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Influenza-like illness (ILI) has been a major threat to the public health around the 

world. To inform influenza response by enhancing and supporting disease 

surveillance, a syndromic surveillance system collects case counts that are 

aggregated from multiple sources and jurisdictions. Although each jurisdiction has 

their own planned uses of the data, most systems focus on early detection of the 

outbreak in regional level response and the algorithms they are using often do not 

point to a route of transmission. In this work, we seek to develop approaches to aid 

comparison of data among jurisdictions to improve detection of geographic patterns 

in disease spread. Using cross-correlation to assess the pairwise similarity between 

regional case counts, we introduce a cross-correlation network based on ILI activity 

to reveal potential spatio-temporal patterns in disease transmission. The resulting  



 

 

networks were plotted and visualized in the map with the R statistical package. To 

evaluate the feasibility and utility of this approach, we validate these networks 

against population-level variables influencing the spread of infectious disease, 

including flight passenger volume, census worker flow, and geographic distance. In 

our analysis, the spatio-temporal transmission of ILI correlated more closely with 

state-to-state census worker flows and distance between states than with flight 

passenger flows. We demonstrate how this visualization motif might enhance 

existing tools used for the purpose of syndromic surveillance. Finally, limitations of 

the approach, broader implications for disease surveillance and informatics, and 

future directions for this research will be discussed. 
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CHAPTER 1 INTRODUCTION 

 

Syndromic surveillance is a novel epidemiologic method which relies on detection of 

clinical case features that are discernable before diagnoses are confirmed (Mandl, 

2004). Unlike traditional surveillance systems such as notifiable disease reporting 

system that are based on clinical or laboratory diagnosis, syndromic surveillance is an 

aggregate surveillance system of a disease or health event by collecting summary data 

on group of cases (Porta, 2008). Given that syndromic surveillance systems are 

characterized by flexibility and simplicity since they collect summarized counts from 

existing health data, such surveillance system has emerged as a prospective method to 

inform public health response in different disease syndromes. Potential data sources 

include surrogate data sources (e.g., over-the-counter prescription sales or school 

absenteeism), nurse’s hotlines, outpatient visit data, Emergency Department (ED) data 

(Henning, 2004), and web search queries (Eysenbach, 2006).  

 

With the increasing convenience of transportation and traveling around the world, 

an outbreak of a novel infectious disease can impact people living around the globe. 

One of the major tasks of the Public Health Informaticians and epidemiologists is 

discovering what diseases will threat the public as early as possible and understanding 
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their spread through the population, no matter whether a disease is introduced 

naturally, accidentally, or intentionally (Franz, 2009). In an era of pandemic-causing 

strains of influenza or Severe Acute Respiratory Syndrome (SARS), infectious disease 

surveillance is critical to early detection and response. Since many different 

bioterrorist agents present with flu-like symptoms, most syndromic surveillance 

systems incorporate influenza-like illness (ILI) as one of the major syndromes to be 

monitored (Mandl, 2004).  

 

Currently the major systems that use syndromic surveillance to monitor ILI activity 

as part or a whole of a comprehensive surveillance program in the U.S.A. include 

Influenza-like Illness Surveillance Program (ILINet, 2011), Electronic Surveillance 

System for the Early Notification of Community-based Epidemics (ESSENCE) 

(Lombardo, 2003), the CDC BioSense Program (Bradley, 2005) (Figure 1A), and 

Distributed Surveillance Taskforce for Real-time Influenza Burden Tracking and 

Evaluation Project (DiSTRIBuTE, 2011). In 2008, Google launched Google Flu 

Trends as a syndromic surveillance system based on flu-related searches, to 

supplement the deficiency of traditional surveillance system that generally focus only 

on local trends (Google Flu Trends, 2011) (Figure 1B). By counting the frequency of 

search queries, Google claimed that they can estimate how much flu is circulating in 
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different countries and regions around the world. Although over the years there are so 

many novel syndromic surveillance systems have been put into practice, with varying 

degrees of success in terms of timely detection and early response to the outbreak 

(Doornik, 2010; Buehler, 2009; Overhage, 2008), there have been no research reports 

describing ILI spread across regions using these particular surveillance data sets.  

 

During the 2009 H1N1 flu pandemic, the public was facing the threat of contracting 

the so called “Swine Flu” and serious complications which might occur among 

previously healthy individuals during the outbreak. To enhance and support disease 

surveillance, influenza surveillance data are aggregated from multiple sources and 

jurisdictions. Although each jurisdiction has their own planned uses of the data 

collected for their system, especially focusing on early detection of the outbreak in 

regional level response, there is a lack of knowledge of how diseases spread across 

different region or jurisdiction. In addition, most surveillance systems focus on early 

detection of the outbreak in regional level response. The algorithms they use rarely 

point to a route of transmission. Because understanding the route of transmission is 

the key to better adopt optimal intervention and control strategies before disease 

spread, we are interested in making effective use of disease aggregated data and 

developing a visualization tool that can point to a route of disease spreading across 
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regions. By using this kind of tool, public health practitioners can identify and 

visualize spatio-temporal patterns in those aggregate data and also help them to 

communicate with each other. In addition this might assist in early intervention and 

control measures before disease spreads from one region to another.  

