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Leaf2Tableau, a self-service and real-time clinical data visualization pipeline, is 

designed and developed to handle data visualization requests for queries developed in 

Leaf, a clinical data explorer developed by University of Washington Medicine 

Information Technology Services. It can extract and visualize any Leaf datasets into a 

portable format that researchers can easily explore without needing a highly technical 

or statistical background, providing a quick visual summary of the target population. 

This completes a clinical data warehouse (CDW) self-service model with a researcher 

constructing a query to identify a specific patient cohort in Leaf and subsequently 

developing custom visualizations for exploration or publication, as well as receiving 

data files for analysis. 



 4 

CONTENTS 

 

1 INTRODUCTION AND SIGNIFICANCE ................................................................... 6 

2 BACKGROUND ............................................................................................................ 15 

3 LITERATURE REVIEW ............................................................................................... 8 

4 RESEARCH DESIGN AND METHODS .................................................................... 19 

4.1 OVERVIEW ............................................................................................................... 19 

4.2 TABLEAU DATA EXTRACT API ............................................................................... 20 

4.3 PUBLISH SINGLE DATASOURCES ............................................................................. 21 

4.4 PUBLISH PRE-CONSTRUCTED WORKBOOK ............................................................. 21 

4.5 ADD USER PERMISSION .......................................................................................... 22 

4.6 REAL CLINICAL USE CASE-- ACUTE KIDNEY DEFINITION (AKD) ......................... 23 

5 RESULTS AND DISCUSSION .................................................................................... 26 

6 CONCLUSION .............................................................................................................. 33 

   

  



 5 

 

ACKNOWLEDGEMENTS 

 

The author would like to express her heartfelt gratitude to the member of her 

committee, Dr. Sean D Mooney, Dr. Mark M Wurfel, Dr. Adam Wilcox, and Dr. John 

Gennari, for their invaluable contributions to this work. She would also like to thank 

Tony Black, Nic Dobbins, Bob Meizlik, Pavan Bhatraju, Eve Wilkerson and each of 

the members of Leaf team for their support, patience, insights, and general 

willingness to listen to her thoughts on this project at various times.  

  



 6 

 

1 Introduction and Significance 

As a result of technology advancements in clinical data warehouse (CDW) 

performance and storage capacity, the amount and the complexity of clinical data 

around clinical staff and researchers are constantly increasing. However, due to 

cognitive attributes of human beings, information processing by the human mind is 

not suited to analyzing large volumes of detailed data. This is especially true in the 

design of informatics tools in the clinical environment, which should prioritize 

enabling members of the clinical staff (physicians, technicians, nurses, students, 

managers) to take advantage of effective presentation and interaction with the data. 

Information visualization can enable users to reveal deep details of clinical data by 

exploiting human’s visual recognition abilities.1 Information Visualization is 

well-studied in medicine2, public healthcare3, electronic medical data4, and medical 

imaging5; but is relatively new to clinical research informatics. Current clinical 

informatics research includes plentiful examples of visualizing problem- and 

domain-specific clinical data, such as distributed time-oriented clinical records and 

their analysis;6 few tools help researchers extract retrospective data obtained through 

query tools and delve into it using data visualization for a more general purpose.  

Leaf is a next-generation self-service clinical data explorer sponsored by the 

University of Washington Medicine IT Services and the Institute for Translational 

Health Services. It supplies aggregate counts, information tables, basic visualizations 

and exporting functions of patient populations from the Caradigm clinical data 
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repository.  Leaf is effective at estimating patient cohort sizes and exporting cohort 

information for the purposes of quality improvement and research. Its exporting 

destination, REDCap, is a mature web application for building and managing online 

surveys and databases; and has an extendable architecture where plugins that support 

additional features can be developed. Currently, REDCap can export patient data 

extracted from Leaf to data analysis tools such as R, SPSS, SAS, and Stata. However, 

the distance between cohort identification and cohort information visualization is 

time-consuming and far from intuitive for Leaf users. 

