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Abstract

An Evidential Knowledge Representation for Drug-mechanisms and its Application
to Drug Safety

Richard David Boyce

Chair of the Supervisory Committee:
Professor Ira Kalet

Biomedical and Health Informatics

A major challenge to designers of informatics tools that help alert clinicians to potential
drug-drug interactions (DDIs) is how to best assist clinicians when they must infer the po-
tential risk of an adverse event between medication combinations that have not been studied
together in a clinical trial. The central thesis of this dissertation is that DDI prediction
using drug mechanism knowledge can help drug-interaction knowledge bases expand their
coverage beyond what has been tested in clinical trials while avoiding prediction errors
that occur when individual drug differences are not recognized. This dissertation describes
a knowledge representation system, called the Drug Interaction Knowledge Base (DIKB),
that uses a novel approach to linking and assessing evidence support for drug-mechanism
assertions. The DIKB is the first knowledge-representation system we are aware of to use
a computable model of evidence and a Truth Maintenance System to manage assertions
in its knowledge-base. The novel approach to evidence management implemented in the
DIKB enables its prediction accuracy and coverage to be optimized to a particular body of
evidence; a feature that is very desirable for clinical decision support. The DIKB is also
novel for its computable representation of the conjectures behind a specific application of
evidence. These evidence-use assumptions enable the system to flag when a conjecture has
become invalid and alert knowledge-base maintainers to the need to reassess their original

interpretation of what assertions a piece of evidence supports. They are also used as evi-



dence is input into the system to help identify a pattern, called a circular line of evidence
support, that is indicative of fallacious reasoning by evidence-base curators. The DIKB has
been shown capable of accurately predicting clinically-relevant DDIs using only pharma-
cokinetic drug-mechanism knowledge and development of the system has helped to identify
and evaluate potential informatics solutions to the challenges of representing, synthesizing,

and maintaining drug mechanism knowledge.
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Chapter 1

INTRODUCTION
1.1 Problem Statement

A 2001 report from the Agency for Healthcare Research and Quality estimates that adverse
drug events result in more than 770,000 injuries and deaths each year in the United States
and cost up to $5.6 million per hospital, depending on the size of the hospital [1]. A more
recent report from the US Institute of Medicine estimates that over 1.5 million preventable
adverse drug events (ADEs) occur each year in America [137]. Preventable ADEs include
éituations where a patient is harmed because a clinician fails to avoid, or properly manage,
an interacting drug combination. Multiple studies indicate that these drug-drug interac-
tions are a significant source of preventable ADEs. For example, Gurwitz et al, in their
cohort study of ADEs among older Americans receiving ambulatory care, found that 13.3%
of preventable errors leading to an ADE involved the co-prescription of drugs for which
their was a “...well established, clinically important interaction” [79]. Also, three separate
case-control studies conducted by Juurlink et al using population-level health records from
Ontario Canada® found that patients were considerably more likely to be hospita.lized while
taking a drug combination known to be capable of causing a specific interaction than when
when not [100].

Factors contributing to the occurrence of preventable drug-drug interactions (DDIs)
include a lack of knowledge of the patient’s concurrent medications and inaccurate or in-
adequate knowledge of drug interactions by health care providers [41, 142]. Information

technology, especially electronic prescribing systems with clinical decision support features,

®Juurlink et al conducted three case-control studies, each focusing on a different drug-drug interaction:
1) Digoxin toxicity while taking clarithromycin, 2) ACE inhibitor hyperkalemia while taking a potassium
sparing diuretic, and 3) glyburide hypoglycemia while taking co-trimoxazole.



can help address each of these factors to varying degrees and there is currently a great
deal of interest from both government and private organizations in expanding the use of
information technology during medication prescribing and dispensing [137, 122]. Unfortu-
nately, studies have found the DDI components of a wide variety of clinical decision-support
tools to be sub-optimal in both the accuracy of their predictions and the timeliness of their
knowledge. For example, a 2001 study of retail pharmacy alerting software found that, on
average, the systems missed clinically relevant DDIs one-third of the time [85]. A 2005 study
of hand-held prescribing guides found that all 11 systems in the study failed to inform users
of at least one life-threatening DDI [123]. Another study published in 2005 found that one
widely used drug interaction database could identify less than 15% of the clinically relevant
DDIs involving the metabolism of 5 immuno-suppressive drugs [160].

What all of the systems in these studies have in common is that they rely upon some
representation of drug knowledge to infer DDIs. Throughout this dissertation I will refer
to any store of drug knowledge used by human or.computer system for inferring DDIs as
a “drug-interaction knowledge base.” Instances of drug-interaction knowledge bases (KBs)
range from small databases of drug-interaction studies to large systems that combine trained
experts and informatics tools to address the difficult task of acquiring, maintaining and
distributing drug-interaction information. Currently, a handful of large drug information
databases are used as drug-interaction KBs in a large range of drug interaction alerting
products and electronic prescribing tools [122]. Examples include First DataBank’s National
Drug Data File®, Thompson Micromedex’s DRUGDEX® system, and Cerner’s Multum®
system.

I have learned from discussions with clinicians, commentaries by DDI experts [142],
reports by researchers [88, 160], and my own testing of systems that the basic service most
drug-interaction KBs provide is to catalog drug pairs found to interact in clinical trials or
reported as such in clinician-submitted case reports. One major limitation of this approach
is that it contrains drug-interaction KBs, and the tools that utilize them, to covering only
interacting drug pairs that KB maintainers find in the literature and think important to
include. Clinicians often must infer the potential risk of an adverse event between medication

combinations that have not been studied together in a clinical trial [142]. Systems that only



catalog DDI studies involving drug pairs can offer little or no support in these situations.
Some contemporary drug interaction KBs supplement their DDI knowledge by general-

izing interactions involving some drug to all other drugs within its therapeutic class. For

example, Tyken Hsieh describes the KB supporting the hospital prescription order entry

system at Brigham and Women’s Hospital as

...class-based hierarchical ingredient knowledge (e.g. ampicillin is penicillin) as

well as cross-reactivity mapping (e.g. penicillins cross-react with cephalosporins) [88]

While clinically relevant class-based interactions exist (for example, the SSRIs and
NSAIDs), this approach has been criticized for leading to some DDI predictions that are
either false or are likely to have little clinical relevance [82]. The main reason class-based
prediction can lead to false alerts is because drugs within a therapeutic class do not nec-
essarily possess the same mechanistic properties. For example, drugs within a class can
be metabolized by different enzymes and thus, have distinct metabolic interactions. False
predictions can have a negative effect on electronic prescribing systems by triggering false
or irrelevant DDI alerts that can markedly impede the workflow of care providers [168].
A high rate of irrelevant alerting is a potential barrier to widespread adoption of CPOE
systems [147] and stands as a major obstacle to improving patient safety.

The central thesis of this dissertation is that DDI prediction using drug-mechanism
knowledge can help drug-interaction KBs expand their coverage beyond what has been
tested in clinical trials while avoiding prediction errors that occur when individual drug
differences are not recognized. Mechanism-based DDI prediction itself is not novel; the
mechanistic principles of drug-drug interactions can be found in several sources including
pharmaceutics text books [68, 112]. There are a few basic pharmacologic principles by which
drug-mechanism knowledge can be synthesized to make mechanism-based drug-drug inter-
action predictions. Pharmacodynamic interactions can occur when the pharmacodynamic
effects of two drugs combine in additive, subtractive or synergistic ways. Pharmacokinetic
interactions can occur when the binding, metabolic or physical and chemical properties of
one drug affect the absorption, distribution, metabolism and/or excretion (ADME) of an-
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other drug. Modulations in the ADME or the pharmacodynamic effects of a drug can lead
to the possible negative outcomes of drug toxicity or loss of efficacy in patients.

Part of pre-clinical drug development is the use of mechanism-based DDI prediction to
predict interactions between a new drug candidate and drugs currently on the market [26].
Most systems that model drug mechanisms are being developed and applied in the pre-
clinical and pre-market phases of drug-development to identify optimal drug candidates,
predict drug properties, assess the efficacy and safety of new drugs, and estimate dose to
concentration relationships [56]. These early-phase modeling efforts are geared towards iden-
tifying interactions between a new drug and drugs with which it might be co-administered
early on, before much time and money is invested [167, 180]. The predictions made using
drug-mechanisms are generally qualitative; they indicate that two drugs might interact via
a mechanism but offer no estimate of the magnitude of the interaction. Scientists can use
qualitative predictions to select the set of clinical trials necessary to establish a new drug’s
safety profile [131].

The same knowledge that is useful for predicting DDIs in the premarket setting can
help clinicians in the post-market setting assess the possibility of a DDI occurring between
two drugs that have never been studied together in clinical trials [82]. In spite of this
fact, and the position of the FDA that all relevant information on mechanisms from pre-
market invesfigations be included in drug product labeling [26], little research has been
done on how to best represent and synthesize drug-mechanism knowledge to support clinical
decision making. This dissertation will fill in part of this knowledge gap by exploring novel
informatics methods for representing drug mechanism knowledge for the purpose of making

clinically relevant DDI predictions.
1.2 OQutline of This Dissertation

o Chapter 2, An evidential knowledge-representation for drug mechanisms, proposes that
correctly linking and assessing the evidence support for drug-mechanism assertions can
enable knowledge-based systems to make clinically relevant drug-drug interactions in
spite of the uncertain, incomplete, and dynamic nature of drug-mechanism knowl-

edge. This chapter focuses on a set of novel informatics methods designed to test this



proposition and a prototype system, the Drug Interaction Knowledge Base (DIKB),

that implements the new methods.

Chapter 3, A knowledge representation for predicting clinically meaningful drug-drug
interactions by pharmacokinetic inhibition, presents the new rule-based theory used in
the DIKB. The theory predicts metabolic inhibition interactions and non-interactions
between drug active ingredients and/or drug metabolites and categorizes its predic-
tions into three discrete levels so that clinicians can assess the clinical relevance of each
prediction. Experiments demonstrate that 1) the rule-based theory makes accurate
predictions for an important class of DDIs using only knowledge of drug-mechanisms
and 2) the system’s prediction accuracy and coverage varies depending on the belief

criteria strategy being used.

Chapter 4, The collection and classification of drug-mechanism evidence, explores the
DIKB’s evidence representation method from a knowledge-base maintenance perspec-
tive. It begins with a brief summary of the method’s goals and key assumptions
contrasting it with other biomedical informatics systems that link evidence to their
assertions. It then relates how the method was used to represent drug-mechanism

evidence for 16 active ingredients and 19 active metabolites.

Chapter 5, An experiment with levels-of-evidence and belief criteria, recounts an ex-
periment conducted to characterize the effect of different belief criteria strategies on
the system’s accuracy and coverage of DDIs present in a reference set of interactions
and non-interactions. This chapter also examines 31 novel predictions made by the
DIKB using the best performing strategies and discusses an attempt to find evidence
for these interactions in published case reports and data in the FDAs Adverse Event

Reporting System.

Chapter 6, Contributions, future work, and concluding comments, concludes with a
review of this project’s research contributions and a discussion of possible future di-

rections.



1.2.1 A Clarification on the Use of the Word “we” Throughout This Text

I use the word we frequently throughout the text to acknowledge the fact that this work
would not have been possible without collaboration and guidance of the persons mentioned
in the Acknowledgement section. My specific contributions to this work include the DIKB
and its Web interface, the DIKB’s rule-based theory of metabolic inhibition interactions and
non-interactions, the evidence collection process used to build the DIKB’s evidence-base,
and the design, implementation, and analysis of an experiment characterizing the effect
of different belief criteria strategies on the DIKB’s prediction accuracy. There are several
locations in later chapters where I refer to members of an evidence board consisting of
two drug experts and an informaticist. The two drug experts are Drs Carol Collins and
John Horn and the informaticist is myself. I use this language to convey to the reader the

interdisciplinary approach that we used to construct the evidence base.



Chapter 2

AN EVIDENTIAL KNOWLEDGE-REPRESENTATION FOR DRUG
MECHANISMS

The same knowledge about drug mechanisms that is useful for predicting drug-drug
interactions (DDIs) in the pre-market setting can help clinicians in the post-market setting
assess the possibility of a DDI occurring between two drugs that have never been studied
together in clinical trials [82]. In spite of this fact, and the position of the FDA that all
relevant information on mechanisms from pre-market investigations be included in drug
product labeling [26], little research has been done on how to best represent, utilize, and
maintain drug-mechanism knowledge for the purpose of making DDI predictions in the

post-market setting.

This chapter describes the development of a knowledge representation system, called the
Drug Interaction Knowledge Base (DIKB), that has been shown to be capable of accurately
predicting clinically-relevant DDIs using pharmacokinetic drug-mechanism knowledge. The
process of developing the DIKB has helped to identify and evaluate potential informatics
solutions to the challenges of representing and synthesizing drug-mechanism knowledge for
post-market use. The system’s design is based on the idea that, for a knowledge resource
with drug-mechanism knowledge to be of clinical use, it is essential that it explicitly link each
of its drug-mechanism facts to their evidence support. As a result, the DIKB implements a
rich representation of evidence for and against propositions and uses that representation to
support or refute assertions in its knowledge base. The system’s prediction performance has
been characterized and its development has led to other informatics contributions including
a novel rule-based DDI prediction theory and an ontology of research evidence types. Later
chapters will discuss these contributions in detail; this chapter focuses on the motivation

for developing the new methods, what they are, and the design and implementation aspects

of the DIKB.



(<- (metabolic-inhibit-interact ?precip 7object 7enz)
(and (inhibits-primary-clearance-enzyme ?precip ?object 7enz)
(narrow-ther—index ?object yes)))

(<~ (inhibits-primary-clearance-enzyme ?precip 7object 7enz)
(and (inhibits-partial-clearance ?precip ?object ?Terz)
(major-pathway ?object ?enz)))

(<- (inhibits-partial-clearance ?precip 7object 7enz)
(and (inhibits-effectively 7precip 7enz)
(substrate-of ?object 7enz)
(primary-clearance-mechanism Tobject metabolic)))

(<- (inhibits-effectively ?drug 7enz)
(and (inhibits ?drug 7enz)
(or (inhibit-strength ?drug 7enz strong)
(inhibit-strength ?drug ?enz moderate))))

Figure 2.1: Rules written in mock Prolog from the pilot knowledge base used to predict
metabolic drug-drug interactions in the pilot knowledge base.

2.1 Qualitative Pharmacokinetic Modeling of Drugs

Previously, in order to better understand the issues of formally representing DDI knowl-
edge we constructed a First Order Logic model of the mechanisms underlying DDIs from
the lectures and class notes of a graduate class on drug-interactions.? Several categories of
DDIs were covered in the class including DDIs involving changes to liver or kidney function,
gastro-intestinal motility and absorption, transport protein function, and metabolism. We
selected for further experimentation rules from this representation that model the jointly
sufficient conditions for DDIs that occur via metabolic inhibition or induction. These rules
were interesting because a large number of DDIs can be explained by metabolic mecha-
nisms, especially for drugs metabolized by the Cytochrome-P450 (CYP450) enzymes, and

considerable research data exists on the metabolic properties of many drugs.

We then constructed a database containing the necessary drug facts for inference with

*We have previously published the body of work that this section describes in a conference paper titled
Qualitative Pharmacokinetic Modeling of Drugs [36].



Table 2.1: The mapping between strength of inhibition in Reference A and Reference B

that we used when collecting drug facts for the pilot knowledge base (KB).

Mechanism | Drug KB | Reference A [81] | Reference B [{4]
Inhibition weak weak weak,
very weak

moderate | n/a moderate

strong strong n/a
Induction | weak n/a weak

moderate | n/a moderate

strong strong n/a

the selected rules. Facts on the important metabolic enzymes for 249 currently prescribed
drugs were input into the knowledge base (KB) from a widely used pocket reference on
clinically significant drug interactions [81]. This reference (Reference A) also included facts
on each drug’s potential for inhibition or induction of CYP450 enzymes. We then augmented
the KB with information from a Continuing Education Module containing pharmacokinetic
information on drugs commonly prescribed to elderly epileptic patients [44]. In addition
to facts on potential CYP450 modulation, this reference (Reference B) listed the relative
importance of each drug’s clearance enzymes. Several drugs not found in Reference A were
also added. Since terms regarding the strength of enzyme inhibition and induction varied
between the resources, we constructed the mapping shown in Table 2.1. When completed,

the KB contained facts useful for mechanism based inference for 267 drugs.

We implemented both the rules and the database in Lisp. The implementation uses
a simple pattern matching and backward chaining program taken verbatim from chapter
15 of Paul Graham’s popular Common Lisp book [72]. Graham’s code uses a Prolog-like

“:="_ but as usual in

syntax, where the macro “<-” is analogous to the Prolog connector
Lisp, prefix notation is used. So, the list expressions have the macro “<-” followed by a
head expression and optionally a tail expression. Rules that have multiple terms in the tail
use combinations of the operators and, or, and not to combine them. Figure 2.1 shows the
rules that we developed pertaining to inhibition of clearance; we developed a similar set of
rules for metabolic induction. |

Since our system could provide no quantitative estimates of its DDI predictions we mod-

t
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(with-answer
(metabolic-induce-interact ?precip ?object ?enz)
(format t "Drug “A induces "A, a primary clearance enzyme, of drug "ATU"
(generic-name ?precip) 7enz (generic-name Zobject)))
(with-answer
(metabolic-inhibit-interact ?precip ?object 7enz)
(format t "Drug ~A inhibits ~A, a primary clearance enzyme, of drug ~A~Y
(generic-name 7precip) 7enz (generic-name 7object)))

Figure 2.2: Queries for any drugs that inhibit or induce the primary clearance enzyme for
another NTI drug whose clearance is primarily metabolism

ified the rules to apply only to drugs with a narrow-therapeutic index, meaning that there is
a small gap between the toxic dose of a drug and the dose at which the drug is ineffective.
Any interaction involving a narrow-therapeutic index (NTI) drug could potentially result
in harm to a patient, so this change made it more likely that predictions would be clini-
cally relevant. We then applied the selected rules by performing two queries against the
database (Figure 2.2) for any drugs that inhibit or induce the primary clearance enzyme of
another NTI drug whose clearance is primarily metabolism. The queries returned a total
of 90 predicted DDIs out of 71,022 possible pairwise combinations. We then checked the 90
predictions against four online drug reference databases.® A predicted drug-drug interaction
was considered clinically viable if it was reported in any of the four sources.

Seventy-four of our ninety predicted DDIs were found in at least one drug reference
while sixteen could not be found in any online reference (see Table 2.2). We recognized that
the sixteen predicted interactions not found in any drug reference were not necessarily false
predictions. It is not possible to test every possible drug combination in a clinical trial and
the effects of drug interactions can be very hard to recognize so that some drug interactions
escape notice in the scientific literature until years after a drug comes to market. The pilot
system’s predictions were based on pharmacokinetic principles that are considered valid

indicators of potential interactions in FDA guidelines [26]. The clinical relevance of these

®The four online drug reference databases were 1) First Data Bank’s Micromedex, 2) WebMD’s Medscape,
3) Discovery health.discovery.com, and 4) Cerner Multum’s Drugs.com.


http://health.discovery.com
http://Drugs.com
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Table 2.2: Predicted inhibition interactions from our pilot drug-drug interaction knowledge-
base not documented in any of four online references. In each row, the precipitant drug
inhibits the primary clearance enzyme (PCE) of the object drug based on information in
our pilot system.

Precipitant PCE Object
amiodarone CYP2C9 | phenobarbital
disulfiram CYP2C9 | phenobarbital
fluorouracil CYP2C9 | phenobarbital
fluconazole CYP2C9 | phenobarbital
gemfibrozil CYP3A4 | carbamazepine
gemfibrozil CYP2C9 | phenobarbital
gemfibrozil CYP2C9 | phenytoin
leflunomide CYP2C9 | phenobarbital
miconazole CYP3A4 | carbamazepine

sulfamethizole CYP2C9 | phenobarbital
sulfamethoxazole | CYP2C9 | phenobarbital
sulfinpyrazone CYP2C9 | phenobarbital
sulphaphenazole | CYP2C9 | phenobarbital

zafirlukast CYP3A4 | carbamazepine
zafirlukast CYP2C9 | phenytoin
zafirlukast CYP2C9 | phenobarbital

predictions was based on the assumption that any change in the exposure of a patient to
an NTI drug is of clinical interest. Thus, it is possible that some of these predictions are
valid interactions that have not been studied.

We looked carefully at the evidence behind each fact in our database that supported
any of the sixteen novel interaction predictions and found that several facts in the drug
KB had varying degrees of support from the scientific literature. For example, the drug
product label for zafirlukast notes that in vitro experiments have found zafirlukast [9] to be
an inhibitor of the CYP3A4 enzyme. Unfortunately, this evidence leaves unanswered the
question of whether zafirlukast will effect an clinically relevant, in vivo, interaction with
drugs that are primarily metabolized by CYP3A4 because, even with very solid in vitro
evidence, a pharmacokinetic drug property might not have much clinical relevance at the
doses in which drugs are prescribed [92, 114]. In contrast, there is stronger evidence in
the form of a clinical trial [33] that fluconazole will effect a measurable in vivo drug-drug
interaction with drugs metabolized by CYP2C9.

Examination of the evidence for other drug properties in this pilot system revealed that
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important drug-mechanism knowledge is sometimes missing. For example, all 11 of the
interactions involving phenobarbital in Table 2.2 are predicted to occur by inhibition of
phenobarbital’s primary metabolic clearance pathway which we listed as CYP2C9 based
on one source [44]. We could only indirectly support the hypothesis that phenobarbital
is a CYP2C9 substrate with two studies from the early 1980s that identified an apparent
metabolic interaction between sodium valproate and phenobarbital {104, 105] and an in vitro
study conducted years later showing that sodium valproate is a CYP2C9 inhibitor [176].
This pattern of inference is weak since it assumes that the interaction could only occur
by means of CYP2C9 inhibition while pharmacology research has exposed other means by
which apparent metabolic interactions can occur including inhibition of transport proteins.
A the time we conducted our analysis we could find no studies, such as an in vitro assay,
designed to examine directly whether phenobarbital is metabolized by CYP2C9. With-
out this missing information, the validity of the pilot system’s DDI predictions involving

phenobarbitol remained considerably uncertain.©

2.2 Major Challenges and Related Work

The initial experiment described in Section 2.1 helped identify three major challenges to rep-
resenting drug-mechanism knowledge. First, there is often considerable uncertainty behind
claims about a drug’s properties and this uncertainty affects the confidence that someone
knowledgeable about drugs places on mechanism-based DDI predictions. Another challenge
is that mechanism knowledge is sometimes missing; a fact that can make it difficult to assess
the validity of some claims about a drug’s mechanisms. Finally, mechanism knowledge is
dynamic and any repository for drug-mechanism knowledge is faced with the non-trivial
task of staying up to date with science’s rapid advances. This section reviews related work

that is relevant to overcoming each of these challenges.

°The work we are describing in this section was conducted in late 2004 and early 2005. A study involving
Japanese epileptics [71] published in 2007 provides further evidence that CYP2C9 is a significant pathway
for phenobarbitol though, as the investigators note, their results need to be confirmed in other ethnic
populations.
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2.2.1 Work Addressing Uncertain Mechanism Knowledge

Perhaps the most significant challenge identified in the initial study is that knowledge about
drug mechanisms is often uncertain. The pilot database had no way to represent uncertainty
or determine how much confidence one should have in predictions made using uncertain
drug facts. There are many methods to support computational reasoning with uncertain
knowledge including symbolic methods such as incidence calculus [39], purely numerical
approaches such as Bayesian networks [139] and hybrid approaches such as the Certainty
Factors that were attached to rules in MYCIN [52] and similar expert system shells. An
interesting informatics research project would be to build a drug-mechanism knowledge
system using one of these methods. In fact various models of drug pharmacokinetics and
pharmacodynamics employing some of these methods are being used during early drug de-
velopment for reasons that include assessing the efficacy and safety of new drugs, estimating
dose to concentration relationships, and identifying optimal drug candidates [56]. However,
the results of the pilot study suggest that, for a drug-mechanism KB to be of clinical use,
it is essential that it explicitly link each assertion in the KB to its evidence support. So, a
more immediate, and perhaps more important, research question is — what are the strengths
and weaknesses of explicitly linking drug-mechanism knowledge to its evidence support and
how is that evidence support best modelled?

Other knowledge-based systems link evidence to their drug facts, including DRUGDEX®4,
Q-DIPS [34], and PharmGKB?® [109], however, there are potential limitations to the meth-
ods used by these system. One potential limitation of these systems is that they tend to
collect evidence only in support of assertions. This bias towards collecting only supporting
evidence could undermine attempts to evaluate how believable an assertion is. Psychological
studies have shown that people tend to search for evidence that confirms their hypotheses
and that this can sometimes lead them to overestimate the likelihood that a hypothesis is
true. When subjects were asked to think of situations where their hypotheses would not

be true, their confidence estimations were more accurate [76]. The evidence component

Yhttp:/ /www.micromedex.com/products/drugdex/

°http://www.pharmgkb.org/


http://www.micromedex.com/products/drugdex/
http://www.pharmgkb.org/
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of the second drug interaction KB that Section 2.3 discusses accumulates evidence both
for and against object property assertions allowing exploration of the possible benefits and
drawbacks of this approach.

Another potential limitation of existing systems that link evidence to their drug facts is
that they rarely or never provide their criteria for selecting or excluding evidence (inclusion
criteria). Research methodology can influence a study’s ability of overcome biases and can
weaken the validity of its results. Inclusion criteria help ensure that all evidence within
a collection meet some basic quality standards. More effort is required to evaluate the
evidence support for drug-mechanism assertions when expert users cannot trust that each
item of evidence in the system meets some clearly stated standard for research quality. For
example, the evidence selection guidelines for content in the Thomson Micromedex product
DRUGDEX® are documented internally [21] but not accessible to DRUGDEX® users.
The authors of Q-DIPS, a system designed to help clinicians identify and manage DDIs
that occur by metabolic mechanisms, list a set of factors affecting the quaiity of in wvitro
studies [34] but make no mention of using these factors when selecting evidence for their
system. In the former system, the criteria used for selecting evidence is not explicit while,
in the latter system, it is unknown if criteria have been rigorously applied to all evidence.

The new drug interaction KB this chapter describes uses an evidence type taxonomy
that defines distinct kinds of evidence based on their source and methodology. The system
requires a set of explicit inclusion criteria for each evidence type that defines a lower-bounds
on the quality of the methods used by instances of that type. Knowledge-base maintainers
follow a set of processes for acquiring and evaluating evidence designed to ensure that
inclusion criteria are met by every piece of evidence entered into the system. This treatment
of evidence should make it possible for expert users to quickly assess the strength of evidence
for or against assertions in the knowledge-base.

Even more intriguing is the possibility that experts can prospectively map their confi-
dence in each assertion type to some arrangement of one or more abstract evidence types.
Rather than requiring that the expert review specific evidence items, it might then be pos-
sible for a knowledge-based system to automatically determine the users confidence in its

assertions using evidence meta-data. Section 2.3 details how the new drug interaction KB
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supports this novel treatment of evidence while Chapter 5 describes an experiment that

explores the new method’s strengths and limitations using real-world data.

2.2.2 Work Addressing Missing Mechanism Knowledge

Missing drug-mechanism knowledge includes facts that are unavailable or require tests that
are impossible or impractical to perform. In the pilot study, the absence of research exam-
ining directly whether phenobarbital is metabolized by CYP2C9 left the clinical relevance
of 11 of the pilot system’s DDI predictions unvalidated. One way to handle missing knowl-
edge when it is important for réasoning is to assume some truth state for the knowledge
until proven otherwise. This is a form of default reasoning whose various forms include
inheritance in semantic networks, circumscription, default logic, and several methods dis-
cussed by Goldszmidt and Pearl that utilize qualitative probabilities [69]. Implementing
default reasoning in a system that performs logical inference requires that the system be
non-monotonic. Conceptually, this means that the system can retract or reinstate infer-
ences as the belief state of assertions change. One type of non-monotonic logic system is
a Justification-based Truth Maintenance System (JTMS) [61]. Typically, a JTMS system
works in conjunction with a rule engine to manage assumptions and their effects on infer-
ence. Section 2.3 present a novel use of a JTMS in the second drug interaction KB; the
remainder of this section describes how a JTMS works.

Many rule engines, including the pilot knowledge-base described in the beginning of
this chapter, model theories as IF-THEN rules consisting of one or more clauses forming an
antecedent and zero or one clauses forming a consequent. The antecedent, or IF portion of
an IF-THEN rule, must be true for the consequent, or the THEN portion of the rule, to be true.
This is not the case in a system using a JTMS; rather, a consequent can depend on other
clauses in addition to the ones in its antecedent. The set of clauses a consequent depends
on is called its justifications. In order for a consequent to hold true, all of its justifications
must hold true.

The JTMS represents every clause in the rule engine as a node possessing a label re-

flecting its current belief state. Every rule in the rule engine specifies a set of justifications
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its consequent depends on for belief. ) The JTMS labels a consequent IN when all of its
justifications are IN. If any of a consequent’s justifications are OUT, then the JTMS labels
the consequent is OUT. Justifications can include clauses or assumptions. Assumptions are
clauses that can be IN or OUT by assignment; they do not require any supporting justifica-
tions. The JTMS labels an assumption node IN, or enabled, when the rule engine assumes
belief in it, and OUT when the rule engine retracts that belief. In this way, the JTMS main-
tains a dependency network of clauses and justifications. A change in belief in any clause
or assumption node recursively propagates through the dependency network, changing the

belief state of any other node that contains the changed node in its set of justifications.

2.2.3 Work Addressing the Dynamic Nature of Mechanism Knowledge

Any repository for drug-mechanism knowledge is faced with the non-trivial task of staying
up to date with science’s rapid advance. Unfortunately, one of the most widely used sources
of drug-mechanism knowledge, the drug product label, often fails to stay up to date with
emerging drug mechanism knowledge. For example, since the late 1990s regulatory agen-
cies have recommended both in wvitro and in vivo investigations into the pharmacokinetic,
and especially metabolic, mechanisms a new drug dulring its early stages of development.
However, labeling for older drugs is often missing this emerging knowledge. For example,
a study in 1999 found that 10% of the drugs approved between 1992 and 1997 did not
include findings from existing in wvitro metabolic studies [183]. Others have noted that
very few labels for drugs approved in the early 1980s provide pharmacokinetic information
such as mechanisms of hepatic elimination and the percentage of drug eliminated by renal

excretion [116].

A more effective approach might be to track and evaluate both drug label and primary
research evidence using editorial boards consisting of domain experts. DRUGDEX®), Facts
and Comparisons®, and other comparable systems, use some form of an editorial board
approach to stay current with knowledge from clinical trials or case reports [18, 21] and
they have scaled the approach to the thousands of drug products listed in these sources.

Q-DIPS {34], though possibly no longer an active project, demonstrated that the editorial
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Knowledge
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facts and rules !

to the KB .
______________________ Reasoning

The reasoning System

system reasons
with the facts and
rules in the KB

Figure 2.3: An evidential knowledge-based system that links assertions about object proper-
ties to the evidence for and against those properties. The system’s reasoning system makes
inferences with assertions in the knowledge-base whose evidence meets belief criteria defined
using evidence meta-data.

board approach is feasible for drug-mechanism knowledge. The maintainers of the Q-DIPS
system curated a database of in vitro and in vivo studies supporting assertions about the
enzymes a drug is a substrate of or modulates. Users of Q-DIPS could identify DDIs by
viewing tables showing the metabolic properties of the set of drugs they are interested in.
The tables in Q-DIPS were dynamic meaning that their content changed as knowledge about

each drug’s metabolic profile is updated in the study database.
2.3 Modeling with Evidence and Truth Maintenance

Based on the results of the pilot study and the review of related work we designed a new
evidential DDI knowledge-base called the Drug Interaction Knowledge Base, or DIKB. Fig-
ure 2.3 shows an architectural model of the system. The DIKB enables knowledge curators
to link each assertion about a drug property to both supporting and refuting evidence.
DIKB maintainers place evidence for, or against, each assertion about a drug’s mechanistic
properties in an evidence-base that is kept current through an editorial board approach.
Maintainers attach meta-data describing the source and study type of each piece of evi-

dence in the evidence-base and users of the system can define specific belief criteria for each
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assertion in the evidence-base using combinations of the evidence meta-data. The system
has a separate knowledge-base that contains only those assertions in the evidence-base that
meet belief criteria. The DIKB’s reasoning system uses assertions in this knowledge—bdse
and so only makes DDI predictions using those facts considered current by the system’s

maintainers and believable by users.

Section 2.2.2 introduces a type of non-monotonic logic system called a Justification-
based Truth Maintenance System (JTMS) [61] that works in conjunction with a rule engine
to manage assumptions and their effects on inference. The DIKB uses a JTMS to handle
both default reasoning and the effects on inference of changes in the knowledge-base as
new evidence causes assertions in the evidence-base to meet, or fail to meet, belief criteria.
This latter application appears to be a novel use of a JTMS within the field of biomedical

informatics.

The DIKB implements the three modules shown in the Figure 2.3 using two software
components; one called the ddi-theory and the other called the evidence-model. The
evidence-model implements the evidence-base component of the model in Figure 2.3. It
models the evidence for and against each assertion in the knowledge-base and communicates
to the ddi-theory which assertions it can use for inference. The ddi-theory implements
both the knowledge-base and the reasoning system components of the model in Figure 2.3.

It consists of a JTMS, an inference engine, and a novel rule-based DDI prediction theory.

An explicit function in the reasoning system executes a forward chaining inference al-
gorithm that applies the rule-based DDI theory to assertions in the knowledge-base. Any
new assertions that result from inference are added to the knowledge-base. Users can pose
queries against the knowledge-base and the system will return any assertions about drugs,
including drug-drug interaction predictions, that match a user’s query. It will also return
links to the evidence for and against each assertion used to satisfy the query. The next two

sections set forth in greater detail each component of this system.
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2.3.1 The evidence-model

The purpose of the evidence-model component of the DIKB is to manage evidence for
and against assertions about the attributes of objects that are relevant for predicting DDIs
(e.g. active ingredients, metabolites, and enzymes). The evidence-model stores instances
of frame-based representations of these objects and communicates the current state of belief
for their attributes to the ddi-theory. The set of assertions in ddi-theory and their belief
state changes as the evidence-model accumulates evidence for and against object property

assertions. To satisfy its purpose, the evidence-model:

1. stores evidence and evidence meta-data for and against each object attribute (Sec-

tion 2.3.1.1)

2. tests the evidence for and against each object attribute against user-defined belief

criteria (Section 2.3.1.2)

3. exports statements that tell the ddi-theory to add assertion nodes to the knowledge-

base and change their belief state (Section 2.3.2.2)

2.8.1.1 Storing Evidence and Evidence Meta-data

The evidence-model represents objects of interest to the ddi-theory and assertions about
their attributes as instances of classes derived from an abstract class called Frame. A simple
class, called KB, performs storage and retrieval functions for these class instances. This
class has two sub-classes, or children; DrugKB for objects whose properties are important
for inference and EvidenceBase for assertions about the properties of these objects.

The singleton DrugKB can contain instances of type Drug (Table 2.4), Metabolite (Ta-
ble 2.5), and Enzyme (Table 2.7), and Pharmaceutical Preparation (Table 2.6). These
classes contains two types of slots, categorical slots that store plainly factual knowledge
such as a drug’s generic and trade names and evidence slots that model knowledge that

rests on conclusions from research.
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Table 2.3: The Pceut. Entity class description — a frame-based model for an abstract phar-
maceutical entity. The classes that model active ingredients (Table 2.4) and metabolites
(Table 2.5) inherit all of the slots of this class. All slots are of type Evidence (see Table 2.3.1)

Slot

Description

substrate-of
is-not-substrate-of

in-vitro-probe-substrate-of-enz

primary-total-clearance-enzyme
primary-total-clearance-mechanism

primary-metabolic—-clearance-enz

enzymes that metabolize the entity

an incomplete list of enzymes that do not catalyze the
entity

enzymes that meet the FDA’s definition of a preferred or
acceptable chemical substrate for in vitro studies with the
entity [26)

an enzyme responsible for 50% of the entity’s total clear-
ance from the body (if one exists) '

the entity’s primary route clearance: metabolic, renal, bil-
iary, or exhalation

an enzyme responsible for 50% of the entity’s total
metabolic clearance from the body (if one exists).

inhibits
does—-not-inhibit
in-viVo-selective-inhibitor-of-enz

in-vitro-selective-inhibitor-of-enz

permanently-deactivates-
catalytic—-function
does-not-permanently-
deactivate-catalytic—function

an incomplete list of enzymes this entity inhibits

an incomplete list of enzymes this entity does not inhibit
enzymes for which the entity meets the FDA’s definition
of a preferred or acceptable chemical substrate for in vivo
studies [26]

enzymes for which the entity meets the FDA’s definition
of a preferred or acceptable chemical substrate for in vitro
studies [26]

enzymes the entity inhibits in such a way that they are no
longer available for catalysis

enzymes for which the entity is a competitive inhibitor

has-metabolite

pceut-ent ity#—of—concern

sole-PK-effect-alter-
metabolic-clearance

an incomplete list of biochemical entities that the entity is
transformed to via catalysis

true or false depending on whether a small change in the
systemic concentration of the entity would be of clincial
interest

asserts that the entity’s sole pharmacokinetic effect on an-
other entity is alteration of its metabolic clearance

maximum_concentration

inhibition-constant

increases-auc

the observed in vivo maximum concentration, Cpaz, in
grams/L of the entity at various doses

rate constant(s) in grams/L for enzymes the entity has
been shown to inhibit in in vitro studies

the set of active ingredients or metabolites for which this
entity, when co-administered, causes an increase in AUC.
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Table 2.4: The Drug class description — a frame-based model for an abstract active ingredi-
ent. Because the Drug class is a child-class of the Pceut_entity class it inherits all of the

slots in Table 2.3

Slot Type Description

active-ingredient-name | categorical | an active ingredient name from the VA-
NDF-RT vocabulary [37]

prodrug categorical | is this drug a prodrug? true or false

biocavailability evidence | the percentage of the drug available for
systemic distribution by formulation and
dose. Each evidence item refers to the
dose and formulation of the drug that is
associated with the bioavailability value.

first-pass-effect evidence | the proportion of drug that is cleared by
first-pass metabolism

fraction-absorbed evidence | the percentage of drug that is absorbed in
the gastro-intestinal tract

fraction-cleared-by evidence | the fraction of the active ingredient’s dose

that is cleared by various enzymes

Table 2.5: The Metabolite class description — a frame-based model for metabolite objects.
Because the Metabolite class is a child-class of the Pceut_entity class it inherits all of the

slots in Table 2.3
Slot

Type Description

metabolite-name | categorical

metabolite categorical

an name for this metabolite that links it
to other data in the NCBI’s PubChem
database

(always True) maintains that an instance
of this class models a metabolite

Table 2.6: The Pharmaceutical Preparation class description — a frame-based model for
abstract pharmaceutical preparations. This class currently possesses only categorical slots;
slots that store knowledge that is plainly factual about drugs such as its generic and trade

names.
Slot Type Description
prep-name “categorical | the name of the preparation from the VA-NDF-RT
terminology [37]
form categorical | route of administration - oral, transdermal, or IV
dose categorical | the dose the drug is given

preparation | categorical

ingredients | categorical

states if the entity is a normal or extended release
formulation
a list of active pharmaceutical ingredients
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Table 2.7: The Enzyme class
enzyme entity

Slot

description — a frame-based model for objects an abstract

Type Description

enzyme-name c
polymorphic-enzyme

controls—-formation-of

ategorical | the symbol for the enzyme in the HUGO Gene
Nomenclature Committee (HGNC) database
evidence | True if this enzyme has multiple drug-catalysis
phenotypes due to genetic polymorphisms
evidence | a list of biochemical entities that this enzyme cat-
alyzes

The singleton EvidenceBase stores instances of class Assertion {Table 2.8); a class

that models the evidence both for and against an attribute of some instance in DrugkB.

When users find evidence for or against the property represented by an evidence slot they

create a new instance of the Evidence class shown in Table 2.9 and enter values for its slots.

These instances are then placed in either the evidence-for or evidence-against slot of

the Assertion instance associ

ated with the property’s evidence slot.

Table 2.8: Slots in class Assertion

Slot Description

object the object’s name in DrugkB
slot name of the slot

value an allowable value for this slot

evidence-for
evidence-against
ready-for-classification
assert-by-default
evidence-rating

cont-val

numeric-val

id

a list of Evidence types

a list of Evidence types

is this assertion ready to classify

true if this assertion should be considered valid by default
the result of testing the evidence for this assertion
against user belief criteria; one of assume!, retract!,
none-assigned, or can’t decide

the discretized value of a continuous value assertion (e.g.
low, medium, high); depends on a method for discretizing
numeric-val

the simple numerical value of a continuous value assertion;
depends on a method for combining the values of each
continuous-valued evidence item

a unique identifier for the assertion instance




23

Table 2.9: Slots in class Evidence

Slot Description

evidence-type | a meta-data label from the DIKB evidence taxonomy
doc-pointer | a pointer to the evidence document

quote a short summary of the evidence

reviewer person entering this evidence

assumptions a list of evidence-use assumptions — assertions upon

which the current use of evidence depends; the evi-
dence instance is not used in establishing the validity
of assertions unless all assertions in the assumptions
list meet belief criteria

timestamp a timestamp for when evidence item was entered into
the system

2.8.1.2 User-defined Criteria for Belief and Disbelief:

The description of pilot work in Section 2.1 relates how the evidence support for the facts
in the pilot database were useful for assessing the validity of the system’s predictions. For
example, it was explained that, based on evidence, the proposition that zafirlukast inhibits
CYP3A4 was less justified than the proposition that fluconazole inhibits CYP2C9. This
case suggests that the confidence someone knowledgeable about drugs has in the clinical
validity of a. DDI prediction can vary depending on the type of evidence that supports or
refutes each of the facts leading to the prediction. To explore this idea further, the DIKB
supports using evidence types to track the level of certainty users have in the system’s

drug-mechanism assertions.

The types of evidence that can support drug-mechanism facts include, among others,
labeling statements, results from in vitro studies, expert interpretation of case reports, and
various pharmacokinetic trials involving volunteers. A novel feature of the DIKB is that
expert users can define combinations of evidence that they believe lend different degrees of
certainty to the assertion types that the DIKB uses to predict DDIs. Different combinations
of evidence types might confer different levels of certainty in an assertion and these can be

rank ordered to produce “levels of evidence” (LOEs).

The DIKB distinguishes between assertion instances and assertion fypes. An assertion
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instance is a specific fact about a particular object such as a drug or protein. For example,
the assertion (substrate-of ’>CARB ’CYP3A4) is an instance of the generic (substrate-of
X Y) assertion type. DIKB users define one or more LOEs for each generic assertion type by
creating logical statements listing the level’s required evidence types and their multiplicity.
The LOEs for an assertion type apply to any instance of that type. Users can also place
evidence types that they feel have similar levels of validity into a group called a ranking
category. They can then use the ranking category just like other evidence types to define
LOEs.

For every assertion type users select one LOE as the belief criteria. The evidence-model
will tell the ddi-theory to use a particular assertion instance in inference if, and only if,
there exists a body of evidence for the assertion that satisfies the belief criteria for the
assertion’s type and the evidence against the object property does not satisfy belief criteria.
The DIKB allows the belief criteria for evidence supporting an assertion type to be different
from the belief criteria for evidence refuting an assertion type. Table G show the evidence-
types and ranking categories used while developing the DIKB while Figure 2.4 shows test
LOEs. Chapter 4 presents a more rigorous evidence ontology that was used for labeling

evidence in the final DIKB evidence-base.

LOE-1 := RCT+ |
FDA Guidances+
LOE-2 == LOE-1]

Drug Labeling+
LOE-3 := LOE-2 |
Drug Labeling+ |
(in vitro+ and Non-random+)
LOE-2 |
in vitro+ |
Non-random+

LOE-4 ::

Figure 2.4: A set of levels of evidence (LOE) used while developing the DIKB. The symbol
"::=" means the term to the left “is defined as” the term to the right, | means “or”, and '+’
means that “one or more occurrences of” of the symbol to the left are allowed. So item one
reads “LOE-1 is defined as one or more RCT OR one or more FDA Guidance evidence
types.”
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Table 2.10: Every evidence item entered into the DIKB receives a label from a taxonomy
of evidence types. This table shows a test evidence type taxonomy used for designing the
DIKB. Chapter 4 presents a mature evidence ontology used for labeling evidence in the final

DIKB evidence-base.
Ranking Category

Evidence Type

¢« RCT

e Non-random

e Case Reports

FDA Guidances

in vitro

Drug Labeling

e a randomized, controlled, clinical trial

¢ a cohort study
e a case-control study

e a non-randomized trial with concurrent or historical
controls

e 3 retrospective study looking a clinical records over
time

e a fixed order study with non-randomized healthy
volunteers

e a single case report

e a case series

¢ a statement in an FDA guidance to industry

e in vitro evidence from human tissue, microsomal

e in vitro evidence from human tissue, recombinant

e in vitro or in vivo information found in drug product
labeling that provides no citation of its source
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2.3.2 The ddi~theory

It was mentioned earlier in this chapter that the ddi~theory implements both the knowledge-
base and the reasoning system components of the model in Figure 2.3. The reasoning system
component of the ddi-theory consists of two parts — a rule engine and a JTMS that main-
tains the belief state of clauses in the rule engine. Section 2.2.2 rélates how a JTMS works;
let’s now examine how the ddi-theory uses the JTMS to handle both default reasoning and
the effects on inference of changes in the knowledge-base as new evidence causes assertions
in the evidence-base to meet, or fail to meet, belief criteria.

Figure 2.5 shows an example inference rule applicable when a precipitant drug inhibits
the metabolic clearance of an object drug.f The first line declares that this is a rule, the
next line specifies a pattern for when one object inhibits another. The : IN before the pattern
declares that this antecedent must be believed in order to evaluate as true. The consequent
in Figure 2.5 says to assert that 7x inhibits the metabolic clearance of ?z by 7y when the
antecedents evaluate true. Then follows a list containing a series of justifications for the
consequent. The justifications represent clauses or assumptions that must be IN in order
for the consequent to be IN. When the rule engine makes an assertion, the JTMS creates a
node for it in the knowledge-base and then looks to see if the consequent’s justifications are

IN; if so, the JTMS labels the node IN.

2.3.2.1 Default Knowledge in the DIKB

The ddi-theory models default knowledge as JTMS assumptions. Belief in the truth of
default information causes the assumption representing that information to be enabled.
Assumption nodes receive an :IN label when they are enabled. The system can later retract
that belief causing the nodes to receive an :0UT label. A change in belief in any assumption
node recursively propagates through the other nodes that contain the changed node in its
set of justifications changing their belief state.

For example, the test rule in Figure 2.5 requires the default assumption that all precip-

fPlease note that the rules shown in this chapter were used during the development of the DIKB. A more
sophisticated rule-based theory of metabolic inhibition was used for experiments that tested the accuracy
and coverage of mechanisms-based prediction (See Chapter 3).
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(rule

((:IN (inhibits ?x ?y))

(:IN (substrate-of 7z ?y)))

(rassert!

(inhibit-metabolic-clearance ?x 7z 7y)
(
(inhibits ?x ?y)
(substrate-of 7z ?y)
(inhibitory-concentration ?x ?y)

)

Figure 2.5: An example inference rule for when a precipitant inhibits the metabolic clearance
of an object drug

itants reach a concentration sufficient to cause a clinically significant effect on the enzymes
they are known to inhibit. The following listing tells the ddi-theory to create an assertion
that carbamazepine (CARB) is a substrate-of the drug metabolizing enzyme Cytochrome

P-450 3A4 (CYP3A4).

(assert!

> (substrate-of *CARB ’CYP3A4))

If the system also asserts that clarithromycin (CMYN) inhibits CYP3A4, it would need
to create an enabled assumption declaring CMYN to be at a concentration sufficient to

inhibit CYP3A4.

(assert!

> (inhibits *CMYN ’CYP3A4))

(assume!

’(inhibitory-concentration *CMYN ’CYP3A4))
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Figure 2.6 shows how the JTMS dependency network would lock at this point in the
example. If further data causes the belief state of our default assumption to change to false,

then the program can retract belief:

(retract!

’(inhibitory~concentration *CMYN ’CYP3A4))

The effect of changing this belief is shown in Figure 2.7. The JTMS changes the node
labels for both the assumption (inhibitory-concentration ’CMYN ’CYP3A4) and the as-
sertion (inhibit-metabolic-clearance >CMYN ’'CARB ’CYP3A4) to :0UT meaning that
this assertion is no longer believed true. It is important to note that any other assertions
or inferences that depend directly, or indirectly, on either of these assertions will now also

be labeled OUT.

!N (inhibits 'CMYN 'CYP3A4)
:IN (substrate-of 'CARB 'CYP3A4)
| :IN (inhibitory-concentration ‘CMYN 'CYP3A4)

Lol

:IN (inhibit-metabolic-clearance 'CMYN 'CARB 'CYP3A4)

Figure 2.6: A small JTMS dependency network; justifications are shown in the box

:IN (inhibits 'CMYN 'CYP3A4)
:IN (substrate-of 'CARB 'CYP3A4)
|:0UT (ilnhibitory-concentration 'CMYN 'CYP3A4)

R

:OUT (inhibit-metabolic-clearance 'CMYN 'CARB 'CYP3A4)

Figure 2.7: A change in the belief state in one of the justifications propagates to dependant
consequents
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2.83.2.2 The evidence-model Uses Assumptions to Affect the ddi-theory

The previous section describes how the DIKB uses JTMS assumptions to handle default
reasonihg. The system also uses assumptions to effect changes in the knowledge-base as new
evidence causes assertions in the evidence-base to meet, or fail to meet, belief criteria. The
evidence-model accomplishes this by adding a special justification, called a “bc-satisfied
assumption”, to the list of justifications belonging to an assumption. The evidence-model
tells the ddi-theory to enable a bc-satisfied assumption when the evidence support for
an assertion meets belief criteria and to retract the same enabled bc-satisfied assumption
when the evidence support for the assertion no longer meets belief criteria.

For example, the following listing represents an assertion The assertion declaring that
clarithromycin inhibits CYP3A4 is similar in form to assertions that the evidence-model

would send to the ddi~theory.

(assert!
’(inhibits >CMYN ’CYP3A4)

>((bc-satisfied ’assertion_40)))

The JTMS component of the ddi-theory would create a node for this assertion in
the knowledge-base. Notice the bc-satisfied assumption in the previous listing. The
(bc-satisfied ’assertion_40) assumption must be :IN in order for the belief state of
the inhibits assertion to be :IN. When the evidence support for this particular inhibits
assertion meets belief criteria the evidence-model could tell the ddi-theory to enable the

bc-satisfied assumption that is in the assertion’s list of justifications as follows:

(assume!

' ((bc-satisfied ’assertion_40)))

This change causes the (inhibits *CMYN ’CYP3A4) assertion to also receive an :IN
label because the assumption (bc-satisfied ’assertion_40) is its only justification.
All assertions in the DIKB that depend on evidence for justification require one or more

bc-satisfied statements in their list of justifications. Extending the example from the
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previous section, the following listing shows the information the evidence-model would
export to the ddi-theory when the evidence support for the assertion (substrate-of

CARB ’CYP3A4) meets belief criteria.

(assert!
’ (substrate-of ’CARB ’CYP3A4)

’ ((bc—satisfied ’assertion_10)))

(assume!

> ((bc-satisfied ’assertion_10)))

Figure 2.8 shows how the JTMS dependency network would look at this point in our
example. Recall that, in this example, the system assumes by default that enzyme in-
hibitors are at sufficient concentration to affect metabolism and so automatically enables

the inhibitory-concentration assumption.

:IN (inhibits 'CMYN 'CYP3A4)
:IN (bc-satisfied 'assertion_40)
:IN (substrate-of 'CARB 'CYP3A4)
:IN (bc-satisfied 'assertion_10)
:IN (inhibitory-concentration 'CMYN 'CYP3A4)

:!IN (inhibit-metabolic-clearance 'CMYN 'CARB 'CYP3A4)

Figure 2.8: A JTMS dependency network showing “bc-satisfied assumptions” in the
set of justifications shown inside of the box. The evidence-model uses bc-satisfied
assumptions to affect the belief state of assertions as their evidence support meets, or fails
to meet, belief criteria.

There are two situations where the evidence-model will re-assess the evidence for an
assertion about one of its objects — when an assertion’s evidence support changes or DIKB
users change the LOE that they have selected as the belief criteria for the assertion’s type.

In both cases, the evidence-model compares the evidence for and against the assertion.



31

If the evidence for the assertion satisfies the belief criteria currently assigned to the as-
sertion’s type, and the evidence against the assertion does not satisfy belief criteria, then
the evidence-model will cause the assertion’s bc-satisfied justification to be enabled
(labeled :IN) in the ddi-theory. The evidence-model will retract (label :0UT) the asser-
tion’s be-satisfied justification when either 1) evidence against the assertion meets its
belief criteria, 2) the belief criteria changes and the evidence for an assertion is no longer
sufficient, or 3) the system calls into question the use of an evidence item as support for
the assertion (see Section 2.3.2.3). The evidence-model keeps track of state so that, if the
evidence-model has already triggered an assertion or placed an assumption in a desired

state, then the system will make no change.

2.3.2.3 Representing Conjectures can Help Maintain the System’s Knowledge

Interpreting the results of a scientific investigation as support for a particular assertion
can sometimes require making conjectures that scientific advance might later prove to be
invalid. If such conjectures are later shown to be false, it is important to re-consider how
much support the scientific investigation lends to any assertion it was once thought to
support. One unique feature of the DIKB is that it can represent the conjectures behind a
specific application of evidence. These representations are called evidence-use assumptions
and they facilitate keeping knowledge in the system current.