 

In this study, we investigated the feasibility of network visualization to highlight 

geographic patterns by cross-correlation analysis on data sets with ILI counts 

collected for influenza surveillance during the period of 2009 H1N1 pandemic. The 

primary aim is to construct a cross-correlation network of ILI activity and explore 

how disease is transmitted in a spatio-temporal manner. The secondary aim is to 

validate this method against population-level variables influencing the spread of 

infectious disease, including flight passenger volume, census worker flow, and 

geographic distance. 
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Figure 1. Screen snapshots showing (A). BioSense and (B).Google Flu Trends. 
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CHAPTER 2 LITERATURE REVIEW AND BACKGROUND  

 

2.1. Syndromic Surveillance and ILI 

Syndromic surveillance was first developed for bioterrorism preparedness and 

outbreak detection with the goal of expanding and improving upon traditional public 

health surveillance (Henning, 2004). Although the choice of data sources could affect 

the ability of a syndromic surveillance system to detect outbreaks earlier than 

conventional surveillance methods, the most valuable data sources will be those that 

are electronically stored, allow robust syndromic grouping, and are available in a 

timely fashion (Mandl, 2004).  

 

As the key component of the syndromic surveillance system, data from EDs have 

shown promising research results with adequate balance between sensitivity and 

specificity for outbreak detection. Specific data elements related to the ED that have 

been used in syndromic surveillance systems include patient’s chief complaint (in 

either free text or structured format), ED discharge diagnostic code (International 

Classification of Diseases, ICD), ambulance dispatch notes, and telephone triage 

service (Beitel, 2004; Reis, 2004; Fleischauer, 2004; Brownstein, 2005; Lu, 2008; 

Lemay, 2008; South, 2008; May, 2010; Greenko, 2003; Yih, 2009). For ILI syndrome, 
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researchers have demonstrated that ED data can be used to detect disease outbreaks 

1-2 weeks earlier than through conventional disease reporting methods (Tsui, 2001; 

Teich, 2002). Furthermore, a study conducted by Bellazzini et al showed that data 

collection from ED electronic medical records (EMR) by using chief complaint and 

ICD-9 diagnostic code could detect unexpected ILI before laboratory confirmation, 

and hence can serve as an adjunct to traditional laboratory-guided public health alerts 

(Bellazzini, 2011).  

 

In addition to the above mentioned systems that used data sources mainly from 

clinical domain, researchers sought to develop a more robust and real time monitoring 

system that could capture user behavior in web search for health-related information. 

Since 2008, Google launched Google Flu Trends aimed at monitoring health-seeking 

behavior in the form of queries to online search engine - Google. They developed a 

system of analyzing large numbers of Google search queries to tract ILI activity in 

different geographic populations. By counting how often people search for flu-related 

topics reflecting on aggregate search queries, the system estimates flu circulation in 

different countries and regions around the world. The results, which appeared in 

Nature, showed that Google web search queries can be used to estimate ILI 

percentages accurately in different regions of the United States. The resulting ILI 
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estimates were consistently 1–2 weeks ahead of CDC ILI surveillance reports 

(Ginsberg, 2009). With the popularity of social networking and microblogging service, 

researchers are now seeking to tract influenza activities by analyzing Twitter 

messages and the results are promising (Signorini, 2011).  

 

2.2. The DiSTRIBuTE system as an Example of How Syndromic Surveillance 

Works 

With the goal of improving surveillance and informing influenza response for a more 

timely response and investigation, the International Society for Disease Surveillance 

(ISDS) is currently working in partnership with the Centers for Disease Control (CDC) 

and other public health organizations to launch the DiSTRIBuTE project, which 

collects ED-related ILI counts from participating local and state health departments. 

The DiSTRIBuTE system offers publicly accessible visualization graphs of the flu 

trends in the prior 4 weeks in terms of different HHS regions over their official 

website (DiSTRIBuTE, 2011). The system currently covers 22 states and 11 cities. 

The system also provides the public with additional graphs, including the daily time 

series graphs, weekly time series graphs, and age-group surface plotting that depict 

relative increases/decreases in ED ILI syndrome visits as observation/baseline by 

jurisdiction and age (Figure 2A). In addition to the publicly accessible website, the 
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restricted site is available to data contributors of the Distribute system. It contains 

descriptions of some of the characteristics of each data contributor and also some 

interactive visualization features that allow comparison queries of data and data 

timeliness (Figure 2B). Although such a web-based visualization system could serve 

as a valuable information resource for the surveillance community to explore further 

research and practice topics, users may be confronted with comparisons of data across 

different jurisdictions and the existing tools may not help users quantify and assess 

the relevance of similarities/differences between case count signals. The information 

flow of the DiSTRIBuTE system is depicted as Figure 3.  
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Figure 2. Snapshots of Distribute project showing visualization features of (A). 

Public Distribute site and (B). Example of a Distribute Restricted Chart. 
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Figure 3. Information flow of the DiSTRIBuTE system. 