Visualization systems such as HARVEST7 focus primarily on visualizing individual 

patients’ longitudinal medical history rather than an entire cohort. SMART apps built 

a plugin inside i2b2, providing an EMR-like view and a natural-feeling medical 

review process for each patient.8 Gnaeus9 is an example of a cohort visualization tool; 

but it does not assist in finding the cohort. Important research has also been 

undertaken on visualization of patient histories, such as the LifeLine and KNAVE 

projects.7 However, none of them match our attempts to bridge the gap between 

real-time clinical data from the whole patient population in the University of 

Washington Medical Center and its affiliated medical institutes, and clinical 

knowledge discovery. Meanwhile, an intuitive and user-friendly application in clinical 

settings will be welcomed by potential users. Therefore, Tableau, as a successful 

visualization software focused on business intelligence, is a handy choice for us to fill 

in the gap. 
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2 Literature Review 

As electronic health record (EHR) use continues to rise across the nation, data from 

the EHR becomes a valuable resource for clinical quality improvement and 

translational research. This data, combined with other information such as genomic 

data, lays the foundation for personalized healthcare. The US National Institutes of 

Health has developed a repository that brings together clinical research data and 

provides researchers with access to EHR data: The Biomedical Translational 

Research Information System (BTRIS).14 The i2b2 system at Partners HealthCare 

allows direct user access to de-identified data based on the role and training of the 

user, as well as the technical security of the client machine.14 The Stanford 

Translational Research Integrated Database Environment (STRIDE) also creates a 

standards-based informatics platform providing summary statistics about patient 

research cohorts.14 While each of the systems described above provides an interface 

for end users, when researchers find that they are unable to obtain the desired data 

directly, they need a human intermediary to obtain their data.14 James J. Cimino et al. 

designed a de-identified self-service tool based on BTRIS that successfully extracted 

4 queries out of 30 in its version 1.0. Although Dr.Cimino explained that the tool is 

expandable in data domains and attributes, it may not support cohort exploring, event 

comparing or longitudinal displaying.14 

In early 2010, Harvard Medical School and Boston Children’s Hospital began an 

interoperability project called Substitutable Medical Applications and Reusable 

Technologies (SMART) with the distinctive goal of developing a platform to enable 
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medical applications to be written once and run unmodified across different 

healthcare IT systems.15 Joshua C Mandel et al. adopted SMART on a new, openly 

licensed Health Level Seven draft standard called Fast Health Interoperability 

Resources (FHIR), making SMART powerful enough to support development of 

various clinical applications; for example, Bilirubin Chart aims to highlight the 

overlay of bilirubin [Mass/volume] results over a time-based risk chart. Aggregated 

Patient Data is designed to pull patient data from external health systems into one 

place while Growth Chart is developed to present a child’s growth overtime.15 As a 

technology platform, SMART on FHIR requires secondary development to build 

applications and is naturally far from individual end-clients. Meanwhile, it does not 

convert large-scale data or demonstrate real time query translations on top of large 

data sets.15 Without deliberate modification, SMART prefers to deliver visual 

analytics on individual medical records.15  

To help digest such large EHR data sets, the emerging field of visual analytics 

employs the human eye as a statistical tool for quickly recognizing patterns and 

dissimilarities.16 In point of care, HARVEST is developed by New York Presbyterian 

Hospital and Department of Biomedical Informatics, Columbia University to act as an 

interactive, problem-oriented patient record summarization system. It differs from 

previous work that it has natural language parser of the patient notes and aggregates 

and presents information from multiple care settings. However, because HARVEST 

tracks single patients’ timelines and documents all the problems, clinical questions 

hiding in cohort or relying on clinical note frequency will be missing. And 
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HARVEST is constrained to one medical center, which impairs its feasibility to a 

more diverse research-oriented environment. 

