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Using Graph-Based Methods to Integrate and Analyze Cancer Genomic Data 
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Studies of the genetic basis of complex disease present statistical and methodological 

challenges in the discovery of reliable and high-confidence genes that reveal biological 

phenomena underlying the etiology of disease or gene signatures prognostic of disease 

outcomes.  This dissertation examines the capacity of graph-theoretical methods to model and 

analyze genomic information and thus facilitate using prior knowledge to create a more 

discrete and functionally relevant feature space.  To assess the statistical and computational 

value of graph-based algorithms in genomic studies of cancer onset and progression, I apply a 

random walk graph algorithm in a weighted interaction network.  I merge high-throughput 

co-expression and curated interaction data to search for biological modules associated with 

key cancer processes and evaluate significant modules in terms of both their predictive value 

and functional relevance.  This approach identifies interactions among genes involved in 

proliferation, apoptosis, angiogenesis, immune evasion, metastasis, and energy metabolism 

pathways, and generates hypotheses for future cancer biology studies.  Based on the results of 

this work, I conclude that graph-based approaches are powerful tools for the integration and 

analysis of complex molecular relationships that reveal significant coordinated activity of 

genomic features where previous statistical and analytical methods have been limited. 
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Glossary 
 
 
Betweenness Centrality:  A network measure of the extent to which a node in a graph lies on 
the shortest path between all other nodes in the graph. 
 
Candidate Gene:  A gene prioritized with particular potential as a disease-causing gene or 
therapeutic target in a genomic study of many possible disease-linked genes. 
 
Cancer Gene:  In the present study, a cancer gene is one associated with cancer based on 
evidence in the Online Inheritance in Man database.  Genes were queried for cancer terms 
and manually verified for involvement in cancer. 
 
Closeness Centrality:  A network measure of how close a node is to all other nodes in the 
graph. 
 
Clustering Coefficient:  A network measure of the density of the local connectivity of a node 
in a graph, calculated by the fraction of edges in triads. 
 
Degree Centrality:  A network measure of the total number or weight of the edges connected 
to a node.  The value may reflect incoming edges, outgoing edges, or both. 
 
Gene:  A hereditary unit of DNA located at a fixed position on a chromosome.  The gene may 
encode a protein, an RNA sequence, or regulatory sequence that controls the expression or 
activity of other genes. 
 
Metabolic Interaction:  An interaction between two enzymes which share a common 
metabolite in a metabolic pathway. 
 
Module:  A complex of genes or proteins that “interact with preferred partners weakly, 
transiently, or conditionally, forming a biological module serving a specific collective 
function” (Hartwell147). 
 
MicroRNA (miRNA):  An RNA sequence transcribed in the nucleus and exported to the 
cytoplasm that targets mRNAs from other genes to post-transcriptionally repress the 
expression of those mRNAs.   
 
mRNA:  Messenger RNA, a sequence resulting from the transcription of a gene that encodes a 
protein.  
 
Network Community:  A group of closely related and connected nodes within a graph.  
 
Pathway:  A group of molecules, including genes, proteins, metabolites and/or environmental 
factors that interact in a series of steps to perform a certain function in the cell.    These 
pathways are often involved in signaling cascades, metabolic processes, or gene regulation. 
 
Protein-Protein Interaction:  The binding of two proteins to perform a biological function.   
These interactions are usually identified experimentally by yeast two-hybrid experiments or 
mass spectometry.  



 

x 
 

 
Random Walk (in Graphs):  An algorithm that begins at a random node i in a graph and takes 
a random step to an adjacent node j to determine the probability that one will transverse from 
i to j in a walk of length t.  A transition matrix P summarizes these probabilities at t=0 and Pt 
at time t.   
 
Signaling Interaction:  An interaction between two proteins or genes that participate in a 
signaling cascade where both share a reaction event. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

xi 
 

 
 
 
 

                Acknowledgements 

 
 
I would like to thank the faculty and administration of the Department of Biomedical and 
Health Informatics for creating an inspiring academic environment and giving me the 
resources to learn about the field of biomedical and health informatics, to grow as a scholar, 
to explore, to collaborate and pursue this research.   In particular, I thank Peter Tarczy-
Hornoch for his leadership in our department and for his advice during my first years in the 
program, and I had many helpful discussions with George Demeris, Anne Turner, Brian 
Brown, Sandy Turner and Joan San. 
 
Thank you to my advisor, Neil Abernethy for his dedicated and thoughtful mentorship and 
for his input on my work.  His support has helped me succeed in my studies and improve my 
research.  I thank my committee members, Ira Kalet, Ali Shojaie, Barbara Endicott-Popovsky 
and John Genarri who have been so generous with their guidance and feeback on my 
research.  They have helped me develop my methods and my work has become much 
stronger because of their excellent advice. 
 
I would like to thank Aaron Chang for his mentorship and input on microRNA analysis, 
Cornelia Ulrich for her support and advice on methods in epidemiology and cancer biology, 
and Alexander Tsiatis for his helpful input on random walks and their applications.  I thank 
Matthew Brauer, Harris Shapiro, and George Kan for their mentorship during internships. 
 
I would also like to acknowledge financial support from the National Library of Medicine 
(grant T15LM07442), the ARCS Foundation, and GO-MAP at the University of Washington 
that helped make this research possible.   
 
Finally, I am so thankful for wonderful family and friends.  I extend my love and gratitude to 
my parents and siblings who have always been there to encourage and support me, to my 
husband Rama, who has been there to motivate, inspire and cheer me on, and to our two 
munchkins, Ben and Sophia, who bring us brightness and smiles on a daily basis. 



 

1 
 

Chapter 1: Introduction 
 
 
 
 
An increasingly large influx of biological data from high-throughput experimental 

methods is available to biologists who seek to understand the influence of genes in the 

etiology and progression of complex diseases including cancer, diabetes and cardiovascular 

disease.   The availability of this data presents an unprecedented opportunity to biologists to 

translate this information into knowledge about pathological processes and their 

interventions; however it remains a challenge to extract functionally relevant genes from data 

sets containing tens of thousands of measurements of gene expression, proteomic, epigenetic 

or environmental factors that may contribute to various disorders.  Typically, studies 

analyzing genotype-phenotype associations utilize statistical methods that search for the the 

most significant individual genes associated with putative outcomes.  However, there is a 

growing interest in methods that examine how multiple genes interact in biological systems 

to account for the interdependent physiological processes underlying complex diseases.  This 

has led to investigation of methods that can incorporate prior knowledge of biological 

systems, including evidence of genetic interactions and common pathways, with empirical 

approaches suited to identifying multiple predictors in large data sets.   The goal of this 

research is to address this challenge using graph-theoretical frameworks to improve the 

modeling and analysis of such large-scale genomic data. 

 
 

1.1: Challenges in Large Scale Genomic Studies 

 

A primary challenge in the statistical analysis of the genetic basis of disease is the 

effective exploration of high-dimensional genetic predictors to isolate a small but relevant 

sample for further study.  To estimate such effects, genetic studies may focus on an initial set 

of candidate genes with functional relevance or explore tens of thousands of genes for 

significant associations with outcomes of interest.  Typically, -squared, t-statistics, or 

multivariate regression analysis are used to measure significant up-regulation or down-

regulation of genes.  However, while these methods may be able to distinguish significant 

statistical interactions with substantial effect sizes, they are generally not tailored to assess 

more subtle interactions among multiple genes and environmental factors.  Genes yielding 
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small or modest signals or those with non-additive effects may not be detected by these 

methods, and such approaches do not adequately account for the genetic complexity of non-

Medelian phenotypes.  These limitations motivate a search for better methods to model and 

identify key interactions associated with dysregulated pathways.   Here, I propose the use of 

graph theory and network models to address challenges associated with genomic analysis of 

complex disease. 

Statistical, data integration and computational issues need to be addressed to improve 

current analytical approaches in the genetic analysis of massive data sets and complex 

diseases.  Statistical issues that arise when testing high-dimensional genomic data include: 1) 

genes involved in complex diseases tend to only have small individual effects and univariate 

studies may be underpowered to detect these effects; 2) testing the statistical significance of a 

high order of genes corresponding to numerous hypotheses leads to multiple testing, where a 

fraction of the significant results will occur by chance; 3) testing a large number of genes and 

their interactions may overfitting estimates, and consequently results are often not 

generalizable or reproducible, and; 4) commonly applied statistical methods, including -

squared, t-tests and regression analyses lack the power to measure the joint effects of gene 

interactions, where the combined effect of the genes significantly exceeds the sum of their 

individual effects.  Data mining approaches (i.e. decision trees, random forests, SVM, and 

Bayesian analyses) have also been applied to more accurately model genetic predictors and 

their interactions1; however, more efficient methods are needed to increase the power to 

detect coordinated behavior of genes and integrate prior knowledge in the search for genetic 

associations, thereby narrowing the parameter space and decreasing uncertainty.    

Ample evidence of biological interactions and masive amounts experimental data are 

available from the literature, or are curated in online databases housing expression, gene 

regulatory, protein interaction and other multi-scale genomic information.  These data 

sources can be leveraged as prior knowledge in computational models of genes in the context 

of biological systems, including molecular pathways and condition-specific interactions.  

Incorporating evidence of multi-scale interactions and information regarding known disease 

genes focuses the search for genes that are more likely to have functional relevance and 

improves interpretability by presenting genes in the context of their various biological 

processes.  Several mathematical and computational methods have been applied to link prior 

evidence with empirical approaches in the analysis of the molecular pathology of disease.  

Examples include mathematical models, Bayesian networks, Boolean networks, and Petri 
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Nets.  These approaches are often oriented toward discrete, well-described datasets where 

reaction events are quantified in detail and/or annotation of interaction data is available.  

They are not generally applicable or efficient in the context of exploratory studies of high-

throughput data or genome-wide feature selection of genetic predictors.   

Graph-based analyses are widely used to model social and information networks and 

have been shown to be powerful analytical tools when used to study relationships in large-

scale data sets.  Network approaches in genome studies build on the common hypothesis that 

disease genes share observable patterns in biological networks.  In this context, genes that are 

critical in terms of disease etiology also play a central role in the topology of the network and 

tend to interact closely with other disease genes.  By providing a framework to integrate 

diverse biological interactions and analytical tools to study these relationships, graph-

theoretical approaches provide powerful models to investigate genomic activity in complex 

systems.  These models can be applied to address statistical, modeling and data integration 

issues associated with high-throughput biological data analyses in genotype-phenotype 

studies.  To explore the use of network algorithms to improve the investigation of genes in 

complex disease, this dissertation implements and evaluates a graph-theoretical framework to 

integrate and analyze the coordinated behavior of genes in cancer onset and progression.   

 
 

1.2: Research Objectives 

 
The broad aim of this work is to implement and evaluate a graph-based platform to 

model interaction information, use prior evidence and analyze high-throughput data in the 

context of biological networks.  Such an approach can be applied to mine large-scale data sets 

to generate hypotheses for further cancer-based research.  Previous studies have shown that 

network characteristics and community detection can be useful in genotype-phenotype 

studies2-4.  This study builds on earlier work to demonstrate the strength of graph-based 

analysis of biological networks to address statistical and computational issues in high-

dimensional genetic analysis, by the: 1) integration and modeling of genomic evidence 

including interaction, experimental, and regulatory data, to narrow the feature space and to 

facilitate the discovery of reliable candidate genes supported by prior evidence of their 

biological relevance, 2) identification of biological modules associated with cancer that, in 

contrast to gene set enrichment approaches, can focus on relevant regions of activity in large 

pathways and can include genes that are span multiple pathways, 3) focus on the discovery 
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and interpretability of biological modules by using an graph-based random walk algorithm 

optimized for community finding that maximizes module scores and controls for module size. 

The principle hypothesis of this dissertation is that using a graph-theoretical 

approach to study large-scale genomic data, focusing on network characteristics and 

module generation in biological networks, provides a powerful framework for data 

integration and improves performance and interpretation in analyses of the coordinated 

behavior of genes in complex disease.  Specific objectives of this study are to assess the 

predictive value of network features to detect cancer genes; and to use biological networks as 

a framework to integrate genetic interaction and regulatory information to better understand 

the genetic basis of cancer.  My specific objectives are listed and summarized below: 

 

I. Assessing the Network Characteristics of Cancer-Associated Genes in 

Metabolic and Signaling Networks 

II. Using Weighted Random Walks to Identify Cancer-Associated Modules 

in Expression Data 

III. Analysis of microRNA Data in Random Walk-Generated Gene 

Expression Modules 

 

 

1.2.1: Assessing the Network Characteristics of Cancer-Associated Genes in Metabolic and 
Signaling Networks 

 
Graph-theoretic methods have been broadly applied to study properties of interactions 

in metabolic, regulatory, and signal transduction pathways.  The first objective is to study the 

relationship between network features and cancer genes within a biological network and to 

measure the power of network characteristics to predict cancer genes.  The hypothesis 

associated with this objective is that cancer genes demonstrate higher centrality and tend 

to interact closely and cluster with other cancer genes in the network.  Using a 

generalized linear model, I evaluate the predictive power of centrality measures and 

clustering coefficients associated with cancer genes in the interactome.  Further, I assess the 

modularity of cancer genes by applying a random-walk algorithm to discover communities 

enriched with cancer-associated genes.  The results show that cancer genes in metabolic and 

signaling networks exhibit significant topological differences in terms of degree, clustering 

coefficient, and modularity; and these features demonstrate greater predictive ability in 

signaling networks.  These findings give an empirical basis for the use of algorithms 
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employing similar network-based measures to prioritize disease genes or to predict disease 

states5.  