 

2.3. Cross-Correlation Analysis as Timely Evaluation for Outbreak Detection  

Cross-correlation is a statistics analysis that measures the correlation between two 
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time series and is a commonly used similarity measurement of two waveforms in 

signal processing (Shumway, 2000) The analysis helps identify one series which is 

leading indicator of other series or how much one series is predicted to change in 

relation the other series. The cross-correlation analysis of two time series datasets 

involves repeated measurements of the Pearson correlation coefficient r by 

time-shifting the one dataset relative to the other dataset. Each shift is called a "lag", 

and the lag time is simply the time unit of the sampling period in collecting the two 

time-series datasets (SCRC web site, 2011). The typical cross-correlation graph, 

which is called "correlogram", shows enough lags in both negative and positive 

directions to represent the cyclical relationship of the two sets of data (Figure 4). A 

negative time lag implies the first series in the pair occurred first in R Statistics 

Package.  

 

 

 

 

 

 

Figure 4. Example correlogram showing the correlation as a function of time lags. 
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  Timeliness is generally defined as the difference between the time an event occurs 

and the time the reference standard for that event occurs (Dailey, 2007). Time series 

cross-correlation analysis of syndromic surveillance signals has been applied to assess 

timeliness as one of the performance measures in the literature. Tsui et al performed 

cross-correlation analysis to evaluate the timeliness for early detection of epidemics 

and found that using ICD-9-coded chief complaint was one week earlier than using 

data from Pneumonia and Influenza deaths (Tsui, 2002). Espino et al compared the 

timeliness of ED telephone triage (TT) data with influenza data from the CDC using 

cross-correlation analysis, and the results showed that ED TT calls were one to five 

weeks ahead of CDC surveillance data (Espino, 2003). Lemay and colleagues 

compared four age groups and six ILI symptoms captured by CC by cross-correlation 

analysis using reference signal from laboratory-confirmed influenza cases, and found 

that children younger than 5 years consulting ED mainly for fever and for respiratory 

symptoms peaked 1 to 4 weeks before the isolation of influenza virus in the 

community (Lemay, 2008).  

 

A study conducted by Doroshenko et al evaluated a syndromic surveillance that 

captured data from National Health Service (NHS) Direct, a national telephone health 

advice service in the UK, for surveillance of 10 syndromes commonly occurring in 
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the community (Doroshenko, 2005). Using cross-correlation analysis, they found that 

an increase in consultations for ILIs recorded by the Royal College of General 

Practitioners Weekly Returns Service (WRS) is preceded by the increase in calls to 

NHS Direct for ILI by 1--3 weeks, where WRS is a well-established national clinical 

surveillance system. In Australia, Zheng and colleagues found that monitoring time 

series of ED visits clinically diagnosed with influenza could potentially provide three 

days earlier warning compared with surveillance of laboratory-confirmed influenza by 

cross-correlation analysis (Zheng, 2007).  

 

  To construct a cross-correlation network of ILI activity spreading across regions, 

this thesis will rely on publicly accessible and well-validated datasets from U.S. 

Outpatient Influenza-like Illness Surveillance Network (ILINet) and Google Flu 

Trends. Before going further, I would like to review graph theory and sociomatrices 

of relevant to the construction of cross-correlation network. 

 

2.4. Graph theory and social networks analysis 

Graphical models are a marriage between probability theory and graphic theory for 

solving problems of uncertainty and complexity that occur throughout applied 

mathematics and engineering (Murphy, 2001). The purpose of graphical modeling is 
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to exploit the statistical relationships of the entities being modeled for representational 

and computational efficiency (Gimpel, 2006). A graph consists of points called nodes 

(or vertices) and lines called edges (or arcs) connecting two vertices. An edge is 

directed if it runs in only one direction and undirected if it runs in both directions. 

Directed edges can be thought of as sporting arrows indicating their orientation. A 

graph is directed if all of its edges are directed. An undirected graph can be 

represented by a directed one having two edges between each pair of connected 

vertices, one in each direction (Newman, 2003). In sociology, a sociometry is a 

quantitative method for measuring social relationships and a sociogram is a 

systematic method for graphically representing individuals as points/nodes and the 

relationships between them as lines/arcs. In public health, the graph theory has been 

widely used in analysis of social networks and contact investigation (Abernethy, 2005; 

Cauchemez, 2011). An example social networks analysis using graph theory with the 

resulting sociogram is depicted as Figure 5.  
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Figure 5. Sociomatrix (left) and the corresponding directed graph showing 

relationship with connections between individuals (right).  
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CHAPTER 3 DATA SETS 

 

To provide task-specific context for this thesis, this chapter describes the data sets 

used for the analysis and evaluation. Given the reasons that ED sources might be 

more sensitive and also reliable data sources for surveillance purposes, data sets such 

as the DiSTRIBuTE system may provide a more reliable source for routine analysis. 

However, due to issues related to data accessibility and jurisdiction, I decided to use 

the publicly accessible and well-validated data sets, the ILINet and Google Flu Trends, 

for analysis. To evaluate the feasibility and utility of this approach, we will validate 

these networks against population-level variables influencing the spread of infectious 

disease, including flight passenger volume, census worker flow, and geographic 

distance. 