On the other hand, John D. Manning et al. examined Lifelines2, a visualization 

program based on BTRIS from the University of Maryland’s Human-Computer 

Interaction Laboratory, and found Lifelines2 has incredible potential to speed up 

analysis in a translational research setting.16 But the learning curve of Lifelines2 is 

steep; it requires several hours of training and it is limited to temporal categorical 

events, meaning no duration qualifiers or numerical data may be imported.16 

Megan Monroe et al. also introduced a visualization tool, EventFlow, that transforms 

an entire dataset of temporal event records into an aggregated display, allowing 

researchers to analyze population-level patterns and trends.17 EventFlow is developed 

by the University of Maryland and designed to perform an algorithm consisting of a 

series of targeted simplifications that allow users to precisely and iteratively pare 

down complex temporal event datasets to the key visual elements that reveal 

meaningful patterns. Dr. Monroe’s work draws on techniques from both temporal 

event query and data mining, as well as understanding how temporal relationships can 

be accessed and transformed within complex datasets.17  

From the perspective of technology acceptance model (TAM), the three 

pre-determined high-level themes--Perceived Usefulness (PU), Perceived Ease of Use 

(PEOU), Actual Use (AU) can be used to compare EventFlow and Leaf2Tableau. 

Regarding PU, EventFlow serves as a useful visual tool and has clear potential to 
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facilitate temporal patterns reveal in clinical research. For PEOU, EventFlow users 

are able to understand its visualizations with analysts’ assistance in data input. 

EventFlow has already been applied to a lot of research while Leaf2Tableau is still in 

its pilot stage. Besides EventFlow, clinical researchers still need a self-service tool for 

preparing the data before they simplify and find patterns in it. The AU theme reveals 

that Leaf2Tableau serves better for real-time clinical data retrieval and intuitive target 

population identification. 

Therefore, compliance with diverse clinical and research settings as well as a goal of 

easy use becomes the first concerns for the design of clinical data informatics tools. 

Leaf, the clinical data explorer developed in UWM ITS, is built upon flexible SQL 

builders and can be migrated to other clinical data warehouses and healthcare systems. 

It is a self-service web application with intuitive and friendly user-interface, 

compatible to most popular browsers and operational systems. Moreover, Leaf 

provides various logic and time/encounter combinations among query criteria, e.g. 

OR, AND, AND NOT, IN THE SAME ENCOUNTER, to help construct complex 

and multi-dimension clinical questions. It also allows users to see and modify SQL 

commands in its user interface, to customize filters, and to create their own concepts, 

granting them a huge room to fully explore their interested data. The most important 

is, Leaf is a tool fully covered by our design and under our control.  

Besides, to determine the other end of the clinical data visualization pipeline, a 

comparison among popular visual analytics tools in the market has also been 

conducted. Figure 1 reflects the level of functionality of known data visualization 
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tools and their derived score of ease of use in 2009, among which QlikView, Tableau 

and SpotFire rank relatively high and are still popular in both BI and healthcare fields. 

20 Andrew Pandre, the author of Figure 1, also summarized his subjective quantitative 

comparison among QlikView, Tableau, SpotFire and Microsoft in aspects of pricing, 

time to implement, scalability, data interactivity and so on, where Tableau beats the 

other three products.20 

 

Figure 1: The level of Functionality of known BI and Data Visualization Tools 

(Andrew Pandre, 2016) 
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Figure 2: Subjective Data Visualization Comparison - end of 2011 (Andrew Pandre, 

2011) 

While there is no single best visualization product, Tableau, compared to its 

competitors, is good at connecting multiple datasets to generate a lot of views in one 
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workbook and share the data filters and markers. It is fast to implement and does not 

need software experts to develop scalable SaaS. And Tableau is excellent in 

interaction with Online Analytical Processing (OLAP) cubes, which perform 

multi-dimensional data analysis and provides the capability for complex calculations, 

trend analysis, and sophisticated data modeling. Using Tableau allows users without a 

solid background in statistics to move quickly on visualizing and understanding the 

structure of data sets and gleaning top level insights. Thus, I believe that building a 

data visualization pipeline integrating Leaf with Tableau’s powerful visualizing 

features will benefit lots of clinical researchers and staff. 
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3 Background 

Leaf2Tableau is built based on the new generation clinical data query tool Leaf, 

which is developed by University of Washington Medicine (UWM) IT services (ITS), 

Nicholas Dobbins, and his team, including this author.  