For example, let’s say that a pharmacokinetic study involving healthy patients finds a
significant increase in the systemic concentration of simvastatin in the presence of diltiazem.
If the study meets inclusion criteria, and it is thought that that diltiazem is a selective
inhibitor of the CYP3A4 enzyme in humans, then an evidence-base curator ﬁﬁght apply this
evidence as support for the assertion (substrate-of ’simvastatin ’CYP3A4). This use
of the diltiazem-simvastatin study as supporting evidence for the assertion (substrate-of
’simvastatin ’CYP3A4) depends on the conjecture that diltiazem is an in vivo selective
inhibitor of the CYP3A4. The curator should reconsider this use of evidence if future work
reveals that diltiazem increases patient exposure to simvastatin by some other mechanism

than reducing CYP3A4’s catalytic function (e.g. transport protein modulation).
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Unlike systems that just cite evidence, the DIKB’s formal model of evidence enables
it to flag when a conjecture has become invalid and alert knowledge-base curators to the
need to reassess their original interpretation of what assertions a piece of evidence supports.
Currently, DIKB curators make an evidence-use assumption known to the DIKB by first
identifying the label of an assertion in the evidence-model that represents the evidence-
use assumption. They then add the label to the assumptions list in the instance of the
Evidence class used to represent the evidence item.

Continuing the current example, Table 2.11 shows what an Evidence instance would
look like if a curator identified the assertion (in-vivo-selective-inhibitor ’diltiazem
>CYP3A4) as an evidence-use assumption for the use of the evidence item as support for the

assertion (substrate-of ’simvastatin ’CYP3A4).

Table 2.11: This table shows relevant slots from a hypothetical instance of class
Evidence that possesses an evidence-use assumption representing the conjecture
(in-vivo-selective-inhibitor ’diltiazem ’CYP3A4). If the system places this in-
stance in the evidence-for list for some assertion the system would cause the belief state
of the assertion to depend on the belief state of the evidence-use assumption.

Slot Description

doc-pointer PubMed ID: 10741630

evidence-type | Non-random

assumptions ’(in-vivo-selective-inhibitor ’diltiazem ’CYP344)

quote “Diltiazem significantly increased the mean peak serum concentra-
tion of simvastatin by 3.6-fold (P < .05) and simvastatin acid by
3.7-fold (P < .05)” [125]

JTMS assumption nodes provide an elegant method for notifying the ddi-theory of
evidence-use assumptions and changes in their belief state. When the evidence-model
exports an assertion to the ddi-theory it checks the assumptions list of each Evidence
instance used to meet belief criteria. Each assertion in the assumptions list is added to
the set of justifications for the assertion being exported. Extending the present example,
assume that the evidence item in Table 2.11 is the only item in the evidence-for list for the
assertion (substrate-of ’simvastatin ’CYP3A4). Then, evidence-model would sent an

assertion statement similar to the one below to the ddi-theory:
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(assert!
’(substrate-of ’simvastatin ’CYP3A4)
’((bc-satisfied ’assertion_id_X)

(in-vivo-selective-inhibitor ’diltiazem ’CYP3A4)))

The assertion (substrate-of ’simvastatin ’CYP3A4) cannot be used by the reason-
ing system for inference uniess its evidence meets belief criteria and the belief state of the
evidence-use assumption held by its supporting evidence also meets belief criteria.

A more complicated scenario occurs when an evidence-model assertion has more than
one item in its evidence-for list that meets belief criteria and each item requires evidence-
use assumptions. In this case, the evidence-model will send one assertion instance for
each combination of evidence that satisfies belief criteria. The set of justifications belonging
to each assertion instance exported to the ddi-model will contain the set of evidence-use
assumptions belonging to each evidence item used to meet belief criteria.

For example, assume that (substrate-of ’simvastatin ’CYP3A4) has the two items
of evidence in its evidence-for list. The evidence-for lists for these two evidence items

each have one evidence-use assumption:

Item 1:

assumptions:’ (in-vivo-selective-inhibitor ’diltiazem ’cyp3a4)

Item 2:

assumptions:’(in-vivo-selective-inhibitor ’ketoconazole ’cyp3a4)

If both evidence items individually satisfy the belief criteria for this assertion type then,
since there are two different ways that (substrate-of ’simvastatin ’CYP3A4) can be

established by evidence, the evidence-model must send two different assertion instance to

the ddi-theory.

(assert!

’ (substrate-of ’simvastatin ’cyp3a4)
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(bc-satisfied ’substrate-of-simvastatin-cyp3a4)

(in-vitro-selective-inhibitor ’diltiazem ’cyp3a4))

(assert!
’ (substrate-of ’simvastatin ’cyp3a4)
(bc-satisfied ’substrate-of-simvastatin-cyp3ad)

(in-vitro-selective-inhibitor ’ketoconazole ’cyp3ad))

If at some point after the ddi-theory creates these assertion nodes the evidence for the
assertion (substrate-of ’simvastatin ’CYP3A4) meets belief criteria and both in-vitro-
selective-inhibitor assertions are labeled :IN then, the system will give both nodes for
the assert\ion (substrate-of ’simvastatin ’CYP3A4) an :IN label. In this state, the evi-
dence for the assertion, as well as all relevant evidence-use assumptions, meet belief criteria.
Each (substrate-of ’simvastatin ’CYP3A4) assertion node will maintain its :IN label
until the evidence for the assertion no longer meets belief criteria or the system retracts
one of the in-vitro-selective-inhibitor assertions. Put another way, so long as belief
criteria and evidence-use assumptions for one (substrate-of ’simvastatin ’cyp3ad) as-

sertion are met, then the assertion will be available for use in inference.
2.4 Implementation and Examples

Users can use a Web interface to both enter evidence for drug-mechanism assertions into
the evidence-model and view previously entered evidence. Both the Web interface and
the evidence-model are implemented in Python.# The latter is implemented as a set of
Python classes and shell scripts while the former uses the HTMLGen library® for creating
Web pages and the Twisted networking frame work! for serving them. '

The ddi-theory uses Forbus and de Kleer’s ANST Common Lisp rule engine (JTRE) and

Ehttp://www.python.org
"http:/ /starship.python.net/crew /friedrich/HTMLgen/html/main.html
thttp: //twistedmatrix.com/


http://www.python.org
http://starship.python.net/crew/friedrich/HTMLgen/html/main.html
http://twistedmatrix.com/
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JTMS from [61] with no modification. This implementation was chosen because it is both
open source and well-documented. The rules shown Figures 2.5 and 2.9 are enclosed in a Lisp
function that initializes globally accessible JTRE and JTMS objects. The evidence-model
writes asserted and retracted assumptions to a file stored on disk. This file is manually
loaded by the user from an interactive Lisp session each time the evidence-model re-
assesses its evidence.

Figures 2.5 and 2.9 show the rule-based DDI theory used to design the DIKB. The theory
represented in these figures is not validated, its only purpose was to test the DIKB during
development. Chapter 3 presents a more sophisticated DDI theory that we validated during
the experiment described in Chapter 5 of this dissertation.

The rule in Figure 2.5 and the first rule in Figure 2.9 capture inhibition of a clearance
enzyme of a drug that is primarily cleared by metabolism. The third and fourth rule serve to
capture a disjunctive state when a drug has a narrow-therapeutic index and /or is considered
a sensitive substrated These rules are necessary because our J TMS implementation can only
accept single literal positives and cannot directly assert disjunctive clauses. The final rule in
Figure 2.9 specifies conditions that, if present, greatly increase the likelihood of a clinically
significant inhibition interaction.

Output from an example run of the system is shown in Table 2.12. The example run was
conducted using the test rule-based theory, a subset of the drug properties and evidence
in an experimental version of the evidence-model, and three of the four levels of evidence
shown in Figure 2.4. The example illustrates one advantage of using evidence meta-data to
specify belief criteria for assertions in the knowledge-base — the system can provide different
views of its knowledge and inferences to users who might not agree about what combination
of evidence makes an assertion believable.

Three different levels of evidence were chosen as belief criteria; Table 2.12 shows output

of the system at each level. LOE-1 accepts only one or more evidence items from either

the RCT or FDA Guidance categories as evidence. LOE-2 adds to this a very significant

iThe FDA defines a sensitive substrate as a substrate that exhibits a 5-fold or greater increase in exposure
with the addition of an inhibitor. There are currently several drugs on the FDAs published list including
buspirone, eletriptan, felodipine, lovastatin, midazolam, sildenafil, simvastatin and triazolam [26]
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(rule
(C:IN
(inhibit-metabolic~clearance ?x ?z ?7y)
:TEST (not (equal 7x 72))
))
(rassert!
(increase-drug-exposure 7x 7z 7y)
(nil
;;justifications
(inhibit-metabolic-clearance ?x 7z 7y)
(primary-clearance-mechanism
7z ’METABOLISM)

1)
(rule
((:IN (narrow-therapeutic-range 7z)))
(rassert!
(nti-or-sensitive-substrate 7z)
;3justifications
(nil
(narrow-therapeutic-range ?z))
»
(rule
((:IN (semsitive-substrate 7z)))
(rassert!

(nti-or-sensitive-substrate ?7z)
;;justifications

(nil

(sensitive-substrate ?z))

)

(rule
((:IN (increase-drug-exposure ?x ?z ?7y))
(1IN (primary-clearance-—enzyme 7z 7y))
(:IN (nti-or-sensitive-substrate 7z)))
(rassert!
(metabolic-inhibition-interaction 7x 7z ?y)
;;justifications
(nil
(increase-drug-exposure 7x 7z ?7y)
(primary-clearance-enzyme ?z ?7y)
(nti-or-sensitive-substrate 7z)

)

Figure 2.9: A test DDI theory consisting of these rules plus the one shown in Figure 2.5
was used for developing the DIKB.
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source of evidence; labeling. As is shown, changing the level of evidence from LOE-1 to
LOE-2 has a dramatic effect on the belief state of predicted DDIs. Ounly one change in
predicted DDIs occurs when moving from LOE-2 to LOE-4; the prediction that fluvastatin
will inhibit the metabolic clearance of rosuvastatin by some, possibly negligible, amount.
This is because the experimental version of the evidence-model contained only one item
of evidence supporting the claim that fluvastatin inhibits CYP2C9 [60]; an in vitro type
acceptable only at LOE-4.

Another example shows how a JTMS can efficiently handle the effects on inference of
changes the knowledge-base as new evidence causes assertions in the evidence-base to meet,
or fail to meet, a user’s belief criteria. Table 2.13 shows that the system made the prediction
that fluvastatin will inhibit the metabolic clearance of rosuvastatin via CYP2C9 at the LOE-
2 level instead of the LOE-4 level when an evidence item that mapped to the RCT ranking
category was added to the evidence-base. It is important to note that any other assertions
or inferences that depended directly, or indirectly, on this inference would now also be

labeled IN provided that all of their other justification are IN.
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2.5 Discussion

The examples in Section 2.4 demonstrate that important features of the DIKB are func-
tional. Chapter 5 discusses in detail how the DIKB was used to successfully predict drug-
drug interactions and non-interactions between 595 drug/drug and drug/drug-metabolite
pairs. The results section of that chapter discusses the strengths and limitations of the
DIKB’s methods based on real-world application. The remainder of this section highlights

some observations about the system’s design.

2.5.1 The DIKB as an System for Research

It is important to note that the DIKB’s reasoning system, like that of the pilot system
(Section 2.1), is unable to track uncertainty through inference. Rather, the DIKB automat-
ically selects assertions that meet user defined belief criteria assuming that these assertions
are certain from the user’s perspective. If the user selects belief criteria that represent full
confidence in each assertion type, and each assertion the DIKB uses meets the user’s belief
criteria, then the system’s DDI predictions will also meet belief criteria. This arrangement is
useful for researching how evidence can be used to establish the certainty of drug-mechanism
knowledge but it does not address how to handle assertions that do not meet belief criteria.

The DIKB does not prevent users from assigning as belief criteria LOEs that do not
inspire their full confidence in an assertion. However, the system has no way of establishing
the certainty a user should have in a DDI prediction that depends.on such assertions. One
can imagine scenarios where having knowledge of even uncertain DDI predictions could be
valuable. For example, if the perceived risk of death to a patient is high, a clinician might
want to be extra cautious while determining a drug therapy and avoid, if possible, every
predicted DDI, regardless of the certainty of its occurrence. In such cases, selecting as belief
criteria an LOE that does confer complete confidence in an assertion might be justified if it
had the effect of producing more, though possibly less certain, DDI predictions.

It might be possible to assign a numerical value to each LOE that represents the user’s
certainty in any assertion possessing the combination of evidence the LOE models. Then, the

system could arrive at a final certainty value for any inference by combining the confidence
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value for all the assertions it depends on using some theory of reasoning under uncertainty.
Section 5.1.4 of Chapter 5 presents an experiment testing the system’s prediction accuracy
using over 36,000 different belief criteria strategies. This experiment might form the basis
for future work exploring the feasibility of assigning a numerical representation of user

certainty to each LOE.

2.5.2 FEzpanding the DIKB

An important concern is how feasible it would be to expand the system’s DDI prediction
ability to more pharmaceutical entities and mechanisms. Some insight was gained into this
question when the rule-based DDI theory used to design the DIKB (Figures 2.5 and 2.9)
was replaced by a more sophisticated and validated DDI theory. Chapter 3 presents the new
theory in detail but it is appropriate to mention here that its development was an iterative
process that took two drug experts (Drs Carol Collins and John Horn) and myself several
months to complete. New pharmaceﬁtical entities could be easily added to the system but
each addition increased the number of assertions for which evidence had to be collected.
Adding more mechanisms was considerably more difficult since it required the development
and validation new DDI prediction rules. Once the new rules were developed, it was very
simple to add them to the ddi-theory. It wé.s also simple to add any new objects and
attributes required by the new rules to the evidence-model. Occasionally the drug-experts
and myself had to develop new evidence types, levels-of-evidence, and belief criteria (or
revise existing ones) before we could begin to collect evidence for the new attributes. To
summarize, expanding the system to more drugs and mechanisms is feasible, but non-trivial.
It is also important to recognize that any future expansions will need to take place while

keeping existing knowledge in the system up to date.

2.6 Conclusion

This chapter begins by proposing that, in spite of the uncertain, incomplete, and dynamic
nature of drug-mechanism knowledge, a system that correctly links and assesses the evidence

support for drug-mechanism assertions can make clinically relevant drug-drug interactions.
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This chapter then describes in detail a functional system that links drug-mechanism asser-
tions to their supporting evidence and allows users to define, and vary, the criteria for belief
in an assertion. In comparison with other knowledge-based systems that link evidence to
their drug facts the DIKB is unique in that 1) it collects evidence both for and against as-
sertions, 2) it enables users to define belief criteria for assertions using evidence meta-data,
and 3) it can provide different views of its knowledge and inférences to users who might
not agree about what combination of evidence makes an assertion believable. The design
of the DIKB is intended to address several of the issues with modeling drug-mechanism
knowledge. Later chapters in this dissertation explore the strengths and limitations of the

system’s design by attempting to predict real-world DDIs using only mechanistic assertions.
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Chapter 3

A KNOWLEDGE REPRESENTATION FOR PREDICTING
CLINICALLY MEANINGFUL DRUG-DRUG INTERACTIONS BY
PHARMACOKINETIC INHIBITION

3.1 Introduction

This chapter presents a computable representation of a theory on how drugs interact with
each other by metabolic inhibition. The new knowledge representation enables a computer
to predict metabolic inhibition interactions and non-interactions between drugs® and/or
drug metabolites using only pharmacokinetic drug-mechanism knowledge. The knowledge
representation and its inference machinery compose the reasoning system component the
Drug Interaction Knowledge Base (DIKB) shown in Figure 2.3 of Chapter 2. Experiments
(see Chapter 5) with the DIKB demonstrate that it is capable of accurately predicting
clinically-relevant drug-drug interactions (DDIs) for an important class of therapeutic agents
and avoids making the kinds of false predictions that occur when individual drug differences

are not recognized.

3.1.1 A Significant Problem and a Potential Solution

There are many drug combinations whose combined effects have never been investigated in
clinical trials.® Information systems that only catalog DDI studies involving drug pairs can
provide little or no guidance on the safety of unstudied drug combinations. This fact presents
a difficult obstacle to clinicians who often must assess the potential risk of an adverse

event between medication combinations that have not been studied together in a clinical

aThroughout this chapter we use the term drug to mean an active pharmaceutical ingredient — a molecular

substance that is a component of a drug product or formulation and has pharmacologic properties. We
use the term drug metabolite to mean a molecule that is the product of enzymatic processes involving
some active pharmaceutical ingredient.

PA very rough estimate of the minimum number of missing clinical trials investigating DDIs for drug
pairs can be found in Appendix A
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trial [142]. There are at least two possible strategies that can compensate for the significant
knowledge gaps that exist within the domain of drug-drug interactions. One strategy is to
generalize interactions involving some drug to all other drugs within its therapeutic class.
The other strategy combines knowledge about biochemical and physiological mechanisms
of drug absorption, distribution, metabolism, and excretion with an understanding of the

how drugs interact with each other to make mechanism-based predictions.

3.1.2 The “Class-based” Reasoning Strategy

Prescribers tend to think about drugs in terms of therapeutic class and disease [142] and
generalizing interactions involving some drug to all other drugs within its therapeutic class
fits that perspective well. While clinically relevant class-based interactions exist (for ex-
ample, the SSRIs and NSAIDs {115, 124]), this approach has been criticized for leading
some drug information systems to catalog DDI predictions that are either false or are likely
to have little clinical relevance [82]. Class-based prediction can lead to false DDI predic-
tions because many interactions occur by metabolic mecha,ni‘sms and drugs within the same
therapeutic class can vary widely in their metabolic characteristics.

For example, the following statement from the current drug product labeling for ery-
thromycin {2] extrapolates an interaction observed between the macrolide antibiotic and

one or more HMG-CoA reductase inhibitors to all drugs in that class:

Erythromycin has been reported to increase concentrations of HMG-CoA reduc-
tase inhibitors (e.g., lovastatin and simvastatin). Rare reports of rhabdomyolysis

have been reported in patients taking these drugs concomitantly.

Since rosuvastatin is member of the HMG-CoA reductase inhibitor drug class, it is
reasonable to infer from this labeling statement that there is the potential for a phar-
macokinetic interaction between erythromycin and rosuvastatin. However, a randomized
clinical trial could find no increase in rosuvastatin concentrations in the presence of ery-
thromycin [47]. The results of this clinical trial appear in the current product labeling

for rosuvastatin [10]. A clinician reading both the erythromycin and rosuvastatin product
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labels would see contradictory statements and might be left wandering if they should feel
safe prescribing erythromycin to a patient taking rosuvastatin. The next section shows how

a mechanism-based reasoning strategy might help resolve this dilemma.

3.1.8 The “Mechanism-based” Reasoning Strategy

A complementary approach to class-based DDI prediction is to apply a theory of how drugs
can interact at the level of biochemical and physiological mechanisms to knowledge of the
mechanistic properties of each drug in a drug combination. This approach is complemen-
tary to class-based DDI prediction because scientific knowledge is often incomplete making
it likely that will always be some interactions that are known to occur but cannot be ex-
plained by a given state of mechanistic knowledge. However, the mechanisms for many
DDIs are understood and mechanism-based reasoning is currently an important part of the
pre-clinical investigation of new drug candidates. In this setting, the metabolic mecha-
nisms of new drug candidates are compared with the known mechanisms of existing drugs
to predict combinations that might result in pharmacokinetic DDIs [26]. Mechanism-based
predictions made during pre-clinical drug development can be followed by clinical trials
to determine the clinical significance of the predicted DDIs [131]. Knowledge derived from
pre-clinical drug-mechanism investigations and pre-market clinical trials can be used to con-
struct mathematical and computational models that map pharmacokinetic intéra(:.tions to
pharmacodynamic effect [56]. These kinds of models help pharmaceutical and regulatory
orga:niza,tions assess the efficacy and safety of new drugs before they are released on the

market.

We can apply mechanism-based reasoning to consider the likelihood that erythromycin
will cause an increase in the concentration of rosuvastatin. First note that the process
by which the 4body removes externally-introduced molecular compounds (xenobiotics) is
called clearance. Inhibition of an enzyme that is important for the clearance of a xeno-
biotic can result in an increase in its systemic concentration [112]. The literature indi-
cates that erythromycin inhibits the drug-metabolizing enzyme Cytochrome P-450 3A4
(CYP3A4) [73, 184]. CYP3A4 is important for the transformation of some HMG-CoA



46

reductase inhibitors into molecules that the body can easily excrete. Evidence from both
clinical trials and in vitro studies suggests this mechanism to be the one responsible for the
observed concentration increase of the two drugs named in the previously shown labeling
statement (lovastatin and simvastatin) in the presence of erythromycin [128, 129, 143].

The aforementioned statement from erythromycin’s product label does not clarify the
mechanism underlying the observed pharmacokinetic interaction between erythromycin and
some HMG-CoA reductase inhibitors. The statement does, however, imply what the effect
of such an interaction could be in rare circumstances — rhabdomyolysis, a potentially fatal
condition involving the destruction of muscle fiber. Patients taking a drug from the HMG-
CoA reductase inhibitor class are at a higher risk for rhabdomyolysis and ancther muscle
disorder, myopathy, if they are also taking a drug that is itself myotoxic or that reduces the
clearance of the HMG-CoA reductase inhibitor [86].

Since HMG-CoA reductase inhibitors can be metabolized by different enzymes, some
of them might not be subject to the same mechanism of reduced metabolic clearance as
lovastatin and simvastatin. In fact, a randomized clinical trial could find no metabolic in-
teraction between rosuvastatin and ketoconazole {48], a selective inhibitor of the CYP3A4
enzyme [26]. This study is strong evidence that, unlike lovastatin and simvastatin, CYP3A4
plays no clinically significant role in the clearance of rosuvastatin. A mechanisms-based
explanation for why no metabolic interaction was observed between erythromycin and ro-
suvastatin during the previously mentioned clinical trial [47] is that rosuvastatin has little
or no clearance by the enzyme that erythromycin inhibits.

Combining knowledge of the metabolic properties of erythromycin and rosuvastatin with
an understanding of how metabolic inhibition effects an increase in drug concentration leads
to the conclusion that erythromycin will likely not increase the systemic concentration
of rosuvastatin by CYP3A4 inhibition. The validity of this non-interaction prediction is
supported by a randomized clinical trial. The same theory of metabolic inhibition applied
to knowledge of the metabolic properties of simvastatin and lovastatin would lead to the
conclusion, also supported by clinical trials, that erythromycin should cause an increase
in these drugs. The clinical implication of these two inferences is that a patient taking

the erythromycin - rosuvastatin combination should be at a lower risk for developing a
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muscle disorder than if they took erythromycin and an HMG-CoA reductase inhibitor whose

primary clearance pathway is CYP3A4.

3.1.4 Mechanism-based Reasoning Presents Informatics Challenges

As the previous example illustrates, mechanism-based reasoning can be used to infer both
clinically relevant interactions and non-interactions and is an improvement over therapeutic
class-based reasoning alone because it avoids the kind of prediction errors that occur when
individual drug differences are not recognized. We think that, because of these qualities,
mechanism-based reasoning should be able to help expand the coverage of drug informa-
tion systems to include accurate interaction predictions for unstudied drug combinations.
Unfortunately, there are significant obstacles to this goal.

One potential obstacle is that mechanism-based reasoning requires knowledge of the
mechanistic properties of each drug and drug metabolite but this knowledge is often miss-
ing or uncertain (see Chapter 2, Section 2.2 for further discussion). Another obstacle is
that collecting and maintaining even a basic set of drug-mechanism knowledge for all drugs
and drug metabolites of interest would require a significant amount effort. To illustrate
this challenge, consider that the previous analysis of the metabolic interactions occurring
by CYP3A4 inhibitioﬁ between erythromycin and HMG-CoA reductase inhibitors (Sec-
tion 3.1.3) only focused on two mechanistic properties: metabolic clearance pathway and
enzyme inhibition. A recent query of the Federal Drug Administrations (FDA) drugs@fda
database [58] of all currently approved prescription and over-the-counter drugs identified
about 1300 unique drugs used in more than 7000 drug products.© Therefore, one would
need to seek and maintain knowledge on 2600 drug mechanism properties if they would like
to repeat a similar analysis with all 1300 drugs.

Another potential obstacle is that expanding the coverage of drug information systems
using mechanism-based reasoning requires translating how drugs interact with each other

at the level of biochemical and physiologic mechanisms into information that is useful for

“We made this estimate by first searching the drugs@fda database on 06/24/2006 for all the unique
active pharmaceutical ingredients used in drug products currently on the US market then reducing this
list manually by collapsing multiple versions of individual active pharmaceutical ingredients to a single
entry.
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clinical decision making. Just indicating that a metabolic inhibition interaction is possible
does not provide much assistance to clinicians who must decide how to reduce the risk of an
adverse outcome [82]. The clinical relevance of an interaction can require consideration of
a number of factors including the evidence supporting the interaction, the potential effect
of the interaction on a patient, the existence of special risk factors in particular patients,
and the frequency of specific adverse events in patients taking the suspected interacting
combination {169].

Chapter 2 introduced the DIKB, a system designed to test informaties methods for over-
coming these challenges. The remainder of the current chapter describes one component of
this system — the computable model of mechanism-based reasoning that the DIKB currently

uses to predict interactions and non-interactions occurring by metabolic inhibition.
3.2 A Computable Representation of how DDIs Occur by Metabolic Inhibition

There are a few basic pharmacologic principles by which one can make mechanism-based
DDI predictions. Pharmacodynamic interactions can occur when the pharmacodynamic
effects of two drugs combine in additive, subtractive, or synergistic ways. Pharmacokinetic
interactions can occur when the binding, metabolic or physical and chemical properties
of one drug affect the absorption, distribution, metabolism and/or excretion (ADME) of
another drug. Modulations in the ADME or the pharmacodynamic effects of a drug can lead
to the possible negative outcomes of drug toxicity or loss of efficacy in patients [68, 112].
The computable representation we have built focuses on a narrow subset of mechanism-
based interactions — metabolic inhibition interactions. A number of known DDIs occur by
metabolic inhibition and we believe that the theory of metabolic inhibition has much in
common with other mechanism-based DDI theories. For example, a recent FDA guidance
includes discussions of how DDIs can occur by metabolic inhibition, induction, and transport
protein modulation [26]. All three theories involve interactions between drugs, metabolites,
enzymes, and routes of elimination that can effect changes in systemic concentration and
metabolite formation. These commonalities make it reasonable that a clinically useful com-
putational representation of metabolic inhibition will be extendable to other mechanisms.

This section begins by briefly summarizing the theory of how drug-drug interactions
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occur by metabolic inhibition. It then explains the set of inferences our new knowledge
representation (KR) is designed to support and the assumptions the KR makes about the

process and effects of metabolic inhibition.

3.2.1 How DDIs Occur by Metabolic Inhibition

The biochemical process of enzyme inhibition can be classified into three major types:
rapidly reversible, slowly reversible, and irreversible [112]. Rapidly reversible inhibition oc-
curs when two substrates of an enzyme compete for the enzyme’s active site (competitive
inhibition), when an inhibitor binds to a substrate-enzyme complex (uncompetitive inhibi-
tion), or when a substrate causes an enzyme catalyst to lose its catalytic function (non-
competitive inhibition). Slowly reversible inhibition occurs when an enzyme inhibitor forms
a complex with the enzyme and the product of a catalytic reaction involviﬁg the enzyme.
Irreversible inhibition occurs when an inhibitor covalently bonds to the enzyme forming a

stable complex that permanently eliminates the enzyme’s original catalytic function.

Any of the three major types of metabolic inhibition can cause a DDI by reducing
the clearance of another drug whose metabolic clearance depends, at least in part, on the
inhibited enzyme [112]. A decrease in the clearance of a drug by metabolic inhibition
can lead to an increase of its systemic concentration potentially leading to drug toxicity
and harmful side-effects [44]. The magnitude of a metabolic inhibition DDI is affected by
several factors including the importance the victim drug or drug metabolite’s non-enzymatic

clearance routes and the number and importance of its metabolic clearance pathways [112].

For example, if the percentage of a drug’s clearance by metabolism is less than 10%,
then even complete metabolic inhibition should effect a relatively small increase in systemic
concentration assuming all other non-enzymatic routes of clearance remain functional. Con-
versely, if an inhibitor reduces the function of an enzyme that accounts for more than 50%
of a drug’s total clearance, then the effect could be quite significant. Active metabolites
can be formed by several metabolic pathways for some drugs or drug metabolites. An in-
hibitor might have a negligible effect on the total concentration of some active metabolite
if it affects a minor pathway that leads to its formation. The exact opposite might be true

2
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if an inhibitor reduces catalysis along the sole metabolic pathway responsible for forming a

particular active metabolite.

3.2.2 The Set of Inferences Made by the Knowledge Representation

Knowledge of drug interaction mechanisms can assist a clinician in predicting the time
course of an interaction or in deriving ways to minimize the risk of patient harm as a result
of the interaction [82]. The DIKB’s knowledge representation (KR) supports this kind of
reasoning by providing clear details about the mechanisms by which two drugs or drug
metabolites could interact via metabolic inhibition. The KR can make the following set of
inferences designed to help a clinician assess the potential effect of a predicted interaction

on a given patient.

3.2.2.1 Inference One

Inference One: For some drug or drug metabolite, DI, is there another drug
or drug metabolite, D2, that will reduce the clearance of DI by inhibition of

some enzyme E7? If so, what is the anticipated increase in concentration of D1?

Just indicating that a metabolic inhibition interaction is possible does not provide much
assistance to clinicians who must decide how to reduce the risk of an adverse outcome [82].
We believe that, where possible, mechanism-based predictions should indicate the antici-
pated increase in concentration of the victim drug or drug metabolite. This information
should increase the clinical value of a prediction because it is often true that systemic con-
centrations of a drug that are either too high or too low precede harmful effects. Undesirable
side-effects ranging from loss-of-efficacy to death are concentration-related for many drugs
including some anti-depressants, antiarrhythmics, and blood thinners.

Inference One predicts when a drug or drug metabolite pair will interact by metabolic
inhibition and then classifies the interaction into one of three discrete categories based on
the anticipated magnitude increase in concentration of the victim drug. Section 3.2.3.5.

defines these levels and presents the logic behind their justification.
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3.2.2.2 Inference Two

Inference Two: For some drug or drug metabolite, D1, is there another drug
or drug metabolite, D2, that will not reduce the clearance of DI by inhibition

of some enzyme E?

The discussion in Section 3.1.1 of the potential for erythromycin to reduce the clearance
of rosuvastatin demonstrates that non-interaction predictions can also be of clinical value.
Inference Two predicts when a drug or drug metabolite pair will not interact by a specific
metabolic clearance pathway. The inference does not exclude the possibility that such pairs
might interact by alternative mechanisms but can help eliminate some mechanisms from

consideration.

3.2.2.3 Inference Three

Inference Three: Which drugs or drug metabolites will cause a decrease or
increase in the formation of a drug metabolite by enzyme inhibition? If so,
will a decrease or increase in the formation of an drug metabolite have a non-

ambiguous effect on a descendent metabolite?

DDIs occurring by metabolic inhibition can affect the concentration of active or toxic
drug metabolites in clinically relevant ways. For example, both lovastatin and simvastatin
are administered in lactone forms that have little or no HMG-CoA reductase inhibition ac-
tivity but that are readily converted by the body to pharmacodynamically active metabo-
lites [119, 120]. Clinical trial data indicates that metabolism by CYP3A4 is a clinically
relevant clearance pathway for these metabolites [128, 129]. Similarly, in vitro evidence
indicates that CYP3A4 is the primary catalyst for the conversion of the HMG-CoA reduc-
tase inhibitor atorvastatin into its two active metabolites [94]. Inference Three allows the
prediction of drug - metgbolite and metabolite - metabolite interactions that could affect

the concentration of some active metabolite.
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3.2.3 Assumptions Made by the Knowledge Representation

The KR computes over a mechanism-based theory of DDIs and produces simple, qualita-
tive, DDI predictions that might be useful in drug therapy planning and management. It
makes several simplifying assumptions that are important to consider when assessing the
clinical relevance of its predictions because the assumptions might not hold for many drug

combinations.

8.2.8.1 The KR Defines Inhibition Qualitatively

The KR defines enzyme inhibition qualitatively as a measurable in vivo occurrence:

inhibits: A drug or drug metabolite, X, is said to inhibit some enzyme, E, if

X effects a measurable reduction in the catalytic function of F in humans.

Evidence of enzyme inhibition can come from multiple sources; this definition specifi-
cally excludes the direct use of evidence from in vitro experiments.d Evidence from in vitro
experiments is especially common for many drugs and considerable interest from both in-
dustrial and academic researchers has been focused on how to make quantitative estimates
of in vivo effects from in vitro evidence. Unfortunately, there is currently no general method
for making accurate quantitative estimates of the magnitude of a metabolic inhibition DDI
using in vitro data [131].

The KR implements a method for using in vitro evidence to indirectly support a mea-
surable in vivo effect in humans. In the KR, a drug or drug metabolite is labeled an in vivo
inhibitor for some drug metabolizing enzyme at the concentrations it is expected to reach
during drug therapy if the following relationship holds:

Crmaz
A 0.1 (3.1)

2

dWordNet [121] lists the definition of in vitro as “in an artificial environment outside the living organism”
and in vivo as “in the living organism.” The DIKB excludes all data from non-human animal models so,
throughout this dissertation, the terms in vitro and in vivo refer to experiments with human tissue or
clinical trials respectively.
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Where Ciuqq is the maximum observed concentration the inhibitor has reached in pa-
tients at normal therapeutic doses and Kj; is an inhibition constant for reversible inhibition
derived from a Well-designed in vitro enzyme inhibition experiment involving the inhibitor.
This relationship applies to inhibition of members of the Cytochrome P-450 enzyme family
and is not applicable if the inhibitor is thought to permanently remove the affected enzyme
from further participation in catalysis by any means. The basis for this relationship can
be found in a recent FDA guidance to industry that includes the recommendation that a
clinically relevant effect from competitive enzyme inhibition be considered possible if the

following relationship holds (see [26], p.33):

]

e > 0.1 (3.2)

Where [I] is the estimated concentration of the inhibitor at the enzyme binding site.

The KR also allows n vitro evidence to indirectly refute that a drug or drug metabolite
effects a measurable in vivo effect in humans. In the KR, a drug or drug metabolite is
labeled an in vivo non-inhibitor for some drug metabolizing enzyme at the concentrations

it is expected to reach during drug therapy if the following relationéhip holds:

Omaa:

)

<=0.1 (3.3)

Where Ciqz is the maximum observed concentration the inhibitor has reached in pa-
tients at normal therapeutic doses and Kj is an inhibition constant for reversible inhibition
derived from a well-designed in vitro enzyme inhibition experiment involving the inhibitor.
The KR will not allow in vitro evidence to support or refute that a drug or drug metabolite
is an #n vivo inhibitor of some enzyme if that entity is known to permanently deactivate
the enzyme’s catalytic function. Modeling the effects of such inhibitors in vivo requires

sophisticated reasoning that is outside of the scope of the current DIKB.
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3.2.8.2 The KR Has No Concept of Time and Does Not Distinguish Between Types of
Inhibition

The KR makes no estimates of the time-course of its interaction predictions. It assumes that
any drug or drug metabolite that inhibits an enzyme will cause some, possibly negligible,
reduction in the clearance of any drug the enzyme catalyzes at some, non-specified, time
after the inhibitor is administered.

Since the KR has no concept of time, it does not bother to distinguish between the
various types of inhibition (Section 3.2.1). It can be important to distinguish reversible from
irreversible inhibition when predicting the time-course of metabolic inhibition because the
effects of irreversible inhibition are both time and dose-dependent while reversible inhibition
is generally only dose-dependent [114]. These distinctions are less important when the time-
course of an interaction is ignored because metabolic inhibition by any type, when supported
by in vivo evidence, should always lead to some increase in the plasma concentration of the

effected drug [114].

3.2.8.8 The Percentage of Drug Clearance by All Major Routes is Fized

The KR models four possible major routes of clearance for a drug or drug metabolite —
metabolism, renal excretioﬁ, biliary excretion, and exhalation. The KR assumes that the
percentage of a drug or drug metabolite cleared by each of these major clearance routes
remains fixed. For example, assume that 20% of a drug is cleared by a single metabolic
pathway and 80% by renal excretion. In this situation the KR would assume that the
percentage of drug cleared by renal excretion will remain at 80% even if the metabolic
clearance pathway is completely inhibited. The KR uses this assumption to reason that
the 20% of drug once cleared by metabolism will contribute to an increase in systemic

concentration.

3.2.3.4 Assumptions About Metabolic Inhibition and Metabolic Clearance Pathways

The KR can model drug and drug metabolites that have either single or multiple metabolic

clearance pathways. The KR’s model of metabolic clearance pathways is isomorphic to an
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acyclic graph of catalytic reactions where nodes are drugs or drug metabolites and branches
are the specific catalytic enzymes (Figure 3.1). A connection between two nodes represents
the conversion of one substrate (a drug or drug metabolite) to one metabolite by some
enzyme. The root node of a metabolic clearance pathway is the starting drug or drug

metabolite and the leaf nodes are the pathway’s final metabolic products.

€2 ——m_2 —+e 5———m 5

Figure 3.1: The KR’s model of metabolic clearance pathways is isomorphic to an acyclic
graph of catalytic reactions where nodes are drugs or drug metabolites and branches are
the specific catalytic enzymes. In this image, text enclosed by a box represents drug and
metabolite nodes. There are five catalytic reactions represented in the image; two sibling
reactions converting drug “d” to “m-1" and “m_2”, two sibling reactions converting “m_1”
to “m-3” and “m_4”, and one reaction converting “m_2” to “m_5"

The KR assumes that the effect of inhibiting any catalytic reaction within a metabolic
clearance pathway is to increase the concentration of the drug or drug metabolite that is
the substrate of the reaction and to decrease the concentration of all metabolites produced
by any downstream catalytic reactions. In other words, the KR assumes that metabolic
inhibition is transitive along a metabolic clearance pathway so that the concentration of
metabolites downstream from an inhibited catalytic reaction will also experience some,
possibly negligible, decrease in concentration.

When a drug or drug metabolite has multiple metabolic clearance pathways, the set
of alternate catalytic reactions involving it are called sibling catalytic reactions (for an
example see Figure 3.1). The KR assumes that inhibition of one sibling catalytic reaction
will influence the formation of metabolites produced by all other sibling reactions provided

that 1) the enzymes in sibling catalytic reactions are known, 2) they do not catalyze the
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same reaction as the inhibited enzyme and 3) they are not also inhibited.

Fraction of total metabolism cleared by an enzyme
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fraction of total clearance by enzyme

Figure 3.2: A very simple model that we designed for inferring the fraction of total clearance
contributed by an enzyme from the AUC data provided in a pharmacokinetic clinical trial.
The model is based on a number of assumptions that ignore many of the factors that can
contribute to an increase in the AUC of an object drug in pharmacokinetic DDI study. For
example, the model assumes that the data is from a pharmacokinetic study with a inhibitor
that is selective for the enzyme in vivo and that linear inhibition kinetics hold. Please see
Section 3.2.3.5 for a more detailed discussion.

3.2.3.5 FEstimating Concentration Increases

Inference One (Section 3.2.2.1) predicts when a drug or drug metabolite pair will interact by
metabolic inhibition and then classifies the interaction into one of three discrete categories
that we defined based on the the anticipated magnitude increase in concentration of the

object drug:

1. PKI-1 indicates that the concentration of the affected drug or drug metabolite should
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increase by some, possibly negligible, amount.

2. PKI-2 indicates that the concentration of the affected drug or drug metabolite should
increase by at least 33% (1.3 fold).

3. PKI-3 indicates that the concentration of the affected drug or drug metabolite should
increase by at least 100% (2 fold).

One typical measure taken during pharmacokinetic clinical trials is the Area Under the
Concentration time curve (AUC) of some drug or drug metabolite before and after the
administration of another drug. Some researchers, such as Ohno et al [133], have developed
sophisticated mathematical models for inferring the fraction of a drug that is cleared by a
particular enzyme (fen;) from AUC data. The three levels defined above were chosen based
on a very simple model that we designed for doing the same thing. The model is based on
a number of assumptions that ignore many of the factors that can contribute to an increase
in the AUC of an object drug in pharmacokinetic DDI study. We will defer discussion of
the accuracy of this very simplistic model to Chapter 5 when we discuss the results of an
experiment we conducted to characterize the prediction accuracy of the DIKB.

Assume that a well-designed clinical trial investigates the pharmacokinetics of drug X in
the presence of drug Y. Assume also that drug Y has no measurable effect on X’s clearance by
renal clearance, biliary clearance, or exhalation and is a selective inhibitor of some enzyme,
ENZ.° Finally, assume that the amount to which drug Y inhibits ENZ is thé same regardless
of its unbound systemic concentration and that linear inhibition kinetics hold. We propose
that the following equation will provide a rough estimate of the fraction of total clearance

contributed by ENZ under these assumptions:

1
fenz = 1 - A_Ué— (3.4)
AUC

Where AUC is the baseline Area Under the Concentration time curve for X, AUC; is

the Area Under the Concentration time curve for X when Y is co-administered and fe,, is

°In other words, Y inhibits no other enzyme besides ENZ at the doses it is given to participants of the
study
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the fraction of total clearance ENZ contributes to X.

Figure 3.2 shows a plot of Equation 3.4 at AUC ratios ranging from zero to ten. The
plot shows that if a selective inhibitor causes a drug’s AUC to increase more that 2-fold
then one can infer that the inhibited enzyme is responsible for at least 50% of the affected
drug’s clearance. This logic is reversed in the KR so that it predicts a 2-fold or greater
increase in the concentration of any drug or drug metabolite if an enzyme responsible for
at least 50% of the entity’s total clearance is inhibited. The KR applies this reasoning to
establish that a predicted interaction is at the PKI-3 level.

Many drugs or drug metabolites have no single metabolic pathway responsible for more
than 50% of their total clearance. Figure 3.2 shows that selective inhibition of an enzyme
responsible for 256% or more of a drug or drug metabolites clearance should result in an AUC
increase of at least 1.3 fold. The KR applies this reasoning to establish that a predicted
interaction is at the PKI-2 level.

Finally, if an inhibited enzyme is not known to contribute more than 25% or more of a
drug or drug metabolites clearance, then the KR will predict the interaction to be at the
PKI-1 level. While the percent increase in concentration of a victim drug or drug metabolite
at the PKI-1 level is small it might be of clinical interest if the entity is a “pharmaceutical
entity of concern” — an active ingredient or metabolite for which even a small change in the
system concentration would be of concern to a clinician. Such entities might include drug
or drug metabolites for which therapeutic drug monitoring is required or for which the ratio
between the toxic systemic concentration of the entity and the concentration at which the

entity is therapeutic is less than or equal to 2.0.

3.3 The KR’s Rules and Semantics

This section provides several technical details of how the KR infers drug-drug interactions
and non-interactions occuring by metabolic inhibition.
8.3.1 The Machinery for Reasoning - Declarative Rules

The KR’s mechanism-based theory of drug-drug interactions and non-interactions is repre-

sented as a set of declarative rules — structured logic sentences that explicitly convey the
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implication of a certain body of knowledge about drug mechanisms. The logical form of the
KR’s rules is restricted to being a disjunction of logically static constants (called literals)

of which ezxactly one is positive. The following example is typical of the logical form:f

~AV-BVC (3.5)

This logical form is also known as a definite clause and it can be shown using truth
tables that it is logically equivalent to the following implication which is both easy to read

and write:

AANB=C (3.6)

The definite clause form is a restricted version of another kind of clause called a Horn
clause defined as a disjunction of literals of which at most one is positive. There exists infer-
ence algorithms that are proven to perform sound and complete inference with Horn clauses
very efficiently [154]. Sound inference algorithms derive only the set of inferences entailed
by a knowledge base. Complete inference algorithms derive all inferences that are entailed
by a knowledge base. The DIKB’s reasoning system applies a forward-chaining inference
algorithm to the KR’s rules and assertions that is sound and complete for Horn clauses and

has a computational complexity that grows linearly with the size of the knowledge-base.

3.3.2 The KR Supports Default Reasoning

Mechanism-based reasoning requires knowledge of the mechanistic properties of drugs and
drug metabolites but this knowledge is often missing (see Chapter 2, Section 2.2 for further
discussion). The KR, represents missing knowledge that is important for mechanism-based

reasoning as assumptions whose truth state can change. Each rule in the KR is written as a

fHere we use ’A’ to represent conjunction (e.g. X and Y), 'V’ to represent disjunction (e.g. X or Y),
’=> to represent implication (e.g. X implies Y'), and — to imply negation.
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definite clause whose predicates can contain default assumptions — knowledge whose truth
state is assigned by default. The KR can retract or reinstate inferences that depend on
such assumptions as appropriate depending on their truth state. This is a form of default
reasoning whose various forms include inheritance in semantic networks, circumscription,
default logic, and several methods discussed by Goldszmidt and Pear] that utilize qualitative
probabilities [{69]. This feature expands the kinds of drug knowledge that the KR can
represent without significantly affecting how such knowledge appears in the knowledge-base.

Section 2.2.2 of Chapter 2 explains the details of how the KR supports default reasoning.

8.8.8 The Current Set of Rules and Assertion Types

The KR'’s rule-base consists of 38 rules and is written to execute on Forbus and de Kleer’s
ANSI Common Lisp rule engine (JTRE) and Justification-based Truth Maintenance System
(JTMS) [61]. Forbus and de Kleer’s JTRE/JTMS was chosen because its an open-source
implementation of the simplest family of Truth Maintenance System that is also and well
documented. Appendix B contains a complete listing of the rules that comprise the KR at
the time of this writing. Figures 3.3, 3.4, and 3.5 show the three rules that the KR uses
to make Inference One (Section 3.2.2.1). The rules are written in a slightly different, but
more readable, syntax than that used by the KR.

IF ?x INHIBITS 7y AND
7z is-SUBSTRATE-CF 7y
:TEST (NOT (EQUAL 7x 72))
THEN
?x INHIBITS-METABOLIC-CLEARANCE-of 7z via 7?7y

Figure 3.3: The rule shown in this figure declares that some, possibly negligible, inhibition
of the metabolic clearance of a drug or drug metabolite, ?z, will occur if another drug or
drug metabolite, ?x, inhibits the catalytic function of some enzyme ?y. The KR maps
interaction predictions made using this rule to the PKI-I level (Section 3.2.3.5).

The rule in Figure 3.3 declares that some, possibly negligible, inhibition of metabolic

clearance of a drug or drug metabolite, 7z, will occur if another drug or drug metabolite ?7x
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inhibits the ability of some enzyme 7y to catalyze 7z. The KR maps interaction predictions

made using this rule to the PKI-1 level (Section 3.2.3.5).

IF ?x INHIBITS-METABOLIC-CLEARANCE-of ?z via ?y AND
PRIMARY-TOTAL-CLEARANCE-MECHANISM-of 7z
’METABOLIC-CLEARANCE AND
PRIMARY-METABOLIC-CLEARANCE-ENZYME-of 7z is 7y
THEN ;
?x INHIBITS ?y the-PRIMARY-METABOLIC-ENZYME-of 7z

Figure 3.4: The rule shown in this figure declares that some drug or drug metabolite, ?7x,
inhibits the enzyme responsible for at least 50% of the metabolic clearance of another drug
or drug metabolite, ?z, whose total clearance by metabolism is at least 50%. The KR maps
interaction predictions made using this rule to the PKI-2 level (Section 3.2.3.5).

The rule that predicts DDI interactions at the PKI-2 level is shown in Figure 3.4. This
rule declares that some drug or drug metabolite, ?x, inhibits the enzyme responsible for at
least 50% of the metabolic clearance of another drug or drug metabolite, ?z, whose total
clearance by metabolism is at least 50%. This rule can be useful if no pharmacokinetic
clinical trial has been conducted investigating the importance of a particular enzymatic
pathway to a drug or drug metabolite. The predicates in this rule were chosen because the
percentage of a drug or drug metabolite’s clearance by metabolism is generally easy to find
and in vitro data, which tends to be more readily available, can sometimes indicate if one
enzyme dominates metabolic clearance.

Figure 3.5 shows the rule that the KR uses to predict DDIs at the PKI-8 level. The rule
declares that some drug or drug metabolite, 7x, inhibits the enzyme responsible for at least
50% of the total clearance of another drug or drug metabolite, ?z. Section 3.2.3.5 explains

the logic behind the qualitative estimate that this rule and the rule in Figure 3.4 makes.

3.8.4 Precise Definitions Provide KR Semantics

The theory of how DDIs occur by metabolic inhibition (Section 3.2) involves drugs, metabo-
lites, enzymes, routes of elimination, and changes in systemic concentration and metabolite

formation. The KR represents each of these entities so that a computer can infer DDIs.
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IF ?x INHIBITS-METABOLIC-CLEARANCE-of 7z via ?y AND
PRIMARY-TOTAL-CLEARANCE-ENZYME-of ?z is ?y

THEN

?x INHIBITS ?y the-PRIMARY-TOTAL-CLEARANCE-ENZYME-of 7z

Figure 3.5: The rule shown in this figure declares that some drug or drug metabolite, 7x,
inhibits the enzyme responsible for at least 50% of the total clearance of another drug or
drug metabolite, ?z. The KR maps interaction predictions made using this rule to the
PKI-3 level (Section 3.2.3.5).

The semantics of each entity represented by the KR are found in two sources — a structured
vocabulary that we designed specifically for supporting mechanism-based DDI reasoning
and a simple dictionary. Both sources help add precision to the assertions in the DIKB’s

knowledge-base which, in turn, clarifies the meaning of the KR’s inferences.

3.3.4.1 The DIKB’s Structured Vocabulary

The DIKB’s structured vocabulary helps to add precision to the KR by providing clear
definitions to many of the objects and processes that the KR models. Figure 3.6 shows
the taxonomic relationships between terms in two portions of the vocabulary. The KR uses
many of the terms in the structured vocabulary as values for the predicates used by the KR’s
DDI prediction rules. For example, the vocabulary defines three specific terms for the phar-
macokinetic process of drug excretion — Biliary Excretion, Exhalation Excretion, and
Renal Excretion. The KR uses these three symbols as potential values for the primary-
-total-clearance-mechanism assertion shown in the antecedent portion of the rule in
Figure 3.4.

An important example of how the vocabulary adds precision to the KR is the definition
of the seemingly simple term “drug.” When people typically speak about a “drug” they
are often referring to pharmaceutical preparations such as a drug formulation (“250mg
clarithromycin tablets”) or product (“Biaxin Filmtab”). Pharmaceutical preparations are
entities that can have several components such as active and inactive ingredients, dyes,

buffer, and sweeteners. In contrast, the DIKB’s definition of a “drug” is:
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hierarchies of the BioPAX ontol-
ogy [45]
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(b) A portion of the DIKB’s vocabulary defining the
relationships between many of the pharmacologic com-
ponents used in the rule-based theory of metabolic in-
hibition DDIs

Figure 3.6: Elements from the DIKB'’s structured vocabulary
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Drug: a specific molecular substance that has pharmacologic properties and
is the component of a pharmaceutical preparation such as a drug product or

formulation

The deﬁnition of “drug” and “pharmaceutical preparation” in the DIKB’s vocabulary
maps to types defined in the Veteran’s Administration’s National Drug File Reference Ter-
minology (NDF-RT) [37]. The type Drug is a direct sub-type of NDF-RT concept code C178
“active ingredients” while Pharmaceutical Preparation is unified with concept code NDF-
RT C176 “pharmaceutical preparation.” These types reside in distinct taxonomies within
the NDF-RT and so are disjoint within the DIKB’s vocabulary and within the KR. This
arrangement makes sense when making mechanism-based DDI predictions because the phar-
maceutical preparation that an active pharmaceutic ingredient belongs to can affect the set
of interactions that it can be involved in. For example, an intravenous preparation of an
acid-labile drug would not be susceptible to interactions related to changes in pH in the gut
while an oral preparation of the same drug might be. The KR can represent these differ-
ences using rules that revise the predictions it makes for an active pharmaceutic ingredient

based on the specific pharmaceutical preparation it belongs to.

The DIKB’s vocabulary is implemented in the OWL-DL language [46]; a description
logic that provides a formal semantics for representing taxonomic relationships in a manner
that can be automatically checked to ensure consistent classification. We used the Protégé
ontology editor® to create the vocabulary and the RACER inference engine [80] to test it for
consistent type definitions. The vocabulary is incorporates several existing type and concept
definitions from other biomedical terminologies such as the NCI Thesaurus (NCI) [90],
Gene Ontology (GO) [64], the National Library of Medicine’s Medical Subject Headings
(MeSH) [132], and BioPAX [45]. It also defines many new types and concepts that were not
found in other terminologies. The current version is of the DIKB’s vocabulary is available

on the Web [35].

Ehttp://protege.stanford.edu/
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8.8.4.2 Precise Definitions for Rule Predicates

The DIKB’s structured vocabulary does not yet include all terms that the KR uses. A
simple dictionary (Appendix C) provides an additional set of definitions; many of which
define predicates found in the KR’s rules. We plan to incorporate these definitions into the

DIKB’s structured vocabulary at sometime in the future.
3.4 Validation and Evaluation

3.4.1 A Non-trivial Validation Test

We designed a non-trivial validation test involving a hypothetical drug having multiple
metabolic clearance pathways and descendant metabolites as a test case for verifying the
KR’s rule-base. The example is shown here to demonstrate the kinds of inference the KR

is capable of and to clarify the effect on inference of the KR’s assumptions.