 

3.1. Data Sets for Analysis 

We analyzed weekly patient visits to health care providers for ILI collected through 

the US Outpatient Influenza-like Illness Surveillance Network (ILINet) and also 

weekly query counts from flu-related searches collected by Google flu trends. Both 

data sets are publicly available through the CDC or Google website.  
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3.1.1. ILINet  

Previously known as a sentinel influenza surveillance provider, ILInet is the U.S. 

Outpatient Influenza-like Illness Surveillance Network conducted by CDC in 

collaboration with health care providers around the United States (ILINet, 2011). It 

consists of more than 3,000 healthcare providers and approximately 1,800 outpatient 

care sites in all 50 states and the District of Columbia (DC), ILINet provides a 

nationwide picture of influenza virus and ILI activity. Each week, ILINet providers 

report the total number of patient visits and the total number of patient visits for ILI 

by age group (0-4 years, 5-24 years, 25-49 years, 50-64 years, and ≥ 65 years). For 

this system, ILI is defined as fever (temperature of 100°F [37.8°C] or greater) and a 

cough and/or a sore throat in the absence of a known cause other than influenza. Sites 

with electronic records use an equivalent definition as determined by state public 

health authorities, meaning that slightly different definitions could sometimes result in 

different syndrome detection rates. The ILINet data sets can be accessed online via 

CDC seasonal influenza website (ILINet, 2011), allowing routine use of this data for 

future analyses. A sample table and flu trends of influenza weekly reports from CDC 

for HHS region-1 is shown as Figure 6.  
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Figure 6. Snapshots of (A).sample table and (B).flu trends of influenza weekly 

reports from CDC for HHS region-1. 
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3.1.2. Google Flu Trends  

Google Flu Trends is a system conducted by Google Inc., an American multinational 

public corporation invested in Internet search, cloud computing, and advertising 

technologies. Google Flu Trends tracks flu-related search queries that are thought to 

be correlated with the spreading of influenza virus. This information is collected and 

used to estimate flu activity in the United States and around the world. By counting 

how often people use the search queries and reporting query counts on a weekly basis, 

Google Flu Trends has been found to able to estimate flu activity as compared to that 

of the traditional flu surveillance systems (Ginsberg, 2009). The Google Flu Trends 

data sets can be accessed via their official website (Google Flu Trends, 2011).  

 

3.2. Data Sets for Evaluation 

For the evaluation purposes, I utilized those publicly accessible data sets collected by 

the US Census Bureau or Bureau of Transportation Statistics (BTA), such as flight 

passenger volume, census worker flow, and distance between centroids. Since 

influenza (and other communicable diseases) can spread by social contact, likely 

including infected surfaces and droplets, we take flight passenger volume and census 

worker flow as indicatives of actual contact, and distance as a proxy for likelihood of 

contact. 
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3.2.1. Airline Origin and Destination Survey (DB1B) 

The Airline Origin and Destination Survey (DB1B) is a 10% sample of airline tickets 

from reporting carriers collected by the Office of Airline Information of the Bureau of 

Transportation Statistics. Data includes origin, destination and other itinerary details 

such as number of passengers transported. This annually updated database can be 

accessed via the website of Research and Innovative technology Administration 

(RITA), BTA website (DB1B, 2010). 

 

3.2.2. Census 2000 Worker Flow Files 

The Census 2000 worker flow data sets consisting of the data that are reported as total 

number of workers commuting between counties of residence and counties of work 

for residents of the 50 states and the DC. It is updated every ten years and the current 

available data sets are year 2000. For the purpose of this study, state-to-state file 

format can be selected and accessed via the Census Bureau Home Page (Census 

Worker Flow, 2000). 

 

3.2.3. Census 2010 Centers of Population by State 

A population centroid is the center point of the region's population that describes the 
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mean center or the center of gravity of population in a given geographic area (Thaper, 

1999). The Census Centers of Population by State files are the data sets updated by 

the US Census Bureau every ten years and can be used to calculate the centroid 

distance between states. The 2010 Census Centers of Population by State is the most 

updated file and can be accessed via the website of the US Census Bureau (Census 

Centers of Population by State, 2010). 
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CHAPTER 4 ANALYSIS METHODS 

 

4.1. Cross-Correlation Analysis 

Cross-correlation is a test that measures the similarity between two signals or 

waveforms as a function of a time lag. For discrete time series signals, 

cross-correlation between two signals x[n] and y[n] is calculated as  

 

where l is called time lag.  

 

I used the cross-correlation function (CCF) that provided by R, an open source 

Language and Environment for Statistical Computing Software, to measure the 

correlation between pairs of time series data in different region, each of which derived 

their curve with ILI counts as the trends to represent the influenza activity along a 

specified time period. In addition to measuring the degree of correlation, 

cross-correlation analysis also finds the time lag between two time series that 

maximize the correlation. A plot of the sample correlations versus the time lags is 

called a correlogram (Figure 4).  