The data flow (Figure 3) behind Leaf is straightforward. First, raw data coming from 

ORCA, Epic, Cerner and other systems are parsed and ingested by UWM ITS Amalga 

team in real time. Then, the Amalga team creates and updates entities to store these 

data. Leaf utilizes these entities as the basis for its concepts to form query criteria. 

End users interpret their questions into these concepts to find their desired patient 

population.  

 

Figure 3: Data flow behind Leaf. 

Leaf has three major tabs--Find Patients, Visualize and Patient List. The Find 
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Patients tab contains the cohort search features of Leaf. Users can search medical 

concepts and drag them over into three query panels and combine various logic for 

their query. By clicking the Run Query button, researchers obtain the total count of 

their target cohort. They can also add concepts as custom filters and save the existing 

query. Leaf will also show the source and retrieval time of its query as well as display 

the SQL syntax behind the query for highly motivated researchers to validate the data.  

 

Figure 4: Screenshot of Leaf; Find Patient Page. 

The Visualize tab provides visualizations on population stratified by age, gender and 

vital status, visits in past 12 months and clinics and services in past 12 months. These 

graphics are built with the D3 Javascript package and aim at demonstrating a general 

view of the queried cohort. This tab also has a breakdown view to record the initial 

query criteria.  
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Figure 5: Screenshot of Leaf; Visualize Page. 

 

Figure 6: Screenshot of Leaf; Visualize Page—Query Result BreakDown. 

After Leaf users get their query results, they can switch to Patient List tab, where they 

can configure the detailed information of the target population to be displayed as a 

table. For example, when I get a total number of 77 patients who are currently in the 

emergency department, I can configure the column of their longitudinal A1c 

observational values as a spark line in Patient List by selecting the dataset A1c as well 

as its configuration A1c Trend. 
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Figure 7: Screenshot of Leaf; Patient List Page. 
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4 Research Design and Methods 

4.1 Overview 

Leaf uses the Caradigm Clinical Data Warehouse (CDW) as a source for clinical data, 

which it extracts and distributes for research and quality control. In digesting the raw 

data from tons of data sources such as Epic and Cerner, the Caradigm CDW parses 

them into entities like Person, Lab, Medicine, etc., which Leaf displays as Concepts 

on its user interface. One of the goals of the Leaf2Tableau is to facilitate the process 

of delivering and visualizing extracted data to a researcher once they have found a 

desired patient population in Leaf.  

Tableau is a commercial software package for authoring visualizations and it has 

independent servers and sites to restrict user access, which can be used to prevent the 

widespread distribution of personal health information. Clinical data can be delivered 

in the form of Tableau Data Extract (.tde) and packaged workbook (.twbx) files, 

which can then be published on the Tableau server pre-established by the University 

of Washington IT Services. 

The initial workflow was designed as two separate pathways and depicted in Figure 8. 

When a user requests an extract of a patient cohort with their information for a given 

Leaf query, the queries are logged in a request table along with the user’s identity. 

Leaf2Tableau uses the Tableau Data Extract API to create Tableau Data Extract (TDE) 

files. Leaf uses the DataTables Javascript library to deliver query results in its 

PatientList tab. After the data transformation has been done, the TDE files are 
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published as a Tableau Data Source to the Tableau Server. In the other pathway, the 

TDE extracted directly from upstream CDW is transformed as Visualization Template 

Repository grouped by entities and delivered to Tableau Workbook as custom 

datasets that can be manipulated by users.  

 

Figure 8: The pipeline of Leaf2Tableau begins with a Leaf query and ends with a 

deliverable containing TDE files for constructing additional visualizations and 

pre-constructed workbooks with interactive visualizations copied from a template. 

