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Abstract

Cross-Correlation Networks to Identify and Visualize Disease Transmission Patterns

Tsung-Chien Lu

Chair of the Supervisory Committee:
Assistant Professor Neil Abernethy
Department of Medical Education and Biomedical Informatics

Influenza-like illness (IL1) has been a major threat to the public health around the
world. To inform influenza response by enhancing and supporting disease
surveillance, a syndromic surveillance system collects case counts that are
aggregated from multiple sources and jurisdictions. Although each jurisdiction has
their own planned uses of the data, most systems focus on early detection of the
outbreak in regional level response and the algorithms they are using often do not
point to a route of transmission. In this work, we seek to develop approaches to aid
comparison of data among jurisdictions to improve detection of geographic patterns
in disease spread. Using cross-correlation to assess the pairwise similarity between
regional case counts, we introduce a cross-correlation network based on ILI activity

to reveal potential spatio-temporal patterns in disease transmission. The resulting



networks were plotted and visualized in the map with the R statistical package. To
evaluate the feasibility and utility of this approach, we validate these networks
against population-level variables influencing the spread of infectious disease,
including flight passenger volume, census worker flow, and geographic distance. In
our analysis, the spatio-temporal transmission of ILI correlated more closely with
state-to-state census worker flows and distance between states than with flight
passenger flows. We demonstrate how this visualization motif might enhance
existing tools used for the purpose of syndromic surveillance. Finally, limitations of
the approach, broader implications for disease surveillance and informatics, and

future directions for this research will be discussed.
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CHAPTER 1 INTRODUCTION

Syndromic surveillance is a novel epidemiologic method which relies on detection of

clinical case features that are discernable before diagnoses are confirmed (Mandl,

2004). Unlike traditional surveillance systems such as notifiable disease reporting

system that are based on clinical or laboratory diagnosis, syndromic surveillance is an

aggregate surveillance system of a disease or health event by collecting summary data

on group of cases (Porta, 2008). Given that syndromic surveillance systems are

characterized by flexibility and simplicity since they collect summarized counts from

existing health data, such surveillance system has emerged as a prospective method to

inform public health response in different disease syndromes. Potential data sources

include surrogate data sources (e.g., over-the-counter prescription sales or school

absenteeism), nurse’s hotlines, outpatient visit data, Emergency Department (ED) data

(Henning, 2004), and web search queries (Eysenbach, 2006).

With the increasing convenience of transportation and traveling around the world,

an outbreak of a novel infectious disease can impact people living around the globe.

One of the major tasks of the Public Health Informaticians and epidemiologists is

discovering what diseases will threat the public as early as possible and understanding



their spread through the population, no matter whether a disease is introduced

naturally, accidentally, or intentionally (Franz, 2009). In an era of pandemic-causing

strains of influenza or Severe Acute Respiratory Syndrome (SARS), infectious disease

surveillance is critical to early detection and response. Since many different

bioterrorist agents present with flu-like symptoms, most syndromic surveillance

systems incorporate influenza-like illness (ILI) as one of the major syndromes to be

monitored (Mandl, 2004).

Currently the major systems that use syndromic surveillance to monitor ILI activity

as part or a whole of a comprehensive surveillance program in the U.S.A. include

Influenza-like Illness Surveillance Program (ILINet, 2011), Electronic Surveillance

System for the Early Notification of Community-based Epidemics (ESSENCE)

(Lombardo, 2003), the CDC BioSense Program (Bradley, 2005) (Figure 1A), and

Distributed Surveillance Taskforce for Real-time Influenza Burden Tracking and

Evaluation Project (DiSTRIBuTE, 2011). In 2008, Google launched Google Flu

Trends as a syndromic surveillance system based on flu-related searches, to

supplement the deficiency of traditional surveillance system that generally focus only

on local trends (Google Flu Trends, 2011) (Figure 1B). By counting the frequency of

search queries, Google claimed that they can estimate how much flu is circulating in



different countries and regions around the world. Although over the years there are so

many novel syndromic surveillance systems have been put into practice, with varying

degrees of success in terms of timely detection and early response to the outbreak

(Doornik, 2010; Buehler, 2009; Overhage, 2008), there have been no research reports

describing ILI spread across regions using these particular surveillance data sets.

During the 2009 HIN1 flu pandemic, the public was facing the threat of contracting

the so called “Swine Flu” and serious complications which might occur among

previously healthy individuals during the outbreak. To enhance and support disease

surveillance, influenza surveillance data are aggregated from multiple sources and

jurisdictions. Although each jurisdiction has their own planned uses of the data

collected for their system, especially focusing on early detection of the outbreak in

regional level response, there is a lack of knowledge of how diseases spread across

different region or jurisdiction. In addition, most surveillance systems focus on early

detection of the outbreak in regional level response. The algorithms they use rarely

point to a route of transmission. Because understanding the route of transmission is

the key to better adopt optimal intervention and control strategies before disease

spread, we are interested in making effective use of disease aggregated data and

developing a visualization tool that can point to a route of disease spreading across



regions. By using this kind of tool, public health practitioners can identify and

visualize spatio-temporal patterns in those aggregate data and also help them to

communicate with each other. In addition this might assist in early intervention and

control measures before disease spreads from one region to another.

In this study, we investigated the feasibility of network visualization to highlight

geographic patterns by cross-correlation analysis on data sets with ILI counts

collected for influenza surveillance during the period of 2009 HIN1 pandemic. The

primary aim is to construct a cross-correlation network of ILI activity and explore

how disease is transmitted in a spatio-temporal manner. The secondary aim is to

validate this method against population-level variables influencing the spread of

infectious disease, including flight passenger volume, census worker flow, and

geographic distance.
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Figure 1. Screen snapshots showing (A). BioSense and (B).Google Flu Trends.