3.4.2 The Hypothetical Drug “C-cure”

Figure 3.7 shows a state of scientific knowledge about a hypothetical cancer drug C-cure.
The figure shows that C-cure has many metabolic clearance pathways including conversion
to the major-met-1, major-met-2, and entity-of-concern-B metabolites. The KR considers
these three catalytic reactions to be siblings since each catalyst has C-cure as a substrate.
Notice that several enzymes. catalyze C-cure’s conversion to major-met-1; the KR considers
the reactions that these enzymes catalyze to also be siblings. In this hypothetical example,
the conversion of C-cure to the major-met-1 metabolite by the CYP2B6 enzyme is assumed
to contribute at least 50% to C-cure’s total clearance.

The three metabolites of C-cure (minor-met-1, entity-of-concern-A, and minor-met-
2) are each substrates of other catalytic reactions, three of which have unknown enzyme
catalysts. The hypothetical metabolite of entity-of-concern-B (minor-met-3) is a substrate
of yet another catalytic reaction involving the same enzyme as the parent catalytic reaction
(CYP2A6). In this hypothetical example entity-of-concern-A and entity-of-concern-B are
pharmaceutical entities of concern because they both have concentration-dependent toxic

effects.
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Figure 3.7: A model of the metabolic clearance pathways for the hypothetical drug C-
cure. Boxes are drawn around C-cure and its metabolites. Arrows show the enzymes that
control transformation from parent to child compound. The thickest arrows indicate that
the pathway responsible for at least 50% of C-cure’s total clearance is conversion to the
major-met-1 metabolite by the CYP2B6 enzyme. The ’?’ symbol is used to represent a
case where the transformation is known but no controlling enzyme has been identified. A
star or red box by a metabolite means that is of clinical interest.

We entered this knowledge about C-cure into the KR and then added to the system the

following default assumptions:
« ifraconazole is a selective inhibitor of CYP3A4 in vivo
e sulfinpyrazone is a selective inhibitor of CYP2C9 in vivo

o clopidogrel is a selective inhibitor of CYP2B6 in vivo

While the example is hypothetical there is some evidence for these three assumptions.
For example, Itraconazole and sulfinpyrazone are listed as potent in vivo inhibitors of the
respective enzymes in a recent FDA guidance document [26] and there is both in vitro and

in vivo evidence suggesting that clopidogrel inhibits CYP2B6 [166, 149]. The system made
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the following set of inferences, all of which are in accord with the KR’s assumptions about

metabolic inhibition:

3.4.2.1 Interaction Predictions for Clopidogrel:

¢ Clopidogrel would inhibit CYP2B6 causing a reduction in the the conversion of C-cure
to its major-met-1 metabolite. This would cause C-cure’s concentration to increase
at the PKI-3 level because conversion of C-cure to the major-met-1 metabolite by

the CYP2B6 enzyme contributes at least 50% to C-cure’s total clearance.

e The inhibited conversion of C-cure to its major-met-1 metabolite would reduce the
conversion of C-cure to minor-met-1 and entity-of-concern-A. The system noted that

entity-of-concern-A is a pharmaceutical entity of concern.

e The increased concentration of C-cure would cause an increase in the concentration
of C-cure’s major-met-2 and entity-of-concern-B metabolites since these are sibling
catalytic reactions that do not catalyze the same reaction as the inhibited enzyme
and are not themselves inhibited. The system notes that entity-of-concern-B is a

pharmaceutical entity of concern.

e Since, in this example, clopidogrel is assumed to have no effect on CYP2A6, the
increased concentration of entity-of-concern-B would lead to an increase in the con-

centration of minor-met-3 and minor-met-4.

e clopidogrel would cause an increase in the concentration of major-met-2 but the KR
would label the effect of this increase on minor-met-2 as unknown because the enzyme

that catalyzes its formation is not identified.

3.4.2.2 Interaction Predictions for Sulfinpyrazone:

e Sulfinpyrazone would reduce the transformation of C-cure to its major-met-1 metabo-

lite by inhibiting CYP2C9. This would cause an increase in C-cure’s concentration
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at the PKI-1 level. The increase in C-cure will cause the concentration of the major-

met-2 and entity-of-concern-B to increase by some, possibly negligible magnitude.

The inhibited conversion of C-cure to its major-met-1 metabolite would reduce the
conversion of C-cure to minor-met-1 and entity-of-concern-A. The system noted that

entity-of-concern-A is a pharmaceutical entity of concern.

Since, in this example, sulfinpyrazone is assumed to have no effect on CYP2A6, the KR
infers that the increased formation of entity-of-concern-B would lead to an increased

formation of minor-met-8 and minor-met-4.

The KR would infer that sulfinpyrazone would cause an increase in the formation of
magjor-met-2 but would label the effect of this increased formation on minor-met-2 as

unknown because the enzyme that catalyzes its formation is unknown.

8.4.2.8 Interaction Predictions for Itraconazole:

e Itraconazole would inhibit CYP3A4 and reduce the catalysis of C-cure to its major-

met-1, major-met-2, and entity-of-concern-B metabolites. This would cause an in-

crease in C-cure’s concentration at the PKI-1 level.

Even though CYP3A4 inhibition causes an increase in C-cure concentration, its effect
on the concentration of major-met-1, major-met-2, and entity-of-concern-B is uncer-
tain. This is because the conversion of C-cure to each metabolite is also inhibited.
Since the KR cannot predict which will be greater, the increase in C-cure concentra-
tion or the reduction in formation of the other metabolites, it labels these effects as

unknown.

The KR considers the effect of an increase in C-cure concentration on major-met-1 due
to inhibition of CYP3A4 to be unknown. Since minor-met-1 and entity-of-concern-A
are formed by downstream catalytic reactions the KR considers the effect of CYP3A4

inhibition on these metabolites to be unknown. Similarly, the KR considers the effect
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of CYP3A4 inhibition on the formation of minor-met-2, minor-met-3, and minor-met-
4 to be unknown because the effect of CYP3A4 inhibition on upstream metabolites

(major-met-2 and entity-of-concern-B) is unknown.

3.5 Discussion

3.5.1 The KR is a Very Simplistic Model

The KR was designed to make accurate, qualitative, predictions for a wide range of drugs or
drug metabolites using strictly a mechanism-based DDI inference strategy. As a result, the
KR’s model of metabolic inhibition includes assertions about mechanisms that we thought
would be relatively easy to find in the literature for most drugs. We deliberately excluded
concepts that can be found in the DDI literature such as the “strength” of an inhibitor
(c.f. [26], p.22), the sensitivity of an enzyme substrate (c.f. [26], p.22), and multiple enzyme
binding sites (c.f. [114], p.311). Also, it is important to note that the KR is not designed to
support pharmacokinetic simulations. It has no representation of time or stoichiometry and
it presumes no knowledge about drug dose, order of administration, the drug metabolizing
phenotype of individual patients, or what specific adverse events could occur for any of its

predictions.

3.5.2 The KR’s Ontological Commitments Have Strengths and Limitations

Davis, Shrobe, and Szolovits offer the view that one of the most important contributions a
knowledge representation can make is its ontological commitments [53] — “a set of decisions
about how and what to see in the world.” These commitments help reduce the overwhelming
complexity of reality to a finite set of objects and relationships thought to be relevant
by the representation’s designers. They also limit the methods possible for expressing
knowledge and the strategies available for inferring new knowledge. These limitations can
be useful because they clarify what kinds of knowledge the representation can model and the
soundness, completeness, and efficiency of its inferences. One of the KR’s major ontological
commitments is the use of definite clauses to represent drug-mechanism knowledge and the
theory of how DDIs occur by metabolic inhibition. Here we note two significant implications

1
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of this choice.

3.5.2.1 Definite Clauses Limit Expressivity

The KR and its inference machinery compose the reasoning system component of the DIKB
shown in Figure 2.3 of Chapter 2. The reasoning system employs a novel use of a Truth
Maintenance System to handle both default reasoning and the effects on inference of changes
in the knowledge-base as new evidence causes assertions in the evidence-base to meet, or fail
to meet, belief criteria (see Chapter 2). There are several families of Truth Maintenance
Systems that have been developed over the years and we decided to use the simplest type,
a Justification-based Truth Maintenance System (JTMS), as a test platform for exploring
how evidence could be linked to a rule-based DDI theory.

Earlier in this chapter it was noted that the logical form of the KR’s rules is restricted
to being definite clauses; Horn clauses with exactly one positive literal (see Section 3.3.1).
This is because, by design, the JTMS formalism is only capable of representing definite
clauses [61]. While this constraint retains the benefits of Horn clauses mentioned previously
(they are easy to write and read and there exists inference algorithms that are proven
to perform sound and complete inference over them very efficiently [154]) they limit the
expressivity of rules that can be entered into the KR. Some knowledge states are difficult,
or impossible, to represent as definite -clause’s. For example, one might like to represent

rule statements like the following in the KR:

IF NOT PRIMARY-TOTAL-CLEARANCE-MECHANISM-of ?7x Biliary-Excretion AND
NOT PRIMARY-TOTAL-CLEARANCE-MECHANISM-of ?x Renal-Excretion AND
NOT PRIMARY-TOTAL-CLEARANCE-MECHANISM-of ?x Exhalation-Excretion

THEN

PRIMARY-TOTAL-CLEARANCE-MECHANISM-of 7x Metabolic-Clearance

This rule has the logical form:

“AN-BA-C=D (3.7
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It can be shown using truth tables that this logical form is equivalent to the following

disjunction:

AVBVCVD (3.8)

Since the disjunction contains four positive literals, it is not a definite clause (or even a
Horn clause). Therefore, the rules like the one above cannot be represented in the KR.

A real example should illustrate how the JTMS requirement that all knowledge be
represented as definite clauses constrains the kinds of rules that can exist in the KR. The
JTMS does not allow the negation of logical statements such as (?z is-SUBSTRATE-OF ?y)

80, we could not represent the following rule in the KR:

IF ?x INHIBITS ?y AND
NOT (?z is-SUBSTRATE-OF ?y)
THEN

NOT (?x INHIBITS-METABOLIC-CLEARANCE-of ?z via ?7y)

The KR gets around this limitation by using predicates that represent the inverse state
of other predicates in the rule-base along with additional rules that identify contradictions.?
For example, the KR uses the first rule in Figure 3.8 to declare that a drug or drug metabo-
lite, ?x, that inhibits some enzyme, ?y, will not reduce the clearance of another drug, 7z,
if ?z is not a substrate of ?y. The second rule in Figure 3.8 ensures that contradictory
predicates do not enter the knowledge base by triggering a function called CONTRADICTION
if some drug ?x both is, and is not, a substrate of some enzyme 7y.

The necessity of the work-around just mentioned is a limitation of representing knowl-
edge using the JTMS and will likely make the KR more difficult to scale to other kinds of
DDI mechanisms. Therefore, future expansion of the DIKB might require that the JTMS

be replaced with a rule engine that allows more expressive logical statements. Fortunately,

"The reader might have noticed that the rule Figure 3.3 includes the statement :TEST (NOT (EQUAL 7x
?z)). This statement is actually a Lisp function that operates on the variables such as ?x and ?y but not
logical statements such as (7z is-SUBSTRATE-OF 7y).
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IF ?x INHIBITS 7y AND

7?7z is-not-SUBSTRATE-OF 7y

THEN
?x does-not-INHIBIT-THE-METABOLIC-CLEARANCE-of ?z via 7y

IF ?x is-SUBSTRATE-OF 7y AND
?x is-not-SUBSTRATE-OF 7y
THEN

(CONTRADICTION ‘(?x is-not-SUBSTRATE-OF ?7y))

Figure 3.8: Two rules that the KR uses infer that two drugs will not interact by inhibition
of a specific enzyme. The first rule says that a drug or drug metabolite, ?x, that inhibits
some enzyme ?y will not reduce the clearance of another drug, ?z, if ?z is not a substrate
of ?y. The second rule is necessary to ensure that contradictory predicates do not enter the
knowledge base.

more expressive families of Truth Maintenance Systems exist including Logic-based Truth
Maintenance Systems that allow rules to be constructed using any propositional clause

including non-definite clauses [61].

3.5.8 The KR’s Reasoning System Does Not Track Uncertainty as it Performs Inference

There is often considerable uncertainty behind claims about a drug’s mechanistic properties
and this uncertainty affects the confidence that someone knowledgeable about drugs places
on mechanism-based DDI predictions (see Section 2.1). It is important to note that the
KR has no method for modeling or tracking uncertainty as it performs inference. Rather, a
separate component of the DIKB called the evidence-model (Section 2.3.1) automatically
selects assertions that meet user defined belief criteria and assumes that these assertions
are certain from the user’s perspective. If the user has selected belief criteria that represent
full confidence in each assertion type, and each assertion the DIKB uses meets the user’s
belief criteria, then so will the KR’s predictions.

This arrangement is useful for researching how evidence can be used to establish the
certainty of drug-mechanism knowledge but it does not address how to handle assertions that

do not meet belief criteria. In spite of this limitation, the experiment with the DIKB that
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we will describe in Chapter 5 shows that the KR can make both accurate and well-supported
novel predictions for an important class of DDIs. However, the experiment also shows that
the KR’s coverage of known interactions is incomplete. We believe that integrating an
appropriate method for modeling and tracking uncertainty will help increase the system’s

coverage of known interactions but are postponing this investigation for future work.

3.5.4 Related Work
8.5.4.1 The KR and Drug-mechanism Tables

The KR is a rule-based representation of a strategy for reasoning about the potential oc-
currence of a metabolic DDI between unstudied drug combinations. The strategy combines
knowledge about biochemical and physiological mechanisms of drug absorption, distribu-
tion, metabolism, and excretion with an understanding of the how drugs interact with each
other to make mechanism-based predictions. Another tool that supports mechanism-based
reasoning are tables published in paper or computer drug-interaction references that list
the known metabolic properties of drugs. For example, a set of tables providing facts that
clinicians can use to infer both metabolic inhibition and induction interactions can be found
in a pocket reference for clinicians called The Top 100 Drug Interactions [81]. Also, the
computer program Q-DIPS [34] provided a similar set of tables to help assist pharmaceutics
researchers in selecting the optimal set of clinical trials needed to establish a new drug’s
safety profile. ‘

While the current KR does not reason about metabolic induction, its representation
of metabolic inhibition has several advantages over drug mechanism facts represented in

tabular form.

e The KR directly infers DDIs from an explicit mechanism-based DDI theory while
clinicians have to apply their own knowledge to information spread over two or more

drug-mechanism tables.

e The KR can provide an estimate of the magnitude of a metabolic DDI — something

not supported by any drug-mechanism tables that we are aware of.
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e To the best of our knowledge, drug-mechanism tables tend to focus only on supporting
interaction predictions and do not attempt to support non-interaction predictions.
The KR model includes rules for predicting when a drug or drug metabolite pairs

should not interact by inhibition of a particular enzyme.

e The KR uses its knowledge of the relationship between a drug and its active metabo-
lites to infer how a change in concentration of a parent compound might effect a
downstream product of metabolism. This kind of reasoning is not practical with
drug-mechanism tables because it would require that the clinician synthesize informa-
tion in several tables such as those listing the metabolites of each drug, the metabolites

of each drug metabolite, and drug mechanisms.

8.5.4.2 Other Rule-based Representations

There is a long history of rule-based systems of various kinds being used to predict or detect
drug interactions. One early system that, like the KR, was designed to support clinical
reasoning, is that reported by Roach et al in 1985 [150]. Their system used rules and frames
to organize pharmacologic information, including mechanisms, for retrieval by clinicians.
Rule-based drug interaction systems have since become very common. For example, a
report by Resetar et al describes their work with a commercial rule-base containing nearly
77,000 drug-drug interaction rules [148] and the Drug Ordering Decision Support System
developed by Del Fiol et ol imported drug-interaction rules from two different hospital
systems [55].

The KR’s focus is much smaller than rule-based systems in many contemporary clinical
decision support systems or even some very early systems like Roach’s. Though small, the
KR performs a novel range of metabolic inhibition DDI predictions that includes inferring
how a change in concentration of a parent compound might effect a downstream product
of metabolism. The KR is a component of a larger system, the DIKB, that implements
a rich representation of evidence for and against the drug-mechanism “facts” that the KR
uses during inference (Chapter 2, Section 2.3). To the best of our knowledge, the DIKB is

unique among rule-based systems that represent drug-mechanism knowledge because it not
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only predicts mechanism-based metabolic drug-drug interactions and non-interactions but
also can represent missing knowledge using default reasoning (Chapter 2, Section 2.2.2) and

provide clear evidence support for each of the assertions it uses to arrive at its predictions.

3.5.5 Conclusion

The DIKB is a research system designed to evaluate novel informatics solutions to the
challenges of representing and synthesizing drug-mechanism knowledge for post-market use.
This chapter has described the computational representation of metabolic inhibition DDIs
that the DIKB currently uses. The KR offers several advantages over simple tables of
drug-mechanism facts (the tool that is probably most available to clinicians for inferring
mechanism-based interactions) because it is able to infer concentration changes and the
effect on downstream products of metabolism. The KR’s method for representing DDI
knowledge is easy to use and extend but has some limitations on what knowledge it can easily
represent. Its model of metabolic inhibition makes interesting and accurate predictions in
spite of a number of simplifying assumptions about the process of metabolic inhibition. We
believe that the theory of metabolic inhibition has much in common with other mechanism-
based DDI theories such as how DDIs occur by metabolic induction or transport protein
modulation. These commonalities make it reasonable that the approaches used in the KR

will be extendable to modeling DDIs that occur by other mechanisms.
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Chapter 4

THE COLLECTION AND CLASSIFICATION OF
DRUG-MECHANISM EVIDENCE

Our first effort to predict clinically relevant DDIs from drug-mechanism knowledge
(Chapter 2, Section 2.1) convinced us that, for a knowledge resource with drug-mechanism
knowledge to be of clinical use, it is essential that it explicitly link each of its drug-mechanism
facts to their evidence support. In other words, we believe that a drug-mechanism knowledge-
base should be able to clarify what clinical trials, in vitro experiments, or other forms of
scientific evidence confirm or refute each of its assertions. One major benefit we expect to
come from this arrangement is that expert users will be able to assess their confidence in a
mechanism-based drug-drug interaction (DDI) prediction by viewing the evidence support
for each drug property used to make the prediction. We also anticipate that this arrange-
‘ment will make it possible to implement a set of computer-supported evidence maintenance
processes that help keep a body of drug-mechanism knowledge up to date with current
research.

Chapter 2 presented the design of the novel method for representing and computing
with evidence that we implemented in the Drug Interaction Knowledge Base (DIKB). This
chapter explores the DIKB’s evidence representation method from a knowledge-base main-
tenance perspective. We begin with a brief summary of the method’s goals and key as-
sumptions along the way contrasting it with other biomedical informatics systems that.link
evidence to their assertions. We then relate our experience using the method to represent

drug-mechanism evidence for 16 active ingredients and 19 active metabolites.

4.1 A Novel Method for Representing Evidence

The DIKB approach to evidence-modeling is the result of discussions among our research
group while reaching consensus on the validity of some of the novel DDI predictions made

by our pilot drug interaction system (Chapter 2, Section 2.1). The two drug experts in our
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group were very knowledgeable about the drugs we had entered into the pilot system and had
significant expertise on how to assess the clinical relevance of results from pharmacokinetic
clinical trials. However, they had different opinions on the clinical relevance of results from
in vitra drug-mechanism experiments. This led them to have different criteria for the kinds
of scientific evidence that would convince them that a drug possessed certain mechanistic
properties that would be measurable in humans (in vivo) at the drug’s therapeutic doses.
One expert felt that in vitro experiments of any kind had little utility for determining in vivo
mechanistic properties while the other felt that, for some kinds of assertions, well-designed
in vitro experiments were of some utility for making in vivo inferences.

Both drug experts could provide sensible justifications for their opinions about in vitro
studies. For one expert, the clinical relevance of a drug-mechanism property derived from in
vitro studies was always suspect until proven in a clinical trial because in vitro conditions do
not accurately reflect the complex interplay of physiology, genetics, disease, and environment
in humans. To this expert, the role of such studies was appropriate only in pre-clinical drug
development where the results of such studies could be followed up by clinical trials. The
other expert could provide examples where some drug-mechanism properties derived from
in vitro studies seem to map to robust, clinically relevant, findings. This expert could define
some situations where a well-designed in vitro experiment might be sufficient to support
some drug-mechanism properties.

The various groups of users of any large-scale drug-mechanism knowledge-base will likely
have similar disagreements about the kinds of scientific support that justify belief in drug-
mechanism properties. This would be consistent with the fact that the science underlying
drug-mechanism knowledge is dynamic and it can take years before a new experimental tool
or method is understood well enough to define the range of inferences that can be made from
its results. For example, many researchers have tried to develop a robust method for making
quantitative in vivo DDI predictions solely from the results of in vitro experiments [92, 175].
Obach et al note how this approach to DDI prediction is feasible in principal but has only
been partially successful so that no general method exists for making accurate, quantitative,
estimates of the magnitude of a metabolic inhibition DDI using in vitro data [131]. Since

the theory is still being developed, the in vivo relevance of data from in vitro experiments
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is a matter for expert interpretation.

The DIKB’s knowledge-representation method recognizes that experts can have sensible
reasons for disagreeing on what evidence makes a drug-mechanism assertion believable. The
new method assumes that it is possible to map a user’s confidence in an drug-mechanism
assertion to some arrangement of one or more abstract evidence types. These abstract
evidence types are simply labels from a taxonomy of the kinds of evidence that might support
or rebut a drug-mechanism assertion. The DIKB distinguishes between assertion instances
and assertion types. An assertion instance is a specific fact about a particular object such
as a drug or protein. For example, the generic (X substrate-of Y) is an assertion type
whose instances might include (carbamazepine substrate-of CYP3A4) and (s-warfarin
substrate-of CYP2C9). Expert users map their confidence in drug-mechanism assertions
by first defining combinations of evidence types from an evidence taxonomy that represent
the kinds of evidence that might support or refute instances of each assertion type. They
then rank the evidence-type combinations by the relative amount of confidence that they
would have in an assertion instance of the given assertion type if it were supported by the

types of evidence present in the definition.

We call rank-ordered combinations of evidence types levels-of-evidence (LOEs) and use
them in the DIKB to provide customized views of a comprehensive body of drug-mechanism
knowledge to different users. Defining LOEs is as simple as listing the evidence types that,
based on expert opinion and/or scientific considerations, confer similar levels of justification
to a given assertion type. One important principal is that any single LOE should not consist
of the conjunction of two or more non-independent pieces of evidence. For example, a non-
traceable statement in drug product labeling might repeat the same data that is present in
a randomized pharmacokinetic study so it would be incorrect to say that an assertion the
study might support is more justified when one combines these evidence items than when
one considers them separately. To guard against this, expert users should never define an
LOE that requires both a non-traceable statement and any evidence type that represents

an actual study of some kind such as an experiment or clinical trial. Defining the LOE as
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the disjunction of the respective types should not lead to the same error.?

There are two lists for every assertion instance in the DIKB’s knowledge-base; one for
evidence that supports the validity of the assertion and another for evidence that detracts.
For each assertion type in the system, expert users define two, possibly identical, sets of
LOEs. One for the types of evidence that can support an assertion type, the other for
the types of evidence that refute it. They then select one LOE for each set of LOEs as
belief criteria. A query of the DIKB’s knowledge-base for valid drug-mechanism assertions
will return only those assertions whose body of evidence for satisfies the belief criteria and

whose body of evidence against does not satisfy belief criteria.

The DIKB’s method for modeling and computing with evidence depends on an evidence
taxonomy oriented toward confidence assignment. The evidence taxonomy must have suffi-
cient coverage of all the kinds of evidence that might be relevant including various kinds of
experiments, clinical trials, observation-based reports, and statements in product labeling
or other resources. Another important requirement for the taxonomy is that users must
be able to assess their confidence in each type either by itself or in combination with other
types. The next section of this chapter examines these requirements in detail while con-
sidering the relevance of other biomedical evidence taxonomies to the task of representing

drug-mechanism evidence in the way that the DIKB proposes.

4.2 Considerations for an Evidence Taxonomy Oriented Toward Confidence
Assignment

Only a handful of biomedical informatics systems exist that attempt to label or categorize
evidence; these include the PharmGKB’s categories of pharmacogenetics evidence [152],
Medical Subject Headings’ Publication Types [27]., Gene Ontology’s evidence codes [65], and
Pathway Tools’ evidence ontology [106). |

2A similar situation can occur when the same piece of evidence has been entered into the evidence-base

more than once but under different identifiers. If an LOE requires two evidence items of a particular
type and a different LOE requires only one, then the repeated evidence item could falsely increase in the
amount of justification given to assertion that the items support. This situation would likely be rare and
could be avoided by applying an algorithm that can identify repeated evidence items by methods other
than comparing their unique identifiers.
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4.2.1 PharmGKB’s “Categories of Pharmacogenetics Evidence”

The PharmGKB is a Web-based knowledge repository for pharmacogenetics and pharma-
cogenomics research. Scientists upload into the system data supporting phenotype rela-
tionships among drugs, diseases, and genes. All data in the PharmGKB is tagged with
labels from one or more of five non-hierarchical categories called categories of pharmacoge-
netics evidence [152]. The categories of pharmacogenetics evidence are different from the
DIKB’s evidence types because the latter represent specific sources of scientific inference
such as experiments and clinical trials while the former are designed to differentiate the var-
ious kinds pharmacogenetic gene-drug findings by the specific phenotypes they cover (e.g.
clinical, pharmacokinetic, pharmacodynamic, genetic, etc). In other words, the categories
are oriented toward data integration rather than confidence assignment. The designers of
the PharmGKB used this approach because they hypothesized that it would be capable
of coalescing the results of a range of methods and study types within the field of phar-
macogenetics into a single data repository that would be useful to all researchers in the

field [7].

4.2.2 Medical Subject Headings Publication Types

One of the most used biomedical evidence taxonomies is the publication-type taxonomy
that is a component of the Medical Subject Headings (MeSH) controlled vocabulary [43].
The MeSH controlled vocabulary is a set of over 20,000 terms used to index a very broad
spectrum of medical literature for the National Library of Medicine’s PubMed database
(formerly MEDLINE). Each article in PubMed is manually indexed with several MeSH terms
and additional descriptors including the article’s publication type. The MeSH publication
type taxonomy is designed to provide a general classification for the very wide range of
articles indexed in PubMed. Hence, the taxonomy is very broad but relatively shallow.
For example, publication types in the 2008 MeSH taxonomy [27] include types as varied as
Controlled Clinical Trial and Sermons but only one type, In Vitro, that represents
the wide range of experiments that are done with excised tissue.

In knowledge representation terms, the coverage by MeSH publication types of the ev-
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idence types relevant for validating drug-mechanism knowledge is too coarse-grained. This
is because the design of some in vitro experiments makes them better support for certain
drug-mechanism assertions than others. For example, a recent FDA guidance to industry
on drug interaction studies distinguishes three different in vitro experimental methods for
identifying which, if any, specific Cytochrome P-450 enzymes metabolize a drug [26]. The
three experiment types are different from the in vitro experiment type that the FDA sug-
gests is appropriate for identifying if a drug inhibits a drug metabolizing enzyme. The next
two sections will discuss two systems whose coverage of in vitro evidence is less coarse than
MeSH publication types — the Gene Ontology evidence codes [65] and the Pathway Tool’s
evidence ontology [106].

4.2.3 Gene Ontology Fvidence Codes

The Gene Ontology (GO) is a system of three separate ontologies defining relationships
between biological objects in micro- and cellular biology [63]. GO is a consortium-based
effort that has gained wide acceptance in the bioinformatics community because it supports
consistent descriptions of the cellular location of a gene product, the biological process
it participates in, and its molecular function. Authors of GO annotations are expected
to specify an evidence code that indicates how a particular annotation is supported. GO
evidence codes [65] are labels representing the kinds of support that a biologist might use to
annotate the molecular function, cellular component, or biological process (s)he is assigning
to a gene or gene product. GO has over a dbzen evidence codes including codes that indicate
that a biological inference is supported by experimental evidence, computational analysis,
traceable and non-traceable author statements, or the curators’ judgement based on other

GO annotations.

In the DIKB, the user’s confidence in an assertion rests on some arrangement of one or
more evidence types. This means that the user must trust the validity of each instance of
evidence that the system uses to meet the belief criteria without necessarily reviewing the
evidence for herself. In contrast with these requirements, the authors of the GO evidence

codes are very clear that they cannot be used as a measure of the validity a GO annotation
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as indicated by their following statement:

Evidence codes are not statements of the quality of the annotation. Within
each evidence code classification, some methods produce annotations of higher
confidence or greater specificity than other methods, in addition the way in
which a technique has been applied or interpreted in a paper will also affect the

quality of the resulting annotation [65].

This quote from GO evidence code documentation mentions two possible characteristics
of GO evidence codes that preclude them from serving as a measure of the justification
for biological annotations. First, GO evidence codes seem to represent evidence types that
vary in terms of their appropriateness for justifying hypotheses. In our view, the evidence
codes represent evidence families rather than evidence types. The distinction is that the
kinds of evidence that an evidence type represents should be fairly homogeneous in terms of
their appropriatenesé for justifying hypotheses. Like MeSH publication types, GO evidence
codes are too coarse-grained for use as a tool for confidence assignment. Second, GO
evidence codes do not address the fact that there are many possible problems with studies,
experiments, author statements, and other types of evidence that can effect their validity.
In other words, even if GO evidence codes were granular enough for decision support, the
user would have to assess the quality of each evidence item directly or else place blind faith

in the annotator’s judgment.

4.2.3.1 The Need for Inclusion Criteria

This analysis of GO evidence codes indicates that there is at least one other dimension to
biomedical evidence assessment besides the confidence that a particular group of methods or
sources inspire in some hypothesis. A discussion of the quality of scientific evidence should
help identify the necessary factors to consider when assessing scientific evidence.

The Agency for Healthcare Research and Quality, in their report assessing a substantial
collection of systems for rating scientific evidence [177], defines the quality of a research

study to be “the extent to which a study’s design, conduct, and analysis have minimized
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selection, measurement, and confounding biases” ([177], p.1). According to this definition
there are three components of a study that contribute or detract from its quality - its design,
how it is conducted, and how its results are analyzed. While it is possible to create meta-
data labels that accurately reflect a study’s design, it is intractable to abstract the full range
of issues that affect a study’s conduct and analysis.

Take for example a research study by Ford et al on the effect of fluoxetine on the
clotting effect of warfarin [62]. The study’s purpose was to see if fluoxetine would cause
a pharmacodynamic interaction with warfarin. In this small correlation study, patients
given fluoxetine for three weeks while on a low-dose of warfarin experienced no significant
change in the amount of time it took for their blood to clot. Previous studies have shown
that metabolism via the CYP450 enzymes is the primary clearance mechanism of warfarin.
If our focus were on metabolic mechanisms, one possible interpretation of these results is
that fluoxetine and its metabolite norfluoxetine do not effect the metabolic clearance of
warfarin. However, as Ford and colleagues acknowledge in their discussion, fluoxetine and
its metabolite both have long half-lives making it possible that a three week study was
not adequate time to see the effect of a metabolic interaction between either of them and
warfarin.

In terms of evidence, we might classify this study as an uncontrolled drug-drug interaction
study but this will leave open a number of questions for the expert user who sees this evidence

label such as:

o Was the dosing of both drugs sufficient to allow accurate measurements of a pharma-

codynamic or pharmacokinetic effect?

e Were there certain attributes of the study’s participants that could bias results? For

example, were all participants very ill? Were they all elderly?
o What was the route of administration for both drugs?

Our approach to ensuring that the user can use evidence types to establish confidence

assignments is to develop and consistently apply inclusion criteria for each type of evidence
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in the DIKB. Inclusion criteria help ensure that all evidence within a collection meet some
minimum standard in terms of quality. They are complimentary to evidence type definitions
which should represent evidence classes that are fairly homogeneous in terms of their ap-
propriateness for justifying hypotheses. The criteria are designed to help answer the kinds
of methodology questions that expert users have when told that an evidence item is of a

certain type.

4.2.4 The Pathway Tool’s Evidence Ontology

One other currently used biomedical evidence taxonomy is found in the Pathway Tools sys-
tem of pathway /genome databases (PGDBs) [106]. The Pathway Tools evidence ontology
is both a computable evidence taxonomy and a set of data-structures designed so that
PGDB maintainers can attach 1) the types of evidence that support an assertion in the
PGDB, 2) the source of each evidence item, and 3) a numerical representation of the degree
of confidence a scientist has in an assertion. The taxonomy component of the evidence
ontology shares several of the types defined in GO evidence codes (Section 4.2.3) but adds
a number of sub-types that define more specific kinds of experiments and assays than GO.
The data-structure component of the “evidence ontology” enables PGDB maintainers to
record the source of an evidence item, the accuracy of a given method for predicting specific
hypotheses (e.g., the accuracyv of an operon prediction algorithm, if it is known), and the
scientist’s confidence in a PGDB assertion given the full complement of evidence supporting

an assertion.

PGDB users are presented with a visual summary of the kinds of evidence support for a
given assertion in the form of icons representing top-level evidence-types from the Pathway
Tools evidence taxonomy (e.g. “computational” or “experimental”). Users can click on
the icons to view more detailed information of the specific evidence items represented by
the top-level icons including the sources of each item and its specific evidence type. This
approach enables Pathway Tools to provide an overview of the kinds of evidence support for
an assertion so that users might make their own judgements on the amount of confidence

they should have in a PGDB assertion.
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4.2.4.1 Addressing Confirmation Bias.

Pathway Tobls evidence types serve a similar function as DIKB evidence types by helping
users assess their confidence in knowledge-base assertions. However, an important distinc-
tion must be made between the evidence modeling approach of Pathway Tools and that
of the DIKB. PGDB maintainers use the Pathway Tools evidence ontology to represent
only supporting evidence while DIKB, maintainers use evidence types to represent both

supporting and refuting evidence.

Griffin in his review of research in the domain probability judgement calibration [76] lists
several robust findings from a considerable body of research exploring biases people have
when estimating the likelihood of uncertain hypotheses. Among them is the finding that
people tend to exhibit various forms of over-confidence when estimating the probability
that some hypothesis is true. Among the possible explanations for this tendency put forth
by some calibration researchers is that over-confidence is a result of confirmation bias —
“..people tend to search for evidence that supports their chosen hypothesis” [76]. Under
this model, confidence estimations should be more accurate when people consider situations
where their hypotheses might not be true. Griffin reports that the results of some research
studies are consistent with this model but that confirmation bias does not seem to be the

sole cause of over-confidence during probability judgement.

We think that these results are relevant to representing drug-mechanism knowledge
because one of the fundamental goals of a drug-mechanism knowledge-base should be to
facilitate the maintenance of a coherent body of knowledge that has minimal bias. For every
assertion in the DIKB knowledge-base there are two lists; one for evidence that contributes
support to the validity of the assertion, another for evidence that detracts. Maintainers use
an editorial board process to seek evidence both for, and against drug-mechanism assertions.
The intent of this arrangement is to help knowledge-base maintainers avoid any tendency
to collect evidence that only supports knowledge-base assertions and to help expert users

create unbiased criteria for judging their confidence in the system’s assertions.
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4.2.5 Curator Inferences and Default Assumptions

One final remark on GO evidence codes and the Pathways Tools evidence ontology: in
both systems, there is an evidence type called Inferred by Curator which curators use for
knowledge they infer from other assertions or annotations in the respective systems [65, 106].
The Inferred by Curator evidence type provides a convenience to the maintainers of these
systems by enabling them to quickly support some knowledge element based on information
already in the system. The following example of how this occurs is paraphrased from an
example given in the section titled “IC: Inferred by Curator” in the GO evidence code

guide [65].

The experiment described in (Noel et al. 1998) provides evidence that the pro-
tein encoded by the S. cerevisiae gene UGA3 has the function specific RNA
polymerase II transcription factor activity (GO:0003704). The cura-
tor deduces from the functional annotation that UGAS3 is located in the nu-
cleus because 1) §. cerevisiae is a eukaryote, 2) RNA polymerase II is a nuclear
polymerase, and 3) UGAS3 is a gene product associated with RNA polymerase
II. The curator annotates UGA3 with the cellular-component term nucleus
(GO:0005634) and applies the evidence code Inferred by Curator to record

the evidence support for the new annotation.

This example makes it apparent that evidence codes like Inferred by Curator are
not evidence types at all, but rather a record of why a particular assertion exists within
a knowledge-base. The DIKB requires a set of evidence types that users can use to judge
their confidence in the system’s assertions. An evidence code such as Inferred by Curator
indicates that some curator, quite likely unknown to the user, inferred the knowledge that
the code is linked to. In this situation users might apply the level of trust that they have
for the knowledge source based on previous experiences. If they have found the knowledge
source trustworthy, then they might consider the unknown curator’s inference trustworthy as
well. In such a case, the expert would be assessing their confidence in a knowledge-curation

system rather than a scientific proposition. Alternatively, the expert might attempt to
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explicitly trace the curators’ judgement so as to decide for themselves if the inference was
reasonable. This process might be straightforward as in the above example, or confusing
depending on the complexity of the logic the used by the curator when making the inference
in question.

In constructing the DIKB we have also found situations where it was desirable to assert
some knowledge element based on our knowledge of other assertions in the system. As a
trivial example, when evidence in the DIKB supports the assertion that some enzyme, E, is
responsible for 50% or more of some drug or drug metabolite’s total clearance from the body,
then the system should also contain an assertion that more than 50% of a drug’s clearance
is by metabolism. A more complex example can be seen in the rules that the DIKB uses
to infer a drug or drug metabolite’s metabolic clearance pathway shown in Appendix B,
Section B.2. In both of these cases the DIKB is able to use declarative rules and Truth
Maintenance System (TMS) justifications (Chapter 2, Section 2.3.2) to automatically add
the needed assertions to knowledge-base. The system’s TMS links each automatically-
inferred assertion to the assertions and rules from which it was inferred. Procedural code
leverages the DIKB’s TMS and evidence-base components to create a report showing the
logic and evidence support for any automatically inferred assertions.

The advantage of the DIKB’s approach becomes apparent when one considers that the
construction and maintenance of a large knowledge-base is a collaborative effort. GO and
the PGDBs in the Pathway Tools system require curation by many domain experts and we
think it reasonable to expect that, in spite of the best of intentioné, curators will sometimes
make mistakes or not be entirely consistent in how they enter knowledge or assign evidence.
Furthermore, as a knowledge-based system grows it becomes less tractable for curators to
know all of the inferences supported directly by other knowledge in the system. In contrast,
once a rule is added to the DIKB that makes an assertion based on other assertions present
in the system, it will always be applied consistently and across all possible instances where
it is applicable.

It turns out that there are other occasions where an evidence type like Inferred by
Curator might seem applicable within the DIKB. The system’s curators sometimes face

situations where they are justified in entering an assertion without linking it to evidence.

4
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Such an event can occur when the curator is unable to find evidence for an assertion or
when (s)he decides that an assertion does not need to be justified by evidence. In both
cases the curator can decide to enter it as a default assumption. Default assumptions are
a special kind of assertion introduced in Section 2.3.2.1 of Chapter 2 that is considered
justified by default, but that can be retracted either manually by curators or automatically

by the system as it proceeds with inference.

Drug Interaction Knowledge Base 1.0

Add the value for an assertion in the Drug Interaction Knowledge Base

Edit an assertion for object: midazolam and slot: primary_total_clearance emzyme
Please select a value for the siot that this evidence suggests:

cyp3ad 4
Assert by default with no evidence support?
No assurmptiong needed | Add assumptions |

Copyright © 2005 Richard Boyce
All Rights Reserved

Comments to author: bovcer At u /dot\ washinaton D*t edu
Generated: Wed May 14, 2008

Figure 4.1: DIKB maintainers can specify that assertions be justified without any evidence
support. These assertions are called default assumptions. This figure shows a user specifying
that the assertion (midazolam primary-total-clearance-enzyme CYP3A4) is a default
assumption. Curators can still link evidence items to assertions labeled default assumptions
though the system will not asses if the evidence items meet belief criteria until the assertion
is no longer justified by default.

For example, the current DIKB policy is that any enzyme that the FDA considers a
drug or drug metabolite to be an in vivo probe substrate for should be labeled its pri-
mary total clearance enzyme (see Appendix C, Section C.13). The FDA suggests several
drugs and drug metabolites that can serve as probe substrates for in vivo pharmacoki-
netic metabolism identification studies [26]. Since the guidance lists midazolam as an in
vivo probe substrate of CYP3A4, a curator who sees this evidence would designate the

assertion (midazolam primary-total-clearance-enzyme CYP3A4) a default assumption
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cyp3ad
. Evidence i .

'Evidence For ) ' Pointer: Reviewer:
(item 0) i Evidence Type: Non_Tracable_Statement fda2006a ;borycer

Quote: The FDA recommends this as a preferred CYP3A4 substrate for in vivo studies In it most

recent guidance document. See Table 2, p. 19
ENo evidence
against!

Figure 4.2: DIKB users can see when an assertion is a default assumption when they review
its evidence support.

(Figure 4.1). DIKB users will see that it is a default assumption when they attempt to
review its evidence support (Figure 4.2). If the user does not agree with this default as-
sumption it is possible for the system to retract both the assumption and all assertions and

inferences that depend on it for justification.



Table 4.1: A partial listing of the many sources for drug-mechanism knowledge. The DIKB curators searched these evidence
sources for mechanism knowledge on 16 drugs and 35 active metabolites.

Knowledge source

Example

Comments

pharmaceutics and pharmacology text
books

Metabolically-Based Drug-Drug Interactions:
Principles and Mechanisms [112]

detailed drug-mechanism knowledge often
with references

drug product labels

The NLM’s DailyMed database®

a wide variety of information written by the
drug’s manufacturer; most statements are
non-traceable; updated infrequently

drug information references

Goodman & Gilman’s the Pharmacological
Basis of Therapeutics [38]

quick source of basic pharmacokinetic data of-
ten with references

commercially licensed drug information
databases

The Metabolism and Transport Drug Interac-
tion Database®

searchable drug-mechanism knowledge se-
lected by experts; all data refers to their orig-
inal source

primary research article databases

PubMed®

comprehensive sources of indexed scientific ev-
idence

regulatory guidelines

FDA Center for Drug Evaluation and Re-
search Guidelines®

authoritative but often non-traceable consen-
sus statements

continuing modules of education focusing
on drugs and drug interactions

Drug-Drug Interaction in the Elderly with
Epilepsy: Focus on Antiepileptic, Psychiatric,
and Cardiovascular Drugs [44]

succinct, traceable, summaries of various

drugs

unpublished pre-market and drug ap-
proval data

drugs@fda® or the drug manufacturer

the source of many non-traceable statements
found in drug product labeling; often difficult
to access

personal bibliographies belonging to drug
experts

We built a search engine for the personal bib-
liography of one drug expert that spanned al-
most 30 years of work

a collection of high quality evidence specific to
drug interactions

%http://www.dailymed.nlm.nih.gov
Shttp://www.druginteractioninfo.org/
“http:/ /www.ncbinlm.nih.gov/PubMed/
http:/ /www.fda.gov/cder /guidance/

http://www.accessdata.fda.gov/scripts/cder/drugsatida/
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http://www.dailymed
http://nlm.nih.gov
http://www.druginteractioninfo.org/
http://www.ncbi.nlm.nih.gov/PubMed/
http://www.fda.gov/cder/guidance/
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/

91

4.3 An Appropriate Evidence Collection and Maintenance Process

The quality and coverage of the DIKB’s drug-mechanism knowledge will depend a great
deal on what process is used to collect and maintain evidence. The system requires an
evidence collection and maintenance process that is geared toward building a coherent body
of knowledge that has minimal bias and is up-to-date. This section examines the essential

steps of a process that we believe meets these requirements.

4.8.1 Step One: Seek Evidence for and Against Fach Relevant Assertion

There are number of sources of drug-mechanism evidence where curators might search in-
cluding pharmaceutics and pharmacology text books, drug product labels, drug information
references, primary research articles, regulatory guidelines, continuing modules of education,
and unpublished pre-market studies (see Table 4.1). We will discuss later the specific search
process that we used to collect evidence for 16 active ingredients and 19 active metabolites.
We stress here the intent of the search for evidence — to acquire a minimally biased body
of relevant evidence that can be evaluated using LOFs and belief criteria. '
‘We propose that knowledge-base maintainers can reduce bias within the DIKB’s evidence-
base by collecting sufficient evidence to support two propositions for every drug-mechanism
assertion; the first proposition being that the assertion is true, the second being that it is
false. Using this approach, the curator would seek all sources of evidence that are relevant
for supporting or refuting a drug-mechanism assertion and enter both kinds of evidence even
if items contradict each-other. It is an open research question how effective this approach
will be in reducing bias in a body of evidence. We will relate our experience applying this

method toward the end of this chapter.

4.3.1.1 Quantitative Assertions

There are some attributes of pharmaceutical entities that are quantitative in nature such as
the maximum systemic concentration that a drug will reach when administered at normal
therapeutic doses. Quantitative assertion types are statistical in nature and the DIKB treats

them differently than declarative assertion types such as (X substrate-of Y) .
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e Curators collect only supporting evidence for some quantitative assertion types. For
example, it makes little sense to colléct evidence against an assertion about a drug’s
maximum concentration (Crqz) at therapeutic doses because all drugs are sure to pos-
sess some Cpae. A similar issue occurs with the measure of a drug or drug metabolite’s

bioavailability.

e Curators can collect evidence against a quantitative assertion type when the value
does not exist for some entities within a class. For example, since only a sub-set of all
possible drugs or drug metabolites will be found to inhibit a particular enzyme in vitro,
it would make sense to include an experiment showing a zero or non-significant inhi-
bition constant as evidence against an inhibition-constant assertion (Appendix C,

Section C.15) for some pharmaceutical entity.

o If the body of evidence for a quantitative assertion satisfies the belief criteria and the
body of evidence against the same assertion does not satisfy belief criteria then the
DIKB exports to its knowledge-base a single value derived from the body of supporting
evidence. The exported value can be numerical (e.g. “8.8”, “0.99", etc) or qualitative

representations of the value’s magnitude (e.g. LOW, MEDIUM, HIGH).

The DIKB can derive values from a body of supporting evidence using a method that
is customized to a particular assertion type. By default, the system exports the maximum
value present in the list of supporting evidence. There are numerous potential alternative
approaches including taking the minimum value, taking the simple average of the values
provided by each item of supporting evidence, or weighting their values and combining
them to derive a weighted-average. Our approach has been to derive values using methods
that are pragmatic and that we think will increase the system’s predictive sensitivity.

To clarify, consider that the DIKB labels a drug or drug metabolite an in vivo inhibitor

for some drug metabolizing enzyme if the following relationship holds:

Cma.av

d 4.
X, >0 (4.1)
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Where Cpur is the maximum observed concentration of the inhibitor in patients at
normal, therapeutic, doses and K; is an inhibition constant derived from a well-designed in
vitro enzyme-inhibition experiment involving the inhibitor.P

The system is programmed to take the mazrimum value found in the body of evidence
supporting a drug or drug metabolite’s Cyqr and the minimum value found in the body
of evidence for a drug’s K;. This method should lead to more sensitive DDI predictions
because the standard for qualifying as an in vivo inhibitor is lower than if the systefn chose
the minimum value for Cp,,, and the maximum value for K;. The method is also pragmatic
because C,,., values are often based on pre-market studies that cannot be found in the
literature but whose results are published in drug product labeling. In these cases, the
simple average of Cpqy values should not be taken because this would assume that each
study had a roughly equal number of participants but this information will be unknown to
DIKB curators.

The DIKB can also map a numerical value to a qualitative representation of the value’s
magnitude using a function that is customized to a particular assertion type. For example,

the system is programmed to map bioavailability values to the following discrete categories:

e LOW: [0.0,0.20]
e MEDIUM: (0.201, 0.50]
e HIGH: (0.501,1]

The motivation for choosing these categories is based on simple conjectures about what
the maximum increase in AUC can be at various bioavailability levels. The AUC of a
drug with a bioavailability of 50% should increase no more than 2-fold AUC if whatever is
blocking the drug from entering systemic circulation is completely removed. The maximum
possible magnitude increase at the 20% level is approximately 5-fold while there is no limit

for drugs with bioavailability values near zero.

PPlease see Chapter 3, Section 3.2.3.1, for further explanation of why the DIKB uses this technique.

A
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A different mapping is used for a qualitative statement of the degree to which an active
pharmaceutic ingredient is cleared from the body before entering systemic circulation. This
“first-pass effect” can be important because some orally-administered drugs are heavily
metabolized before, or while, passing from the intestine to the liver. This value is mapped

to the following discrete categories:
e LOW: [0.0,0.50]
e MEDIUM: (0.501,0.80]
e HIGH: (0.801,1]

The motivation for choosing these categories is based on simple conjectures about what
the maximum increase in AUC can be at various first-pass-effect levels. For example, the
AUC of a drug with a first-pass effect of 50% should increase no more than 2-fold increase
if the first-pass effect is completely removed. The maximum possible magnitude increase
at the 80% level is approximately 5-fold while there is no limit for drugs with first-pass
effect values near 100%. Appendix C presents the method that the DIKB uses for each

quantitative assertion type to derive and/or map its value.

4.8.1.2 Enough is Enough

Some assertions have numerous pieces of evidence to support them of many different types.
For example, the assertion (itraconazole inhibits CYP3A4) is supported by at least
three randomized clinical trials [136, 170, 181], drug product labeling [96], and an FDA
guidance [26] (Appendix A, Table 2, p. 19). An interesting question in this case is — when
should the curator stop collecting evidence for an assertion?

DIKB curators are charged with collecting a minimally biased body of relevant evidence
that can be evaluated using LOEs and belief criteria. This goal is different than the task of
acquiring sufficient evidence to prove that an assertion is true. To see how, let us consider
once more how the DIKB uses LOEs. At the present time, they are used as rank-ordered

grading scales for the kinds of evidence that are relevant to a particular assertion type.
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Users must choose two, possibly identical, belief criteria; one from the LOEs for supporting
evidence and one for the LOEs for refuting evidence. The belief criteria act as filters
specifying the minimum evidence criteria that must be met for an assertion to be supported
or refuted. Given this view of LOEs, DIKB curators should only collect evidence until
it meets the user’s belief criteria for each assertion type. Once evidence meets the belief
criteria, any additional evidence will have no influence an whether the system asserts or

retracts an assertion.

Such an approach makes sense when the LOEs and belief criteria are known to people
collecting evidence and putting it into the DIKB. Unfortunately, it will not scale if the DIKB
has multiple groups of expert users because each group will likely define a different set of
LOEs and belief criteria. The DIKB will be more scalable if curators attempt to collect all
available items of each evidence type that is relevant for supporting or refuting each asser-
tion. To be practical, this approach will certainly require the use of advanced informatics
tools to ease the curators task. Research in machine learning and artificial intelligence pro-
vides several examples of machine classifiers that accurately identify relevant articles from
indexed research abstracts [153] and automatically extract biomedical relationships [145).
We think that DIKB curators should always make the final decision as to how to apply a

given item of evidence but automated tools have the potential to greatly ease their task.

4.8.2 Step Two: Decide Each Evidence Item’s Type Based on Definitions in the Evidence

Taronomy and Evaluate if an Evidence Item Meets the Inclusion Criteria for its

Type

Once evidence has been collected, DIKB curators must tag all evidence items with a label
specifying its type from the DIKB’s evidence taxonomy. It is important to note that we
define an evidence item to be a single research result within some evidence source (e.g. a
specific journal article) rather than the evidence source itself. This distinction is necessary
because a single evidence source might have multiple evidence items each of a different
type. For example, a single journal article published by Jacobsen et al [94] reports the

results of a variety of in vitro assays characterizing the metabolism of atorvastatin and its
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metabolites by enzymes in the Cytochrome P450 family. The paper also reports the results
of experiments identifying in wvitro DDIs. There are several evidence items in this single
source including some items that identify specific atorvastatin metabolites and others that
indicate metabolic DDIs between atorvastatin and CYP3A4 inhibitors. Since the purpose
and methods of the assays were different than those of the DDI experiments, the curator
would classify the evidence items into different evidence types even though they are from

the same evidence source.

At some point after an evidence item’s type is classified, DIKB curators must decide if
it meets inclusion criteria. Usually, this is as simple as reviewing the full-text source of the
evidence item and ensuring that the item meets all the requirements for its evidence type.
However, sometimes information is not available in the evidence source and the curator must
rely on his or her judgement to decide if the evidence item meets criteria. For example,
our inclusion criteria for certain in vitro enzyme inhibition experiments requires that an
NADPH regenerating system be added to the enzyme system. The curator may decide
that this requirement was met by a relatively recent report, even if it makes no mention
of the addition of NADPH, since this procedure has become standard protocol for such

experiments in recent years.

The previous example brings up an important point — in no sense are inclusion criteria
tools for automating the evidence collection and curation process. The human curator is in
the loop at all times and has full power to accept or reject an evidence item even if it meets
inclusion criteria. Inclusion criteria help ensure that all evidence within a collection meet
some minimum standard in terms of quality. As Section 4.2.3.1 states, it is intractable to
abstract the full range of issues that affect a study’s conduct and analysis using evidence
types. Neither do we think it feasible that inclusion criteria will address all potential quality
issues. So, an evidence item can proceed to the next step of the curation process if, in the
curator’s judgement, it meets inclusion criteria and there are no other quality issues that

curator is aware of.
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4.8.3 Step Three: Decide if There are any “FEuvidence-use Assumptions”

Interpreting the results of a scientific investigation as support for a particular assertion
can sometimes require making conjectures that scientific advance might later prove to be
invalid. If such conjectures are later shown to be false, it is important to re-consider how
much support the scientific investigation lends to any assertion it was once thought to
support. One unique feature of the DIKB is that it can represent the conjectures behind a
specific application of evidence. These representations are called evidence-use assumptions
in the DIKB. Chapter 2, Section 2.3.2.3, explains how these assumptions facilitate keeping
knowledge in the system up-to-date and provides the technical details of how the DIKB
models them. Here we briefly discuss how they are defined and what steps a curator takes

to use them.