To address this objective, I develop custom parser in R to extract pairwise relation 

and reaction interactions from the Kyoto Encyclopedia of Genes and Genomes (KEGG)6 used 

to create global signaling and metabolic networks.  Network features are calculated for 

individual nodes (genes) in the metabolic and signaling networks, including: degree, 

closeness and betweenness centrality and clustering coefficient. The ability of network 

characteristics of individual genes to predict cancer status is assessed using linear regression 

and a gold standard list derived from OMIM entries.  To evaluate the cohesiveness of cancer 

genes in the network, I apply a random walk algorithm to discover dense cancer-associated 

modules within an integrated network of protein-protein, metabolic, signaling and regulatory 

interactions.  Modules significantly enriched with cancer genes are identified by comparison 

against a hypergeometric distribution.  The biological relevance of modules discovered in the 

community search is evaluated based on evidence in the literature and comparison with 

curated pathways. 

 

1.2.2: Using Weighted Random Walks to Identify Cancer-Associated Modules in Expression 
Data 

 
The etiology of cancer involves a complex series of genetic and environmental 

influences.  The second objective is to better represent and study the intricate genetics of 

carcinogenesis by applying a weighted random walk and modularity-driven clustering 

algorithm to search for modules of interacting genes that are significantly associated with 

cancer onset and progression. The hypothesis associated with this objective is that the graph-

based random-walk and community finding algorithm can be used to integrate prior 

evidence, to model interaction data and to yield interpretable, biologically-relevant 

modules.  A network of biological interactions is constructed to search for groups of genes 

composing cancer-associated modules.  I implement Walktrap7, a random-walk-based 

community detection algorithm to identify significant modules in the weighted interactome 

that predispose to tumor development in hepatocellular carcinoma (HCC), adenoma 

development in colorectal cancer (CCA), and prognosis in breast cancer (BC).  Results are 

compared with those generated by several other recent tools developed to discover cancer-

related disease modules in gene interaction networks.  The findings show that significant 

modules include interactions among transcription factors (SPIB, RPS6KA2 and RPS6KA6) 

and cell-cycle regulatory genes (BRSK1, WEE1 and CDC25C), inflammation and 
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proliferation (SOCS2, IL20RA and CBLC) and growth factors (IRS2, FGF7) that are highly 

connected with known cancer genes, are functionally related to cancer, and show potential 

value as therapeutic targets. 

Specifically, to address this objective, an interactome is created from metabolic, 

signaling and protein-protein interactions derived from KEGG and HPRD.  I downloaded 

three cancer expression datasets from GEO, a study of hepatocellular carcinoma by Roessler8 

(GSE14520), a breast cancer prognosis study by Desmedt9 (GSE7390), and colorectal cancer 

data from Sabates-Bellver10 (GSE8671).  Corresponding fold change data are transformed to 

create a vector of edge-weights for the interaction network.  The Walktrap algorithm is used 

to calculate distances between nodes used to cluster communities in the network and identify 

dense modules associated with cancer.  The community detection algorithm is an 

agglomerative clustering function; the merge stop is assessed using multiple criteria, 

including a threshold to limit module size (200), and maximization of module score and of 

modularity.  Modules are scored based on cumulative expression values and are assessed for 

significance by comparing these scores against estimates from a random distribution.   

 
 

1.2.3: Evaluation of the Use of Weighted Random Walks and Expression Data to Identify 
Cancer-Associated Modules 

 

Results from section 1.2.2 are evaluated to measure the efficiency and performance of 

the random walk and module search.  I assess biological relevance of significant modules 

using functional annotation derived from ConsensusPathDB and supporting evidence from 

the literature. To further evaluate relevant functionally enriched pathways from the top 

scoring modules, these annotations are compared against significant pathways identified by 

Gene Set Enrichment Analysis (GSEA).  Next, I evaluate performance of the top scoring 

modules against modules generated by other tools used to detect significant modules in 

weighted interaction networks, jActiveModules and Matisse. An OMIM-derived list of cancer 

genes is used as a gold standard to assess detection and significant enrichment of cancer 

genes in these modules.  The results show that the Walktrap algorithm performs well in 

comparison to related tools and can identify modules significantly enriched with cancer 

genes, their joint effects and promising candidate genes.  Smaller overall module size allows 

for more specific functional annotation and facilitates the interpretation of significant 

modules 
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1.2.4:Analysis of microRNA Data in Random Walk-Generated Expression Modules 
 

The final objective is to leverage the ability of a molecular interaction network to 

integrate interaction data, mRNA expression, and microRNA (miRNA) expression data.  The 

hypothesis here is that modules enriched with targets associated with miRNA hits will 

identify high-confidence candidate cancer genes based on correlation between mRNA 

and miRNA expression data.  I aim to identify miRNA-mRNA pairs involved in cancer 

onset and progression by using Walktrap to discover modules predisposing to cancer and 

enriched with miRNA-mRNA activity in expression data.  Several methods to integrate and 

score miRNA data are evaluated.   

To carry out this analysis, the initial interactome for this study was created from from 

metabolic, signaling and protein-protein interactions derived from KEGG and HPRD.  I 

downloaded two cancer expression datasets from GEO that include miRNA-mRNA 

correlation data, a study of hepatocellular carcinoma from Burchard11 (GSE22058), and a 

study of breast cancer survival by Buffa12 (GSE22220).  I examined methods to integrate 

correlated miRNA-mRNA pais into the network analysis using several matching and 

weighting approaches.  Matching methods assessed include: optimal matching, retaining the 

top three or five matches, and including all matches.  Corresponding mRNA-miRNA fold 

change data are used to create a vector of edge-weights for the interaction network applying 

weights to edges using fold change of the adjacent nodes, or a linear transformation of fold 

change values.  I implement the Walktrap algorithm to calculate distances between nodes and 

to to identify modules associated with cancer.  Significant over-representation of miRNAs in 

these modules is evaluated by enrichment analysis using a hypergeometric distribution.  The 

results highlight miRNAs including miR-22, miR-151, miR-93 and miR-33b and targets LIFR, 

CYPA4A11, SH3GL2 and MYBL2 for their potential role in cancer. 

 
 

1.2.5:Evaluation of Analyzing miRNA Data in Random Walk-Generated Expression Modules 
 

Here I evaluate integrating miRNAs in a weighted interaction network to reliably 

identify cancer-associated modules that are enriched with miRNAs and mRNA targets.  The 

value of using miRNAs and their target correlations is compared to approaches that 1) use 

only mRNA data, and 2) use both miRNA data and mRNA data in the absence of a network 
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model.   I review the functional annotation of the modules, and evidence from the literature.  

The following steps summarize the methodology used to address this objective.  To evaluate 

matching and weighting strategies used to integrate miRNAs in the network, I calculate 

cancer-gene enrichment scores of significant modules found by using these methods.  The 

performance of each approach is assessed by measuring Precision, Recall and Matthews 

Correlation Coefficient (a function of overall Precision and Recall).  I review functional 

annotation of significant modules using ConsensusPathDB, and compare my findings with 

original studies from which the data was attained, the HCC study by Burchard 201011, and 

the BC study by Buffa 201112.   Results are also validated using supported evidence in the 

literature for top mRNA and miRNAs associated with these outcomes. Finally, to determine 

the effect of using miRNA data, I compare significant modules discovered using miRNA-

mRNA findings against those found using mRNA-only approach on comparable HCC and 

BC data.  

 
 
 
 

1.3: Contributions  

 

This research contributes to the fields of biomedical informatics, genomics, and 

cancer biology.  Overall contributions include: the implementation and evaluation of methods 

for high-dimensional data analysis, applications of graph-based and module-discovery 

algorithms in biology, approaches to data integration in biology, and a set of hypothesis for 

further cancer-based gene interaction studies.  These contributions are relevant to the fields of 

biomedical informatics and cancer biology, and generally applicable to large-scale data 

analysis integrating diverse information to identify significant interactions among entities and 

their association with outcomes of interest.  The contributions of this dissertation are 

summarized below.  

 
 Development of a graph-theoretical approach to study the coordinated behavior of 

genes in complex disease.  This method improves upon standard statistical analyses of 
high-throughput genomic data by focusing on the discovery of significant gene 
interactions rather than single candidate genes, and by using prior evidence of 
biological interactions to narrow the feature space.   
 

 Expansion beyond predefined gene sets to allow investigation of gene interactions 
within a region of a pathway or that overlap across pathways.  This research leverages 
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known pathway information, yet uses these definitions loosely as it allows for 
identification of modules that cross a priori-defined pathways and gene sets. 

 

 Demonstration of a basis for the predictive value of centrality features and community 
finding in a biological network seeded with cancer genes. 

 

 Demonstration of the ability of the network to integrate prior information in the 
investigation of the genomic basis of cancer.  The graph-based framework serves as 
platform for the integration and computational analysis of prior evidence of biological 
interactions and regulatory information in the study of the genetic basis of complex 
disease.   

 

 Creation of a gold standard list of cancer genes used in evaluation of modules.  Each 
gene in the network is queried for cancer-associated terms and each match is 
manually verified.  These methods improve upon previous approaches to summarize 
cancer gene data, based on the specificity and coverage of queries and manual 
verification.   

 

 Contribution to research applying graph-based frameworks in genome analyses and 
module-finding by using a random walk algorithm optimized to discover communities 
in large biological network.  Most previous work using random walks has focused on 
gene prioritization rather than module discovery and this approach shows strong 
performance when compared to similar tools and results in smaller, more interpretable 
modules.   

 

 Presentation of a scoring metric to score module significance and enrichment using a 
bootstrap distribution.  Where many previous studies have used correlation or p-
values to apply weights to network eges, here, fold change values are used to build 
more robust weight distributions, to focus the study on outcomes rather than the 
strength of correlation between genes, and to increase sensitivity to differential 
expression measurements.    

 

 Hypothesis generation to guide future studies investigating candidate genes and their 
interactions in cancer studies.  This research identifies potential therapeutic targets 
that are implicated in breast cancer, hepatocellular carcinoma and colorectal cancer.   

 

 A generalizable example of how to integrate diverse information and find 
communities of closely related entities to guide other applications of graph-based 
research. 
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1.4: Dissertation Overview 

 
This dissertation is organized as follows.  Chapter 1 describes the research challenges 

inherent in the study of the genetic basis of complex disease and presents a summary of 

research objectives, methods and contributions.  Chapter 2 reviews background work in 

network and graph analysis in genomic studies and sets the context for the present work in 

the context of these studies.   

Chapter 3 is an assessment of the power of using network characteristics as predictive 

features in studying metabolic and signaling networks.  This chapter examines the hypothesis 

that cancer genes demonstrate higher centrality measures and act as hub genes in the network.  

It also presents an evaluation of the cohesiveness of cancer-labeled genes and their affinity to 

form modules with other cancer genes and cluster in network communities. Chapter 4 

describes implementation of a random walk algorithm optimized for community-finding and 

weighted with mRNA expression values, to search for communities of interacting genes that 

are significantly associated with cancer onset and progression.  Findings from this analysis 

are evaluated by reviewing functional annotation, evidence from the literature and comparing 

performance to similar tools.  Chapter 5 presents an expanded assessment of the ability of the 

molecular interaction network to integrate diverse types of interaction data, mRNA 

expression, and miRNA expression data.  The chapter examines the hypothesis that modules 

enriched with targets associated with miRNA hits will consist of more reliable candidate 

genes based on the correlation between two significant data sources. Several methods are 

evaluated to integrate and analyze miRNA in the network and for their ability to improve the 

search for modules associated with cancer.   

