elements with coded values) for each research project. Cancer diagnosis and 

treatment information from medical records is also abstracted and processed manually into 

designated systems for hospital registries and state-mandated cancer reporting. 

The majority of clinical data needed for research and public health reporting is still 

recorded in narrative form (e.g., in pathology and radiology reports, clinical visit notes, treatment 

summaries) and frequently even the structured, discrete data elements available from treatment 

and payment systems (e.g., demographics, clinical lab results, medication orders, claims), require 

processing and consolidation for secondary use.(13) For example, a research project may require 

documenting the highest abnormal lab value that is nearest to but before primary cancer 

treatment rather than just documenting all lab values for a given patient by date. Using human 

data abstractors and data managers to review information in medical records, extract key 
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elements, determine which elements to record and how to code them into a desired format for 

research or reporting is a foundational activity for both research and cancer surveillance. 

Many groups are experimenting with project-specific or enterprise-level application of 

clinical data processing and machine learning to automate or facilitate manual abstraction of 

coded data elements from raw and narrative medical records data sources. However, the 

difficulty in implementing these technology solutions for automation and their ultimate 

usefulness may partly depend on underlying database models that provide target data formats, 

relational structures, constraints, coding of information, and query access. 

Currently, there is tremendous duplication of data abstraction and information-processing 

efforts to support cancer research because each investigator and each study may have a different 

desired database model according to their research question, perspective, and analysis approach. 

Efforts to integrate project-specific databases or build reusable databases that can support a 

variety of applications often create as many issues as they solve and can frustrate investigators. 

The payoff from implementing reusable clinical data repositories often takes time for the systems 

and operations to mature, and many investigators and research projects may not wait for the 

payoff. Also, each approach to implementing reusable database models comes with issues and 

tradeoffs that are often difficult to explain and justify to investigators, especially those without 

training in database models. This work is intended to provide some concepts, language, and 

examples to explain different database model approaches and to facilitate discussions or 

decisions about how to collect and store data for various investigators and studies. 

In the world of cancer research, and biomedical research in general, the constraints of 

different database models may become usability issues. Conceptual and structural database 

issues manifest across a variety of IT and informatics endeavors, including the following: 
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● Design and usability of paper and electronic forms for collecting clinical data for a 

variety of studies, from clinical trials to epidemiologic and correlative research 

● Design and usability of study-specific databases versus disease-specific registries and 

integrated data repositories 

● Issues or conflicts around data structures, coding, and formats between statisticians and 

clinical trials experts versus relational database developers and IT/informatics staff 

● Convenient duplication and fragmentation of data collection for disparate research 

projects versus inconvenient but unified data collection across a variety of projects 

● Profusion of requirements analyses, data element mapping and recoding exercises, and 

competing approaches to information modeling and storage that may be more fueled by 

marketing and popularity of technology platforms (e.g., Hadoop and NoSQL databases) 

rather than thoughtful consideration of the tradeoffs of different database 

approaches(101,102) 

 

Common questions and proposed solutions arise around the struggles with database 

models. Should we just use REDCap,(21) or have someone build a relational database and web 

application? Should we build an enterprise data warehouse and create data marts for each unique 

project to meet data requirements? Should we put everything in a Hadoop data lake on Amazon 

Web Services (AWS)?(103) Should we make all of our research data available in i2b2?(8) 

Should we build research data elements into clinical templates and checklists and then use the 

EMR for research data? Questions like these are examples of common symptoms of database 

model frustrations and notional solutions. However, each of these questions can be unpacked 

into underlying assumptions, tradeoffs, and design implications. There is a need for a framework 
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and recommendations to inform discussion of database models and to guide the application of 

different database designs and technologies. 

7.4 Objective 

The goals of this work are to [1] characterize common issues with database models in cancer 

research and surveillance, [2] trace common issues back to underlying assumptions and concepts, 

[3] describe tradeoffs between different modeling approaches based on the application of 

underlying assumptions and concepts, and [4] provide examples of how to recognize and apply 

this knowledge for cancer data. Overall, the purpose of this research is to facilitate the discussion 

of new technologies, to inform the application of different database approaches and technologies, 

and to advance the current and next generation of database design for cancer research. 

7.5 Methods 

For this research, common issues with database models in cancer research centers and cancer 

surveillance are identified and described. The purpose of this paper was to document and explore 

the database model concepts and technologies that I have encountered and to compare them in a 

manner that would inform strategy for application in cancer centers. Therefore, the methods are 

aligned with the goals stated in the objective above. In this work, I [1] characterize common 

issues with database models in cancer research and surveillance, [2] trace common issues back to 

underlying assumptions and concepts, [3] describe the tradeoffs between different modeling 

approaches based on the application of underlying assumptions and concepts, and [4] provide 

examples of how to recognize and apply this knowledge for cancer data. 
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Common assumptions dominate for this comparison of database models. First, that 

investigators and users of biomedical databases are concerned with data quality. They want to be 

able to rely on databases to accurately answer research and operational questions. In my 

experience, databases are frequently criticized in terms of quality, but definitions of quality vary. 

Therefore, it is useful to begin the exploration of database models with a definition of data 

quality. 

A helpful definition of data quality for this work was published by the United Kingdom 

National Health Service (NHS).(104) NHS defined high-quality data as: 

● Accurate 

● Up-to-date 

● Quick and easy to find 

● Free from duplication 

● Free from fragmentation 

● Complete (also mentioned by NHS in the same source and added to this attributes list) 

 

“Accurate” in this case will be defined either as precision as it is used in evaluating the 

performance of information retrieval and clinical data processing algorithms, or as positive 

predictive value as used in diagnostic and epidemiologic studies.(105) Precision at the data 

element or field level can be computed as the total number of correct values that can be verified 

in the source documentation (usually the EMR), over the total number of values populated in 

given data element or field in the database, as depicted in Figure 7.1 and Figure 7.2. The 

rationale for using precision as a measure of accuracy is described in section 7.6.2. 
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“Up-to-date” refers to the latency of information in a database relative to the point in time 

that the information is generated or recorded in a source system. An up-to-date database would 

include the most recent values from source systems. For cancer research, an up-to-date database 

would generally include any information in a source system that had been documented for at 

least 1 week before a data search, query, or export request. However, for clinical decision 

support tools, the latency requirements would be much stricter. Inconsistencies in data due to 

latency would not be acceptable when using a database model to make treatment decisions for 

individual patients. 

Data that are “quick” and easy to find refers to both the ability to search for the data of 

interest and find or retrieve them quickly. This access could be either through a self-service tool 

or through a data request service staffed by analysts or data brokers. Quick and easy to find 

implies reliable naming conventions and metadata that can be searched and referenced so that 

less expert staff can explore the data with self-service tools with less assistance from domain and 

database experts. 

Data “duplication” can become a problem over time in terms of costs and variations in 

data acquisition and handling, storage and management, and the confusion of potential database 

users. In addition to the expense of duplicate data abstraction and information processing, when 

data are duplicated across multiple databases, there is a risk of update anomalies where different 

copies can become out of sync. This inconsistency presents a problem for users who may query 

from different copies of supposedly the same data and get different results. 

“Fragmentation” refers to having different aspects of a patient story in disparate 

databases and systems, so that queries or dataset requests involve linkages across databases, 

reformatting different data elements to a common format, and potentially inheriting different 
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assumptions and biases that affect the meaning of data. Fragmentation of sensitive data may also 

increase security and privacy risks. Data integration into a common database model and format 

on a common technology platform aim to reduce fragmentation.  

Data “completeness” will be defined as recall (from information retrieval and NLP) or 

sensitivity (from diagnostic and epidemiologic studies).(105) As depicted in Figures 6.1 and 6.2, 

recall is the number of values in a data element or field with correct values over the total number 

of desired values for that data element or field found in the relevant source documentation. 

 

Figure 7.1. Venn diagram of relevant/documented and retrieved/abstracted information. In 
information retrieval, natural language processing and machine-learning methods, in place of 
“accuracy”, performance is generally measured using precision (or positive predictive value), the 
number of True Positives (TP) over the total of documents retrieved or values abstracted from 
documents (TP+FP). Completeness is measured as recall, the number of TPs over the total 
number of relevant documents or documented values (TP+FN). The true negatives (TN) are not 
evaluated because they are neither retrieved nor relevant/documented. 
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Figure 7.2. Measures of accuracy and completeness. Specificity, negative predictive value (NPV) 
and accuracy that include true negative (TN) values work for evaluating controlled experiments 
like trials, diagnostic studies, or epidemiologic cohort study surveys where the “universe” is the 
tightly defined, but not for clinical data repositories and cancer surveillance, where prevalence of 
data documented in medical records may vary greatly. 

 
These concepts and measures of data quality will be used in the results and discussion below. 

7.6 Results/Findings 

7.6.1 Common Issues with Database Models in Cancer Research 

Many of the issues found at the intersection of research and database development appear to 

come from the different viewpoints and constraints entailed by different modeling approaches 

and dominant technologies. A variety of common approaches address the problems of translating 

research and cancer registry needs into database models and system specifications. At a high 

level, these issues can be categorized into three areas of design: [1] how data are modeled in user 

interfaces for data acquisition and editing, [2] how data are modeled for storage, and [3] how 

data are modeled for retrieval, reporting, and analysis (Figure 7.3). The methods for structuring 
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data into information systems that cover these three functions tend toward either keeping the user 

interface, storage, and query/reporting models equivalent (e.g., in spreadsheets), or allowing the 

user interface, storage, and analytic models to diverge.  

 

Figure 7.3. Some database models are equivalent for user interface, data storage and reporting; 
others compartmentalize and translate between these functions. 

 
The database models where the three functions are closely aligned tend to make most 

sense from a narrower, single research project viewpoint. However, a major problem with a 

single, flat, project-specific database model to support all three functions is that data collected in 

this format is rarely reusable. Each patient record abstracted into flat formats requires data 

abstraction and data transformations that are project specific. Also, if these data were to be 

reused, the biases in data abstraction and transformation for one project may affect other 
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projects, especially with turnover in data management staff or students who abstract and 

transform information from medical records into a flat, project-specific database model.  

The second set of approaches where the user interfaces, data storage, and analytic models 

may vary allows the development of common data entry forms and reusable tools, common data 

feeds or clinical data processing pipelines from source systems to populate databases, centralized 

database models that can store a variety of incoming data, and analytic models that can provide 

data output to a variety of projects. On the positive side, each of the functions may become 

reusable across projects, and staff can obtain platform expertise that allows them to provide 

cross-coverage and economies of scale across multiple projects. The downside of separating 

these three functions is that mapping and translation work is required both between the user 

interfaces and the data storage models and between the data storage and analysis functions. 

Mapping and translation work requires both biomedical research domain expertise and technical 

skills (e.g., writing ETL processes in SQL). 

Through my experience of migrating numerous users to the Caisis database,(4) I have 

found that most data entry staff can adapt to different user interface approaches over time. In 

Caisis database implementations, after staff have entered all data for approximately ten patients 

using a general patient data user interface that closely maps to the Caisis relational database 

model, they are comfortable using that user interface. The issues that linger after the initial 

learning curve include the amount of drilling down and clicking to find the appropriate place for 

each data element, compared to the use of flat paper or web forms that are good for “heads 

down” data entry and virtually eliminate drilling down, but may lose some of the context of 

individual data points. 
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Flatter user interfaces such as custom REDCap forms, typical Access database forms, 

web applications that mimic case report forms or epidemiologic surveys, and Excel spreadsheets 

make sense intuitively to most users and investigators who do not have training and expertise in 

database design. However, flat data models do not generally map well to source systems (e.g., 

EMR, other clinical systems) and they force users to perform much more information processing 

to abstract, compute, recode, reformat, and otherwise transform findings from source documents 

into values in the desired format.  

The primary advantage of flatter data storage models is that they tend to be easily 

understood by investigators, data managers, statisticians, or other analytics staff. These data 

models are often either single tables or a few tables that match the desired output format for an 

individual project or spreadsheets that grow over time with additional rows, columns, and sheets 

added to support multiple projects with a common disease (e.g., breast cancer) or a common 

intervention (e.g., bone marrow transplant). 

Flat data storage models accumulate data integrity problems over time, such as update 

anomalies, repeating rows, repeating columns, and multivalued fields. Update anomalies occur 

when a primary or computed data point exists in multiple cells in a spreadsheet or table, and a 

user updates one cell but does not update the related cells. In cancer research databases, 

repeating rows commonly occur in spreadsheets that are organized around cancer cases or 

tumors (e.g., left and right primary breast cancers) rather than around patients. The repeated 

patient information across multiple rows is at risk for update anomalies. A common example of 

repeating columns in cancer research databases includes the dates and results of multiple lab 

tests, diagnostic images, or treatments over time for the same case or patient. Repeating columns 

of the same information become increasingly sparse and more difficult to query as the database 
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grows. Spreadsheet users may also enter multiple values in one field, separated by some kind of 

delimiter. These multivalued fields then become more difficult to query and update. All of these 

data quality issues can be considered symptoms of data potentially not fitting well in a flat 

database model, and there are common solutions to these issues obtainable through either 

migration to normalized relational database models or through transition to NoSQL models such 

as a column or document stores. 

In cancer research, reusable databases are generally implemented as relational database 

models or hybrid database models involving one or more relational models as well as 

complementary document, file, column, or graph data stores. Most EMRs and related clinical 

systems either store data in a relational model or can make data available in a relational model. A 

generalizable approach to reusable data collection and processing to support a variety of research 

projects would likely entail feeding data from EMRs and other clinical systems into a data 

warehouse or data repository. A data warehouse would import source data from a variety of 

systems into a common technology platform (e.g., SQL Server database), link data by patient 

identifiers, classify data by disease or other high-level organizing themes, and potentially further 

link and organize data into individual medical encounters, episodes of care, or other temporal 

structures. 

Most biomedical research data warehouses do not substantially transform data from 

source systems into a standard database model. Rather, they link and reformat data, but leave 

them in the data models corresponding to the source systems and rely on experienced analytics 

staff to have sufficient domain and source system knowledge to query and transform data from 

the warehouse for various projects or load it into other database models. This complexity, 

reliance on domain and source system expertise, and requirements for a high level of technical 
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expertise to transform warehouse data for individual research projects makes data warehouses of 

limited immediate use to most investigators and their staff. There are economies of scale in 

developing data feeds to data warehouses, however warehouses may not scale down well in a 

timely fashion to meet the long tail of desired data formats and outputs for individual research 

projects. 

Data marts can be created from data warehouses for larger disease registries and research 

projects where the investment and time required for implementation and ongoing maintenance of 

a data mart are feasible. A data mart would perform common transformations to bring data from 

a warehouse into an analytic database structure that is probably closer to the desired query and 

reporting needs of a research group.  

Biomedical data warehouses typically implement feeds, linkages, and some 

transformation of data from source systems but do not typically have user interfaces for manual 

data abstraction and information processing. The requirement for complex transformations, 

including both automated and manual information processing, is where a generalizable cancer 

research data management system like Caisis for cancer research or SEER*DMS(106) for cancer 

surveillance come in. These data models and systems are designed to integrate information that 

is manually abstracted from medical records documents with data that are fed directly from a 

data warehouse or source system. Similar generalizable data models for clinical trials and 

translational research have been developed (e.g., CDISC ODM,(107) BRIDG,(108) LS-

DAM(109)), and they tend to be relatively complex in terms of the number of tables and fields 

and the relationships between them.  

A reusable relational database can make functions available to enforce data quality that 

may be more difficult to implement in a spreadsheet or warehouse. These include checks for [1] 
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field level integrity, [2] record integrity, and [3] referential integrity. Field-level integrity means 

that the values or codes in an individual field match some set of allowable values. Record 

integrity means that various fields in one record are consistent (e.g., death date is greater than 

birth date in a patient record). Referential integrity means that records are correctly linked so that 

there are no orphan records (e.g., no lab values that are not associated with a patient).  

In addition to the basic integrity constraints of a relational database, any database model 

and system that is reusable across multiple diseases and projects is likely to require customized 

data access rules and security controls, tracking of the provenance of data points (e.g., with users, 

timestamps, updates, deletes), customized user interfaces for data entry, editing and review of 

records, and customized data exports to meet analysis and reporting requirements. Implementing 

each of these customizations in a complex, generalizable system like Caisis requires technical 

expertise and system-specific knowledge to host, configure, and program, which is often beyond 

the skills and understanding of study staff in individual research groups. Individuals who could 

manage a spreadsheet or REDCap database on their own would become dependent on 

specialized IT staff if they adopted a data mart or generalized research database like Caisis.  