CHAPTER 2 LITERATURE REVIEW AND BACKGROUND

2.1. Syndromic Surveillance and ILI

Syndromic surveillance was first developed for bioterrorism preparedness and

outbreak detection with the goal of expanding and improving upon traditional public

health surveillance (Henning, 2004). Although the choice of data sources could affect

the ability of a syndromic surveillance system to detect outbreaks earlier than

conventional surveillance methods, the most valuable data sources will be those that

are electronically stored, allow robust syndromic grouping, and are available in a

timely fashion (Mandl, 2004).

As the key component of the syndromic surveillance system, data from EDs have

shown promising research results with adequate balance between sensitivity and

specificity for outbreak detection. Specific data elements related to the ED that have

been used in syndromic surveillance systems include patient’s chief complaint (in

either free text or structured format), ED discharge diagnostic code (International

Classification of Diseases, ICD), ambulance dispatch notes, and telephone triage

service (Beitel, 2004; Reis, 2004; Fleischauer, 2004; Brownstein, 2005; Lu, 2008;

Lemay, 2008; South, 2008; May, 2010; Greenko, 2003; Yih, 2009). For ILI syndrome,



researchers have demonstrated that ED data can be used to detect disease outbreaks

1-2 weeks earlier than through conventional disease reporting methods (Tsui, 2001;

Teich, 2002). Furthermore, a study conducted by Bellazzini et al showed that data

collection from ED electronic medical records (EMR) by using chief complaint and

ICD-9 diagnostic code could detect unexpected ILI before laboratory confirmation,

and hence can serve as an adjunct to traditional laboratory-guided public health alerts

(Bellazzini, 2011).

In addition to the above mentioned systems that used data sources mainly from

clinical domain, researchers sought to develop a more robust and real time monitoring

system that could capture user behavior in web search for health-related information.

Since 2008, Google launched Google Flu Trends aimed at monitoring health-seeking

behavior in the form of queries to online search engine - Google. They developed a

system of analyzing large numbers of Google search queries to tract ILI activity in

different geographic populations. By counting how often people search for flu-related

topics reflecting on aggregate search queries, the system estimates flu circulation in

different countries and regions around the world. The results, which appeared in

Nature, showed that Google web search queries can be used to estimate ILI

percentages accurately in different regions of the United States. The resulting ILI



estimates were consistently 1-2 weeks ahead of CDC ILI surveillance reports

(Ginsberg, 2009). With the popularity of social networking and microblogging service,

researchers are now seeking to tract influenza activities by analyzing Twitter

messages and the results are promising (Signorini, 2011).

2.2. The DISTRIBUTE system as an Example of How Syndromic Surveillance

Works

With the goal of improving surveillance and informing influenza response for a more

timely response and investigation, the International Society for Disease Surveillance

(ISDS) is currently working in partnership with the Centers for Disease Control (CDC)

and other public health organizations to launch the DiSTRIBuTE project, which

collects ED-related ILI counts from participating local and state health departments.

The DiSTRIBUTE system offers publicly accessible visualization graphs of the flu

trends in the prior 4 weeks in terms of different HHS regions over their official

website (DISTRIBuTE, 2011). The system currently covers 22 states and 11 cities.

The system also provides the public with additional graphs, including the daily time

series graphs, weekly time series graphs, and age-group surface plotting that depict

relative increases/decreases in ED ILI syndrome visits as observation/baseline by

jurisdiction and age (Figure 2A). In addition to the publicly accessible website, the



restricted site is available to data contributors of the Distribute system. It contains
descriptions of some of the characteristics of each data contributor and also some
interactive visualization features that allow comparison queries of data and data
timeliness (Figure 2B). Although such a web-based visualization system could serve
as a valuable information resource for the surveillance community to explore further
research and practice topics, users may be confronted with comparisons of data across
different jurisdictions and the existing tools may not help users quantify and assess
the relevance of similarities/differences between case count signals. The information

flow of the DiISTRIBuTE system is depicted as Figure 3.
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Figure 3. Information flow of the DiISTRIBuTE system.

2.3. Cross-Correlation Analysis as Timely Evaluation for Outbreak Detection

Cross-correlation is a statistics analysis that measures the correlation between two
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time series and is a commonly used similarity measurement of two waveforms in

signal processing (Shumway, 2000) The analysis helps identify one series which is

leading indicator of other series or how much one series is predicted to change in

relation the other series. The cross-correlation analysis of two time series datasets

involves repeated measurements of the Pearson correlation coefficient r by

time-shifting the one dataset relative to the other dataset. Each shift is called a "lag",

and the lag time is simply the time unit of the sampling period in collecting the two

time-series datasets (SCRC web site, 2011). The typical cross-correlation graph,

which is called "correlogram", shows enough lags in both negative and positive

directions to represent the cyclical relationship of the two sets of data (Figure 4). A

negative time lag implies the first series in the pair occurred first in R Statistics

Package.

08
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Figure 4. Example correlogram showing the correlation as a function of time lags.
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Timeliness is generally defined as the difference between the time an event occurs

and the time the reference standard for that event occurs (Dailey, 2007). Time series

cross-correlation analysis of syndromic surveillance signals has been applied to assess

timeliness as one of the performance measures in the literature. Tsui et al performed

cross-correlation analysis to evaluate the timeliness for early detection of epidemics

and found that using ICD-9-coded chief complaint was one week earlier than using

data from Pneumonia and Influenza deaths (Tsui, 2002). Espino et al compared the

timeliness of ED telephone triage (TT) data with influenza data from the CDC using

cross-correlation analysis, and the results showed that ED TT calls were one to five

weeks ahead of CDC surveillance data (Espino, 2003). Lemay and colleagues

compared four age groups and six ILI symptoms captured by CC by cross-correlation

analysis using reference signal from laboratory-confirmed influenza cases, and found

that children younger than 5 years consulting ED mainly for fever and for respiratory

symptoms peaked 1 to 4 weeks before the isolation of influenza virus in the

community (Lemay, 2008).