Finally, Chapter 6 concludes by reviewing the methods, results, contributions, 

conclusions and avenues for future work based on this research. 
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Chapter 2: Network Biology and the Cancer Genome  
 

 

 

 

2.1: Introduction 

 

Network models serve both as a framework to represent and visualize complex 

interactions, and as a platform for further analysis, compatible with extensive libraries of 

graph algorithms.  A network consists of entities and their relationships, the entities are nodes 

in the graph, and edges describe the relationships between nodes.  Graph-based models have 

been widely used to describe and investigate relationships and information exchange in social 

and information networks; from the transmission of disease in communities13, to the flow of 

data in telecommunication networks14,15, and the search for relevant links in the Google 

search algorithm16.  Graph-based approaches differ from conventional statistical analyses by 

shifting the focus on observations and their associations with the outcome, to relationships 

between observations and their attributes under specific conditions.   

Graph-theoretical concepts of node centrality, the shortest path between nodes, and 

clustering, have been applied to study gene interactoins to annotate genes, discover their 

functional or putative relevance, or study their joint influence in disease outcomes17.  As 

putative processes underlying complex disease result from multiple genetic or environmental 

factors acting in concert, network analysis is well-suited to the study of the causes of these 

complex phenotypes.  In genomic applications, such analyses have been applied to model 

multi-scale interactions including protein-protein interactions (PPI), metabolic, and signaling 

networks, as well as expression, sequencing, copy number, and genomic mapping data18. 

 
 

2.2: Overview of Biological Pathways and Interaction Networks 

 

The following is a summary of signaling, regulatory, metabolic, and PPI networks as 

presented by Junker and Schrieber19 and Pavlopoulos20.  Signal transduction networks model 

cascades of directed, reversible events that begin via actions of molecules outside of the cell.  

These molecules, including hormones, cytokines, and growth factors, bind to the surface of 

the cell and initiate a cascade of signal transduction events (reactions) that ultimately target 
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transcription factors or metabolic enzymes within the cell.  The cascade of reactions involves 

modification of a downstream molecule by a preceding molecule, often via phosphorylation 

or ubiquitination.  These reactions may be mediated by protein-protein interactions, however 

many reactions may involve other chemical factors including steroid hormones, second 

messengers such as cAMP,  or environmental factors such as calcium stress, UV, or 

irradiation.  These cascades can regulate cell functions such as glucose uptake, cell growth, 

sensory signals and regulation of gene expression.  Regulatory networks, for example, are 

specific types of signal transduction networks that involve binding of transcription factors to 

their target genes to modulate gene expression.  An example of a signaling network involved 

in regulation of cellular growth and differentiation, the TGF- signaling pathway, is 

presented in Figure 1.  Gathering signal transduction data is challenging and costly, and the 

most of this information is derived from yeast experiments or from orthologous data collected 

across species.   

Metabolic networks model biochemical reactions or interconversions (usually 

catalyzed by proteins termed enzymes) between metabolites.  Metabolites can be small 

molecules such as glucose or amino acids or macromolecules such as polysaccharides and 

glycans.  Metabolic networks consist of directed, irreversible reactions, and are bipartite 

networks, wherein one class of nodes represents an enzyme and another class represents a 

metabolite.  Metabolic interactions generally include relationships between enzymes that 

share a common metabolite.  Data are primarily derived from laboratory experiments 

modeling specific chemical reactions and these networks are often described in great detail 

using mathematical models of the underlying reactions.  An example of a metabolic pathway, 

Prostaglandin and Leukotriene Metabolism, is presented in Figure 2. 
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Figure 2: Prostaglandin and Leukotriene Metabolism.  The Arachidonate metabolism pathway is 
described in detail by Alberts21 and Weinberg22.  In this KEGG6 diagram, rachidonate is a polyunsaturated 
fatty acid that can be transformed into prostaglandins or leukotriene.  For illustrative purposes, 
prostaglandin synthesis is described in specific detail.  Prostaglandins are important regulators of immune 
response and inflammation.  The COX1/2 enzyme, prostaglandin endoperoxidase synthase (also known as 
prostaglandin endoperoxide synthetase-PES or prostaglandin synthase - PGH1/2) is a fatty acid 
cyclooxygenase that adds two oxygen molecules to arachidonate and interacts with arachidonate in the 
initial steps of the prostaglandin synthesis pathway.  It converts an arachidonate radical via cyclogenase 
activity to form prostaglandin-G2 (PGG2).  PGG2 then reacts again with arachidonic acid and is reduced by 
peroxidase activity to prostaglandin-H2 (PGH2).  Depending on cell type, PGH2 may react with other 
enzymes to convert arachidonic acid to prostaglandins or thromboxane. Thromboxane-A-synthetase converts 
the enzyme PGH2 to enzyme thromboxane A2 (TXA2), typically in blood platelets, and TXA2 spontaneously 
hydrolyzes to produce thromboxane B2 (TXB2) which is involved in the contraction of vascular smooth 
muscle and induces platelet aggregation and selectin release.  TXB2 is finally metabolized to 11-Dehydro 
TXB2.  In vascular endothelial cells or smooth muscle cells, PGH2 may react with the metabolite 
prostaglandin-1 synthetase to convert PGH2 to prostaglandin I (PGI2 or Prostacyclin), whose activity can 
induce coronary vasodilation, bronchoconstriction, inhibit aggregation of platelets, and decrease 
norepinephrine release.  PGI2 spontaneously hydrolizes to form urinary metabolite 6-Keto-PGJ1a, and 
perfuses in liver to compound 6-Keto-PGE1.  In serum albumin, PGH2 reacts with prostaglandin-D-
synthetase to produce prostaglandin-D2 (PGD2), prostaglandin-F-synthetase may then reduce PGD2 and 
PGH2 to 11-epiPGF2a, which inhibits platelet aggregation.  Alternatively, PGD2 may undergo non-
enzymatic dehydration to produce metabolite PGJ2 which then non-enzymatically becomes metabolites 
delta12-PGJ2 and 15-Deoy-delta 12,14-PGJ2.  In macrophages, or the kidney, prostaglandin-E-synthase 
converts PGH2 to Prostaglandin-E2, which can interact with enzymes carbonyl reductase (NADPH, or 
adelhyde reductase) and prostaglandin-E2-9-reductase to become PGF2a or convert non-enzymatically to 
prostaglandin-A2, prostaglandin-C2 or prostaglandin-B2.  PGH2 may converts to PGE2 via interaction of 
PGE-synthase and spontaneously hydrolyzes with PGF2a and enzyme 15-hydroxyprostaglandin-D 
dehydrogenase (NADP+) to become 15-Keto-PGF2a.   
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PPI networks are undirected networks that model interactions between protein 

molecules and may overlap with signaling and metabolic networks.  Proteins can interact 

transiently, as in signal transduction networks, can be modified by enzymes, or can act as 

scaffolds, sequestering interactions to specific locations within the cell.  Forces that mediate 

such interactions include hydrophobic effects, van der Waals interactions, electrostatic 

interactions, and hydrogen bonds.  Most but not all protein-protein interactions are followed 

by chemical reactions.  PPI network data are typically collected from microarray or yeast 

two-hybrid (Y2H) experiments.   

Signaling, PPI, and metabolic networks share several common characteristics.  One is 

that these networks exhibit a small-world property where most nodes are not well-connected 

with other network nodes, but each node is reachable from any other node in relatively few 

steps23.  These networks have been shown to be scale-free where more high-degree nodes 

(hubs) exist than would be expected by chance, and they follow a power-law rule whereby 

hubs connect dense communities of low-degree nodes24 .  Direct links between high degree 

proteins are suppressed whereas links between high degree and low degree proteins are 

favored.  These networks are robust and complex, they are vulnerable to specific attacks 

against highly centralized and connected hub nodes; but random attacks are unlikely to 

disturb the network, as most nodes are not critical hubs25.  Low-degree vertices may play 

important roles in maintaining network integrity and hubs may facilitate brokering 

communication between distant parts of the network.    

Generally, signal transduction networks exhibit more specific cellular activities than 

PPI networks and metabolic networks are more stable and well described than signaling or 

PPI networks.  Signaling and metabolic pathways have been described in quantitative detail 

in model organisms and in humans26,27.  Both signaling and metabolic networks are 

anisotropic; they have specific inputs and outputs, compared to PPI’s which are isotopic and 

lack specific inputs and outputs.  Given that complete information is lacking with signaling 

interactions, and since these interactions show considerable overlap with the more discrete 

metabolic and PPI networks, relatively little network analysis work has been done with 

signaling networks versus metabolic and PPI networks19.  

Functional networks typically merge PPI data with a wide variety of genomic 

information, for example: known disease genes, co-expression data, proteomic data, 

regulatory interactions, genetic variation and genome mapping data.  These data are extracted 

from curated data sources or experimentally derived from original studies.  Relationships 

between genes or protiens are indicated by network edges, while discrete, categorical or 
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continuous variable measurements can be incorporated by annotation and/or weights applied 

to graph nodes or edges.  Annotation of edge variables often includes binary relationships or 

correlation values; and node annotations may include node classes, or quantitative or 

qualitative descriptors of experimental measurements or significance values.   

Along with massive generation of sequencing and expression data, extensive 

functional, interaction, and pathway information are available from the literature and online 

resources to augment and annotate biological networks.  The Gene Ontology28 is a widely-

used resource for retrieval of functional gene annotations.  Interaction data are available from 

a growing number of databases that may focus on metabolic, signaling or protein interactions, 

these include:   BIND29, Reactome30 , HPRD31, STRING32, INTACT33, and the National 

Cancer Institute’s Pathway Interaction Database 34.  Prominent databases containing detailed 

information on metabolic, transcription and signaling pathways include KEGG 35, BioCarta 36  

and BioCyc 37.  Phenotypic information is available from OMIM38 and MiMiner39.  Online 

datasources with compilations of epigenetic and gene regulatory information include data on: 

predicted transcription factor targets (TRANSFAC40), signal-transduction (TRANSPATH40), 

predicted miRNA-targets (TargetScan41, miRBase42), DNA methylation profiles (MethDB43, 

MehtylomeDB44), phosphorylation sites (Phosida45, NetPhorest46), ChIP-chip/Chip-Seq 

(Uniprobe47, JASPAR48), and  B-Cell signaling networks (HBCI49).  Information from most 

of these databases and ontologies can be exported in computable forms such as SBML50, 

BioPAX51 or other XML formats, for further analysis; and a correspondingly wide array of 

tools has been implemented (for example, in Cytoscape 52 and Bioconductor53),  to visualize 

and analyze information from external sites.  Pathway, protein complex, and GO data have 

also been compiled in several online resources and are to generate integrated networks or 

provide functional annotation for gene lists (DAVID54, ConsensusPathDB55, PINA56, 

ToppGene57). 

 

 

2.3: Network Features and Definitions 

 

The following are basic concepts of network theory summarized from work by 

Newman58 and Pavlopoulos20.  A network is defined as a pair of edges and vertices G=(V,E), 

where edges are connections between the vertex nodes V, and E(i, j) refers to an edge 

between vertices i and j.  The network may be undirected, or directed, in the latter case 
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G=(V,E,f), where f refers to a function that assigns directionality to an edge.  Edges may be 

associated with weights where a weight w(i,j) refers to the weight of the edge between 

vertices i and j.  For undirected graphs, the adjacency matrix representation for graph G 

consists of an nxn matrix A such that aij = 1 if (i, j) is a subset of V or aij = 0 otherwise.  In 

weighted graphs Aij = wij if (i,j) ∈ V or Aij otherwise.  The adjacency list corresponding to 

graph G is an array of |E|  of pairwise elements that includes an entry for each edge in the 

network. 

Centrality is the number of links leading in or out of a node; it reflects how well-

connected the node is among other nodes in the network. The degree centrality CD(v) for a 

single vertex d(v) in graph G with n nodes is59: 

 

ሻݒ஽ሺܥ ൌ 	
݀	ሺݒሻ
݊ െ 1

 

                (1) 

Specific in-degree and out-degree values are also calculated, estimating the degree of 

incoming edges and out-going edges, respectively. 

Betweenness measures the extent to which a node lies on the shortest path between 

other nodes in the network. The equation divides the number of shortest paths from s to t that 

travel through vertex v divided by the total number of shortest paths σ from s to t60: 

 

ሻݒ஻ሺܥ ൌ 	 ෍
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               (2) 

Closeness is the mean geodesic within a network, where a lower closeness centrality 

corresponds to a shorter mean network distance between nodes. Within graph G, closeness 

measures the mean shortest path distance d from v to all other reachable nodes59: 
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Finally, the local clustering coefficient, Ci, is a measure of how densely connected a 

node is within its subnetwork, and is estimated by comparing the fraction of nodes in triads to 

the total number of nodes61:.   

 

௜ܥ ൌ 	
2݁௜

݀௜ሺ݀௜ െ 1ሻ
 

               (4) 

This value calculated by taking the actual number of edges ei of triangles in a 

subgraph Gi and dividing this figure by the total number of possible edges where di = degree 

of node i.  The clustering coefficient has been extended by Barrat et al.62 to account for the 

topology of weighted networks. 