To be useful to researchers, any database or system should make data readily available 

for queries and reports. In a flat model like a spreadsheet or REDCap, the data are already 

“export ready”, though because of the lack of built-in controls for data integrity, they may 

require cleanup and re-coding before being used for analysis. Without built-in audit logs, it may 

be difficult to track data provenance on the editing and data wrangling performed to clean up a 

spreadsheet before analysis.  

Reusable data models and tools to support analytics have also been developed. Two of 

the most prominent analytic models and systems are i2b2(8) and OMOP.(70) Compared to data 
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warehouses or clinical data management systems (e.g., Caisis, SEER*DMS), i2b2 and OMOP 

database models reduce the overall number and complexity of tables and fields, and embed 

complexity in ontologies or terminologies as well as in metadata. The i2b2 data model is based 

on the star schema, with a central fact table that can be filtered by different dimension tables and 

the concepts driven with an Entity-Attribute-Value (EAV) structure.(110) In i2b2, browsing, 

searching, traversing, and managing the ontologies associated with a repository can be complex 

and the single fact table, even though it is indexed, may have performance issues, high data 

volume, and variety. Like the i2b2 data model, the OMOP data model has relatively few tables 

and fields. However, OMOP is not a star schema, and rather than relying on an EAV structure to 

define concept dimensions, it depends on linked vocabularies for querying and representing 

concepts. The relative simplicity, stability and popularity of their information models make i2b2 

and OMOP attractive for the development of associated tools for data exploration, self-service 

queries, and reporting. However, more complex queries and reports against these models 

typically require custom tools and ontologies to be developed, and the mapping and 

transformations necessary to fit a broad set of data elements into i2b2 or OMOP models can 

become daunting. These analytic models are typically best used for exploring relatively stable 

sets of data with limited sets of fields or dimensions that conform well to standard terminologies. 

In addition, there have been continual advances in tools for distributed information 

storage, processing, and retrieval for massive consumer datasets (e.g., Google, Amazon, 

Facebook). Big-data companies and biomedical research groups have started exploring these 

tools for making data available to investigators and data scientists. big-data technologies are 

developed and widely used out of necessity in internet search and consumer data businesses. 

Platforms for distributed storage (e.g., S3, HDFS), data management (e.g., DynamoDB, HBase, 
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Cassandra), processing (e.g., Elastic MapReduce, Spark), search (e.g., Lucene, Solr) and 

machine learning (e.g., TensorFlow, Mahout) may seem like potential silver bullets for exploring 

and analyzing biomedical data, but at the moment these platforms still require considerable 

technical skills and domain expertise to apply to cancer research, and they may end up 

performing poorly in production if applied without a strategy and design. 

A relational database model (e.g., Caisis, SEER*DMS, OMOP, i2b2) with greater 

integrity constraints than many NoSQL data stores requires ETL processes written by SQL and 

domain experts to populate. The transformations must happen before data can be loaded into the 

relational data model. A NoSQL database may allow some data transformation to be postponed, 

the so-called Extract-Load-Transform process. However, data will eventually need to be 

transformed in a timely manner to a database model that is understandable by end users and 

accessible to their preferred tools for statistical analysis, reporting, and data visualization. 

Populating a data model for research typically requires access to or export from source 

systems, data feeds, manual data abstraction, and transformations through manual or automated 

coding and consolidating records into usable formats. Although it may be economically 

attractive to implement data feeds, templated notes in clinical systems, and centralized databases 

to support a variety of projects and to eliminate some duplication of effort, fragmentation of 

storage and inconsistencies in the accuracy and completeness of data extraction and processing, 

centralization does not eliminate project-specific data-processing requirements. Rather, it makes 

research teams dependent on centralized services for data acquisition, processing and delivery. 

For a flat and project-specific database model (e.g., Excel, REDCap), each record is 

abstracted and transformed upfront into the desired format, and the burden for timeliness and 

updates falls on the study staff. If stored in same format as desired for analysis, there is little 
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need to transform the data at the time of analysis. In a generalizable research database, some of 

the extraction and translation of data to desired formats may be performed upfront, but further 

transformations will be needed for each project that draws from the repository as a data source. 

7.6.2 Underlying Assumptions and Concepts 

To understand the assumptions and concepts behind cancer database models, it is useful to 

consider the underlying diseases and how information about cancer fits within biomedical 

database models. Figure 7.4 shows an underlying cancer disease progression model (in the blue 

line), and how medical data relate to that underlying construct. Cancer presence and progression 

are often invisible to the clinician. Various instruments (e.g., physical exams, diagnostic images, 

blood tests, biopsies) are used to detect and estimate the extent, type, and aggressiveness of 

cancers, and various interventions (e.g., surgery, chemotherapy, radiation) are aimed to stop or 

slow progression of the cancer. Clinical data in medical records reflects not the underlying 

disease, but rather the documentation of diagnostics and interventions applied to the patient 

during their clinic and hospital visits. In addition to clinical data, there may be public and 

commercially available demographic, environmental, and consumer datasets that document 

potential exposures and behaviors related to the development of cancer and the outcomes or side 

effects of interventions. However, part of the underlying disease and progression is inherently 

unknown. 
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Figure 7.4. Clinical data in relation to underlying model of cancer as a chronic, progressive 
disease. 

 

Most cancer database models only pertain to the documented universe (see Figure 7.1), 

typically abstracted or imported from medical records, and potentially augmented by public and 

commercially available demographic, consumer, and environmental data. This documented 

patient history is never complete and is always somewhat subjective, related to the instrument 

used to measure it and how the resulting data are provided. 

Database models used in cancer research could be classified according to their 

assumption of an “open world” versus a “closed world”.(111–113) Under a closed-world 

assumption, all information that is not true is considered to be false. Moreover, under a further 

“domain-closure” assumption, no other events are considered except those in the available 

medical record. For example, under the closed-world assumption, if no medical record of 

prostate cancer surgery is found for a given patient, it is assumed that the patient has not had 

prostate cancer surgery. The domain-closure assumption in this example implies that the 
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universe of information about the patient is contained within the medical records, so once those 

records have been reviewed, a data abstractor can determine whether the procedure (the prostate 

cancer surgery in this case) has been performed on this patient. Many case report forms, 

spreadsheets, clinical trials EDC systems, and other flat data models used for clinical trials, 

diagnostic studies, and epidemiologic cohort studies have an implied closed-world assumption. 

An indicator of this assumption is a question like “was surgery performed, yes or no?” or “not 

done” as an allowable value for a response. A closed-world assumption would allow abstractors 

and information processors to determine true negative (TN) values at the point in time that the 

medical records are reviewed, as depicted and described in Figures 6.1 and 6.2. 

An open-world assumption implies that the underlying truth may not be known. Again 

referring to Figures 6.1 and 6.2, an abstractor or algorithm could report on what is documented 

or whether the value in a field was supported in source documentation or not. However, if an 

abstractor or algorithm could not find evidence of a value in source documentation, the truth 

would be “unknown” rather than “not done”, “not present”, etc. 

A typical relational database design for a clinical system with a one-to-many relationship 

between patients and procedures would be more in line with the open-world assumption because 

there would be no record reporting when a procedure was not performed. NLP and information 

retrieval methods are generally trained and evaluated from an open- rather than a closed-world 

assumption. The truth of the underlying disease is considered unknown, and absence of evidence 

in medical documentation is not evidence of absence for a diagnosis or intervention. However, 

individual documents or assessments in a medical record (e.g., a review of systems or pathology 

report) may be dictated from a closed-world perspective, and it may be valuable for data entry 

staff to abstract from a closed-world perspective to track completion of their work. 
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The Caisis clinical data model and similar reusable relational data models are generally 

built with an open-world assumption, and when a study team seeks to migrate information from a 

paper form, REDCap database or spreadsheet to one of these relational models, the closed-world 

questions from those database models do not map cleanly to Caisis and are often a source of 

frustration and misunderstanding. In the Caisis model, we implemented an AbsentEvents table to 

explicitly note the assumed TN values that were captured in forms or flat databases under a 

closed-world assumption. For example, AbsentEvents could record that a lab test was not 

performed on a particular date or that a medication was not given. Because AbsentEvents is just 

another related table in Caisis, to regenerate a closed-world spreadsheet from Caisis would 

require a query or report to join records in the regular table with the associated records in the 

AbsentEvents table. 

Another issue that has come up frequently in Caisis and similar cancer database models is 

the granularity or hierarchical level of a reported result. For example, the pathology findings 

from a prostate biopsy could be reported as “positive” or “negative”, or to be more granular they 

could be reported as “well”, “moderately”, or “poorly” differentiated cells, they could be 

reported as “Gleason sum” of 2 to 10, or the combination of primary and secondary “Gleason 

grade” of 1 to 5 each. Each of these results could be derived from the most granular result - the 

primary and secondary Gleason grades. The difference between these results becomes the 

granularity or level in the hierarchy of cancer grade classification. In the Caisis database model, 

there are different fields for each level of granularity. Other database models (e.g., OMOP, i2b2) 

may take advantage of the hierarchical features of terminologies or ontologies and may only 

store one level of granularity in the database - the most specific - and be able to compute the 

other levels of granularity based by traversing the hierarchy of an associated terminology or 
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ontology. The use of terminologies allows those data models to have fewer fields, but in turn 

they rely more heavily on their associated vocabularies.  

The final underlying concept that I wanted to explain is the concept of data abstraction 

and its relation to natural language processing and computation. The activity of abstracting data 

from medical records into a database can be broken down into a number of distinct mental 

activities: [1] framing the task, [2] information extraction, [3] consolidation or computation to 

transform multiple inputs into one output, and [4] coding and formatting data to desired fields 

and values. 

Framing an abstraction or clinical data processing task entails defining the domain of 

information to be considered, for example, all available pathology documents for patients with a 

breast cancer diagnosis. That scope would be the relevant/documented data as depicted in Figure 

7.1. Framing the task also requires specifying the target values to be retrieved or abstracted from 

the specified relevant source documents. In practice, that would involve defining a data 

dictionary of which fields to abstract, how they are defined, and how they should be coded in an 

output database or form. 

The second activity for both data abstraction and clinical data processing tasks is 

information extraction. This step involves the review of source documents, and the identification 

of words, formats, positioning and other features in those documents that are associated with the 

desired data points to extract or abstract. In NLP, this step is called feature engineering. Features 

are used in manual processes or algorithms to extract information from the source document. In 

clinical data processing, the extracted elements may be returned as multiple hits or in some other 

intermediate data structure. In manual data abstraction, these elements are held in memory or 

possibly as notes on a paper form or screen. 
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The third activity is consolidation and computation from one or more extracted features 

into the desired data elements. For example, if multiple values are found in source documents, 

which one is correct? Which one is from the desired point in time? Which one has the highest 

score, maximum dimension, or worst result? Computed data points may involve functions of two 

or more other data points. Examples of computed data points are “Age at Diagnosis”, “Date of 

First Contact”, “Primary Treatment”, “Cancer Stage”, and “Date of First Recurrence”.  

Finally, the extracted and consolidated or computed results are coded and formatted to 

the desired vocabulary for the fields and values specified in the data dictionary. The 

consolidation of data from sources into desired values and formats may be lossy (i.e. original 

information may be eliminated) or lossless (i.e. all of the original information is retained after 

data consolidation and/or computation) depending on the scope, structure, and vocabulary of the 

destination database model.  

7.6.3 Describe Tradeoffs between Different Modeling Approaches 

Given the increasing volume of biomedical data and the limited resources of most organizations, 

it is impractical to pursue many different approaches to database modeling. Each set of standards 

and structures was designed with a certain perspective and strengths in mind. As with any 

organizational design and management challenge, decisions about foundational structures 

mitigate some issues but generate other issues, which require management. An organization 

should consider their strengths in terms of staff knowledge and experience and their goals and 

sustainable resources before establishing enterprise database structures and incurring costs of 

managing their operations within those structures. Most cancer research organizations will end 

up with a great variety of database models, however they may not be structured or managed for 
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the greatest value to the organization unless they are coordinated under an overall data and 

informatics strategy. 

Figure 7.3 shows examples of how some data storage models are closely aligned with 

user interfaces and analysis or reporting functions. Other data models are designed to align more 

closely with either data entry and management (e.g., Caisis, SEER*DMS) or desired data output 

(e.g., OMOP, i2b2). The Caisis database model was originally designed with a temporal and 

stackable structure to facilitate predictive modeling and algorithm development.(3) The Caisis 

tables are also closely aligned with the organization of data in EMRs and other clinical systems 

such that each clinical system (e.g., pathology, radiology, clinical laboratory, surgery) has a 

corresponding set of related tables in Caisis. A key result of this design is that it maps easily to 

source systems, and thus facilitates the development of data feeds from clinical systems. For 

example, all of the information that would be extracted from a pathology report would go into 

the Caisis pathology tables, and all of the information from radiology systems would go into the 

Caisis diagnostic imaging tables. 

The Caisis data model and others like it (e.g., SEER*DMS, BRIDG) have less overall 

complexity than data warehouse models, which typically amalgamate the schemas of multiple 

source systems. However, these models are more complex than database models designed for 

self-service query and analytics tools (e.g., OMOP, i2b2, CDISC ADaM(114)) and study data 

reporting tools (e.g., CDISC ODM). The Caisis database model makes a good intermediate 

format for clinical data storage and editing, but it is difficult to use and does not perform well as 

an analytics tool. 

There are a plethora of new tools and approaches for big-data management, and it is often 

difficult to assess their value and fit for biomedical research. Most of these tools grew out of the 
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distributed hosting and processing needs of massive data-driven companies like Google, 

Amazon, and Facebook. Relational databases were optimized for transaction processing and 

accounting systems, however their structures are difficult to change quickly or dynamically and 

the processing required to meet all relational database integrity constraints often exceeds the 

value of the processed data. For many big-data companies, a lazier approach to inserts, updates, 

and constraint checking as well as enabling a variety of search and processing functions without 

all of the joins required in a complex relational database model is necessary. 

Big database platforms (e.g., from Amazon Web Services, Cloudera and Hortonworks 

Hadoop, Google, Microsoft Azure) typically include distributed storage, scalable SQL and 

NoSQL databases, and tools for data acquisition, processing, search, and machine learning. For 

clinical and other sensitive data, these companies have begun to offer high-security cloud hosting 

that can allow them to sign HIPAA BAAs and meet HIPAA- and FISMA-level security 

requirements. 

Key-value stores are probably the simplest NoSQL database model. They provide 

distributed storage of data indexed by a key field. This concept of indexed storage is already 

used frequently in clinical systems and biomedical research databases. For example, the Caisis 

database allows users to set pointers (file pathnames) to files associated with any record that are 

then stored on a file server. EAV models, which are similar to key-value stores but without 

distributed storage, can also be implemented within a relational database. Big-data key-value 

stores are optimized for distributed storage and distributed processing platforms like Hadoop 

HDFS or Amazon S3. Amazon’s Dynamo key-value store design was on the leading edge of 

development of NoSQL database platforms.(102,115) 
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Beyond relational database stores, document stores allow for further data complexity. For 

example, the Javascript Object Notation (JSON) documents in a MongoDB database can store 

nested and complex data structures.(116) They can also be indexed and queried by attributes 

within those JSON document structures. However, this allowance for complexity comes at a cost 

in terms of query performance and burden on the knowledge and skill of application or 

middleware programmers to implement queries and maintain database integrity. 

Column store databases add complexity to key-value stores, and many are derived from 

Google BigTable.(117) Basically, column stores can provide collections of key-value stores 

(columns) that point back to rows. Unlike a relational database, each row does not need the same 

sets or numbers of columns, and the “primary keys” are the values in columns. Column store 

databases are efficient in terms of writes, can handle sparse and irregular records, and are 

optimized for queries. They could be considered an alternative to analytic database models and 

data marts (e.g., OLAP cubes) and are potentially well suited for managing and querying high-

dimensional data like genomic assays.(118) 

Graph stores like Neo4j are specialized tools for managing graphs or triple stores. They 

are useful for applications that are network-graph centric, like social networks or predictive 

modeling, but may be less useful as a generalized database model for cancer research. 

In addition to the NoSQL database systems, many relational database vendors have built 

NoSQL features into their platforms. For example, some vendors have implemented table 

indexing that is more in line with a column store approach and have used JSON or XML data 

types for the storage of documents as values in text fields. 

Overall, these NoSQL database models and systems offer options for storing massive 

amounts of data with flexible or unknown schemas that would not be practical to load into 
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relational databases. They also offer alternatives to the solutions that have previously been 

hacked together in SQL databases, such as pointers to files, EAV databases, document storage in 

text fields, OLAP cubes, and star schema models. 