A study conducted by Doroshenko et al evaluated a syndromic surveillance that

captured data from National Health Service (NHS) Direct, a national telephone health

advice service in the UK, for surveillance of 10 syndromes commonly occurring in
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the community (Doroshenko, 2005). Using cross-correlation analysis, they found that

an increase in consultations for ILIs recorded by the Royal College of General

Practitioners Weekly Returns Service (WRS) is preceded by the increase in calls to

NHS Direct for ILI by 1--3 weeks, where WRS is a well-established national clinical

surveillance system. In Australia, Zheng and colleagues found that monitoring time

series of ED visits clinically diagnosed with influenza could potentially provide three

days earlier warning compared with surveillance of laboratory-confirmed influenza by

cross-correlation analysis (Zheng, 2007).

To construct a cross-correlation network of ILI activity spreading across regions,

this thesis will rely on publicly accessible and well-validated datasets from U.S.

Outpatient Influenza-like Illness Surveillance Network (ILINet) and Google Flu

Trends. Before going further, I would like to review graph theory and sociomatrices

of relevant to the construction of cross-correlation network.

2.4. Graph theory and social networks analysis

Graphical models are a marriage between probability theory and graphic theory for

solving problems of uncertainty and complexity that occur throughout applied

mathematics and engineering (Murphy, 2001). The purpose of graphical modeling is
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to exploit the statistical relationships of the entities being modeled for representational

and computational efficiency (Gimpel, 2006). A graph consists of points called nodes

(or vertices) and lines called edges (or arcs) connecting two vertices. An edge is

directed if it runs in only one direction and undirected if it runs in both directions.

Directed edges can be thought of as sporting arrows indicating their orientation. A

graph is directed if all of its edges are directed. An undirected graph can be

represented by a directed one having two edges between each pair of connected

vertices, one in each direction (Newman, 2003). In sociology, a sociometry is a

quantitative method for measuring social relationships and a sociogram is a

systematic method for graphically representing individuals as points/nodes and the

relationships between them as lines/arcs. In public health, the graph theory has been

widely used in analysis of social networks and contact investigation (Abernethy, 2005;

Cauchemez, 2011). An example social networks analysis using graph theory with the

resulting sociogram is depicted as Figure 5.
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Graph Theory & Sociomatrix
John | Ann | Bob | Bill | Paul | Don Bill
John 0 0 0 1 0 A”“. .
Am |1 0 0 0 0 ‘\\ :
Bob |1 1 0 0 0 \ . >
Bill |0 0 1 0 0 .{,——’* . Fel
Paul [0 |0 [0 |0 1 orm Nl
Don |0 0 0 0 0 .
X;;=1 (When there is a connection from n; to n))
Xj, =1 (When there is a connection from n; to n;)
X;;= 0 (When there is no connection)

Figure 5. Sociomatrix (left) and the corresponding directed graph showing

relationship with connections between individuals (right).
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CHAPTER 3 DATASETS

To provide task-specific context for this thesis, this chapter describes the data sets

used for the analysis and evaluation. Given the reasons that ED sources might be

more sensitive and also reliable data sources for surveillance purposes, data sets such

as the DiSTRIBuTE system may provide a more reliable source for routine analysis.

However, due to issues related to data accessibility and jurisdiction, I decided to use

the publicly accessible and well-validated data sets, the ILINet and Google Flu Trends,

for analysis. To evaluate the feasibility and utility of this approach, we will validate

these networks against population-level variables influencing the spread of infectious

disease, including flight passenger volume, census worker flow, and geographic

distance.

3.1. Data Sets for Analysis

We analyzed weekly patient visits to health care providers for ILI collected through

the US Outpatient Influenza-like Illness Surveillance Network (ILINet) and also

weekly query counts from flu-related searches collected by Google flu trends. Both

data sets are publicly available through the CDC or Google website.
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3.1.1. ILINet

Previously known as a sentinel influenza surveillance provider, [LInet is the U.S.

Outpatient Influenza-like Illness Surveillance Network conducted by CDC in

collaboration with health care providers around the United States (ILINet, 2011). It

consists of more than 3,000 healthcare providers and approximately 1,800 outpatient

care sites in all 50 states and the District of Columbia (DC), ILINet provides a

nationwide picture of influenza virus and ILI activity. Each week, ILINet providers

report the total number of patient visits and the total number of patient visits for ILI

by age group (0-4 years, 5-24 years, 25-49 years, 50-64 years, and > 65 years). For

this system, ILI is defined as fever (temperature of 100°F [37.8°C] or greater) and a

cough and/or a sore throat in the absence of a known cause other than influenza. Sites

with electronic records use an equivalent definition as determined by state public

health authorities, meaning that slightly different definitions could sometimes result in

different syndrome detection rates. The ILINet data sets can be accessed online via

CDC seasonal influenza website (ILINet, 2011), allowing routine use of this data for

future analyses. A sample table and flu trends of influenza weekly reports from CDC

for HHS region-1 is shown as Figure 6.
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(A). Snapshot of ILINet chart view for HHS Region 1

SENTINEL PROVIDER INFLUENZA DATA FOR HHS REGION 1
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(B). Snapshot of ILINet flu trends for HHS Region 1
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Figure 6. Snapshots of (A).sample table and (B).flu trends of influenza weekly
reports from CDC for HHS region-1.
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3.1.2. Google Flu Trends

Google Flu Trends is a system conducted by Google Inc., an American multinational

public corporation invested in Internet search, cloud computing, and advertising

technologies. Google Flu Trends tracks flu-related search queries that are thought to

be correlated with the spreading of influenza virus. This information is collected and

used to estimate flu activity in the United States and around the world. By counting

how often people use the search queries and reporting query counts on a weekly basis,

Google Flu Trends has been found to able to estimate flu activity as compared to that

of the traditional flu surveillance systems (Ginsberg, 2009). The Google Flu Trends

data sets can be accessed via their official website (Google Flu Trends, 2011).