 
 

2.4: Graph and Pathway-Based Approaches Using Prior Evidence in Genome Studies 

 
As evidence supporting gene and other biological interactions is readily available in 

the literature and from online repositories, it is essential to find methods to link this 

information with quantitative analytical tools in studies of the genetic basis of disease- to 

reduce the feature space and provide a functional basis for interpretation of these analyses.  

Important aspects of such tools include the ability to model prior information (i.e., of 

pathways and interactions), and provide quantitative approaches to assess the significance of 

interactions with phenotypic variables.  Mathematical, logical and probabilistic network 

models have been used for in-depth studies of reaction events of genes and proteins in 

specific, well-described pathways.  However, large-scale data analysis demands more 

scalable methods to explore the influence of genome-wide interactions.  Graph-based 

analyses provide a foundation for such methods with frameworks to model biological data 

and study gene interactions.  These approaches typically search for significant activity 

disease genes in networks, analyze network properties of disease genes, search for candidate 

genes in the vicinity of known disease genes, or search for communities of densely connected 

interactions. 

Mathematical, logical and probabilistic network models of biological networks have 

been explored to build, represent and analyze biological pathways63,64.  Mathematical models 

describe reaction events in pathways using ordinary differential equations and have been used 

to quantify the activity of specific pathways under experimental conditions, from prototypic 

models of respiratory metabolism in eukaryotes65 to the construction of synthetic models of 
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human metabolic and signaling pathways26.  These models are characterized by high 

precision, but are limited to well-described biological pathways for which detailed kinetic 

information or reaction annotation is availalbe; and as these models are deterministic, they do 

not allow for the uncertainty that can be accounted for in logical and probabilistic 

networks63,66.  Bayesian networks67-69, dynamic Bayesian networks70 Markov models, and 

Boolean networks71,72 have been used to reconstruct biological pathways from gene 

expression data, protein interaction data and the literature, and have been used in sensitivity 

analysis to isolate critical genes in a network71,72.  Petri nets originally developed to test 

concurrency in computer networks73,74, have been used to model biological networks as 

concurrent processes.  For small experiments, the use of logical or probabilistic models is a 

powerful approach; however, for large data sets with tens of thousands of interactions and 

greater uncertainty in terms of the underlying data, the use of mathematical or computational 

models may not be scalable or pragmatic63. 

Gene set analysis approaches leverage pathway and interaction information to 

determine enrichment of differentially expressed genes in gene sets representing canonical 

pathways, protein complexes, functional GO categories or network modules75-78.  Gene Set 

Expression Analysis (GSEA)79 uses predefined gene sets to investigate expression data to 

find significantly enriched sets of genes.  Mootha 80 and Subramanian79 identify enriched 

pathways in gene expression data by ranking significantly up-regulated and down-regulated 

genes, labeling the results with GO annotations and assessing the statistical significance of 

enriched functional categories.  Later developments include using KEGG to augment 

functional categories 81, including topological features to define interactions82-84, considering 

correlation and connectivity among genes85,86 and covering data associated with multiple 

outcomes76. Further, a number of studies, including work by Keller87, Efroni66, and Ben-

Hamo88 implement algorithms to discover significantly dysregulated subpathways of curated 

gene sets in expression data.   However, these approaches are limited in that they may not 

detect enrichment of specific regions of large pathways and they do not search for enriched 

genes that interact across multiple pathways.   

Network-based studies shift from searching for enrichment of expression profiles in 

curated pathways and gene-sets to exploring network features of disease genes in 

“interactomes” comprised of integrated functional, pathway or interaction information.  

Network-theory concepts describing node centrality and measuring distances between nodes 

have been applied to interaction networks to better understand disease.  Several studies 

conclude that disease genes tend to act as hubs in interaction networks while their 
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intermediate nodes add to the robustness of the network, and centrality and distance measures 

can help identify critical disease genes89,90,91. Guimera et al.92 classify interactions in a 

biological network and identify intra- and inter-modular motifs associated with disease.  They 

find that disease-related genes share similar link properties and emphasize that the most 

informative aspects of a network are not global, but rather local properties.  Hovrath et al. 93 

apply graph theory to extract geometric characteristics related to microarray coexpression 

data and use intra-modular network concepts and eigengene statistics to infer gene 

significance.  They derive measures of network adjacency, density, hub genes and 

connectivity and translate these to geometric interpretations to build hypotheses about gene 

significance.  Their findings suggest modular membership of putative genes and identify 

disease genes corresponding to hubs in co-expression networks.  

A number of studies focus specifically on cancer genes and their topological 

characteristics in interaction networks.   Jonsson et al.94,95 map known cancer genes in an 

orthologous PPI network and perform cluster analysis to show that cancer genes act as hubs 

in metastatic subnetworks.  They conclude that cancer genes are more well-connected, belong 

to communities with a higher degree of connectivity and are more likely to lie at community 

interfaces, or act as global central cores.  Sun96 and Cai97 draw similar conclusions but add 

that there is an inverse relationship between cancer gene labels and clustering coefficient.  

Rahmani98 and Wang99 use topological properties to predict cancer genes in protein 

interaction (PPI) networks and find that these methods help identify candidate disease genes 

and gene signatures.  Further, using expression data mapped to a PPI network, Wachi et al.100 

show that lung cancer genes have a higher extent of connectivity than do normal genes.  

These studies support the theory that essential genes and cancer genes are more likely to act 

as highly connected hubs in biological networks; although, in general, genes related to other 

complex diseases do not tend to exhibit high centrality97,101.   
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Curated disease phenotype and gene information has been combined in “diseaseome” 

networks to study the relationship between network similarity measured by distance and 

phenotype similarity.  Goh and colleagues present a gene-disease network extracted from 

OMIM to describe the topology of disease genes and highlight genes that overlap multiple 

disease types101.  The “Human Disease Network” and “Disease Gene Network” constructed 

by Goh are shown in Figure 3.  Bauer-Mehren102 present a comprehensive database of gene 

and disease associations and find that the corresponding network displays a modularity of 

disease genes, and furthermore, there are a core set of biological pathways underlying most 

human diseases.   A core set of disease related processes in the disease interactome was also 

suggested by Janvic and Pruzjili103.  Phenotype-genotype relations, GO similarity104, 

microRNA105,106, text–mining107,108, coexpression data109,110, and SNP/eQTL/mutation111-114 

data have also been used in functional disease networks to identify genes with similar disease 

phenotypes.  Xu et al.107 use toplogical features to describe similarities between disease genes 

in a PPI network and apply a linear classifier to identify diseases with similar genetic 

signatures and prioritize novel disease genes.  Lavi et al.115 find that coexpressed genes tend 

to be closer in the network of interactions and use an SVM classifier to define specific 

signatures for expression phenotypes.  Wu116 and Li117 merge PPI, genotype-phenotype 

information and known gene-disease relationship to search for candidate genes in an 

integrated network and find that using network similarity and distance measures to model 

genotype-phenotype evidence improves the search for candidate disease genes.   

Based on the hypothesis that disease genes will be closer to and share topological 

features with other disease genes in an interaction network, several studies use seed disease 

genes to search for neighboring putative genes.  Such approaches map query genes onto a 

biological network to prioritize closely related genes for further research.  Wu and 

colleagues118 seed a PPI-glioblastoma network with known cancer genes to search for 

neighboring genes associated with glioblastoma.  Shi et al.119 label an interaction network 

with published colorectal cancer signatures and use a network-derived signature to train a 

SVM classifier, resulting in highly predictive cancer signature.  Other studies seed the 

interaction network with query genes based on disease-specific experimental data, for 

example siRNA120, copy number121,122 variation or proteomic data123,124, to find disease-

related modules.  Such methods have been applied to identify disease-related genes in 

Alzheimer’s Disease125, Parkinson’s126, cardiovascular disease127-130 and type-1 diabetes131. 

Applications of this type have proved to be particularly useful in identifying key 

interactions in regulatory networks132.  Several studies link transcription factors and their 
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known targets in PPI networks to isolate dysregulated regulatory interactions in disease133-135.  

MiRNA-mRNA interactions have also been studied to identify important regulatory 

relationships in putative phenotypes136-139.  Liu and colleagues model DNA-methylation 

interactions in a PPI network to detect cancer-related genes with aberrant methylation133.  

Other regulatory and epigenetic information added to biological networks to improve the 

understanding of disease processes include adding splicing factor information140,141, mutation 

analyses142, B-cell signaling interactions143, copy number variation/somatic mutations144,145, 

GWAS122, and protein adduct information146. 

Complex diseases are characterized by the coordinated dysregulated activity of 

multiple genes and biological processes.  This feature of complex phenotypes has motivated 

the search for groups of interacting genes or modules, associated with disease.  Hartwell 

discusses the importance of modular structures of biological pathways and defines biological 

modules as proteins or protein complexes that “interact with preferred partners weakly, 

transiently, or conditionally forming a biological module serving a specific collective 

function”147.   Corresponding to this definition, network modules are subnetworks of a 

biological network that comprise a set of highly interconnected nodes within a larger 

network, and their definition is not restricted to, but may overlap with pathway interactions or 

functional complexes.  While pathway and data conforms to strict (yet somewhat arbitrary) 

pathway boundaries, module membership is based on coordinated activity across multiple 

biological processes and interaction types.  Module data has been used in genomic studies to 

annotate genes148 and study complex genetic interactions associated with experimental 

outcomes149-151.  Prominent community finding algorithms are based on cliques, edge-

betweenness, label-propagation, spectral approaches, and clustering algorithms using 

distances generated by random walks152,153.   

Module discovery approaches are agnostic to abstract definitions of gene sets, and can 

therefore account for interactions among members of gene sets, circumventing the generally 

arbitrary boundaries associated with curated pathways.  Using interaction information 

generated from coexpression data, Segal et al.87,154 identify graph modules and analyze 

module expression to detect regulatory genes related to cancer.  Dittrich and colleagues 
155apply a Steiner Tree to identify subnetworks of cancer-related genes microarray studies.  

The algorithm finds an optimally connected subgraph spanning a network weighted by 

expression data.  Variations of similar linear programming approaches have been applied by 

Zhao156 and Backes157.   Ideker and Chuang et al.149,150,158 developed jActiveModules, a 

Cytoscape plugin, to search for significant modules in expression data. They apply a 
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simulated annealing algorithm to seed and construct the modules.  Later work by Ulitsky 151 

uses a seed-based clustering algorithm to discover significant cancer modules and to find 

minimally connected subnetworks to describe gene signatures in case control studies.  

Alcaraz et al.159 develop a variation of this approach to find maximally connected 

subnetworks.  Maximal cliques119,160, diffusion processes161, geometric clustering162, SVM163, 

and mutual exclusivity144 methods have also been applied to define local neighborhoods of 

disease-related genes.  In summary, these studies conclude that graph-based algorithms can 

successfully identify functionally relevant, cancer-associated modules in expression data.   

 
 

2.5: Graph-based Random Walks in Gene Prioritization and Module Discovery 

  
Among graph-based approaches, the random walk on graphs has many applications 

and is an effective approach to define distances between nodes.  The walk begins at a random 

node and at each time point takes a step to an adjacent node.  A transition matrix determines 

the probability that the walker will visit node i by time t, and this matrix is used to calculate 

distances between nodes.  These distances can be applied to measure similarity between 

nodes, and as input to clustering methods to discover densely-connected communities in large 

graphs.  The random walk algorithm is a powerful method among other community detection 

algorithms, based on studies evaluating the performance of comparable network clustering 

methods.  As compared to other community discovery approaches, studies by Navlakha and 

Kingsford  164 and Orman and Labatut 153  find that random walk approaches individually 

outperform clustering and neighborhood approaches in PPI networks.  

Random walks on networks have been applied in the context of genomic studies to 

search for disease-related genes.  Kholer et al.112 apply a random walk algorithm in a 

functional interaction network to identify novel disease genes by their proximity to known 

disease genes based on genome mapping and interaction data.   They conclude that random 

walks outperform other distance-based methods in prioritizing related disease genes.  Li et 

al.165 and Yao et al.166 use a random walk to find disease genes in a genome-phenome 

network, with specific applications to cancer data.  Tu et al. 167 implement a heuristic random 

walk in an integrated network to find regulatory modules in gene expression data, identifying 

the most likely path from quantitative trait loci to a candidate gene.  More recently, Komurov 

et al. 168,169 use a random walk algorithm with gene expression data to prioritize candidate 

genes and discover clusters associated with cancer and other outcomes. These studies show 
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the random walk has been well-adapted to genome studies, and can be used to efficiently 

describe similarity measures between entities in biological networks.   