 



24 
 

4.2. Data Sources and Study Duration 

4.2.1. ILINet 

Time series data that consist of the weighted percentage of weekly patient visits to 

healthcare providers for ILI relative to different population size and the total regional 

patient visits in each of the ten Human and Health Services (HHS) regions were 

obtained from the CDC ILINet website. The study duration consisted of a total of 27 

weeks duration from the 35th week of 2009 to the 9th week of 2010, which covered 

the initial wave of traditional flu season (Influenza Season, 2009-2010). I used the 

cross-correlation analysis (in R, autocorrelation, the ACF, is the built-in function used 

for CCF) to measure the maximal correlation and the corresponding time lag between 

pairs of the ten HHS regions, giving a 10 x 10 correlation matrix. The symmetric 

correlation matrix will be further processed and transformed into an asymmetric one 

for the construction of cross-correlation networks, as described in the section 4.3. A 

schematic diagram representing how cross-correlation analysis works on the pairwise 

ILINet data sets is shown in Figure 7.  
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Figure 7. HHS Regional Flu Trends and the Cross-Correlation analysis between pairs. 

Example cross-correlation analysis applied in HHS1 and HHS2 shows the maximal 

correlation 0.93 (blue arrow) with the corresponding time latency 0 (red arrow).  

 

4.2.2. Google Flu Trends 

The weekly query counts from flu-related searches collected by Google flu trends 

were obtained from Google Flu Trends website. Data used for cross-correlation 

analysis and further networks modeling involves 51 state-level data sets (including 50 

states and DC) in the United States. The study duration consisted of a total of 52 

weeks duration from April 26th 2009 to April 18th 2010. Using cross-correlation 

analysis to measure maximal correlation and the corresponding latency between each 

pair of states, the resulting 51 x 51 matrix was further processed using the method 

described in section 4.3.  
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4.3. Construction and Visualization of Cross-Correlation Networks 

The first step of networks construction involved cross-correlation analysis. Maximal 

cross-correlation (CCMAX) values with the corresponding hidden time lag were 

extracted and the symmetric correlation matrix was produced, as described in section 

4.2.1. The diagonal of a correlation matrix always consists of values one (The 

diagonal values were later set as zeros). In the second step, those correlation values 

with negative time lag remained in the upper triangle (the ones above and to the right 

of the diagonal) and those with positive time lag were switched to the lower triangle 

(the ones below and to the left of the diagonal). By setting the threshold value (for 

instance, 0.9), the third step involved setting those values as zeros if the 

cross-correlation values were below that of the threshold. In the fourth step, the 

resulting matrix was then processed and visualized by the built-in networks function 

provided by R, giving cross-correlation networks as desired. Finally networks were 

plotted and mapped in the geographic map. The process of construction and 

visualization of cross-correlation networks using ILINet 10 HHS Regional Flu Trends 

data is depicted in Figure 8. The corresponding R code was illustrated in Figure 9.  
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Figure 8. The process of construction and visualization of cross-correlation networks 

using ILINet 10 HHS regional flu trends data as an example.  
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Figure 9. The R code for the construction and visualization of cross-correlation 

networks using ILINet 10 HHS regional flu trends data as an example. 

 

4.4. Data analysis 

Time series analysis with cross-correlation measurement was performed using the R 

statistical package version 2.13.0 (R Development Core Team). 
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CHAPTER 5 ANALYSIS RESULTS 

 

5.1. Cross-Correlation Networks Using ILINet Data Set 

By setting a minimum threshold value (0.9) of CCMAX to highlight regions having 

the most aggregate curve in ILI, an example network showing ILI correlations 

between 10 HHS regions was plotted and then mapped as a way of visualizing ILI 

disease transmission pattern during the study period (Figure 10). Regions 4 and 9 are 

disconnected from the core network due to weak correlation with other regions. These 

outliers reflect an early peak (region 4) and weak transmission (region 9) of ILI cases 

in hospital visit data. The abstract describing part of this study had been presented in 

Annual Conference 2010 of International Society for Disease Surveillance (ISDS) at 

Park City, Utah. (Appendix A.).  
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Figure 10. Cross-correlation network representing fraction of ILI cases in the 10 HHS 

regions during the 2009-2010 influenza season. The corresponding latency between 

time series is represented by directed ties in the graph. Grey (bidirectional) edges 

represent regions correlated with no time lag. 

 

5.2. Cross-Correlation Networks Using Google Flu Trends Data Set 

Use of aggregate case counts collected by Google Flu Trends and further 

cross-correlation analysis, cross-correlation networks for modeling ILI transmission 

pattern during the 2009-2010 influenza season was constructed and shown in Figure 

11. The selection of threshold is 0.97 given the highly correlated signals between 

states. The states of Alaska, Georgia, Hawaii, Maine, Nevada, and Tennessee are 

disconnected from the core network due to weak correlation with other regions. 

Cross-correlation networks visualizing at different thresholds using state-level Google 

Flu Trends data is shown in Appendix B. 
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Figure 11. Cross-correlation network representing fraction of ILI cases in the 51 state 

level regions during the 2009-2010 influenza season. 
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CHAPTER 6 EVALUATION METHODS 

 

6.1. Data sets to be used for evaluation 

To validate that the cross-correlation based method be a feasible way of visualizing 

how ILI was transmitted in a spatio-temporal pattern, datasets from flight passenger 

volume, census worker flow, and distance between centroids will be evaluated as the 

indicative or proxy for influenza transmission. The state-level cross-correlation 

network constructed using the Google Flu Trends dataset was selected for evaluation. 