In our experience, evidence-use assumptions are an attribute of a particular class of
evidence. For example, pharmacokinetic drug-drug interaction studies often involve admin-
istering a drug or drug metabolite (the precipitant) that is considered a selective inhibitor
in vivo for some drug—metaboliiing enzyme to study participants taking another drug (the
object drug) that has reached a steady-state concentration. If the systemic concentration of
the object drug increases, then it is strong evidence that the object drug’s metabolic clear-
ance depends significantly on the inhibited enzyme. However, this inference depends on the
assumption that the precipitant has no measurable effect on any other clearance route of
the object drug. This is an evidence-use assumption that applies to all pharmacokinetic

drug-drug interaction studies using selective inhibitors.

DIKB maintainers attempt to define evidence-use assumptions for each new type that is
added to the DIKB’s evidence taxonomy. Like the previous example, these assumptions are
written as general statements that apply to one or more evidence types. The maintainers
add such statements to inclusion criteria documentation so that curators will know what
specific assumption(s) should be declared when adding an item of evidence to the system.
After curators have approved an evidence item, they identify assertions within the DIKB
that match each specific evidence-use assumption. In many cases, a suitable assertion will

not be present in the DIKB. If so, curators must add the new assertion to the DIKB then
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link it as an evidence-use assumption for the evidence item.

4.8.4 Step Four: Enter a Representation of the Evidence Item into the DIKB

There are two ways that an evidence item can be entered into the DIKB; from within an
interactive Python® session or using a simple Web interface. The Python interface is a
powerful tool for querying the DIKB’s evidence base but is not suitable for addihg evidence
because it requires that a curator be very familiar with the DIKB application program
interface. The Web interface simplifies the task of evidence entry a great deal and is also
useful for viewing evidence items and assertions within the DIKB. Appendix F shows how
the user can enter evidence items and view then using the DIKB’s Web interface.

Another advantage of the Web interface is that the system will perform several validation
tests on a new evidence entry before it is stored in the DIKB’s evidence-base. System tests
include identifying if the evidence entry is redundant or has been rejected by DIKB curators
as support or rebuttal for certain assertions. The system also checks if entering the item will
create an evidence pattern that is indicative of circular reasoning by evidence-base curators.

The next few sections provide more details on these validation checks.

4.8.4.1 Redundant Evidence Entry

A redundant evidence entry is defined as the exact same application of an evidence item as
is currently existing in the system. The system tests for this occurrence by .scanning the
evidence for and against the assertion that the curator is attempting to link an evidence
item to. If the new evidence item shares the same external document pointer (e.g PubMed
identifier) and the same evidence position (support or refute) as an evidence item in the two
bodies of evidence, then the system will warn the curator that they seem to be applying an
evidence item redundantly. The system will not prevent the user from entering the evidence
itern because the system only knows that the same evidence source is being linked to an
assertion more than once. The curator may have found multiple, indepeﬁdent, evidence

items within the same source that should all be connected to the same assertion.

“http://www.python.org


http://www.python.org
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4.3.4.2 Rejected Fvidence Usage

An interesting fact is that it is possible for an evidence source to contain an evidence item
that is not suitable as support or rebuttal for one assertion but perfectly acceptable for an-
other. This can happen when an evidence source describes multiple studies or experiments
and only a subset of them meet inclusion criteria. It can also happen when a curator con-
siders only some of the results from a single study or experiment to be valid. In either case,
we believe that it is important for evidence-base curators to keep track of every assertion
that an evidence-source cannot support or refute. Doing so helps curators avoid redundant
effort by alerting them when a particular evidence source contains items that should not be
linked to a particular assertion.

The DIKB helps curators manage rejected evidence items by informing all participants in
the evidence collection process when an evidence item has been rejected for some use. Each
time curators reject an evidence item, they add an entry into a simple database indicating
the item’s source, a short description explaining why they rejected the item, and which
assertion or assertions the item should never be used to support or rebut. The system scans
the contents of this database each time a curator attempts to add a new evidence item
to the evidence-base. Curators can still link an evidence item to any assertion that it has
not yet been rejected from supporting or refuting. However, the system will not allow any

rejected use of an evidence item.

4.8.4.3 Circular Support

Evidence-use assumptions were designed so that the DIKB could alert curators when one
or more conjectures that a particular application of evidence depends on fail to meet belief
criteria. They can also help identify a pattern, called a circular line of evidence support,
that is indicative of fallacious reasoning by evidence-base curators. A hypothetical example
should help clarify the kind of situation we are describing and its implications.

Let’s say some evidence item, F, exists in the evidence-base as support for the asser-
tion (diltiazem inhibits CYP3A4) and that (simvastatin primary-clearance-enzyme

CYP3A4) is an evidence-use assumption for this application of E. In addition, assume that
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also acts as support for (simvastatin primary-clearance-enzyme CYP3A4) and that this
other use of E depends on the validity of the assertion (diltiazem inhibits CYP3A4). If
there is no evidence against either assertion and E meets both assertions’ supporting belief
criteria, then the system will consider both assertions to be valid.

Figure 4.3 makes apparent the problem here — the conjecture, (simvastatin primary-
-clearance-enzyme CYP3A4), is necessary for evidence item E to act as support for the
assertion (diltiazem inhibits CYP3A4) but is being justified by the same evidence item,
E, that assumes the same proposition E is supposed to justify. Intriguingly, the same
unsound reasoning would be present even if evidence item FE is being used to refute the
agssertion (diltiazem inhibits CYP3A4). Neither kind of circular reasoning should be

allowed in the DIKB’s evidence-base.

Evidence item 'E'

I'd

assumes . 4 supports
e
e
a e
(diltiazem inhibits CYP3A4) (simvastatin primary-clearance-enz CYP3A4)
v
. 7
e
rd
supports e assumes
4

Evidence item 'E'

Figure 4.3: A circular line of evidence support that indicates circular reasoning within the
evidence-base

The DIKB implements an algorithm that we have designed for detecting when an new

evidence item would cause a circular line of evidence support.

Let E be an evidence item that is being considered as evidence for or against
some assertion, A. Assume that the use of E as evidence for or against A
is contingent on the validity of one or more other assertions in the set Ay =

asi,ass,...,asy,. The set of assertions in Ay, are the evidence-use assumptions
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for E. If E is currently being used as evidence for or against some assertion, as;,
in A7, and the use of E to support or refute as; depends on the assumption A4,
then the use of E to support or refute A would create a circular line of evidence

support.

The DIKB will not allow a curator to enter an evidence item that passes this test into its

evidence base.

Circular reasoning might be present in the evidence-base anytime an evidence-use as-
sumption is supported by the same evidence item that the assumption is linked to. We
can create an algorithm to detect this form of circular evidence support by simplifying the

previous algorithm.

Let FE be an evidence item and let the set A, = as1,ass, ...,as, be the set of
evidence-use assumptions for E. If E is currently being used as evidence for or
against some assertion, as;, in Ag, then circular reasoning might be present in

the evidence-base.

The DIKB does not currently implement this algorithm in its validation tests but will in

future versions.

4.8.5 Step Five: Computer-supported Evidence Maintenance Processes

Many drug-mechanism facts that we consider well-supported today will need revision to ac-
count for scientific progress. Hence, collecting and maintaining a drug-mechanism evidence-
base should be an ongoing process by design. The DIKB, as a research system, was built
for a specific set of experiments and so maintenance of its evidence-base is currently sus-
pended. However, there are many tools and methods that could be useful for maintaining
the evidence-base if work on it becomes active again. Section 6.2 of Chapter 6 discusses

these possibilities in greater detail.
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4.4 Our Experience Using the Method to Represent a Body of Drug-mechanism
Evidence

We applied the evidence collection process and novel evidence representation method that
the previous sections describe to the task of representing drug-mechanism evidence for six
members of a family of drugs called HMG-CoA reductase inhibitors (statins) and ten drugs
with which they are sometimes co-prescribed. Members of the statin drug family are very
commonly used to help patients manage their LDL-cholesterol levels. While statins have a
relatively wide therapeutic range, patients taking a drug from this class are at a higher risk
for a damaging muscle disorder called myopathy if they take another drug that reduces the
statin’s clearance [86].

The sixteen drugs we chose are all currently sold on the US market, popularly prescribed
by physicians, and have been the subject of numerous in vivo and in vitro pharmacokinetic
studies. Many of them are known to be cleared, at least partly, by drug metabolizing
enzymes that are susceptible to inhibition. DDIs that occur by metabolic inhibition can
affect the concentration of active or toxic drug metabolites in clinically relevant ways (see
Chapter 3, Section 3.2.2.3). For this reason, we also collected and entered drug-mechanism
evidence for 19 active metabolites of the drugs we had chosen. Figure 4.4 lists the 16 drugs

and 19 drug metabolites we chose to represent in the DIKB.

active ingredients:

atorvastatin, clarithromycin, diltiazem alprazolam, erythromycin, flu-
conazole, fluvastatin, itraconazole, ketoconazole, lovastatin, midazolam,
nefazodone, pravastatin, rosuvastatin, simvastatin, triazolam

metabolites:

1’-hydroxymidazolam, 14-hydroxyclarithromycin, 4-hydroxyalprazolam,
4-hydroxymidazolam, 4-hydroxytriazolam, 6’-exomethylene-lovastatin,
6’-exomethylene-simvastatin, 6-hydroxy-simvastatin, 6’-hydroxymethyl-
-simvastatin, 6’beta-hydroxy-lovastatin, N-demethyldesacetyl-diltiazem,
N-demethyldiltiazem, N-desmethyl-rosuvastatin, alpha-hydroxyalprazolam,
beta-hydroxy-lovastatin, beta-hydroxy-simvastatin, desacetyldiltiazem,
ortho-hydroxy-atorvastatin, para-hydroxy-atorvastatin ’

Figure 4.4: The 16 drugs and 19 drug metabolites chosen for DIKB experiments
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4.4.1 The DIKB Evidence Taxonomy

Appendix D shows the current DIKB evidence taxonomy. It contains 36 evidence types
arranged under seven groupings representing evidence from retrospective studies, clinical
trials, metabolic inhibition identification, metabolic catalysis identification, statements, re-
views, and observational reports. We developed the taxonomy iteratively by collecting
evidence for the drugs and drug metabolites shown in Figure 4.4, identifying the attributes
of each evidence item, and deciding on evidence-type definitions.

We were able to incorporate some definitions from WordNet [121], MeSH [43], and NCI
Thesaurus [54] but the majority of the taxonomy consists of new definitions. The structure
of the taxonomy and granularity of its definitions is similar to the Pathway Tools’ evidence
ontology [106] however, the only definitions that the two resources share are for traceable and
non-traceable author statements. Also, we deliberately excluded the “Inferred by Curator”
evidence type present in the Pathway Tools’ evidence ontology [106] and Gene Ontology’s
evidence codes [65] because we consider it to be a record of why a particular assertion exists
within a knowledge-base rather than an evidence type (see Section 4.2.5).

We implemented the taxonomy in the OWL-DL language [46]; a description logic that
provides a formal semantics for representing taxonomic relationships in a manner that can
be automatically checked to ensure consistent classification. We used the Protégé ontology
editord to create the taxonomy and the RACER inference engine [80] to test it for con-
sistent type definitions. We integrated the evidence taxonomy into the DIKB’s structured
vocabulary (Chapter 3, Section 3.3.4.1) the current version of which is available on the

Web {35].

4.4.2 The DIKB Inclusion Criteria

We designed the set of seven inclusion criteria shown in Appendix E to compliment a
sub-set of evidence type definitions from the DIKB’s evidence taxonomy. Like the evidence
taxonomy, we developed the inclusion criteria iteratively during the early stages of collecting

evidence for the drugs and drug metabolites shown in Figure 4.4. This meant that changes

dhttp://protege.stanford.edu/
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to inclusion criteria would sometimes require that evidence previously thought acceptable be
discarded. The criteria became stable after making progress collecting evidence on several
drugs. In their current form, shown in Appendix E, the seven criteria define the minimum
quality standards for 21 evidence types in the taxonomy.

Six of the seven inclusion criteria apply to two or more evidence types within a sub-
hierarchy of the evidence taxonomy. For example, the evidence taxonomy uses four evidence
types to represent different kinds of clinical trials that test for pharmacokinetic DDIs. A
single set of inclusion criteria apply to all four of the evidence types. Similarly, only one set
of inclusion criteria apply to all eight of the evidence types that represent different in vitro
experiments capable of identifying the specific enzymes responsible for a drug’s metabolism.
The one remaining criteria is specific to the evidence type representing non-traceable drug-
label statements. This evidence type is a leaf node in a hierarchy of five types representing
various traceable and non-traceable statements (see Appendix D).

There was a total of 12 evidence types for which we did not define inclusion crite-
ria. Seven of these are general evidence types: Statement, Non-traceable Statement, An
observation-based report, An observation-based ADE report, A clinical trial, A DDI clinical
trial, and A retrospective study. We preferred to use more specific evidence types within the
taxonomic sub-hierarchies that these five types reside in over the use of these general types
and so defined inclusion criteria accordingly.

The other five evidence types with no inclusion criteria represent classes of evidence that
we decided not to include for this study. We excluded the two types of author statements in
the taxonomy (A traceable author statement and A traceable drug-label statement) because
our evidence collection policy requires that curators retrieve and evaluate the evidence source
that an author’s statement references rather than rely strictly on the author’s interpretation
of that evidence source. We excluded the type A retrospective population pharmacokinetic
study because we thought evidence of this class would be difficult to acquire and interpret.
We also neglected to define inclusion criteria for the type A retrospective DDI study because
we did not come across evidence of this type while defining inclusion criteria. Finally, the
evidence collection process described in Section 4.4.3 did not include public adverse-event

reporting databases so we did not define inclusion criteria for the type An observation-based
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adverse-drug event report in a public reporting database.

4.4.8 The Evidence Collection Process

One informaticist and two drug-experts formed an evidence board that was responsible
for collecting and entering all evidence into the DIKB. The informaticist, who was also
the person who designed and wrote the DIKB software, led the evidence collection process
which started in November of 2006 and ended in January of 2008. The process was iterative
for the first few months while evidence types and inclusion criteria were being developed.
The evidence board would choose a particular drug to model then collect a set of journal
articles, drug labels, and authoritative statements that seemed relevant to each of the various
drug-mechanism assertions defined in Appendix C. The evidence board would then meet
together and discuss each evidence item and the issues that affected its use in the DIKB.
By the time all members of the evidence board committed to using the evidence types and
inclusion criteria shown in Appendices D and E the following evidence collection process

had become routine:
1. The evidence board chose a particular drug to model.

2. The informaticist then received from each drug expert references to specific evidence
sources that they thought would support or rebut one or more drug-mechanism asser-

tions.

3. The informaticist did his own search of the literature that included seeking information
in the various sources for drug-mechanism knowledge shown in Table 4.1. One of the
drug experts was affiliated with the proprietary The Metabolism and Transport Drug
Interaction Database® and performed searches of that resource then forwarded the

results to the informaticist.

4. The informaticist would then summarize all evidence items from each source, classify

their evidence types, and check if they met inclusion criteria. The evidence board

¢http://www.druginteractioninfo.org/
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would then meet and decide as a group whether each evidence item should enter the

DIKB'’s evidence-base or be rejected as support or rebuttal for a specific assertion.

5. The informaticist would enter accepted evidence items into the DIKB using the
DIKB'’s simple Web interface (Section 4.3.4). He entered rejected evidence items into

a simple database used by the DIKB during evidence validation tests (Section 4.3.4.2).

4.4.4 The Current Evidence-base

Work on the evidence-base stopped in January 2008. In its present state it consists of
evidence from 102 unique sources applied as evidence for or against 222 drug-mechanism
assertions. In this section we will characterize some features of the evidence-base and the
evidence items it includes while considering the goals of the DIKB’s evidence representation

method.

4.4.4.1 The Number of Evidence Items in the Evidence-base

In Section 4.3.2 we defined an evidence item to be a research result presented or referred
to within a single evidence source (e.g. a specific journal article). Using this definition,
each link from an evidence source to a single assertion in the DIKB represents a single
evidence item. There are 272 links from individual evidence sources from the 222 asser-
tions in the DIKB. Therefore, the current evidence-base consists of 272 evidence items
taken from 102 evidence sources. However, some of the 272 evidence items are actually
identical evidence items applied twice; once as support for some assertion and then again
as refutation for the assertion’s inverse. For example, the evidence-base uses an article
presenting the results of several metabolism identification experiments {94] to support the
assertion (atorvastatin is-not-substrate-of CYP2C19) and refute the assertion’s in-
verse (atorvastatin substrate-of CYP2C19).f

While it was right for the evidence board to apply supporting evidence for some assertions

as refuting evidence for inverse assertions, only one instance of these evidence items should

fChapter 3, Section 3.5.2.1, explains that inverse assertions are sometimes necessary in the DIKB because
its knowledge representation formalism does not support the negation of predicates.
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be included in the present analysis to prevent double counting identical evidence items.
There are 15 evidence items that will be excluded from the remaining analysis for this reason;
11 evidence items linked as supporting evidence for 11 is-not-substrate-of assertions and
four items linked as supporting evidence for four does-not-inhibit assertions. These 15
evidence items are also linked as refuting evidence for their respective inverse assertion
(substrate-of and inhibits). Excluding these evidence items brings the current number

of evidence items in the evidence-base to 257 items linked to 207 assertions.

EBEEDEREE
t 2 8 4 65 8 8 1 18 1w 2

Number of avidence teme

Figure 4.5: The number of evidence sources that provide a given number of evidence items
in the current DIKB evidence-base. The figure shows that the evidence board found only
one or two evidence items in the majority of the evidence sources. The number of evidence
items in any one the 102 evidence sources ranges from one to 20 with an mean of 2.5

4.4.4.2 The Number of Evidence Items Found per Fvidence Source

Figure 4.5 shows the counts of evidence items found in each evidence source. The figure
shows that the evidence board found only one or two evidence items in the majority of the
evidence sources that it reviewed. In fact, there is more than a ten-fold difference between

the percentage of evidence sources that provide one evidence item (51%) and that of sources
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providing 10 or more evidence items in (4%). Evidence sources that provide an unusually
large number of evidence items include one article publishing the results of a number of
metabolism identification experiments by Williams et al [178] (20 evidence items) and an
single FDA guidance to industry on pre-market drug-interaction studies [26] (18 evidence

items).

4.4.4.8 The Classification of Evidence within the Evidence-base

Another interesting fact is that the evidence board used only one-third of the 36 types in the
evidence taxonomy to classify all the 257 non-redundant evidence items. Section 4.4.2 ex-
plains that five evidence types were not used because of specific evidence collection policies.
This leaves 19 evidence types that were never used to classify any evidence item. Several
of the types were not used because no acceptable evidence in their class could be found.
For example, even though the evidence board collected numerous case reports describing
adverse drug events in patients taking two or more of the drugs in our study, none of the
five observation-based evidence types were entered into the system. This was because none
of the reports measured the systemic concentrations of the purported object drug in a way
that would support or refute an assertion about its metabolic properties.’

The 12 evidence types that were used to classify evidence items are shown in Table 4.2
along with the number of supporting or refuting evidence items each type was assigned
to. One can calculate from Table 4.1 that evidence types assignments in the current DIKB
are biased toward clinical trial types (42%) followed by a relatively similar distribution of
in vitro studies (27%) and non-traceable statements in drug labeling and FDA guidance
documents (30%).

The distribution of evidence types shown in Table 4.1 is partially a result of the evidence
board’s bias towards collecting certain kinds of evidence. For example, the evidence board’s
informaticist usually looked for evidence in drug-product labeling first because it was the

most easily accessible. Not surprisingly, the most commonly assigned evidence type was

EWe will discuss in Chapter refchap:novel-ddis, Section 5, that a significant proportion of these case
reports qualified as evidence of a drug-drug interaction and were later used to explore the feasibility of
novel DDI predictions made by the DIKB.
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A non-traceable drug-lobel statement. Similarly, the informaticist generally searched for
randomized DDI studies before searching for non-randomized ones. If one or two randomized
trials could be found involving a drug or drug metabolite, he would generally not make an
effort to seek non-randomized trials. As a result, the most frequently assigned clinical trial
evidence type in the current DIKB is A randomized DDI clinical trial.

Generally-defined evidence types were often used when an evidence item did not fit one
of the more specific evidence-types within a particular sub-hierarchy. Eleven of the twelve
types shown in Table 4.2 are sub-types of some other, more general, evidence types within
the greater evidence taxonomy (Appendix D). This indicates that the evidence taxonomy
was broad enough to classify most of the drug mechanism evidence that the evidence board
found into fairly specific categories. One exception to this trend was the most general in
vitro evidence type A drug metabolism identification experiment that is assigned four times
in the current DIKB evidence-base. All four uses of the evidence type were to classify
metabolite identification experiments that could not be classified using the more specific
types within the hierarchy.

It is clear from Table 4.2 that some evidence types are present in the evidence-base much
more often than other types even though the experiments they represent have relatively
similar purposes. For example, the evidence-base has almost eight-fold more evidence items
of the type A CYP450, human microsome, metabolic enzyme inhibition ezperiment then
the type A CYP450, recombinant, metabolic enzyme inhibition experiment even though
the purpose of both kinds of experiments is to test a drug or drug metabolite’s ability
to inhibit some enzyme in vitro. Similarly, the system has three-fold more items of the
type A CYP/50, recombinant, drug metabolism identification experiment with possibly NO
probe enzyme inhibitor(s) than the type A CYP450, human microsome, drug metabolism
identification experiment using chemical inhibitors even though both experiments attempt
to identify the CYP450 enzymes capable of metabolizing a drug or drug metabolite in vitro.
It is possible that their relative occurrence in the DIKB is a reflection of bias in the research
literature that causes one experiment type to be performed or published more frequently
than another since the evidence board had no preference in searching for these types. Our

methods are not capable of answering this question definitively because we do not claim to
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have collected the exhaustive set evidence within any of our evidence classifications.

4.4.4.4 Observed Biases

Tables 4.3 and 4.4 show the relative distribution of evidence types stratified by each as-
sertion type in the DIKB. These tables make it apparent that the distribution of evidence
types among individual assertion types is much more diverse than that of the evidence-base
as a whole‘. For example, all 15 evidence items linked to inhibition-constant asser-
tions are from in vitro evidence types while no in vitro evidence is currently linked to a
maximum-concentration assertion. Likewise, two-thirds of the evidence items linked to
maximum-concentration assertions are instances of clinical trial types while the one-third
are instances of non-traceable statement types. Approximately the opposite distribution
of evidence types is present in items linked to bioavailability assertions (38% clinical
trial types and 62% non-traceable statements). In comparison, evidence items across all
assertion types are biased towards clinical trial types (42%) followed by a relatively similar
distribution of in vitro studies (27%) and non-traceable statements in drug labeling and
FDA guidance documents (30%).

Even though the evidence board attempted to collect both supporting and refuting ev-
idence for each assertion, the current evidence-base is strongly biased toward supporting
evidence. 82% of the 102 evidence sources provide evidence items that are used strictly as
support for one or more assertions. In comparison, only 3% of sources provide strictly refut-
ing evidence items and only 15% of sources provide both supporting and refuting evidence
items. Of the 257 non-redundant evidence items, 229 (89%) support, and 28 (11%) refute,
some drug mechanism assertion. In terms of the 20 assertions types that the DIKB cur-
rently represents, only four (20%) have any assertions with refuting evidence; substrate-of,

inhibits, increases-auc, and primary-metabolic-enzyme (see Table 4.4).
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4.4.4.5 Default Assumptions

The evidence-board labeled approximately one-fifth (39) of the assertions in the DIKB de-
fault assumptions (see Table 4.3). Nearly half (17) of the default assumptions were entered
because of DIKB policies regarding information in FDA guidances (see Appendix C, Sec-
tions C.8, C.9, C.11, and C.13). The 17 assertions are linked to evidence items that refer
to the FDA guidance that prompted the evidence-board’s decision to make them default
assumptions.

Another 17 assertions are labeled default assumptions but have no evidence items linked
to them at all. Five of these were entered by the evidence board because of actions specified
in the inclusion criteria for pharmacokinetic DDI studies (Appendix E, Section E.4). The
remaining 12 were entered without evidence based on the knowledge of one or more members
of the evidence-board. These were entered as default assumptions out of convenience with
the intent that a DIKB curator would seek evidence for and against the assertions at a later

time.

4.4.4.6 Rejected Evidence

The evidence board rejected 74 evidence items for use as support or rebuttal for at least one
assertion in the DIKB. A partial listing of the evidence items with rejected use-cases are
shown in Table 4.5 along with an explanation for why the rejection occurred. Nearly half
(33) of the rejections involved observational case reports that the evidence-board felt could
not support or refute a specific pharmacokinetic DDI. Often this was because the reports
contained missing data or there were viable alternate explanations for the reported adverse
event besides the occurrence of a pharmacokinetic interaction. The other 41 rejections
involved a variety of in vitro and clinical trial study types that did not meet explicit inclusion
criteria or had other flaws detected by the evidence-board.

The rejecting evidence included clinical trials with too few participants or that used
drug dosing schemes that the board considered inappropriate for inferring DDIs. Several in
vitro experiments were rejected because they used animal models and the DIKB requires

data derived from humans. Other experiments were rejected because their methods were
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not considered sufficiently accurate (e.g. immuno-chemical quantization for determining the
fraction of a drug cleared by a particular enzyme) or used novel microsomal systems (e.g.
intestinal microsomes). A couple of studies were rejected because the evidence board found
the publications that reported them too unclear about important details.

There were three evidence sources for which the evidence board accepted some evidence
items and rejected others. One article in particular [94] had 16 accepted evidence items and
only one rejection. In. this case, the evidence-board rejected the item because its results

were specific to forms of atorvastatin and its metabolites that the DIKB does not represent®

Table 4.5: A partial listing of the 74 evidence items that the evidence board rejected for
use as support or rebuttal for at least one assertion in the DIKB.

Source Rejected for/against assertion(s) | Comments

[97] all assertions involving diltiazem | The study did not use in vitro selec-
tive inhibitors

[93] all assertions involving lovastatin | The study used an intestinal micro-

some system; these microsomal sys-
tems are not currently accepted in

the DIKB
[173] simvastatin’s  primary total- | The study relied on an animal
clearance mechanism is metabolic | model; the DIKB only accepts
clearance human-based evidence
[161] erythromycin increases the AUC | The lovastatin level was drawn after
of lovastatin the patient developed renal failure

plus, the patient was on numerous
concomitant medications

[77] clarithromycin increases the AUC | The data provided in this case report
of lovastatin not sufficient for inferring a PK in-
teraction (drug levels were not taken
before and after challenge)

4.4.4.7 FEvidence-use Assumptions

Four different DIKB inclusion criteria contain statements notifying curators of specific

evidence-use assumptions (Section 4.3.3) that they should declare when adding evidence

b The DIKB does not distinguish between the lactone and acid forms of atorvastatin and its metabolites;
the results of one of the experiments conducted by Jacobson et al [94] were lactone-specific.
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of a certain type to the system (Appendix E, Sections E.3, E.4, E.6, and E.7). The evidence
board followed these statements when entering them into the DIKB. As a result, 58 (23%) of
the evidence items in the current evidence-base have at least one evidence-use assumption.
Table 4.6 provides a sample of five of these evidence items. Fifty-three evidence items are
linked to one evidence-use assumption and five evidence items are linked to two bringing the
total number of evidence-use assumptions in the current DIKB to 63. Only twenty-three
(11%) of the 207 assertions in the DIKB comprise all 63 evidence-use assumptions. The
number of times the evidence board used any specific assertion as an enabled assumption

ranged from once to nine times (mean: 2.7, median: 1).
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4.4.5 Discussion of the Current Evidence-base

The DIKB’s current evidence-base demonstrates that the DIKB’s evidence collection and
representation methods can be applied to a significant body of drug mechanism evidence.
Construction of the evidence-base was not trivial; the software for the evidence-base and
its simple Web interface required several months of part-time programming effort by the
evidence-board’s informaticist to build. Also, it took the three-person evidence-board 13
months of part-time effort to collect, evaluate, and enter the contents of the evidence-
base. As we will discuss in Chapter 5, these efforts were fruitful because the evidence-base
presented in this chapter was used to accurately predict known and novel DDIs for an

important set of drugs.

4.4.6 Limitations

One limitation of the evidence-base is that the evidence-board only searched for drug mech-
anism knowledge among the sources listed in Table 4.1. The evidence-board did not search
for evidence in the EMBASE! or Web of Science® publication database. It is possible that
these resources might have contained important evidence that is now missing in the DIKB.

Another limitation is that we did not independently evaluate how accurately and consis-
tently the evidence-board classified evidence. The evidence board employed some internal
consistency checks such as reviewing each evidence item multiple times before it was en-
tered into the DIKB and using double-entry methods to track an evidence item’s progress
through the evidence collection process. However, it would be desirable to acquire inde-
pendent verification that the evidence-board’s classifications were accurate and consistent

across all entries.
4.5 Conclusion

This chapter has explored the DIKB’s evidence representation method from a knowledge-
base maintenance perspective and presented the results of applying the method to repre-

senting drug-mechanism evidence for 16 active ingredients and 19 active metabolites. The

Thttp: //www.embase.com/
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DIKB’s current evidence-base integrates drug mechanism evidence from a variety of sources
including in vitro experiments, clinical trials, and statements from drug product labels. The
evidence in the DIKB is of high quality because each evidence item has been screened to
ensure that it meets an explicit set of quality criteria. A novel set of validation tests were
used to ensure that the current evidence-base has no redundant entries, rejected evidence
items, or applications of evidence that are the result of circular reasoning by evidence-base
curators.

Every evidence item in the DIKB is labeled by its type from a novel evidence taxonomy.
We designed the taxonomy so that each type represents scientific knowledge sources that
are fairly homogeneous in terms of their appropriateness for justifying hypotheses. Expert
users should be able to assess their confidence in the system’s assertions relatively quickly
once they are familiar with evidence type definitions and their associated inclusion criteria.
We hypothesize that this process should involve less effort and be more consistent than
requiring the expert to review the original sources for each evidence item. We will show in
in Chapter 5 how we were able to use evidence types to define specific belief criteria for each
assertion type in the system and have the DIKB automatically determine our confidence in
its DDI predictions. Chapter 5 will also report on how the evidence-base presented in this
chapter was used to accurately predict a subset of DDIs for an important class of drugs

using only knowledge of drug-mechanisms.
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Chapter 5

AN EXPERIMENT WITH LEVELS-OF-EVIDENCE AND BELIEF
CRITERIA

When drug experts define and rank levels-of-evidence (LOEs) or choose belief criteria®
they are making subjective judgements about the inferential force of an abstract body of
evidence. An important question is whether the experts’ choices have any relationship to
the empirical prediction accuracy of the system. Our hypothesis is that the system will
make fewer, but more accurate, predictions when using belief criteria that inspire complete
confidence in a drug expert than when using criteria that the expert believes to be less
trustworthy. As the expert user relaxes their criteria for including assertions, the DIKB
should predict a larger number of true interactions; possibly at the expense of also making
more false predictions. In terms of decision support, the DIKB’s sensitivity should go up
but its specificity should go down. Similarly, if the user tightens their criteria, the system
should make fewer predictions and have a lower sensitivity but its specificity should increase.
These features would be very desirable for supporting clinical decision making because the
system’s prediction performance could be customized to perform at the most optimal level
possible given the contents of its evidence-base.

This chapter recounts an experiment that we conducted to characterize the effect of
varying belief criteria on the system’s accuracy and coverage of DDIs present in a refer-
ence set of interactions and non-interactions. The experiment was designed to answer the

following research questions:

1. What is the DIKB’s accuracy and coverage of reference set interactions and non-
interactions when using a particular set of evidence items and expert-defined LOEs

and belief criteria?

2Chapter 4, Section 4.1 provides a definition of levels-of-evidence and belief criteria in its explanation of
the DIKB’s novel approach to evidence-modeling.
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2. Does changing the LOEs that are selected as belief criteria alter the systems prediction

accuracy or coverage?

3. Do computational experiments imply a particular belief criteria strategy that opti-
mizes the system’s prediction performance using a particular set of evidence items
and expert-defined LOEs? If so, what is the optimal strategy and how is the system’s
accuracy and coverage of reference set interactions and non-interactions when using

the optimal strategy different from when it uses expert-defined belief criteria?

4. When the system is using the optimal belief criteria strategy, how does its accuracy and
coverage of reference set interactions and non-interactions compare with statements

in drug product labeling?

5.1 Methods

An evidence-board consisting of two clinician drug-experts and one informaticist from our
research group collected sufficient evidence on the pharmacokinetic drug properties of 16
drugs and 19 drug metabolifes to perform this experiment. Chapter 4 describes in detail
the methods used to collect, classify, and enter evidence it into the DIKB. Figure 4.4 of that
chapter lists the specific drugs and drug metabolites we chose to represent in the DIKB. Once
the evidence-base was complete except for minor revisions, the evidence board attempted to
identify all known pairwise metabolic inhibition interactions and non-interactions between
35 pharmaceutical entities in the DIKB’s evidence-base. The evidence board’s intent was to
use the interactions and non-interactions that they found as a validation set for determining
the accuracy and coverage of the DIKB’s DDI predictions. The DIKB predicts interactions
using knowledge of drug mechanisms and a theory of how interactions occur by metabolic
inhibition (Chapter 3). Therefore, the method that the evidence board used to confirm
interactions and non-interactions had to be independent from the the one used by the

DIKB to predict DDIs.
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5.1.1 Criteria for Confirmed Interactions and Non-interactions

The evidence board considered a metabolic inhibition interaction between any pair of phar-
maceutical entities in the DIKB to be independently confirmed if any of following criteria

were satisfied:

1. A pharmacokinetic DDI study provided data showing a statistically significant (see
below) increase in the Area Under the concentration-time Curve (AUC) of the study’s
object drug or drug metabolite in the presence of the precipitant’s drug or drug

metabolite.

2. An observation-based case report provided data showing a measurable increase in the
systemic concentration of a drug or drug metabolite in the presence of another drug
or drug metabolite and the evidence board could find no viable alternate explanations

for the observed increase.

The evidence board considered a metabolic inhibition non-interaction between any pair
of pharmaceutical entities in the DIKB to be independently confirmed if all the following

criteria were satisfied:

1. A pharmacokinetic DDI study provided data showing no statistically significant (see
below) increase in the AUC of the study’s object drug or drug metabolite in the

presence of the study’s precipitant drug or drug metabolite.

2. None of the criteria listed above as independently confirming a metabolic inhibition

interaction were met.

5.1.1.1  “Unknowns” - Pairs with no Known Interaction or Non-interaction

If neither a metabolic inhibition interaction or non-interaction could be confirmed for any
pair of pharmaceutical entities in the DIKB, then the pair was labeled as having no known

interaction or non-interaction.
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5.1.1.2 AUC Ratios and Statistical Significance

The evidence board defined a statistically significant increase in AUC to be:

AUC;
AUC

>0 (p<.05) (5.1)

Where AUC is the baseline AUC for a DDI study’s object drug or drug metabolite and
AUC; is the AUC for the object drug in the presence of the study’s precipitant drug or drug
metabolite. AUC values could be derived from concentration measurements taken from the
time of the patient’s initial exposure (tg) to the time that the drug reached its maximum
systemic concentration or from an estimate of the AUC as the concentration-time curve
approaches its asymptote (tg — 00). Often studies do not provide p-values, in such cases an
AUC increase was considered statistically significant if the study provided 95% confidence
intervals for the relationship in Equation 5.1 that did not include 1.0. If the study’s results
did not satisfy Equation 5.1 or, the 95% confidence intervals for the AUC ratio provided
by the study (%UU—%L) included 1.0, then the evidence board defined the metabolic inhibition

interaction to not be statistically significant.

5.1.1.8 Inclusion Criteria for Validation Set Data

There were three sources of pharmacokinetic data where the evideﬁce board sought evidence
for confirming interactions and non-interactions — published research articles, drug product
labeling, and published observation-based case reports. If the data came from a research
article, then the study must have satisfied the definition of the evidence type A DDI clinical
trial or any of its sub-types in the DIKB evidence taxonomy (Appendix D). The résearch
article must also have met the inclusion criteria shown for the evidence type A DDI clinical
trial and its sub-types (Appendix E, Section E.4). If the evidence board found the data in
drug product labeling then it must have met the inclusion criteria for the evidence type A
non-traceable drug-label statement (Appendix E, Section E.5). Finally, case reports needed
to meet the inclusion criteria for evidence of their type listed in Appendix E, Section E.2 and

provide quantitative measurements of the systemic concentration of the purported victim
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drug before and after administration of the purported precipitant drug.

5.1.2 The Collection of Pharmacokinetic Data

The criteria for confirming or refuting a metabolic-inhibition DDI were designed before
the evidence-board began collecting evidence. The board used the process explained in
Chapter 4, Section 4.4.3 to build the DIKB’s evidence-base. Once the DIKB’s evidence-
base was complete, the evidence-board began building the validation set. They started by
enumerating all pairwise combinations of the 35 drugs and drug metabolites in the DIKB’s
final evidence-base; a total 1190 (Equation 5.2) excluding same-compound combinations

(e.g. simvastatin-simvastatin):

35 % 34 = 1190 (5.2)

In the validation set, the evidence board used a single label to represent both possible
ways that an interaction could occur between a drug or drug metabolite pair. For example,
the evidence board considered two possible interactions involving diltiazem and atorvastatin
(that diltiazem effects a change in the systemic concentration of atorvastatin and vice versa)
but represented both possible interactions by the single label diltiazem-atorvastatin in the
validation set’s table of interactions. Appendix G lists 595 drug/drug and drug/drug-
metabolite pairs representing all 1190 pairwise interaction and non-interactions between

the drugs and drug metabolites in the DIKB.

5.1.2.1 Awvoiding Biased Measures of the DIKB’s Accuracy

Throughout the evidence collection process the evidence board often found clinical trials
providing data that were relevant to both establishing the validity of an assertion about
some metabolic property and confirming a metabolic interaction or non-interaction. The
board’s initial policy was to not allow evidence items to be applied in both the DIKB’s
evidence-base and the validation set because doing so might introduce bias into calculations
of the DIKB’s prediction accuracy. To avoid bias, evidence items that could be applied to

both places would be placed only in the DIKB’s evidence-base. Shortly after implementing
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this policy the board found that it weakened the validation set by excluding known inter-
actions and non-interactions. For example, the simvastatin product label [119] reports data
from clinical trial where no increase was observed in systemic concentration of midazolam, a
CYP3A4 probe substrate, in the presence of simvastatin. This statement meets the valida-
tion set’s inclusion criteria for confirming a non-interaction by metabolic inhibition between
the two drugs. It also can be used in the DIKB to support the drug mechanism assertion
(simvastatin does-not-inhibit CYP3A4). Not including the assertion in the validation
set neglects an important finding but including the assertion in both the DIKB and the
validation set might bias the DIKB predictions towards the validation set and could inflate
calculations of the system’s accuracy.

To clarify, assume that only one evidence item in the validation set supports the claim
that there is no pharmacokinetic interaction between simvastatin and midazolam. Assume
also that this same evidence item is in the DIKB as support for the assertion (simvastatin
does-not-inhibit CYP3A4) and that this assertion is used along with others by the DIKB
to predict that simvastatin will not interact with midazolam by inhibiting its primary total
clearance enzyme CYP3A4. The problem is that the same evidence item is used in both
the validation set and the DIKB to come to the same conclusion - that midazolam and
simvastatin will not interact via metabolic inhibition. This effectively biases the DIKB
toward the validation set even though, by itself, the study does not cause the system to
predict the non-interaction (the DIKB would need to combine the assertion that the study
supports with other assertions to arrive at its prediction).

The evidence board’s solution was to allow evidence items that could be applied to both
the DIKB’s evidence-base and the validation set to be placed in both places. Then, before
assessing the systems accuracy, the board would identify any evidence item that supported
a claim made by the validation set and was also used to support a DIKB assertion that
leads to the same conclusion. ’The interaction or non-interaction that such evidence was
linked to was dropped from further analysis. The board applied this approach to the
DIKB’s evidence-base before running the experiment described in this chapter. In total,
seven pairs were dropped from further analysis for this reason. These seven drug/drug or

drug/drug-metabolite pairs are shown in Table 5.1 along with two other pairs that were
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accidentally excluded from the experiment described in this chapter due to a transcription
error. Excluding these nine pairs brought the total number of drug/drug and drug/drug-

metabolite pairs used for characterizing the DIKB’s accuracy down to 586. '
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5.1.2.2 Searching for Validation-set DDIs in Drug-product Labeling

After completing an intensive search for all relevant clinical trials, the evidence board con-
ducted a search in drug product labeling for evidence that could be used define interactions
and non-interactions in the validation set. The board conducted its search so that drug-
product labeling, clinical trial literature, and case reports could be compared for their
agreement on validation set interactions and non-interactions. All statements that men-
tioned a pharmacokinetic interaction or non-interaction between one of the drug/drug and
drug/drug-metabolite combinations shown in Appendix G were noted and then filtered
so that only statements providing quantitative data were used to support interactions in
the validation set. All searches were done using product labeling in the NLM’s DailyMed
database.?

DailyMed provides labeling information for drug products containing various combina-
tions of active and inactive ingredients in several possible formulations including capsule,
liquid, intravenous, instant, or extended release. The evidence board searched all labels
written for each drug product whose only active pharmaceutical ingredient was a drug in
the DIKB. The number of qualifying product labels for each drug ranged from one (ator-
vastatin, fluvastatin, and rosuvastatin) to 18 (diltiazem) but a large proportion of the state-
ments in one product label were repeated in all of the other available labels. The evidence
board found it efficient to identify all relevant statements in multiple product labels by
closely reading four main sections (contraindications, warnings, precautions, adverse reac-
tions) and two sub-sections (drug-drug interactions, and drug-interactions) from a single
label then looking for differences in the other available labels. To make the work even
more efficient, the evidence-board’s informaticist used a computer program he wrote that
highlights deletions, insertions, and replacements between labels.

In total, the evidence-board found 65 statements in drug-product labeling that men-
tioned a pharmacokinetic interaction or non-interaction between one of the drug/drug or
drug/drug-metabolite pairs. Only 21 (31%) statements reported the quantitative results of

a pharmacokinetic clinical trial. The evidence-board approved these 21 for use in the valida-

Phttp:/ /www.dailymed.nlm.nih.gov
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Table 5.3: The evidence-board accepted none of the 35 case reports it found that were rele-
vant for use in the validation set. Most case reports did not provide adequate measurements
of the purported victim drug’s systemic concentration. The three reports cited here failed
to meet inclusion criteria for other reasons.

Case report Reported interaction Reason for rejection

[11] itraconazole - clarithromycin — | The patients in the report were taking con-
comitant medications that could have played
a role in high clarithromycin levels
(161 erythromycin - lovastatin — | The lovastatin level was drawn after the pa-
tient developed renal failure plus the patient
was taking concomitant medications
187] midazolam - erythromycin « | The indicted effect of IV erythromycin on the
first pass metabolism of oral midazolam is
unusual; use of unknown fruit juice in pre-
op leaves open the possibility of a CYP3A4
inhibition by grapefruit juice

tion set; the remaining 44 statements were retained so that drug-product labeling, clinical
trial literature, and case reports could be compared for their agreement on validation set
interactions and non-interactions at a later time. Table 5.3 shows a small sample of some

of the labeling statements that were accepted or rejected.

5.1.2.8 Searching for Validation-set DDIs in Case Report Literature

Having completed searches within clinical trial literature and drug-product labeling, the
evidence-board then did an intensive search search of The Metabolism and Transport Drug
Interaction Database® and PubMed? for published case reports claiming the occurrence
of a DDI between any pair of the active ingredients or metabolites in our study. One of
the drug experts on the evidence-board was affiliated with the proprietary The Metabolism
and Transport Drug Interaction Database and performed searches of that resource then
forwarded the results to the informaticist. The informaticist did an exhaustive search of
PubMed for abstracts involving the pairs of interest using a computer program he wrote

that executed multiple queries for each drug or drug metabolite in the pair. The program

°http://www.druginteractioninfo.org/
dhttp:/ /www.ncbi.nlm.nih.gov/PubMed/
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issued queries to PubMed of the following form:

Case Reports [PT] AND

(Drug Interactions [MeSH Terms] OR interaction [Text Word]) AND
<d1> AND ("<di>" [MeSH Terms] OR <di> [Text Word]) AND

"<d2>" [MeSH Terms] OR <d2> [Text Word])

The program iteratively substituted the variables <d1> and <d2> with the generic and
trade names of the drug or drug metabolites in the pair (listed in Appendix I, Section 1.2.2)
and their pharmacologic actions as specified in the Medical Subject Headings (MeSH) con-
trolled vocabulary [43].

The evidence-board found abstracts for 35 relevant case reports in its search of The
Metabolism and Transport Drug Interaction Database and PubMed. The board retrieved
full-text articles for all 35 reports and evaluated each report to see if they met the criteria
stated in Section 5.1.1.3. Unfortunately, none of the 35 reports were accepted for use in the
validation set. The board rejected most case reports because they did not provide quan-
titative measurements of the systemic concentration of the purported victim drug before
and after administration of the purported precipitant drug. Three case reports provided
adequate measurements of systemic concentration but failed to meet inclusion criteria for
other reasons. Table 5.3 cites the reports and provides an explanation for why they were

rejected.

5.1.2.4 The Final Validation Set

The interactions and non-interactions in the final validation are shown in Tables 5.5 and 5.4.
The validation set claims that some DDI will occur by metabolic inhibition for 41 drug/drug
and drug/drug-metabolite pairs and that no DDI will occur by metabolic inhibition for seven
pairs. No interaction or non-interaction could be identified for 537 pairs in the validation

set® using its criteria (Section 5.1.1). It is important to stress that many of these pairs might

®These 537 pairs are listed in Appendix G along with the nine pairs that were excluded from this exper-
iment.
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Table 5.4: Neither drug or drug metabolite in each of the pairs shown in this table are
expected to be the victim of a metabolic inhibition interaction effected by the other drug or
drug metabolite in the pair. These are the validation set non-interactions that we used to
characterize the DIKB’s prediction performance. Arrows with a line through them indicate
which drug or drug metabolite should not be affected by a metabolic inhibition interaction
involving the other drug in the pair.

Pair Source
diltiazem - pravastatin -» 32
erythromycin - rosuvastatin —+ A7
fluconazole - 14-hydroxyclarithromycin - (3]
fluconazole - pravastatin - [102]
fluconazole - rosuvastatin » [49]
itraconazole - fluvastatin — 108
nefazodone - pravastatin » 164

have clinically-relevant DDIs with each-other that were missed by our evidence collection

process or that have not been reported in the sources we searched.

5.1.3 Ezpert-defined Belief Criteria

Once work on the evidence-base and the validation set was complete, the evidence-board
then defined which combinations of evidence that they believed lent different degrees of cer-
tainty to assertion types in the DIKB. The DIKB distinguishes between assertion instances
and assertion types. An assertion instance is a specific fact about a particular object such
as a drug or protein. For example, the assertion (midazolam substrate-of CYP3A4) is an
instance of the generic (X substrate-of Y) assertion type. The evidence-board defined
one or more LOEs for each generic assertion type by creating logical statements listing the
level’s required evidence types and their multiplicity. This was a two step process; the
evidence-board’s informaticist first identified all evidence types from the DIKB’s evidence
taxonomy (Appendix D) that were applicable to each assertion type, then he helped the
board’s two drug experts define which combinations of evidence they believed lent different
degrees of certainty to each assertion type. Appendix H shows a “belief criteria question-
naire” that helped all members of the evidence-board reach consensus on LOEs for each

assertion type.
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Table 5.5: The interactions in the validation set used to characterize the DIKB’s predic-
tion performance. The arrows indicate the drug or drug metabolite that the validation set
considers the victim of a metabolic inhibition interaction that occurs between the pair.

- The noted interaction occurs by inhibition of the metabolic clearance of a parent com-
pound.

Pair Source
alprazolam - erythromycin «— 182
alprazolam - itraconazole « 181
alprazolam - ketoconazole «— [74], [156]
alprazolam - nefazodone + [57], [75]
atorvastatin - erythromycin « 159
atorvastatin - nefazodone «— 164
clarithromycin - atorvastatin — 8], [95]
clarithromycin - fluconazole «— 3]
clarithromyecin - pravastatin — 95
diltiazem - beta-hydroxy-lovastatin — 29
diltiazem - lovastatin — 32
diltiazem - midazolam — 30
diltiazem - simvastatin — 125
diltiazem - triazolam — 171
erythromycin - beta-hydroxy-simvastatin — 103
erythromycin - simvastatin — : 103
fluconazole - 1’-hydroxymidazolam — 1 [4]
fluconazole - fluvastatin — 102
itraconazole - atorvastatin — 117
itraconazole - beta-hydroxy-lovastatin — 108
itraconazole - erythromyecin + 196]
itraconazole - lovastatin — 108
itraconazole - ortho-hydroxy-atorvastatin — 117
itraconazole - pravastatin — 117
itraconazole - rosuvastatin — 50
ketoconazole - simvastatin — 42
midazolam - clarithromycin «— [70], [78]
midazolam - erythromycin «— [135]
midazolam - fluconazole +— [4], [134]
midazolam - itraconazole « 136
midazolam - ketoconazole — 136
midazolam - nefazodone « 111
nefazodone - 4-hydroxyalprazolam — t [75]
nefazodone - beta-hydroxy-simvastatin — 164
nefazodone - simvastatin — 164
triazolam - clarithromyecin + (73]
triazolam - erythromycin « 141
triazolam - fluconazole + 172
triazolam - itraconazole «— 130], (170
triazolam - ketoconazole «— 170], [174
triazolam - nefazodone « [31]
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Table 5.6: The evidence-board used the ranking categories shown in this table so that
multiple evidence types that they felt conferred the same degree of justification for certain
agsertion types could be represented by a single symbol. §- A ranking criterium that was
created to represent evidence types that the drug experts on the evidence-board felt would
not be applicable to supporting or refuting particular assertions.

Ranking category

Evidence types

iv-met-enz-id-Cyp-450-with-inh

A CYP450, recombinant, drug metabolism identifica-
tion experiment using chemical inhibitors )

A CYP450, human microsome, drug metabolism iden-
tification experiment using chemical inhibitors

A CYP450, recombinant, drug metabolism identifica-
tion experiment using antibody inhibitors

A CYP450, human microsome, drug metabolism iden-
tification experiment using antibody inhibitors

iv-met-enz-id-Cyp-450-recombinant

A CYP450, recombinant, drug metabolism identifica-
tion experiment with possibly NO probe enzyme in-
hibitor(s)

iv-met-enz-id-Cyp-450-microsomal

A CYP450, human microsome, drug metabolism iden-
tification experiment

iv-met-inh-recombinant

A CYP450, recombinant, metabolic enzyme inhibition
experiment

iv-met-inh-microsomal

A CYP450, human microsome, metabolic enzyme in-
hibition experiment

pk-ct-pk

A randomized DDI clinical trial
A genotyped pharmacokinetic clinical trial
A phenotyped pharmacokinetic clinical trial

pk-ct-pk-genotype

A genotyped pharmacokinetic clinical trial

pk-ct-pk-phenotype

A phenotyped pharmacokinetic clinical trial

pk-ddi-non-rndm

A non-randomized DDI clinical trial:
A parallel groups DDI clinical trial

pk-ddi-rndm

A randomized DDI clinical trial

label-statement

A non-traceable drug-label statement

nt-statement

A non-traceable, but possibly authoritative, statement

obs-eval

A published and evaluated observation-based ADE re-
port

na-primary-total-clearance-enz t

A non-traceable, but possibly authoritative, statement

na-primary-metabolic-clearance-enzyme t

A CYP450, human microsome, drug metabolism iden-
tification experiment using chemical inhibitors

na-substrate-of t

A CYP450, recombinant, drug metabolism identifica-
tion experiment with possibly NO probe enzyme in-
hibitor(s)
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5.1.3.1 The Euvidence-board’s Levels-of-evidence and Ranking Criteria

Table 5.7 shows the 15 LOE groups defined by the evidence-board. The evidence-board
used the ranking categories shown in Table 5.6 when defining LOEs. This enabled them to
use a single symbol to represent multiple evidence types that they felt conferred the same
degree of justification for certain assertion types. There were some evidence types that the
drug experts on the evidence-board felt would not be applicable to supporting or refuting
particular assertions. The informaticist defined specific ranking criteria for these LOEs (see
Table 5.6) and added them, where appropriate, under the lowest-ranking LOE defined by
the drug experts.

5.1.3.2 The Evidence-board’s Belief Criteria Strategy’

In the DIKB, expert users select one LOE for every assertion type as the belief criteria and
the system will use a particular assertion instance in inference if, and only if, there exists
a body of evidence for the assertion that satisfies the belief criteria for the assertion’s type
and the evidence against the object property does not satisfy belief criteria. The DIKB
allows the belief criteria for evidence supporting an assertion type to be different from the
belief criteria for evidence refuting an assertion type. Table 5.8 shows the belief criteria

that the evidence-board chose for each assertion type.