3.2. Data Sets for Evaluation

For the evaluation purposes, I utilized those publicly accessible data sets collected by

the US Census Bureau or Bureau of Transportation Statistics (BTA), such as flight

passenger volume, census worker flow, and distance between centroids. Since

influenza (and other communicable diseases) can spread by social contact, likely

including infected surfaces and droplets, we take flight passenger volume and census

worker flow as indicatives of actual contact, and distance as a proxy for likelihood of

contact.
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3.2.1. Airline Origin and Destination Survey (DB1B)

The Airline Origin and Destination Survey (DB1B) is a 10% sample of airline tickets

from reporting carriers collected by the Office of Airline Information of the Bureau of

Transportation Statistics. Data includes origin, destination and other itinerary details

such as number of passengers transported. This annually updated database can be

accessed via the website of Research and Innovative technology Administration

(RITA), BTA website (DB1B, 2010).

3.2.2. Census 2000 Worker Flow Files

The Census 2000 worker flow data sets consisting of the data that are reported as total

number of workers commuting between counties of residence and counties of work

for residents of the 50 states and the DC. It is updated every ten years and the current

available data sets are year 2000. For the purpose of this study, state-to-state file

format can be selected and accessed via the Census Bureau Home Page (Census

Worker Flow, 2000).

3.2.3. Census 2010 Centers of Population by State

A population centroid is the center point of the region's population that describes the
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mean center or the center of gravity of population in a given geographic area (Thaper,

1999). The Census Centers of Population by State files are the data sets updated by

the US Census Bureau every ten years and can be used to calculate the centroid

distance between states. The 2010 Census Centers of Population by State is the most

updated file and can be accessed via the website of the US Census Bureau (Census

Centers of Population by State, 2010).
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CHAPTER 4 ANALYSIS METHODS

4.1. Cross-Correlation Analysis

Cross-correlation is a test that measures the similarity between two signals or

waveforms as a function of a time lag. For discrete time series signals,

cross-correlation between two signals x[n] and y[n] is calculated as

o

i zn]ly*n—1] = Z z[n+1]y*[n], [=0,£1,42,...,

— n=—oo

A

-

I

ray[l]

where | is called time lag.

I used the cross-correlation function (CCF) that provided by R, an open source

Language and Environment for Statistical Computing Software, to measure the

correlation between pairs of time series data in different region, each of which derived

their curve with ILI counts as the trends to represent the influenza activity along a

specified time period. In addition to measuring the degree of correlation,

cross-correlation analysis also finds the time lag between two time series that

maximize the correlation. A plot of the sample correlations versus the time lags is

called a correlogram (Figure 4).
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4.2. Data Sources and Study Duration

4.2.1. ILINet

Time series data that consist of the weighted percentage of weekly patient visits to

healthcare providers for ILI relative to different population size and the total regional

patient visits in each of the ten Human and Health Services (HHS) regions were

obtained from the CDC ILINet website. The study duration consisted of a total of 27

weeks duration from the 35th week of 2009 to the 9th week of 2010, which covered

the initial wave of traditional flu season (Influenza Season, 2009-2010). I used the

cross-correlation analysis (in R, autocorrelation, the ACF, is the built-in function used

for CCF) to measure the maximal correlation and the corresponding time lag between

pairs of the ten HHS regions, giving a 10 x 10 correlation matrix. The symmetric

correlation matrix will be further processed and transformed into an asymmetric one

for the construction of cross-correlation networks, as described in the section 4.3. A

schematic diagram representing how cross-correlation analysis works on the pairwise

ILINet data sets is shown in Figure 7.
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Figure 7. HHS Regional Flu Trends and the Cross-Correlation analysis between pairs.
Example cross-correlation analysis applied in HHS1 and HHS2 shows the maximal

correlation 0.93 (blue arrow) with the corresponding time latency 0 (red arrow).

4.2.2. Google Flu Trends

The weekly query counts from flu-related searches collected by Google flu trends

were obtained from Google Flu Trends website. Data used for cross-correlation

analysis and further networks modeling involves 51 state-level data sets (including 50

states and DC) in the United States. The study duration consisted of a total of 52

weeks duration from April 26th 2009 to April 18th 2010. Using cross-correlation

analysis to measure maximal correlation and the corresponding latency between each

pair of states, the resulting 51 x 51 matrix was further processed using the method

described in section 4.3.
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4.3. Construction and Visualization of Cross-Correlation Networks

The first step of networks construction involved cross-correlation analysis. Maximal

cross-correlation (CCMAX) values with the corresponding hidden time lag were

extracted and the symmetric correlation matrix was produced, as described in section

4.2.1. The diagonal of a correlation matrix always consists of values one (The

diagonal values were later set as zeros). In the second step, those correlation values

with negative time lag remained in the upper triangle (the ones above and to the right

of the diagonal) and those with positive time lag were switched to the lower triangle

(the ones below and to the left of the diagonal). By setting the threshold value (for

instance, 0.9), the third step involved setting those values as zeros if the

cross-correlation values were below that of the threshold. In the fourth step, the

resulting matrix was then processed and visualized by the built-in networks function

provided by R, giving cross-correlation networks as desired. Finally networks were

plotted and mapped in the geographic map. The process of construction and

visualization of cross-correlation networks using ILINet 10 HHS Regional Flu Trends

data is depicted in Figure 8. The corresponding R code was illustrated in Figure 9.
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Figure 8. The process of construction and visualization of cross-correlation networks
using ILINet 10 HHS regional flu trends data as an example.
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# Read the data from the source file
fludata <- read.csv({C:/mydatasdata.csv”, header=T)

numRegions <- 18 # Set the number of regions, in this case, 18

ccmax.matrizx <- rep{@,numRegions”2) # Create initial values (@) of the data matrix
dim{ccmax .matrix) <- c(numRegions,numRegions)

ccuhich.matrix <- ccmax.matrix

# Cross-correlation function Analysis
for (i in 1:numRegions)
{ for (j in 1:1)

{
#This places the correlation in one half of the matrix if the lag is positive
cc <- ccf({fludata[,i],fludata[,j], ylab="cross-correlation”, lag.max=308)
if (cc$lag[which.max(cc$acf)] <8)
{
ccmax.matrix[i,j] <- max{cclacF) #iReturn the maximum correlation
}
else
{
ccmax.matrix[j,i] <- max(cc$acf) #Return the maximum correlation
}
# Give index maximum lag {(w/ highest correlation)
ccuhich.matrix[i,j] <- ccwhich.matrix[j,i] <- cc$lag[uhich.max{cc$acf)]
H