Implementations of the random walk differ based on the distance metrics used and 

optimization or heuristic strategies.  The focus of this study will be a specific implementation 

of a random walk algorithm, Walktrap7 which merges an optimized distance metric and 

modularity-based calculation for community-finding.  The algorithm is developed by Pons 

and Latapy 7 and implemented in igraph170.  As the algorithm typically becomes trapped 

within a local community, it is referred to as Walktrap.   The random walk, compared to other 

popular hierarchical clustering approaches, or seed clustering methods, utilizes the structure 

of the network to build distance metrics, and the Walktrap random walk algorithm optimizes 

the community search using the graph theoretic concept of modularity.  Using distance 

metrics defined by transition probabilities, the algorithm searches the network for 

communities of closely related nodes to find cancer-associated modules.  Walktrap has 

performed optimally in terms of accurate and efficient community finding in large 

networks153,171.  Further, in benchmark testing, I found the random walk to be 

computationally more efficient than the using edge-betweenness, spectral methods, or 

spanning trees to detect communities.     

We begin with graph G and its associated adjacency matrix A.  When graph G is 

unweighted ܣ௜௝ = 1 if i and j are connected in G, and ܣ௜௝ = 0 otherwise.  In the weighted 

network,  ܣ௜௝ ∈ 	Թ 
+.  The random walk process starts at a vertex i and at each time point in 

the walk of length t, a random step is taken to an adjacent node j.  Here t is set to 3.  The 

transition probability at each step is 	 ௜ܲ௝
	 		ൌ 	

஺೔ೕ
ௗሺ௜ሻ

 where d(i) is the degree of vertex i , ݀ሺ݅ሻ=  

∑ ௜௝௝ܣ .  Transition probabilities define the transition matrix P of the random walk, and 

powers of P determine the probability Pt
ij  that the walker will traverse from i to j over time t.   

As t tends towards infinity, this probability tends towards the degree or weighted degree 

(strength) of vertex j:  

∀௜ 	 lim௧→ାஶ
	 ௜ܲ௝

௧ ൌ
݀ሺ	݆ሻ

∑ ݀ሺ݇ሻ௞
 

            (5) 
 

where k is an index of all nodes n in graph G.   Pons and Latapy calculate structural similarity 

between vertices and communities using probabilities Pt
ij to measure the distance between 

two nodes.  This calculation has an important advantage compared to other distance metrics 
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in that it can be computed efficiently and can be used in hierarchical clustering.  The distance 

between the two vertices i and j, rij is given by: 

 

௜௝ݎ ൌ 	ඩ෍ 	

௡

௞ୀଵ

൫ ௜ܲ௞
௧ െ	 ௝ܲ௞

௧ ൯
ଶ

݀ሺ݇ሻ
 

                    (6) 
 

Similarly, the distance between two communities C1 and C2 is: 
 
 

஼భ஼మݎ
	 ൌ 	ඩ෍

ሺ ௖ܲభ௞
௧ െ	 ௖ܲమ௞

௧ ሻଶ

݀ሺ݇ሻ

௡

௞ୀଵ

 

                                (7) 
 

where ௖ܲೕ௞
௧  measures the probability of traversing from a node in Cj to node k (j=1,2).  

At each step in the merge algorithm, two communities in partition R are selected to be 
merged if the merge minimizes the mean k of the squared distances between each vertex and 
its community: 

 

௞ߪ ൌ
1
݊
෍ 	

	

஼∈ோೖ

෍ 	

	

௜∈஼	

௜஼ݎ
ଶ  

                              (8) 
 

After the merge step, the decrease in squared distances ∆ between the communities 
is found by: 

 

∆ఙሺܥଵ െ ଶሻܥ ൌ 	
1
݊

|ଶܥ||ଵܥ|
|ଵܥ| ൅ |ଶܥ|

஼భ஼మݎ
ଶ  

                   (9) 
 

And the distance, ∆ߪሺܥଷ,   between a community C3 (resulting from the merge of	ሻ,ܥ
C1 and C2), and any other community C is: 

 
 

,ଷܥሺߪ∆ 	ሻୀܥ
ሺ|ܥଵ| ൅ ,ଵܥሺߪ∆ሻ|ܥ| ሻܥ ൅ ሺ|ܥଶ| ൅ ,ଶܥሺߪ∆ሻ|ܥ| ሻܥ െ ,ଵܥሺߪ∆|ܥ| ଶሻܥ

|ଵܥ| ൅ |ଶܥ| ൅	 |	ܥ|
 

(10) 
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Modularity Q is maximized when the fraction of edges eC inside the community C is 
compared to the fraction of edges bound to community C, aC in partition R: 

 

ܳሺRሻ ൌ 	෍ ݁஼ െ ܽ஼
ଶ	

	

஼∈	

 

(11) 
 

Further background and details of the Walktrap implementation are provided in the 

original work 7.   
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Chapter 3: Assessing Network Characteristics of Cancer 
Associated Genes in Metabolic and Signaling Networks 
 

 

 

 

3.1: Introduction 

 

Cancer and other complex diseases have intricate roots in the molecular pathways of 

the cell.  There is growing interest in the application of graph theoretic methods integrating 

metabolic, regulatory and signaling interactions to study cancer in the context of complex and 

conditional biological phenomena associated with the disease. Many recent pathway or 

network-based approaches merge network interaction information with high-throughput 

experimental methods to search for putative genes of clinical interest.  In the context of 

cancer, these methods are applied to discover novel cancer genes that contribute to the 

complex phenomena of cancer onset or progression, or play a key role in cancer pathways. 

A body of work leveraging biological network information finds enrichment of 

differentially expressed genes in gene sets representing canonical pathways, protein 

complexes, functional GO categories or network modules75,77,172,173.  Network degree 

measures have been used to identify important hub genes and their interacting partners in 

cancer 174,175 and as features in a support vector machine classifier to detect cancer genes176.  

Graph algorithms have also been applied to discover dense modules of cancer genes in 

protein-protein interaction (PPI) networks weighted by expression data150,151,155.  Other 

approaches map query genes onto a disease network of closely related known disease genes 

to prioritize novel candidate genes for further research112,116; or use prior knowledge of genes 

associated with cancer (from the literature review, curated sources, or experimental data) to 

define seed nodes to search for interacting disease genes in PPI networks123,124,177                       

These approaches build on a common hypothesis that disease genes share observable 

patterns in biological networks.  Namely, that genes that are critical in cancer etiology also 

play central role in the network topology and tend to cluster with other cancer genes.  

Therefore, the extent to which these genes act as network hubs and the likelihood that they 

form communities with other cancer genes have implications in the design of experiments 

that search for novel cancer genes and their interactions in biological networks.   
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Previous studies have shown correlation between cancer genes and the topological 

features of biological networks.  Jonsson and colleagues94 conclude that cancer genes are 

more well-connected and more likely to lie at community interfaces than non-cancer genes in 

an orthologous PPI network.  Further, using lung cancer expression data mapped to a PPI 

network, Wachi et al.100 show that cancer genes have a higher degree connectivity compared 

to normal genes.  Sun and Cai96,97 draw similar conclusions but note an inverse relationship 

between cancer genes and network clustering coefficients.  These studies support the theory 

that essential genes and cancer genes are more likely to act as highly connected hubs in 

biological networks; though, in general, genes related to other complex disease do not tend to 

exhibit high centrality97,101.   

This study investigates the relationship between network features and cancer genes in 

signaling and metabolic interaction networks and quantifies the predictive value of these 

features using a generalized linear model5. Metabolic networks are distinguished from 

signaling networks in feature selection to investigate relative differences in cancer gene 

topology.  I assess the modularity of cancer communities in each network to identify cancer 

gene-enriched modules.  Previous methods using curated cancer gene information focus on 

nearest neighbor and seed approaches to rank nearby interactions as potential disease genes.  

Further, I apply a community detection algorithm based on a random walk to find cohesive 

communities of cancer-related genes in cancer-enriched modules. This algorithm improves 

upon previous network-naïve clustering approaches, as it considers the network structure 

when calculating distances between nodes and community-finding; and, in contrast to 

approaches based on pathway enrichment, the modules focus on activity of specific 

interactions within pathways and span multiple pathways.    

 

 

 

3.2: Methods 

 

3.2.1:Overview 
 

I develop a KEGG parser to extract data from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG)6 to generate signaling and metabolic networks. To analyze network 

statistics, I calculate and compare means and employ a generalized linear model to assess 
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predictive network characteristics.  I then implement a random walk algorithm to search the 

network for dense communities of cancer genes and evaluate results using functional 

annotation and evidence from the literature. 

 

 

3.2.2: Network Construction 
 

KEGG interaction data was extracted from KGML files using a custom parser 

(Appendix A).  This interface facilitated the retrieval of pairwise interaction data and 

metadata from XML formatted files to create a comprehensive list of interactions 

corresponding to metabolic and signaling pathways.  KEGG enzyme IDs are resolved as lists 

of KEGG gene IDs and each gene is translated to HUGO gene symbols.  Metabolic 

interactions were defined as a relation between two neighboring enzymes that share a 

common metabolite; signaling interactions were defined as two genes that participate in a 

signaling cascade, where both genes share a reaction event. 

Pairwise interactions were used to construct global metabolic and signaling networks.  

To build these networks, I processed 141 signaling pathways and 83 metabolic pathways, 

representing 95% of KEGG pathways.  The resulting directed metabolic and signaling 

networks consist of 1302 vertices and 15923 interactions (Figure 4), and 2989 vertices and 

16772 interactions (Figure 5), respectively.  Networks were created and analyzed using the 

igraph package in R53,170. 
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Figure 4: The Global Metabolic Network: Figure 4 shows the metabolic network derived from KEGG consisting of 1302 vertices and 15923 edges (interactions).  Red 
nodes designate genes implicated in cancer risk or etiology.  The network shows that the majority of KEGG genes are connected in a large component. Cancer genes 
appear more widely dispersed in the metabolic network relative to the signaling network  
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Figure 5: The Global Signaling Network.  Figure 5 shows the signaling network derived from KEGG consisting of 2989 vertices and 16772 edges (interactions). Red 
nodes designate genes implicated in cancer risk or etiology.  The majority of KEGG genes are connected in a large component. Cancer genes appear more cohesive in 
the signaling network relative to the metabolic network.   
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3.2.3:Definition of Cancer Genes 
 

The sample set of genes in the feature analysis include 4291 genes from the metabolic 

network and signaling networks (Supplemental Files).  To find a reliable subset of cancer 

associated genes, I investigated these genes in OMIM38 for evidence that the gene might be 

involved in promoting or inhibiting cancer progression.  All genes in the study were queried 

to determine if the gene is related to cancer (ie. “cancer”, “carci-“, “onco-”, “leukemia”, 

“tumor).  Each matching record was reviewed to confirm that the gene was in fact a tumor 

suppressor, oncogene, or otherwise shown to be significantly associated with cancer status 

(ie. by differential expression, functional pathway analysis or SNP studies).  Of the genes in 

the metabolic network, 164 were found to be associated with cancer; while 634 were 

associated with cancer in the signaling network.  Approximately 5% of genes did not have 

corresponding record in OMIM.  In such cases, the gene was labeled as non-cancer because 

of lack of data and was included with non-cancer gene class in subsequent analyses.   

 
 

3.2.4: Network Features 
 

Network features representing centrality measurements and the clustering coefficient 

were evaluated for their predictive ability.  These features were selected to compare the 

network characteristics of cancer genes and non-cancer genes and to assess the relative 

importance of cancer genes in the toplogy of metabolic and signaling networks.  Centrality 

features measuring degree, betweenness, and closeness, as well metric for node-level 

clustering coefficients are included in the analysis (described in Section 2.3).   

 

 

3.2.5: Statistical Analysis 
 

Network characteristics were examined using thresholds  of the top 15% and 20% of 

genes in each category.  Cutoff values were chosen based on the performance of estimates of 

T, ranging from 5-30, in a test sample of six pathways.  Genes were coded as 1 if they were 

greater than or equal to the threshold  and 0 otherwise; and these variables were used to fit 

the subsequent predictive model.  To determine if there was a significant difference in means 

between cancer and non-cancer genes, I compared the mean of each feature using the 
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Wilcoxon rank sum test and applied logistic regression to assess the predictive value of these 

features.  

  Logistic regression is a type of generalized linear model suited to testing a discrete 

outcome and allows for the inclusion of multiple covariates, or interactions, in the model.  It 

is described by: 

log(
ఏ	

ଵିఏ	
)j =  +  j xj + Wg. 

               (12) 

 

Here, for the jth predictor, the log odds represent the probability of case status, where 

 is the average effect on cancer status given a positive predictor xj.   is baseline risk, xj is 

the exposure of interest,  is the coefficient, and W is the vector of covariates. The null 

hypothesis H0 = 0, or no association between the feature and cancer status is modeled by,  

 

H0: i = 2 =…= m = 0. 