7.7 Discussion 

7.7.1 Lessons Learned about Data Modeling Approaches 

In context, the rise of NoSQL and database models can be seen as a natural evolution of 

technology rather than a big-data revolution (see Figure 7.5).(119) With the pace and demands of 

cancer research, investigators may have little tolerance for database models that impede their 

work. The lure of the flat, simple spreadsheet, REDCap, or custom database model is always 

present. 

The depth and complexity of highly normalized relational data models with many tables 

such as Caisis can make navigation and entry of detailed data tedious. However, there are 

benefits to the Caisis relational database structure in that it maps well to clinical source systems 

and has a functional and customizable web-based data entry, review, and editing interface. The 

Caisis database model becomes challenging to use when you have to write a query that crosses 

many details nested in subtables (e.g., determining extent of disease, which could have findings 

under pathology, diagnostic imaging, and potentially other tables). As shown in Figure 7.6, 

queries across findings from different clinical source systems and stored in subtables may require 

multiple joins. Facilitating these types of queries is one reason that some cancer research 

databases create high-level tables to organize data around cases, tumor sites, treatments, or 

studies. Or, they may flatten the database altogether. However, these structural approaches 

reduce the reusability of the database models across projects and make data feeds from clinical 
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source systems more complicated to manage. A significant shortcoming of relational database 

models like Caisis is the amount of knowledge represented in their tables and their relationships. 

Querying and integrating that knowledge requires considerable technical and domain expertise. 

 

 

Figure 7.5. Natural evolution of database technology, adapted from Kalakota (119) 
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Figure 7.6. Normalized relational database model may be difficult to query and require multiple 
joins to integrate data across subtables. 

 
One approach to the difficulty in querying a relational model like Caisis is to develop a 

complementary analytic data model, such as a star schema or column store. Many examples of 

analytic data models for biomedical research have emerged over the last decade, including i2b2 

and OMOP. These models tend to have fewer tables and relationships than models like Caisis, 

and they embed much of the complexity of the data in terminologies or ontologies rather than in 

multiple tables, fields, and relationships. Figures 6.7 show the simplification of the analytic data 

model and the shifting of managing complexity to a terminology or ontology (as used by i2b2) 

compared to the normalized relational database model depicted in Figure 7.6. Figure 7.8 shows 

an alternative approach to a simplified analysis data model used by OMOP. Importing data into 

analytic models often requires extensive mapping and transformation, and querying these models 
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requires navigating the associated terminologies. They have proven quite useful for facilitating 

self-service cohort selection queries using a relatively narrow set of parameters, but they do not 

appear to scale well for data of high volume or variety. 

 

 

Figure 7.7. Data complexity in ontology or terminology and start schema (e.g., i2b2). 
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Figure 7.8. Data complexity in the field names and relationships between tables (e.g., OMOP). 

 

The majority of clinical data still comes from text documents, and long text fields or 

notes tend to be distributed broadly and nested deeply in relational database designs. The ability 

to conduct full-text searching across both documents and databases details remains attractive. 

Full-text searching by querying across the lowest level of details in a relational model like Caisis 

could involve numerous joins - and could be mind-numbingly difficult to write in SQL. 

However, there are several options to facilitate search through documents or text fields. Most 

mature relational database management systems offer built-in features for indexing and full-text 

search. Another more powerful option for full-text search could be to employ a full-text indexing 

and search tool like Lucene (a search engine) or Solr (an application that uses and extends the 

Lucene search engine) to crawl documents stored in a relational database and facilitate search 

and retrieval. 

Figure 7.9 shows an alternative approach to modeling complex clinical data from 

documents like pathology reports, still maintaining the alignment with clinical source systems, 

but allowing the flexibility for variations in data structure and handling storage, query, and full-
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text search of documents. A model like Caisis could be simplified by allowing the high-level 

entities like diagnostic imaging and pathology to include JSON documents rather than modeling 

out anticipated fields and relationships in a normalized relational database approach. A database 

model like this could accommodate data structure changes without redesigning the database and 

could allow for full-text indexing and search functionality. 

 

 

Figure 7.9. Data complexity in structured documents (e.g., MongoDB or JSON features in 
relational databases). 

 

One of the downsides of a document store oriented database as depicted in Figure 7.9 is 

the potential lack of a mature, domain-specific user interface for data entry, review, and editing. 

A software engineer could write custom data entry, review, and editing tools, but this could 

become expensive to develop and to support over time. The user interface tools, configuration 

tools, and ease of customization of mature systems like Caisis or SEER*DMS makes them an 

attractive stepping stone in the overall evolution of database models and systems. The Caisis or 
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SEER*DMS databases have stable and extensible user interfaces for viewing, adding, and 

editing records in their respective data models. So, although querying these systems may be 

difficult because of the join complexity depicted in Figure 7.6, having a user interface for data 

entry and editing make these solutions attractive for manual data acquisition and processing. If a 

group decided to adopt a similar relational database model, like BRIDG, or to develop a custom 

database model for their disease or project, they would also need to develop and manage the 

corresponding user interfaces. If a configurable tool for data abstraction and information 

processing could be developed and plugged into any database model (e.g., relational, column, 

store, document store, hybrid), it would likely be more affordable and less risky for research 

groups and centers to choose more optimal database models. 

EAV models and key-value stores (e.g., pointers to files on a network file server) have 

been implemented in relational databases. However, since relational databases were not designed 

to efficiently store and query EAV and key-value data stores, they may perform poorly or be 

difficult to manage at scale. With EAV and key-value models, it may be challenging to represent 

and query different hierarchical groupings or nestings of data (e.g., records in fields or 

multivalued arrays in fields). EAV models or key-value stores may be useful as an extension to 

an existing relational database model for the case where there could be many sparsely populated 

fields. EAV models may also be useful in generating audit logs for specific fields, as in 

SEER*DMS. In the Caisis model, an EAV model is used to allow virtual fields to be configured 

within the system admin tool as additions to any existing table. This feature reduces the need for 

structural changes to relational database tables, but has proven cumbersome to manage when 

querying the data or performing structural upgrades to the database. It is also easy to overlook 

EAV extensions to tables when users go directly to the database to write queries. Transforming 
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data into pivoted and denormalized views or an analytic data model for querying could help with 

the usability of EAV models used for data storage. Also, the performance of EAV views could 

become slow because of the limited ability to add table- and field-specific indexing. Field and 

record integrity checking would have to be handled at the application level for EAV structures 

and key-value stores since they cannot rely on native relational database constraints, indexes, and 

data types. For distributed and flexible storage of individual values or objects, a key-value store 

database could be a useful adjunct to a relational database model, but probably not as a complete 

cancer database solution.  

Document stores may be most useful when the data element structures are complex and 

variable, with nesting or relational characteristics rather than more array-like structures. A 

primary example of these structures in cancer research is clinical data from narrative documents. 

Patient histories do not fit well into high-dimensional arrays. A document store could be suitable 

to facilitate data abstraction, document annotation, clinical data processing, and other 

information-processing tasks. Document storage could be managed in specialized databases such 

as MongoDB or by using emerging JSON or XML document store extensions to SQL databases. 

When storing JSON in a relational database field or in a document store, values within the 

document structure may need to be indexed for reasonable search and query performance. 

Otherwise, finding data points within documents would require a developer to implement nested 

looping in the query processor or the application user interfaces. 

Column store database models may be useful for query optimization for high-

dimensional but roughly tabular or cubed data. In cancer research, any of the high-dimensional 

array data from molecular profiling would fit well into a column store. Because of the indexing 

and simplicity of querying values within each column, a column store could be optimized for 
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querying for specific tumor mutations. A column store could also be useful for storing and 

querying time series sensor data (e.g., from wearable devices). Column stores tend to have lower 

overhead and latency for writing than relational databases. Finally, a column store could be a 

useful addition to or substitute for a data mart or an analytical data model, particularly those that 

take the form of cubes or star schemas (e.g., OLAP, i2b2). 

Graph databases and triple stores could be useful for storing and querying ontologies, 

vocabularies, or for other types of knowledge representation where the graph structure is 

particularly useful to facilitate computation. For example, developing predictive models for 

cancer progression or treatment outcomes may be facilitated through the development and 

population of graph databases. Public and commercially available demographic, environmental, 

and consumer data, which may contain different constellations of data points related to each 

patient, may also fit well within a graph database. Because relatively few staff are comfortable 

with graphical models, graph databases, and the tools to facilitate graph-based queries, these 

database models are probably not well suited to the generalized storage of cancer data. 

The integration and management of vocabulary with database models is fraught with 

challenges, particularly for the models that rely heavily on terminologies or ontologies for 

knowledge representation, navigation and querying (e.g., i2b2, OMOP). The numeric coding of 

values (e.g., 1=”male”, 2=”female”) and storage of the codes in database models is still quite 

prevalent in clinical and epidemiologic studies. However, since each study may have different 

coding rules, it is difficult to develop a reusable database around coded values. Vocabulary 

management systems such as the one in Caisis allow for the configuration and assignment of 

synonyms, parent or child records, and other attributes associated with terms. So, for example, a 

code of “1” could be assigned to the “male” term for one study, and a code of “2” could be 



 

 

162 
assigned to “male” for another study. Queries or data access tools would have to map the correct 

codes to be reusable across studies. This may be difficult to implement in practice, so many 

reusable databases like Caisis have been designed with minimal use of numeric codes with the 

burden of recoding managed by study staff or centralized data delivery staff. 

Sometimes, terminologies may have restrictions on their distribution and use (e.g., 

SNOMED-CT and AJCC have licensing requirements, but LOINC and UICC are less 

restrictive). The distribution and licensing terms of vocabularies may become an issue in 

environments where many cancer centers participate in data sharing for national or international 

collaborations. Even a highly curated and suitable terminology may lose to a terminology that is 

open-source and freely distributed, or is at least available in terms that match the anticipated 

funding, scope, scalability, and portability goals of a database. 

Notions of data quality and underlying open- or closed-world assumptions find their way 

into database implementations and management. Some awareness of and agreement on a 

definition of data quality between study and IT staff may reduce - or at least provide a 

framework for - discussion when these issues arise. 

 

Huser and Cimino(120) recommend the following desiderata for an integrated data repository: 

● Single patient identifier or master patient index 

● An information model that is sufficiently generic but extensible so that it incorporates 

new data sources but remain stable over time 

● Support for the nesting of facts (e.g., collection of data from each specimen in a 

pathology report, or each finding in a radiology report) 

● Semantic integration and terminology model 
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● Documentation and metadata (e.g., data dictionaries) 

● Provenance tracking (or capturing the historical evolution of data in the repository) 

● Management of protected health information 

 

Tracking and mapping to a single patient identifier may be handled in a relational 

database system because of the importance of consistency. The remainder of the desiderata 

above implies that there may be no ideal single platform solution. Rather, hybrid database 

models and systems to support hybrid models will most likely be required to advance cancer 

research and precision medicine initiatives. 

A core generic and standardized database model may be best implemented in a relational 

database, however to be extensible and support the nesting of facts, it may call for the application 

of NoSQL models such as a column stores for high-dimensional genomic data and a document 

stores for complex clinical data derived from medical records. Further, a terminology model or 

database to facilitate predictive analytics may be best managed in a graph database for the 

optimization of navigation and queries using the knowledge represented in trees and graphs. 

No matter which database models and platforms are used, the careful design of security 

boundaries, constraints to PHI, and logging to document provenance of data points will be 

important foundational requirements. 

7.7.2 Future Research/Next Steps 

As big-data requirements and use cases for hybrid database models to support research are 

growing, it will be important to conduct pilot studies to evaluate the performance of various data 

stores and hybrid database models. 
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The performance and usability of document stores (e.g., MongoDB) versus embedding 

documents (e.g., JSON) in columns in a relational database will need to be evaluated for clinical 

data management. The performance evaluation should include write and read performance, 

indexing and optimization requirements, full-text search capabilities, and technical skills and 

work required for implementation and use. 

Analytic database models (e.g., i2b2, OMOP) should be evaluated compared to column 

stores for query performance, ease of use, transformations required to load, and knowledge and 

technical skills required for implementation. 

Because the lack of configurable and easily customized tools for data abstraction and 

editing is a likely barrier to the adoption of some database models, there is a need to advance 

data abstraction and clinical data processing pipeline tools as flexible, extensible, and portable 

interfaces for hybrid database models. 

7.8 Conclusion 

No single database model clearly meets the requirements of managing clinical and molecular 

data for biomedical research. Many organizations will need conceptual and practical guidance to 

better understand and make decisions about system requirements and design. 

This chapter and the following recommendations should be useful guides for thinking 

about, discussing, and planning database models for cancer: 

1. Identify each incoming data type and estimate its volume, variety, velocity, veracity, and 

security requirements. As big-data technologies are evolving rapidly, it may not make 

sense to invest or plan more than a couple years ahead of projected growth. 
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2. Identify and estimate the ways in which these data will need to be manipulated, queried, 

or visualized to support research and operations.  

3. Determine how database functions and contents will be evaluated in terms of 

performance and data quality. 

4. Identify candidate database model approaches, most of which are likely to be hybrid 

models. High-dimensional array data like genomics assays and sensor data may perform 

well in column store like Cassandra. Clinical data may perform well in a combination 

relational database and document store for acquisition, processing, and storage. For high-

performance data exploration and visualization, a column store may offer the best 

performance for both clinical and high-dimensional data. However, if the database must 

be used to support clinical decision-making, the latency and consistency of returned 

results must be factored into the platform selection, database design, and configuration. 

5. Conduct write and read simulations using different approaches to confirm hypotheses 

regarding performance and assess the time required to implement and manage each 

structural approach. Each database model implemented will require staff time and 

resources for mapping and recoding. 

6. Consider implementing a data landing area that is within a high-security environment, but 

allows a variety of incoming data formats with minimal upfront mapping and 

transformation, and allows for the linkage and classification of incoming data. Most 

organizations will need to acquire and process an increasing volume and variety of data 

sources over time. 
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7. Consider implementing a flexible and extensible pipeline for manual data abstraction and 

clinical data processing to transform data from a landing area or primary database model 

into increasingly usable data structures and analytic models. 

8. The primary database model for data entry, editing, and storage should be reusable across 

multiple projects in order to recoup the costs of implementation and operation. It should 

be lossless in terms of data and extensible so that planned and unplanned data can be 

reliably acquired, stored, and accessed. Also, given the prevalence and persistence of flat 

models with closed-world assumptions, the primary database model should provide a 

simple way to document absent events or absence of evidence. The primary database 

model could be a based around retrospective research (e.g., Caisis), cancer surveillance 

(e.g., SEER*DMS) or clinical trials. If organized around clinical trials, the associated 

EDC systems could export in CDISC ODM format that from which SDTM and then 

ADaM can be derived, or adhere closely to CDISC CDASH guidelines, which map to 

SDTM format for required reporting.(121–123) 

9. Analytic database model(s) or column stores may be implemented depending on the 

anticipated usage or participation in research networks. Analytic database models may be 

somewhat lossy or narrow, may require complex mapping and transformation to 

populate, and may have consistency issues when querying. For research and statistical 

modeling, small random errors in data points caused by inconsistencies or latencies in 

analytic models or big NoSQL database models may be acceptable. However, if 

implementing precision medicine for an individual patient, for example in a clinical 

decision support tool based on molecular data, consistency and low latency would need to 

be prioritized, which would affect the performance of some database models. Analytic 
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database models for specific analyses (e.g., graph database for predictive modeling) or 

reporting requirements (e.g., CDISC SDTM) should be loaded from a primary database 

model. However, because they are generally not reusable for a variety of different 

projects, they should not be chosen as primary database models.  

10. Assess the current and attainable domain expertise and technical skills of staff. The 

current database knowledge and technical skills of staff, and the ability to hire, train, and 

retain talent, should always be factors in the planning of database models. There is a 

tremendous learning curve and responsibility on programmers to implement reliable and 

sustainable hybrid database models. 
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7.10 Synthesis 

Chapter 7 explored some of the issues with database models to support cancer research, 

compared traditional database model approaches that have been implemented, and introduced 

new big-data tools that may offer performance and usability improvements to cancer research 

data systems. Sections 7.2 to 7.8 addressed my Chapter 7 question: how can we best characterize 

and compare database models and big-data technologies to inform a sensible strategy for cancer 

research database design and technology? Various common database models were explored and 
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compared, from traditional relational models like Caisis to analytic models like i2b2 and OMOP 

and to big-data technologies like column and document stores. 