 

6.2 Data Collection and Processing  

6.2.1 Airline Origin and Destination Survey (DB1B)  

DB1B data sets in state-to-state passenger’s volume that covered the duration of one 

year from the third quarter 2009 to the second quarter 2010 were collected. Data were 

initially stored as a 51 x 51 asymmetric matrix that consisting of pairwise 

origin-to-destination state level data elements, and then further processed to yield a 

symmetric matrix that stands for relative flight passenger’s volume between states.  
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where i and j represent different state and )(Population i  represents the population size 

of state i.  

 

6.2.2. Census 2000 Worker Flow Files 

The Census 2000 worker flow data sets consisting of worker’s volume commuting 

between states were collected from the website as the link stated before. Data were 

initially stored as a 51 x 51asymmetric matrix that consisting of pairwise 

origin-to-destination state level data elements, and then underwent further processing 

to a symmetric matrix that stands for relative worker flow volume between states. The 

method of data processing is as the following: 
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where i and j represent different state and )(Population i  represents the population size 

of state i. 

 

6.2.3. Census 2010 Centers of Population by State 

The Census 2010 Centers of Population by State data sets were retrieved from the link 

stated before, giving a 51 x51 symmetric matrix in a form of pairwise state-to-state 
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data elements that stands for centroids distance between states.  

 

6.3. Data Transformation 

Maximal cross-correlation values (CCMAX) were retrieved from the first step of 

network construction and then processed by logit transformation, and will be used as 

the outputs for linear regression.   
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where jiY ,  is the maximal cross-correlation value between state i and state j. 

 

The set of inputs X were data elements retrieved from symmetric matrices calculated 

using three different data sets, e.g., flight passenger flow, census worker flow, and 

distance between centroids. Logarithmic transformation, represented as )(log , jiX , was 

performed in individual data elements of input set for further statistics analysis. 

 

6.4. Statistics Analysis 

A total of three data sets using input variables from flight passenger flow, census 

worker flow, and distance between centroids will be evaluated for significance. For 
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each evaluation set, simple linear regression will be applied using )(log , jiX  as the 

input and )(logit , jiY  as the output. The best-fit line of regression was determined 

using the method of least squares and the coefficient of determination R2 was used to 

measure the proportion of variability in a data set that is accounted for by the 

regression model. All samples with missing data will be eliminated before the analysis. 

Those input variables with value of zero before logarithmic transformation will also 

be eliminated since log 0 has no definition.  

 

6.5. Data analysis  

Data were entered, processed and analyzed with SPSS for Windows (Release 16.0, 

SPSS Inc., Chicago, IL, USA). Simple linear regression analysis was performed to 

determine independent predictors of CCMAX. A significant difference was accepted 

as a two sided P-value of less than 0.05. 
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CHAPTER 7 EVALUATION RESULTS 

 

7.1. Sample Size  

The evaluation analysis focused on 51 state-level cross-correlation networks 

constructed by using Google Flu Trends dataset. The data set downloaded from DB1B 

flight data had no record related to Delaware state. There were a total of 5 flight 

volume records and 18 worker flow records yielded a zero value and were hence 

eliminated before data transformation and analysis. The total sample size left to be 

evaluated was 1202 (e.g., (50 x 50 -50)/2 – 5- 18 = 1202). 

 

7.2. Linear Regression 

7.2.1. Census Worker Flow  

Using linear regression analysis, the calculated best-fit line of regression (logit-ccmax 

V.S. log-worker plot) had a slope of 0.148, with a R2 of 0.088 (Figure.12). 

 

7.2.2. Distance between Centroids 

Linear regression analysis showed that the calculated best-fit line of regression 

(logit-ccmax V.S. log-distance plot) had a slope of -0.425 and a R2 of 0.157 

(Figure.12). 



37 
 

 

7.2.3. Flight Passenger Flow 

The calculated best-fit line of regression (logit-ccmax V.S. log-flight plot) had a slope 

of 0.007 and a R2 <0.001 (Figure.12). 

 

 

7.2.4. Summary of the Linear Regression 

Summary report on linear regression analysis is shown in Table 1. Census worker 

flow and distance between centroids, but not flight passenger flow, were associated 
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maximal cross-correlation values. 

 

Table 1. Summary report on the results of linear regression 

 

Simple Linear Regression 

r R2 Slope P 95% CI 

Census Worker Flow 

 0.296 0.088 0.148 <0.001* [0.121, 0.174] 

Distance between Centroids 

 0.396 0.157 -0.425 <0.001* [-0.481, -0.369] 

Flight Passenger Flow 

 0.015 <0.001 0.007 0.599 [-0.020, 0.034] 

Abbreviations: r stands for correlation coefficient; R2 stands for R square; CI stands 

for confidence interval. * P value <0.05 
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CHAPTER 8 DISCUSSIONS 

 

This study proposed a new method to interpret the correlation between case rates in 

geographic regions. By using cross-correlation analysis on those public accessible 

data sets, we developed and modeled disease transmission patterns in ILI that help 

epidemiologists quickly identify and visualize the similarities in case rates across 

different regions. As the indicative or proxy for influenza transmission, variables from 

other data sets that stand for flight passenger flow, census worker flow, and distance 

between centroids were used to compare the pairwise correlation values derived from 

our cross-correlation analysis. We found that census worker flow and distance 

between centroids, but not flight passenger flow, were significantly associated with 

the maximal cross-correlation values we were relying on for networks construction, 

given the evaluation analysis using state-level Google Flu Trends data.  