                (13) 

The significance of the fit of the logistic regression model with Wald statistics, p-

values and odds ratios are reported.  The Z-score associated with the Wald estimate is based 

on a -squared distribution. The odds ratios describe the log odds of the status of the 

dependent variable y based on a unit change in x.  Here x is a binary variable, 1 if x >= the 

threshold of the network feature, 0 otherwise.  The ratio is calculated by dividing the odds of 

y=1 status given a positive predictor, by the odds of y=1 given a negative predictor.   

Examples of code used to query network statistics and calculate logistic regression values are 

presented in Appendix A. 

  

 

3.2.6: Community Analysis 
 

Random walks have been shown to be valuable when applied to study genomic data 

in biological networks112,167.  The random walk algorithm implemented here was chosen 

because it incorporates the topology of the network to calculate distance metrics, and 

optimizes the community search component using the graph theoretic concept of modularity.  

Details of the random walk are described in section 2.5. 
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3.3: Results and Discussion 

 

3.3.1: Global Network Statistics 
 

Summary statistics were calculated for metabolic and signaling networks.  The 

signaling network consists of 2989 vertices and 16772 interactions, with a diameter of 21 and 

a global clustering coefficient of 0.0943, compared to a clustering coefficient of 0.0037 in a 

randomly generated network with the same number of nodes and edges.  The metabolic 

network consists of 1302 vertices and 15923 interactions with a diameter of 23; the clustering 

coefficient is 0.3910 compared to 0.0184 in a random network.  Higher clustering coefficients 

in the biological networks reveal regions of dense, interconnected nodes.  Modularity in the 

signaling network is 0.6431 and 0.6789 in the metabolic network versus 0.0028 and 0.0048 in 

corresponding random networks, suggesting that the topology of these biological networks 

exhibit high underlying modularity.  All Wilcoxon p-values comparing centrality and 

clustering coefficient means between cancer and non-cancer genes in the signaling network 

were significant (betweenness p=1.404e-06, close p=2.2e-16, degree p=1.019 e-10, in-degree 

p=0.001124, out-degree p=1.093 e-10, CC p=3.489 e-06). In the metabolic network, 

differences among in-degree and out-degree means between cancer genes and non-cancer 

genes were significant (in-degree p=0.02301, out-degree p=0.01393).  

 

 

3.3.2: Feature Prediction 
 

Logistic regression is used to assess the predictive power of centrality features and 

clustering coefficient in the signaling and metabolic networks.  Signaling networks exhibit 

highly significant centrality measures using thresholds  = 20 and  = 15.  Closeness 

centrality was the most significant predictor, with highly significant p-values and significant 

odds ratios at the following thresholds:  = 20 (p= 6.04e-14, OR= 2.77, SE= 1.15), and,  = 15 

(p= 1.83e-10, 6.04e-14, OR= 2.66, SE= 1.17).  P-values for all centrality features remained 

significant after Bonferroni correction, and were associated with odds ratios above 1 as 

summarized in Table 1.  Notably, along with closeness, betweenness and overall degree were 

the strongest predictors of cancer gene status.  The clustering coefficient was significant after 

correction for  = 15 (p=.0025, OR= .51, SE= 1.25), but not  = 20, and the estimates 

showed a negative association with cancer status.  A negative association with clustering 
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coefficient is consistent with prior observations that while cancer genes tend to act as network 

hubs, their immediate neighboring nodes do not tend to be highly-connected96,97. 

Analysis of metabolic networks resulted in significant p-values after multiple testing 

correction for the following features and thresholds: out-degree  = 20 (p= 0.0001, OR= 

2.01, SE= 1.20), in-degree  = 15 (p= 0.001, OR= 1.95, SE= 1.22), and closeness at threshold 

 = 20,  (p= 0.0016, OR= 1.81, SE= 1.21), and  = 15  (p= 0.0002, OR= 2.10, SE= 1.22).  

However, odds ratios for these tests were offset by variability of the standard error and were 

non-significant for all features in the metabolic network.   As with estimates in the signaling 

network, the clustering coefficient  = 20 is negatively correlated with cancer, though in the 

metabolic network, these results are non-significant. 

 

Table 1 Logistic Regression Estimates for Network Features 

 

 

Further, I examined interactions between multiple centrality predictors and their joint 

effects.  None of the tests of interactions using additive or multiplicative models improved 

the significance of univariate estimates.   There is no evidence for interaction of network 

features to predict cancer genes. These results do not agree with those of other studies 

suggesting that a combination of two centrality features show significantly stronger 

association with cancer status than one feature97,178.  Such interactions may not be apparent in 

this study due to collinearity of the statistics.  
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3.3.3: Community Analysis 
 

The largest community in the metabolic network has 204 nodes; in the signaling 

network the largest community has 763 nodes.  There are 27 singletons and 20 pairs in the 

metabolic network and 26 singletons and 55 pairs in the signaling network.  The random walk 

algorithm yielded 74 total clusters with 3 or more nodes in the metabolic network and 169 

clusters in the signaling network.  Average community size for a non-cancer gene in the 

metabolic network is 71, compared to 84 for cancer genes.  In the signaling network, average 

community size for a non-cancer gene is 241, and 314 for a cancer gene.  Distributions of 

cluster sizes are shown in Figures 6 and 7.    

 
Figure 6:  Distriibution of Community Sizes in the Metabolic Network.  Community sizes for clusters with 
3-204 nodes are shown.  Most communities have fewer than 50 members and only a few communities have 
greater than 100 members.  The largest cluster has 204 nodes.   
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Figure 7: Distribution of Community Sizes in the Signaling Network.  Community sizes for clusters with 3-
763 nodes are shown.  Most communities have fewer than 50 members and only a few communities have 
greater than 100 members.  The largest cluster has 763 nodes.   

 

 

 Seven communities in the metabolic network were significantly enriched with cancer 

genes at =.05.  I exploredd the top five results.  The most significant community is an 

exostosin gene family (p=1.10e-3) consisting of five genes involved in glycosyltransferase 

activities and synthesis of heparan sulfate and heparin.  This family plays a tumor-suppressor 

role and regulates cartilage and bone differentiation, ossification and apoptosis.  The group is 

also involved in metabolism and differentiation signaling cascades.  Among other top 

communities is a group of nine genes including DNMT, AHCY and MAT  families, involved 
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in cysteine, adenosine, tyrosine and methionine metabolism functions, which help to stabilize 

cell replication (p=.1.13e-02).  A large family of 204 detoxifying genes, including CYP, GST, 

HSD and UTG genes, was significant at p=0.0045.  These gene families play a key role in 

detoxification of carcinogens, and related mutations may predispose cells to cancer 

phenotypes.  A group of nine genes, including tumor suppressors fumarate hydratase (FH) 

and succinate dehydrogenases (SDHB, SDHC, SDHD) involved in the citric acid cycle ,was 

also significant (p=0.01835).  Finally, a group of thirty-six phosphate metabolism genes 

connected to PIK3 and PTEN signaling cascades that control the cell cycle and differentiation 

(p=0.01844) (Figure 8) was identified.  Most genes in this module are associated with cancer; 

however, potential genes that merit further investigation based on neighboring interactions 

are SOX17, TYRP7 and TCF7L.   

In general, top communities in the metabolic network largely regulate methylation, 

amino acid synthesis and metabolism, or are connected to differentiation, proliferation and 

growth signaling cascades.  Cancer communities in metabolic pathways tend to be less 

cohesive than in signaling pathways as suggested by fewer, less significant communities.  

This may be attibuted to the dense background clustering coefficient in the metabolic 

community which makes identifying significant cohesion more challenging.   
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Of the top five modules, the most significant was a group of 763 genes (p=1.80e-12).  

Approximately one in three genes in this community is associated with cancer.  To 

investigate this large cluster of genes with greater resolution, I executed another iteration of 

the random walk using a threshold size of 200 for each community.  This analysis identified a 

number of modules representeing interconnected signaling pathways, including ErbB, mTOR, 

JAK-STAT, VEGF and T-cell and B-cell signaling.  The majority of cancer genes in these 

communities are also classified as oncogenes.   

In summary of the analysis of metabolic networks, I found significant metabolic 

communities related to amino acid synthesis and metabolism, methylation regulation and 

signaling pathway interactions.  The signaling modules represent a number of common 

pathways, consisting of Wnt-signaling, JAK-STAT, cell-cycle, p-53 signaling communities 

and a very large community highly populated with  genes involved  in oncogenic signaling 

pathways such as ErbB, mTOR, and VEGF.   

  

3.4: Conclusion 

 

These results demonstrate that topological features in global metabolic and signaling 

networks exhibit predictive value in identifying known cancer genes, particularly in signaling 

networks.   Wilcoxon rank sum comparisons between the mean values of network centrality 

and clustering coefficient are highly significant in signaling networks and moderately 

significant for measures of in-degree and out-degree in metabolic networks.  Logistic 

regression estimates further quantify the predictive ability of centrality and clustering 

coefficient and show more predictive power in signaling networks compared to metabolic 

networks.  Clustering coefficient is also significant in signaling networks, but shows an 

inverse correlation with cancer status, suggesting, in agreement with previous work, that 

although cancer nodes are highly connected, their neighbors are typically not well-connected 
96,97.   

Cancer genes in signaling communities tend to be more cohesive than those in 

metabolic communities and represent cell cycle, adhesion Wnt-signaling and TGF-signaling 

pathways among other cancer-related processes.  When investigating the metabolic network, 

communities of cancer genes are frequently associated with methylation activity, amino acid 

synthesis and metabolism, and are characterized by interactions with signaling pathways.  

Many significant communities in both networks include interactions between signaling and 
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metabolic pathways.  Thus, whereas treating metabolic and signaling pathways as distinct 

networks may increase power and accuracy; dense cancer modules often include genes that 

participate in both metabolic and signaling pathways. 

Study bias or the large proportion of cancer genes in signaling pathways may 

influence the statistical evaluation of cancer genes in this study.  However, the consistency 

and strong statistical results across topological measures and functional validation support an 

underlying association between the network centrality features and cancer.   

These results have implications for future work mining for cancer genes using 

network proximity and degree, prioritizing gene targets and searching for disease-related 

metabolic and regulatory pathways.  Network features can be of predictive value in 

identifying novel cancer genes, and examination of modules enriched with cancer genes can 

help elucidate complex interactions influencing cancer onset and progression.  This 

evaluation integrates known cancer data with pathway interaction data and shows that key 

cancer genes group with other cancer genes in modular communities via complex intra- and 

inter-pathway interactions.  In comparison to single gene and pathway analysis, a modular 

approach also allows for the discovery of new gene targets based on their relationships with 

more prominent cancer genes, and identification of complex genetic interactions across 

pathway definitions.  Within such subnetworks, one can investigate the intersection of 

pathway activity and identify novel cancer genes by their interactions with known cancer 

genes. In Chapter 4, I expand the biological network to integrate protein-protein interaction 

and experimental data to search for modules associated with cancer phenotypes. 
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Chapter 4: Using Random Walks to Identify Cancer-Associated 
Modules in Expression Data 

 
 
 
 

4.1: Introduction  

 

Cancer biology involves an intricate series of genetic and environmental interactions 

that act in concert to influence the onset and progression of disease. The complex nature of 

this information motivates the search for analytical tools that can model these interactions to 

examine associations between gene interactions and cancer.  Graph analyses facilitate these 

genotype-phenotype investigations by integrating evidence of biological interactions from 

high throughput experiments, the literature, and a growing number of online databases.  Such 

networks provide a useful framework to study genes in the context of protein complexes, 

molecular processes, or biological modules.  

Network and pathway-based approaches have been developed to search for 

enrichment of groups of genes, rather than individual genes, associated with clinical 

outcomes.  Gene Set Enrichment Analysis (GSEA) 79 is a computational method that 

considers a priori defined gene sets to investigate expression data for significantly enriched 

sets of genes or pathways.  GSEA focuses on the significance of groups of interacting genes 

rather than single-gene analyses; and variations of gene set analysis have been developed to 

improve statistical validity75-78 and to use more granular methods to study pathway activity 
66,85,86,154.  However, these approaches are limited in their ability to search for enriched genes 

that form a small component of large pathways, or genes than span multiple pathways. 

Network analyses show promise in expanding the search for disease genes by 

investigating genes in the context of integrated curated and experimental interactions.  

Several studies have evaluated the topology of disease genes in these networks and found that 

disease genes tend to cluster with other disease genes101, and that cancer genes are 

characterized by high centrality and cohesiveness in interaction networks 94,179.  Building on 

the hypothesis that nearby genes in an interaction network share a common biological 

function, other network studies seed disease genes in functional networks combining 

evidence of known disease genes from the literature, with eQTL or GWAS data to search for 

putative neighboring genes107,112,176.  Similar applications integrate experimental data in the 
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interaction network, for example, significant genes from siRNA or proteomic experiments, to 

discover candidate genes given their proximity to query genes 123,124,177.    