4.2 Tableau Data Extract API 

To prepare the TDE file, preliminary staging of extracted data is necessary. Tableau 

replaces the patient and encounter identifiers with randomly generated keys specific 

to that request in its data extract. This reduces security concerns that additional 

information could be leaked or deduced from a “connect the dots” attack with 

multiple data extracts.10 Also, with the goal of protecting personal health information, 

Leaf date shifts each patient's age and each record’s date time in its de-identified 
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mode, which is used in this project, faithfully preserving the time range between 

events within a patient's record.11  

Because Tableau does not provide Data Extract SDK or API that can be fit in Leaf 

development environment, I used a third-party API written in C# that contains basic 

classes such as Row.cs, Table.cs and Collation.cs to define a TDE table. Modification 

of the API is mainly focused on changing .dll files loading directory, debugging the 

compatibility among Leaf, Caradigm Intelligence Platform and Tableau Data Extract 

API, and writing in TDE file from Leaf datasets through DataTable. 

4.3 Publish Single Datasources 

Leaf datasets can be published to Tableau server as single datasources solely. Once 

staging is complete, queries that extract selected dimensions, such as diagnoses, 

medications, procedures, and so on, are logged and executed. The result set of these 

queries are written to TDE files by adding DataTable columns and rows. The TDE 

files are published as the data source in Tableau Server when users click the Export 

button in Leaf. After getting the response from Tableau REST, Leaf returns an URL 

to the published datasource. By clicking the URL, users enter the Tableau Server user 

interface, create new workbook from the datasource and generate their own 

visualization with high freedom. 

4.4 Publish Pre-Constructed Workbook 

To construct the workbook, a template must be copied from a local file repository and 

its data sources have to be set to the newly extracted TDE files. The workbook 

templates should contain visualizations we have developed and found useful for a 
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general-purpose data extract. Then users are directed to Tableau Server user interfaces 

to view the workbook or to form new views by leveraging the published TDE files. 

However, to configure and develop the template repository is time-consuming and out 

of the author’s capability and beyond her accessibility while manipulating Leaf 

entities. In this project, there are no packaged workbooks or pre-designed templates in 

the final design.  

As a last step, Leaf2Tableau compresses all data files, workbooks, and visualizations 

into a single compressed file that is deliverable to the researcher.  

4.5 Add User Permission 

Even though the scope of the project is to explore the potential of self-service clinical 

data visualization via de-identified mode in Leaf, however, the security of personal 

health information will always be the priority and first concern. Based on that, I used 

the Add Default Permission and the Add Datasource Permission in the Tableau server 

REST API while publishing data. The default user permission is set as inaccessible to 

any datasource, while the user is granted the right to see his or her own datasource 

every time they request exporting to tableau in Leaf. The goal is to prevent users from 

glancing at others’ workbooks or datasources, causing possible information leaks. 
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Figure 9: Permission Control Workflow. Firstly, by manually adding leaf users to 

tableau server, their project default permissions are denied and their site role are 

interactors initially. That means they can see nothing because they have no access to 

any datasource or views. When a user request export clinical data from leaf to 

Tableau, service account will generate TDE files through Tableau data extract API. 

Then it will set the user as the owner of the datasource and publish the TDE files to 

Tableau server. After above process, users can only view and edit their own published 

datasource, reducing the security concern of patient health information disclosure. 

4.6 Real Clinical Use Case-- Acute Kidney Injury Definition (AKD) 

As an engineering project, Leaf2Tableau is created to pull out cohort longitudinal 

health information and demonstrate key observational values via Tableau 

visualization, assisting researchers to locate target populations as well as acquire a 
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quick visual understanding. Clinical research examples in the real world are essential 

for shaping the tool, among which the knowledge gap still exists in examining how 

the trajectory of kidney function over the course of a hospital admission is related to 

clinical outcomes. AKD relies a lot on related lab value trajectory in 7 days to 90 days 

after acute kidney injury has been diagnosed.12  

As we know, acute kidney injury (AKI) is common among intensive care unit (ICU) 

and trauma unit patients. It is highly heterogeneous and has variable comorbidities 

with poor outcomes. Traditional methods to stage AKI severity and distinguish 

patients at most noteworthy hazard for poor results concentrate on the greatest change 