 

  Our results show that census worker flow and distance between centroids as the 

independent predictors are significantly associated with observed pairwise correlation 

values derived from our cross-correlation analysis, however, the R2 coefficient of 

determination for both of the models being constructed are not high (0.088 and 0.157, 

respectively). In statistics, R2 is a measure of how well the regression line 
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approximates the observed data points and can also be used to measure the 

unexplained variance. An R2 of 1.0 indicates that the regression line perfectly fits the 

data (Everitt, 2002). In these instances, our evaluation results can support the method 

we are using for the construction of cross-correlation networks, however, there are 

likely to be some unexplained factors governing the nature of ILI disease transmission 

in the season we chose for analysis, given the resulting R2 values. For the data sets 

that have been chosen, there is collinearity present in the data on the explanatory 

variables. A more complex (multivariate) model would likely yield greater insight. 

 

  Network analysis has a role in several aspects of infectious disease modeling, 

including simulation, contact investigation, and sampling. Our analysis focused on 

using real world aggregate data for the construction of cross-correlation networks as a 

tool to visualize the spatio-temporal patterns of ILI transmission in the population 

level. By case investigation and phylogenetic analysis, it is possible to reconstruct the 

transmission networks in individual level or small scale outbreak (Bon, 2010; 

Chalmet, 2010), however, such approach can be time and resource consuming in large 

scale disease transmission such ILI. Although a study exists that utilized the 

phylogenetic analysis for modeling disease transmission patterns in the population 

level (Flavia 2011), our study utilized those data sets that could be easily accessible 
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from the web either for analysis or evaluation. With data sets comprised of geocoded 

strains circulating during an ILI outbreak across different regions, it may also be 

possible to validate cross-correlation networks based on phylogenetic analysis 

(Appendix C).  

 

  The reasons for using census worker flow, distance between centroids, and flight 

passenger flow are based on the reasons that ILI is mainly transmitted by contact 

(Valleron, 2010). In this study, we took flight passenger volume and census worker 

flow as indicatives of actual contact, and distance as a proxy for likelihood of contact. 

Until now, there is no studies related to census worker flow or flight passenger flow 

being investigated for their role in infectious disease transmission, however, studies 

evaluating the impact of social networks on spreading of infectious diseases have 

been elaborated in the literature (Cauchemez, 2010; Abernethy, 2005). Our study 

found that census worker flow, but not flight passenger flow, is associated with the 

cross-correlation networks being constructed, which could serve as new research 

themes for investigators.   

  

  Distance as a factor in infectious disease transmission has been well elaborated in 

either experimental setting or real world disease transmission patterns (Spekreijse, 
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2011; Tuite, 2011), suggesting that infectious disease transmission over a long 

distance is a less likely route of spread. In our study, we used distance between state 

centroids as one of the variables to be evaluated the influence on cross-correlation 

networks. Result shows that distance between states is inverse proportional to disease 

spreading that modeled by cross-correlation networks, and that further support the 

approach we are using can be a feasible way of modeling infectious disease 

transmission in a spatio-temporal manner. 

  

  One of the major drawbacks of using DB1B as the flight passenger flow is the lack 

of specificity. Those airports (and their associated states) with high volume passenger 

flow may also serve as the international transportation stations for passengers’ transit. 

Sick passengers flying to other nations may exert little influence on the impact of 

disease spreading in the Destination State, although the case counts will be reflected 

in the DB1B data sets and hence be used for our evaluation. Our study found no 

strong association between cross-correlation networks and flight passenger flow. This 

doesn’t preclude the possibility of their association given we didn’t have detailed data 

related to the “actual” flight passenger flow. Future research trends may include 

simulation data that can actually model the ILI case counts in each geographic region 

and also passengers’ behavior with sufficient details suitable for subgroup analysis. 
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  For simulation, agent-based models (ABM) can be explored as an alternative 

approach. ABM is a computational method for simulating the actions and interactions 

of autonomous decision-making agents (either individual or groups) in an attempt to 

assess the behavior of the system being modeled as a whole (Bonabeau, 2002). Our 

evaluation analysis utilized the aggregate data sets of ILINets and Google Flu Trends. 

These two systems that need to be analyzed are complex without finer levels of 

granularity once they are organized into accessible data sets. As an alternative 

approach in the experiment, we could use agent-based simulation to track individual 

episodes of disease transmission between regions. The aggregate surveillance data can 

also be generated by this approach. For the next step, we would compare the 

region-to-region transmission matrix to the observed cross-correlation network to 

determine to what extent the observed correlations resemble the actual transmission 

events from the simulation. Since we lack a gold standard to measure transmission 

events in aggregate data collected mainly for syndromic surveillance, it is possible to 

re-create and predict the appearance of complex phenomena like ILI activity by 

simulation approach. Such a simulation experiment exhibits the potential to have 

far-reaching effects on the way that public health practitioners use informatics to 

support decision-making during infectious disease outbreak with the knowledge of 
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how disease spreading.  