H

# Create an identity matrix
k <- diag(1@)

# set the value in diagonal elemets (autocorelation) to be zero
ccmax.matrix.k <- ccmax.matriz - k

B et network Graph=======s===s======== #Hin
#lLoad up two packages for network analysis

library(sna)

library(network)

#This creates a threshholded matrix from ccmax.matrix with values only over 8.9
threshmat <- ccmax.matrix.k * (ccmax.matrix.k > .9)

#This plots the network
gplot(as.network(threshmat),displaylabels=T)

Figure 9. The R code for the construction and visualization of cross-correlation

networks using ILINet 10 HHS regional flu trends data as an example.

4.4. Data analysis

Time series analysis with cross-correlation measurement was performed using the R

statistical package version 2.13.0 (R Development Core Team).
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CHAPTER 5 ANALYSIS RESULTS

5.1. Cross-Correlation Networks Using ILINet Data Set

By setting a minimum threshold value (0.9) of CCMAX to highlight regions having

the most aggregate curve in ILI, an example network showing ILI correlations

between 10 HHS regions was plotted and then mapped as a way of visualizing ILI

disease transmission pattern during the study period (Figure 10). Regions 4 and 9 are

disconnected from the core network due to weak correlation with other regions. These

outliers reflect an early peak (region 4) and weak transmission (region 9) of ILI cases

in hospital visit data. The abstract describing part of this study had been presented in

Annual Conference 2010 of International Society for Disease Surveillance (ISDS) at

Park City, Utah. (Appendix A.).
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Figure 10. Cross-correlation network representing fraction of ILI cases in the 10 HHS
regions during the 2009-2010 influenza season. The corresponding latency between
time series is represented by directed ties in the graph. Grey (bidirectional) edges

represent regions correlated with no time lag.

5.2. Cross-Correlation Networks Using Google Flu Trends Data Set

Use of aggregate case counts collected by Google Flu Trends and further

cross-correlation analysis, cross-correlation networks for modeling ILI transmission

pattern during the 2009-2010 influenza season was constructed and shown in Figure

11. The selection of threshold is 0.97 given the highly correlated signals between

states. The states of Alaska, Georgia, Hawaii, Maine, Nevada, and Tennessee are

disconnected from the core network due to weak correlation with other regions.

Cross-correlation networks visualizing at different thresholds using state-level Google

Flu Trends data is shown in Appendix B.
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Figure 11. Cross-correlation network representing fraction of ILI cases in the 51 state

level regions during the 2009-2010 influenza season.
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CHAPTER 6 EVALUATION METHODS

6.1. Data sets to be used for evaluation

To validate that the cross-correlation based method be a feasible way of visualizing

how ILI was transmitted in a spatio-temporal pattern, datasets from flight passenger

volume, census worker flow, and distance between centroids will be evaluated as the

indicative or proxy for influenza transmission. The state-level cross-correlation

network constructed using the Google Flu Trends dataset was selected for evaluation.

6.2 Data Collection and Processing

6.2.1 Airline Origin and Destination Survey (DB1B)

DBI1B data sets in state-to-state passenger’s volume that covered the duration of one

year from the third quarter 2009 to the second quarter 2010 were collected. Data were

initially stored as a 51 x 51 asymmetric matrix that consisting of pairwise

origin-to-destination state level data elements, and then further processed to yield a

symmetric matrix that stands for relative flight passenger’s volume between states.

Xij = Xoi = Xi, j(original) + Xj,i(original)

(Population) + Populationj))
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where i and j represent different state and Population) represents the population size

of state 1.

6.2.2. Census 2000 Worker Flow Files

The Census 2000 worker flow data sets consisting of worker’s volume commuting
between states were collected from the website as the link stated before. Data were
initially stored as a 51 x 5lasymmetric matrix that consisting of pairwise
origin-to-destination state level data elements, and then underwent further processing
to a symmetric matrix that stands for relative worker flow volume between states. The

method of data processing is as the following:

_ Xi, j(original) + Xj.i(original)

Xi,j= Xj,i= : :
(Populationg) + Populationj))
where 1 and j represent different state and Populationq) represents the population size

of state i.

6.2.3. Census 2010 Centers of Population by State
The Census 2010 Centers of Population by State data sets were retrieved from the link

stated before, giving a 51 x51 symmetric matrix in a form of pairwise state-to-state



34

data elements that stands for centroids distance between states.

6.3. Data Transformation

Maximal cross-correlation values (CCMAX) were retrieved from the first step of

network construction and then processed by logit transformation, and will be used as

the outputs for linear regression.

Yi, i

logit(Yi. j) =lo
git(Yi.j) g(l_Y“_

)

where Yi,j is the maximal cross-correlation value between state i and state j.

The set of inputs X were data elements retrieved from symmetric matrices calculated

using three different data sets, e.g., flight passenger flow, census worker flow, and

distance between centroids. Logarithmic transformation, represented as log(Xi, j) , was

performed in individual data elements of input set for further statistics analysis.