5.1.4 Automatically-generated Belief Criteria

We expanded the DIKB so that the system could select any LOE belonging to an assertion
type as its belief criteria. With this added functionality, the system could create every
combination of belief criteria possible with the LOEs shown in Table 5.7 and write each
of them to separate files on disk. The system could then apply the rule-based theory for
predicting DDIs that occur by metabolic inhibition described in Chapter 3 to each distinct
set of belief criteria and output prediction results to a separate file. We also wrote other
small computer programs to assist with calculating the accuracy and coverage of the system
using each belief criteria strategy and save the results in a single table. We were now able

to characterize the effect of varying belief criteria on the system’s accuracy and coverage.
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Table 5.8: This table shows the evidence board’s belief criteria strategy. The columns next
to each assertion type indicate the LOE group and specific LOE from Table 5.7 that the
evidence-board chose as the type’s belief criteria. There are two columns because the DIKB
allows belief criteria for supporting evidence to be different than belief criteria for refuting
evidence. Assertion types indicated as default assumpiions are noted separately because
the system uses them for inference even if their evidence does not meet belief criteria

Assertions not used as default assumptions

Assertion type Evidence for | Evidence against
bioavailability A, LOE-1 A, LOE-1
maximum-concentration A, LOE-1 A, LOE-1
first-pass-effect B, LOE-1 B, LOE-1
fraction-absorbed B, LOE-1 B, LOE-1
primary-total-clearance-mechanism ¢, LOE-1 ¢, LOE-1
controls-formation—of D, LOE-1 D, LOE-1
substrate-of D, LOE-1 D, LOE-1
is-not-substrate-of D, LOE-1 D, LOE-1
primary-total-clearance-enzyme E, LOE-1 E, LOE-1
primary-metabolic-clearance-enzyme F, LOE-1 F, LOE-1
has-metabolite G, LOE-1 G, LOE-1
inhibition-constant H, LOE-1 H, LOE-1
inhibits I, LOE-1 J, LOE-1
does—not-inhibit J, LOE-1 I, LOE-1
Assertions used as default assumptions
permanently-deactivates-catalytic-function K, LOE-1 K, LOE-1
does-not-permanently-deactivate-catalytic-function K, LOE-1 K, LOE-1
in-vitro-probe-substrate-of-enzyme K, LOE-1 K, LOE-1
in-vitro-selective-inhibitor-of-enzyme L, LOE-1 L, LOE-1
in-viVo-selective-inhibitor-of-enzyme M, LOE-1 M, LOE-1
sole-PK-effect-alter-metabolic-clearance M, LOE-1 M, LOE-1
pceut—entity-of-concern N, LOE-1 N, LOE-1
polymorphic-enzyme 0, LOE-1 0, LOE-1
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Initially, we were going to generate all belief criteria strategies by varying the LOEs
chosen as belief criteria for every assertion type that was not labeled as a default assumption.
We excluded default assumptions because the system does not evaluate the evidence items
that are linked to them to see if they meet belief criteria and varying their belief criteria
would have no effect on the DIKB’s predictions. Table 5.9 lists the set of assertion types
not labeled as default assumptions along with the number of LOEs that the evidence-board
defined for each of them. As Equation 5.3 shows, the total number of belief criteria strategies

that the DIKB would generate for these assertion types is 576,000.

1#5%2%2%2%x4+2%2x5x1x4%x3 %35 =>576,000 (5.3)

Table 5.9: The set of assertion types not labeled as a default assumption shown with the
number of LOEs that were defined for each of them. The specific LOEs for each assertion
type are shown in Table 5.7 {- An assertion type for which varying the LOE chosen as belief
criteria would have no effect on the DIKB’s prediction performance

Assertion type LOFE count
controls-formation-of

substrate-of

is-not-substrate-of

has-metabolite
primary-metabolic-clearance~enzyme
primary-total-clearance-enzyme
primary-total-clearance-mechanism
does-not-inhibit f}
first-pass-effect {
fraction-absorbed
inhibition-constant }

inhibits

maximum-concentration }
biocavailability

N DO DN DO DI QO QO W] ) Ot O Ot

However, inspection of the DIKB’s evidence-base revealed that there were six assertion
types for which all of the evidence items, for or against, belonged to the highest-ranked LOE
for the type. This meant that varying the LOE chosen as belief criteria for any of these

types (see Table 5.9) would have no effect on the DIKB’s prediction performance. Excluding
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these six assertion types and the eight assertion types labeled as default assumptions meant
that there were eight assertion types for which varying the LOE chosen as belief criteria
would have an effect on prediction performance. The DIKB generated 36,000 different belief
criteria strategies by altering the LOEs chosen as belief criteria for these eight assertion
types while keeping the highest-ranking LOE as belief criteria for the remaining 14 assertion

types.

5.1.5 Searching the Adverse Event Reporting System

Based on our previous experience predicting DDIs using drug mechanisms (see Chapter 2,
Section 2.1), we anticipated that the DIKB would make several predictions for which we
could find no evidence in clinical trials, case reports, or drug product labeling. Another
potential source of observational reports that might indicate the occurrence of a DDI is the
Federal Drug Administration’s Adverse Event Reporting System (AERS); a public database
of population-level post-market safety data [14]. AERS contains more than two million
reports of adverse events involving a couple of thousand drugs and biologics [6]. Sponta-
neous adverse-event reports are not conclusive evidence that the drugs named in the report
are causing harm to individuals. However, they can alert drug-safety researchers at the
FDA, and elsewhere, of potential safety issues. For example, Jones and Davidson combined
AERS reporting data with descriptive statistics on fibrate and statin dispensing and esti-
mates of the rate of fibrate/statin combination therapies to suggest that fenofibrate/statin
combination therapy results in fewer adverse event reports per-million prescriptions than
does gemfibrozil /statin combination therapy [98]. Also, several researchers have had vary-
ing success identifying drug-interactions and DDIs by applying dis-proportionality analysis
(data-mining) to AERS [6, 83, 84, 163].

AERS is a volunteer reporting system and suffers from the fact that relevant reporting
data is often missing or contains errors. A recent FDA guidance to industry on pharma-
covigilance practices and pharmaco-epidemiologic assessment describes several biases that

negatively affect AERS data:

voluntary adverse event reporting systems such as AERS or VAERS are subject
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to a variety of reporting biases (e.g., some observations could reflect concomitant
treatment, not the product itself, and other factors, including the disease being
treated, other co-morbidities or unrecorded confounders, may cause the events
to be reported). In addition, AERS or VAERS data may be affected by the
submission of incomplete or duplicate reports, under-reporting, or reporting

stimulated by publicity or litigation [25].

With these issues in mind, we planned to search AERS for reports involving the drugs
and drug metabolite pairs named in the DIKB’s novel interaction predictions for which we
could not find case reports. We would extract repbrts from AERS that included each drug
and at least one adverse event term indicative of a toxic effect caused by the purported
object drug of the metabolic inhibition interaction. For novel predictions involving drug
metabolites we would search for reports containing the metabolite’s parent drug. We would
then attempt to perform a simple clinical evaluation of each relevant report to see if it

provided evidence for the occurrence of the novel interaction prediction.

5.1.5.1 Setting up a Local Copy of AERS

In order to prepare for this analysis, we first acquired AERS data from 1998 to 2007 and
set it up in a local SQL database. While AERS data includes reports going back to 1968
we chose to only focus on the last nine years of data since all of the drugs in the DIKB
have been sold in the US over this time period. AERS data comes in an structured format
“called SGML s0, we designed and implemented an efficient database schema to store and
retrieve AERS data and then wrote a computer program to automatically translate the
AERS data from SGML into our schema. The program made it trivial to add more data
as new releases are made from the FDA. We made our local copy of the FDA’s Adverse
Event Reporting System (AERS) accessible to interested researchers at the University of
Washington. Currently, the database contains all available database records from November
of 1997 through June of 2007. Our implementation is setup on a secure server accessible

from the Internet [20].
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5.1.5.2 Selecting Drug Product Names for AERS Queries

Our initial tests of AERS indicated that the system uses both generic and trade names
for the drug products present in its reports. This meant that we needed to compile a
comprehensive list of generic and trade names for drug products containing each of the
drugs present in the DIKB’s novel interactions in order to query AERS. We collected drug
product names for the 16 drugs in the DIKB from the drugs@fda database [58] , the FDA’s
“Orange Book” [15], and RxNorm [19]. Each name represented a drug product that 1) is
oral or injectable, 2) contains only one active ingredient and so is not a combined therapy,
and 3) was present, as of September 2007, in DRUGDEX Tradenames®. Section 1.2.2 of
Appendix I shows our final list of generic and trade names for the 16 drugs in the DIKB.

5.1.5.8 Choosing Adverse Event Terms for AERS Queries

Persons who submit a report to AERS are required to note the adverse events that prompted
them to send the report. FDA personnel code each adverse event using the MedDRA [22]
terminology before entering the report into AERS. We compiled a list of MedDRA terms
representing the kinds of adverse events that might be observed in patients experiencing
toxic side-effects from a victim drug in one of the DIKB’s novel DDI predictions which
we will present in Chapter 5, Section 5.2.1. We first attempted to utilize the so-called
“Standardised MedDRA queries” [126] to build our term sets. These queries are provided
by the MedDRA vendor to aid in retrieving cases of interest from databases using the
vocabulary. However, we found these to be of little help for the drugs we were interested
in with the exception of members of the HMG-CoA reductase inhibitor family. So, we
employed the following process to derive a list of terms we thought more appropriate for

querying AERS for DDIs:

1. The two drug experts in our group sent the informaticist a list of words describing the
effect of a pharmacokinetic interaction for each relevant drug. The informaticist also

scanned through drug labels to identify other words that might be useful.

2. The informaticist searched the UMLS Meta-Thesaurus [13] for each of the words
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found in Step One to identify concepts in the meta-thesaurus and their mapping to

the MedDRA vocabulary.

3. The informaticist created a list of MedDRA “preferred terms” (PTs) from the terms
identified in Step Two then used the program shown in Appendix I, Section 1.2.3.1 to
expand the PT lists to include all MedDRA “LLTs”

4. The two drug experts reviewed the resulting list and removed all LLTs that they did

not think relevant to our search task

Appendix I, Section 1.2.3 shows the seven sets of adverse-event terms we used to query

AERS.

5.1.5.4 Statistical Analysis and Programming

We used the R statistical language [146] to calculate all descriptive and performance statis-
tics. Bruno Falissard’s psy package [59] was used to calculate three-valued Cohen’s kappa
scores as a measure of the degree over random chance to which the DIKB and validation
set agreed on interactions, non-interactions, and unknowns. Both R and the Python pro-

gramming language! were used extensively to write various small programs that aided our

analysis.

5.2 Results

We began the experiment by testing the accuracy and coverage of the DIKB using the
evidence board’s belief criteria strategy (Section 5.1.3.2). Using this strategy, the DIKB
predicted that 15 drug/drug or drug/drug-metabolite pairs would interact by metabolic
inhibition and that two would not (see Table 5.10). Fourteen of interaction predictions were
identified by the validation set to be true positives, the remaining interaction prediction
and the two non-interaction predictions were classified as “unknown” in the validation set.
Taken together, these three pairs represent interactions and non-interactions that our review

of the literature indicates have never been studied together.

fwww.python.org


http://www.python.org
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The predicted pharmacokinetic magnitude of all 14 confirmed predictions corresponded
with levels observed in clinical trial data. While the system’s predictions and magnitude
estimates using the evidence-board’s strategy had perfect accuracy, its coverage of known
interactions was poor. Only 14 (34%) of the 41 pairs known in the validation set to interact
by metabolic inhibition were predicted to interact by the DIKB. Also, the system failed
to predict any of the seven pairs known in the validation set to not interact by the same
mechanism. The system’s poor coverage was because only few drug-mechanism assertions

were linked to sufficient evidence to meet the evidence board’s belief criteria.

Table 5.10: Seventeen interaction and non-interaction predictions made by the DIKB using
the evidence-board’s belief criteria strategy. The arrows point to the drug or drug metabolite
that the system predicts will be the victim of the interaction. The DIKB makes interaction
predictions at three levels: PKI-1, PKI-2, PKI-3 (see Chapter 3, Section 3.2.3.5). All 15
interaction predictions are at the PKI-3 level indicating that the concentration of the affected
drug or drug metabolite should increase by at least 100% (2 fold). 1- a pair classified as
“unknown” in the validation set. }- AUC rations are from values present in at least one
evidence item in the validation set that supports the interaction.

Pair DIKB prediction | AUC;JAUC } | correct level?
diltiazem - midazolam PKI-3 — B 1 Y
diltiazem - triazolam PKI-3 — 2.83 Y
midazolam - clarithromycin PKI-3 « >7 Y
midazolam - erythromycin PKI-3 4.4 Y
midazolam - fluconazole PKI-3 « > 2.6 Y
midazolam - itraconazole PKI-3 10.8 Y
midazolam - ketoconazole PKI-3 « 15.9 Y
midazolam - nefazodone PKI-3 4.6 Y
triazolam -~ clarithromycin PKI-3 « 53 Y
triazolam - erythromycin PKI-3 « 2.1 Y
triazolam - fluconazole PKI-3 « 2.5 Y
triazolam - itraconazole PKI-3 > 3.1 Y
triazolam - ketoconazole PKI-3 « >9.2 Y
triazolam - nefazodone PKI-3 >3.9 Y
triazolam - atorvastatin | PKI-3 « n/a n/a
triazolam - simvastatin { NO-PKI n/a n/a
triazolam - beta-hydroxy-simvastatin t NO-PKI n/a n/a

We then tested if using alternate belief criteria strategies had any influence on the
accuracy.and coverage DIKB’s predictions. The DIKB failed to make any predictions using

one strategy due to some unknown error that occurred during the experiment. This results

N
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from this strategy® were not used in further analysis. We analyzed the remaining 35,999
different strategies for accuracy, coverage, and agreement with the validation set. Table 5.11
shows summary svtatistics for each performance parameter we analyzed over all prediction
sets. The DIKB’s sensitivity ranged from 0.88 to 1.0 with 19,583 (54%) of the belief criteria
strategies causing the system to operate at maximum sensitivity. The systems specificity
ranged from 0.0 to 1.0 with 6,912 (19%) of the belief criteria strategies causing the system to
operate at maximum specificity. The system had excellent positive predictive value (range:
0.94 to 1) across all belief criteria strategies. However, we could not characterize the system’s
negative predictive value in a meaningful way because the DIKB never predicted more than

two of the seven validation set non-interactions.

Table 5.11: Summary statistics for each performance parameter we analyzed over 35,599
prediction sets. The columns labeled “n” show the number of belief criteria strategies whose
predictions shared each minimum and maximum value.

statistic Min. n Median | Mean | Maxz. n
true positives 14.0 | 1,440 33.0 30.8 34.0 | 17,280
false positives 0.0 {17,279 1.0 0.6 2.0 | 2,880
true negatives 0.0 | 21,599 0.0 0.7 2.0 | 11,520
false negatives 0.0 | 19,583 0.0 0.6 2.0 4,032
sensitivity 0.88 576 1.00 0.98 1.00 | 19,583
specificity 0.00 | 11,232 0.50 0.44 1.00 | 6,912
positive predictive value 0.94 240 0.97 0.98 1.00 | 17,279
DIKB-only unknown 10.0 | 5,760 13.0 15.3 34.0 576
validation-set-only unknown | 3.0 864 40.0 42.4 62.0 | 2,880
kappa 0.41 576 0.47 0.48 0.52 768

We calculated three-valued kappa scores for every prediction set using Cohen’s kappa
to see how the agreement between the DIKB and the validation set compared with random
chance. The DIKB’s predictions across all prediction sets had moderate agreement (0.4
to 0.5) with the validation set and never reached levels typically considered indicative of

significant agreement (> 0.7) or disagreement (< 0.3).

8To be specific, we threw out the results of the belief criteria strategy that used the following
LOEs for belief criteria: controls-formation-of:LOE-1, has-metabolite:LOE-4, inhibits:LOE-2, is—
-not-substrate-of:LOE-1, primary-metabolic-clearance-enzyme:LOE-1, primary-total-clearance-
-enzyme:LOE-1, primary-total-clearance-mechanism:LOE-3, substrate-of:LOE-3
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Table 5.12: 1,152 (3%) strategies caused the DIKB to perform optimally in terms of sen-
sitivity, positive predictive value, and agreement with the validation set as measured by
Cohen’s kappa. This table shows all measured performance characteristics for these “best-
performing” strategies.

statistic value
true positives 34
false positives 0
true negatives 0
false negatives 0
sensitivity 1
specificity n/a
positive predictive value 1
DIKB-only unknown 14
validation-set-only unknown | 40
kappa 0.52

A fascinating result of this experiment is that 8,351 (23%) of the 35,599 tested strate-
gies caused the DIKB to have equal or better performance in terms of sensitivity, positive
predictive value, and agreement with the validation set than the evidence board’s strategy.
Table 5.12 shows the performance characteristics for 1,152 (3%) strategies that performed
at the top level in these three performance categories. All of these strategies caused the
DIKB to make the same set of 65 interaction and non-interaction predictions.

These strategies predicted a metabolic inhibition interaction for 34 (83%), of the 41
interacting pairs in the validation while making no false positive and no false negative
predictions. As Table 5.13 shows, the pharmacokinetic magnitude of 30 of the 34 confirmed
(88%) predictions made using the best performing belief criteria strategies matched levels
observed in clinical trial data. While the coverage of the DIKB using these strategies was
greater than with the evidence-board’s strategies and there was no loss of accuracy, the
system’s magnitude estimates were not as accurate and its coverage of validation set data
remained incomplete — it missed seven interactions and made no predictions for the seven

non-interactions listed in the validation set.
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Table 5.13: Each of the 1,152 strategies that caused the DIKB to perform optimally in
terms of sensitivity, positive predictive value, and agreemen with the validation set caused
the system to make the same 65 predictions shown here. This table shows the 34 interaction
prediction that are confirmed by the validation set. The arrows point to the drug or drug
metabolite that the system predicts will be the victim of the interaction. }- The DIKB also
predicted a metabolic inhibition interaction at the PKI-1 level with clarithromycin as the
victim.

pair DIKB level AUC;/AUC correct level?
alprazolam - erythromycin PKI-1 1.61 Y
alprazolam - itraconazole PKI-1 « 2.7 N
alprazolam - ketoconazole PKI-1 « 3.98 N
alprazolam - nefazodone PKI-1 1.98 Y
atorvastatin - erythromycin PKI-3 « 14 N
atorvastatin - nefazodone ‘ PKI-3 3-4 Y
clarithromycin - atorvastatin 1 PKI-3 — > 1.8, max 5.4 Y
clarithromycin - fluconazole PKI-1 « | > 1.18, max 1.33 Y
diltiazem - lovastatin PKI-3 — >3 Y
diltiazem - beta-hydroxy-lovastatin PKI-3 — 3.57 Y
diltiazem - midazolam PKI-3 — 3.75 Y
diltiazem - simvastatin PKI-3 — 4.8 Y
diltiazem - triazolam PKI-3 — 2.83 Y
erythromycin - simvastatin PKI-3 — 6.3 Y
erythromycin - beta-hydroxy-simvastatin | PKI-3 — 3.9 Y
fluconazole - fluvastatin PKI-3 — 1.83 N
itraconazole - atorvastatin PKI-3 — 2.5 Y
itraconazole - lovastatin PKI-3 — 14.8 Y
itraconazole - beta-hydroxy-lovastatin PKI-3 — 8.56 Y
ketoconazole - simvastatin PKI-3 — 12.55 Y
midazolam - clarithromycin PKI-3 « >7 Y
midazolam - erythromycin PKI-3 « 4.4 Y
midazolam - fluconazole PKI-3 « > 26 Y
midazolam - itraconazole PKI-3 10.8 Y
midazolam - ketoconazole PKI-3 « 15.9 Y
midazolam - nefazodone PKI-3 4.6 Y
nefazodone - simvastatin PKI-3 — 20 Y
nefazodone - beta-hydroxy-simvastatin PKI-3 — 20 Y
triazolam - clarithromycin PKI-3 « 5.3 Y
triazolam - erythromycin PKI-3 — 2.1 Y
triazolam - fluconazole PKI-3 « 2.5 Y
triazolam - itraconazole PKI-3 « >3.1 Y
triazolam - ketoconazole PKI-3 >9.2 Y
triazolam - nefazodone PKI-3 « > 3.9 Y
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5.2.1 Ewaluation of the DIKB’s Novel DDI Predictions Made Using the Best-performing
Belief Criteria Strategies

The system also predicted 31 metabolic inhibition interactions and nine non-interactions
using the “best-performing” belief criteria strategies whose validity was unknown by the
validation set. These novel interaction predictions, shown in Table 5.14, represent poten-
tially interacting drug combinations that our review of the literature indicate have not been
studied. After running the experiment, we used a similar method to the one we used to
search for case reports for the validation set (see Section 5.1.2.3) to search PubMed for for
clinical trials involving these pairs. We could only find one clinical trial that was not already
included in the validation set [158] unfortunately, we judged this study’s methodology too
poor to use it as evidence for or against any interactions.

Fifteen of the published case reports we had collected while constructing the validation
set claimed the occurrence of a DDI that matched one of the 31 novel predictions. Each
report was reviewed using the Drug Interaction Probability Scale (DIPS) [99] by a clinician
co-investigator. The DIPS defines four qualitative levels (Doubtful, Possible, Probable, and
Highly Probable) representing the degree to which the information provided by the report
supports the proposition that a specific drug combination effected an adverse event or
events. Six novel predictions were matched with case reports that met the DIPS Probable
level; meaning that the predicted interactions were the likely cause of an adverse event
occurring in a patient. Seven novel predictions were matched with reports that met the
DIPS Possible level;, meaning that the predicted interactions could not be excluded from
consideration as the cause of an adverse event in a patient. The DIPS forms used to evaluate

these 15 case reports are shown in Appendix K.

52.1.1 Querying AERS

This left 18 novel interaction predictions for which we could find no supporting or refuting
published data. We anticipated the evaluation of AERS reports to be time consuming so
we prioritized the remaining 18 remaining novel interactions and chose the six interactions

we thought would be the most important to investigate. For each of the six predictions we
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extracted all AERS reports that were submitted by a clinician, involve both pharmaceutical
entities in the novel DDI prediction, and have at least one adverse event term that is
indicative of the metabolic inhibition interaction involving either drug in the prediction.
Appendix I, Section 1.2 provides details on how we executed these queries.

Our queries returned one or more clinician-submitted AERS report for each of the six
novel DDI predictions. Unfortunately, none of the reports provided sufficient data on the
administration dates of the drugs listed in any report for us to be able to evaluate how {(or
even if) the drugs listed in the report were co-administered. Without this information it
was impossible for the drug experts to assess if a DDI was the cause of an adverse event
listed in the report.

Drugs labeled in the report as “suspect” were far more likely to have administration
dates than drugs labeled as “concomitant.” This could be due to the fact that the forms
used to submit reports [16, 17] do not provide separate boxes for dates of administration
for concomitant medications. A few reports provided medication dates but they seemed to
indicate the usage history of a particular medication over different regimens rather than the
administration order of the drugs that the patient was taking at the time of the adverse
event. For example, one report (shown in Appendix J) provided multiple non-overlapping
dates for oxyconton administration but no dates for 33 medications listed as concomitant
making it impossible for use to determine the medications that the patient was taken before

experiencing the adverse event.
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5.3 Discussion

It’s important to note that our experiment only looked at binary performance criteria —
predictions were classified as true or false according to the validation set and the goal was
to maximize true predictions and minimize false predictions. An entirely different set of
belief criteria strategies than the best-performing strategies of this experiment would be
relevant if our goal was to optimize the accuracy of the system’s magnitude predictions.
This would be a very worthwhile experiment because, as Section 5.2 mentioned, the system
is capable of accurate magnitude predictions — the DIKB’s magnitude estimates for all 14
interactions known in the validation set were at the correct level. A set belief criteria
strategies that focused on optimizing magnitude would seek to expand the DIKB’s coverage
of known interactions past these 14 while still making correct magnitude predictions. This
kind of analysis might also indicate the limitations of the very simplistic model that we
used to infer the fraction of a drug that is cleared by a particular enzyme from AUC data
(Chapter 3, Section 3.2.3.5).

Although our experiment’s clinical-relevance is likely to be less than if we had used
magnitude-based performance criteria, the binary performance criteria were sufficient for
us to conclude some important findings. First, changing the LOEs selected as belief criteria
does alter the systems prediction accuracy and coverage in the way that we had anticipated.
We found for this data set that, as the the criteria for including assertions was relaxed, the
DIKB predicted a larger number of true interactions; sometimes at the expense of also
making more false predictions. By having the computer iterate through a large set of
possible belief criteria strategies we found that a significant proportion (23%) of the belief
criteria strategies we looked at predicted a larger number of true interactions than the most

rigorous strategy while still making no known false predictions.

Our experiment also found a particular family belief criteria strategies that optimized
the system’s prediction accuracy and coverage to the body of evidence present in the DIKB’s
evidence-base. Table 5.15 shows the range of LOEs used by 1,152 belief criteria strategies
that, like the evidence-board’s strategy, had perfect sensitivity and positive predictive value

but also maximum coverage of and agreement with the validation set. Analyzing the table
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is difficult because there is a complex interplay between the kinds of evidence present in the
knowledge-base, how it is linked to each assertion instance, and the relationship between
each assertion type and the variables chosen for scoring the system’s prediction performance.

To better understand the information in Table 5.15 it is useful to note how different
combinations of the assertion types that we varied belief criteria for could directly or in-
directly cause the system to make an interaction or non-interaction prediction. The types
substrate-of and inhibits were used by the DIKB to establish an interaction at the
PKI-1 level (see the rule shown in Figure 3.3), the type is-not-substrate-of was used
with the type inhibits to predict a non-interaction (see the rule shown in Figure 3.8), and
the types controls-formation-of and has-metabolite were used together to establish
that a drug or drug metabolite is a substrate of a particular enzyme which would then form
an antecedent to the rule just mentioned that predicted interactions at the PKI-1 level.
Similarly, the type primary-total-clearance~-enzyme was used both in rules that made
predictions at the PKI-3 level (see Figure 3.5) and by the system to infer substrate-of
assertion instances used by the rule that predicted interactions at the PKI-1 level.

Only one assertion type present in Table 5.15, primary-metabolic-clearance-enzyme,
was exclusively used by the system for magnitude estimation® so, varying its belief criteria
should not affect the accuracy of the system. Indeed, Table 5.15 shows that all this assertion
type’s LOEs were used by the 1,152 “best-performing” belief criteria strategies.

Another way that multiple LOEs can be chosen as belief criteria for a some assertion
types without changing the accuracy and coverage of the DIKB (assuming belief criteria
for other assertion types are static) is for there to be no evidence items that map to a
particular LOE. This is the case for some LOEs belonging to the controls-formation-
~of, is-not-substrate-of, and primary-metabolic-clearance-enzyme assertion types.
For example, since none of the 17 evidence items that were linked to controls-formation
instances map to the assertions type’s LOE-1 and LOE-2, the system’s predictions were not

affected when LOE-2 was chosen as belief criteria instead of LOE-1.

B That this was true is actually the result of a mistake. We made an oversight by not having the system
infer substrate-of assertion instances from justified primary-metabolic-clearance-enzyme instances.
As with the primary-total-clearance-enzyme assertion instances, a drug or drug metabolite is clearly a
substrate of any enzyme that is believed to have a significant role in its metabolic clearance.
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A less obvious way for different belief criteria to lose their influence on DIKB predictions
is for all of the assertion instances of a particular assertion type to have already been
justified by belief criteria using higher-ranking LOEs. For example, during our experiment,
the assertion (ketoconazole-inhibits-cyp3a4) had three evidence items in the evidence-
base — two that met LOE-1 for the inhibits assertion type (see Table 5.1.3) and one that
met LOE-2. Since there were evidence items that mapped to both LOEs, the assertion
(ketoconazole-inhibits-cyp3ad) was justified no matter which LOE the system chose
as belief criteria. Also, the evidence item that mapped to LOE-2 was the only one in the
entire evidence-base supporting an inhibits assertion instance that did not meet LOE-1
for its type. As a result, no new assertions could be introduced when the system relaxed
the type’s belief criteria partially explaining why there was no difference in the DIKB’s
predictiohs between strategies that used LOE-1 as belief criteria for the inhibits assertion
and those that used and LOE-2. The situation is made more complicated by the fact that
two evidence items refuting inhibits assertions did map to LOE-2. Had either of these
evidence items been linked to the assertion (ketoconazole-inhibits-cyp3a4), then both
evidence for and against the assertion would have met belief criteria and the DIKB
would have retracted the assertion along with any predictions made using it. However, this
did not occur because these evidence items were linked to the assertions (pravastatin

does-not-inhibit CYP2C8) and (rosuvastatin does-not-inhibit CYP2C8).

5.8.1 Other Interesting Features of the Prediction Sets

So far in our discussion we have focused only on the performance of the DIKB using the
“best-performing” strategies. However, 27,648 (77%) of the strategies we tested caused
the DIKB to predict at least one interaction or non-interaction considered invalid by the
validation set. Both kinds of invalid predictions were made using 7488 (21%) of the strategies
and the maximum number of interaction or non-interaction predictions countered by the
validation set for any single strategy was three (either two invalid interactions and one

invalid non-interaction or vice versa).

Table 5.16 shows the four invalid predictions that appearéd in various combinations
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among the predictions made using a wide range of strategies. For the two interaction pre-
dictions countered by the validation set, the table indicates which drug the DIKB considers
the victim and the specific enzyme whose inhibition should lead to the interaction. The
itraconazole-fluvastatin interaction prediction occurred when the system used strategies that
accept drug labeling statements as belief criteria because 1) the assertion (itraconazole
inhibits CYP3A4) was a default assumption and 2) the evidence-base recorded one label-
ing statement (based on a non-cited in vitro study) proposing that fluvastatin is a minor
substrate (<20% of total clearance) of CYP3A4 [51]. The DIKB predicted the fluconazole-
rosuvastatin interaction using strategies that allow statements in product labeling to justify
the controls-formation and has-metabolite assertion types and non-randomized clin-
ical trial data to justify the inhibits assertion type. In this case, the system inferred
that rosuvastatin is a substrate of CYP2C9 because the two assertions (rosuvastatin
has-metabolite N-desmethylrosuvastatin) and (CYP2C9 controls-formation-of N-
-desmethylrosuvastatin) were each supported by evidence items based on labeling in-
formation [10] and the assertion (fluconazole inhibits cyp2c9) was supported by a
non-randomized clinical trial [33].

Considering now the two countered non-interaction predictions; Table 5.16 indicates
which drug the DIKB predicted would not be affected by inhibition of a specific metabolic
enzyme. The DIKB predicted a non-interaction between itraconazole and rosuvastatin via
CYP3A4 inhibition using strategies that allow statements in product labeling to justify the
is-not-substrate-of assertion type. This was because the evidence-base contained one
evidence item, based on a labeling statement, declaring CYP3A4 to not have a role in the
metabolic clearance of rosuvastatin [10]. The system predicted a non-interaction between
fluconazole and clarithromycin using strategies that considered inhibits type justified by
non-randomized clinical trial data and the is-not-substrate-of assertion type justified
by in vitro metabolism identification studies using human microsomes and chemical in-
hibitors. In these strategies the system could apply one evidence item [33] to justify the
assertion (fluconazole inhibits CYP2C9) and another item [151] to justify the assertion
(clarithromycin is-not-substrate-of CYP2C9). Interestingly, this non-interaction pre-

diction was overruled when the system used strategies that, in addition to the previously
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mentioned belief criteria, also considered the substrate-of assertion type justified by evi-
dence from in vitro metabolism identification experiments. Using these strategies, the DIKB
predicted an interaction between fluconazole and clarithromycin CYP3A4 because an evi-
dence item based on a in vitro metabolism identification experiment justified the assertion

(clarithromycin substrate-of CYP3A4) [151].

Table 5.16: 27,648 strategies led the DIKB to predict an interaction or non-interaction
countered by the validation set. The countered predictions produced by the DIKB using
each strategy consisted of one or more of the four pairs shown in this table. For countered
interactions, the arrows indicate the drug that the DIKB considers the victim of a metabolic
inhibition interaction via inhibition of the enzyme shown in parentheses. For countered non-
interactions, they point to the drug that should not be affected by inhibition of the enzyme
shown in parentheses.

Countered interaction Countered non-interaction
itraconazole - fluvastatin (CYP3A4) — || itraconazole - rosuvastatin (CYP3A4) —
fluconazole - rosuvastatin (CYP2C9) — || clarithromycin - fluconazole (CYP2C9) «—

5.8.2 Why was the DIKB’s Coverage of the Validation-set Interactions Always Incomplete?

Table 5.17 shows six interactions and four non-interactions present in the validation set
that were never predicted by the DIKB using any the 35,599 belief criteria strategies. The

system did not make these predictions for the following reasons:

e Two missing interactions and three missing non-interactions are accounted for by the
fact that there were no assertions or evidence items in the system indicating that

pravastatin is cleared by, or inhibits, a metabolic enzyme.

¢ Similarly, three missing interactions and one non-interaction are accounted for by the
fact that were no assertions in the system indicating which enzymes do or do not
metabolize 1’-hydroxymidazolam, ortho-hydroxy-atorvastatin, 4-hydroxyalprazolam,
14-hydroxyclarithromycin. Neither are there assertions indicating that these metabo-
lites inhibit a drug-metabolizing enzyme present in the system. The DIKB’s data
model is capable of predicting when inhibition of the parent compound will or will

4
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not affect the formation of these metabolites made but we did not include these kinds

of predictions in the study

e There were two evidence items in the system that supported the assertion (eryth-

romycin inhibits CYP3A4) [73, 184] but no assertion or evidence in the system
claiming that itraconazole is a substrate of that enzyme. Conversely, the system
had three default assumptions that separately established itraconazole to be both an
in vivo and in vitro selective inhibitor of CYP3A4 and erythromycin to be an in vitro
probe substrate. However, the system had no rule that could infer substrate-of as-
sertions from in-vitro-probe-substrate-of assertions. If it had, the system would have

predicted the itraconazole-erythromycin interaction to occur at the PKI-1 level.

Table 5.17: Pairs in the validation set (Tables 5.5 and 5.4)for which the DIKB made no
prediction using any the 35,599 belief criteria strategies.

missing interactions missing non-interactions
clarithromycin - pravastatin diltiazem - pravastatin

fluconazole - 1’-hydroxymidazolam fluconazole - pravastatin

itraconazole - pravastatin nefazodone - pravastatin

itraconazole - erythromycin fluconazole - 14-hydroxyclarithromycin
itraconazole - ortho-hydroxy-atorvastatin

nefazodone - 4-hydroxyalprazolam

5.3.3 Comparing the DIKB Predictions to Labeling Statements

We would have liked to have done a quantitative comparison of the system’s predictions with

drug-drug interaction statements from product labeling but could not because a significant

proportion of the validation set was constructed from labeling statements. We did look

over the statements that were not used in the validation set and found one statement that

specified an interaction countered by clinical trial data present in the validation set. This

statement extrapolated an interaction observed between erythromycin and one or more

HMG-CoA reductase inhibitors to all drugs in that class:
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Erythromycin has been reported to increase concentrations of HMG-CoA reduc-
tase inhibitors (e.g., lovastatin and simvastatin). Rare reports of rhabdomyolysis

have been reported in patients taking these drugs concomitantly [2].

The active ingredient rosuvastatin is among the HMG-CoA reductase inhibitors included
in our study. The labeling statement indirectly declares a potential pharmacokinetic inter-
action between erythromycin and rosuvastatin that is countered by a randomized clinical
trial in the validation set [47]. None of the interaction predictions made by the DIKB using
the evidence board or the best performing belief criteria strategies were countered by the
validation set (i.e. false positives or false negatives). While the system made no predic-
tion involving erythromycin and rosuvastatin with these strategies, it correctly predicted a
non-interaction between erythromycin and rosuvastatin using other, lower specificity, belief
criteria strategies. These results indicate thaf, depending on belief criteria strategies, DDI
prediction using drug-mechanism knowledge can be very accurate and avoid making the

kinds of false predictions that occur when individual drug differences are not recognized.

5.8.4 The JTMS Could be Leveraged to Optimize the Search for High-performing Strategies

It took more than three days of non-stop computation on two modern desktop computers to
generate all 36,000 prediction sets for the experiment this chapter describes.! This lengthy
amount of time is more reflective of the process we used to generate prediction sets than the
computational complexity of the DDI prediction task because we chose to have the DIKB
reset its knowledge-base every time we generated a prediction set using a new belief criteria
strategy. This forced the system to rebuild the JTMS dependency network for each new
strategy, a computationally expensive task, but also enabled us to divide the work onto
different machines and easily recover from any computer crashes with no loss of data.

The DIKB’s evidence-model component (Chapter 2, Section 2.3.1) keeps track of the
justification state of each assertion in the system. For example, if the evidence-model has

already justified an assertion and the assertion’s evidence continues to meet belief criteria,

For those interested, about 70% of the prediction sets were generated on a computer with a single
AMD Athlon 64-bit processor with 2 Gig of RAM. It took about the same amount time for that another
computer with a 1.3 GHz Pentium processor and 1 Gig of RAM to generate the other 30%.
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then the system will make no change. One could leverage this feature to generate all pre-
diction sets without resetting the knowledge-base or re-running rules but only tracking the
assumptions and prediction results that change between each strategy. The method would
be quicker than the brute force technique that we used in our experimént for arriving at
optimal belief criteria strategies and could form the basis for a special search algorithm that
minimized the time required to search for the best-performing strategies. Such an algo-
rithm could also take into account knowledge about the existing evidence-base to identify
which assertion types will not be affected by changing belief criteria. For example, it could
exclude LOEs from analysis that will make no difference because no evidence maps to them

or because all evidence items map to higher-ranking LOEs.

5.8.5 Limitations

This problem of a biased-use of evidence items introduced in Section 5.1.2.1 can be more
complex when considering drug-labeling statements. Drug labeling statements almost al-
ways provide no citation to published studies. Since both labeling information and published
studies are included in the DIKB it is possible for conclusions from the same study to appear
in the system as different evidence items. For example, support for the assertion that active
ingredient X inhibits enzyme E could include a pharmacokinetic study and a non-traceable
drug-label statement that echoes the results from the same study. In our experience, one
can usually only conjecture whether the non-traceable statement echoes a specific study or
if it refers to a different study. This ambiguity can affect the development of LOEs be-
cause an expert’s confidence in an assertion whose evidence support includes one or more
non-traceable statements along with actual study evidence should be no different than if
the assertion rested on only study evidence unless it can be shown that the non-traceable
statements refer to distinct studies than the ones already included.

In terms of calculating the DIKB’s prediction accuracy, it seems reasonable that the
same bias mentioned in Section 5.1.2.1 will occur if a clinical trial is applied as support for
an interaction or non-interaction in the validation set while a labeling statement echoing,

but not citing, the study supports an assertion that the DIKB uses to predict the same
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interaction. In such cases, the validation set interaction or non-interaction should be ex-
cluded from calculations of the systems accuracy. Conversely, if a validation set interaction
or non-interaction rests on only a single non-traceable statement and there are assertions in
the DIKB used to predict the interaction or non-interaction that depend on the study that
inspired the statement, then the interaction or non-interaction should also be excluded from
calculations of the system’s accuracy. Unfortunately, we did not implement any strategy
to avoid this kind of bias so it is possible that some labeling data was used to support
mechanistic assertions that led to predictions validated by the same data but appearing in
a different source. Future work will examine if this bias was present and, if so, what ef-
fect removing the affected interactions or non-interactions has on the calculations of DIKB

accuracy.
5.4 Conclusion

This chapter has described a novel experiment characterizing the effect of varying belief
criteria on the system’s accuracy and coverage of DDIs present in a reference set of in-
teractions and non-interactions. The experiment’s results demonstrate that the DIKB can
make accurate predictions for an important class of DDIs using only knowledge of drug-
mechanisms and that the system’s prediction accuracy and coverage varies depending on
the belief criteria strategy being used. We were able to use LOEs and belief criteria to
optimize the system’s prediction performance to the contents of its evidence-base. Though
we only looked at binary performance criteria, we know from the success of evidence board’s
strategy that the same optimization approach will work for maximizing the accuracy and
coverage of the system’s magnitude estimates. We conclude from these results that the
evidential knowledge representation approach used by the DIKB has features that are very
desirable for supporting clinical decision making.

The central thesis of this this dissertation is that DDI prediction using drug-mechanism
knowledge can help drug-interaction KBs expand their coverage beyond what has been
tested in clinical trials while avoiding prediction errors that occur when individual drug dif-
ferences are not recognized. The fact that nearly half (42%) of the novel DDI predictions has

some degree of support from published case reports is strong evidence that drug-mechanism



164

knowledge can help drug-interaction KBs expand their coverage of DDIs beyond what has
been tested in clinical trials. The system also correctly avoided predicting a pharmacoki-
netic interaction between erythromycin and rosuvastatin even though class-based reasoning
present in drug product labeling suggested the interaction could occur. This shows that
the system’s mechanism-based knowledge can help avoid errors that occur when making
class-based inferences that do not respect individual drug differences.

Our exploration of AERS was prompted by a desire to seek evidence for drug and
drug/metabolite combinations that the DIKB predicted were likely putting people at risk.
To the best of our knowledge no other investigators have tested if it is possible to gather evi-
dence from a public reporting database for DDIs predicted to occur based on well-supported ‘
pharmacologic mechanisms. While our attempt did not yield evidence for or against the
DIKB’s novel predictions, it does suggest changes the national spontaneous reporting sys-
tem that would make its data more useful for the new drug safety methods that we are
proposing. The data elements present in the system conform to the ICH E2b/M2 standard
for transmitting post-market safety report information [24]; a model that we consider suffi-
cient for representing the date needed to assess reports using a tool like DIPS [99]. The real
issue is that the needed data is not being entered into the AERS reports. We think that one
reason for this is that the data entry forms used by spontaneous reporters do not specifically
request the dates that patients were prescribed or administered concomitant medications.

Finally, this experiment has helped to identify some current technical limitations of
the evidential approach to knowledge representation. There is an opportunity for research
into new computational methods to help support analysis of belief criteria strategies; a
task that is currently very difficult because of the complex interplay between the kinds of
evidence present in the knowledge-base, how it is linked to each assertion instance, and the
relationship between each assertion type and the variables chosen for scoring the system’s
prediction performance. Also, research on new search algorithms that leverage the evidence-
base’s contents and internal state machine promise to significantly speed up the time it takes

to locate an optimal set of belief criteria strategies.
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Chapter 6

CONTRIBUTIONS, FUTURE WORK, AND CONCLUDING
COMMENTS

6.1 Research Contributions

Little research has been done on how to best represent and maintain knowledge about drug
mechanisms so that it can be of use in clinical decision making. We have shown that the new
knowledge-representation methods employed in the DIKB enable the system to make accu-
rate predictions for an important class of DDIs using only knowledge of drug-mechanisms.
We also showed that the prediction accuracy and coverage of the DIKB can be optimized to
a particular body of evidence; a feature that is very desirable for clinical decision support.
The success of our new methods is not only a contribution to biomedical informatics research
but also to drug safety. Using the best-performing belief criteria strategies, the system accu-
rately predicted 34 (83%) of 41 interacting pairs present in a validation set while making no
false positive and no false negative predictions. Thirteen (42%) of the 31 novel interaction
predictions the system made at its optimal performance level had some degree of support
from published case reports. The remaining 18 novel predictions could represent combi-
nations with the potential to harm patients that have not previously been recognized or
studied. These predictions are important because they are based on mechanistic assertions

supported by strong evidence from studies in humans.

The DIKB is the first knowledge-representation system we are aware of to use a com-
putable model of evidence and a Truth Maintenance System to manage assertions in its
knowledge-base. We expect this approach to be generalizable to knowledge representation
in other biomedical domains where an ontology of evidence types can be created and used
to define rank-ordered levels of justification for assertions in some rule-based theory. For
example, the method might be useful for constructing a pathway/genome database that can

provide different views of its knowledge to users who might not agree about what combina-
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tion of evidence confirm the existence of an biochemical entity or its relationship to other
entities within a biochemical pathway.

We developed a new evidence taxonomy to support representing drug-mechanism evi-
dence in the DIKB and contrasted it with three other evidence taxonomies in the bioinfor-
matics domain (Medical Subject Headings’ Publication Types [27], Gene Ontology’s evidence
codes [65], and Pathway Tools’ evidence ontology [106]). An important finding was that none
of the four taxonomies by themselves could be used to construct levels-of-evidence because
their type definitions fail to ensure that all evidence within a collection meet some minimum
standard in terms of quality. Our solution was to develop and consistently apply inclusion
criteria for each type of evidence in the taxonomy. Inclusion criteria help ensure that all
evidence within a collection meet some minimum standard in terms of quality and are the
key to enabling expert users of a knowledge-base prospectively map their confidence in each
assertion type to some arrangement of one or more abstract evidence types. We expect
inclusion criteria to enable the use of evidence types from taxonomies like the Pathway
Tools’ evidence ontology within evidential knowledge-representation systems like the DIKB.
This fact will be important if future work requires expanding the DIKB to include the
more general biochemical pathway knowledge present in pathway/genome databases such
as MetaCyc [107].

The DIKB is also novel for its computable representation of conjectures behind a specific
application of evidence. The DIKB’s evidence-use assumptions were designed so that the
system could alert curators when one or more conjectures that a particular application of
evidence depends on fail to meet belief criteria. They enable the system to flag when a
conjecture has become invalid and alert knowledge-base maintainers to the need to reassess
their original interpretation of what assertions a piece of evidence supports. We used them
during the evidence collection process to help identify a pattern, called a circular line of
evidence support, that is indicative of fallacious reasoning by evidence-base curators. The
two algorithms that we proposed to identify circular lines of evidence support (Chapter 4,
Section 4.3.4.3) are general and should be applicable in other knowledge-representation
domains where fallacious reasoning can occur.

Finally, our exploration of AERS enables us to suggest changes to the national spon-
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taneous reporting system that would make its data more useful for drug safety methods
that identify potentially interacting drug combinations based on drug mechanisms. The
data elements used by AERS conform to the ICH E2b/M2 standard for transmitting post-
market safety report information [24]; a model that we consider sufficient for representing
the date needed to assess reports using a tool like DIPS [99]. The real issue is that data
necessary for determining if an adverse event is the result of a DDI is not being entered into
the AERS report. Most noticeable is the lack of non-ambiguous administration dates for
concomitant medications. We think that one reason for this might the data entry forms used
by spontaneous reporters do not speciﬁéally request the dates that patients were prescribed

or administered concomitant medications.

6.2 Future Work

Our experiment with the DIKB has helped to identify some current technical limitations
of the evidential approach to knowledge representation. A high priority for future work
will be research into new computational rﬁethods to help support analysis of belief criteria
strategies; a task that is currently very difficult because of the complex interplay between
the kinds of evidence present in the knowledge-base, how it is linked to each assertion
instance, and the relationship between each assertion type and the variables chosen for
scoring the system’s prediction performance. Also, it will be important to research new
search algorithms that leverage the evidence-base’s contents and internal state machine to

significantly speed up the time it takes to locate an optimal set of belief criteria strategies.

We acknowledged ‘that many drug-mechanism facts that we consider well-supported
today will need revision to account for scientific progress thus, collecting and maintaining a
drug-mechanism evidence-base should be on ongoing process by design. An important area
of future work will be on the development of new computer-supported evidence maintenance
- processes. For example, it is quite feasible to develop software agents that leverage the

remote query and RSS syndication facilities of journal Web-sites, publication databases such

<
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as PubMed and PubMed Central, and drug-product labeling resources such as DailyMed.P
Such agents could automatically identify when evidence sources in the DIKB have been
updated or cited by others and alert DIKB curators. Software agents could also filter query
results based on evidence existing in the DIKB so that curators could quickly retrieve similar
evidence sources.

We think that DIKB curators should always make the final decision as to how to apply
a given item of evidence but automated tools have the potential to greatly ease their task.
Especially promising are the new methods emerging from research in machine learning and
artificial intelligence. For example, Rubin et al developed and successfully applied a statis-
tical classifier that accurately identified pharmacogenomics research articles from indexed
research abstracts [153]. Their methods involved training the classifier on a set of abstracts
collected and classified by humans using the PharmGKB’s categories of pharmacogenetics
evidence [152]. Pustejovsky and colleagues successfully applied corpus-based linguistics to
extract statements describing protein inhibition from biomedical research abstracts [145].
Also notable is the work of Rzhetsky et al on integrating automated methods for several
tasks necessary to build large-scale biological pathway knowledge-bases including the se-
lection of relevant evidence items and extraction of concepts [155]. The DIKB’s current
evidence-base consists of consists of evidence from 102 unique sources applied as evidence
for or against 222 drug-mechanism assertions. We think that this body of evidence could

form a solid training set for testing the methods used by these and other researchers.

6.3 Secondary Results

We made several discoveries regarding the quality and accuracy of some current information
resources whose purpose is to support pharmacy practice while collecting evidence for the
DIKB. For example, in the process of identifying the set of generic and trade names for each
active ingredient in our system we found what we believe were errors in a tool name RxNorm

developed by the National Library of Medicine.® RxNorm claims to provide “...standard

*http://www.pubmedcentral.nih.gov/
Phttp://dailymed.nlm.nih.gov

°http://www.nlm.nih.gov/research/umls/rxnorm
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http://www.nlm.nih.gov/research/umls/rxnorm
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names for clinical drugs (active ingredient + strength + dose form) and for dose forms as
administered to a patient” {19]. All of the following are potential errors that we identified

in the BrandName field of the September 2007 version of RxNorm :

1. As near as we can tell there is no such product “CAKNEMYCIN” yet it is listed a
product containing erythromycin; this possibly a misspelling of “AKNEMY CIN.”

2. “CARIZEM” is listed as a product of diltiazem but it is likely a misspelling of cardizem
3. “ROYMICIN” appears to be a misspelling of the erythromycin product robimycin

4. “ALTOCOR?” is listed as a product containing lovastatin but there is no product by
that name in the two primary sources for drug information managed by the FDA,
drugs@fda [58] and “The Orange Book” [15]. This is possibly a misspelling caused by
conflating two FDA-approved lovastatin products “ALTOPREV” and “ ADVICOR.”

5. The tool lists “Dermamycin” as a product containing erythromycin but searches of
both the Micromedex® and UpToDate® medical knowledge databases suggest that
it is a product containing diphenhydramine. Neither drugs@fda [58] or “The Orange
Book” [15] have any record of any drug product by this name and RxNorm provides

no references for its name assignments.

It is important to note that a natural use of RxNorm by software developers is as a
dictionary for drug names and synonyms. Errors in the resource could results in serious
consequences. For example, it is unknown to us if “Dermamycin” contains erythromycin
or diphenhydramine or if it is even a real product. What is important is that that, if the
assignment is in error (i.e. “Dermamycin” exists and contains diphenhydramine) and if any
online drug information source repeats the RxNorm assignment then, some patients could be
misled into thinking that erythromycin interactions apply to a diphenhydramine containing

product.d We have already sent an email to the developers of RxNorm listing potential

9As of December 2007 at least one online drug information source ( http://www.herb-drug.com/
drugs/dermamycin.html) used the same assignment that was in RxNorm though we do not know if de-
velopers of the information resource used RxNorm as their tool for drug synonyms.
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errors we have identified but, as of the time of this writing, do not know if they have been
corrected.
We also identified several issues with the DailyMed system; a resource that the National

Library of Medicine claims...

...provides health information providers and the public with a standard, compre-
hensive, up-to-date, look-up and download resource of medication content and

labeling as found in medication package inserts [12].

Unfortunately, we found that at least some the labels at DailyMed are neither standard
nor up-to-date. For example the label for instant release alprazolam [127] does not have a |
separate section titled “drug-drug interactions” while the label for extended release alpra-
zolam [165] does. Also, Product labels for the same drug sometimes provided out-of-date
information. In such cases the evidence-board collected the statement that seemed most
up-to-date. For example, one alprazolam product label [165] states that the AUC levels of
alprazolam increased 3.98-fold in patients who were exposed to ketoconazole while another,

out-of-date, statement in another alprazolam label declares:

Although in vivo interaction data with alprazolam are not available, ketocona-
zole and itraconazole are potent CYP 3A inhibitors and the co-administration

of alprazolam with them is not recommended. [127]

We intend to send a complete list of the errors we identified in DailyMed to its developers
as soon as possible. We also intend to write at least one conference paper or journal article to
make the errors we have identified in RxNorm and DailyMed public. We think it vital to alert
clinicians to the fact that they should never blindly trust these resources. It is also critical
to inform the increasing number of biomedical informaticists developing pharmacy-focused

tools of the serious need for building accurate and up-to-date resources.

6.4 Concluding Remarks

A recent shift in our nation’s focus to patient safety has inspired a broad effort by government

and industry to expand the use of electronic prescribing aids. As a results, there has been
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an increased effort in researching ways to overcome many technical and socio-technical
challenges to bringing sound DDI knowledge from the knowledge-base to the bedside. We
envision that, over the next decade, a new generation of highly accurate tools will become
available that use pharmacologic theory, drug mechanism knowledge, and patient-specific
data to help clinicians assess the combined effect of multiple drugs, the effect of removing
a drug from a patients drug regimen, and individual response to therapy due to enzyme
polymorphisms. These tools will be a significant advance in medicine and a radical change
from the functionality that current prescribing software offers. Our research on how to
best represent drug mechanism knowledge for the purpose of making clinically relevant DDI
predictions is a small, through important step, toward understanding how to build and

deploy the highly accurate tools that we envision.
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Appendix A

HOW BIG IS THE GAP IN SCIENTIFIC KNOWLEDGE ABOUT
DRUG-DRUG INTERACTIONS?
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As a thought experiment, consider that a query of the Federal Drug Administrations
(FDA) drugs@fda database [58] of all currently approved prescription and over-the-counter
drugs identified about 1300 unique drugs used in more than 7000 drug products®. A simple
calculation reveals that there are nearly 1.7 million pairwise DDIs possible if each drug is

considered as a possible cause of an interaction involving one other drug (Equation A.1).