 

  Here we used cross-correlation analysis and cross-correlation networks as the way 

to identify and visualize disease transmission patterns in ILI. During networks 

construction, we plotted the connections with correlation values above a pre-selected 

threshold in order to highlight the most important similarities between case rates. The 

selection of the threshold was tentative for balancing the sensitivity and specificity, in 

an attempt to identify “true” transmission links based on standard not presently 

available. The higher the threshold value selected, the more specific (and less 

sensitive) the links are modeled. Such a threshold selection strategy can also be 

employed using the ratio of connections between contiguous states versus total 

connections. This value did increase as a function of the threshold being selected 

(Strategies in selecting the thresholds are shown in Appendix D). 

 

  One of the major problems using simple linear regression is the requirement to 

fulfill the assumption of statistical independence of observations. Our data sets used 

to evaluate the validity of cross-correlation networks (census worker flow, flight 

passenger’s volume, or distance between centroids) all contain mutually dependent 

observations. Here we take census worker flow as an example. Suppose the number of 
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workers commuting from California to Oregon is A, the number commuting from 

California to Washington is B, and the number commuting from Oregon to 

Washington is C. Although A and B are independent, jointly C is not independent 

since it is constrained by the other two (A and B). In our evaluation analysis, we used 

univariate analysis by simple linear regression and did not consider the statistical 

dependence issue. Although this might be a problem, yet this can be solved by 

performing the regression on a very limited sample of 25 state pairs with no repeated 

states, or by doing 50 single state analyses. 

 

There are limitations in this study. First, assumptions were simplified on the 

selection of threshold, although it was necessary for modeling based on probability of 

“true” network connection. Secondly, aggregate case counts used for networks 

modeling were ILI visits (ILINet) and web-queries (Google Flu Trends) rather than 

based on the gold standard confirmed cases. Besides, there was no state-level 

aggregate data collected by ILINet. A data set like DISTRIBUTE might be utilized in 

further study if accessibility is approved. Thirdly, Data sets used for networks 

evaluation are those proxies of influenza transmission, which don’t necessarily 

represent the “true” disease transmission route. Studies relying on phylogenetic or 

simulated data can be further explored in the future. Fourthly, simple linear regression 
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might not be the suitable method of evaluating the association between variables, 

especially when our data sets can not satisfied the assumption of independency. A 

method using non-linear method, or sub-group analysis using independent pairs could 

be explored as an alternative approach.  
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CHAPTER 9 CONCLUSIONS 

 

We introduce a new approach to interpret the correlation and time lag between time 

series data that collect aggregate case counts for syndromic surveillance. This method 

can be a tool to identify and visualize patterns in disease spreading across different 

geographic areas. The evaluation results further explain spatio-temporal spread of 

disease using cross-correlation networks being constructed. The networks may then 

serve as a basis to evaluate intervention options during outbreak of pandemic 

influenza or other emerging infectious diseases. Using cross-correlation analysis, we 

would like to extend this approach to studying patterns in different diseases or 

matching disease trends to other syndrome signals in the future. 
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Appendices 
Appendix A: 

The abstract presented in Annual Conference 2010 of International Society for 

Disease Surveillance (ISDS). 
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Appendix B 

Cross-correlation networks visualization on selecting different thresholds using 

state-level Google Flu Trends data.  
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Appendix C 

ILI transmission networks construction based on geocoded database using 

phylogenetic tree analysis.  

A phylogenetic approach can be carried out by using data like the figure shown below 

(Flavia 2011), with the sample of strains that was geocoded. Since the strains are 

tagged with the geographic source of the strain, it is possible to validate the 

cross-correlation networks of ILI based on phylogenetic tree analysis. 

 

 

 

 

 

 

 



59 
 

Appendix D: Threshold Selection Strategies 

1. How and why to Select the Threshold 

In order to hide the connections between weakly correlated regions, the following 

threshold selection strategies were adopted in an attempt to identify “true” 

transmission links based on standard not presently available. We are using 

contiguity as a proxy for a gold standard under the assumption that ILI 

transmission locally is more likely than over a long distance (Spekreijse, 2011; 

Tuite, 2011).  

2. Percentage of Contiguity: the ratio of connections between contiguous states 

versus total connections. 

    

 

3. Selection Threshold for Google Flu Trends 

Using Google Flu Trends data sets (aggregates counts data collected from April 26th, 

2009 to April 18th, 2010) as an example for the construction of cross-correlation 

networks, the results by analyzing the percentage of contiguity are shown as (a).10 

HHS-level and (b).51 state-level. With the increase in selecting the value of the 

threshold, the number of total connections and contiguous connections decrease. 

However, the percentage of contiguity increases.  

sConnectionTotal

atesRegions/St Contiguous obetween tw sConnection
Contiguity % 
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