6.4. Statistics Analysis

A total of three data sets using input variables from flight passenger flow, census

worker flow, and distance between centroids will be evaluated for significance. For
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each evaluation set, simple linear regression will be applied using log(Xi,j) as the
input and logit(Yi,j) as the output. The best-fit line of regression was determined
using the method of least squares and the coefficient of determination R* was used to
measure the proportion of variability in a data set that is accounted for by the
regression model. All samples with missing data will be eliminated before the analysis.
Those input variables with value of zero before logarithmic transformation will also

be eliminated since log 0 has no definition.

6.5. Data analysis

Data were entered, processed and analyzed with SPSS for Windows (Release 16.0,
SPSS Inc., Chicago, IL, USA). Simple linear regression analysis was performed to
determine independent predictors of CCMAX. A significant difference was accepted

as a two sided P-value of less than 0.05.
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CHAPTER 7 EVALUATION RESULTS

7.1. Sample Size

The evaluation analysis focused on 51 state-level cross-correlation networks
constructed by using Google Flu Trends dataset. The data set downloaded from DB1B
flight data had no record related to Delaware state. There were a total of 5 flight
volume records and 18 worker flow records yielded a zero value and were hence
eliminated before data transformation and analysis. The total sample size left to be

evaluated was 1202 (e.g., (50 x 50 -50)/2 — 5- 18 = 1202).

7.2. Linear Regression
7.2.1. Census Worker Flow
Using linear regression analysis, the calculated best-fit line of regression (logit-ccmax

V.S. log-worker plot) had a slope of 0.148, with a R* of 0.088 (Figure.12).

7.2.2. Distance between Centroids
Linear regression analysis showed that the calculated best-fit line of regression
(logit-ccmax V.S. log-distance plot) had a slope of -0.425 and a R* of 0.157

(Figure.12).
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7.2.3. Flight Passenger Flow
The calculated best-fit line of regression (logit-ccmax V.S. log-flight plot) had a slope

of 0.007 and a R* <0.001 (Figure.12).

A B

Lrew Fegesmen L Regression

logit{c cmax)

logit(cemax)

BrLines = 0088 FoLnear = 0157

: 140 20 28 160 180 17
s L) lagidistance)

L Moy ension

o Figure 12. Linear regression analysis using
logit transformation of maximal

cross-correlation value (ccmax) as Y-axis that

logit{cemarx)

derived from cross-correlation networks
constructed by using State-level Google Flu

[T— Trends Data Set, and X-axis by using log

transformation of (A) Census worker flow (B)

Distance between centfroids, and (C) Flight

passengers' volume.

7.2.4. Summary of the Linear Regression

Summary report on linear regression analysis is shown in Table 1. Census worker

flow and distance between centroids, but not flight passenger flow, were associated
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maximal cross-correlation values.

Table 1. Summary report on the results of linear regression

Simple Linear Regression

r R Slope P 95% Cl
Census Worker Flow
0.296 0.088 0.148 <0.001* [0.121, 0.174]
Distance between Centroids
0.396 0.157 -0.425 <0.001* [-0.481, -0.369]
Flight Passenger Flow
0.015  <0.001 0.007 0.599 [-0.020, 0.034]

Abbreviations: r stands for correlation coefficient; R* stands for R square; CI stands

for confidence interval. * P value <0.05
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CHAPTER 8 DISCUSSIONS

This study proposed a new method to interpret the correlation between case rates in
geographic regions. By using cross-correlation analysis on those public accessible
data sets, we developed and modeled disease transmission patterns in ILI that help
epidemiologists quickly identify and visualize the similarities in case rates across
different regions. As the indicative or proxy for influenza transmission, variables from
other data sets that stand for flight passenger flow, census worker flow, and distance
between centroids were used to compare the pairwise correlation values derived from
our cross-correlation analysis. We found that census worker flow and distance
between centroids, but not flight passenger flow, were significantly associated with
the maximal cross-correlation values we were relying on for networks construction,

given the evaluation analysis using state-level Google Flu Trends data.

Our results show that census worker flow and distance between centroids as the
independent predictors are significantly associated with observed pairwise correlation
values derived from our cross-correlation analysis, however, the R coefficient of
determination for both of the models being constructed are not high (0.088 and 0.157,

respectively). In statistics, R? is a measure of how well the regression line
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approximates the observed data points and can also be used to measure the
unexplained variance. An R* of 1.0 indicates that the regression line perfectly fits the
data (Everitt, 2002). In these instances, our evaluation results can support the method
we are using for the construction of cross-correlation networks, however, there are
likely to be some unexplained factors governing the nature of ILI disease transmission
in the season we chose for analysis, given the resulting R* values. For the data sets
that have been chosen, there is collinearity present in the data on the explanatory

variables. A more complex (multivariate) model would likely yield greater insight.

Network analysis has a role in several aspects of infectious disease modeling,
including simulation, contact investigation, and sampling. Our analysis focused on
using real world aggregate data for the construction of cross-correlation networks as a
tool to visualize the spatio-temporal patterns of ILI transmission in the population
level. By case investigation and phylogenetic analysis, it is possible to reconstruct the
transmission networks in individual level or small scale outbreak (Bon, 2010;
Chalmet, 2010), however, such approach can be time and resource consuming in large
scale disease transmission such ILI. Although a study exists that utilized the
phylogenetic analysis for modeling disease transmission patterns in the population

level (Flavia 2011), our study utilized those data sets that could be easily accessible
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from the web either for analysis or evaluation. With data sets comprised of geocoded

strains circulating during an ILI outbreak across different regions, it may also be

possible to validate cross-correlation networks based on phylogenetic analysis

(Appendix C).

The reasons for using census worker flow, distance between centroids, and flight

passenger flow are based on the reasons that ILI is mainly transmitted by contact

(Valleron, 2010). In this study, we took flight passenger volume and census worker

flow as indicatives of actual contact, and distance as a proxy for likelihood of contact.