2 % (132()()) = 1,688,700 (A.1)

As of the time of this writing, a simple query of the PubMed database of biomedical
research abstracts® for any study investigating drug interactions © returns approximately
450,000 abstracts. Let’s make the unrealistic assumption that each abstract represents a
study exploring the possibility that each drug in a pair drugs drawn without replacement
from the 1300 APIs could be the victim of a drug-drug interaction involving the other
drug. There would still be nearly 800,000 (1,688,700 — 2 x 450,000) unstudied potential
interactions. This would be a dramatic underestimate of the total number of unstudied
interactions because it fails to factor in the active metabolites of each drug, each of which

might have a different interaction profile.

“We made this estimate by searching the drugs@fda database on 06/24/2006 for all the unique active
pharmaceutical ingredients used drug products currently on the US market then reducing this list manually
by collapsing multiple versions of individual active pharmaceutical ingredients to a single entry.

Phttp: //www.ncbinlm.nih.gov/PubMed/

°Query: (Drug Interactions [MeSH Terms] OR interaction [Text Word])


http://www.ncbi.nlm
http://nih.gov/PubMed/
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Appendix B

THE DIKB’S RULE-BASED MODEL OF DDIS OCCURRING BY
METABOLITE INHIBITION
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The following listing is the complete set of rules that comprise the DIKB’s current model
of DDIs occurring by metabolite inhibition. Uppercase words within rule predicates repre-
sent assertion types with a defined semantics. For example, 1-is-an-IN-VITRO-SELECTIVE-
-INHIBITOR-of-2 contains the uppercase words IN-VITRO-SELECTIVE-INHIBITOR an asser-
tion type defined in Appendix C.

B.1 Rules that Model Metabolic Inhibition

;3 @ necessary condition for being an ’in vitro
;3 selective inhibitor’ is that the agent is also
;3 an inhibitor
(rule
((:IN (i-is-an-IN-VIVO-SELECTIVE-INHIBITOR-of-2 ?x ?y)))
(rassert!

(1-INHIBITS-2 ?x ?y)

(nil

(1-is-an-IN-VIVO-SELECTIVE-INHIBITOR-0f-2 ?x 7y)

DD

;; @ necessary condition of some active ingredient
;3 or compound having a primary total clearance
;; enzyme is that it is a substrate of that enzyme
(rule
((:IN (primary-total-clearance-enzyme-of-1-is-2 ?x ?y)))
(rassert!
(1-is-substrate-of-2 7x 7y)
(nil
(primary-total-clearance-enzyme-of-1-is-2 ?x ?y)

)
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;3 a necessary condition of some active ingredient
;3 or compound having a primary total clearance
;3 enzyme is that it is primarily cleared by metabolism
(rule
((:IN (primary-total-clearance-enzyme-of-1-is-2 7x ?7y)))
(rassert!
(primary-total-clearance-mechanism-of~1-is-2 ?x ’METABOLIC-CLEARANCE)
(nil
(primary-total-clearance-enzyme-of-1-is-2 ?x ?y)

)
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;3 @ rule that makes it a contradiction for an active ingredient
;3 or compound to both permanently and not permanently deactivate the catalytic
;; function of an enzyme
(rule
((:IN
(1-PERMANENTLY-DEACTIVATES-CATALYTIC-FUNCTION-0f-2 7drugl Tenzyme))
(:IN
(1-DOES-NOT-PERMANENTLY-DEACTIVATES-CATALYTIC-FUNCTION-of-2
7drugl 7enzyme)))
(contradiction
(eval (quotize (list
’1-DOES-NOT-PERMANENTLY-DEACTIVATES-CATALYTIC-FUNCTION-0f-2

?drugl 7enzyme)))))

;3 a rule for establishing that an active ingredient or metabolite
;3 *does* inhibit an enzyme based on in vitro evidence
(rule
((:IN (INHIBITION-CONSTANT-of-1-for-2-is-3 7x 7y 7k_i))
(:IN
(1-DOES-NOT-PERMANENTLY-DEACTIVATES—CATALYTIC-FUNCTION-o0f-2 7x ?7y))
(:IN (MAXIMUM-IN-VIVO-CONCENTRATION-of-1-is-2 7x ?c_max)
:TEST (> (float (/ ?c_max ?k_i )) .1)))
(rassert! (1-INHIBITS-2 7x 7y)
(nil
;sjustifications
(INHIBITION-CONSTANT-of-1~for-2-is-3 7x 7y 7k_i)
(1-DOES-NOT-PERMANENTLY-DEACTIVATES~CATALYTIC-FUNCTION-of-2
X 7y)
(MAXIMUM-IN-VIVO-CONCENTRATION-of-1-is-2 7x 7c_max)
(accept-in-vitro-based-enzyme-modulation-assertions)

)))



194

;; a rule for when a metabolic transformation is
;; inhibited by inhibition of a *knownx
;; pathway. NOTE: This rule could explicitly ignore
;3 inhibition a metabolite’s own production itself
;3 1f a test were added to one of the antecedents:
;3 :TEST (not (equal ?q ?y))
(rule

((:IN (1-has-metabolite-2-via-3 ?x ?y ?z))

(:IN (1~INHIBITS-2 ?q 7z)))

(rassert!
(1-inhibits-transformation~of-2-to-3-via-4 7q ?x 7y 7z)
(nil

(1-has-metabolite~2-via-3 ?x ?y 7z)
(1-INHIBITS-2 7q 72)
)

;3 a rule for when an active ingredient or metabolite, ?x, will
;; not inhibit the metabolic clearance of another drug, %z,
;; because ?x does not inhibit enzyme 7y’s ability to catalyze
;3 drug 7z
(rule

((:IN (1-DOES-NOT-INHIBIT-2 ?x ?y))

(:IN (1-is—SUBSTRATE-0F-2 7z ?y)))

(rassert!
(1-does-not-inhibit-the-metabolic-clearance-of-2-via~3 ?x ?z ?y)
(nil

(1-DDES-NOT-INHIBIT-2 ?x ?y)
(1-is-SUBSTRATE-0OF-2 ?z ?y)
)
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;3 a rule for when an active ingredient or metabolite, 7x, will
;3 not inhibit the metabolic clearance of another drug, 7z,
;; because 7z is not a substrate of enzyme 7y
(rule
((:IN (1-inhibits-2 ?x ?y))
(:IN (1-is-not-a-substrate-of-2 7z ?7y)))

(rassert!
(1-does-not-inhibit-the-metabolic-clearance-of~2-via-3 7x 7z 7y)
(nil

(1-inhibits-2 ?x ?y)
(1-is-not-a-substrate-of-2 7z ?y)

D))

;3 a rule for establishing that an active ingredient or metabolite
;3 *does not* inhibit an enzyme based on in vitro evidence
(rule
((:IN (INHIBITION-CONSTANT-of-1-for-2-is-3 ?x 7y 7k_i))
(:IN (1-DOES-NOT-PERMANENTLY-DEACTIVATES-CATALYTIC-FUNCTION-of-2 ?x 7y))
(:IN (MAXIMUM~IN-VIVO-CONCENTRATION-of-1-is-2 ?x ?c_max)
:TEST (<= (float (/ ?c_max ?k_i )) .1)))
(rassert! (1-DOES-NOT-INHIBIT-2 7x ?7y)
(nil
;;justifications
(INHIBITION-CONSTANT-of-1-for-2-is-3 7?x 7y 7k_i)
(1-DOES-NOT-PERMANENTLY-DEACTIVATES-CATALYTIC-FUNCTION-of-2 7x ?7y)
(MAXIMUM-IN-VIVO-CONCENTRATION-of-1-is-2 ?x 7c_max)

(accept-in-vitro-based-enzyme-modulation-assertions)

D))
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;3 a rule for that makes it a contradiction for an active ingredient
;3 or metabolite to both inhibit and not inhibit the catalytic
;5 function of an enzyme
(rule
((:IN (1-INHIBITS-2 ?7x ?y))
(:IN (1-DOES-NOT-INHIBIT-2 7x ?y)))
(contradiction
(eval (quotize (list

?1-DOES-NOT-INHIBIT-2 ?drugl ?enzyme)))))

;5 @ rule for that makes it a contradiction for an active ingredient
;3 or compound to be and *not* be a substrate of an enzyme
(rule
((:IN (1-is-substrate-of-2 ?drug 7enzyme))
(:IN (1-is-not-substrate-of-2 ?drug ?enzyme)))
(contradiction
(eval (quotize (list

’1-is-not-substrate-of-2 ?drug 7enzyme)))))
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;; Some, possibly negligible, inhibition of
;; metabolic clearance of active ingredient or
;; metabolite 7z by active ingredient or metabolite
;3 7x due to ?x’s inhibition of enzyme ?y’s ability
;3 to catalyze ?z. NOTE: this test ignores cases
;3 where a drug INHIBITS itself
(rule

((:IN (1-INHIBITS-2 ?x ?y))

(:IN (1-is-SUBSTRATE-OF-2 7z ?y)

:TEST (not (equal ?x ?z))))

(rassert!
(1-INHIBITS-METABOLIC~CLEARANCE-of-2-via-3 ?x 7z ?y)
(nil

(1-INHIBITS-2 7x ?y)
(1-is-SUBSTRATE-OF-2 7z ?7y)
DD
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;; A more significant inhibition of metabolic clearance
;3 that should lead to a greater *minimum* increase in AUC
;; than the 1-INHIBITS-METABOLIC-CLEARANCE-of-2-via-3 assertion captures.
;3 This models the effect of inhibiting an enzyme that is responsible
;3 for .25 of a drug’s total clearance by requiring inhibition of an enzyme
;; responsible for at least .50 of a drug’s *metabolic* clearance when that
;; form of clearance is responsible for at least .50 of the drug’s
;3 *total* clearance
(rule
(C:IN
(1-inhibits-metabolic-clearance-of-2-via-3 ?x ?z ?y)
:TEST (not (equal ?x ?72z)))
(:IN
(PRIMARY-TOTAL-CLEARANCE-MECHANISM-of-1-is-2 7z
’METABOLIC~CLEARANCE) )
(:IN
(PRIMARY-METABOLIC-CLEARANCE-ENZYME-of-1-is-2 ?z 7y)))
(rassert!
(1-inhibits-3-the-primary-metabolic-enzyme-of-2 7x 7z ?y)
(nil
;3justifications
(1-inhibits-metabolic-clearance-of-2-via-3 ?x ?z ?7y)
(PRIMARY-TOTAL-CLEARANCE-MECHANISM-of-1-is-2 7z
’METABOLIC-CLEARANCE)
(PRIMARY-METABOLIC-CLEARANCE-ENZYME-of~-1-is-2 7z 7y)
)
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;3 This rule models inhibition of metabolic clearance that should lead to
;3 a greater *minimum* increase in AUC than the
;3 1-INHIBITS-3-the-primary-metabolic-enzyme-of-2 assertion captures.
;3 If one enzyme is responsible for at least .50 of the
;; metabolic clearance of a drug and another drug fully INHIBITS that enzyme
;; then, one would expect at least at least a .50 decrease in clearance and,
;; subsequently, at least a 2-fold increase in AUC.
(rule
(C:IN
(1-inhibits-metabolic-clearance-of-2-via-3 7?x 7z ?7y)
:TEST (not (equal ?x ?7z)))
(:IN
(PRIMARY-TOTAL-CLEARANCE-ENZYME-of-1-1s-2 ?z ?y)))
(rassert!
(1~inhibits-3-the-primary-total-clearance-enz-of-2 ?x 7z ?7y)
(nil
;sjustifications
(1-inhibits-metabolic-clearance-of-2-via-3 ?x 7z ?7y)
(PRIMARY-TOTAL-CLEARANCE-ENZYME-of-1-is-2 7z ?y)
)
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;3 This rule models inhibition of metabolic clearance that should lead to

;; @ greater *maximum* increase in AUC than the
;3 inhibit-primary-tot-clearance-enz assertion captures.
;3 It predicts a drastic increase in AUC for active
;; ingredients that undergo a high degree first-pass metabolism
(rule
(G:IN
(1-inhibits-3-the-primary-total-clearance-enz-of-2 7x 7z 7y))
(:IN
(FIRST-PASS-EFFECT-on-1-ig-2 ?z *HIGH)))
(rassert!
(met-inhibit-drug-w-high~first-pass ?x ?z ?y)
(nil
;yjustifications
(1-inhibits-3-the-primary-total-clearance-enz-of-2 ?x 7z 7y)
(FIRST-PASS~EFFECT-on-1-is-2 7z ’HIGH)
)))

;3 @ rule defining some, possibly negligible, inhibition
;3 of clearance for a pceut-entity-of-concern
(rule
(C:IN
(1-inhibits-metabolic-clearance-of-2-via-3 7x ?z 7y))
(:IN
(1-is-PCEUT-ENTITY-OF-CONCERN ?z)))

(rassert!

(first-level-metabolic-inhibition-of-pceut-entity-of-concern ?x ?z ?y)

(nil

;;justifications
(1-inhibits-metabolic-clearance-of-2-via-3 ?x ?z ?y)
(1-is-PCEUT-ENTITY-OF-CONCERN ?z)

)))
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;3 rules defining when the inhibition of a pceut-entity-of-concern
;3 clearance should lead to a more‘significant increase in AUC
;; than that captured by
;3 first-level-metabolic-inhibition-of-pceut-entity-of-concern
;3 assertions
(rule
(¢:IN
(1-inhibits-3-the-primary-metabolic~enzyme-of-2 ?x ?z ?y))
(:IN
(1-is-PCEUT-ENTITY-OF-CONCERN 72)))

(rassert!
(second-level-metabolic-inhibition~of-pceut-entity-of-concern ?x 7z 7y)
(nil

;yjustifications
(1-inhibits-3-the-primary-metabolic-enzyme-of-2 7x 7z ?y)
(1-is-PCEUT-ENTITY-0OF-CONCERN 7z)

)

(rule

((:IN
(1-inhibits-3-the-primary-total-clearance-enz—of-2 ?x ?z 7y))
(:IN (1-is-PCEUT-ENTITY-OF-CONCERN ?7z)))

(rassert!
(second-level-metabolic-inhibition-of-pceut—entity-of-concern 7x 7z 7y)
(nil

;sjustifications
(1-inhibits-3-the-primary-total-clearance-enz-of-2 7x 7z ?7y)
(1-is~PCEUT-ENTITY-0F~CONCERN ?72z)

)N
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B.2 Rules for Linking Metabolites to Active Ingredients and Ancestor Com-
pounds

;; a rule linking an parent compound to an metabolite
(rule
((:IN (1-has-metabolite-2-via-3 ?x ?y ?7z)))
(rassert!

(1-is-ANCESTOR-0F-2 ?x ?y)

(nil

(1-bas-metabolite-2-via-3 7x ?y ?z)

)D)]

(rule
((:IN (1-has-metabolite-2-via-3 ?x ?y 7z)))
(rassert!
(1-is-SUBSTRATE-0F-2 ?7x 7z)
(nil
(1-has-metabolite-2-via-3 ?x 7y 7z)

D)

;; a rule linking the catalysis of the formation of a
;; metabolite to parent compounds
(rule
((:IN (1-CONTROLS-FORMATION-of-2 7enz 7x))
(:IN (1-HAS-METABOLITE-2 ?y ?x)))
(rassert!
(1-has-metabolite-2-via-3 7y 7x 7enz)
(nil
(1-CONTROLS-FORMATION-of-2 7enz 7x)
(1-HAS-METABOLITE-2 7y 7x)
D))
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;; a rule linking an ancestor compound to an metabolite
(zule
((:IN (1l-has-metabolite-2-via-3 ?x 7y 7e))
(:IN (1-is-ANCESTOR-OF-2 ?z ?7x)))
(rassert!
(1-is~-ANCESTOR-0F-2 7z 7y)
(nil
(1-has-metabolite-2-via-3 7x 7y 7e)
(1-is-ANCESTOR-0F-2 7z 7x)
D))

B.3 Modeling the Effect of Inhibition Through a Graph of Catalytic Reactions

All of these rules assume that alternate clearance pathways are not saturated.

;3 inhibitjion of the formation of a metabolite
;; upstream affects the formation of all metabolites
;; downstream
(rule
(C:IN
(1-inhibits-transformation-of-2-to-3-via-4 ?q ?x ?ml 7enz))
(:IN
(1-is-ANCESTOR-0F-2 ?ml ?m2)))
(rassert!
(1-INHIBITS-transformation-of-2-to-3-via-4-upstream ?q 7x 7m2 7enz)
(nil
(1-INHIBITS-transformation-of-2-to-3-via-4 ?q 7x 7ml 7enz)
(1-is-ANCESTOR-0F-2 ?ml 7m2)
)
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;3 if the formation of two different metabolites, M1
;; and M2, from the same agent, X, is catalyzed by
;; *different* enzymes then, the effect on M2 of
;3 modulating the clearance of X by inhibiting or
;3 inducing the catalytic function of one of the
;3 enzymes will be an non-ambiguous increase or
;3 decrease
(rule

((:IN (1-has-metabolite-2-via-3 ?x ?ml Tenzl))
(:IN (1-has-metabolite-2-via-3 ?x 7m2 Tenz2)
:TEST (and (not (equal ?ml ?m2))
(not (equal 7enzl 7enz2))
(not (equal ?enzl ’UNKNOWN)))))
(assume!
(eval
(quotize
(list
’effect-on-1-cf-modulating-the-clearance-of-2-via-3-is-non-ambiguous
m2 ?x ?enzl)))

’default-inference-assumption))
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;; If the effect on some metabolite, M1, of
;; modulating the clearance of its parent compound,
;3 X, by inhibiting or inducing the catalytic
;; function of some enzyme, E, is an unambiguous
;; increase or decrease and if M1 has a metabolite,
;3 M2, and the transformation of M1 to M2 is
;; controlled by a different enzyme than E then,
;; then an increase or decrease in X will effect an
;; non-ambiguous increase M2
(rule
(C:IN
(effect-on-1-of-modulating-the-clearance-of-2-via-3-is-non-ambiguous
7ml ?x 7enzl))
(:IN (1-has-metabolite-2-via-3 7ml 7m2 7enz2)
:TEST (and (not (equal 7enzl ?enz2))
(not (equal 7enzl *UNKNOWN)))))
(assume!
(eval
(quotize
(list
’effect-on-1-of-modulating-the-clearance-of-2-via-3-is-non-ambiguous
?m2 7x 7enzl)))

’default-inference-assumption))



206

(rule
((:IN (effect-on-l-of-modulating-the-clearance-of-2-via-3-is-non-ambiguous
7m 7x 7enz))

(:IN (1-inhibits-2 ?q 7enz)))
(rassert!

(1-effects-an-increase-in-2-by-reducing-clearance-of-3-via-4

?7q ?m 7x 7enz)
(nil
(effect-on-1-of-modulating-the-clearance-of-2-via-3-is-non-ambiguous
m ?x Penz)
(1-inhibits-2 ?q 7enz) '
)
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;5 The effect of an increased formation of a parent
;3 compound, X, on some metabolite, M1, due to
;; reduced clearance by an alternate pathway is to
;3 increase formation of M2 when the enzymes
;3 involved in the formation of M1 and M2 are both
;; different then the enzyme whose inhibition caused
;; an increase in X
(rule
(
(:IN
(1-effects-an-increase-in-2-by-reducing~clearance-of-3~via-4
?q 7ml ?x ?7enzl))
(:IN (1-has-metabolite-2-via-3 7ml ?m2 7enz2)
:TEST (and (not (equal ?enzl 7enz2))
(not (equal ?enzl ’UNKNOWN))))
(:IN
(effect-on-1-of-modulating-the-clearance-of-2-via-3-is-non-ambiguous
?m2 ?x ?enzl)))
(rassert!
(1-effects-an-increase-in-2-by-reducing-clearance—of-3-via-4
?q 7m2 ?x ?7enzl)
(nil
(1-effects-an-increase-in-2-by-reducing-clearance-of-3-via-4
?7q ?ml ?x Penzl)
(1-has-metabolite-2-via-3 7ml ?m2 7enz2)
(effect-on-1-of-modulating-the-clearance-of-2-via-3-is-non-ambiguous
?m2 ?x 7enzl)

N
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;3 Ambiguous and non-ambiguous effects are mutually
;; exclusive. Since an non—ambiguous effect is the
;3 default assumption, it is retracted
(rule
((:IN
(effect-on-1-of-2-reducing-the-clearance-of-3-via-4-is~ambiguous
?m 7q ?x ?z))
(:IN
(effect-on-1-of-modulating-the-clearance-of-2-via-3-is-non-ambiguous
Tm ?x ?z)))
(rretract!
(effect-on-1-of-modulating~the-clearance-of-2-via-3-is-non-ambiguous
m ?x ?z)

default-inference-assumption))

;3 If the effect of reducing the clearance of
;3 metabolite is uncertain for a given metabolite,
;3 it will be so for all metabolites downstream in
;; the metabolic pathway
(rule
(
(:IN
(effect-on-1-of-2-reducing-the-clearance-of-3-via-4-is-ambiguous -
7ml ?7q ?x 7enz))
(:IN (1-is-ancestor-of-2 ?ml1 7m2)))
(rassert!
(effect-on-1-of-2-reducing-the-clearance-of-3-via-4-is—ambiguous
?m2 7q ?x Penz)
(nil
(effect-on-1-of-2-reducing-the-clearance-of-3-via-4-is-ambiguous
?ml ?q ?x 7enz)
(1-is-ancestor-of-2 ?ml 7m2)

D))



209

;5 It is a contradiction to have an ambiguous effect and a clearly
;3 identified effect
(rule
(
(:IN
(effect-on-1-of-2-reducing~the-clearance-of-3-via-4-is-ambiguous
m ?q ?x ?z))
(1IN
(1-effects—an-increase-in-2-by-reducing-clearance-of-3-via-4
?q m ?x ?2)))
(contradiction
(eval
(quotize
(list ’1l-effects-an-increase-in-2-by-reducing-clearance-of-3-via-4

?q m ?x ?z)))))
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;3 If the formation of two different metabolites
;3 from the same agent are catalyzed by *the same enzymex*
;; then the effect of inhibiting the enzyme
;; on both metabolites is ambiguous. This is because
;; there is both an increase in parent compound due
;; to removal of one clearance pathway and a
;; decrease in the ability qf the enzyme formation
;3 of child compound
(rule
((:IN (1-has-metabolite-2-via-3 ?x ?ml1 ?z))
(:IN (1-has-metabolite-2-via-3 ?x ?m2 ?2z) :TEST (not (equal ?ml 7m2)))
(:IN (1-inhibits-2 7q ?2)))
(rassert!
(effect-on-1-of-2-reducing-the-clearance-of-3-via-4-is-ambiguous
m2 7q 7x 7z)
(nil
(1-has-metabolite-2-via-3 ?x 7ml ?z)
(1-has-metabolite-2-via-3 ?x 7m2 7z)
(1-inhibits-2 7q 7z)
)D))
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;3 If it is not known if the formation of two
;3 different metabolites from the same agent are
;3 catalyzed by *the same enzyme* then the effect of
;3 inhibiting the enzyme on both metabolites is
;3 ambiguous. This is because there might be both an
;; increase in parent compound due to removal of one
;; clearance pathway and a decrease in the ability
;3 of the enzyme formation of child compound
(rule
((:IN (1-has-metabolite-2-via-3 ?x 7ml ?7z))
(:IN (i1-has-metabolite-2-via-3 ?x 7m2 ’UNKNOWN)
:TEST (not (equal 7ml ?m2)))
(:IN (1-inhibits-2 ?q 7z)))
(rassert!
(effect-on-1-of-2-reducing-the-clearance-of-3-via-4-is-ambiguous
m2 ?7q 7x ?7z)
(nil
(1-has-metabolite-2-via-3 7x 7ml 7z)
(1-has-metabolite-2-via-3 7x 7m2 ’UNKNOWN)
(1-inhibits-2 ?q 7z)
1))
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;3 The effect of an increased formation of a parent
;; compound on a metabolite due to reduced clearance
;3 of an alternatevpathway is unclear if the same
;; enzyme is inhibited in both the alternate pathway
;3 and the formation of the metabolite
(rule
(C:IN
(1-effects-an-increase—in-2-by-reducing-clearance~of-3-via-4
?7q 7ml 7x 7enz))
(:IN (1-has-metabolite-~2-via-3 7ml 7m2 7enz)))
(rassert!
(effect-on-1-of-2-reducing-the-clearance-of-3-via-4-is—ambiguous
m2 7q ?x 7enz)
(nil
(1-effects-an-increase~in-2-by-reducing-clearance-of-3-via-4
7q 7ml ?x 7enz)
(1-has-metabolite-2-via-3 7ml 7m2 7enz)

DY
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;35 The effect of an increased formation of a parent
;; compound on a metabolite due to reduced clearance
;; of an alternate pathway is unclear if is not
;3 known whether or not the same enzyme is inhibited
;3 in both the alternate pathway and the formation
;3 of the metabolite
(rule
(C:IN
(1-effects-an-increase-in-2-by-reducing-clearance-of-3-via-4
?7q 7ml 7x 7enz))
(:IN (1-has-metabolite-2-via-3 7ml 7m2 ’UNKNOWN)))
(rassert!
(effect-on-1-of-2-reducing-the-clearance-of-3-via-4-is-ambiguous
m2 ?q ?x 7enz)
(nil
(1-effects-an-increase-in-2-by-reducing-clearance-of-3-via-4
?7q 7ml 7x Tenz)
(1-has-metabolite-2-via-3 ?7m1 7m2 ’UNKNOWN)
M)

B.4 Rules for Disjunctive Cases

A set of rules to for the disjunctive case where an active ingredient is ancestor to a compound

that interacts with another active ingredient or metabolite.
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(rule
((:IN (1-is—an-ACTIVE-INGREDIENT ?x))
(:IN (1-is-ANCESTOR-OF-2 ?x 7y))
(:IN (1-INHIBITS-3-the-primary-metabolic-enzyme-of-2
?y 7z %7enz)))
(rassert!
(active-ingredient-1-is—ancestor-to-2-and-2-interacts-with-3
’ ?x ?y 7z)
(nil
(1-is-an-ACTIVE-INGREDIENT ?x)
(1-is~ANCESTOR-0F-2 7x 7y)
(1-INHIBITS-3-the-primary-metabolic-enzyme-of-2
7y 7z 7enz)

)

(rule
((:IN (1-is-an-ACTIVE-INGREDIENT 7x))
(:IN (1-is—-ANCESTOR-OF-2 ?x ?y))
(:IN (1-inhibits-metabolic-clearance~of-2-via-3
7y 7z Tenz)))
(rassert!
(active-ingredient-1-is-ancestor-to-2-and-2-effects-an-interaction-with-3
?x 7y 72)
(nil
(1-is-an-ACTIVE-INGREDIENT 7x)
(1-is~ANCESTOR-0F-2 7x 7y)
(1-inhibits-metabolic-clearance-of-2-via-3
7y 7z 7enz)

D)

A set of rules to for the disjunctive case where an active ingredient is ancestor to a compound

that is the victim of an interaction with another active ingredient or metabolite.


http://active-ingredien.t-l-is-ancestor-to-2-and-2-interacts-with.-3

(rule
((:IN (1~-is-an-ACTIVE-INGREDIENT ?x))
(:IN (1-is-ANCESTOR-OF-2 7?7x 7z))
(:IN (1-inhibits-3-the-primary-metabolic-enzyme-of-2
?y ?z 7enz)))
(rassert!
(active-ingredient-1-is-ancestor-to-2-and-2-is-affected-by-3
?x ?z 7y)
(nil
(1-is-an-ACTIVE-INGREDIENT ?x)
(1-is-ANCESTOR-0F-2 7x 7z)
(1-inhibits~3-the-primary-metabolic-enzyme-of-2 7y 7z ?enz)

)P))

(rule
((:IN (1-is—an-ACTIVE-INGREDIENT ?x))
(:IN (1-is~-ANCESTOR-0F-2 7?x 7z))
(:IN (1-inhibits-metabolic-clearance-of-2-via-3 ?y 7z 7enz)))
(rassert!
(ACTIVE-INGREDIENT~1-is-ancestor-to-2-and-2-is-affected-by-3
7x ?z ?7y)
(nil
(1-is-an-ACTIVE-INGREDIENT 7x)
(1-is-ANCESTOR-0F-2 7?x 7?z2)
(1-inhibits-metabolic-clearance-of-2-via-3 ?y ?z Penz)

)

215
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Appendix C

DEFINITIONS FOR EACH ASSERTION TYPE USED IN THE
DIKB’S RULE-BASE
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C.1 The primary-total-clearance-mechanism Assertion

The “primary total clearance mechanism” of some active pharmaceutic ingredient or metabo-
lite, X, is the pharmacokinetic process that accounts for more than 50% of X’s clearance from

the body. The DIKB’s structured vocabulary lists four possible clearance processes:

1. Biliary.Excretion- Excretion of unchanged active pharmaceutic ingredient or metabo-

lite, be it a complex, protein, or small molecule, via the bile and feces

2. Exhalation.Excretion - Excretion of unchanged active ingredient or metabolite, be

it a complex, protein, or small molecule, via the lungs

3. Renal Excretion- Excretion of unchanged active pharmaceutic ingredient or metabo-

lite, be it a complex, protein, or small molecule, via the kidneys

4. Metabolic_Clearance - Elimination from the body of an active ingredient or metabo-
lite, be it a complex, protein, or small molecule, by transformation through the
biochemical reactions and pathways to substances that are inactive and/or excreted

by the body
C.2 The bioavailability Assertion

This assertion specifies the proportion of an active pharmaceutical ingredient’s dose that
reaches systemic circulation. This assertion does not apply to drug metabolites. When
the DIKB’s evidence-model (Chapter 2, Section 2.3.1.1) exports this assertion it takes the
maximum bioavailability entry found in all of the evidence items in the evidence-for list
belonging to a given Assertion instance.

This value is mapped to the following discrete categories:
e LOW: [0.0,.20]
e MEDIUM: (.201,.50]

e HIGH: (.501,1]
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The motivation for choosing these categories is based on simple conjectures about what
the maximum increase in AUC can be at various bioavailability levels. For example, a
drug with a biocavailability of 50% should only be able to experience an approximate 2-
fold increase in AUC if whatever is blocking the drug from entering systemic is completely
removed. The maximum possible magnitude increase at the 20% level is approximately
5-fold while there is no limit for drugs with bidavailability values near zero.

Like the maximum_concentration assertion, bioavailability depends on statistical
inference rather than logical induction and all drugs have some bioavailability value. There-
fore, no evidence-against items need be collected. When different formulations of a drug
have different bioavailability values (e.g. extended vs normal release) each assertion instance
must refer to the dose and formulation of the pharmaceutical preparation that is associated

with the bio-availability value.
C.3 The first-pass—-effect Assertion

The first-pass-effect assertion is a qualitative statement of the degree to which an
active pharmaceutic ingredient is cleared from the body before entering systemic circulation.
At the time of this writing the focus is on the degree of first-pass metabolism an active
pharmaceutic ingredient undergoes in the liver and gut wall before a drug reaches systemic
circulation. As more becomes known about transporter proteins (e.g. P-glycoprotein)
separate rules might be created to model effects on modulation of their activity. This
assertion does not apply to metabolites.

This value is mapped to the following discrete categories:

e LOW: [0.0,.50]
e MEDIUM: (.501,.80]
e HIGH: (.801,1]

The motivation for choosing these categories is based on simple conjectures about what

the maximum increase in AUC can be at various first-pass-effect levels. For example, an
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active pharmaceutic ingredient with a first-pass effect of 50% should only be able to expe-
rience an approximate 2-fold increase in AUC if the first-pass effect is completely removed.
The maximum possible magnitude increase at the 80% level is approximately 5-fold while
there is no limit for drugs with first-pass effect values near 100%.

Establishment: There are two ways that to derive a value for this assertion:
1. The value might be found in the results of a mass-balance study

2. If quantitative values are known for both the bioavailability, F, of and percent of
active pharmaceutic ingredient absorbed, fus, then first pass effect can be calculated

as:
_ F
fabs

1 (C.1)

This is a quantitative assertion that requires statistical inference. Some drugs or drug
metabolits might have no first-pass effect (e.g. pharmaceutical entities with no clearance
by metabolism) so it is logical to seek evidence against this assertion as well as supporting

evidence.

C.4 The fraction-absorbed Assertion

This assertion is a quantitative statement of the fraction of an active ingredient’s dose
that gets absorbed in the gastro-intestinal tract. Such an estimate might be obtained from
a study focusing on gut wall absorption. The quantitative values are maintained by the

system but, they are also mapped to the following qualitative levels:
e LOW: [0.0,.50]
e HIGH: (.501,1]

In many cases there will be no quantitative data for either the fraction of active phar-
maceutic ingredient that is absorbed, its bioavailability, or both. However, one can often
find, or derive, a reasonable qualitative estimate that falls within the range of either of these

levels. This assertion does not apply to metabolites.
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This is a quantitative assertion that requires statistical inference. Some drugs might not
be absorbed in the GI tract (e.g. drugs for which there are only IV formulations) so it is

logical to seek evidence against this assertion as well as supporting evidence.

C.5 The maximum-concentration Assertion

This assertion specifies the maximum concentration (Cpez), in grams/liter, that the an
active pharmaceutic ingredient or metabolite is known to reach. For active pharmaceutical
ingredients, it is linked to the particular dose, in grams, of active pharmaceutic ingredients
that was given in the study. For drug metabolites, it is linked to the particular dose in grams
of the metabolite’s ancestor active pharmaceutic ingredient that was given in the study.
When the DIKB’s evidence-model (Chapter 2, Section 2.3.1.1) exports this assertion it
takes the maximum C,,,, value entry found in all of the evidence items in the evidence-for
list belonging to a given Assertion instance.

When different formulations of a drug have different maximum concentration values (e.g.
extended vs normal release) each assertion instance must refer to the dose and formulation
of the drug that is associated with the value being entered.

This assertion, depends on statistical inference rather than logical induction and all
pharmaceutical entities will have some C),,4, value. Therefore, no evidence-against items

need be collected.

C.6 The inhibits Assertion

An active pharmaceutic ingredient or metabolite, X, is said to be a inhibit some enzyme,

E, if X effects a measurable reduction in the catalytic function of E in vivo.

C.7 The does-not-inhibit Assertion

If an active pharmaceutic ingredient or metabolite, X does not effect a measurable reduc-
tion in the catalytic function of some enzyme E in vivo then the X does-not-inhibit E

assertion applies.
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C.8 The in-vitro-selective-inhibitor-of-enzyme Assertion

The FDA has provided a list of preferred and acceptable inhibitors for in vitro studies
in [26], Appendix C-1, Table 2, and the CDER Web page on drug interactions [40]. In the
DIKB, these chemicals are assumed to be in vitro selective inhibitors of they enzymes that

they are listed with in these sources.
C.9 The in-viVo-selective-inhibitor-of-enzyme Assertion

The FDA has provided a list of preferred and acceptable inhibitors for in vivo studies in [26],
Appendix A, Table 2, and the CDER Web page on drug interactions [40]. In the DIKB,
these chemicals are assumed to be in vivo selective inhibitors of they enzymes that they are
listed with in these sources.

Applyiﬁg this assertion to some metabolite or active pharmaceutic ingredient, X, and

enzyme, ENZ, implies that X inhibits ENZ.
C.10 The substrate-of Assertion

An active pharmaceutic ingredient or metabolite, X, is said to be a substrate-of some
enzyme, E| if E catalyzes the transformation of the X to a metabolite, M. This assertion
does not imply any quantitative information such as contribution £ makes relative to other

enzymes that catalyze the same reaction.
C.11 The in-vitro-probe-substrate-of-enzyme Assertion

The FDA has provided a list of preferred and acceptable chemical substrates for in vitro
studies in [26], Table 3, and the CDER Web page on drug interactions [40]. In the DIKB, the
principle chemicals involved in these reactions are in vitro probe substrates of the enzymes

they are listed.
C.12 The is-not-substrate—-of Assertion

Let X be an active pharmaceutic ingredient or metabolite and E some enzyme. If E does

not catalyze the transformation of X to any known metabolite of X then the assertion X
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is-not-substrate~of E applies.
C.13 The primary-total-clearance-enzyme Assertion

The “primary total clearance enzyme” of some active pharmaceutic ingredient or metabolite,
X, is the enzyme, ENZ, responsible for 50% or more of the active pharmaceutic ingredient or
metabolite’s total clearance from the body. In other words, if at least 50% of X is cleared
from the body by metabolic reactionslcatalyzed by ENZ then ENZ is the “primary total
clearance enzyme” of X. This assertion can be established by any of the following methods

(see Chapter 3, Section 3.2.3.5 for further explanation):

1. ENZ is polymorphic and a well-designed in vivo polymorphic pharmacokinetic study

shows that ENZ is responsible for 50% or more of X’s clearance

2. a well-designed clinical trial investigating the pharmacokinetics of drug X in the pres-
ence of drug Y shows an increase in the AUC of X of at least 2-fold. NOTE: 1) drug Y
must have no measurable effect on X’s clearance by renal clearance, biliary clearance,

or exhalation, and 2) drug Y must be a selective inhibitor of ENZ

Applying this assertion to some metabolite or active pharmaceutic ingredient, X, and

enzyme, ENZ, implies that:
e X is a substrate-of ENZ

¢ the primary-total-clearance-mechanism of X is metabolism

The current DIKB policy is that any enzyme that the FDA considers a drug or drug
metabolite to be a probesubstrate of in vivo should be labeled its primary total clearance
enzyme. The FDA has provided a list of preferred and acceptable probe substrates for in
vivo studies in [26), Appendix A, Table 2, and the CDER Web page on drug interactions [40].
In the DIKB, these chemicals are assumed to be in vivo probe substrates of the enzymes

that they are listed with in these sources.
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C.14 The primary-metabolic-clearance-enzyme Assertion

The “primary metabolic clearance enzyme” of some active pharmaceutic ingredient or
metabolite, X, is the enzyme, ENZ, responsible for 50% of the active pharmaceutic ingre-

dient or metabolite’s total metabolic clearance from the body.

C.15 The inhibition-constant Assertion

Some in witro inhibition studies provide an inhibition constant, Kj;, or a value that can
converted to one. This assertion is the continuous value derived from such studies. When
the DIKB’s evidence-model (Chapter 2, Section 2.3.1.1) exports this assertion it takes
the minimum all K; values in the evidence-for list belonging to a given Assertion in-
stance. When the DIKB’s prediction rules are ran, this assertion is combined with the
maximum concentration assertion for the (see Section C.5), Cpuez, and the permanently deactivates_cat:
assertion (Section C.22) to derive an estimate of the clinical relevance of the observed in
vitro inhibition.
The DIKB labels a drug or drug metabolite an in vivo inhibitor for some drug me-
tabolizing enzyme at the concentrations it is expected to reach during drug therapy if the

following relationship holds:

Cma(v
K;

> 0.1 (C.2)

Where Cinez is the maximum observed concentr‘ation the inhibitor has reached in pa-
tients at normal, therapeutic, doses and Kj; is an inhibition constant derived from a well-
designed in vitro enzyme inhibition experiment involving the inhibitor. This relationship
applies to inhibition of members of the Cytochrome P-450 enzyme family and is not appli-
cable if the inhibitor is thought to permanently remove the affected enzyme from further
participation in catalysis by any means. The basis for this relationship can be found in
a recent FDA guidance that recommends that a clinically relevant effect from competitive

enzyme inhibition be considered possible if the following relationship holds (see [26], p.33):
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]
7 >0 (C.3)

Where [I] is the estimated concentration of the inhibitor at the enzyme binding site.

It is important to note that K; values can vary depending on the system of enzymes used
in each study. In fact, there can be a greater than 10-fold difference between the K; found
in recombinant enzyme systems compared to the K; derived from human liver microsomes.
Thus, the DIKB requires that the enzyme system used in the study from which a K is
taken be noted in case there will be a need to distinguish K; value by the enzyme system
from which they were derived.

Like the maximum concentration assertion, inhibition.constant depends on statis-
tical inference rather than logical induction. Unlike the maximum_concentration, the
value does not exist for some pharmaceutical entities. Therefore, it is logical to collect

evidence-against items.
C.16 The has-metabolite Assertion

If an active pharmaceutic ingredient or metabolite, X, can be chemically altered to produce
another compound, M, via a single chemical reaction possibly involving some enzyme, E,

then, metabolite M is considered a metabolite of X and the assertion (X has-metabolite

M) is applicable.
C.17 The controls-formation-of Assertion

If an active pharmaceutic ingredient or metabolite, X, can be chemically altered to produce
another compound, M, via a single chemical reaction that requires catalysis by some en-
zyme, F then, E controls the formation of M and the assertion (E controls-formation-of

M) is applicable.
C.18 The polymorphic-enzyme Assertion

A polymorphic-enzyme enzyme is an enzyme that has multiple drug-catalysis phenotypes

due to genetic polymorphisms. By default, the DIKB assumes all enzymes to be non-
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polymorphic.
C.19 The pceut-entity-of-concern Assertion

A “pceut-entity-of-concern” is an active pharmaceutic ingredient or metabolite for which
even a small change in the system concentration would be of concern to a clinician. We
assume that the criteria for a drug to meet this definition will vary for valid reasons between

different groups of experts but use the following criteria in the current DIKB:

e active pharmaceutic ingredient or metabolites for which therapeutic drug monitoring

is required

e active pharmaceutic ingredient or metabolites for which the ratio between the toxic
systemic concentration of the agent and the concentration at which the agent is ther-

apeutic is less than or equal to 2.0.
C.20 The sole-PK-effect-alter-metabolic-clearance Assertion

This assertion is a required assumption of evidence from a clinical pharmacokinetic DDI
study involving a non-polymorphic enzyme when a curator applies the study as support
for the primary-total-clearance-enzyme assertion (see Section C.13). It asserts that the
sole pharmacokinetic effect of an active pharmaceutic ingredient or metabolite, Y, on an
active pharmaceutic ingredient or metabolite, X, is alteration of X’s metabolic clearance. In
other words, it asserts that Y has no measurable effect on X’s clearance by renal, biliary,

exhalation, or efflux transport processes.
C.21 The permanently deactivates_catalytic function Assertion

This assertion specifies that an active pharmaceutical ingredient or metabolite is known
to affect an enzyme in such a way that the enzyme is permanently removed from further
participation in catalysis. For example, this assertion is applicable for the slowly reversible
and irreversible inhibition mechanisms mentioned in Chapter 3, Section 3 and discussed in

detail in Levy et al [112]. This assertion is also applicable if there is any other mechanism
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by which the active pharmaceutic ingredient or metabolite could permanently remove the

enzyme from further participation in catalysis.

When the DIKB’s evidence-model (Chapter 2, Section 2.3.1.1) asserts that some active
pharmaceutical ingredient or metabolite, X, is an inhibitor of some enzyme, Y, and the
permanently deactivate_catalytic_function assertion contains no value, the system will
assert the does not_permanently deactivate_catalytic_function assertion by default

reasoning.

C.22 The doesnot_permanently deactivate_catalytic_function Assertion

This is the inverse of the permanently deactivates_catalytic_function assertion (Sec-
tion C.21). When the DIKB's evidence-model (Chapter 2, Section 2.3.1.1) asserts that some
active pharmaceutical ingredient or metabolite, X, is an inhibitor of some enzyme, Y, and
the permanently deactivates_catalytic_function assertion contains no value, the sys-
tem will assert the does not_permanently deactivate_catalytic_function assertion by

default reasoning.
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Appendix D
THE DIKB EVIDENCE TAXONOMY
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DIKB curators categorize each evidence item into one of the evidence-types from the
evidence-type taxonomy shown here. The evidence types in the taxonomy are arranged into
parent and child classes of evidence. A child class inherits all of the properties of the parent
class and adds some specific properties of its own. The taxonomy is shown here with child

evidence-types at a deeper indent-level than its parent class.

Evidence Types

[Statement] A statement: A published artifact that is “..the basis for belief or disbelief;

knowledge on which to base belief” see the term “evidence” in Wordnet version 3.0 [121]

[Non_Traceable _Statement] A non-traceable, but possibly authoritative, statement: A
statement that does not explicitly refer to evidence items in justification of its asser-
tion(s) or that refers to an evidence item that is not accessible to the curator (e.g.

pre-market drug studies only accessible to drug-company or FDA researchers)

[Non_traceable Drug Label Statement] A non-traceable drug-label statement:
An assertion found in a drug label that does not provide any traceable citations

for its evidence support

[Traceable_Statement] A traceable statement: A statement that provides citation to

evidence support for justification of its assertion(s)

[Traceable Drug Label Statement] A traceable drug-label statement: An asser-

tion stated in a drug label that provides citations for its evidence support

continued on next page




229

continued from previous page

Evidence Types

[EV_EX Met_Enz_ID] A drug metabolism identification experiment: An experiment conducted
with biological tissues and/or chemical compounds in a laboratory designed to identify the

specific enzymes responsible for the metabolism of a drug ([26], p. 25)

[EV_EX Met_Enz ID_Cyp450] A CYP/50 drug metabolism identification experiment: A
metabolic enzyme identification experiment specifically designed to identify the Cy-

tochrome P-450 enzymes involved in the metabolism of a drug

[EV_EX Met_Enz_ID_Cyp450_Hum Recom] A CYP450, recombinant, drug metabolism
identification experiment with possibly NO probe enzyme inhibitor(s)
[EV_EX Met_Enz_ID Cyp450_Hum Recom Chem] A CYP450, recombinant, drug
metabolism identification experiment using chemical inhibitors
[EV_EX Met.Enz_ID_Cyp450_Hum Recom_Antibody] A CYPL50, recombinant,
drug metabolism identification experiment using antibody inhibitors
[EV_EX_Met_Enz_ID_Cyp450_Hum Microsome] A CYPL50, human microsome, drug
metabolism identification experiment: A Cytochrome P-450 metabolic enzyme
identification experiment using human liver microsomes that have been charac-
terized for Cytochrome P-450 activity and possibly NO probe enzyme inhibitor(s)
[EV_EX..Met_Enz_ID_Cyp450_Hum_ﬁicrosome_Chem] A CYP450, human micro-
some, drug metabolism identification experiment using chemical inhibitors
[EV_EX Met_Enz_ID_Cyp450 Hum Microsome_Antibody]l A CYP{50, human
microsome, drug metabolism identification experiment using antibody in-

hibitors:

continued on next page
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continued from previous page

Evidence Types

[EV_EX Met_Enz_Inhibit] A metabolic enzyme inhibition experiment: An experiment con-
ducted with biological tissues and/or chemical compounds in a laboratory designed to de-

termine whether or not a drug inhibits a specific drug-metabolizing enzyme

[EV_.EX Met _Enz Inhibit Cyp450] A CYP450 metabolic enzyme inhibition experiment:
A metabolic inhibition experiment specifically designed to determine whether or not

a drug inhibits a specific CYP450 enzyme

[EV_EX Met_Enz_Inhibit_Cyp450_Hum Recom] A CYP{50, recombinant, metabolic
enzyme inhibition experiment: A Cytochrome P-450 inhibition experiment using
recombinant human enzymes

[EV_EX_Met_Enz_Inhibit_Cyp450-Hum_Microsome] A CYP450, human microsome,
metabolic enzyme inhibition ezperiment: A Cytochrome P-450 metabolic enzyme
inhibition experiment using human liver microsomes that have been characterized

for Cytochrome P-450 activity

[EV_Observation] Amn observation-based report: An observation-based report of some occur-

rence

[EV_Obs_ADE] An observation-based ADE report: An observation-based report of an

adverse drug event .
[EV_Obs_ADE_Public_Reported] An observation-based ADE report in a public re-
porting database: An adverse event report on file in a public adverse event re-

porting database such as the FDA’s Adverse Event Reporting System

[EV_Obs_DI_CR] A published observation-based ADE report: An published observation-

based case-report of a drug interaction

[EV_Obs DI_CR_Evaluated] A published and evaluated observation-based ADE re-
port: An observation-based report of a drug interaction that has been evaluated

by some assessment tool

continued on next page
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Evidence Types

[EV_Clinical Triall A clinical trial: “a pre-planned clinical study of the safety, efficacy,
or optimum dosage schedule of one or more diagnostic, therapeutic, or prophylactic drugs,
devices, or techniques in humans selected according to predetermined criteria of eligibility
and observed for predefined evidence of favorable and unfavorable effects.” - (Medical Subject

Headings (MeSH) [43] version 2008, concept code D016430, Clinical Trial)

[EV_CTDDI] A DDI clinical trial: A study designed to quantify the pharmacokinetic
and/or pharmacodynamic effects within study participants of a single drug in the

presence of a purported precipitant.

[EV_PK_DDINR] A non-randomized DDI clinical trial: A pharmacokinetic DDI
study where participants receive a drug in the presence of a purported precipitant
(experimental group) or not (control group) but participants are not randomly
assigned to experiment and control groups. This can include fixed-order studies
where all participants are tested with placebo and precipitant after some period
of washout
[EV_PK_DDI_Par_Grps] A parallel groups DDI clinical trial: A pharmacoki-
netic DDI study involving two groups of non-randomized participants where
both groups receive the purported object drug while only one group receives
the purported precipitant
[EV_PKDDI_RCT] A randomized DDI clinical trial: A randomized, controlled,
pharmacokinetic DDI study where participants receive a drug either in the pres-

ence of a purported precipitant (experimental group) or not (control group)

[EV_CT Pharmacokineticl A pharmacokinetic clinical trial: ” A study of the process
by which a drug is absorbed, distributed, metabolized, and eliminated by the body.”
(NCI Thesaurus [54] version 8, concept code C49663, Pharmacokinetic Study)

[EV_CT_PK_Genotypel A genotyped pharmacokinetic clinical trial: A drug phar-
macokinetics study whose population consists of at least two groups known to
posses distinct forms of some drug-metabolizing enzyme

[EV_CT_PK_Phenotypel A phenotyped pharmacokinetic clinical trial: A drug phar-
macokinetics study whose population consists of at least two groups known to

posses distinct drug metabolizing phenotypes

continued on next page
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Evidence Types

[EV_Retrospective]l A retrospective study: ”Studies used to test etiologic hypotheses in
which inferences about an exposure to putative causal factors are derived from data relating
to characteristics of persons under study or to events or experiences in their past. The essen-
. tial feature is that some of the persons under study have the disease or outcome of interest
and their characteristics are compared with those of unaffected persons.” (Medical Subject

Headings (MeSH) [43] version 2008, concept code D012189, Retrospective Studies)

[EV_PK_DDI Retro] A retrospective DDI study: A retrospective study looking at the
change in patient exposure of a single drug in the presence of a purported precipitant
using a retrospective set of clinical records

[EV_Population_PK] A retrospective population PK study: a “..study of the sources
and correlates of variability in drug concentrations among individuals who are the

target patient population receiving clinically relevant doses of a drug in question.”

([23], p.1)

[EV_Review] A review article: A published analysis of the evidence supporting and/or re-

futing some topic
[EV Drug Review] A drug review article: A published analysis of research on the effi-
cacy or safety of a drug, family of drugs, or drug therapy.

[EV DrugClinicalReview] An FDA clinical review: An FDA-sponsored review

of a drug’s pre-market studies and adverse event reports.
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Appendix E

INCLUSION CRITERIA AND REQUIRED ACTIONS FOR
EVIDENCE TYPES IN THE DIKB
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Inclusion criteria specify the necessary attributes that an instance of an evidence type
in the DIKB evidence taxonomy (Appendix D) must meet for it to be used to support or
refute a specific instance of an assertion type in the DIKB (Appendix C). This appendix
lists all of the inclusion criteria along with specific actions that DIKB curators must take
when linking evidence of a particular evidence type to an assertion instance. Unless stated
otherwise, inclusion criteria, and required actions apply to all sub-types of the evidence type
that the criteria mentions. For example, the criteria and action that apply to the EV_CTDDI
evidence type (Section E.4) also apply to its sub-types EV_PX_DDI_NR, EV_PK_DDI Par.Grps,
and EV_PK_DDI_RCT.

E.1 Inclusion Criteria for Reviews (EV_Review) and Sub-classes
Though not encouraged, a statement in a published review (EV_Review and sub-classes) can
be used as evidence for or against inhibits, substrate-of, primary-clearance-enzyme,

fraction-cleared-by, primary-clearance-mechanism. The following inclusion criteria

apply:

o the statement is non-ambiguous

o the review provides clearly cited references or is from an authoritative organization

such as the Federal Drug Administration

e cach cited reference meets the inclusion criteria for the evidence type it belongs to
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E.2 Inclusion Criteria for Published Observation Reports (EV_0bs DI_CR) and
Sub-classes

Published observation reports that been evaluated by some assessment tool (EV_Obs DI_-
CR_Evaluated) can be used as support that an interaction occurred between at least two
of the active ingredients or metabolites mentioned in the report. The following inclusion

criteria apply:

e the report contains sufficient pharmacokinetic data to establish that the reported

interaction occured by pharmacokinetic mechanisms

e the report is not about an abnormal susceptibility to some active ingredient or metabo-

lites peculiar to an individual, otherwise known as an idiosyncratic interaction

e the report contains enough information to apply the Drug Interaction P Scale (DIPS) [99]

to evaluate the interaction claimed by the case report.

e the report receives a causation rating of at least “probable” according to the DIPS
scale. This means that the interaction report establishes a probable level of causation

for an interaction between the two drugs of interest in the report.