This work ties back to the overarching question for this dissertation (how can we improve 

access to clinical and related data about cancer patients for research?) because access to data may 

be facilitated or hindered by the database models and database technologies selected for 

implementation. Without a thoughtful strategy and design of underlying data models, processing 

of and access to clinical data through informatics tools can be impaired. 

This work also ties back to the overall hypothesis that there are new tools and methods 

from biomedical informatics that could improve the availability of data for cancer research if 

they were applied thoughtfully and strategically. A number of big-data technologies could be 

valuable augmentations of existing databases that support cancer research. 

The aim of this chapter was to develop, model, and assess database frameworks for 

cancer. This data modeling chapter is informed by all of Chapters 2–6. The Caisis relational 

database model described in Chapter 2 was useful for prospective data entry, but becomes 

complex for queries and supporting analysis tools without transformation. The rise of i2b2 and 

REDCap described in Chapter 3 is related to the need for a database model designed to support 

analytics. Although the Caisis model was selected as a starting point for HIDRA described in 

Chapter 4, it may have limited ability to support the Argos self-service query tool. The clinical 

data processing and abstraction pipeline described in Chapter 6 would be tedious to expand if it 

continued to rely on the Caisis database model and other traditional relational models. 

Although the scalability and flexibility needs at a single cancer center may justify the use 

of new big-data tools and hybrid database models described in Chapter 7, for clinical data, the 

big-data challenges of cancer registries and cancer surveillance are orders of magnitude greater 
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than the experience at any single cancer center. Chapter 8 describes the cancer surveillance data 

and information-processing challenges and aims to determine what informatics tools and 

methods have been applied in that space and what the opportunities might be to apply lessons 

learned from the previous chapters in this dissertation. 
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Chapter 8 Informatics and Cancer Surveillance: Literature Review and 

Vision 

8.1 Context 

This chapter is my exploration of Aim 4, to characterize the big-data needs and informatics 

opportunities for cancer surveillance at the national level. To explore this aim I answer the 

questions for Chapter 8: What informatics tools and methods have already been applied 

successfully in the cancer surveillance domain? What are the current and coming opportunities 

for applying or developing new tools and methods for advancing biomedical informatics in this 

domain? 

Answering these questions helps inform the overall research question: how can we 

improve access to clinical and related data about cancer patients for research? Before this 

research, I had encountered only anecdotal reports of the lack of informatics research 

applications in cancer surveillance. This literature review provides at least a baseline account of 

the informatics tools and methods applied in this domain. The literature reviewed provides some 

indication of the current and coming opportunities for applying and advancing biomedical 

informatics, NLP, and machine learning within cancer registries and cancer surveillance. 

Aim 4 is also a logical next step to test my hypothesis that there are new tools and 

methods from biomedical informatics that could improve the availability of data for cancer 

research if they were applied thoughtfully and strategically. Many research projects and 

databases at cancer centers rely on cancer registries for basic diagnosis, treatment, and outcomes 

data about their patient population, and they may integrate cancer registry data into larger data 

repositories like HIDRA described in Chapter 4. Improving the registry databases with 
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informatics tools and methods could have far-reaching effects for the cancer research 

community. 

Aim 4 (to characterize the big-data needs and informatics opportunities for cancer 

surveillance at the national level) flows from Aim 3 (to develop, model, and assess database 

frameworks for cancer) because of the scale issue. The big-data scale challenges in cancer 

surveillance are orders of magnitude greater than those of any single cancer center. Database 

models that may work well in a single center are likely to fail at the scale of national cancer 

surveillance, and implementing big-data technologies like distributed column and document 

stores becomes more urgent and valuable in this context. 

Aim 4 also flows from Aim 1 (to develop and assess a modern integrated data platform to 

support a wide variety of cancer research) and Aim 2 (to develop and characterize a clinical data 

processing pipeline that is scalable to the cancer center enterprise level, is well-supported and 

sustainable, and can complement or streamline existing manual data abstraction and information-

processing activities) because all of the legal and IRB issues related to a data sharing and 

governance framework as well as self-service data access described for Aim 1 (Chapters 4–5, 

development and assessment of HIDRA) and the clinical data processing pipeline described in 

Chapter 6 (Aim 2) are not only applicable but essential for the acquisition, processing, and 

dissemination of cancer registry data described here in Chapter 8 (Aim 4). 

I performed the literature review and wrote this chapter. The co-authors provided feedback on 

Figure 8.1 and agreed to be co-authors when this paper is edited and submitted for publication. 

This paper will likely be submitted to the Journal of the National Cancer Institute, Journal or 

Registry Management, or similar publication, thus the title is repeated and the authors are listed 
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below. Because this was written as a standalone paper I have included a separate 

acknowledgements section.  
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8.2 Abstract 

This chapter describes cancer surveillance, its current data collection and information-processing 

activities, and its big-data challenges. This introduction is followed by a literature review of 

informatics tools and methods that have been applied to cancer registries and concludes with the 

identification of opportunities for further research and the application of existing adjacent 

research to the challenges of cancer registries and surveillance. A total of 683 articles were 

retrieved through searches of PubMed, Google Scholar, and a Google internet search. Of these 

articles retrieved, 66 articles were relevant and were categorized into common functional themes 

for cancer registration. Applicable NLP and machine-learning research was found regarding the 

identification of reportable cancer cases and a handful of other examples of applied informatics 

for cancer surveillance. As expected and anecdotally reported, there is a dearth of and 

opportunity for informatics, NLP, and machine-learning research in the domain of cancer 

surveillance and cancer registries. 
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8.3 Background and Rationale 

Cancer surveillance is the systematic collection and reporting of information about the diagnosis 

and treatment of cancer cases in a population. Data that are collected for cancer surveillance are 

used for research, public health planning, and the assessment of the effects of policies and 

improvements in healthcare. 

The reporting of cases is mandated at the state level, collected at hospitals and a variety 

of other healthcare-related facilities, and is consolidated at state or regional central cancer 

registries, illustrated in Figure 8.1. In 1956, the American College of Surgeons (ACS) mandated 

the operation of hospital registries for its Commission on Cancer (CoC) accredited cancer 

programs.(124) Before the National Cancer Act of 1971, only a few central cancer registries 

were operating: Connecticut (1935), New York (1940), Hawaii (1960), New Mexico (1966), 

Wyoming (1967), Kansas and Colorado (1968), Idaho (1969), and Los Angeles and Virginia 

(1970). Most of the current central registries became operational from the 1970s through the 

1990s.(2) 

Cancer surveillance data are aggregated at the national level by three programs. The 

Surveillance, Epidemiology and End Results (SEER) program of the NCI was initiated in 1973 

to advance cancer surveillance. The SEER program funds population-based data collection and 

reporting for 30% of the US population, and it makes these data available for a wide variety of 

research.(125) In the United States, approximately 1500 CoC-accredited hospitals (out of the 

more than 5,000 registered hospitals in the United States) currently contribute data to the 

National Cancer Data Base (NCDB), which was initiated in 1989 and is funded by both ACS and 

the American Cancer Society.(126) In 1992, the Center for Disease Control (CDC) initiated the 

National Program of Cancer Registries (NPCR) to improve the data quality and population 



 

 

175 
coverage of data collection and reporting for state cancer registries and to establish registries in 

10 states that previously had no state registry.  

 
Figure 8.1. Flow of cancer case reporting, from hospitals, labs, and other healthcare facilities, to 
central cancer registries and to aggregated databases. Only Commission on Cancer (CoC) 
accredited hospitals report to NCDB (e.g., UW, SCCA, and University of Kentucky Healthcare). 
Many other community hospitals and facilities report to central registries. Some SEER-funded 
registries (e.g., Seattle, Detroit) cover regional or special populations rather than entire state 
populations like the Kentucky SEER registry. De-identified data are provided to NCI from 
SEER-funded registries, to NPCR from CDC-funded registries, and to NAACCR Cancer in 
North America (CINA) from NAACCR-certified registries. 

 
The primary data collection activities for cancer surveillance typically happen within 

hospital cancer registries or through cancer cases that are reported directly from diagnostic and 

treatment facilities to central cancer registries. Data about patients with cancer and their 

respective cancer diagnoses, treatments, and survival are generally abstracted by registry staff 
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who access hospital medical records and enter information into commercial or open-source 

tumor registry software (e.g., Oncolog, Abstract Plus, C/NET, SEER*Abs)(83). The data are 

abstracted from medical records and entered into software that can output NAACCR abstract 

record format.(127) Internally these data abstraction software tools use a variety of different 

database models. 

Central cancer registries use additional software and operations to consolidate reports 

from multiple hospital registries, cancer diagnostic or treatment facilities, and laboratories. Many 

of the NCI SEER-funded central registries use the SEER*DMS software(106), and many of the 

CDC NPCR-funded registries use the Registry Plus suite of tools.(128) These tools for central 

registries aim to facilitate quality control of incoming data, editing and consolidation activities, 

and reporting. 

Overall, the current process for cancer surveillance has a long history and relies heavily 

on manual data abstraction from medical records, manual consolidation and error checking, and 

manual data quality control. Information processing relies on expert cancer registrars, who are 

often highly trained, experienced, and certified.(129) With increased funding from SEER and 

CDC, central registries have worked to improve data quality with a focus on accuracy, de-

duplication of reports, and improved population coverage. 

Because central cancer registries’ mandates for reporting cases and authority to access 

patient identifiers lies at the state level, finding and resolving duplicate reports of cancer cases 

across different states remains an ongoing challenge. Florida and New York state registries 

recently piloted the use of the National Death Index (NDI) to find and resolve duplicate 

reports.(130) 
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With current funding, practices and infrastructure, hospital registries, central registries, 

and national programs face tremendous challenges to sustain high-quality and up-to-date 

operations.(131,132) As cancer prevention, diagnosis, and treatments become more successful, 

the rates of cancer-related deaths are declining, and patients with cancer may have more 

complicated medical histories that involve multiple cycles of diagnosis, treatment, response to 

treatment, remission, and recurrence. Each of these episodes of healthcare incurs costs to patients 

and payers, and may be associated with various side effects and complications. The increasing 

financial and quality-of-life impact of cancer as a chronic disease can be a significant burden on 

patients and society. 

Originally, cancer registries focused data collection on primary diagnosis, primary 

treatment, and survival outcomes. However, to be relevant for the current and next generation of 

cancer research, the planning of healthcare policy, and funding to support precision medicine, 

cancer registries must expand the volume and variety of data collection to include detailed 

patient timelines with potentially multiple rounds of care. In addition to new types of data (e.g., 

molecular biomarker results) and more granular data (e.g., details of medical therapies) that are 

becoming available in medical records, researchers (and thus central cancer registries) should 

have access to claims data to study costs of care, to pharmacy data, and to public and 

commercially available demographic, environmental, and consumer data that expand the view of 

cancer research to include factors that affect the development of cancer in populations and the 

factors that affect the outcomes of healthcare interventions, including financial outcomes. 

The data challenges facing cancer registries and the SEER program meet common 

definitions of big data: increasing volume, variety, velocity, and veracity of data.(133,134) There 

are increases in the volume and variety of data needed to support research. Improving the 
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timeliness (velocity) of data collection, information processing, and reporting of or access to data 

is incredibly important to support timely research and public health planning. The quality 

(veracity) of data will always be scrutinized by investigators and will affect the perceived 

validity and usefulness of cancer registries. Finally, assembling big data about patients with 

cancer incurs some risks to patient privacy and requires investment in constantly improving 

technical and operational security controls. To meet the big-data challenges and mitigate the 

associated risks with finite resources will require rethinking and reinventing the cancer registry 

data supply chain. 

8.4 Objective 

Informatics tools and methods such as clinical NLP, machine learning, workflow and interface 

design, security, and database design may provide valuable approaches to the development of the 

next generation of cancer surveillance. The goals of this work were to [1] search the recent 

literature of informatics for cancer registries, [2] to identify key insights and ideas for application 

of informatics in this domain, and [3] to articulate a vision for further informatics research and 

development to advance cancer registries and cancer surveillance.  

8.5 Methods 

To develop a search methodology for informatics and cancer surveillance, we explored MeSH 

terms and the Medline database for terms to identify cancer registries and relevant informatics 

topics. Because in our experience we have not seen much published research on applied 

informatics for cancer registries, we prioritized recall to retrieve the broadest set of potentially 

useful articles. Also, because of the tremendous changes in biomedical informatics tools and 
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methods over time, especially the dramatic rise of NLP and machine learning in the biomedical 

literature over the last decade, we limited the retrieval of articles over the last ten years, from 

2005 - 2016. We also limited the search to English language articles. 

A search term strategy was developed using both MeSH headings and other terms. For 

the retrieval of PubMed-indexed articles related to cancer registries, the (“Registries”[mh] AND 

“Neoplasms”[mh]) AND “SEER Program”[mh] searches with MeSH subject headings missed 

numerous pertinent articles and returned many irrelevant articles when compared to retrieval 

using cancer registry specific terms listed in Table 8.1. 
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Table 8.1. Cancer registry search terms explored in PubMed. From Feb 7, 2016. 

 Search Term Term by Itself Additional Items Total Items 

"cancer registry" 13,065 12,983 12,983 

"SEER" 6,639 5,962 18,945 

"cancer registries" 3,656 2,268 21,213 

"tumor registry" 2,370 2,027 23,240 

"cancer register" 713 651 23,891 

"National Cancer Data Base" 494 393 24,284 

"tumor registries" 405 271 24,555 

"National Cancer Database" 269 186 24,741 

"tumor register" 47 37 24778 

"tumour registries" 41 33 24811 

"tumour register" 19 15 24826 

"NCDB" 253 14 24840 

 

The “SEER” search term by itself did not miss any of the 4,681 “SEER Program”[mh] 

tagged articles. However, the combined queries in Table 8.1 missed 8,932 of the 20,759 articles 

tagged with "Neoplasms"[mh] AND "Registries"[mh] MeSH headings. “NPCR” returned mostly 

false-positive hits, and “National Program of Cancer Registries” did not yield additional results 

because the “Cancer Registries” term was already searched. Most of the articles returned from 

the “register” term came from the Swedish National Prostate Cancer Register (NPCR), but were 

included for completeness. 

The most comprehensive search for cancer registry related articles in Medline was:  
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(("cancer" OR "tumor" OR "tumour" or “Neoplasms”[mh]) AND ("registry" OR "registries" OR 

"register" or “Registries”[mh]) OR "SEER" OR "National Cancer Data Base" OR "National 

Cancer Database" OR "NCDB") AND 2005:2016[dp] AND English[la] 

This search returned 28,074 articles on Feb 7, 2016. 

For informatics research applicable to cancer registries, the MeSH database was searched 

to identify indexed concepts, which were tested individually and in combination (see Table 8.2). 

 

Table 8.2. Summary of informatics articles retrieved by individual terms and combined. 

Search Term Term by Itself Additional Items Total Items 

"Algorithms"[mh] 233,006 354 354 

“Software”[mh] 120,141 121 475 

“Computer 
Systems”[mh] 

146,734 113 588 

“Systems 
Analysis”[mh] 

38,427 44 632 

"Informatics"[tiab] 9,435 135 667 

“Natural Language 
Processing”[mh] 

2,847 0 667 

"Computer 
Security"[mh] 

5,805 6 673 

"Informatics"[ot] 986 0 673 

“Automatic Data 
Processing”[mh] 

13,310 1 false positive 673 

"big data" 1,525 10 683 
 

Because “Algorithms” is a parent term of “Natural Language Processing” in MeSH and 

returned all of the NLP-related articles, “natural language processing” was not used in the query. 



 

 

182 
The combined search for informatics research applicable to cancer registries was: 

("big data" OR "Computer Security"[mh] OR "Informatics"[tiab] OR “Systems Analysis”[mh] 

OR “Computer Systems”[mh] OR “Software”[mh] OR "Algorithms"[mh])) 

When combined with the cancer registry query above, this search returned 683 Medline 

articles on February 7, 2016. 

To supplement the automated search of Medline, additional manual search was 

performed for cited papers, papers and authors known by reputation, and papers indexed on the 

internet. The manual search was not restricted to the medical domain or to a specified time 

period. To search the internet we used the same terms as for the literature search. The following 

query was created for the supplementary internet search using Google: ("big data" OR 

"Computer Security" OR "Informatics" OR “Systems Analysis” OR “Computer Systems” OR 

“Software” OR "Algorithms") (("cancer" OR "tumor" OR "tumour") ("registry" OR "registries" 

OR "register") OR "SEER" OR "National Cancer Data Base" OR "National Cancer Database" 

OR "NCDB")). Google search filters were set to the date range 2005–2016 (after:2005/01/01) 

and English language. For Google Scholar, the query had to be shortened to: ("informatics" OR 

"natural language processing" OR "automation") (("cancer" OR "tumor" OR "tumour") 

("registry" OR "registries" OR "register") OR "SEER" OR “NCDB”). The 2005–2016 date range 

was used with Google Scholar as well, and patents were excluded. 