Until now, there is no studies related to census worker flow or flight passenger flow

being investigated for their role in infectious disease transmission, however, studies

evaluating the impact of social networks on spreading of infectious diseases have

been elaborated in the literature (Cauchemez, 2010; Abernethy, 2005). Our study

found that census worker flow, but not flight passenger flow, is associated with the

cross-correlation networks being constructed, which could serve as new research

themes for investigators.

Distance as a factor in infectious disease transmission has been well elaborated in

either experimental setting or real world disease transmission patterns (Spekreijse,
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2011; Tuite, 2011), suggesting that infectious disease transmission over a long

distance is a less likely route of spread. In our study, we used distance between state

centroids as one of the variables to be evaluated the influence on cross-correlation

networks. Result shows that distance between states is inverse proportional to disease

spreading that modeled by cross-correlation networks, and that further support the

approach we are using can be a feasible way of modeling infectious disease

transmission in a spatio-temporal manner.

One of the major drawbacks of using DB1B as the flight passenger flow is the lack

of specificity. Those airports (and their associated states) with high volume passenger

flow may also serve as the international transportation stations for passengers’ transit.

Sick passengers flying to other nations may exert little influence on the impact of

disease spreading in the Destination State, although the case counts will be reflected

in the DB1B data sets and hence be used for our evaluation. Our study found no

strong association between cross-correlation networks and flight passenger flow. This

doesn’t preclude the possibility of their association given we didn’t have detailed data

related to the “actual” flight passenger flow. Future research trends may include

simulation data that can actually model the ILI case counts in each geographic region

and also passengers’ behavior with sufficient details suitable for subgroup analysis.
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For simulation, agent-based models (ABM) can be explored as an alternative

approach. ABM is a computational method for simulating the actions and interactions

of autonomous decision-making agents (either individual or groups) in an attempt to

assess the behavior of the system being modeled as a whole (Bonabeau, 2002). Our

evaluation analysis utilized the aggregate data sets of ILINets and Google Flu Trends.

These two systems that need to be analyzed are complex without finer levels of

granularity once they are organized into accessible data sets. As an alternative

approach in the experiment, we could use agent-based simulation to track individual

episodes of disease transmission between regions. The aggregate surveillance data can

also be generated by this approach. For the next step, we would compare the

region-to-region transmission matrix to the observed cross-correlation network to

determine to what extent the observed correlations resemble the actual transmission

events from the simulation. Since we lack a gold standard to measure transmission

events in aggregate data collected mainly for syndromic surveillance, it is possible to

re-create and predict the appearance of complex phenomena like ILI activity by

simulation approach. Such a simulation experiment exhibits the potential to have

far-reaching effects on the way that public health practitioners use informatics to

support decision-making during infectious disease outbreak with the knowledge of
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how disease spreading.

Here we used cross-correlation analysis and cross-correlation networks as the way

to identify and visualize disease transmission patterns in ILI. During networks

construction, we plotted the connections with correlation values above a pre-selected

threshold in order to highlight the most important similarities between case rates. The

selection of the threshold was tentative for balancing the sensitivity and specificity, in

an attempt to identify “true” transmission links based on standard not presently

available. The higher the threshold value selected, the more specific (and less

sensitive) the links are modeled. Such a threshold selection strategy can also be

employed using the ratio of connections between contiguous states versus total

connections. This value did increase as a function of the threshold being selected

(Strategies in selecting the thresholds are shown in Appendix D).

One of the major problems using simple linear regression is the requirement to

fulfill the assumption of statistical independence of observations. Our data sets used

to evaluate the validity of cross-correlation networks (census worker flow, flight

passenger’s volume, or distance between centroids) all contain mutually dependent

observations. Here we take census worker flow as an example. Suppose the number of
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workers commuting from California to Oregon is A, the number commuting from

California to Washington is B, and the number commuting from Oregon to

Washington is C. Although A and B are independent, jointly C is not independent

since it is constrained by the other two (A and B). In our evaluation analysis, we used

univariate analysis by simple linear regression and did not consider the statistical

dependence issue. Although this might be a problem, yet this can be solved by

performing the regression on a very limited sample of 25 state pairs with no repeated

states, or by doing 50 single state analyses.

There are limitations in this study. First, assumptions were simplified on the

selection of threshold, although it was necessary for modeling based on probability of

“true” network connection. Secondly, aggregate case counts used for networks

modeling were ILI visits (ILINet) and web-queries (Google Flu Trends) rather than

based on the gold standard confirmed cases. Besides, there was no state-level

aggregate data collected by ILINet. A data set like DISTRIBUTE might be utilized in

further study if accessibility is approved. Thirdly, Data sets used for networks

evaluation are those proxies of influenza transmission, which don’t necessarily

represent the “true” disease transmission route. Studies relying on phylogenetic or

simulated data can be further explored in the future. Fourthly, simple linear regression
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might not be the suitable method of evaluating the association between variables,

especially when our data sets can not satisfied the assumption of independency. A

method using non-linear method, or sub-group analysis using independent pairs could

be explored as an alternative approach.
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CHAPTER 9 CONCLUSIONS

We introduce a new approach to interpret the correlation and time lag between time

series data that collect aggregate case counts for syndromic surveillance. This method

can be a tool to identify and visualize patterns in disease spreading across different

geographic areas. The evaluation results further explain spatio-temporal spread of

disease using cross-correlation networks being constructed. The networks may then

serve as a basis to evaluate intervention options during outbreak of pandemic

influenza or other emerging infectious diseases. Using cross-correlation analysis, we

would like to extend this approach to studying patterns in different diseases or

matching disease trends to other syndrome signals in the future.
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Using cross-correlation networks to identify and
visualize patterns in disease transmission

T-C Lu and N Abernethy

Biomedical and Health Informatics, School of Medicine, University of Washington, Seattle, WA, USA

E-mail: neila@uw.edu

Objective

Time series of influenza-like illness (ILI) events are often used
to depict case rates in different regions. We explore the
suitability of network visualization to highlight geographic
patterns in this data on the basis of cross-correlation of the
time series data.