In Chapter 3 I establish a basis for using network centrality features and module-

finding to identify cancer genes.  Related studies apply graph-based approaches to construct 

cancer-associated modules using clinical data.  Dittrich and colleagues155 implement a Steiner 

Tree to find parsimonious subnetworks of cancer-related genes in microarray studies.  The 

algorithm finds an optimally connected subgraph spanning an interactome weighted by 

expression data.  Ideker et al. and Chuang et al.149,150 apply a simulated annealing algorithm 

to find significant subgraphs associated with cancer in a protein interaction network.  They 

initiate subgraph generation with seed genes and add nearby proteins to the subgraph until a 

maximum score is reached reflecting significant activity of the module in the expression data.  

Ulitsky and Shamir151 use a seed clustering algorithm to discover significant modules in yeast 

and human cell cycle data. They use multiple heuristics to generate seeds in the network and 

similarity between genes to build clusters.  These studies conclude that searching for modules 

in graphs can successfully identify functionally relevant modules in expression data.  

Random walks have demonstrated strong performance in genomic studies, and when 

evaluated against other graph clustering algorithms used to partition complex networks 153,168.  

Distances determined by the random walk are drawn upon to prioritize genes, or to cluster 

genes into modules.  Kholer et al.112 apply a random walk algorithm in a functional 

interaction network using known disease genes, interaction information and eQTL data. They 

identify novel disease genes determined by their proximity to known putative genes.   Tu et 

al.167 employ a heuristic random walk in an integrated network to find regulatory modules in 

gene expression data, identifying the most likely path from quantitative trait loci to a 

candidate gene.  Komurov et al.168,169 implement a random walk to search for cancer-related 

genes and their interactions in an integrated network.  Their methods account for differential 

expression across experimental conditions and local network connectivity to prioritize 

candidate genes and hierarchically cluster genes into cancer-related subnetworks.   

The performance of random walks in large, complex networks vary based on their 

distance metrics and greedy-search heuristics; and few random walk algorithms are tailored 

to community-finding.  I implement a random-walk and community search algorithm, 

Walktrap7, which is optimized for large networks and integrates a community search driven 

by distance metrics that are determined by transition probabilities.  This algorithm has shown 

high efficiency and accuracy in revealing community structure in large networks180.  

Walktrap is applied in an expression-weighted interaction network consisting of metabolic, 
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signaling and protein interactions to discover, score and evaluate modules that are 

significantly associated with cancer outcomes.  I employ stopping criteria in the clustering 

process using modularity, module size or maximum module score, to improve the search for 

informative modules.  This approach demonstrates strong performance when compared with 

similar tools developed to discover subnetworks of disease genes in interaction networks and 

to identify functionally relevant cancer-associated modules that highlight candidate cancer 

genes and their interactions.   

 
 
 

4.2: Methods 

 

4.2.1:Overview 
 

 I employed a graph-based random walk algorithm in an integrated interaction 

network to mine expression data for modules of genes associated with cancer outcomes.  

First, metabolic, signaling and protein interactions from the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) 35 and the Human Protein Reaction Database (HPRD) 31 are used to 

construct a network of biological interactions.  I then calculate edge weights based on 

expression data from three public datasets with multiple cancer outcomes: breast cancer, 

hepatocellular carcinoma and colorectal adenoma.  The Walktrap random walk algorithm is 

applied in this network to discover modules of closely interconnected genes and build 

communities using distances derived from random walk process.  Finally, each community is 

evaluated for significance by its module score.  These methods are summarized in Figure 10. 
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Figure 10: Flow Diagram of Network-Based Expression Analysis.  Three cancer datasets from GEO and 
interactions from HPRD and KEGG are integrated in a weighted interaction network.  The Walktrap 
random walk builds modules based on transition probabilities generated from the random walk process.  
The modules are assessed for their significance compared to a random distribution of expression values per 
module. 

 
 

4.2.2: Gene Expression Data 
 

Three cancer datasets were downloaded from the Gene Expression Omnibus (GEO)181 

covering onset of breast cancer (BC) prognosis, hepatocellular carcinoma (HCC), and 

adenoma development in colorectal cancer (CCA).  GSE14520 is a hepatocellular cancer 

study from Roessler et al.8, consisting of 22 paired tumor and non-tumor expression profiles 

using the Affymetrix HG-U133A 2.0 array.   Desmedt et al.9 published an expression dataset 

consisting of 198 samples to independently validate a 76-gene prognostic breast cancer 

signature as part of the TRANSBIG project (GSE7390).  A total of 198 profiles from lymph 

node-negative patients (N-) were analyzed on the Affymetrix HG-U133A array, and each 

profile was associated with the Adjuvant!Online clinical risk index,  identifying patients at 
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high risk for distant metastasis (good = 47, poor = 151).  Sebates-Bellver10 obtained tissue 

from sporadic colonic adenomas and normal mucosa of 32 colonoscopy patients and analyzed 

expression profiles using Affymetrix HG-U133A 2.0 arrays (GSE8671).  Normal tissue was 

compared to colonic adenoma cancer precursor tissues.  These data are summarized in Table 

2.  Normalized, log-transformed fold change values and p-values are calculated for each data 

set.  P-values were corrected for multiple testing using the Benjamini and Hochberg false 

discovery rate182 .  All analyses were performed in R using Bioconductor 53. 

 

 

Table 2: Description of Cancer Expression Data 

GEO 
Accession 

Reference Clinical Outcome Cases Controls 

GSE14520 
Roessler 2010 

Hepatocellular 
carcinoma tumors 
(HCC)

22 hepatocellular 
tumors

22 paired non-
tumor 

GSE7390 
Desmedt 2007 

Risk of early distant 
breast cancer 
metastasis  (BC) 

198 breast tumors 
from lymph-node 
negative  patients 

Prognosis 
scores for each 
sample 

GSE8671 
Sebates-Bellver 
2007 

Colorectal cancer 
adenomas (CCA) 

32 paired sporadic 
adenoma 

32 paired 
normal  

 

 
 

4.2.3: Network Construction 
 

The interactome for this study was built by extracting human interactions from KEGG 

and HPRD.  KEGG relations were parsed from KGML files, representing 32,563 unique 

interactions.  Metabolic reactions were defined as a relation between two neighboring 

enzymes that share a common metabolite; signaling reactions were defined as two genes that 

participate in a signaling cascade where both genes share a reaction event.  A total of 39,240 

protein-protein interactions were downloaded from HPRD.  Duplicate nodes and edges were 

removed and the provenance of each interaction was saved as an edge attribute.  The resulting 

global interaction network consisted of 10,882 nodes and 70,385 interactions.  The largest 

connected cluster of unique pairwise interactions consisting of 10,642 nodes and 62,407 

interactions was extracted for further analysis.  
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4.2.4: Weights and Significance Scoring  
 

To determine edge weights in the interactome I used an average of the absolute fold 

change values of the two adjacent nodes.  Compared to the use of p-values, I found fold 

change measures to be more robust weight factors as they had a more discrete range of values 

and a stable dispersion.  This average weighting scheme was considered best suited to the 

random walk as it allows for more descriptive probabilities than weighting schemes using, for 

example, maximum or minimum values.  Further, this scheme improves community 

cohesiveness in settings where indirect interactions may be correlated, but an intermediate 

interaction is not.   

The magnitude of expression signal for each module was compared to a random 

distribution. Module weight was calculated by taking an average of the node weights; each 

node corresponds to a squared transformation of the maximum fold change for probes 

corresponding to each gene symbol.  Higher-confidence modules with greater than three 

nodes are tested for significance.  A module score is then calculated by comparing the 

significance of the module weight to a distribution of 5000 random samples of expression 

values for each module size.  Code for scoring and significance testing of modules is 

described in Appendix A. 

 
 

4.2.5: Definition of Cancer Genes 
 

A gold standard reference list to label cancer genes is derived from evidence in 

OMIM.  To evaluate the ability of these methods to identify cancer-related genes and 

interactions in significant modules, a list of cancer-related genes was created from OMIM, 

using text string matching and manual curation (Supplementary Files).  I queried 6995 gene 

references including all genes in the clusters assessed, for cancer-related terms.  Each 

matching record was reviewed to confirm that the gene was a tumor suppressor, oncogene, or 

otherwise shown to be significantly associated with cancer (i.e. by differential expression 

data, functional pathway analysis, genomic mapping, or SNP studies).  The resulting list 

consisted of 1239 cancer-associated genes.  Approximately 5% of genes did not have 

corresponding records in OMIM.  In such cases, the gene was labeled as non-cancer because 

of lack of data and was included with non-cancer gene class in subsequent analyses 
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4.2.6: Community Analysis 
 

Random walks have been shown to be valuable when applied to study genomic data 

in biological networks112,167.  The random walk algorithm implemented here was chosen 

because it incorporates the topology of the network to calculate distance metrics, and 

optimizes the community search componenet by using the graph theoretic concept of 

modularity.  Details of the random walk are described in section 2.5. 

I implement stopping criteria to search for the optimal number of merge steps.  The 

merge process is complete when one of the following conditions is met:  1) maximum size, 2) 

maximum modularity or, 3) maximum module score (Section 2.5).  I tested a subset of larger 

maximum sizes between 250 and 500 which generally yielded in modules that were too 

general in terms of their functional annotation and therefore not as informative, and thus I 

chose a maximum size of 200 nodes as an upper bound to maintain interpretability.    

Community analysis code is presented in Appendix A. 

 

 

4.3: Results and Discussion 

 

4.3.1: Functional Annotation 
 

Functional annotation of significant modules is assessed using ConsensusPathDB55.   I 

queried genes in the top-scoring modules for over-representation analysis comparing against 

pathway gene sets (including: KEGG, WikiPathways 183, PID 34 and Reactome 30), and a 

minimum overlap of two genes with the input gene list and the consensus pathway.  Results 

were filtered using a default p-value of .01. Canonical cancer pathways and pathways 

associated with hallmarks of cancer are enriched in each cancer dataset (BC, HCC and CCA): 

cell-cycle control, DNA replication/repair, cellular adhesion/migration, apoptosis, 

angiogenesis, evasion of the immune response and immortality.  A summary of statistics and 

a sample of representative pathways for the top scoring modules are presented in Table 3. 

BC modules are highly enriched with cell cycle control, growth signaling, focal 

adhesion and angiogenesis control genes.  A number of BC modules are also annotated with 

progesterone, estrogen and steroid hormone signaling; and levels of these hormones are 
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known to correlate with BC risk.  In HCC, cytochrome P450, UBR, HSD detoxifying 

pathways and fatty acid metabolism are among the most enriched pathways.  Inflammation 

and deregulation of liver-related detoxifying pathways are frequent markers of carcinogenic 

toxicity, oxidative stress and tumorogenesis.  Chronic inflammation and the immune response 

are associated with adenoma formation in the colon; several related pathways are over-

represented in CCA, including: chemokine, cytokine, T-cell receptor, fatty acid metabolism, 

and intestinal immunity.  Wnt signaling is a key pathway in early stages of colorectal cancer 

and is enriched in CCA modules.  Amino acid synthesis and metabolism pathways, 

associated with stability of DNA replication and repair, are over-represented across all three 

cancer types, although most notably in HCC.  These pathways are also among the cancer-

related processes highlighted in significant modules in Chapter 3. 
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Table 3: Functional Overview of Top Scoring Modules 

Breast Cancer 

ID  Score  Size  Key Functional Annotation

134  40.20  16 
DNA REPLICATION, ATR SIGNALING, CELL CYCLE, SYNTHESIS OF DNA, UNWINDING OF 
DNA 

82  27.77  32 

VEGF AND VEGFR SIGNALING, FOCAL ADHESION, CYTOKINE RECEPTOR INTERACTIONS, 
MTOR SIGNALING, PI3K CASCADE, ERBB SIGNALING, IRS SIGNALING, ANGIOGENESIS, 
FGFR SIGNALING, GLYPICAN1 NETWORK, SYNDECAN SIGNALING, IGF1 PATHWAY, ARF6 
SIGNALING 

226  21.26  16  NUCLEAR ESTROGEN RECEPTOR ALPHA NETWORK, REGULATION OF ANDROGEN RECEPTOR  

224  19.08  27 

METABOLISM OF NUCLEOTIDES, DNA REPLICATION, APOPTOSIS PATHWAY, ARF6 
PATHWAY, CAM PATHWAY, TELOMERES EXTENSTION, PLC-G1 SIGNALING, GLUCAGON 
SIGNALING, C-MYC TRANSCRIPTION, GNRH SIGNALING, ERBB2 SIGNALING, EGFR 
SIGNALING IN CANCER