The top 250 hits from both internet (Google) and Google Scholar searches were reviewed 

to identify additional pertinent articles. Only a couple additional relevant articles were found. 

Papers were considered relevant if they described the application of NLP or other 

informatics tools and methods to improve the acquisition and processing of cancer registry data 

or to automate operations of cancer registries. Articles that dealt with analysis of registry data or 
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tools and methods for data analysis were not considered relevant for this review. From anecdotal 

reports and our sense of this domain, we hypothesized that relative to the informatics problems 

and opportunities for clinical data processing and machine learning to improve cancer registries, 

there would be few publications of modern informatics tools and methods to registry operations. 

The search process was therefore designed and anticipated to have the highest recall (sensitivity) 

possible, but most likely very low precision (positive predictive value). 

After filtering out nonrelevant papers, the selected literature was grouped into common 

themes that would likely be at least somewhat familiar to informatics researchers and the cancer 

surveillance community. Then, each theme-oriented set of papers was reviewed. I took notes 

related to the informatics tools or methods applied and the results. These notes were then 

summarized into one results section per theme (the subsections of 8.6 below). 

Finally, based on the background that described the challenges in cancer surveillance and 

based on the findings described in section 8.6 below, I describe a vision for further informatics 

research and development to advance cancer registries and cancer surveillance. 

8.6 Results 

Overall, this review confirmed anecdotal reports and our sense that there would be a dearth of 

applied informatics, NLP, and machine-learning research for cancer registries and surveillance. 

8.6.1 False Positives and Exclusions 

Of the 685 articles retrieved from PubMed and Google, 220 false positives dealt with the 

analysis of registry data. These were mostly retrieved because of the inclusion of the 

"Algorithms" MeSH term. Although not the topic of this paper, the number of published analyses 

based on registry data indicates the importance of cancer registries to research. A total of 86 
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articles dealt with image registration for radiologic and radiation oncology studies. Although 

imaging-related articles could have been filtered out from the queries, they were included in 

order to potentially identify any articles about the use of radiology reports in cancer registries 

(e.g., to assess progression and recurrence of cancer). 

A total of 57 articles were related to disease-specific registries, including rare diseases 

and conditions or exposures that may be risk factors related to the development of cancer. A total 

of 54 articles focused on registries to facilitate the enrollment of patients to studies or clinical 

trials. There were 24 articles focused on procedure- or treatment-specific registries (e.g., bone 

marrow transplant, gynecologic surgery quality, mammography, robotic surgery). The search 

identified 21 articles that used cancer registries for identification of participants for a study. A 

total of 13 articles focused on registries of screening for cancer or follow-up of cancer survivors. 

Ten articles were from developing disease-focused repositories that incorporated cancer registry 

data. Two articles were about biologics registries, and 1 described an immunization registry. 

There were 5 registry overview papers that merely mentioned informatics, 4 articles on the value 

of registry data and guidelines for use for research, and 13 articles on metadata registries. Ten of 

the informatics methods articles retrieved by the "Algorithms" search term dealt with quality 

improvement or the imputation of missing values. A total of 69 articles were otherwise not 

relevant because of misclassification in Medline or only incidental mention of registries and 

informatics search terms. On review of their abstracts, 40 additional articles were excluded for 

being off topic or not broadly applicable to cancer registries. In sum, 66 articles were categorized 

and reviewed below. 
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8.6.2 Identifying Reportable Cancer Cases 

The largest proportion of articles about informatics, NLP, and machine learning applied to 

cancer registries dealt with automating the identification of reportable cancer cases to improve 

the efficiency and accuracy of surveillance. Deterministic algorithms for case-finding using 

coded data sources such as claims and hospital discharge summaries were implemented and 

validated by a number of groups.(135–141). Tognazzo et al (142) from the Venetian Tumour 

Registry reported the acquisition of 55% of cancer cases through algorithms and automation 

using ICD-9 codes from hospital discharge records and death certificates, and SNOMED codes 

from pathology reports. In a follow-up study, Tognazzo et al(143) acknowledged the difficulty of 

implementing deterministic rules to automate cancer reporting and have explored the use of 

probabilistic classifiers to determine reportability based on coded data from different sources of 

evidence. At Vanderbilt, Naser et al(144) described efficiency gains of approximately 80 person-

hours per month through automated matching algorithms of patients and cases before manual 

review to determine if they were new analytic (reportable) cases. Similarly, to both reduce 

manual chart reviews and augment registry data, Chubak et al(145) developed algorithms with 

hospital administrative data to identify breast cancer recurrence or second primaries. Haque et 

al(146) at Kaiser Permanente also developed algorithms and a semi-automated approach to 

identify recurrent or second primary breast cancers from pathology reports and administrative 

data, and they hypothesized that NLP could further improve the review of pathology reports if 

machine-readable electronic reports were available. Gold and Do(147) evaluated three published 

algorithms to identify breast cancer data using codes from Medicare claims data and found 

substantial variation in the performance of the algorithms by geographic region. They questioned 

how good an algorithm’s performance needs to be for staff to rely on its application to new data. 
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Beyond the deterministic algorithms above, some groups trained statistical algorithms on 

coded data. Fenton et al(148) developed statistical algorithms (classification and regression trees) 

using claims data to distinguish between screening mammograms versus diagnostic 

mammograms. Mahnken et al(149) developed statistical models to identify cases of oral and 

pharyngeal cancers using claims data. 

Some groups have shifted from deterministic and statistical algorithms to keyword 

searches and simple clinical data processing to facilitate case-finding. Asgari et al(150) from 

Kaiser Permanente developed text string (keyword) searches of pathology reports to improve 

case-finding for basal cell carcinomas. Cogle et al implemented both claims-based 

algorithms(151) and keyword algorithms(152) on pathology reports to improve the reporting of 

myelodysplastic syndromes (MDS) that are frequently diagnosed in outpatient clinics and may 

be underreported in cancer registries, especially with ICD-9 codes where MDS was not classified 

as a neoplasm. In Detroit, Eide et al(153) compared claims-based algorithms and NLP of 

pathology reports to identify non-melanoma skin cancers, and concluded that NLP methods 

performed notably better than claims-based algorithms. Hanauer et al(154) developed an open-

source registry case-finding engine using rules-based clinical data processing that searches for 

keywords, phrases, and negation. 

March et al(155) extended existing commercial software(156) for pathology report 

mining to use with radiology reports for the detection of reportable cases of central nervous 

system (CNS) tumors. This extension involved developing a lexicon for CNS neoplasm-related 

terms in CT and MRI reports, heuristic testing, and validation against a reference dataset 

prepared for their study. All potentially reportable cases were still reviewed by tumor registrars 

before inclusion in the registry. 
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In France, Jouhet et al(157) applied supervised machine learning (SVMs and Naive 

Bayes classifiers) to classify pathology reports for reportable cancer cases and assign ICD-O-3 

topography and morphology codes. The classifiers performed quite well with pathology reports 

treated as a "bag of words" and using off-the-shelf machine-learning toolkits, which the authors 

noted leaves much room for improvement. In addition, Jouhet et al(158) hypothesized that 

selecting, prioritizing and reformatting relevant records for processing could reduce noise for 

manual validation by registry staff. 

In Australia, Patrick et al(159) have applied more sophisticated NLP to radiology reports 

to identify cancer cases for the registries. Initially, Nguyen et al(160) evaluated the performance 

of classifying free-text pathology reports for reportable cancer cases using SNOMED CT codes 

and related concepts as well as context from pathology report free text. Subsequently, Nguyen 

and Patrick(161) incorporated machine learning and active learning models and a rich feature set 

from source documents including key terms, linguistic context, and negation. 

At University of Alabama at Birmingham, Osborne et al(162) have successfully applied 

NLP and machine-learning methods using the Unstructured Information Management 

Architecture (UIMA) framework, which is also used by both cTAKES and IBM Watson tools, 

making their solution potentially portable to other centers and systems. 

8.6.3 Natural Language Processing 

In addition to case-finding, a few registries have applied NLP tools and methods to extract 

reportable data elements from narrative medical documents. McCowan et al(163) developed 

machine-learning approaches for cancer staging from pathology reports. Nguyen et al(164) 

developed rules-based clinical data processing algorithms for registries to compute lung cancer 

stage from free-text pathology reports using the open-source Generalized Architecture for Text 
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Engineering (GATE)(165) platform. At the Kentucky cancer registry, Kavuluru et al(166) 

applied statistical and machine-learning methods for text classification to extract cancer topology 

and morphology data elements from pathology reports. In Taiwan, Liang et al(167) developed a 

simple automated system for extracting data elements from free-text pathology reports to 

facilitate the work of registrars. 

Although not specifically applied to cancer registries, Luo et al(168) from MIT, 

Massachusetts General, and Harvard explored the automation of lymphoma classification from 

pathology reports using graph-based concept tagging and machine learning. This and other 

papers indicate that there are likely existing clinical data processing tools and methods already 

applicable in the cancer domain that could be applied to cancer registry information-processing 

tasks. Moreover, clinical data processing beyond cancer may be applicable to the cancer registry 

domain. For example, training data and algorithms developed for the i2b2 smoking status(169) 

and obesity and comorbidity(170) challenges are certainly relevant to enriching the cancer 

registry databases for prevention research. 

8.6.4 Data Linkages  

Although a thorough exploration of the opportunities of data linkages for cancer registries is 

beyond the scope and was not the intention of this review, several articles described linkages. 

There were some innovative uses of claims and administrative data to augment information 

collected in cancer registries. Hassett et al(171) used administrative and claims data to develop 

algorithms to detect recurrence for lung and colorectal cancers. Bikov et al(172) developed an 

algorithm to identify medical therapies for colon cancer using SEER-Medicare data. Warren et 

al(173), Pezzi(174), and Haejin et al(175) all remarked on the importance of recurrence 

information for cancer registries to support research, the lack of recurrence information in 
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registry data, and that heuristic algorithms developed for limited populations using claims data 

may not scale well or would at least need to be validated across multiple cancer registries before 

broad implementation. In the United Kingdom, Ashley et al(176–178) explored linkage of 

patient-reported outcome (PRO) systems with cancer registries to enable broad research on 

cancer outcomes, quality of life, and survivorship. 

8.6.5 Integrated Platforms 

Several articles described integrated data platforms where cancer registry data were a core 

component. Weber et al(179) determined that the cancer registries make an ideal foundation for 

comparative effectiveness research and based their data dictionaries around SEER standards 

where possible, augmenting it with EMR and other data sources. Other groups such as the 

ORIEN(180), SPIN(53), and CRN(181) networks have gravitated to cancer registry data and 

standards as a core of clinical information for an integrated data platform to support cancer 

research and augmented the registry data through linkage to other data sources. 

Beyond the data itself, cancer registry staff and systems have been leveraged for 

informatics platforms. Dhir, Patel et al(182) describe the employment of cancer registry staff as 

honest brokers for linkage and queries of identified data in the operation of an integrated data 

and specimen repository to support research. Hurdle et al(183) describe a data integration and 

query system allowing investigators to search cancer registry, genealogy, vital records, and EMR 

data to find cohorts for trials or retrospective studies. Houser et al(184) describe the challenges 

of using a cancer registry system (C/NET Solutions(185)) to support clinical trials eligibility 

screening. 
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8.6.6 Automation 

One of the anticipated benefits of informatics applied to cancer registries was the automation of 

registry operations. Levin et al (186) developed heuristic algorithms for automating the 

consolidation of data from multiple sources. Zhang et al(187) developed similar algorithms to 

consolidate dates of cancer diagnosis. Zhang et al suggested that standardizing data-

consolidation algorithms and applying approaches from computer science (specifically 

information retrieval) could help develop more scalable and robust approaches to automated 

consolidation of information reported to registries. 

Some groups re-engineered their registry management software to support automation. In 

Japan, Shiki et al(188) developed a Unified Modeling Language (UML) of the cancer 

registration process and were able to thereby identify opportunities to improve efficiency. In 

Italy, Contiero el al(189) reported on the development of software for automating and managing 

the Varese Cancer Registry. These automation approaches involved the structure of systems and 

entailed handcrafted rules for data processing rather than machine learning. 

8.6.7 Race and Ethnicity Algorithms 

A few registries have reported on use of algorithms to facilitate race and ethnicity determination. 

Schwartz et al(190) in Detroit developed a database and algorithms to help identify Arab 

Americans. Hsieh et al(191) in Louisiana evaluated the NAACCR Asian/Pacific Islander 

Identification Algorithm to improve coding of Asian ethnicities in cancer registries. Boscoe et 

al(192) in New York compared statistical and heuristic algorithms for determining Hispanic 

ethnicities in cancer registries, without finding significant differences between the results of 
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heuristic versus statistical approaches. Maringe et al(193) used a South Asian Names and Group 

Recognition Algorithm to study cancer survival differences in England. 

8.6.8 Security 

Given the privileged access of registries to sensitive information, privacy and security have been 

key concerns of registry staff. Registry staffs are typically proficient in sequestering HIPAA-

specified identifiers (e.g., name, address, social security number) from their records before 

delivering datasets to researchers or aggregated databases (e.g., NCI, NPCR, CINA in Figure 

8.1). Howe et al(194) described a software program developed for registries that looks for 

potential confidentiality breaches based on a statistical model of combinations of key variables 

that could determine small numbers of individual patients (e.g., sex, race, age group, year of 

diagnosis, cancer site, county). In Utah, Hurdle et al(183) minimized potential re-identification 

of individuals through removing the results of aggregated data where queries returned fewer than 

5 individuals. 

The authority and responsibility of cancer registries to collect and protect identifiers and 

sensitive information is sometimes more impacted by policy than security measures. Anderson 

and Storm(195) remark that recent potentially excessive data protection rules in Europe could 

lead to missing data from registries and that there may be an inherent conflict between data 

confidentiality and public health needs. Hakulinen et al(196) emphasize the importance of the 

use of identifiers for data linkages that enable public health research. Kerr(197) and Casali(198) 

also express concern that new European regulation on data protection that would potentially 

require consent for the collection of cancer registry data would undermine cancer research. Rahu 

and McKee(199) report a case of the Estonian Cancer Registry being impaired through data 
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protection regulation to the point of providing misleading information. The inability to link with 

death certificates led to artificially high survival rates reported from registry data.  

8.6.9 Software 

Like the operations of central cancer registries that are highly complex with big-data scale 

challenges, the systems used to manage registry operations are also highly complex and 

challenged by scale issues. We found very little research has been published about central 

registry software. The New Jersey State Cancer Registry and Rutgers Cancer Institute of NJ(200) 

reported on their implementation of the CDC's Registry Plus web-based system for direct 

electronic reporting of cases by physician offices and ambulatory care centers. This kind of 

software to support direct reporting by facilities helps to reduce the work of central registries, 

many of which are running on minimal staffing. Other than web-based documentation, we did 

not find any publications on the SEER*DMS system, which is a widely used program for central 

cancer registries to manage their operations and reporting.  

8.6.10 Other Findings 

A decade ago, the implementation of standard checklists and synoptic pathology reports was 

anticipated as a solution to improve the quality and timeliness of pathology data for 

registries.(201,202) However, these structured reporting efforts have been slow to materialize, so 

registries must still rely heavily on conventional narrative text pathology reports for the majority 

of their case-finding and abstraction workflows. 

There was little information on underlying data models for cancer registries. Esteban-Gil 

et al(203) developed OWL ontologies and semantic data repository to transform a cancer registry 

database for new types of analysis and data visualization. However, we have not found other 
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reports of innovative application of knowledge representation or big-data tools and methods to 

cancer registries. 

From England, Rashbass and Peake(204) described the value of cancer registries for 

providing high-quality population-level data for research and public health, and the current limits 

of registries due to incomplete data and latency in reporting. They remarked that with the 

addition of claims and administrative data, registries could provide a good starting point for a 

wide variety of cancer research, including the annotation of tissue from repositories and clinical 

trials recruitment. Because of the scale of national registry operations, they are inherently 

difficult to change quickly, but the evolution of registries is critical and possible. 