Introduction
Syndromic surveillance data such as the incidence of
influenza-like illness (ILI) is broadly monitored to provide
awareness of respiratory disease epidemiology. Diverse
algorithms have been employed to find geospatial trends in
surveillance data, however, these methods often do not
point to a route of transmission. We seek to use correlations
between regions in time series data to identify patterns that
point to transmission trends and routes. Toward this aim, we
employ network analysis to summarize the correlation
structure between regions, whereas also providing an inter-
pretation based on infectious disease transmission.
Cross-correlation has been used to quantify associ-
ations between climate variables and disease transmission.'

The related method of autocorrelation has been widely used
to identify patterns in time series surveillance data.® This
research seeks to improve interpretation of time series data
and shed light on the spatial-temporal transmission of
respiratory infections based on cross-correlation of ILI case
rates.

Methods

For this pilot study, we analyzed patient visits to health
care providers for ILI, collected through the US Outpatient
Influenza-like Illness Surveillance Network (ILINet).
Aggregate data for the 27-week period from the 35th week
of 2009 to the 9th week of 2010 were used. The model
involves the 10 Human and Health Services (HHS) regions
for which ILI data are publicly available through the CDC.
The data consist of the weighted percentage of all patient
visits to healthcare providers for ILI reported each week.
Additional networks were generated using confirmed cases
from the 2009 HINI1 pandemic and city-level data from
Google Flu Trends." Using the cross-correlation function to
measure maximal correlation and the corresponding latency

Reg 9

6 Dallas

Figure 1 Crosscorrelation network representing fraction of ILI cases in the 10 HHS regions during the 2009-2010 influenza season. The corresponding latency
between time series is represented by directed ties in the graph. Gray (bidirectional) edges represent regions correlated with no time lag.

8 This is an Open Access article distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/2.5)
OPEN (L) ACCESS \which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Appendix B

Cross-correlation networks visualization on selecting different thresholds using

state-level Google Flu Trends data.

Threshold = 0.92 Threshold = 0.96

Threshold = 0.93 Threshold = 0.97
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Appendix C

ILI transmission networks construction based on geocoded database using
phylogenetic tree analysis.

A phylogenetic approach can be carried out by using data like the figure shown below
(Flavia 2011), with the sample of strains that was geocoded. Since the strains are
tagged with the geographic source of the strain, it is possible to validate the

cross-correlation networks of ILI based on phylogenetic tree analysis.

AdJapan/PR1070/2009 CY 050073
AlHyd/NIV51/2008 GU292365
A/Singapore/ON1085/2008 CY0458513
AiMalaysia/820/2009 CY048923
AiNew Mexice/04/2009 GQB94924
AJ/Blore/NIV236/2009 GU292363
A/Blore/NV310/2003 GU292364

A/Toronto/3184/2008 FJ974024
| AlCalifornia/VRDL39/2009 CY 054505

A/New York/6809/2009 CYD56817

AlAustralia/47/2009 CY055770

A/Mexico A/Mexico city/CIAS/2009 CYD6253

AlTexas/JMS391/2009 CY0D61043

AlCanada-ON/RV1589/2009 GQ465750

q AMWisconsin/629-D01913/2009 CYD5B666
| AlTaiwan/137/2009 CY045240

AMoscow/03/2008 GQ375282
AMNew York/3795/2009 CYD47372
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Appendix D: Threshold Selection Strategies

1. How and why to Select the Threshold
In order to hide the connections between weakly correlated regions, the following
threshold selection strategies were adopted in an attempt to identify “true”
transmission links based on standard not presently available. We are using
contiguity as a proxy for a gold standard under the assumption that ILI
transmission locally is more likely than over a long distance (Spekreijse, 2011;
Tuite, 2011).

2. Percentage of Contiguity: the ratio of connections between contiguous states

versus total connections.

Connections between two Contiguous Regions/States

% Contiguity = -
Total Connections

3. Selection Threshold for Google Flu Trends

Using Google Flu Trends data sets (aggregates counts data collected from April 26™,
2009 to April 18™2010) as an example for the construction of cross-correlation
networks, the results by analyzing the percentage of contiguity are shown as (a).10
HHS-level and (b).51 state-level. With the increase in selecting the value of the
threshold, the number of total connections and contiguous connections decrease.

However, the percentage of contiguity increases.
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(a).Google Flu Trends (10 HHS-level)

Threshald Connection Contignity % Conligmity
05 45 17 0377778
055 45 17 0.377TT8
06 45 17 0.377FT8
065 45 17 0.3777T8
0.7 45 17 0.377778 15
0.75 45 17 0377178
08 m 17 0386364 ! I
045 43 17 03534 05
09 34 14 0.411765 ‘ ‘ . . .
085 0 8 0.2 ’ Threshold
095 u 5 0.428571 0 0.2 0. 0.6 0.8 1 1.2 :
087 9 5 0.55555%6
098 3 3 1
(b).Google Flu Trends (51 state-level)
Threshold ~ Connection  Comtigmity  %Contiguity

05 1275 110  0.08627451
0.55 1275 110 0.08627451

0.6 1275 110  0.08627451
0.65 1271 110 0.08654603

0.7 1259 110 0.08737093 08
075 1230 110 0.0894309 06 )

0.8 1170 109 00931624 04 l
0.85 1004 104 0.1035857 0.2 ?

09 832 96  0.115384g 0 ‘ RS aadl
0.95 427 77 0.1803279 0 02 04 06 08 1 1.2 Threshold
0.96 273 63 0.2316176
0.97 145 44 0.3034483
098 52 22 04230769
0.99 15 11 0.7333333




	01_copyright
	02_title
	03_thesis-sig
	04_quote-thesis
	05_abstract
	06_TOC
	07_Thesis.pdf