in serum creatinine (SCr) values, which, however, are hampered by the need for a 

reliable baseline SCr value and the absence of a component differentiating transient 

from persistent rises in SCr.13 Pavan K. Bhatraju et al. performed a secondary analysis 

and tested definitions for resolving and non-resolving AKI subphenotypes and 

selected the definitions resulting in subphenotypes with the greatest separation in risk 

of death relative to non-AKI controls.13 They found that a resolving AKI 

subphenotype (defined as a decrease in SCr of 0.3 mg/dl or 25% from maximum in 

the first 72 h of study enrollment) was associated with a low risk of death and a 

non-resolving AKI subphenotype (defined as all AKI cases not meeting the “resolving” 

definition) was associated with a high risk of death.13  

Based on Pavan’s study, visualizing patients’ early creatinine trajectory in the ICU 

and categorizing them by resolving and non-resolving subphenotypes are essential to 

better differentiate patients at risk of AKI-associated mortality. In order to retrieve 
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useful data to assist the AKD study, the target population query criteria should consist 

of patients who have been diagnosed as having an acute kidney injury in the ICU or 

trauma unit. The datasets extracted should include age, sex, BMI, race, comorbidity, 

ICU events and admission status. 
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5 Results and Discussion 

Leaf users query a cohort of patients matching their criteria and configure the datasets 

they want to export. In the AKD example, I queried for Patient Who Had Diagnosis 

of Acute Kidney Failure and Had Lab Test for Creatinine and chose Creatinine and 

Basic Demographics as my exporting datasets for these specific 4,333 patients. After 

that, an exporting request was processed and Leaf2Tableau returned an access URL to 

the published datasources. 

 

Figure 10: Leaf2Tableau Exporting Panel. 

Tableau published datasources can be linked with a shared unique identifier and can 

create as many views as desired in a workbook. Data and images can be downloaded 

from Tableau Server once the work has been done. To modify a view, users can drag 

and drop field names as well as writing simple SQL syntax in columns and rows in 

the Tableau Server editing panel. To prevent information overload, multi-perspective 



 27 

summaries are provided, such as sum, average, maximum, minimum, etc.  

Leaf2Tableau attempts to fulfill two common visualization needs: discovering trends 

and identifying possible patterns. Figure 11 shows how numbers of creatinine records 

a patient have per day could help identify clinical research interest. Figure 12 shows 

how a high-volume set of lab values can be concisely summarized with a traditional 

box-and-whiskers plot. Figure 13 shows a single patient’s creatinine trajectory in 

2016. Because current AKI classification systems have defined AKI by an increase in 

serum creatinine of 0.3 mg/dl or 50% over a 48-72 hr period13, Figure 14 aims at 

answering the question: how many patients have over 0.3 mg/dl increase in serum 

creatinine within 72 hours?  

But these visualizations are not enough for distinguishing the resolving group from 

the non-resolving group of AKI patients. The resolving group is defined by 0.3 or 25% 

decrease in serum creatinine.13 The non-resolving group is defined by no decrease. 13 

Researchers may want to mark the two groups’ trajectory with rate of mortality or 

events like renal replacement therapy and then compare the two groups.19 Figure 15 

stratified the cohort in Figure 14 by death indicator. However, a likely request from 

users would be to visualize inflection points. In the case of the AKD study, Tableau 

limits itself to a single label, and Leaf does not provide functions to implement 

algorithms on its datasets. 
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Figure 11: Numbers of creatinine records a patient have per day. 

 

Figure 12: A high-volume set of lab values summarized with a traditional 

box-and-whiskers plot. 
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Figure 13: A single patient’s creatinine trajectory in 2016. 

 

Figure 14: Between July 5th to 8th, how many patients had an increase of over 0.3 

mg/dl in serum creatinine within 72 hours? 
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Figure 15: Stratification of the cohort in Figure 11 with death indicator. 