8.7 Discussion 

8.7.1 Implications of Findings 

As expected, there appears to be a dearth of informatics, clinical data processing, and machine-

learning research applied to cancer registries, particularly in the United States. Although this 

literature search was intentionally broad, the difficulty in conducting searches with high recall 

and the number of false-positive results may reflect the scattered nature and inconsistent 

classification of informatics research for cancer registries. Refining these queries for monitoring 

published literature as well as publishing and presenting overviews and opinion pieces around 

informatics, clinical data processing, and machine learning for cancer registries at national 

meetings could help to increase awareness in the informatics community of the problems and 

opportunities for applied research in this area. 

Numerous articles retrieved for this review described domains adjacent to cancer 

registries. For disease-, procedure-, or treatment-specific registries at cancer centers, perhaps the 
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lack of local access to cancer registry data and the inadequacy of clinical details therein have 

motivated researchers to develop their own dedicated systems. The historic purpose and scope of 

cancer registries has been to collect data on confirmed diagnoses and treatments of cancer. 

However, the abundance of adjacent databases discovered in this review (e.g., for screening, 

survivorship, and follow-up, conditions that may be precursors to cancer, rare and underreported 

diseases) may indicate opportunities for collaboration with and linkage to cancer registries. 

Perhaps there are opportunities for registry linkages that can support closely related work in 

biorepositories, rare or orphan diseases, new treatments and procedures, registries of conditions 

and exposures that may be precursors to cancer, survivorship, and clinical trial networks. 

There are challenges of data volume, variability, and security to apply clinical data 

processing to cancer registries. Because of these current challenges, research into the application 

of locally developed informatics tools and methods to central cancer registries could help to 

advance the translation of novel tools and methods to into enterprise and interinstitutional scale. 

Although case-finding automation may create a quality control burden for registry staff in the 

short term, as the process and algorithms are smoothed out, there should be substantial savings of 

staff time and effort through automation.(205) 

8.7.2 Next Steps and Opportunities 

Although some progress has been made in the use of NLP and machine learning for case-finding 

and abstraction of data elements from pathology reports, there appears to be a tremendous gap 

and need to validate, apply, and improve these methods for central cancer registries. The 

research and application of clinical data processing, and machine-learning tools and methods 

could be extended to support other kinds of automation for registries, such as the consolidation 

of dates of diagnosis or multiple reports. NLP and machine learning are not even mentioned in 



 

 

195 
the Medical Informatics Basics for Cancer Registry guide from NAACCR.(206) Registries must 

be better informed about the opportunities of informatics, clinical data processing and machine 

learning, and funded to help advance the application of these technologies to improve the 

efficiency and quality of their operations. 

To keep the information security and data confidentiality protections in central registry 

systems up-to-date with an evolving understanding of risks and controls, we need much more 

research and development of robust information security tools and methods applicable to cancer 

registries. 

With the scale and complexity of systems that support central cancer registries, there is 

likely value in publishing the evaluation and lessons learned from the implementation and 

operation of these systems (e.g., the SEER*DMS system(106)). Also, the enhancement of these 

systems to support higher volumes and greater variety of data, greater automations, new data 

linkages, and improved security should be shared both for peer review and for increasing 

awareness of cancer registry challenges for the biomedical informatics community. 

Finally, an extensive literature review should be conducted of modern clinical data 

processing tools and methods that could be applied to cancer registries.  

8.8 Conclusion 

Cancer surveillance is a broad and well-established operation for the acquisition and processing 

of clinical data and making those data available to advance research and public health. Although 

cancer registries are experiencing big-data problems that are orders of magnitude greater than 

individual hospitals and research centers, their operations still rely largely on manual information 

processing and simple heuristic algorithms for automation. To expand the data they collect and 
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remain relevant to current and next-generation cancer research, cancer registries and the 

organizations that fund them will need to adopt big-data tools and methods such as NLP and 

machine learning, and to actively engage with the biomedical informatics research community. 

This work was a review of the literature [1] to validate our assumption that there has been 

a lack of applied informatics research for cancer registries, [2] to identify areas where some 

progress has been made, [3] to discuss opportunities to advance registry operations, and [4] to 

rethink the role and opportunity for registries to accelerate cancer research. 
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8.10 Synthesis 

Sections 8.2 to 8.8 addressed my Chapter 8 questions: What informatics tools and methods have 

already been applied successfully in the cancer surveillance domain? What are the current and 

coming opportunities for applying or developing new tools and methods for advancing 

biomedical informatics in this domain? The literature review of informatics applied to cancer 

research directly addresses the first question. The tools and methods applied in this domain are 

summarized in section 8.6, and the opportunities for applying existing informatics tools and 

methods or developing new ones for cancer surveillance are directly addressed in the discussion 

(section 8.7), next steps and opportunities (also section 8.7), and conclusion (section 8.8) above. 
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The work in this chapter ties back to the overarching question for this dissertation: how 

can we improve access to clinical and related data about cancer patients for research? Cancer 

registries and national cancer surveillance provide both a massive data source and a challenge for 

research and public health. Their data are used as a foundation or an augmentation for databases 

and integrated data repositories across many cancer centers. Because of the economies of scale 

and the mechanisms used to mandate, fund, and operate cancer registries, it appears feasible to 

significantly augment and automate them, and in turn make high-volume cancer surveillance 

data available for every cancer center and the entire cancer research community. 

This work also ties back my overall hypothesis that there are new tools and methods from 

biomedical informatics that could improve the availability of data for cancer research if they 

were applied thoughtfully and strategically. Chapter 8 identified the themes of informatics tools 

and methods that appear to improve data availability for cancer registries and described the 

background and opportunities for biomedical informatics in cancer surveillance in order to 

stimulate strategic thinking and new research in this area. 

Finally, this work ties back to Aim 4 (to characterize the big-data needs and informatics 

opportunities for cancer surveillance at the national level). Chapter 8 described the big-data 

problems in cancer surveillance, reviewed of the literature at the intersection of informatics and 

cancer registries, and assessed the opportunities for research and applications of biomedical 

informatics and IT in this domain. 

Chapter 8 is informed by Chapter 2 (Caisis) because the database model, challenges, and 

lessons learned about acquisition of data for the Caisis database are all present in cancer 

surveillance—however in greater scale by orders of magnitude. Chapter 8 is informed by 

Chapter 3 (Recurring Themes in Informatics and IT from 60 Cancer Centers) in that the 
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challenges of data acquisition, processing, and dissemination to researchers is present across all 

cancer centers and difficult for any one center to completely address because of the inefficiencies 

of their relatively small scale. Chapter 8 is informed by Chapter 4 (HIDRA: Data Platform and 

Clinical Research Informatics Strategy for a Consortium Cancer Center) in that that the legal and 

IRB frameworks, types of data, and needs of researchers covered in Chapter 4 are all applicable 

at the national cancer surveillance level, again at a greater scale. Chapter 8 is informed by 

Chapter 6 (Scalable Clinical Data Pipeline for a Cancer Center) in that automated approaches to 

information extraction and processing become not only feasible but imperative at a national 

scale. Also, the integration of manual annotation and abstraction with clinical data processing 

and machine learning has strategic importance and is feasible at the national cancer surveillance 

level, so the the workflows and tooling developed in Chapter 6 are applicable to the domain 

described in Chapter 8. Chapter 7 (Comparison of Database Models for Cancer Research) also 

informs Chapter 8 because many of the database model approaches characterized in Chapter 7 

have been proposed as solutions for cancer surveillance, and the underlying data quality and 

database model concepts described in Chapter 7 show up in discussions of cancer surveillance 

technology. The database framework and lessons learned from the exploration of database 

models in Chapter 7 can be immediately applied in an overall strategy for research and the 

application of informatics tools and methods for cancer surveillance. 

Findings from this chapter are relevant to other cancer centers addressing the costs of 

operating a cancer registry or the potential integration and use of cancer registry data to support 

research. 

First, cancer registries are typically cost centers. Hospitals or other healthcare facilities 

that are accredited by the American College of Surgeons Commission on Cancer (CoC) are 
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required to abstract and report clinical data elements to the National Cancer Data Base (NCDB). 

This requirement is an unfunded mandate, but necessary to maintain their credentials. This 

chapter describes research from several groups showing that automated clinical data processing, 

especially using NLP and machine learning methods, can enhance cancer registry data 

processing. These findings indicate that cancer registry tasks, such as case finding (identifying 

reportable cancer cases) and extracting required data fields from pathology reports for cancer 

reporting, are candidates for automation. Automation of case finding and manual data abstraction 

could save hospitals money, and could speed up the data acquisition and processing timeline, 

making registry data more up-to-date, reliable, and thus useful as a data source for research data 

repositories. 

Second, central cancer registries and national cancer surveillance programs typically 

invest millions of dollars on to support manual data abstraction efforts at healthcare facilities, 

data quality control and data consolidation efforts at central registries and further consolidation 

and reporting to national databases.  The work in this chapter indicates that automation of 

clinical data processing (e.g., through NLP and machine learning methods) has performed well in 

several cases and has potential to facilitate the work that these cancer surveillance programs 

fund. 

Third, this work identifies clinical data processing automation that is directly applicable 

to cancer registries and cancer surveillance as an area of potential research for biomedical 

informatics that would have value at the local and national level. 
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Chapter 9 Conclusions 

Each section in this chapter explains the findings from prior chapters. The order of the chapters 

and conclusions below is based on the natural progression of this work. The first two chapters 

(Chapters 2 and 3) cover the experiments and issues identified through the preliminary work on 

the Caisis database at a single cancer center and the exploration of IT and informatics issues 

across multiple cancer centers. The next three chapters (Chapters 4–6) cover the implementation 

of the Hutch Integrated Data Repository and Archive (HIDRA) and a critical strategic part of it, 

an enterprise pipeline for clinical data processing. The last two chapters (Chapters 7 and 8) cover 

issues of scalability and the potential application of big-data tools and methods. The conclusions 

include extrapolation beyond the individual chapters. At the end, limitations and avenues for 

future research are discussed. 

9.1 Conclusions from Chapter 2. Preliminary Work: Caisis 

The two questions related to this chapter were [1] What aspects of Caisis are applicable today to 

current and future informatics platforms for cancer research? and [2] What are the limits of 

Caisis that would need to be addressed with new tools and methods? 

I started this research with a background in developing relational database models and 

operations that could scale well and support predictive modeling. Over the past decade, the need 

to scale data systems and the growth of predictive modeling and personalized medicine 

initiatives has only increased the demand for this type of biomedical informatics research and 

solution development. 

The Caisis project, summarized in Chapter 2, was aimed to develop a reusable database 

to support predictive modeling and a variety of cancer research projects. From the preliminary 
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work on Caisis, it was evident that a database model that is temporally organized and aligned 

with clinical source systems could support high-volume data abstraction, as well as the reuse of 

clinical data across multiple projects in a cancer center. Having clear naming conventions in the 

database model, built-in vocabulary management, and a metadata-driven web application made 

this system relatively easy to configure without programming and was critical for extensibility 

and sustainability. However, to make data readily available to researchers, analytic tools and 

staff with outstanding database skills were needed to denormalize and query the data. For 

extensibility of the relational database model behind Caisis, neither structural changes to tables 

and fields nor EAV virtual fields turned out to be ideal solutions. The biomedical domain 

knowledge and technical skills of staff were barriers to optimal implementation. Moreover, there 

were limits to the amount of data acquisition that could be provided through data feeds, 

structured data entry in clinical source systems and manual data abstraction. 

Although the Caisis system was adopted by several other cancer centers in the United 

States and abroad, the experience and lessons learned were somewhat biased to one large 

standalone cancer center, Memorial Sloan-Kettering (MSKCC). In the visits to cancer centers in 

the following chapter, I sought to determine if the findings from the Caisis work were 

generalizable and if there were other common findings and trends that could contribute to a more 

successful strategy for cancer research data management. 

In answer to the first question for this chapter (What aspects of Caisis are applicable 

today to current and future informatics platforms for cancer research?), the Caisis database 

model and its existing configurable and metadata-driven web interface for data entry and editing 

are still applicable today, at least in the short term until an alternative is developed. Future 

informatics platforms will need to maintain the flexibility of Caisis, but will need to go much 
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further in terms of database models and interfaces to support data science and self-service data 

exploration. The answer to the second question for this chapter (What are the limits of Caisis that 

would need to be addressed with new tools and methods?) is that the current database model is 

too deep with too many tables and requires too many joins to query easily, and the design of 

Caisis to integrate with clinical practice and acquire all data in a structured format is likely not an 

attainable solution. There may be real practical limits to the acquisition of structured data in 

clinics, and with the maturation of NLP and machine-learning technology, there may no longer 

be such a need to capture structured data at the point of service. Systems like Caisis may now be 

able to step back from highly normalized relational database models and explore hybrid database 

approaches (described in Chapter 7 on database models) and implement a data acquisition and 

processing pipeline that is more document-based, automated and amenable to clinical data 

processing and machine learning (described in Chapter 6 on the pipeline for clinical data 

processing). 

The generalizable contributions of Chapter 2 are a working a comprehensive database 

model that is temporally organized and has the ability to stack into an analytic structure for 

predictive modeling and an associated web-based tool for data abstraction. This system is freely 

distributed under an open-source license, meets common requirements for IT security, 

extensibility and supportability, and it has already been adopted and extended by numerous other 

cancer centers in the United States and internationally. 
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9.2 Conclusions from Chapter 3. Preliminary Work: Recurring Themes in 

Informatics and IT from 60 Cancer Centers 

The question addressed in this chapter is “What are the current opportunities for strategic 

application of biomedical informatics tools and methods in cancer centers?” 

Chapter 3 reviewed the findings from visits to more than 60 cancer centers to identify 

trends in IT and informatics. Through these site visits and subsequent analysis, I sought to reason 

from the specific case of Caisis at MSKCC, to more general biomedical informatics problems in 

cancer centers and ultimately to be able to summarize and apply general findings from multiple 

centers back to a single cancer center. 

First, I found that expecting the majority of usable research data to be collected in 

discrete form through EMRs appeared to be unrealistic in the near term across all centers. There 

appeared to be practical limits to structured data collection through templated clinical 

documentation. 

Second, clinical trial and biospecimen management systems tended to be extremely 

complex, expensive, and time consuming to implement across a cancer center, and simple 

systems like REDCap were likely to win out over more complex systems. Investigators and staff 

were likely to vote with their feet by adopting the simplest solutions. Although there could be 

benefits to integrating data from clinical trial and biospecimen management systems to search for 

cohorts and specimens for further study, those system implementations were often resource 

drains and should probably be managed separately from an integrated data repository effort. 

Third, ready access to data for research in familiar flat formats (e.g., Excel) was critical 

to researchers. If research systems did not provide this lowest common denominator of data 

formats without excessive barriers to access, researchers and staff were not likely to use them. 
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Fourth, there appeared to be a trend toward the use of lower-cost and more open-source 

systems across all cancer centers. Most centers have limited funding and resources for 

informatics initiatives. Few centers have the resources to purchase expensive technology or to 

completely develop their own solutions for data acquisition, processing, and access. In the 

current and projected future environments of limited research funding, difficulty in building up 

local talent, and big-data pressures for scalability and security, a good strategy for most cancer 

centers would likely be to partner with other centers in collaborative networks and to leverage 

open-source and existing technology wherever possible. 

Finally, the domain knowledge and technical skills of staff, as well as organizational 

structure and management at a center, could either enable or frustrate the goals of research IT 

and informatics leaders. To enable the meaningful and sustainable adoption of tools and methods 

from other cancer centers, the cross-pollination of ideas and collaboration would need to be 

deeper than just the involvement of senior leadership and individually funded research 

collaborations. 

From this exploration and the summarization of IT and informatics issues across US 

cancer centers, these findings informed the strategy for the development of the Hutch Integrated 

Data Repository and Archive (HIDRA, Chapter 4) and its pipeline for clinical data processing 

(Chapter 6). 

The answer to the question for this chapter (What are the current opportunities for 

strategic application of biomedical informatics tools and methods in cancer centers?) is that there 

are some key opportunities for all cancer centers. The first is actively seeking out and adopting 

or adapting work from other centers. The Cancer Informatics for Cancer Centers (CI4CC) 

community has now evolved into a mechanism for cross-pollination of ideas across centers. 
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Low-cost, open-source tools and the implementation of high-security environments are strategic 

opportunities for any cancer center. 

The generalizable contributions of Chapter 3 are the following: First, the volume and 

variety of data elements that can practically be collected through clinical templates is limites. 