E.3 Inclusion Criteria for Pharmacokinetic Studies (EV_CT Pharmacokinetic) and
Sub-classes

Instances of the pharmacokinetic study evidence types (EV_CT.Pharmacokinetic and sub-

classes) can be used as evidence for or against instances of the following assertion types:

maximum-concentration /has-metabolite / primary-total-clearance-mechanism
/ biocavailability / first-pass-effect / fraction-absorbed / has-metabolite

/ substrate-of / primary-total-clearance-enzyme

Instance of the EV_CT_PK_Genotype or EV_CT_PK Phenotype evidence types can support
or refute polymorphic-enzyme assertions. The following inclusion criteria apply to the

EV_CT Pharmacokinetic evidence type and sub-classes:
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e The route of administration must stated.
e Study participants must not be exclusively under the age of 21 or over the age of 65.

e The study’s design (dosing, duration, population size, and procedure for drug ad-
ministration) should be sufficient to allow accurate measurements pharmacokinetic

parameters.
Required Action(s):

o If evidence item’s evidence-type is one of EV_CT_PK_Genotype or EV_CT_PK _Phenotype,
then the curator must link a polymorphic-enzyme assertion (Section C.18) as an

assumption for the intended use of the evidence item.

e If an instance of the EV_CT_PK_Genotype or EV_CT_PK_Phenotype evidence types is
being used to support or refute that an enzyme is polymorphic then the specific
genotype of the enzyme must be noted in the description of evidence.

E.4 Inclusion Criteria for Pharmacokinetic DDI Studies (EV_CT_DDI) and Sub-
classes

Pharmacokinetic drug-drug interaction (DDI) studies (EV_CT_DDI and sub-classes) can be
used as evidence for or against increases-auc, inhibits, and substrate-of assertion

instances. The following inclusion criteria apply:

e The route of administration must stated.

¢ If the study is to be used as evidence that the precipitant active ingredient or metabo-
lite is, or is not, an inhibitor of an enzyme, ENZ, then ENZ must be the “primé,ry total
clearance enzyme” of the object active ingredient or metabolite used in the study.

Section C.13 defines this concept.

¢ If the study is to be used as evidence that the object active ingredient or metabolite
is, or is not, a substrate an enzyme, ENZ, then the precipitant must be an in vivo

selective inhibitor of that ENZ. Section C.8 defines this concept.
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e Study participants must not exclusively under the age of 21 or over the age of 65.

e The study’s duration should be long enough for precipitant, and any of its known

active metabolites, to effect enzyme pool.

e The study’s design (dosing, duration, population size, and procedure for drug admin-

istration) should be sufficient to allow accurate measurements of AUC change.
Required Action(s):

o If the study is to be used as evidence that the an active ingredient or metabolite
is, or is not, an inhibitor of an enzyme, ENZ, then the curator must link (as an
assumption for the evidence item’s usage) the assertion that ENZ is the primary-
-total-clearance-enzyme (Section C.13) of the study’s object active ingredient or

metabolite.

¢ If the study is to be used as evidence that the object active ingredient or metabolite
is, or is not, a substrate an enzyme, ENZ, then the curator must link the following

assertions as assumptions for the evidence item’s usage:

— the study’s precipitant is an in-viVo-selective-inhibitor-of-enzyme of *ENZ.
(Section C.9) and,

— the sole-PK-effect-alter-metabolic-clearance assertion indicating that the
sole pharmacokinetic effect of the precipitant on the object drug is alteration of

its metabolic clearance

E.5 Inclusion Criteria for Non-traceable Statements in Drug Product Labeling
(Non_traceable Drug.Label Statement) and Sub-classes

An assertional statement found in a drug label that does not provide any traceable citations
for its evidence support (Non_traceable Drug.Label Statement and sub-classes) can be
used as evidence for or against inhibits, substrate-of, primary-clearance-enzyme,
fraction-cleared-by, primary-clearance-mechanism. The following inclusion criteria

apply:
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e The labeling statement must be the most currently available for the drug
e The date of the label must be noted

e the statement cannot be accepted as evidence if its supporting evidence is based solely

on non-human studies
Regquired Action(s):

s non-traceable and ambiguous author statements (such as “drug x did not increase the

AUC of drug y” with no dosing or duration information) should be labeled as such.

e non-traceable, but non-ambiguous, author statements (such as “drug x, given at dose
A, did not increase AUC of drug y, given at dose B for duration T”) should be labeled

as such

E.6 Inclusion Criteria for Drug Enzyme Inhibition Experiments (EV_EX Met_~
Enz_Inhibit) and Sub-classes

A metabolic enzyme inhibition experiment (EV_EX Met Enz Inhibit and sub-classes) can
be used to support or refute an inhibition-constant assertion for an active ingredient
or metabolite and some enzyme. An inhibition-constant assertion must be relevant to
the concentration of the inhibitor as found in clinical practice. The system will ensure that
this criteria is met while applying its inference algorithm to assertions in its knowledge-
base. It will compare values for the maximum _concentration of the active ingredient or
metabolite (Section C.5) with its inhibition-constant values (Section C.15). Instances
of the EV_EX Met Enz Inhibit evidence type and its subtypes can also support or refute
that an active ingredient or metabolite is known to affect an enzyme in such a way that the
enzyme is permanantly removed from further participation in catalysis (see Section C.21).

The following inclusion criteria apply for all acceptible applications of these evidence types:

e The source of the enzymes must be either from human hepatocytes or human recom-

binant enzymes.
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e NADPH must be added to the enzyme systems as part of the experiment when appro-
priate. In cases where no explicit statement in the evidence item mentions the use of
NADPH, the curator is free to exercise judgement as to whether NADPH was added

since it is considered standard protocol for studies during or after the year 2000.

e To support an inhibition-constant assertion for some active ingredient or metabo-
lite and an enzyme, the substrate used in the experiment must be a in vitro probe

substrate of the enzyme. See Section C.11 for the definition of this concept.

e Only K; values, not IC50 or “percent of enzyme inhibited” values, can support an
inhibition-constant assertion for some active ingredient or metabolite and an en-
zyme. The source describing the experiment must provide an appropriately derived

K; value.
Required Actions(s):

¢ If the study is being used to support or refute that an active ingredient or metabolite
inhibits an enzyme, then the curator must link (as an assumption for the evidence
item’s usage) the assertion that the the substrate is an in-vitro-probe-substrate-

-of-enzyme of the target enzyme of the study (see Section C.11).

E.7 Inclusion Criteria for Metabolic Enzyme Identification Experiments (EV_-
EX_Met Enz ID) and Sub-classes

A drug metabolism identification experiment (EV_EX_Met_Enz_ID and sub-classes) can be
used to support or refute that an active ingredient or metabolite is a substrate of one or

more enzymes (see Section C.12). The following inclusion criteria apply:

o The source of the enzymes must be either from human hepatocytes or human recom-

binant enzymes.

e NADPH must be added to the enzyme system(s) as part of the experiment. In cases

where no explicit statement in the evidence item mentions the use of NADPH, the
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curator is free to exercise judgement as to whether NADPH was added since it is

considered standard protocol for studies conducted during or after the year 2000.

¢ Experiments that use antibody inhibitors cannot be applied as evidence for or against

the affinity of the substrate of interest for the enzyme

e the inhibitor used to determine whether an active ingredient’s or metabolite’s metabolism

is catalyzed by a specific enzyme must be an in vitro selective inhibitor of that ENZ.

Section C.8 defines this concept.

Required Action(s):

e The curator must link an assertion that the inhibitor used in the experiment is an
in-vitro-selective-inhibitor-of-enzyme (see Section C.8) as an assumption for

the particular application of evidence.
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Appendix F

ENTERING AND VIEWING EVIDENCE USING THE DIKB’S WEB
INTERFACE
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Drug Interaction Knowledge Base 1.0

Front Page of the Drug Interaction Knowledge Base

This is the froat page for the Drug Interaction Knowledge Base (DIKB). From here you can go to
forms that will allow you to enter and modify information in the DIKB

Go to a form to add evidence to the DIKB:
Add Evidence

View all data in the DIKB:

DIKB data

Select belief criteria and export assertions:
Export Assertions

View the evidence for all agsertions in the DIBK as well as the data in all its objects:
Asgertion index

Copyright © 2005 Richard Boyce
All Rights Reserved

Comments to author: boycer At u /dot\ washington Dt edu ;
Generated: Mon Jan 21, 2008 !
= s

L aia ot

Figure F.1: This figure shows the welcome page of the DIKB’s Web interface. DIKB curators
and expert users have four options; clicking on the “Add Evidence” takes them to the page
shown in Figure F.2 where they can begin the process of entering in evidence that supports
or rebuts an assertion. Clicking on the “DIKB data” link takes them to a page (Figure F.10)
that shows all assertions and evidence in the DIKB and allows them to change classification
status of any assertion. Users can click on the “Export Assertions” link to start the process
of defining levels-of-evidence and belief criteria. This option worked in an earlier version
of the DIKB but is currently non-functional. The “Assertion Index” link loads a hyper-
linked index of Web pages that summarizes the evidence for each assertion in the DIKB.
Figure F.9(a) shows a sample of the index from the current DIKB while Figure F.9(b) shows
of one of the assertion summary pages that the index links to.
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Drug Interaction Knowledge Base 1.0

Select an object and slot from Drug Interaction Knowledge Base

Objects and assertions for ACTIVE INGREDIENTS:
Please select the object that you want to make an assertion about:
ketoconazole ¥

Please select the slot you have information on:
[inhibits A

Objects and assertions for METABOLITES:

Please select the object that you want to make an assertion about:
J1*-hydroxymidazolam #

Please select the slot you have information on:
[substrate_of K|

Add & value for this sssertion

Objects and assertions for ENZYMES:

Please select the slot you have information on:

[contrals_formation_of 3|

Add a value for this assertion

Figure F.2: DIKB curators begin the process of entering in evidence that supports or rebuts
an assertion from this page by selecting the object (active ingredient, metabolite, or enzyme)
and the assertion type (inhibits, substrate-of, controls-formation-of etc.) that the
evidence item will be linked to. They make their selections using drop-down boxes then
click the button labeled “Add a value for this assertion” which will take then the a page
where they can select a value for the assertion (Figure F.3)
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Drug Interaction Knowledge Base 1.0

Add the value for an assertion in the Drug Interaction Knowledge Base

Edit an assertion for object: ketoconazole and slot: inhibits
Please select a value for the slot that this evidence suggests:

cyp3ad .}
Assert by default with no evidence support? -
Ne assumptions needed | Add essumptions |

Figure F.3: Non-quantitative assertion types have a pre-specified range of values that can
be chosen from the drop-down box on this page. Chapter 4, Section 4.3.1.1, discusses how
the DIKB determines values for quantitative assertions. If the assertion is quantitative the
only option in the drop-down box will be “continuous_value.” Curators can declare that
any assertion (quantitative or non-quantitative) should be considered a default assumption
(Chapter 4, Section 4.2.5) by checking the box labeled “Assert by default with no evidence
support.” From this page, they can also begin the process of entering in any other assertions
that should be linked as evidence-use assumptions (Chapter 4, Section 4.3.3) by clicking on
the button labeled “Add assumptions.” This action would take them to the page shown in
Figure F.4. If there are no evidence use assumptions to add the curator clicks on the the
button labeled “No assumptions needed” and proceeds to a page where they can enter more
information on an evidence item (Figure F.6).

Drug Interaction Knowledge Base 1.0

Add assumptions that must be believed for this evidence to be applied
to this assertion (for or against)

If necessary, add an assumption that this use of evidence depends on; currently -

[midazolam_primary total clearance enzyme cyp3ad 12] - tts sk

Dane |

Figure F.4: Curators are taken to this page if they select “Add assumptions” from the page
shown in Figure F.3. Here they can use a drop-down box to choose any assertion currently
in the DIKB as a evidence-use assumption for the current application of an evidence item.
Once they select an assertion to use as an evidence-use assumption, they can click the button
labeled “Done” and they will proceed to a page where they can confirm their selection
(Figure F.5). If they need to add more evidence-use assumptions, they click on the button
labeled “Add this assumption” which will store their selections and re-load this page.
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Drug Interaction Knowledge Base 1.0

Add assumptions that must be believed for this evidence to be applied
to this assertion (for or against)

You entered the following assumptions as necessary for this evidence item to be credible:
midazolam_primary_total_clearance_enzyme_cyp3aéd

Push submit to continue and enter evidence data or use your browser's ‘Back’ button to change assumptions

Figure F.5: Curators can confirm the assertions they want to link as evidence-use assump-
tions from this page or use the browser’s “Back” button to make a change. Pressing the
button labeled “Continue” will take them to a page where they can enter more information
on an evidence item (Figure F.6).

Drug Interaction Knowledge Base 1.0

Assign evidence to an assertion in the Drug Interaction Knowledge Base

Add evidence for abject: ketoconazole , slot: inhibits , with value: cyp3a4d
boycer ﬂ

Is this evidence for or against slot value cyp3a4?

Evidence for ¢
Evidence against <

Please input a pointer to this evidence, For example a PubMed ID, a url, or the article identifier from the Drug KB bibliography:

{15114429

Please paste or type in relevant information about the evidence Including data required by inclusion criteria:
Route of administration: oral =]

polymorphic enzyme: NO

study duration: 2 days ketoconazole pretreatment
population: 8 male, 13 female

lages:23-55

[description: :
IPlasma concentrations of midazolam, 1'OH-midazolam and |
14'0H-midazolam were measured after the oral
iadministration of 7.5 mg and 7S micro g midazolam in 13::
ihealthy subjects without medication, 1n four subjects
pretreated for 2 days with ketoconazole (286 mg

b.i.d.}, a CYP3A inhibitor, and in four subjects

pretreated for 4 days with rifamplcin (458 mg q.d.), a

- {CYP3A inducer. RESULTS: After oral administration of 7
micro g midazolem, the 3@-min total (unconjugated +
coniugated) 1'OH-midazolam/midazolam ratios measured inisl

Figure F.6: Curators use the forms like the one provided on this page to enter more infor-
mation on an evidence item. The Web interface provides a custom form for each assertion
type. So, the form to link and evidence item to a quantitative assertion, such as a drug
or drug metabolite’s biocavailability, is different from the form used for an assertion about
what enzyme a drug or drug metabolite is a substrate of. Curators fill out the form and
then scroll the page down to select the evidence item’s type (Figure F.7).
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#»BV_PK_DDI_Par Grps - A pharmacokinetic study involving two groups of non-randomized participanis where both groups
receive the purported object drug while only one group receives the purported precipitant

« EV_PK_DDI_RCT - A randomized, controlled, pharmacokinetic study where participants receive a drug wither in the presence
of a purported precipitant (experimental group) or not (control group)

«EV_PK _DDI_Retro - A retrospective study looking at the change in patient exposure of a single drug in the presence of a
purported precipitant using a retrospective set of clinical records

~EV_Population PK - a *"...study of the sources and correlates of variability in drug concentrations among individuals who are
the target patient population recelving clinically relevant doses of a drug in question.”

¢ EV_Retrospective - "Studies used to test etlologic hypotheses in which inferences about an exposure to putative causal factors
are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential
feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared
with those of unaffected persons.”

~Non_Tracable_Statement - A statement that does not explicitly refer to evidence items in justification of its assertion(s) or that
refers to an evidence item that s not accessible to the curator {e.g. pre-market drug studies only accessible to drug-company or
FDA researchers)

« Non_traceable_Drug_Label_Statement - An assertion stated found in a drug label that does not provide any traceable citations
for its evidence support

¢ Statement - A published artifact that is "...the basis for belief or disbetlief; knowledge on which to base belief"
¢ Tracable_Statement - A statement that provides citation to evidence support for justification of its assertion(s)

¢ Traceable_Drug_Label _Statement - An assertion stated in a drug label that provides citations for its evidence support

Add Eviderce:

Figure F.7: This figure shows a portion of the list that a curator has to choose from when
specifying an evidence item’s type. A description of each evidence type is shown besides
a radio button and its label in the DIKB evidence taxonomy (Appendix D). The curator
clicks on a radio button to make a selection. They then click on the button labeled “Add
Evidence” to proceed to a page where they can confirm all of the information they have
entered for an evidence item (Figure F.8).
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Drug Interaction Knowledge Base 1.0

Conflrm and save new evidence to the Drug Interaction Knowledge Base

Please confirm that you want to save the following evidence:

aebject: ketoconazole

slot: inhibits

value: cyp3ad

assumption_plcks: midazolam_primary total clearance_enzyme cyp3ad

reviewer: boycer

position: for

pointer: 15114429

quote: Route of administration: oral polymorphic enzyme: NO study duration: 2 days ketoconazole pretreatment population: 8
male, 13 female ages:23-55 description: Plasma concentrations of midazolam, 1'OH-midazolam and 4'OH-midazolam were
measured after the oral administration of 7.5 mg and 75 micro g midazolam in 13 healthy subjects without medication, in four
subjects pretreated for 2 days with ketoconazole (200 mg b.i.d.}, a CYP3A inhibitor, and in four subjects pretreated for 4 days
with rifampicin (450 mg q.d.), a CYP3A inducer. RESULTS: After oral administration of 75 micro g midazolam, the 30-min total
(unconjugated + conjugated) 1'OH-midazolam/midazolam ratios od in the groups without co-medication, with
ketoconazole and with rifampicin were (mean+/-SD): 6.23+/-2.61, 0.79+/-0.39 and 56.1+/-12.4, respectively. No side effects
were reported by the subjects taking this low dose of midazolam. Good correlations were observed between the 30-min total
1'OH-midazolam/midazolam ratio and midazolam clearance in the group without co-medication (r(2)=0.64, P<0.001) and in the
three groups taken together (r(2)=0.91, P<0.0001).

type: EV_PK DDI_Par_Grps

has_evidence: True

Please confirm by reading through the following lists that 1) this will not be a duplicate use of this evidence and 2) that the entry
of this evidence will not cause it to be linked to both an inhibits/substrate_of assertion AND an increase_auc assertion

evidence item '15114429' is linked to the following assertions as ‘evidence_for":
ketoconazole_inhibits_cyp3ad

Figure F.8: The last step of the evidence entry process requires curators to confirm all of
the information they have entered for an evidence item. They can use the browser’s “Back”
button to go back and enter new data at previous steps of the process. If the curator
approves of their evidence entry, they can click on the “Save” button and the system will
attempt to add the evidence item to the DIKB evidence-base. The system performs several
validation tests on the data before the evidence item is entered into the DIKB’s evidence-
base and alerts the curator to warnings or errors. For example, in this figure, the system is
informing the curator that this evidence item already exists in the system and is linked to
the same assertion that the curator is trying to link it to now. Other alerts or warnings are
produced if the evidence item has been rejected as evidence for or against other assertions in
the DIKB (Chapter 4, Section 4.3.4.2) or, if the evidence item will form a circular evidence
support pattern (Chapter 4, Section 4.3.4.3).
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Assertion: alpha-aaphthofl in_vitro_selective_inhibitor_of
current evidence_rating: none_assigned

Assert by default?: True

Ready for classification:

True «

False

cypla2

o Evidence
:Evidence For i Pointer: ' Reviewer:
(item 0) Evidence Type: Non_Tracable_Statement % £da2006a iboyoer

Quote: he FDA T this as a acceptable chemical CYP1A2 inhibitor for in vitro experiments
in it most recent guidance document. See Table 2, p. 28

Auumpﬁpnsz

{lahility i ;_value
current evidence_rating: none_assigned
Assert by default?: False

Ready for classification:
True ¢
False &

= asifcation Sat
Evideace ) 'Revi .
For (item : Evid Type: Non_traceable_Drug_Label Statement 4 rikm nih i d cfm?id=4176 iboyce.rw' v
()] f

Quote:

‘While this bicavailability value is from the label for the extended

release formulation, the label states that it is comparable with the .
i ility of the non- release version (compare to

Greenblatt 1993, Pmid: 8513649 - bicavailabilityu = 80-100%)

Figure F.10: Clicking on the “DIKB data” link from the DIKB welcome page takes curators
to a page that shows the evidence linked to all assertions in the DIKB and allows them to

change classification status of any assertion. This figure shows a small portion of the page
that is generated for the current DIKB.
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Appendix G

THE FINAL VALIDATION SET OF DRUG-DRUG INTERACTIONS
AND NON-INTERACTIONS
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The reference set of drug-drug interactions and non-interactions used to characterize
the prediction accuracy of the DIKB using a wide range of belief criteria including criteria
chosen by the DIKB’s evidence-board. An “X” in the column labeled DDI indicates that
one of the pharmaceutical entities in the first column is the victim of a metabolic-inhibition
interaction. An “X” in the Non-DDI column indicates that no metabolic-inhibition in-
teraction is known to occur between the the pharmaceutical entities in the first column.
Chapter 5, Section 5.1.1 explains how this validation set was created. The arrows indicate
the drug or drug metabolite that the validation set considers the victim of a metabolic inhi-
bition interaction that occurs between the pair. Arrows with a line through them indicate
which drug or drug metabolite should not be affected by a metabolic inhibition interaction

involving the other drug in the pair.

t  The noted interaction occurs by inhibition of the metabolic clearance of a parent compound.

tt The DIKB’s evidence-base uses this study to supports an drug mechanism assertion that is not related
to the drug/drug or drug/drug-metabolite pair.

§ The pair was accidentally excluded from the experiment in Chapter 5 due to a trascription error,
I  The pair was excluded because a validation set interaction or non-interaction between the two pharma-

ceutical entities was supported by a single clinical trial that was also present in DIKB assertions that the
system could use to infer the interaction or non-interaction.

drug/drug or drug/metabolite pair DDI | Non-DDI | Source

alprazolam - 1’-hydroxymidazolam

alprazolam - 14-hydroxyclarithromycin

alprazolam - 4-hydroxyalprazolam

alprazolam - 4-hydroxymidazolam

alprazolam - 4-hydroxytriazolam

alprazolam - 6’-exomethylene-lovastatin

alprazolam - 6’-exomethylene-simvastatin

alprazolam - 6’-hydroxy-simvastatin

alprazolam - 6’-hydroxymethyl-simvastatin

alprazolam - 6’beta-hydroxy-lovastatin

alprazolam - alpha-hydroxyalprazolam

continued on next page
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continued from previous page

drug/drug or drug/metabolite pair DDI | Non-DDI Source
alprazolam - atorvastatin

alprazolam - beta-hydroxy-lovastatin

alprazolam - beta-hydroxy-simvastatin

alprazolam - clarithromycin

alprazolam - desacetyldiltiazem

alprazolam - erythromycin «— X [182]
alprazolam - fluconazole

alprazolam - fluvastatin

alprazolam - itraconazole «— X (181}
alprazolam - ketoconazole «— X [156], [74]
alprazolam - lovastatin

alprazolam - midazolam

alprazolam - N-demethyldesacetyl-diltiazem

alprazolam - N-demethyldiltiazem

alprazolam - N-desmethylrosuvastatin

alprazolam - nefazodone « X [75], [57]

alprazolam - ortho-hydroxy-atorvastatin

alprazolam - para-hydroxy-atorvastatin

alprazolam - pravastatin

alprazolam - rosuvastatin

alprazolam - simvastatin

alprazolam - triazolam

atorvastatin - 1’-hydroxymidazolam

atorvastatin - 14-hydroxyclarithromycin

atorvastatin - 4-hydroxyalprazolam

atorvastatin - 4-hydroxymidazolam

atorvastatin - 4-hydroxytriazolam

atorvastatin - 6’-exomethylene-lovastatin

atorvastatin - 6’-exomethylene-simvastatin

atorvastatin - 6’-hydroxy-simvastatin

atorvastatin - 6’-hydroxymethyl-simvastatin

atorvastatin - 6’beta-hydroxy-lovastatin

atorvastatin - alpha-hydroxyalprazolam

atorvastatin - beta-hydroxy-lovastatin

continued on next page
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drug/drug or drug/metabolite pair

DDI

Non-DDI

Source

atorvastatin - beta-hydroxy-simvastatin

atorvastatin - desacetyldiltiazem

atorvastatin - erythromycin «

[159]

atorvastatin - fluconazole

atorvastatin - fluvastatin

atorvastatin - lovastatin

atorvastatin - N-demethyldesacetyl-diltiazem

atorvastatin - N-demethyldiltiazem

atorvastatin - N-desmethylrosuvastatin

atorvastatin - nefazodone —

[164]

atorvastatin - ortho-hydroxy-atorvastatin

atorvastatin - para-hydroxy-atorvastatin

atorvastatin - pravastatin

atorvastatin - rosuvastatin

atorvastatin - simvastatin

clarithromycin - 1’-hydroxymidazolam

clarithromycin - 14-hydroxyclarithromycin

clarithromycin - 4-hydroxyalprazolam

clarithromycin - 4—hydroxymida.zolam

clarithromycin - 4-hydroxytriazolam

clarithromycin - 6’-exomethylene-lovastatin

clarithromycin - 6’-exomethylene-simvastatin

clarithromycin - 6’-hydroxy-simvastatin

clarithromycin - 6’-hydroxymethyl-simvastatin

clarithromycin - 6’beta-hydroxy-lovastatin

clarithromycin - alpha-hydroxyalprazolam

clarithromycin - atorvastatin —

(8], [95]

clarithromycin - beta-hydroxy-lovastatin

clarithromycin - beta-hydroxy-simvastatin §

clarithromycin - desacetyldiltiazem

clarithromycin - erythromycin

clarithromycin - fluconazole —

8]

clarithromycin - fluvastatin

clarithromycin - lovastatin

continued on next page

253
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continued from previous page

drug/drug or drug/metabolite pair DDI | Non-DDI | Source
clarithromycin - N-demethyldesacetyl-diltiazem

clarithromycin - N-demethyldiltiazem

clarithromycin - N-desmethylrosuvastatin

clarithromycin - nefazodone

clarithromycin - ortho-hydroxy-atorvastatin

clarithromycin - para-hydroxy-atorvastatin

clarithromycin - pravastatin — X [95]
clarithromycin - rosuvastatin

clarithromycin - simvastatin §

diltiazem - 1’-hydroxymidazolam

diltiazem ~ 14-hydroxyclarithromycin

diltiazem - 4-hydroxyalprazolam

diltiazem - 4-hydroxymidazolam

diltiazem - 4-hydroxytriazolam

diltiazem - 6’-exomethylene-lovastatin

diltiazem - 6’-exomethylene-simvastatin

diltiazem - 6’-hydroxy-simvastatin

diltiazem - 6’-hydroxymethyl-simvastatin

diltiazem - 6’beta-hydroxy-lovastatin

diltiazem - alpha-hydroxyalprazolam

diltiazem - alprazolam

diltiazem -~ atorvastatin

diltiazem - beta-hydroxy-lovastatin — X [29]
diltiazem - beta-hydroxy-simvastatin

diltiazem - clarithromycin

diltiazem - desacetyldiltiazem

diltiazem - erythromycin

diltiazem - fluconazole

diltiazem - fluvastatin

diltiazem - itraconazole

diltiazem - ketoconazole

diltiazem - lovastatin — X [32]
diltiazem - midazolam — X [30]

diltiazem - N-demethyldesacetyl-diltiazem

continued on next page
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drug/drug or drug/metabolite pair

DDI

Non-DDI

Source

diltiazem - N-demethyldiltiazem

diltiazem - N-desmethylrosuvastatin

diltiazem - nefazodone

diltiazem - ortho-hydroxy-atorvastatin

diltiazem - para-hydroxy-atorvastatin

diltiazem - pravastatin -

[52)

diltiazem - rosuvastatin

diltiazem - simvastatin —

[125]

diltiazem - triazolam —

[171]

erythromycin - 1’-hydroxymidazolam

erythromycin - 14-hydroxyclarithromycin

erythromycin - 4-hydroxyalprazolam

erythromycin - 4-hydroxymidazolam

erythromycin - 4-hydroxytriazolam

erythromycin - 6’-exomethylene-lovastatin

erythromycin - 6’-exomethylene-simvastatin

erythromycin - 6’-hydroxy-simvastatin

erythromycin - 6’-hydroxymethyl-simvastatin

erythromycin - 6’beta-hydroxy-lovastatin

erythromycin - alpha-hydroxyalprazolam

erythromycin - beta-hydroxy-lovastatin

erythromycin - beta-hydroxy-simvastatin —

[103]

erythromycin - desacetyldiltiazem

erythromycin - fluconazole

erythromycin - fluvastatin

erythromycin - lovastatin

erythromycin - N-demethyldesacetyl-diltiazem

erythromycin - N-demethyldiltiazem

erythromycin - N-desmethylrosuvastatin

erythromycin - nefazodone

erythromycin - ortho-hydroxy-atorvastatin

erythromycin - para-hydroxy-atorvastatin

erythromycin - pravastatin

erythromycin - rosuvastatin -

[47]

continted on next page
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continued from previous page

drug/drug or drug/metabolite pair DDI | Non-DDI | Source
erythromycin - simvastatin — X [103]
fluconazole - 1’-hydroxymidazolam — 1 X [4]
fluconazole - 14-hydroxyclarithromycin - X 3]
fluconazole - 4-hydroxyalprazolam

fluconazole - 4-hydroxymidazolam

fluconazole - 4-hydroxytriazolam

fluconazole - 6’-exomethylene-lovastatin

fluconazole - 6’-exomethylene-simvastatin

fluconazole - 6’-hydroxy-simvastatin

fluconazole - 6’-hydroxymethyl-simvastatin

fluconazole - 6’beta-hydroxy-lovastatin

fluconazole - alpha-hydroxyalprazolam

fluconazole - beta-hydroxy-lovastatin

fluconazole - beta-hydroxy-simvastatin

fluconazole - desacetyldiltiazem

fluconazole - fluvastatin — X [102]
fluconazole - lovastatin

fluconazole - N-demethyldesacetyl-diltiazem

fluconazole - N-demethyldiltiazem

fluconazole - N-desmethylrosuvastatin

fluconazole - nefazodone

fluconazole - ortho-hydroxy-atorvastatin

fluconazole - para-hydroxy-atorvastatin

fluconazole - pravastatin - X [102]
fluconazole - rosuvastatin - X {49]

fluconazole - simvastatin

fluvastatin - 1’-hydroxymidazolam

fluvastatin - 14-hydroxyclarithromycin

fluvastatin - 4-hydroxyalprazolam

fluvastatin - 4-hydroxymidazolam

fluvastatin - 4-hydroxytriazolam

fluvastatin - 6’-exomethylene-lovastatin

fluvastatin - 6’-exomethylene-simvastatin

fluvastatin - 6’-hydroxy-simvastatin

continued on next page
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drug/drug or drug/metabolite pair DDI | Non-DDI | Source
fluvastatin - 6°-hydroxymethyl-simvastatin

fluvastatin - 6’beta-hydroxy-lovastatin

fluvastatin - alpha-hydroxyalprazolam

fluvastatin - beta-hydroxy-lovastatin

fluvastatin - beta~hydroxy-simvastatin

fluvastatin - desacetyldiltiazem

fluvastatin - N-demethyldesacetyl-diltiazem

fluvastatin - N-demethyldiltiazem

fluvastatin - N-desmethylrosuvastatin

fluvastatin - ortho-hydroxy-atorvastatin

fluvastatin - para-hydroxy-atorvastatin

fluvastatin - rosuvastatin

itraconazole - 1’-hydroxymidazolam

itraconazole - 14-hydroxyclarithromycin

itraconazole - 4-hydroxyalprazolam

itraconazole - 4-hydroxymidazolam

itraconazole - 4-hydroxytriazolam

itraconazole - 6’-exomethylene-lovastatin

itraconazole - 6’-exomethylene-simvastatin

itraconazole - 6’-hydroxy-simvastatin

itraconazole - 6’-hydroxymethyl-simvastatin

itraconazole - 6’beta-hydroxy-lovastatin

itraconazole - alpha-hydroxyalprazolam

itraconazole - atorvastatin — X [117)
itraconazole - beta-hydroxy-lovastatin — X [108]
itraconazole - beta-hydroxy-simvastatin }

itraconazole - clarithromycin

itraconazole - desacetyldiltiazem

itraconazole - erythromycin «— X [96]
itraconazole - fluvastatin - X [108]
itraconazole - ketoconazole

itraconazole - lovastatin — X {108}

itraconazole - N-demethyldesacetyl-diltiazem

itraconazole - N-demethyldiltiazem
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drug/drug or drug/metabolite pair DDI | Non-DDI | Source
itraconazole - N-desmethylrosuvastatin

itraconazole - nefazodone

itraconazole - para-hydroxy-atorvastatin §

itraconazole - ortho-hydroxy-atorvastatin — X [117]
itraconazole - pravastatin — X [117}
itraconazole - rosuvastatin — X [50]

itraconazole - simvastatin }

ketoconazole - 1’-hydroxymidazolam

ketoconazole - 14-hydroxyclarithromycin

ketoconazole - 4-hydroxyalprazolam

ketoconazole - 4-hydroxymidazolam

ketoconazole - 4-hydroxytriazolam

ketoconazole - 6’-exomethylene-lovastatin

ketoconazole - 6’-exomethylene-simvastatin

ketoconazole - 6’-hydroxy-simvastatin

ketoconazole - 6’-hydroxymethyl-simvastatin

ketoconazole - 6’beta-hydroxy-lovastatin

ketoconazole - alpha-hydroxyalprazolam

ketoconazole - atorvastatin

ketoconazole - beta-hydroxy-lovastatin

ketoconazole - beta-hydroxy-simvastatin

ketoconazole - clarithromycin

ketoconazole - desacetyldiltiazem

ketoconazole - erythromycin

ketoconazole - fluconazole

ketoconazole - fluvastatin

ketoconazole - lovastatin

ketoconazole - N-demethyldesacetyl-diltiazem

ketoconazole - N-demethyldiltiazem

ketoconazole - N-desmethylrosuvastatin

ketoconazole - nefazodone

ketoconazole - ortho-hydroxy-atorvastatin

ketoconazole - para-hydroxy-atorvastatin

ketoconazole - pravastatin
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drug/drug or drug/metabolite pair DDI | Non-DDI | Source
ketoconazole - rosuvastatin
ketoconazole - simvastatin — X [42]

lovastatin - 1’-hydroxymidazolam

lovastatin - 14-hydroxyclarithromycin A

lovastatin - 4-hydroxyalprazolam

lovastatin - 4-hydroxymidazolam

lovastatin - 4-hydroxytriazolam

lovastatin - 6’-exomethylene-lovastatin

lovastatin - 6’-exomethylene-simvastatin

lovastatin - 6’-hydroxy-simvastatin

lovastatin - 6’-hydroxymethyl-simvastatin

lovastatin - 6’beta-hydroxy-lovastatin

lovastatin - alpha-hydroxyalprazolam

lovastatin - beta-hydroxy-lovastatin

lovastatin - beta-hydroxy-simvastatin

lovastatin - desacetyldiltiazem

lovastatin - fluvastatin

lovastatin - N-demethyldesacetyl-diltiazem

lovastatin - N-demethyldiltiazem

lovastatin - N-desmethylrosuvastatin

lovastatin - ortho-hydroxy-atorvastatin

lovastatin - para-hydroxy-atorvastatin

lovastatin - pravastatin

lovastatin - rosuvastatin

midazolam - 1’-hydroxymidazolam

midazolam - 14-hydroxyclarithromycin

midazolam - 4-hydroxyalprazolam

midazolam - 4-hydroxymidazolam

midazolam - 4-hydroxytriazolam

midazolam - 6’-exomethylene-lovastatin

midazolam - 6’-exomethylene-simvastatin

midazolam - 6’-hydroxy-simvastatin

midazolam - 6’-hydroxymethyl-simvastatin

midazolam - 6’beta-hydroxy-lovastatin

continued on next page

259



260

continued from previous page

drug/drug or drug/metabolite pair DDI | Non-DDI | Source
midazolam - alpha-hydroxyalprazolam

midazolam - atorvastatin {

midazolam - beta-hydroxy-lovastatin

midazolam - beta-hydroxy-simvastatin }

midazolam - clarithromycin — X (78], [70]
midazolam - desacetyldiltiazem §

midazolam - erythromycin « X [135]
midazolam - fluconazole — X (134], [4]
midazolam - fluvastatin

midazolam - itraconazole «— X [136]
midazolam - ketoconazole «— X [136]
midazolam - lovastatin

midazolam - N-demethyldesacetyl-diltiazem

midazolam - N-demethyldiltiazem

midazolam - N-desmethylrosuvastatin

midazolam - nefazodone «— 1 X [111}
midazolam - ortho-hydroxy-atorvastatin

midazolam - para-hydroxy-atorvastatin

midazolam - pravastatin

midazolam - rosuvastatin

midazolam - simvastatin {

midazolam - triazolam '

nefazodone - 1’-hydroxymidazolam

nefazodone - 14-hydroxyclarithromycin

nefazodone - 4-hydroxyalprazolam — X (75}

nefazodone - 4-hydroxymidazolam

nefazodone - 4-hydroxytriazolam

nefazodone - 6’-exomethylene-lovastatin

nefazodone - 6’-exomethylene-simvastatin

nefazodone - 6’-hydroxy-simvastatin

nefazodone - 6’-hydroxymethyl-simvastatin

nefazodone - 6’beta-hydroxy-lovastatin

nefazodone - albh&-hydroxyalprazolam

nefazodone - beta-hydroxy-lovastatin
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drug/drug or drug/metabolite pair DDI | Non-DDI | Source
nefazodone - beta-hydroxy-simvastatin — X [164]
nefazodone - desacetyldiltiazem

nefazodone - fluvastatin

nefazodone - lovastatin

nefazodone - N-demethyldesacetyl-diltiazem

nefazodone - N-demethyldiltiazem

nefazodone - N-desmethylrosuvastatin

nefazodone - ortho-hydroxy-atorvastatin

nefazodone - para-hydroxy-atorvastatin

nefazodone - pravastatin -+ X {164]
nefazodone - rosuvastatin

nefazodone - simvastatin — X [164]

pravastatin - 1’-hydroxymidazolam

pravastatin - 14-hydroxyclarithromycin

pravastatin - 4-hydroxyalprazolam

pravastatin - 4-hydroxymidazolam

pravastatin - 4-hydroxytriazolam

pravastatin - 6’-exomethylene-lovastatin

pravastatin - 6’-exomethylene-simvastatin

pravastatin - 6’-hydroxy-simvastatin

pravastatin - 6’-hydroxymethyl-simvastatin

pravastatin - 6’beta-hydroxy-lovastatin

pravastatin - alpha-hydroxyalprazolam

pravastatin - beta-hydroxy-lovastatin

pravastatin - beta-hydroxy-simvastatin

pravastatin - desacetyldiltiazem

pravastatin - fluvastatin

pravastatin - N-demethyldesacetyl-diltiazem

pravastatin - N-demethyldiltiazem

pravastatin - N-desmethylrosuvastatin

pravastatin - ortho-hydroxy-atorvastatin

pravastatin - para-hydroxy-atorvastatin

pravastatin - rosuvastatin

rosuvastatin - 1’-hydroxymidazolam
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drug/drug or drug/metabolite pair

DDI

Non-DDI

Source

rosuvastatin - 14-hydroxyclarithromycin

rosuvastatin - 4-hydroxyalprazolam

rosuvastatin - 4-hydroxymidazolam

rosuvastatin - 4-hydroxytriazolam

rosuvastatin - 6’-exomethylene-lovastatin

rosuvastatin - 6’-exomethylene-simvastatin

rosuvastatin - 6’-hydroxy-simvastatin

rosuvastatin - 6’-hydroxymethyl-simvastatin

rosuvastatin - 6’beta-hydroxy-lovastatin

rosuvastatin - alpha-hydroxyalprazolam

rosuvastatin - beta-hydroxy-lovastatin

rosuvastatin - beta-hydroxy-simvastatin

rosuvastatin - desacetyldiltiazem

rosuvastatin - N-demethyldesacetyl-diltiazem

rosuvastatin - N-demethyldiltiazem

rosuvastatin - N-desmethylrosuvastatin

rosuvastatin - ortho-hydroxy-atorvastatin

rosuvastatin - para-hydroxy-atorvastatin

simvastatin - 1’-hydroxymidazolam

simvastatin - 14-hydroxyclarithromycin

simvastatin - 4-hydroxyalprazolam

simvastatin - 4-hydroxymidazolam

simvastatin - 4-hydroxytriazolam

simvastatin - 6’-exomethylene-lovastatin

simvastatin - 6’-exomethylene-simvastatin

simvastatin - 6’-hydroxy-simvastatin

simvastatin - 6’-hydroxymethyl-simvastatin

simvastatin - 6’beta-hydroxy-lovastatin

simvastatin - alpha-hydroxyalprazolam

simvastatin - beta-hydroxy-lovastatin

simvastatin - beta-hydroxy-simvastatin

simvastatin - desacetyldiltiazem

simvastatin - fluvastatin

simvastatin - lovastatin
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drug/drug or drug/metabolite pair DDI | Non-DDI Source
simvastatin - N-demethyldesacetyl-diltiazem

simvastatin - N-demethyldiltiazem

simvastatin - N-desmethylrosuvastatin

simvastatin - ortho-hydroxy-atorvastatin

simvastatin - para-hydroxy-atorvastatin

simvastatin - pravastatin

simvastatin - rosuvastatin

triazolam - 1’-hydroxymidazolam

triazolam - 14-hydroxyclarithromycin

triazolam - 4-hydroxyalprazolam

triazolam - 4-hydroxymidazolam

triazolam - 4-hydroxytriazolam

triazolam - 6’-exomethylene-lovastatin

triazolam - 6’-exomethylene-simvastatin

triazolam - 6’-hydroxy-simvastatin

triazolam - 6’-hydroxymethyl-simvastatin

triazolam - 6’beta-hydroxy-lovastatin

triazolam - alpha-hydroxyalprazolam

triazolam - atorvastatin

triazolam - beta-hydroxy-lovastatin

triazolam - beta-hydroxy-simvastatin

triazolam - clarithromycin « X [73]
triazolam - desacetyldiltiazem

triazolam - erythromycin « X [141]
triazolam - fluconazole «— X [172]
triazolam - fluvastatin

triazolam - itraconazole — X [170], [130]
triazolam - ketoconazole +— X [170], [174]
triazolam - lovastatin

triazolam - N-demethyldesacetyl-diltiazem

triazolam - N-demethyldiltiazem

triazolam - N-desmethylrosuvastatin

triazolam - nefazodone «— X [31]

triazolam - ortho-hydroxy-atorvastatin
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drug/drug or drug/metabolite pair

DDI

Non-DDI

Source

triazolam - para-hydroxy-atorvastatin

triazolam - pravastatin

triazolam - rosuvastatin

triazolam - simvastatin

beta-hydroxy-simvastatin - 6’-hydroxymethyl-simvastatin

beta-hydroxy-simvastatin - N-demethyldiltiazem

beta-hydroxy-simvastatin - 14-hydroxyclarithromycin

beta-hydroxy-simvastatin - 6’beta~-hydroxy-lovastatin

beta-hydroxy-simvastatin - para-hydroxy-atorvastatin

beta-hydroxy-simvastatin - desacetyldiltiazem

beta-hydroxy-simvastatin - 6’-hydroxy-simvastatin

beta-hydroxy-simvastatin - 4-hydroxytriazolam

beta-hydroxy-simvastatin - ortho-hydroxy-atorvastatin

beta-hydroxy-simvastatin - 4-hydroxymidazolam

beta-hydroxy-simvastatin - 6’-exomethylene-simvastatin
y \

beta-hydroxy-simvastatin - 6’-exomethylene-lovastatin

beta-hydroxy-simvastatin - N-demethyldesacetyl-diltiazem

beta~-hydroxy-simvastatin - alpha-hydroxyalprazolam

beta-hydroxy-simvastatin - 4-hydroxyalprazolam

beta-hydroxy-simvastatin - beta-hydroxy-lovastatin

beta-hydroxy-simvastatin - N-desmethylrosuvastatin

beta-hydroxy-simvastatin - 1’-hydroxymidazolam

beta-hydroxy-lovastatin - 6’-hydroxymethyl-simvastatin

beta-hydroxy-lovastatin - N-demethyldiltiazem

beta-hydroxy-lovastatin - 14-hydroxyclarithromycin

beta-hydroxy-lovastatin - 6’beta-hydroxy-lovastatin

beta-hydroxy-lovastatin - para-hydroxy-atorvastatin

beta-hydroxy-lovastatin - desacetyldiltiazem

beta-hydroxy-lovastatin - 6’-hydroxy-simvastatin

beta-hydroxy-lovastatin - 4-hydroxytriazolam

beta-hydroxy-lovastatin - ortho-hydroxy-atorvastatin

beta-hydroxy-lovastatin - 4-hydroxymidazolam

beta-hydroxy-lovastatin - 6’-exomethylene-simvastatin

beta-hydroxy-lovastatin - 6’-exomethylene-lovastatin
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drug/drug or drug/ metabolite pair

DDI

Non-DDI

Source

beta-hydroxy-lovastatin - N-demethyldesacetyl-diltiazem

beta-hydroxy-lovastatin - alpha-hydroxyalprazolam

beta-hydroxy-lovastatin - 4-hydroxyalprazolam

beta-hydroxy-lovastatin - N-desmethylrosuvastatin

beta-hydroxy-lovastatin - 1’-hydroxymidazolam

6’-hydroxy-simvastatin - 6’-hydroxymethyl-simvastatin

6’-hydroxy-simvastatin - N-demethyldiltiazem

6’-hydroxy-simvastatin - 14-hydroxyclarithromycin

6’-hydroxy-simvastatin - 6’beta-hydroxy-lovastatin

6’-hydroxy-simvastatin - para-hydroxy-atorvastatin

6’-hydroxy-simvastatin - desacetyldiltiazem

6’-hydroxy-simvastatin - 4-hydroxytriazolam

6’-hydroxy-simvastatin - ortho-hydroxy-atorvastatin

6’-hydroxy-simvastatin - 4-hydroxymidazolam

6’-hydroxy-simvastatin - 6’-exomethylene-simvastatin

6’-hydroxy-simvastatin - 6’-exomethylene-lovastatin

6’-hydroxy-simvastatin - N-demethyldesacetyl-diltiazem

6’-hydroxy-simvastatin - alpha-hydroxyalprazolam

6’-hydroxy-simvastatin - 4-hydroxyalprazolam

6’-hydroxy-simvastatin - N-desmethylrosuvastatin

6’-hydroxy-simvastatin - 1’-hydroxymidazolam

6’-hydroxymethyl-simvastatin - N-demethyldiltiazem

6’-hydroxymethyl-simvastatin - 14-hydroxyclarithromycin

6’-hydroxymethyl-simvastatin - 6’beta-hydroxy-lovastatin

6’-hydroxymethyl-simvastatin - para-hydroxy-atorvastatin

6’-hydroxymethyl-simvastatin - desacetyldiltiazem

6’-hydroxymethyl-simvastatin - 4-hydroxytriazolam

6’-hydroxymethyl-simvastatin - ortho-hydroxy-atorvastatin

6’-hydroxymethyl-simvastatin - 4-hydroxymidazolam

6’-hydroxymethyl-simvastatin - 6’-exomethylene-simvastatin

6’-hydroxymethyl-simvastatin - 6’-exomethylene-lovastatin

6’-hydroxymethyl-simvastatin - N-demethyldesacetyl-diltiazem

6’-hydroxymethyl-simvastatin - alpha-hydroxyalprazolam

6’-hydroxymethyl-simvastatin - 4-hydroxyalprazolam
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drug/drug or drug/metabolite pair

DDI

Non-DDI

Source

6’-hydroxymethyl-simvastatin - N-desmethylrosuvastatin

6’-hydroxymethyl-simvastatin - 1’-hydroxymidazolam

6’-exomethylene-simvastatin - N-demethyldiltiazem

6’-exomethylene-simvastatin - 14-hydroxyclarithromycin

6’-exomethylene-simvastatin - 6’beta-hydroxy-lovastatin

6’-exomethylene-simvastatin - para-hydroxy-atorvastatin

6’-exomethylene-simvastatin - desacetyldiltiazem

6’-exomethylene-simvastatin - 4-hydroxytriazolam

6’-exomethylene-simvastatin - ortho-hydroxy-atorvastatin

6’-exomethylene-simvastatin - 4-hydroxymidazolam

6’-exomethylene-simvastatin - 6’-exomethylene-lovastatin

6’-exomethylene-simvastatin - N-demethyldesacetyl-diltiazem

6’-exomethylene-simvastatin - alpha-hydroxyalprazolam

6’-exomethylene-simvastatin - 4-hydroxyalprazolam

6’-exomethylene-simvastatin - N-desmethylrosuvastatin

6’-exomethylene-simvastatin - 1’-hydroxymidazolam

1’-hydroxymidazolam - N-demethyldiltiazem

1’-hydroxymidazolam - 14-hydroxyclarithromycin

1’-hydroxymidazolam - 6’beta-hydroxy-lovastatin

1'-hydroxymidazolam - para-hydroxy-atorvastatin

1’-hydroxymidazolam - desacetyldiltiazem

1’-hydroxymidazolam - 4-hydroxytriazolam

1’-hydroxymidazolam - ortho-hydroxy-atorvastatin

1’-hydroxymidazolam - 4-hydroxymidazolam

1’-hydroxymidazolam - 6’-exomethylene-lovastatin

1’-hydroxymidazolam - N-demethyldesacetyl-diltiazem

1’-hydroxymidazolam - alpha-hydroxyalprazolam

1’-hydroxymidazolam - 4-hydroxyalprazolam

1’-hydroxymidazolam - N-desmethylrosuvastatin

4-hydroxymidazolam - N-demethyldiltiazem

4-hydroxymidazolam - 14-hydroxyclarithromycin

4-hydroxymidazolam - 6’beta-hydroxy-lovastatin

4-hydroxymidazolam - para-hydroxy-atorvestatin

4-hydroxymidazolam - desacetyldiltiazem
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drug/drug or drug/metabolite pair

DDI

Non-DDI

Source

4-hydroxymidazolam - 4-hydroxytriazolam

4-hydroxymidazolam - ortho-hydroxy-atorvastatin

4-hydroxymidazolam - 6’-exomethylene-lovastatin

4-hydroxymidazolam - N-demethyldesacetyl-diltiazem

4-hydroxymidazolam - alpha-hydroxyalprazolam

4-hydroxymidazolam - 4-hydroxyalprazolam

4-hydroxymidazolam - N-desmethylrosuvastatin

4-hydroxytriazolam - N-demethyldiltiazem

4-hydroxytriazolam - 14-hydroxyclarithromycin

4-hydroxytriazolam - 6’beta-hydroxy-lovastatin

4-hydroxytriazolam - para-hydroxy-atorvastatin

4-hydroxytriazolam - desacetyldiltiazem

4-hydroxytriazolam - ortho-hydroxy-atorvastatin

4-hydroxytriazolam - 6’-exomethylene-lovastatin

4-hydroxytriazolam - N-demethyldesacetyl-diltiazem

4-hydroxytriazolam - alpha-hydroxyalprazolam

4-hydroxytriazolam - 4-hydroxyalprazolam

4-hydroxytriazolam - N-desmethylrosuvastatin

6’beta-hydroxy-lovastatin - N-demethyldiltiazem

6’beta-hydroxy-lovastatin - 14-hydroxyclarithromycin

6’beta-hydroxy-lovastatin - para-hydroxy-atorvastatin

6’beta-hydroxy-lovastatin - desacetyldiltiazem

6’beta-hydroxy-lovastatin - ortho-hydroxy-atorvastatin

6’beta-hydroxy-lovastatin - 6’-exomethylene-lovastatin

6’beta-hydroxy-lovastatin - N-demethyldesacetyl-diltiazem

6’beta-hydroxy-lovastatin - alpha-hydroxyalprazolam

6’beta-hydroxy-lovastatin - 4-hydroxyalprazolam

6’beta-hydroxy-lovastatin - N-desmethylrosuvastatin

6’-exomethylene-lovastatin - N-demethyldiltiazem

6’-exomethylene-lovastatin - 14-hydroxyclarithromycin

6-exomethylene-lovastatin - para-hydroxy-atorvastatin

6’-exomethylene-lovastatin - desacetyldiltiazem

6-exomethylene-lovastatin - ortho-hydroxy-atorvastatin

6’-exomethylene-lovastatin - N-demethyldesacetyl-diltiazem
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drug/drug or drug/metabolite pair

DDI

Non-DDI

Source

6’-exomethylene-lovastatin - alpha-hydroxyalprazolam

6’-exomethylene-lovastatin - 4-hydroxyalprazolam

6’-exomethylene-lovastatin - N-desmethylrosuvastatin

4-hydroxyalprazolam - N-demethyldiltiazem

4-hydroxyalprazolam - 14-hydroxyclarithromycin

4-hydroxyalprazolam - para-hydroxy-atorvastatin

4-hydroxyalprazolam - desacetyldiltiazem

4-hydroxyalprazolam - ortho-hydroxy-atorvastatin

4-hydroxyalprazolam - N-demethyldesacetyl-diltiazem

4-hydroxyalprazolam - alpha-hydroxyalprazolam

4-hydroxyalprazolam - N-desmethylrosuvastatin .

alpha-hydroxyalprazolam - N-demethyldiltiazem

alpha-hydroxyalprazolam - 14-hydroxyclarithromycin

alpha-hydroxyalprazolam - para-hydroxy-atorvastatin

alpha-hydroxyalprazolam - desacetyldiltiazem

alpha-hydroxyalprazolam - ortho-hydroxy-atorvastatin

alpha-hydroxyalprazolam - N-demethyldesacetyl-diltiazem

alpha-hydroxyalprazolam - N-desmethylrosuvastatin

14-hydroxyclarithromycin - N-demethyldiltiazem

14-hydroxyclarithromycin - para-hydroxy-atorvastatin

14-hydroxyclarithromycin - desacetyldiltiazem

14-hydroxyclarithromycin - ortho-hydroxy-atorvastatin

14-hydroxyclarithromycin - N-demethyldesacetyl-diltiazem

14-hydroxyclarithromycin - N-desmethylrosuvastatin

desacetyldiltiazem - N-demethyldiltiazem

desacetyldiltiazem - para-hydroxy-atorvastatin

desacetyldiltiazem - ortho-hydroxy-atorvastatin

desacetyldiltiazem - N-demethyldesacetyl-diltiazem

desacetyldiltiazem - N-desmethylrosuvastatin

N-demethyldesacetyl-diltiazem - N-demethyldiltiazem

N-demethyldesacetyl-diltiazem - para-hydroxy-atorvastatin

N-demethyldesacetyl-diltiazem - ortho-hydroxy-atorvastatin

N-demethyldesacetyl-diltiazem - N-desmethylrosuvastatin

N-demethyldiltiazem - para-hydroxy-atorvastatin
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drug/drug or drug/metabolite pair

DDI

Non-DDI

Source

N-demethyldiltiazem - ortho-hydroxy-atorvastatin

N-demethyldiltiazem - N-desmethylrosuvastatin

ortho-hydroxy-atorvastatin - para-hydroxy-atorvastatin

ortho-hydroxy-atorvastatin - N-desmethylrosuvastatin

para-hydroxy-atorvastatin - N-desmethylrosuvastatin
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Questionnaire to establish belief criteria

Each assertion type in the DIKB is listed below in its own section along with
DIKB evidence types that can support or refute the assertion. You can assume
that all evidence, no matter what type, meets the minimum criteria for quality
that we have defined in the DIKB inclusion criteria. Your task is to reflect
on your experience and decide which evidence types, or combinations of
evidence types, provide information you consider trustworthy for making

decisions about the safe use of a drug.