For security and practical reasons, all queries are logged so that we know exactly 

what data has been included in a given data extract. This is necessary in both security 

and regulatory audits of clinical data releases. However, due to Tableau server license 

limitation and secure concern, we cannot store users’ workbooks for a long time. So 

users can’t re-access to their datasources as well as visualizations 48 hours after they 

publish and modify them. They are welcome to download the data as text files and 

images to save and share their work, or have a deeper exploration in them via Tableau 

Desktop. By default, all extracts are released with identifiers marked as record_id that 

can be connected and inner-joined within datasources on Tableau server. 

There is more than one strategy for visualizing data in Leaf. Before creating the entire 

pipeline, Leaf had already implemented D3.js to visualize basic demographics, 

religions, insurance, residence and ethnicity of queried patients. Initial feedback 

indicates an intuitive glance at key observational value was greatly welcomed. The 
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Leaf team piloted the idea of providing visualizations to researchers as part of their 

data extract requests, so we added sparklines in PatientList numeric datasets to satisfy 

this demand. However, sparklines have no common or labeled axes, which makes 

them not comparable and hard to convey clinical knowledge. Then a trial of 

embedding Tableau pre-processed views in Leaf to provide more information was 

attempted but not favored. Software development is an inarguably expensive process 

and often requires maintenance in perpetuity. We avoid the need for programming 

visualization plug-ins using Tableau SDK by extracting data in Leaf and connecting 

to the Tableau ecosystem through RESTful APIs, which improve the user's 

experience by providing a consistent and professional visualization environment. 

In our early findings, a clinical researcher was pleased that he did not have to 

completely rely on data analytic collaborators to explore the data set and construct the 

visualizations. Being able to engage a very large dataset without the need for an 

advanced statistical package eliminated a barrier for clinical research.1 The pitfall of 

this approach is that not every visualization need can possibly be met. This is largely 

due to the data manipulation schema of Caradigm Entities and the functional limits of 

Tableau server. A highly-motivated researcher can use the TDE files to construct his 

or her own visualizations for research or publications without needing template 

workbooks. There is a natural learning curve to Tableau and there have been studies 

of known barriers and challenges with novices creating visualizations.18 

The approach for having visualization as a service relies upon the idea that existing 

information visualization authoring tools are highly effective in creating 
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visualizations. Once the Tableau datasources for visualization are authored, instances 

of the visualizations can operate on specific datasets and be released to the researchers 

to aid them in surveying the data.1 Tableau has been chosen as a visualization 

framework because of its wide-spread free licenses for University of Washington 

students and faculty and its free PDF-like reader tool that researchers can easily 

download. As the process already yields TDE files, additional formats and powerful 

extension of visual analytics can be supported in the future.  

The entire pipeline is automated which drastically increases the ability of UWM ITS 

CDW to release data to researchers quickly. UWM ITS has extracted data as a data 

analysis service for several years and the potential to create a general-purpose data 

extracts greatly unburdens its Research IT team. UWM ITS Amalga Application 

Team uses and maintains Caradigm CDW that feeds Leaf. We could have interfaced 

Tableau with Caradigm Entities directly, but by choosing to layer Tableau with Leaf, 

we made it entirely self-service. The Leaf2Tableau efforts are reusable and 

inter-operable in the biomedical community for other CDWs because its SQL builders 

are easy to migrate. As illustrated in Figure 1, Leaf acts as a customer-facing portal 

that enables cohort discovery under a self-service model where data extracts and 

visualizations are additional deliverables of the process.  

As future work, we are experimenting with Leaf2Tableau on effective ways to tell a 

story with visualizations for a given patient population. Intuitively, this requires the 

most relevant templates to be chosen based upon the population selected and to order 

visualizations in a way that tell a meaningful story. 
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6 Conclusion 

Leaf2Tableau, a clinical data visualization pipeline, is designed and developed to 

handle data visualization requests for queries developed in Leaf. The resulting data 

extracts contain raw data files and intuitive data visualizations in the Tableau Server 

user interface, which assist researchers in exploring and understanding their data 

effectively. This completes a CDW self-service model with a researcher constructing 

a query to identify a specific patient cohort in Leaf and subsequently developing 

custom visualizations for exploration or publication, as well as receiving data files for 

analysis. 
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