Second, given the importance of research and collaboration networks, cancer centers should 

adopt or at least be interoperable with common platforms like REDCap, i2b2, OpenSpecimen 

and OnCore so that we can wrestle with common issues as a community. Third, due to limited 

and variable funding for research, solutions need to scale down to affordable levels for individual 

researchers and labs. Fourth, site visits and active cross-pollination of tools and methods across 

center must extend deeper into all levels of IT and informatics staff rather than just connecting 

senior IT leaders and informatics researchers. Finally, centers should spend time and effort 

resolving social and organizational barriers to progress in informatics and IT. 

9.3 Conclusions from Chapter 4. Hutch Integrated Data Repository and Archive 

(HIDRA): Data Platform and Clinical Research Informatics Strategy for a 

Consortium Cancer Center 

The questions answered in this chapter are the following: What are the challenges and 

opportunities for informatics at Fred Hutch? Do these challenges and opportunities align with my 

previous work and lessons learned? Are there tools and methods that others or I have used before 

that could be successfully applied at Fred Hutch? How can we enable new types of research, 

faster results, and better quality of research data at Fred Hutch? How can we improve access to 

data with tools and methods that are scalable, extensible to new projects, sustainable, and 

portable to other centers? 
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The HIDRA project in Chapters 4–5 was aimed to develop a data platform to improve 

data access and support a variety of research efforts at the Fred Hutch/UW Cancer Consortium. 

This aim was achieved and is summarized in Chapters 4–5. For the initial HIDRA strategy, I 

used previous experience from the Caisis database at MSKCC (Chapter 2) and findings and 

trends identified across multiple cancer centers (Chapter 3). Near the start of the HIDRA project, 

I interviewed around thirty Fred Hutch and Cancer Consortium investigators to assess current IT 

and informatics challenges and to confirm my hypothesis that the findings from Caisis and other 

cancer centers would apply at Fred Hutch. I also identified unique requirements and 

opportunities at Fred Hutch. 

Overall, my strategy was to implement a reusable data platform like Caisis, but I realized 

that [1] data acquisition through manual data abstraction, data feeds, and templated notes in 

clinics would be insufficient, [2] the legacy legal and IRB framework for data sharing across the 

Fred Hutch/UW Cancer Consortium was causing an awkward technical architecture and an 

integrated repository would be impossible without reforming that framework, [3] grant and 

contract opportunities for a center that mastered FISMA security requirements and risks for 

centers that were lagging in security made a high-security environment a critical requirement, [4] 

we did not have the technical skills and mature development processes in-house to build HIDRA 

ourselves, so we needed a technical partner, and [5] we should adopt and build on technology 

from other groups to enable HIDRA to be sustainable and to play well with other centers. I also 

knew that we had to address the biggest weakness of Caisis and the focus of tools like i2b2: the 

ability for researchers to query and get access to the data themselves through a self-service user 

interface. 
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In the HIDRA project, we found that creating a legal and IRB foundation for the 

repository, a high-security environment, and operations to support the repository were important 

factors to be able to avoid wasted time and scale up quickly. Throughout all of this work, 

information security and attentiveness to regulations was paramount. There was no responsible 

way to create scalable and integrated data systems without implementing a high-security 

environment, including operations and documentation to support it. 

We also found that the lack of federated authentication that allows users to log in with 

their preferred organization credentials can cutoff big-data integration projects at the knees if it is 

intended to support a consortium cancer center or a network of centers. A high-security 

environment should include provisions for relatively easy access across the intended base of 

users, using their own organizational authenticated credentials. 

We found that having a reliable and competent technical partner may ease the pressures 

on local technical staff and may lead to creative solutions and learning opportunities. However, 

local staff must be deeply engaged for a successful and sustainable solution developed with an 

external technical partner. Healthy dynamics between project leadership, internal staff, and an 

external technical partner help to prioritize development and control scope. Also, adopting and 

adapting informatics tools from other centers for key functions can speed up and lower total 

development cost. The development or adoption of a self-service data access interface is 

important to investigators and staff. However, there is still a great need to customize user 

interfaces, data export formats and reports for each disease group. 

The pipeline for clinical data processing for HIDRA was a complex and critical set of 

functionality, and it is described in more detail in Chapter 6. HIDRA has initially relied on the 

Caisis database model for abstraction, data feeds and storage of cancer data, and the Caisis data 
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has been processed into cubes to optimize queries for the Argos self-service data exploration and 

access tool for HIDRA. The limits of the Caisis database model and potential future database 

model options are characterized in Chapter 7. 

Again, the questions answered in this chapter are the following: What are the challenges 

and opportunities for informatics at Fred Hutch? Do these challenges and opportunities align 

with my previous work and lessons learned? Are there tools and methods that others or I have 

used before that could be successfully applied at Fred Hutch? How can we enable new types of 

research, faster results, and better quality of research data at Fred Hutch? How can we improve 

access to data with tools and methods that are scalable, extensible to new projects, sustainable 

and portable to other centers?  The assessment of impact of HIDRA is covered in Chapter 5.  

The answer to the first question (What are the challenges and opportunities for 

informatics at Fred Hutch?) is that perhaps the greatest challenges have been the skills and 

expertise of the current team and the management of a large, complex project. Bringing in new 

talent and working to keep everyone involved on a common roadmap with common 

understanding of what we were trying to accomplish has been extremely challenging. 

Establishing a legal and IRB framework for a consortium cancer center was an unanticipated 

challenge that turned into an opportunity after it was solved. Implementing a high-security 

environment and high-security approach to the development and implementation of HIDRA has 

turned from a challenge to an opportunity for leadership and a competitive advantage.  

The answer to the second question (Do these challenges and opportunities align with my 

previous work and lessons learned?) is both yes and no. The challenges of consolidating multiple 

disparate database efforts into one integrated strategy for HIDRA aligns closely with my 

experience in developing Caisis at MSKCC. However, performing this work in a consortium 
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center across multiple teams rather than in a hierarchical organization like MSKCC has proven 

very difficult. In both situations, it appears that strong and sustained leadership is critical to 

success. 

The answer to the third question (Are there tools and methods that others or I have used 

before that could be successfully applied at Fred Hutch?) is yes. The Caisis database model and 

system that I developed at MSKCC (described in Chapter 2) was applicable to HIDRA and 

allowed us to temporarily bypass the design of a new database model, with all of the challenges 

therein (e.g., time, domain and technical resources, resolution of conflicting approaches). The 

adoption and adaptation of the LabKey Server platform and the technical partnership with 

LabKey Software resulted in another successful application of previously developed tools and 

methods. 

The answer to the fourth question (How can we enable new types of research, faster 

results, and better quality of research data at Fred Hutch?) is that HIDRA may address all of 

these issues. By integrating multiple disparate databases into one platform and database model, 

we are now able to more easily research cancers that cross traditional boundaries of disease types 

(e.g., breast cancer, leukemia, sarcoma) and medical specialties (e.g., surgery, radiology, 

radiation oncology, medical oncology). By implementing both self-service tools like Argos and a 

HIDRA dataset request service staffed by analysts, we have enabled faster access to data for 

research. Also, integrating data into the Caisis database model so that data entry staff and 

analytics are coming from the same tables and fields, implementing direct data feeds from 

clinical source systems, and working through issues with each feed or database consolidated into 

HIDRA have uncovered data quality issues and forced us to resolve them, set standards, and 

continuously improve the performance of the system and the quality of its contents.  



 

 

210 
The answer to the fifth question (How can we improve access to data with tools and 

methods that are scalable, extensible to new projects, sustainable, and portable to other centers?) 

is that leveraging and extending existing open-source technology like LabKey Server and 

sticking to our goals of a single database model has allowed us to improve access to data. Having 

a technology partner (LabKey Software) that has a vested interest in making their software 

portable to other centers and their business sustainable has kept us aware of these issues and 

allowed us to control the scope and focus of software engineering to balance local enhancements 

with broader goals of extensibility, portability, and sustainability. Creating a large but safely de-

identified testing dataset of realistic data that could be freely used by LabKey and Fred Hutch 

developers, operations staff, and testers was useful to improve scalability and tune performance. 

The aim of this chapter was to develop and assess a modern integrated data platform to 

support a wide variety of cancer research. This aim was achieved through the development and 

implementation of the HIDRA system at Fred Hutch. Open questions remain around the role of 

the Caisis database model and web-based data-entry system as HIDRA is opened up to new users 

and groups. Future work on HIDRA will likely involve redesign of the database model (which 

was the motivation for Chapter 7 on database models) and the implementation of the clinical data 

pipeline for clinical data processing (which is described in Chapter 6). The database model 

evolution and implementation of the clinical data pipeline are likely intertwined. Each depends 

somewhat on the other for successful and scalable deployment. 

The generalizable contributions of Chapter 4 are the following: First, the legal, IRB, and 

security framework for HIDRA is relevant to other centers and has been applied to at least two 

similar efforts. Second, HIDRA provides an example of leveraging a clinical data repository at a 

broader academic medical center to support a cancer-specific data repository. Third, HIDRA 
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provides an example of adopting and extending the IT and informatics work of other groups to 

solve local issues economically.  Fourth, HIDRA provides an example of an overall strategy for 

clinical data acquisition, processing, storage and self service data access. Fifth, HIDRA 

identified the need for a realistic and de-identified testing dataset to facilitate software 

development and system implementation. Sixth, the HIDRA work found that lack of federated 

security for a consortium or matrix cancer center is a critical barrier to progress on an integrated 

data repository. Finally, the HIDRA project found that the Agile approach to software 

engineering and system implementation was critical for project momentum and success. 

9.4 Conclusions from Chapter 5. Evaluation of HIDRA 

The following question is addressed in this chapter: What is the impact of the data platform 

developed at Fred Hutch? 

9.5 Conclusions from Chapter 6. Scalable Clinical Data Pipeline for a Cancer 

Center 

The questions answered in this chapter are the following: How can we improve the quality, 

speed, and economics of the acquisition, processing, and delivery of clinical data to support 

cancer researchers? How can we make clinical data processing a core competency of Fred Hutch 

at an enterprise scale? 

Developing a scalable pipeline for clinical data processing was considered a critical part 

of HIDRA. It addressed the findings and conclusions from preliminary work in Caisis and 

findings from other cancer centers that there were practical limits to what could be achieved 

through templated clinic notes, data feeds from clinical systems, and typical manual data 
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abstraction. It also targeted one of the greatest barriers to developing enterprise-level clinical 

data processing solutions: the lack of ongoing training and validation data. The clinical data 

processing pipeline would allow us to adjust existing data entry work across the center to 

generate data suitable for clinical data processing algorithm development and to provide ongoing 

quality assurance data to validate and improve clinical data processing algorithms. 

This pipeline provides a secure and open-source tool for the acquisition and processing of 

clinical documents, performs automated information extraction and case data consolidation 

through the use of an clinical data processing engine (e.g., locally developed algorithms or other 

commercial or open-source tools), and can feed the resulting data into an integrated data 

repository. The clinical data pipeline provides a framework for manual information-processing 

tasks such as abstraction from clinical reports for ongoing research or new annotation projects as 

well as the verification and performance evaluation of clinical data processing algorithms. The 

clinical data processing pipeline was developed by Fred Hutch and LabKey and can be used to 

integrate multiple automated processing solutions within a single open-source but well-supported 

architecture. Integrating the LabKey clinical data processing pipeline with existing data 

abstraction workflows has the potential to incrementally decrease staff time and efforts through 

automations and increase the amount of annotated training data available for future clinical data 

processing algorithm development. 

Although there are many clinical data processing algorithms developed for cancer 

research, this pipeline fills an unmet need to help us transition from individual projects and 

algorithms to employing clinical data processing at an enterprise scale as part of everyday 

processes at a cancer center. 
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Through the development of the clinical data processing pipeline, we encountered 

challenges with the Caisis database model and the need to store structured documents and 

extracted data elements as they are processed. These requirements have naturally led to the 

investigation of document stores (e.g., MongoDB) and ways to store structured documents 

within relational databases. These database model issues are discussed further in Chapter 7. 

The answer to the first question for this chapter (How can we improve the quality, speed, 

and economics of clinical data acquisition, processing, and delivery to support cancer 

researchers?) is that I still think that integration of clinical data processing, machine learning, and 

manual data abstraction into a single flexible clinical data pipeline is a viable strategy for 

improving quality, speed and economics of data acquisition, processing and delivery. Manual 

data abstraction and data processing are just not scalable or sustainable, given the cost 

constraints and variable funding in cancer centers and the ever-increasing volume and variety of 

clinical data as cancer treatments become more successful and cancer becomes more of a chronic 

disease with multiple treatments and ongoing monitoring. In our experience, clinical data 

processing and machine-learning algorithms have proven to perform well across a variety of 

clinical data applications at a cancer center. 

 The answer to the second question (How can we make clinical data processing a core 

competency of Fred Hutch at an enterprise scale?) is that it takes a sustained and concerted effort 

to introduce and spread deeper and deeper understanding of clinical data processing across an 

enterprise. After clinical data processing competency was established as a core part of the 

strategy for HIDRA and Fred Hutch, we have given multiple presentations and engaged in 

research collaborations with different groups within the cancer center. These presentations and 

collaborations continue and have been steadily growing. Hiring core NLP research engineer staff 
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that are technically competent and mentored to present and collaborate well with a variety of 

groups is so critical that we established a summer internship program in NLP. I think the 

combination of telling the clinical data processing story repeatedly in multiple venues and 

engaging in collaborative clinical data processing research while implementing an enterprise 

pipeline is the road to establishing clinical data processing as a core competency of Fred Hutch 

and other centers. 

The aim of this chapter was to develop and characterize a clinical data processing 

pipeline that is scalable to the cancer center enterprise level, is well-supported and sustainable, 

and can complement or streamline existing manual data abstraction and information-processing 

activities. This aim has been largely achieved as described in this chapter. A preliminary version 

of this pipeline was presented in October 2015 at the LabKey User Conference and CI4CC 

meeting, and a fully functional version of the pipeline is on track for completion in summer 

2016. The open questions include how to successfully transition existing and new manual data 

abstraction and clinical data processing work to the pipeline and what modifications will be 

needed in terms of the pipeline functionality, performance, and usability to achieve user 

acceptance and broad deployment. During the upcoming summer, the 2016 NLP interns will be 

working with the clinical data processing pipeline for their research projects in order to start 

addressing these open questions and informing future work on the pipeline. 

The generalizable contribution of Chapter 6 is a tool for shifting the work of manual data 

abstraction so that it generates training and validation data suitable for development of 

automated clinical data processing algorithms (e.g., statistical algorithms, NLP, machine 

learning). This tool was built with a technology partner, LabKey Software, so that it can be 
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portable to other clients, scalable, and extensible to different clinical data sources and databases. 

This tool is already being adopted by other groups. 

9.6 Conclusions from Chapter 7. Comparison of Database Models for Cancer 

Research 

The question addressed in this chapter was How can we best characterize and compare database 

models and big-data technologies to inform a sensible strategy for cancer research database 

design and technology? 

From my preliminary work on the Caisis database model in Chapter 2, findings from 

other cancer centers in Chapter 3, and through the challenges of implementing database models 

to support HIDRA and the clinical data processing pipeline in Chapters 4 and 6, I decided it 

would be worthwhile to explore and compare database models and their potential applications to 

cancer research systems. Furthermore, with the current number and variety of big-data 

companies marketing various tools and database models in the biomedical domain, there was a 

need to think through and be able to articulate the essence and tradeoffs of the various database 

models. 

There is clearly no single database model to meet the requirements of managing clinical 

and molecular data for cancer research. Many organizations will need conceptual and practical 

guidance to better understand and make decisions about system requirements and design. Each 

database model implemented will require staff time and resources for mapping, formatting, and 

recoding of data. Most organizations will need to acquire and process an increasing volume and 

variety of data sources over time. 
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As big-data technologies are evolving and disseminating rapidly, it may not make sense 

to invest or plan more than a couple years ahead of projected database growth. High-dimensional 

data like genomics assays and sensor data may perform well in a column store like Cassandra. 

Clinical data may perform well in a combination relational database and document store for 

acquisition, processing, and storage. For high-performance data exploration and visualization, a 

column store may offer the best performance for both clinical and high-dimensional data. 

However, if the database must be used to support clinical decision-making, the latency and 

consistency of returned results must be factored into the design and platform selection. 

To achieve economies of scale in a cancer center, consortium, or network, the primary 

database model for data entry, editing, and storage should be reusable across multiple projects in 

order to recoup the costs of implementation and operation. It should be lossless in terms of data 

and extensible so that planned and unplanned data can be reliably acquired, stored, and accessed. 

Also, given the prevalence and persistence of flat database models with closed-world 

assumptions to support trials and epidemiologic studies, the primary database model should 

provide a simple way to document absent events or absence of evidence at a point in time. 