For each assertion type, please list the evidence type(s) whose

information. or data, that you would consider believable. For example, there
are three evidence type that can support the general assertion regarding the
bioavailability of some drug ’X’. Read each evidence type and ask yourself if
you trust the validity of a claim about a drug’s biocavailability when the
information comes from such a study. Then, note which, if any, study types you
would find trustworthy. If more than one evidence type meets your belief
criteria then list them all separating each evidence type with a comma or and
’0R’. If some combination of the available evidence types would eliminate your
doubt in an assertion then, list that combination separating each evidence

type with an ’AND’.

If there is no combination of the available evidence types that would relieve
your doubt as to the validity of a particular assertion then you can leave

your response blank.

the bicavailability of active ingredient X’
1.A non-traceable drug-label statement
2.A non-traceable (but possibly authoritative) statement

3.A pharmacokinetic clinical trial
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Your belief criteria:

the primary_total_clearance_mechanism of active ingredient or metabolite ’X’

1.A non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

3.A pharmacokinetic clinical trial

Your belief criteria:

the maximum_concentration of active ingredient or metabolite ’X’
1.A non-traceable drug-label statement
2.A non-traceable (but possibly authoritative) statement

3.A pharmacokinetic clinical trial

Your belief criteria:

active ingredient or metabolite ’X’ 1is a substrate_of enzyme ’E’



1.A non—-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

w

.A CYP450, recombinant, drug metabolism identification experiment using
chemical inhibitors

4.A CYP450, recombinant, drug metabolism identification experiment using
antibody inhibitors

5.4 CYP450, recombinant, drug metabolism identification experiment (possibly
NO probe enzyme inhibitor(s))

6.A CYP450, human microsome, drug metabolism identification experiment using
antibody inhibitors

7.A CYP450, human microsome, drug metabolism identification experiment using
chemical inhibitors

8.A CYP450, human microsome, drug metabolism identification experiment
(possibly NO probe enzyme inhibitor(s))

9.A randomized DDI clinical trial

10.A genotyped pharmacokinetic clinical trial

11. A phenotyped pharmacokinetic clinical trial

12. A non-randomized DDI clinical trial

Your belief criteria:

active ingredient or metabolite ’X’ is is_not_a_substrate_of enzyme B
1.A non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

3.A CYP450, recombinant, drug metabolism identification experiment using

chemical inhibitors

273



274

4.A CYP450, recombinant, drug metabolism identification experiment using
antibody inhibitors

5.A CYP450, recombinant, drug metabolism identification experiment (possibly
NQ probe enzyme inhibitor(s))

6.A CYP450, human microsome, drug metabolism identification experiment using
antibody inhibitors

7.A CYP450, human microsome, drug metabolism identification experiment using
chemical inhibitors

8.A CYP450, human microsome, drug metabolism identification experiment
(possibly NO probe enzyme inhibitor(s))

9.A randomized DDI clinjcal trial

10.A genotyped pharmacokinetic clinical trial

11. A phenotyped pharmacokinetic clinical trial

12. A non-randomized DDI clinical trial

Your belief criteria:

active ingredient or metabolite ’X’ has_metabolite ’M’

1.A non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

3.A pharmacokinetic clinical trial

4.A drug metabolism identification experiment

5.A CYP450, recombinant, drug metabolism identification experiment using
chemical inhibitors

6.A CYP450, recombinant, drug metabolism identification experiment using
antibody inhibitors

7.A CYP450, recombinant, drug metabolism identification experiment (possibly
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NO probe enzyme inhibitor(s))

8.A CYP450, human microsome, drug metabolism identification experiment using
chemical inhibitors

9.A CYP450, human microsome, drug metabolism identification experiment using
antibody inhibitors

10. A CYP450, human microsome, drug metabolism identification experiment

(possibly NO probe enzyme inhibitor(s))

Your belief criteria:

enzyme ’E’ controls_formation_of metabolite ’M’
1.A non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

w

.A CYP450, recombinant, drug metabolism identification experiment using

chemical inhibitors

4.A CYP450, recombinant, drug metabolism identification experiment using
antibody inhibitors

5.A CYP450, recombinant, drug metabolism identification experiment (possibly
NO probe enzyme inhibitor(s))

6.A CYP450, human microsome, drug metabolism identification experiment using
chemical inhibitors

7.A CYP450, human microsome, drug metabolism identification experiment using
antibody inhibitors

8.A CYP450, human microsome, drug metabolism identification experiment
(possibly NO probe enzyme inhibitor(s))

9.A randomized DDI clinical trial

10.A genotyped pharmacokinetic clinical trial

11.A phenotyped pharmacokinetiq clinical trial

12. A non-randomized DDI clinical trial
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Your belief criteria:

the first_pass_effect of active ingredient ’X’

1.4 non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

3.4 study of the process by which a drug is absorbed, distributed,

metabolized,and eliminated by the body.

Your belief criteria:

the fraction_absorbed of active ingredient ’X’

1.4 non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

3.A study of the process by which a drug is absorbed, distributed,

metabolized, and eliminated by the body.

Your belief criteria:
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active ingredient or metabolite ’X’ increases_auc of active ingredient or metabolite ’Y’
1.A non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

3.A randomized DDI clinical trial

4.A non-randomized DDI clinical trial

Your belief criteria:

an inhibition_constant for an active ingredient or metabolite ’X’ and some enzyme ’E’
1.A non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

3.A CYP450, recombinant, metabolic enzyme inhibition experiment

4.A CYP450, human microsome, metabolic enzyme inhibition experiment

Your belief criteria:

active ingredient or metabolite ’X’ inhibits enzyme ’E’

1.A non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

3.A CYP450, human microsome, metabolic enzyme inhibition experiment
4.A CYP450, recombinant, metabolic enzyme inhibition experiment

5.A randomized DDI clinical trial
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6.A non-randomized DDI clinical trial

Your belief criteria:

active ingredient or metabolite ’X’ does_not_inhibit enzyme ’E’
1.A non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

3.A CYP450, human microsome, metabolic enzyme inhibition experiment
4.,A CYP4A50, recombinant, metabolic enzyme inhibition experiment
5.A randomized DDI clinical trial

6.A non-randomized DDI clinical trial

Your belief criteria:

enzyme ’E’ is the primary_total_clearance_enzyme of active ingredient or metabolite ’X’
1.A non-traceable drug-label statement

2.A non-traceable (but possibly authoritative) statement

3.A randomized DDI clinical trial

4.A genotyped pharmacokinetic clinical trial

5.A phenotyped pharmacokinetic clinical trial

6.A non-randomized DDI clinical trial

Your belief criteria:
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enzyme ’E’ is the primary_metabolic_clearance_enzyme of active ingredient or metabolite ’X’

1.A non—-traceable drug-label statement

2.A non-traceable (but possibiy authoritative) statement

3.A CYP450, human microsome, drug metabolism identification experiment using
chemical inhibitors

4.A CYP450, human microsome, drug metabolism identification experiment using
antibody inhibitors

5.4 CYP450, recombinant, drug metabolism identification experiment using
chemical inhibitors

6.A CYP450, recombinant, drug metabolism identification experiment using
antibody inhibitors

7.A CYP450, recombinant, drug metabolism identification experiment (possibly
NO probe enzyme inhibitor(s))

8. A CYP450, recombinant, drug metabolism identification experiment (possibly
NO probe enzyme inhibitor(s))

9.A randomized DDI clinical trial

10. A genotyped pharmacokinetic clinical trial

11. A phenotyped pharmacokinetic clinical trial

12. A non-randomized DDI clinical trial

Your belief criteria:
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Appendix I
THE AERS IMPLEMENTATION AND OUR USE OF IT
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As of June 2008 our implementation of the AERS database is accessible as “AERS-

Complete” at:
http://marigold.informatics.washington.edu:7000/phpmyadmin

Interested researcher can log in as “AERS-User” but must first get the password from
Richard Boyce. This is single user access meaning that all other users are locked out while
a user is using the database. It is possible to give users their own account; they will have
read-only access to the database which limits them to querying, but not modifying, the

database.

I.1 How to Query
Here is an example of how to query the database:

1. Log in as ’AERS-User’ with the password you receive

2. At the left-hand side of the page there is a drop-down box with the word ’(Databases)’;

select that box and pick the ’AERS-Complete’ database.

3. Select the 'SQL’ tab from the set of tabs that are shown toward the top of the page

(above the table showing the database structure).

4. Enter you query in SQL. For example, you can enter:

-- Show all reports involving patients taking FOSAMAX and LIPITOR
SELECT report.*

FROM report

WHERE EXISTS(

SELECT di.safetyreportid

FROM ‘drug‘ AS 41, drug AS d2

WHERE (

dl.medicinalproduct

IN (


http://marigold.informatics.Washington.edu:7000/phpmyadmin
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’FOSAMAX’

)

" AND d2.medicinalproduct

I (

’LIPITOR’

)

AND d2.safetyreportid = di.safetyreportid

AND report.safetyreportid = d2.safetyreportid
)
)

The SQL query will be shown above the table of results. If users click the ’ledit]’ link

(to the bottom right of the results) they can edit the query or enter a new one.

I.2 CQueries Used to Search for Adverse Event Reports

L2.1 A Template SQL for Efficient Queries of AERS for DDIs

We replaced the fields enclosed by angle brackets with the appropriate values such as the
generic and trade names of drug products containing active pharmaceutical ingredients
in the DIKB 1.2.2, adverse-event terms representative of a toxic effect from the expected

DDI 1.2.3, and output-file names.

CREATE TEMPORARY TABLE 1_reportids (rprt_id varchar(9));

INSERT INTO 1l_reportids

SELECT d2.safetyreportid

FROM ‘drug‘ AS di, drug AS 42

WHERE (

dl.medicinalproduct

IN (

<GENERIC AND TRADE NAMES FOR DRUG ONE>
)
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AND d2.medicinalproduct

IN (

<GENERIC AND TRADE NAMES FOR DRUG TWO>.

)

AND d2.safetyreportid = di.safetyreportid
)3

CREATE TEMPORARY TABLE rx_reportids (rprt_id varchar(9));

INSERT INTO rx_reportids
SELECT DISTINCT reaction.safetyreportid
FROM reaction INNER JOIN 1_reportids ON (reaction.safetyreportid = 1l_reportids.rprt_id)
WHERE (
reaction.reactionmeddrapt IN (
<MedDRA ADVERSE EVENT TERMS REPRESENTITIVE OF THE EXPECTED TOXIC EFFECT>
)

SELECT report.p_key, report.safetyreportid, report.receivedate,report.receiptdate,\
report.serious, report.seriousness_val, report.qualification, report.patientonsetage,\
report.patientonsetageunit, report.patientsex, report.patientweight,\
report.patientdeathdate

FROM report INNER JOIN rx_reportids ON (report.safetyreportid = rx_reportids.rprt_id)

ORDER BY report.safetyreportid

INTO OUTFILE °’/opt/Downloads/AERS_Q_Results/<NAME OF FILE TO OUTPUT REPORT META-DATA>’

FIELDS TERMINATED BY ’|’ OPTIONALLY ENCLOSED BY ’"?

LINES TERMINATED BY ’\n’;

SELECT reaction.p_key, reaction.safetyreportid, reaction.reactionmeddrapt
FROM reaction INNER JOIN rx_reportids ON (reaction.safetyreportid = rx_reportids.rprt_id)
ORDER BY reaction.safetyreportid

INTO QUTFILE ’/opt/Downloads/AERS_Q_Results/<NAME OF FILE TO OUTPUT REACTION DATA>’



284

FIELDS TERMINATED BY ’|’ OPTIONALLY ENCLOSED BY °"?’
LINES TERMINATED BY ’\n’;

SELECT drug.p_key, drug.safetyreportid, drug.drugcharacterization, drug.medicinalproduct,\
drug.drugdosagetext, drug.drugadministrationroute, drug.drugindication, drug.drugstartdate,\
drug.drugenddate, drug.drugtreatmentduration, drug.drugtreatmentdurationunit

FROM drug INNER JOIN rx_reportids ON (drug.safetyreportid = rx_reportids.rprt_id)

ORDER BY drug.safetyreportid

INTO OUTFILE °’/opt/Downloads/AERS_Q_Results/<NAME OF FILE TO OUTPUT DRUG DATA>’

FIELDS TERMINATED BY ‘|’ OPTIONALLY ENCLOSED BY ’"’

LINES TERMINATED BY ’\n’;

1.2.2 Generic and Trade-names for Drug Products Containing Active Pharmaceutical In-

gredients in the DIKB

Below is a list of names for drug products containing active pharmaceutical ingredients
in the DIKB. We compiied this list from drugs@fda [58], the FDA’s “Orange Book” [15],
and/or RxNorm [19]. Each drug product is 1) oral or injectable, 2) not a combined therapy
(contained one active ingredient), and 3) present, as of Septemter 2007, in DRUGDEX

Tradenames®.

’alprazolam’: [’ALPRAZOLAM’, ’ALPRAZOLAM INTENSOL’, °NIRAVAM’, °’XANAX’, ’XANAX XR’],
’atorvastatin’:[’ATORVASTATIN’,’CADUET’, ’LIPITOR’],

’clarithromycin’: [’CLARITHROMYCIN’, ’CLARITHROMYCIN EXTENDED RELEASE’,
’BIAXIN’, °’BIAXIN XL’],

’diltiazem’: [’DILTIAZEM’, °DILTIAZEM HYDROCHLORIDE’, ’CARDIZEM’,’CARDIZEM CD’,
*CARDIZEM LA’, ’CARDIZEM LYO-JECT’, ’CARDIZEM MONOVIAL’, °CARDIZEM SR’,

’CARTIA’, °CARTIA XT’, ’DILACOR XR’, ’DILT’, ’DILT-CD’, ’DILT-XR’, ’DILTIA XT’,



285

’DILTZAC’, °>TAZTIA’, °TAZTIA XT’, °’TECZEM’, ’'TIAMATE’, °TIAZAC’],

’erythromycin’ : [’ERYTHROMYCIN’, ’AKNEMYCIN’, ’BRISTAMYCIN’, ’E-SOLVE-2’,
"E-BASE’, ’E-MYCIN’, ’E-MYCIN E’, ’E-SOLVE 2’, ’E.E.S’, ’E.E.S. 400 FILMTAB’,
JE.E.S. GRANULES’, ’E.E.S.-200°, ’E.E.S.-400’, ’EMGEL’, ’ERY-SOL’, ’ERY-TAB’,
*ERYPED’, ’ERYC’, ’ERYC 125’, ’ERYC SPRINKLES’, ’ERYMAX’, ’ERYPAR’, ’ERYPED’,
’ERYTHROCIN’, ’ERYTHROCIN STEARATE’, ’ERYTHROMYCIN ESTOLATE ’, ’ERYTHROMYCIN
ETHYLSUCCINATE’, *ERYTHROMYCIN LACTOBIONATE’, *ERYTHROMYCIN STEARATE’, ’ETHRIL
250°, ’ETHRIL 500’, ’ERYZOLE’, ’ILOSONE’, ’iLOTYCIN’, ’PCE’, ’PCE BRAND OF
ERYTHROMYCIN’, ’PEDIAMYCIN’, ’PEDIAMYCIN 400’, ’ROBIMYCIN’, ’ROMYCIN’,
'WYAMYCIN E’, ’WYAMYCIN S°],

fluconazole’: [’ FLUCONAZOLE’, ’DIFLUCAN’, ’DIFLUCAN IN DEXTROSE 5% IN PLASTIC
CONTAINER’, °DIFLUCAN IN SODIUM CHLORIDE 0.9%’, *DIFLUCAN IN SODIUM CHLORIDE
0.9% IN PLASTIC CONTAINER’, ’FLUCONAZALE’, ’FLUCONAZOLE IN DEXTROSE 5% IN
PLASTIC CONTAINER’, °®FLUCONAZOLE IN SODIUM CHLORIDE 0.9%’, ’FLUCONAZOLE IN
SODIUM CHLORIDE 0.9% IN PLASTIC CONTAINER’],

’itraconazole’: [ ITRACONAZOLE’, ’ SPORANOX’, ’SPORANOX-PULSE’],

’ketoconazole’ : [’KETOCONAZOLE’],

’lovastatin’: [’LOVASTATIN’, ’ADVICOR’, ’ALTOPREV’, ’MEVACOR’],

’midazolam’: [’MIDAZOLAM’, °MIDAZOLAM HYDROCHLORIDE’, ’MIDAZOLAM HYDROCHLORIDE
PRESERVATIVE FREE’, ’VERSED’],

’pravastatin’:[’PRAVASTATIN’, ’PRAVASTATIN SODIUM’, ’PRAVACHOL’],
’rosuvastatin’: [’ROSUVASTATIN’, °’CRESTOR’],
’simvastatin’: [>SIMVASTATIN’, ’Z0OCOR’],

‘triazolam’: [?TRIAZOLAM’, ’HALCION’],
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’nefazodone’ : [’NEFAZODONE’, ’NEFAZODONE HYDROCHLORIDE’, ’SERZONE’]

1.2.3 Adverse-event Terms Used to Query AERS

Persons who submit a report to AERS are required to note the adverse events that prompted
them to send the report. FDA personel code each adverse event using the MedDRA [22]
terminology before entering the report into AERS. We compiled a list of MedDRA terms
representing the kinds of adverée events that might be observed in patients experiencing
toxic side-effects from a victim drugs in one of the DIKB’s novel DDI predictions (Chapter 5,
Section 5.2.1). We first attempted to utilize the so-called “Standardised MedDRA queries”
to build our term sets. These queries are provided by the MedDRA vendor to aid in
retrieving cases of interest from databases using the vocabulary [126]. However, we found
these to be of little help for the drugs in our system with the exception of the HMG-CoA
reductase inhibitors. So, we employed the following process to derive a list of terms we

thought more appropriate for querying AERS for DDIs:

1. The two drug experts in our group sent the informaticist a list of words describing the
effect of a pharmacokinetic interaction for each relevant drug class. The informaticist

also scanned through drug labels to identify other words that might be useful.

2. The informaticist searched the UMLS Meta-Thesaurus [13] for each of the words
found in Step One to identify concepts in the meta-thesaurus and their mapping to

the MedDRA vocabulary.

3. The informaticist created a list of MedDRA “preffered terms” (PTs) from the terms

identified in Step Two then used the program shown in Section 1.2.3.1 to expand the
PT lists to include all MedDRA “LLTs”
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4. The two drug experts reviewed the resulting list and removed all LLTs that they did

not think relevant to our search task

Here are the results of this process:

o nefazodone:’ ACUTE LIVER DAMAGE’, 'BILIOUS VOMITING’, 'DAMAGE LIVER’, 'DAYTIME SLEEPI-
NESS’, 'DISEASE HEPATOCELLULAR’, 'DROWSINESS’, 'DROWSY ON AWAKENING’, 'EMESIS’, "EX-
CESSIVE DAYTIME SLEEPINESS’, 'FEELING OF RESIDUAL SLEEPINESS’, 'FEELING QUEASY’,
"GROGGY’, 'GROGGY AND SLUGGISH’, '7GROGGY ON AWAKENING’, 'HARD TO AWAKEN’, "HEP-
ATIC DAMAGE’, "HEPATIC DAMAGE (NOS)’, '"HEPATIC INTRACELLULAR DEPOSIT OF BILIRUBIN’,
'"HEPATIC INTRACELLULAR PIGMENTATION’, '"HEPATOCELLULAR ABNORMALITY’, 'THEPATO-
CELLULAR DAMAGE’, '"HEPATOCELLULAR DAMAGE AGGRAVATED’, 'HEPATOCELLULAR DAM-
AGE NOS’, 'HEPATOCELLULAR DISTURBANCES’, "THEPATOCELLULAR INJURY’, 'THYPEREMESIS’,
'LESS ALERT ON ARISING’, "LIVER CELL DAMAGE’, '"LIVER DAMAGE’, 'LIVER DAMAGE AGGRA-
VATED’, 'NAUSEA’, 'NAUSEA AGGRAVATED’, 'NAUSEA ALONE’, 'NAUSEA AND VOMITING’, "NAU-
SEA POST CHEMOTHERAPY’, 'NAUSEA VOMITING AND DIARRHEA’, 'NAUSEA VOMITING AND
DIARRHOEA’, 'NAUSEA WITH VOMITING’, '"NAUSEATED’, 'NAUSEQUS’, "PERSISTENT VOMIT-
ING’, "POSTPRANDIAL EMESIS’, 'POSTPRANDIAL NAUSEA’, '"QUEASY’, 'SEROTONIN SYNDROME’,
'SICKNESS/NAUSEA’, ’SLEEPINESS’, ’SSLEEPY’, 'SSOMNOLENCE’, "VOMITED’, '"VOMITING’, *"VOMIT-
ING AGGRAVATED’, '"VOMITING ALONE’, 'VOMITING NOS’

e clarithromyecin, erythromycin (arrhythmia):"CARDIAC ARREST’, ' BRADYCARDIA’, "CARDIAC ARREST",
’"CARDIAC DEATH’, '"CARDIAC TELEMETRY ABNORMAL’, '"CARDIO-RESPIRATORY ARREST’, ’EL-
ECTROCARDIOGRAM ABNORMAL’,’"ELECTROCARDIOGRAM AMBULATORY ABNORMAL’, 'TELEC-
TROCARDIOGRAM CHANGE’, 'TELECTROCARDIOGRAM REPOLARISATION ABNORMALITY,
"HEART RATE ABNORMAL’, '"HEART RATE DECREASED’, '"LOSS OF CONSCIOUSNESS’, 'PALPITA-
TIONS’, ’'SUDDEN CARDIAC DEATH’, 'SUDDEN DEATH’, 'SYNCOPE’

e clarithromycin, erythromycin (Torsade de Pointes)’LONG QT SYNDROME’, 'TORSADE DE POINTES’,
"VENTRICULAR TACHYCARDIA’, ’ELECTROCARDIOGRAM QT PROLONGED’

e clarithromycin, erythromycin (hepato-toxicity): '"HEPATOCELLULAR DAMAGE’

e clarithromyecin, erythromycin (general side effects):’ABDO. DISCOMFORT’, ’ABDOMEN BURNING SEN-
SATION OF’, ’"ABDOMINAL DISCOMFORT’, ’ABDOMINAL DISTRESS’, ’ABDOMINAL PAIN LOWER’,
’ABDOMINAL PAIN PEPTIC ULCER TYPE’, ’ABDOMINAL PAIN UPPER’, ’ACHE STOMACH’,’ACUTE
DIARRHEA’, ’ACUTE DIARRHOEA’, 'ACUTE GASTRIC PAIN’, 'BOWEL DISCOMFORT”, 'BURNING
IN ABDOMEN’, 'BURNING SENSATION IN ABDOMEN’, 'CHRONIC DIARRHEA’, '"CHRONIC DIAR-
RHOEA’, '"CHRONIC EPIGASTRIC PAIN’, 'CHURNING OF STOMACH’, 'CRAMP IN LOWER AB-
DOMEN’, 'DIARRHEA’, 'DIARRHEA AGGRAVATED’, 'DIARRHEA NOS’, 'DIARRHEA RECURRENT”,
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'DIARRHOEA’, 'DIARRHOEA AGGRAVATED’, ' DIARRHOEA NOS’, 'DIARRHOEA RECURRENT”’, 'DIS-
COMFORT ABDOMINAL’, 'DISTRESS ABDOMINAL’, 'DISTRESS GASTROINTESTINAL’, 'EMESIS’,
"EPIGASTRALGIA’, ’EPIGASTRIC ACHE’, 'EPIGASTRIC PAIN’, ’EPIGASTRIC PAIN EPIGASTRAL-
GIA’, ’EPIGASTRIC PAIN NOT FOOD-RELATED’, ’EXPLOSIVE DIARRHEA’, 'EXPLOSIVE DIAR-
RHOEA’, "GASTRALGIA’, '"GASTRIC PAIN’, 'GASTRIC SPASM’, '"GASTROINTESTINAL DISCOMFORT”,
"GASTROINTESTINAL IRRITATION’, 'GASTROINTESTINAL UPSET”’, 'GI IRRITATION’, °GI UPSET",
"HYPEREMESIS’, '"HYPOCHONDRIAL PAIN’, 'THYPOCHONDRIUM PAIN LEFT’, '"HYPOCHONDRIUM
PAIN RIGHT’, '"HYPOGASTRIC PAIN’, 'TATROGENIC DIARRHEA’, TATROGENIC DIARRHOEA’, ’IL-
IACFOSSA PAIN’, 'IRRITATION GASTROINTESTINAL’, 'LOOSE BOWEL’, 'LOOSE BOWELS’, 'LOOSE
MOTIONS’, 'LOOSE STOOLS’, 'LOWER ABDOMINAL PAIN’, 'MUCOUS DIARRHEA’, 'MUCOUS DIAR-
RHOEA’, 'MUSHY DIARRHEA’, '’MUSHY DIARRHOEA’, 'NAUSEA’, 'NAUSEA AGGRAVATED’, '"NAU-
SEA ALONE’, 'NAUSEA AND VOMITING’, 'NAUSEA VOMITING AND DIARRHEA’, 'NAUSEA VOM-
ITING AND DIARRHOEA’, 'NAUSEA WITH VOMITING’, 'NAUSEATED’, "NAUSEOUS’, 'NOCTUR-
NAL DIARRHEA’, 'NOCTURNAL DIARRHOEA’, "PAIN EPIGASTRIC’, "PAIN GASTRIC’, 'PAIN STOM-
ACH’, 'PERSISTENT VOMITING’, 'POSTPRANDIAL EMESIS’, 'POSTPRANDIAL NAUSEA’, 'SECRE-
TORY DIARRHEA’, 'SECRETORY DIARRHOEA’, ’SICKNESS/NAUSEA’, "SOFT STOOLS’, 'STOMACH
ACHE’, 'STOMACH CRAMPS’, 'STOMACH DULL PAIN OF’, 'STOMACH PAIN’, 'STOOLS LOOSE’,
'STOOLS WATERY’, "ULCER TYPE PAIN’, "'UPPER ABDOMINAL DISCOMFORT’, 'UPPER ABDOMI-
NAL PAIN’, 'UPSET GASTROINTESTINAL’, 'URGENT DIARRHEA’, "URGENT DIARRHOEA’, 'VOM-
ITED’, "VOMITING’, "VOMITING AGGRAVATED’, 'VOMITING ALONE’, "VOMITING NOS’, "VOMIT-
ING REFLEX’, "WATERY DIARRHEA’, "WATERY DIARRHOEA’

e diltiazem:’ABNORMAL ECG’, "ABNORMAL EKG’, 'ACUTE HYPOTENSION’, ’ACUTE MYOPATHY",
’ARREST CARDIAC’, 'ARTERIAL HYPOTENSION’, ’"ASYSTOLE’, ’ASYSTOLIC’, 'BLOOD MYOGLOB-
IN INCREASED’, 'BLOOD PRESSURE LOW’, 'BRADYCARDIA’, ' BRADYCARDIA NOS’, 'BRADYCAR-
DIA NOS (EXCL FOETAL)’, 'CK INCREASED’, "CPK INCREASE’, 'CPK INCREASED’, *CPK-MM IN-
CREASED’, 'CARDIAC ARREST’, '"CARDIAC ARREST TRANSIENT’, '"CARDIAC DEATH’, '"CARDIAC
SYNCOPE’, 'CARDIAC TELEMETRY ABNORMAL’, 'CARDIO-RESPIRATORY ARREST’, "CARDIOPUL-
MONARY ARREST’, "CHANGE IN ECG’, "CONSCIOUSNESS AWAKING LOSS’, '"CONSCIOUSNESS LOSS’,
'CONSCIOUSNESS LOSS OF’, '"CREATINE KINASE HIGH’, '"CREATINE KINASE INCREASED’, *CRE-
ATINE PHOSPHOKINASE INCREASED’, 'CREATINE PHOSPHOKINASE SERUM INC’, "CREATINE
PHOSPHOKINASE SERUM INCREASED’, 'CREATININE ABNORMAL NOS’, 'CREATININE BLOOD
INCREASED’, 'CREATININE SERUM INCREASED’, 'DEATH OCCURRING IN LESS THAN 24 HOURS
FROM ONSET OF SYMPTOMS, NOT OTHERWISE EXPLAINED’, 'DEATH SUDDEN’, 'DEATH SUD-
DEN (NOS)’, 'DISORDER ECG/EKG (NOS)’, 'ECG EKG ABNORMAL (NOS)’, 'ECG ABNORMAL’,
’ECG ABNORMAL NOS’, 'ECG ABNORMAL NON-SPECIFIC’, 'TECG ABNORMAL SPECIFIC’, 'ECG
ABNORMALITIES NON-SPECIFIC’, 'ECG PLUS VOLTAGE MARKED’, 'ECG/EKG CHANGES NON-
SPECIFIC’, ’lEKG ABNORMAL’, ’'EKG ABNORMAL NON-SPECIFIC’, 'EKG/ECG ABNORMALITIES
NON-SPECIFIC’, 'ELECTROCARDIOGRAM ABNORMAL’, 'ELECTROCARDIOGRAM ABNORMAL
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(NOSY’, TELECTROCARDIOGRAM ABNORMAL NOS’, 'ELECTROCARDIOGRAM ABNORMAL NON-
SP’,’ELECTROCARDIOGRAM ABNORMAL NON-SPECIFIC’, 'ELECTROCARDIOGRAM ABNORMAL
SPECIFIC’, ’ELECTROCARDIOGRAM AMBULATORY ABNORMAL’, ’ELECTROCARDIOGRAM CHA-
NGE’, 'ELECTROCARDIOGRAM CHANGE NOS’, '”GENERALISED MUSCLE ACHES’, 'GENERALIZED
MUSCLE ACHES’, '"HEART ARREST’, 'HEART RATE ABNORMAL’, '"HEART RATE DECREASED’,
'"HEART RATE LOW’, 'HOLTER MONITORING ABNORMAL’, 'HYPOTENSION’, "HYPOTENSION NOS’,
"HYPOTENSION AGGRAVATED’, '"HYPOTENSION ASYMPTOMATIC’, 'HYPOTENSION PAROXYSM’,
'"HYPOTENSION SYMPTOMATIC’, 'THYPOTENSION, UNSPECIFIED’, 'HYPOTENSIVE’, '"HYPOTEN-
SIVE EPISODE’, 'IATROGENIC HYPOTENSION’, 'LOC’, 'LOCALISED MUSCLE PAIN’, 'LOCALIZED
MUSCLE PAIN’, 'LOSS OF CONSCIOUSNESS’, 'LOSS OF CONSCIOUSNESS NEC’, 'LOSS OF CON-
SIOUSNESS’, 'LOST CONSCIOUSNESS’, 'LOW BP’, 'LOW BLOOD PRESSURE’, 'LOW PULSE RATE’,
'MUSCLE ACHE’, ’MUSCLE PAIN’, 'MUSCLE SORENESS’, 'MUSCLE TENDERNESS ANY SITE’, 'MUS-
CULAR PAIN’, 'MUSCULAR PAINS’, 'MYALGIA’, '"MYALGIA AGGRAVATED’, '’MYALGIA OF LOWER
EXTREMITIES’, 'MYOGLOBIN BLOOD INCREASED’, 'MYOGLOBIN BLOOD PRESENT’, 'MYOGLOB-
IN URINE INCREASED’, 'MYOGLOBIN URINE PRESENT’, 'MYOGLOBINAEMIA’, '"MYOGLOBINE-
MIA’,"MYOGLOBINURIA’, " MYONECROSIS’, ' MYOPATHY’, 'MYOPATHY AGGRAVATED’, 'MYOPATH-
Y

TOXIC’, 'MYOPATHY, UNSPECIFIED’, 'NONSPECIFIC ABNORMAL ELECTROCARDIOGRAM

(ECG) (EKG)’, 'ORTHOSTATIC COLLAPSE’, 'OTHER MYOPATHIES’, 'PALPITATION’, "PALPITA-
TIONS’, 'PALPITATIONS AGGRAVATED’, ’PHOSPHOKINASE CREATINE SERUM INCREASED’, 'PLAS-
MA CREATINE PHOSPHOKINASE ABNORMAL’, 'PLASMA CREATINE PHOSPHOKINASE INCREASED’,
'POLYMYALGIA’, 'POLYMYALGIA AGGRAVATED’, 'POLYMYALGIA WORSENED’, 'PROXIMAL MY-
OPATHY’, ’PROXIMAL MYOPATHY AGGRAVATED’, 'PULSE DECREASED’, 'PULSE RATE DECREASFE’,
'"PULSE RATE DECREASE MARKED’, 'PULSE RATE DECREASED’, 'PULSE RATE FELL’, 'PULSE
RATE LOW’, 'RHABDOMYOLYSIS’, 'SERUM CREATINE PHOSPHOKINASE ABNORMAL’, 'SERUM
CREATINE PHOSPHOKINASE INCREASED’, 'SERUM CREATININE ABNORMAL’, 'SERUM CREATI-
NINE INCREASED’, 'SLOW PULSE’, ’STANDSTILL CARDIAC’, 'STANDSTILL CARDIAC’, 'SUDDEN
CARDIAC DEATH’, 'SUDDEN DEATH’, ’SSUDDEN DEATH NOS’, 'SUDDEN DEATH UNEXPLAINED’,
’SUDDEN DEATH, CAUSE UNKNOWN’, 'SYNCOPAL ATTACK’, 'SYNCOPE’, 'SYNCOPE AGGRA-
VATED’, 'SYNCOPE CONVULSIVE’, 'SYNCOPE EXERTIONAL’, 'SYNCOPE HYPOTENSIVE’, 'SYN-
COPE POSTURAL’, 'TENDERNESS MUSCLE’, 'TOXIC MYOPATHY’, "TRANSIENT SYSTOLIC HY-
POTENSION’, "UNCONSCIOUS’, "'UNCONSCIOUSNESS’

lovastatin, simvastatin, atorvastatin:’ACUTE MYOPATHY’, 'BLOOD CREATINE PHOSPHOKINASE AB-
NORMAL’, 'BLOOD CREATINE PHOSPHOKINASE ABNORMAL NOS’, 'BLOOD CREATINE PHOS-
PHOKINASE INCREASED’, 'BLOOD CREATINE PHOSPHOKINASE MM INCREASED’, 'BLOOD CRE-
ATININE ABNORMAL’, 'BLOOD CREATININE INCREASED’, 'BLOOD MYOGLOBIN INCREASED’,
'CK INCREASED’, '"CPK INCREASE’, '"CPK INCREASED’, 'CPK-MM INCREASED’, 'CREATINE KI-
NASE HIGH’, "CREATINE KINASE INCREASED’, '"CREATINE PHOSPHOKINASE INCREASED’, '"CRE-
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ATINE PHOSPHOKINASE SERUM INC’, 'CREATINE PHOSPHOKINASE SERUM INCREASED’, *CRE-
ATININE ABNORMAL NOS’, 'CREATININE BLOOD INCREASED’, 'CREATININE HIGH’, '"CREATI-
NINE INCREASED’, 'CREATININE SERUM INCREASED’, 'GENERALISED MUSCLE ACHES’, 'GEN-
ERALIZED MUSCLE ACHES’, ’INCREASED SERUM CREATININE’, 'LOCALISED MUSCLE PAIN’,
'LOCALIZED MUSCLE PAIN’, 'MUSCLE ACHE’, 'MUSCLE DISSOLUTION’, 'MUSCLE NECROSIS’,
'MUSCLE PAIN’, 'MUSCLE SORENESS’, 'MUSCLE TENDERNESS ANY SITE’, '"MUSCULAR PAIN’,
'MUSCULAR PAINS’, 'MYALGIA’, 'MYALGIA AGGRAVATED’, 'MYALGIA OF LOWER EXTREMI-
TIES’, 'MYOGLOBIN BLOOD INCREASED’, 'MYOGLOBIN BLOOD PRESENT’, '’MYOGLOBIN URINE
INCREASED’, '"MYOGLOBIN URINE PRESENT’, '’MYOGLOBINAEMIA’, 'MYOGLOBINEMIA’, "MYO-
GLOBINURIA’, 'MYONECROSIS’, 'MYOPATHY’, 'MYOPATHY AGGRAVATED’, 'MYOPATHY TOXIC’,
"MYOPATHY, UNSPECIFIED’, 'OTHER MYOPATHIES’, 'PAIN MUSCLE’, 'PHOSPHOKINASE CREA-
TINE SERUM INCREASED’, 'PLASMA CREATINE PHOSPHOKINASE ABNORMAL’, 'PLASMA CRE-
ATINE PHOSPHOKINASE INCREASED’, ‘PLASMA CREATININE ABNORMAL’, 'PLASMA CREATI-
NINE INCREASED’, 'POLYMYALGIA’, ’'POLYMYALGIA AGGRAVATED’, 'POLYMYALGIA WORSENED’,
"PROXIMAL MYOPATHY’, 'PROXIMAL MYOPATHY AGGRAVATED’, 'RAISED SERUM CREATININE',
"RHABDOMYOLYSIS’, 'SERUM CREATINE PHOSPHOKINASE ABNORMAL’, 'SERUM CREATINE PHOS-
PHOKINASE INCREASED’, ’SERUM CREATININE ABNORMAL’, 'SERUM CREATININE INCREASED’,
'SYMPTOMATIC INFLAMMATORY MYOPATHY’, 'SYMPTOMATIC INFLAMMATORY MYOPATHY
IN DISEASES CLASSIFIED ELSEWHERE’, 'TENDERNESS MUSCLE’, 'TOXIC MYOPATHY’, 'URINE
MYOGLOBIN INCREASED’

1.2.3.1 A Python Program to Map MedDRA PTs to LLTs

## map-pt-to-11lt.py

##

## get

a list of all ’LLT’ terms for a given ’PT’ term

## Requires data from the MedDRA ascii files

pt_f =
pt_buf

open(’pt.asc’,’r’)

= pt_f.read()

pt_f.close()

pt_1l =
pt.d =

for pt

pt.buf.split (’\r\n’)
e,

in pt_1:

pt_att = pt.split(’$’)

if

not len(pt_att) > 1:

break

pt_code = pt_att[0]

pt_name = pt_att[1]



pt_d[pt_name] = pt_code

11_f = open(’llt.asc’,’r’)
11t _buf = 11_f.read()
11_f.close()
11t_1 = 11t_buf.split(’\r\n’)
11t.d = {}
for 11t in 11t_1:
11t_att = 11t.split(’$*)
if not len(llt_att) > 1:
break
(11t_name, pt_code) = (llt_att[1], 1lt_att[2])
if not 11t_d.has_key(pt_code):
11t_d[pt_code] = [11t_name]
olse:

11t_d[pt_code] .append (11t _name)

## example query, returns a list of all LLT’s for a PT term

#11t_d [pt_d[’Bradycardia’]]

## rhabdo PTs expanded to LLTs
rhabdoPTs = [’Muscle necrosis’, ’Myoglobin blood increased’, ’Myoglobin blood present’,\
’Myoglobin urine present’, ’Myoglobinaemia’, ’Myoglobinuria’, ’Myopathy’, \
’Myopathy toxic’, ’Rhabdomyolysis’, ’Blood creatine phosphokinase abnormal’, \
’Blood creatine phosphokinase increased’,\
’Blood creatine phosphokinase MM increased’, ’Blood creatinine abnormal’,\
’Blood creatinine increased’,\
’Myalgia’, ’Myalgia intercostal’]

print "\n".join{["\n".join(11lt_d[pt._d[t]]) for t in rhabdoPTs])

## diltiazem PTs expanded to LLTs

diltPTs = [’Cardiac arrest’, ’Bradycardia’, ’Cardiac arrest’, ’Cardiac death’, \
’Cardiac telemetry abmnormal’,\
’Cardio-respiratory arrest’, ’'Electrocardiogram abnormal’, \
’Electrocardiogram ambulatory abmormal’, \
’Electrocardiogram change’, ’Electrocardiogram repolarisation abnormality’, \
’Gallop rhythm present’,\

’Heart rate abnormal’, ’Heart rate decreased’, ’Loss of consciousmess’, \
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’Palpitations’, ’Sudden cardiac death’,\
’Sudden death’, ’Syncope’, ’Hypotension’]

print "\n".join(["\n".join(1lt_d[pt_d[t]]) for t in diltPTs])

## nefazodone PTs expanded to LLTs
nefazPTs = [’Nausea’, ’Vomiting’, ’Somnolence’, ’Hepatocellular damage’, ’Serotonin syndrome’]

print "\n".join(["\n".join(11lt_d[pt_d[t]]) for t in nefazPTs])

## Macroiide PTs from label
macroPTs_label = [’Nausea’, ’Vomiting’, ’Abdominal discomfort’, ’Abdominal pain lower’,\
’Abdominal pain upper’, ’Diarrhoea’]

print "\n".join(["\n".join(11t_d[pt_d[t]]) for t in macroPTs_labell)

## macrolide arrhithmia-related PTs

macroArrythPTs = [’Cardiac arrest’, ’Bradycardia’, ’Cardiac arrest’, \
’Cardiac death’, ’Cardiac telemetry abnormal’,\
’Cardio-respiratory arrest’, ’Electrocardiogram abnormal’, \
’Electrocardiogram ambulatory abnormal’, ’Electrocardiogram change’,\
’Electrocardiogram repolarisation abmnormality’, ’Gallop rhythm present’,\
'Heart rate abnormal’, ’Heart rate decreased’,\
’Loss of consciousness’, ’Palpitations’, ’Sudden cardiac death’,\

’Sudden death’, ’Syncope’]

print "\n".join(["\n".join(11lt_d[pt_d[t]]) for t in macroArrythPTs])

## macrolide QT PTs
macroQT_PTs = [’Long QT syndrome’, ’Torsade de pointes’, \
’Ventricular tachycardia’, ’Electrocardiogram QT prolonged’]

print "\n".join(["\n".join(1llt_d[pt_d[t]]) for t in macroQT_PTs])

## macrolide liver damage
macroLiverPT = [’Hepatocellular damage’]

print "\n".join(["\n".join(1lt_d[pt_d[t]]) for ¢ in macroLiverPT])
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A SAMPLE AERS REPORT RETURNED FROM OUR QUERIES
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1 : clarithromycin-nefazodone-interaction REPORT: 4270220-82001st (safetyreportid: 4270220-8 )

First received: 2003-12-17 Most recent info: 2003-05-30 qualification: physician

PATIENT INFO

age: 41 (years) gender: female weight(kg): 70.3 death date: \N

REACTION

seriousness list: seriousnesshospitalization,seriousnessother

Reaction (MedDRA):
ABDOMINAL DISCOMFORT
ANXIETY
BRONCHITIS
COORDINATION ABNORMAL
CRYING
DELUSION
DEPRESSION
DIFFICULTY IN WALKING
DRUG ABUSER
DRUG DEPENDENCE
DRUG INEFFECTIVE
DRUG WITHDRAWAL SYNDROME
HALLUCINATION, AUDITORY
HYPERHIDROSIS
INSOMNIA
MALAISE
MUSCLE CRAMP
NAUSEA
PALPITATIONS
PANIC REACTION
PNEUMONTA
RASH
RIGORS
ROAD TRAFFIC ACCIDENT
SUICIDAL IDEATION



TINNITUS
VISUAL DISTURBANCE
VOMITING

MEDICATIONS

Medicinal product: OXYCONTIN

indication: PAIN

routa: \N

Dosage: 20 MG

Start date: 1997-12-18 End date: 1999-03-01 Tx duration: \N

characterization: suspect

Medicinal product: OXYCONTIN

indication: PAIN

route: \N

Dosage: 40 MG

Start date: 1999-03-23 End date: 2000-05-01 Tx duration: \N

characterization: suspect

Medicinal product: OXYCONTIN

indication: PAIN

route: \N

Dosage: 80 MG, TID

Start date: 2000-05-01 End date: 2001-03-19 Tx duration: \N

characterization: suspect

Medicinal product: OXYCODONE HCL

indication: PAIN

(units unkown)

(units unkown)

(units unkown)
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route: \N

Dosage: 5 MG

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: suspect

Medicinal product: ALBUTEROL
indication: \N
route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: AMBIEN
indication: \N
route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: AMERGE

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (umnits unkown)

characterization: concomitant

Medicinal product: BENZONATATE



indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: BIAXIN

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: BUSPAR

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: CEPHALEXIN
indication: \N
route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant
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Medicinal product: CLONAZEPAM
indication: \N
route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: VALIUM

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: DOXEPIN HYDROCHLORIDE

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: EFFEXOR

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant
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Medicinal product: FLOVENT
indication: \N
route: \N

Dosaga: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: FLOXIN “R.W. JOHNSON~

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duratiom: \N (units unkown)

characterization: concomitant

Medicinal product: HYDROCODONE W/ACETAMINOPHEN
indication: \N
route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: IMITREX “GLACO-WELLCOME™
indication: \N
route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)
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characterization: concomitant
Medicinal product: LEVAQUIN
indication: \N
route: \N
Dosage: \N
Start date: \N End date: \N Tx duration: \N (units unkown)
characterization: concomitant
Medicinal product: MEDROXYPROGESTERONE
indication: \N
route: \N
Dosage: \N
Start date: \N End date: \N Tx duration: \N (units unkown)
characterization: concomitant
Medicinal product: NEURONTIN
indication: \N
route: \N
Dosage: \N
Start date: \N End date: \N Tx duration: \N (units unkown)
characterization: concomitant
Medicinal product: PAXIL
indication: \N
route: \N
Dosage: \N
Start date: \N End date: \N Tx duration: \N (units unkown)



characterization:

concomitant

Medicinal product:
indication: \N

route: \N

Dosage: \N

Start date: \N End date:

characterization:

PREDNISONE

concomitant

\N Tx duration: (units unkown)

Medicinal product:
indication: \N

route: \N

Dosage: \N

Start date: \N End date:

characterization:

PROMETHAZINE

concomitant

\N Tx duration; (units unkown)

Medicinal product:
indication: \N

route: \N

Dosage: \N

Start date: \N End date:

characterization:

PROTUSS-DM

concomitant

\N Tx duration: (units unkown)

Medicinal product:
indication: \N

route: \N

Dosage: \N

ROXICET
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Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: ROXICODONE

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: SERZONE

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: SONATA

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization: concomitant

Medicinal product: TRAZODONE HCL
indication: \N

route: \N

Dosage: \N



Start date: \N End date: \N Tx duration: \N (units unkown)

characterization:

concomitant

Medicinal product:

indication: \N

route: \N

Dosage: \N

ZOLOFT

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization:

concomitant

Medicinal product:

indication: \N

route: \N

Dosage: \N

REMERON

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization:

concomitant

Medicinal product:

indication: \N

route: \N

Dosage: \N

WELLBUTRIN

Start date: \N End date: \N Tx duration: \N (units unkown)

characterization:

concomitant

Medicinal product:

indication: \N

route: \N

DOXYCYCLINE
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Dosage: \N

Start date: \N End date: \N Tx duration: \N

characterization: concomitant

(units unkown)

Medicinal product: KETOPROFEN

indication: \N

route: \N

Dosage: \N

Start date: \N End date: \N Tx duration: \N

characterization: concomitant

(units unkown)
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DIPS EVALUATIONS OF CASE REPORTS
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Figure K.1: DIPS evaluation of a paper involving multiple case reports published by Auclair
et al providing evidence of an interaction between itraconazole and clarithromycin [11]. See
Table 5.14 in Chapter 5 for more details on DIPS evaluations.



307

- - T A N S'M\ .
Mu _J'.’.-‘ual. DM ) u U h Coe 3~ NO_F?’T#}‘;‘., .
Faritres f1 Ewen, PoL 7

as@. Loaves LY @ ' Coet U-(Ecwashs

Unk or
. Questiona Yoo Mo NA
1. Ans thetq pravious creadée raparis of this interection in humans? +1 -1 ]
2. la the obasrved Interaction conslslent with the knowe intoragtive properiias of precipiiant dmg? +1 -1 D
3, Is the observed interaction congistort with the known fnteractive properiles of object drug? +1 -1 -]
4. 1s'the event conmiaiend wilh te known or easonable time courke of (e intrastion (onest and/or olfest)? +1 -1 0
5. Dki the intesaclion remét upen dechallenge of the areciaianidrug with no change in the cbject drug? « -2 ]
{if no dechallenge, use Unhmum“uskipaum €)
&, Dic the intasaction reappaar whan the praeipltant drug was readrinistered in the presence of +2 -1 []
cantinued use of objuet dnip?
7. Ara thess daacnablc allemative asusss for the avent™ ~1 +t (]
s mummmmmmcdummﬂhmmwu-wmmm + 0, 0
proposed interaction?
9. Was the drug intersction confirmed by sny abjectiva svidance tovisisieht with tha offects on the « (] []
Object drug {other han dnsg concentrations from quastion &7

10. Was ¥ intenyction graaler whah the precipitant tnag does was lncreased or lads whea the precipitant +1 -1 o

dnig does was decseased?

*Conalder clinical conditions, othar ntaracting drugs. iack of adhamsacs, sisk Ingians (g, agd, inappropriate toaes of oblect drug). A NO answer pré-
aumes that enough information mmudcumwwmmwwnmbnmm When in doubt; wed Linknowh ¢r NA
designation,

TotalScore .. Highly Probable: o8 ,

Frobabe: 58 g - L(
Possible: 24
Doublfu: @

Figure K.2: DIPS evaluation of a paper involving multiple case reports published by Huynh
et al providing evidence of an interaction between diltiazem and simvastatin/simvastatin
acid (beta-hydroxy-simvastatin) [89]. See Table 5.14 in Chapter 5 for more details on DIPS
evaluations.
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Figure K.3: DIPS evaluation of a case report published by Akram et al providing ev-
idence of a DDI between ketoconazole and simvastatin/simvastatin acid (beta-hydroxy-
simvastatin) [5]. See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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Figure K.4: DIPS evaluation of a case report published by Itakura et al providing ev-
idence of a DDI between ketoconazole and simvastatin/simvastatin acid (beta-hydroxy-
simvastatin) [91]. See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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Figure K.5: DIPS evaluation of a paper involving multiple case reports published by
Gladding et al providing evidence of seperate interactions between 1) diltiazem and atorvas-
tatin, and 2) diltiazem and simvastatin/simvastatin acid (beta-hydroxy-simvastatin) [67].

See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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Figure K.6: DIPS evaluation of a case report published by Shaukat et al providing ev-
idence of a DDI between fluconazole and simvastatin/simvastatin acid (beta-hydroxy-
simvastatin) [157]. See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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Figure K.7: DIPS evaluation of a case report published by Peces and Pobes providing
evidence of a DDI between diltiazem and simvastatin/simvastatin acid (beta-hydroxy-
simvastatin) [140]. See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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Figure K.8: DIPS evaluation of a case report published by Lewin et al providing evidence
of a DDI between diltiazem and atorvastatin [113]. See Table 5.14 in Chapter 5 for more

details on DIPS evaluations.
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Figure K.9: DIPS evaluation of two case reports published by Gilad and Lampl providing
evidence of a DDI between ketoconazole and simvastatin/simvastatin acid (beta-hydroxy-
simvastatin) [66]. See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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Figure K.10: DIPS evaluation of a case report published by Spach et al providing evidence of
a DDI between erythromycin and lovastatin/lovastatin acid (beta-hydroxy-lovastatin) [161].

See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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Figure K.11: DIPS evaluation of a case report published by Wong et al providing evidence of
a DDI between erythromycin and lovastatin/lovastatin acid (beta-hydroxy-lovastatin) [179].
See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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Figure K.12: DIPS evaluation of a case report published by Ayanian et al providing
evidence of a DDI between erythromycin and lovastatin/lovastatin acid (beta-hydroxy-
lovastatin) [28]. See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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Figure K.13: DIPS evaluation of two case reports published by Stein et ol providing
evidence of a DDI between ketoconazole and lovastatin/lovastatin acid (beta-hydroxy-
lovastatin) [162]. This report received a score of five on the DIPS scale giving it a DIPS
rating of “probable”. See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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Figure K.14: DIPS evaluation of a case report published by Kahri et al providing evidence
of a DDI between fluconazole and atorvastatin [101]. See Table 5.14 in Chapter 5 for more
details on DIPS evaluations.
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Figure K.15: DIPS evaluation of a case report published by Grunden and Fisher providing
evidence of a DDI between clarithromycin and lovastatin/lovastatin acid (beta-hydroxy-
lovastatin) [77]. See Table 5.14 in Chapter 5 for more details on DIPS evaluations.
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