Star schemas, analytic database models or column stores may be implemented depending 

on the anticipated usage or participation in research networks. Analytic database models may be 

somewhat lossy or narrow, and may require complex mapping and transformation to populate. 

Also, column stores may have consistency issues when querying. All of these issues need to be 

researched and tested before broad implementation. 

The current database knowledge and technical skills of staff and the ability to hire, train, 

and retain relevant talent should always be factors in planning to adopt different database 



 

 

217 
models. There is a tremendous learning curve and responsibility on today’s programmers to 

implement reliable and sustainable hybrid database models and technology for big data. 

Based on this chapter, I would advocate a hybrid strategy of different database models 

and technology based on the center’s strategic needs and the technical skills of its staff. I would 

definitely try to adopt and adapt models from other groups rather than reinventing new database 

models or trying to make old technology and models do new tricks. Database models and big-

data technologies appear to be fruitful areas for further research at cancer centers. 

The answer to the question addressed in this chapter (How can we best characterize and 

compare database models and big-data technologies to inform a sensible strategy for cancer 

research database design and technology?) is that cancer database models may be characterized 

by their suitability to facilitate different attributes of data quality (e.g., accurate, complete, up-to-

date, freedom from duplication, freedom from fragmentation), different notions of datasets 

prevalent in clinical and research systems (open- and closed-world assumptions), and different 

types of data (e.g., clinical documents, high-dimensional array data). After this work, I see that 

database models and technologies can be characterized as evolving into an increasingly 

specialized collection of approaches that each have strengths and tradeoffs.  

The aim of this chapter was to develop, model, and assess database frameworks for 

cancer. This aim was achieved in that I now have a better understanding of how each of these 

database models and technologies may perform and how they relate to each other. Open 

questions remain around the performance of column stores versus star schemas and analytic 

database models for queries and data exploration tools, and document stores versus relational 

models to support information-processing workflows such as the pipeline for clinical data 
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processing described in Chapter 6. Based on the work in this chapter, I can now design and guide 

strategic exploration of these different models and big-data technologies. 

9.7 Conclusions from Chapter 8. Informatics and Cancer Surveillance: Literature 

Review and Vision 

This chapter addresses the following questions: What informatics tools and methods have 

already been applied successfully in the cancer surveillance domain? What are the current and 

coming opportunities for applying or developing new tools and methods for advancing 

biomedical informatics in this domain? 

Chapter 8 explores the extension of all of the previous chapters to cancer registries and 

cancer surveillance. Cancer surveillance is a broad and well-established operation for the 

acquisition and processing of clinical data and making those data available to advance research 

and public health. Although cancer registries are experiencing big-data problems that are orders 

of magnitude greater than individual hospitals and research centers, their operations still rely 

largely on manual information processing and simple heuristic algorithms for automation. To 

expand the data that they collect and remain relevant to current and next-generation cancer 

research, cancer registries and the organizations that fund them will need to adopt big-data tools 

and methods such as NLP and machine learning and to actively engage with the biomedical 

informatics research community to evaluate or develop new tools and methods that can scale 

appropriately. 

Because cancer registries and broader cancer surveillance efforts, such as the NCI 

SEER(125) program, have been operating at a scale orders of magnitude greater than any single 

cancer center and most research networks, they may provide the opportunity to develop robust 
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tools and methods for data acquisition, clinical data processing, machine learning and database 

models that are relevant and applicable for individual centers. 

One of the patterns seen across all of this research is staff taking an engineering approach 

to each information-processing task, breaking it down into parts, and writing “simple” data 

processing rules. While rules-based approaches to data processing make sense to most software 

engineers, at the scale of consortia, networks of centers, or cancer surveillance, engineering our 

way through increasingly complex information-processing workflows is just painful and likely 

untenable. This rules-engineering approach to facilitating and automating information processing 

in workflows may be playing out in clinics with EMRs, structured clinical templates, alerts, etc. 

To develop solutions that scale, my thinking has changed about how to approach 

information processing—from an engineering perspective to an education perspective. How do 

we train people to abstract or process medical information? We provide examples of the inputs 

(e.g., documents) and desired outputs (e.g., list of data elements and desired coding standards), 

and then we walk through a supervised training process. Initially, staffs learn to recognize 

features in documents, what to extract, and how to process the features into desired outputs 

through a set of heuristics and repetition. Some of the examples used for educational purposes 

are routine cases; others are exceptional cases that may require differential information 

processing. The training examples may refer to and require the use of heuristic rules or they may 

require more complex parsing of linguistic structures and reasoning. Through repetition, staffs 

begin to rely mostly on pattern recognition for information processing. When the pattern is not 

obvious, staff may turn to heuristic rules and guidelines for abstraction and data processing. 

When these heuristics are insufficient, staff turn to deeper language parsing and reasoning, often 

bringing in more experienced staff to help. I think we need to take this approach to train and 
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apply clinical data processing and machine-learning algorithms for scalable information 

processing. 

Rather than thinking of algorithm development as an engineering task, my conclusion 

from this work is that we should think of algorithm development as an educational task. We 

should use the same kinds of training examples with machine-learning algorithms that we use 

with human staff, and create a learning environment that is a hybrid for human and artificial 

intelligence (AI) systems. This approach would involve rethinking and standardizing inputs, 

guidelines (e.g., training documents), outputs, and performance evaluation so that they can be 

used interchangeably for human and AI systems. Also, rather than trying to start over with this 

approach, we could adapt existing systems and processes to capture input and output data 

continuously in a format that it can be used to train and evaluate algorithms, people, or both. 

Rather than over-engineering workflows and making life painful for clinical and research staff, 

we should be thinking of and training hybrid systems where people and AI algorithms are 

collaborating to complete information-processing tasks. Ultimately, this is the kind of data 

environment that would be required to scale and support cancer surveillance, cancer research 

across networks of centers, and precision medicine initiatives. 

The answer to the first question (What informatics tools and methods have already been 

applied successfully in the cancer surveillance domain?) is that numerous informatics tools and 

methods have been applied to cancer surveillance with purported success. These tools and 

methods include NLP, machine-learning, statistical and heuristic data processing algorithms, 

data linkage methods, integrated platforms, workflow engineering, and automation, information 

security, software design and engineering and even ontologies. Relatively few of these methods 

have been applied in the United States or applied broadly across multiple cancer registries. 
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The answer to the second question (What are the current and coming opportunities for 

applying or developing new tools and methods for advancing biomedical informatics in this 

domain?) is that given the seeming success of informatics tools and methods in the cancer 

registry domain where they have been applied and the huge and increasing challenges of scalable 

and affordable data acquisition and processing for cancer surveillance, informatics, clinical data 

processing, and machine-learning tools and methods appear to be highly applicable in this 

domain. Moreover, cancer registries have a tremendous amount of existing data for developing 

and validating new tools and methods, as well as an opportunity to implement those tools and 

methods broadly to have a large and sustainable effect on improving data for cancer research. 

The aim of this chapter was to characterize the big-data needs and informatics 

opportunities for cancer surveillance at the national level. This aim has been achieved through 

this chapter’s overview of cancer surveillance and its big-data issues, literature review of 

informatics applied in this domain, summarization of findings, and description of opportunities 

for research and development. Future work will involve the collection and characterization of 

clinical NLP and machine-learning work applied in the cancer domain that is likely applicable to 

registries and cancer surveillance. 

The generalizable contributions of Chapter 8 are the following. First, it provides a 

description of cancer registries and cancer surveillance from an informatics perspective, 

including the case for automation. Second, it contributes a review of informatics tools and 

methods applied to cancer registries that indicates potential for automation of clinical data 

processing. Third, it identifies cancer registries and cancer surveillance as an area for funding 

and advancing biomedical informatics research. 



 

 

222 

9.8 Limitations 

There are several limitations to this work. Aside from a panel of clinically actionable mutations 

from tumor samples(207) and biomarker results reported in pathology reports, HIDRA (covered 

in Chapter 4) and cancer registries (covered in Chapter 8) have not integrated much genomic 

data. At this point in time, many cancer centers still wrestle with the cost of acquiring large 

numbers of molecular assays to associate with patients' clinical data for data mining and 

translational research. The Argos self-service user interface for HIDRA has not been widely 

used, and the broad rollout of this tool to users is pending federated authentication of user 

credentials (logins) from all of the cancer consortium partners as well as the resolution of 

performance issues. 

A fully functional pipeline for clinical data processing (covered in Chapter 6) is nearing 

completion, so this functionality has not been evaluated in practice. We anticipate that testing of 

the pipeline and changes to existing data abstraction workflows will be a gradual process with 

numerous challenges. 

The comparison of database models (covered in Chapter 7) summarized my experience 

and a targeted review of literature only. It was not a comprehensive review of big-data 

technologies and did not include testing of the various database models and tools. However, this 

chapter was only intended to provide frameworks for further discussion and research. 

The review of informatics and cancer surveillance literature (Chapter 8) was high level 

and strategy focused, so it did not get into the details of algorithms or approaches used. It also 

focused exclusively on cancer registries and did not cover clinical NLP and machine learning 

from adjacent biomedical domains. 
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9.9 Overall Conclusions and Avenues for Future Research 

My overarching research question has been: how can we improve access to clinical and related 

data about cancer patients for research? I think I have answered this question through the 

characterization of strategies and systems developed and implemented at individual cancer 

centers (Caisis at MSKCC described in Chapter 2, and HIDRA at Fred Hutch described in 

Chapter 4). Creating legal, IRB, security, and technology foundations and integrating disparate 

databases into systems that have self-service data access and data request services are my 

answer. The development and implementation of these foundations rely heavily on local talent, a 

strategy and plan for work, and ongoing management. I have also answered the overall research 

question through broad looks across multiple cancer centers (described in Chapter 3) and across 

the cancer registry and cancer surveillance domain (described in Chapter 8). Some advancements 

in data platform development, clinical data processing, and machine learning may depend on 

training data and may be driven by pressures to achieve scale and economies of scale. Most 

individual cancer centers do not have and can hardly afford the resources to tackle all of these 

issues and develop their own solutions. Also, most centers do not have the patient volumes to 

justify expensive systems or software development efforts. To improve access to clinical and 

related data will require partnering across networks of centers, so a strategy of adopting flexible, 

portable, and extensible systems locally and funding their advancement nationally is important. 

Finally, a deeper understanding and application of database models and big-data technologies at 

local cancer centers and across networks of cancer surveillance can potentially help improve the 

speed and current difficulties of sharing data about cancer patients for research. 

My hypothesis for this dissertation was that new tools and methods from biomedical 

informatics could improve the availability of data for cancer research if they were applied 
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thoughtfully and strategically. I addressed this hypothesis through multiple angles, from the 

actual implementation and assessment of the Caisis (Chapter 2) and HIDRA (Chapter 4) systems 

at individual centers, a broad set of site visits to 60 cancer centers to characterize trends in IT and 

informatics (Chapter 3), and a broad literature review of cancer surveillance (Chapter 8). In 

particular, advancing pipelines for clinical data processing (Chapter 6) and database models 

(Chapter 7) are areas within biomedical informatics that I think are most urgent and readily 

applicable to improve the availability of data for cancer research. 

 

Based on this work, future research could be conducted around the following areas: 

● Performance of various big database models (e.g., star schema analytical data models, 

column stores, documents stores, hybrid models) to support information acquisition and 

processing workflows and to support data access (e.g., self-service exploration, searches 

and queries, reports and data visualizations) 

● Developing and evaluating tools and methods for high-security environments. A key 

aspect of this research should be exploration of the usability and scalability implications 

of any security approach. 

● Approaches to portable application and scaling of clinical data processing and machine-

learning algorithms developed by different research groups.  

● Developing and evaluating education-based approaches for both human and machine 

learning of information extraction and processing tasks. This work involves developing 

strategies and tools for efficient and ongoing annotation and abstraction, human review of 

algorithms outputs, algorithm review of human outputs, and how to most effectively 

combine human and AI in hybrid systems that perform well and are sustainable. 

 



 

 

225 
This chapter summarized the findings and conclusions from each of the previous chapters, from 

the preliminary work on Caisis and cancer center site visits, through the development of HIDRA 

and the pipeline for clinical data processing, to the explorations of both database models to 

support cancer research and issues of scale and extensibility to cancer registries. 
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Appendix A: Sites Visited 

Site Date Contacts CC CTSA NLM Caisis SPORE EMR 
City of Hope 8/27/2008 21 Y Y  Y 1 Eclipsys 

UCLA 8/28/2008 1 Y Y Y  2  
UCSD 9/2/2008 1 Y Y    Epic 
USC 9/5/2008 2 Y Y    McKesson 

UC-Irvine 9/8/2008 6 Y Y Y Y   
St. Jude 9/10/2008 2 Y      

Univ Kansas 9/29/2008 14  Y  Y  
Epic, Cerner, 

McKesson 

UAB 10/6/2008 10 Y Y  Y 4 
Cerner, 

McKesson 
MSKCC 10/14/2008  Y   Y 1 Eclipsys 
Stanford 10/21/2008 10 Y Y Y   Epic, Cerner 
UCSF 10/22/2008 4 Y Y   3 Epic 

UC-Davis 10/24/2008 4 Y Y  Y  Epic 
MDACC 10/27/2008 7 Y   Y 9 Homegrown 

Univ 
Washington 11/3/2008 13 Y Y Y Y 2 Cerner 
Penn State 11/13/2008 2  Y     

GWU 11/21/2008 6    Y  Allscripts 
EVMS 11/24/2008 6    Y  Epic, Cerner 

Univ Virginia 11/25/2008 13 Y Y Y Y  Epic, GE 
Baylor 12/2/2008 10 Y   Y 3 GE 

Univ Arizona 12/8/2008 7 Y Y   1 
Allscripts,Eclips

ys 
OHSU 1/6/2009 18 Y Y Y Y   

Burnham 1/15/2009 1 Y     Not applicable 
Salk 1/15/2009 2 Y     Not applicable 
ASU 1/20/2009 1  Y     

Univ New 
Mex 1/22/2009 3 Y Y    Cerner 

UTHSC-SA 1/26/2009 3 Y     Epic 
Vanderbilt 2/2/2009 16 Y Y Y   Homegrown 

Univ Florida 2/9/2009 4  Y  Y  Epic 
Moffitt 2/10/2009 3 Y Y     
MSMC 2/11/2009 3    Y   

Cedars Sinai 2/27/2009 10    Y  Epic 
Wake Forest 3/9/2009 11 Y     GE 

Duke 3/10/2009 12 Y Y   2 Cerner 
UNC 3/11/2009 2 Y Y  Y 2  

Hopkins 3/17/2009 15 Y Y Y  7 Eclipsys, GE 
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Site Date Contacts CC CTSA NLM Caisis SPORE EMR 

Georgetown 3/19/2009 2 Y Y    GE 
Univ 

Maryland 3/23/2009 1 Y Y    Epic, Cerner, GE 
Univ Penn 3/24/2009 2 Y Y  Y  Epic 

Jefferson 3/25/2009 1 Y     
Allscripts, 
Cerner, GE 

Wistar 3/25/2009 3 Y    1 Not applicable 
Fox Chase 3/26/2009 19 Y   Y 1  

CINJ 3/30/2009 4 Y   Y   
Northwestern 4/21/2009 1 Y Y   1 Epic, Cerner 
Univ Chicago 4/22/2009 6 Y Y  Y 1 Epic 

Albert- 
Einstein 4/23/2009 2 Y     Epic, GE 

Roswell Park 4/28/2009 5 Y     Eclipsys, Cerner 
UPMC 4/29/2009 4 Y Y Y  2 Epic, Cerner 

Cleveland 
Clinic 4/30/2009 11  Y    Epic 

Case Western 4/30/2009 1 Y Y  Y   
Univ 

Rochester 5/4/2009 14  Y  Y  Allscripts 
Harvard 5/19/2009 7 Y Y Y  8 Homegrown 

MIT 5/20/2009 1 Y     Not applicable 
Dartmouth 5/26/2009 1 Y Y    Homegrown 

Maine 5/28/2009 2    Y  Not applicable 
Jackson Lab 5/29/2009 12 Y     Not applicable 
Mayo Clinic 6/11/2009 18 Y Y   4 Cerner,GE 
Wash Univ 6/16/2009 9 Y Y    Allscripts 
Karmanos 6/18/2009 9 Y   Y  Eclipsys 

Univ 
Colorado 6/25/2009 3 Y Y Y   Epic 

Univ Utah 6/29/2009 7 Y Y Y     Epic, Cerner, GE 
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