79  16.08  24 

JAK-STAT SIGNALING, INTERFERON SIGNALING, CYTOKINE SIGNALING, GROWTH 
HORMONE RECEPTOR SIGNALING, LEPTIN SIGNALING, INSULIN SIGNALING, PROLACTIN 
SIGNALING, SIGNALING BY INTERLEUKINS, SHP2 SIGNALING, ERBB2 IN SIGNAL 
TRANSDUCTION AND ONCOLOGY, EPO SIGNALING, CD40/CD40L SIGNALING, EGFR 
SIGNALING, KIT SIGNALING 

395  15.32  29 
G ALPHA SIGNALING, GPCR SIGNALING, METABOLISM OF NUCLEOTIDES, CAM PATHWAY, 
SIGNALING BY ERBB2, SIGNALING BY EGFR IN CANCER, GROWTH FACTOR SIGNALING 

182  14.59  12  FOXM1 TRANSCRIPTION, PROGESTERONE-MEDIATED OOCYTE MATURATION,  

96  13.74  13 

REELIN SIGNALING, GLYCOGEN METABOLISM, SIGNALING BY INTERLEUKINS, WNT 
SIGNALING, PHOSPHOINOSITIDE TARGETS, IFN-GAMMA PATHWAY, REGULATION OF 
MICROTUBULE CYTOSKELETON, TGF-BETA SIGNALING, KIT SIGNALING, SEMAPHORIN 
INTERACTIONS  

321  10.99  5  VITAMIN A AND CAROTENOID METABOLISM, CYTOCHROME P450

145  10.97  11 

CELL CYCLE, DNA DAMAGE RESPONSE, P53 SIGNALING, P38 MAPK SIGNALING, SONIC 
HEDGEHOG RECEPTOR, EFP CONTROLS CELL CYCLE AND BREAST TUMORS GROWTH, TGF 
BETA SIGNALING, INTEGRATED BREAST CANCER PATHWAY, MAPK SIGNALING, FOXM1 
TRANSCRIPTION, AMPK SIGNALING 

165  10.90  55 

NUCLEAR ESTROGEN RECEPTOR NETWORK, ATF-2 TRANSCRIPTION, RETINOIC ACID 
RECEPTORS-MEDIATED SIGNALING, SIGNALING MEDIATED BY P38-ALPHA AND P38-
BETA, FOXA1 TRANSCRIPTION 

122  9.28  16 

BCR SIGNALING, TCR SIGNALING, NATURAL KILLER CELL CYTOTOXICITY, FC EPSILON 
SIGNALING, PI3K SIGNALING, JNK SIGNALING, NF-KAPPA B SIGNALING, 
INTERLEUKIN SIGNALING, EPO SIGNALING, CDC42 REGULATION, EGF-EGFR 
SIGNALING, RAC1 REGULATION , REGULATION OF RHOA 

143  8.97  11 

SKP2 DEGRADATION OF P27/P21, FOXM1 TRANSCRIPTION, P73 TRANSCRIPTION, PRL 
SIGNALING, ATR SIGNALING, P53 PATHWAY, RB TUMOR SUPPRESSOR/CHECKPOINT, EFP 
CONTROLS CELL CYCLE/ BREAST TUMOR GROWTH, AKT SIGNALING, AHR PATHWAY, 
NOTCH SIGNALING, ERBB SIGNALING, PI3K CASCADE, AMPK SIGNALING, C-MYC 
TRANSCRIPTIONAL REPRESSION, SMAD2/3 SIGNALING  

205  8.71  15 

DNA DAMAGE RESPONSE, CELL CYCLE, INTEGRATED BREAST CANCER PATHWAY, WNT 
SIGNALING, AURORA A SIGNALING, LKB1 SIGNALING, C-MYC TRANSCRIPTION 
REGULATION, BARD1 SIGNALING, ATM PATHWAY, PLK3 SIGNALING, HEDGEHOG 
SIGNALING, ERBB SIGNALING, P53 PATHWAY, HTERT TRANSCRIPTIONAL REGULATION, 
VEGFR1/ VEGFR2 SIGNALING, AP-1 TRANSCRIPTION, E2F TRANSCRIPTION, BRCA1 
BRCA2 AND ATR IN CANCER, ARF INHIBITS BIOGENESIS, NUCLEAR ESTROGEN 
RECEPTOR ALPHA NETWORK, AMPK SIGNALING

89  8.54  7  REGULATION OF IGF ACTIVITY BY INSULIN-LIKE GROWTH FACTOR BINDING PROTEINS 

189  8.25  7 
C-MYB TRANSCRIPTION, TRANSCRIPTIONAL MISREGULATION IN CANCER, AP-1 
TRANSCRIPTION 

348  8.20  29 

REGULATION OF ACTIN CYTOSKELETON, SHC CASCADE, FGFR SIGNALING, MAPK 
SIGNALING, PHOSPHOLIPASE C CASCADE, PI3K CASCADE, IRS SIGNALING, INSULIN 
SIGNALING, SYNDECAN SIGNALING, ERBB SIGNALING, FOCAL ADHESION, 
ANGIOGENESIS 

173  8.18  6  METABOLISM OF NUCLEOTIDES, DRUG METABOLISM, E2F TRANSCRIPTION 

99  7.47  7 

P38 SIGNALING MEDIATED BY MAPKAP KINASES, CELL CYCLE, INSULIN-MEDIATED 
GLUCOSE TRANSPORT, PI3K SIGNALING  MEDIATED BY AKT, INTEGRIN SIGNALING, 
MTOR SIGNALING, BETA CATENIN SIGNALING, ERBB1 SIGNALING, PDGFR-BETA 
SIGNALING, SIGNALING BY HIPPO 

12  7.25  23 
MAPK SIGNALING, ATF-2 TRANSCRIPTION, REGULATION OF P38-ALPHA AND P38-BETA, 
TOLL LIKE RECEPTOR CASCADE, ERBB1 SIGNALING, NGF SIGNALING, RAS SIGNALING  

Hepatocellular carcinoma 

408  72.64  24 

DRUG METABOLISM - CYTOCHROME P450, METABOLISM OF AMINO ACIDS, FATTY ACID 
METABOLISM GLYCOLYSIS/GLUCONEOGENESIS, ETHANOL OXIDATION, ARACHIDONIC ACID 
METABOLISM, TAMOXIFEN METABOLISM, VITAMIN A/CAROTENOID METABOLISM, 
ESTROGEN METABOLISM, AHR PATHWAY  

10  34.22  49 

DRUG METABOLISM, STEROID HORMONE BIOSYNTHESIS, RETINOL METABOLISM, 
CYTOCHROME P450 METABOLISM, METABOLISM OF AMINO ACIDS, TAMOXIFEN 
METABOLISM, FATTY ACID OXIDATION, BENZO(A)PYRENE METABOLISM, AHR PATHWAY, 
AFLATOXIN B1 METABOLISM, IL-10 SIGNALING 
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513  22.92  4  ALTERNATIVE COMPLEMENT PATHWAY, COMPLEMENT AND COAGULATION CASCADES 

579  19.55  13 

METABOLISM OF STEROID HORMONES AND VITAMINS A AND D, METABOLISM OF LIPIDS 
AND LIPOPROTEINS, MINERALOCORTICOID BIOSYNTHESIS, GLUCOCORTICOID 
METABOLISM 

603  17.58  6  METABOLISM OF AMINO ACIDS 

31  14.24  14 

PPAR SIGNALING, FATTY ACID, TRIACYLGLYCEROL, AND KETONE BODY METABOLISM, 
ADIPOCYTOKINE SIGNALING, METABOLISM OF LIPIDS AND LIPOPROTEINS, AMPK 
SIGNALING 

97  13.93  5  ONE CARBON POOL BY FOLATE, METABOLISM OF AMINO ACIDS AND DERIVATIVES 
361  9.55  16  DNA REPLICATION, CELL CYCLE, UNWINDING OF DNA, SYNTHESIS OF DNA 
314  9.47  10  FATTY ACID METABOLISM, GLYCEROLIPID METABOLISM, METABOLISM OF AMINO ACIDS  

34  9.08  14 

TOLL-LIKE RECEPTOR SIGNALING, HTLV-I INFECTION, ACTIVATION OF AP-1 
TRANSCRIPTION FACTORS, MAPK SIGNALING, TWEAK SIGNALING, TGF BETA 
SIGNALING, INTERLEUKIN SIGNALING, RIG-I-LIKE RECEPTOR SIGNALING, HEPATITIS 
B VIRUS, IGF-1 SIGNALING, HEPATOCYTE GROWTH FACTOR RECEPTOR SIGNALING, 
JAK-STAT SIGNALING, FAS PATHWAY 

598  8.94  4  KEAP1-NRF2 PATHWAY, METABOLISM OF AMINO ACIDS AND DERIVATIVES 

360  8.73  7 
INSULIN SIGNALING, GLYCOGEN METABOLISM, GLUCOSE METABOLISM, CARBOHYDRATE 
METABOLISM 

112  8.65  5  MRNA SPLICING, MRNA PROCESSING 
515  8.46  10  ONE CARBON POOL BY FOLATE, FOLATE METABOLISM
257  8.23  5  UREA CYCLE AND METABOLISM OF AMINO GROUPS, METABOLISM OF AMINO ACIDS 

153  7.29  5 

GLUCOCORTICOID & MINERALCORTICOID METABOLISM, METABOLISM OF STEROID 
HORMONES & VITA/D, METABOLISM OF LIPIDS & LIPOPROTEINS, PROSTAGLANDIN 
SYNTHESIS/ REGULATION 

123  7.22  7  ONE CARBON FOLATE METABOLISM, METHYLATION, METABOLISM OF AMINO ACIDS  
254  7.03  6  METABOLISM OF NUCLEOTIDES, METABOLISM OF AMINO ACIDS AND DERIVATIVES 

429  7.02  9 

SIGNAL TRANSDUCTION BY L1, MTOR SIGNALING, RSK ACTIVATION, PROSTATE 
CANCER, L1CAM INTERACTIONS, CREB PHOSPHORYLATION THROUGH THE ACTIVATION OF 
RAS, MAPK SIGNALING

414  6.50  35 

MAPK SIGNALING, ATF-2 TRANSCRIPTION, CELL SIGNALING IN H. PYLORI 
INFECTION, ACTIVATION OF AP-1 TRANSCRIPTION FACTORS, FC EPSILON RI 
SIGNALING, NOD1/2 SIGNALING, GNRH SIGNALING, JNK SIGNALING, CD40/CD40L 
SIGNALING, C RIG-I-LIKE RECEPTOR SIGNALING, TGF BETA SIGNALING, VEGF 
SIGNALING, EGF-EGFR SIGNALING, FOSB GENE EXPRESSION  

Colorectal adenoma 

257  33.48  50 

CHEMOKINE SIGNALING, GPCR SIGNALING, NF-KAPPA B SIGNALING, CXCR3 
SIGNALING, TOLL-LIKE RECEPTOR SIGNALING, NOD-LIKE RECEPTOR SIGNALING, 
INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION, INTERLEUKIN SIGNALING, CELL 
SIGNALING IN H.PYLORI INFECTION 

182  21.57  25 
TIGHT JUNCTION INTERACTIONS, TRANSENDOTHELIAL MIGRATION, CELL-CELL 
COMMUNICATION, CAMS

158    18.94      9 
P75(NTR) SIGNALING, DEGRADATION OF THE ECM, ECM ORGANIZATION, SYNDECAN 
SIGNALING 

770  12.58  8 

ETHANOL OXIDATION, METABOLISM BY CYTOCHROME P450, TYROSINE METABOLISM, 
FATTY ACID METABOLISM, GLYCOLYSIS/GLUCONEOGENESIS, VITAMIN A/CAROTENOID 
METABOLISM 

14  11.51  5 
C-MYC TRANSCRIPTIONAL REPRESSION, SMAD2/3 SIGNALING, CELL CYCLE, PATHWAYS 
IN CANCER 

452  8.75  10  GLYCOSPHINGOLIPID BIOSYNTHESIS, GLYCOSAMINOGLYCAN BIOSYNTHESIS 

487  7.16  28 

MAPK SIGNALING, ATF-2 TRANSCRIPTION, ACTIVATION OF AP-1 TRANSCRIPTION 
FACTORS, NOD-LIKE RECEPTOR SIGNALING, FC EPSILON SIGNALING, GNRH 
SIGNALING, TOLL-LIKE RECEPTOR SIGNALING, INTERLEUKIN SIGNALING, TGF BETA 
SIGNALING, VEGF SIGNALING, EGF-EGFR SIGNALING, KIT SIGNALING, RANKL-RANK 
SIGNALING, COLORECTAL CANCER, S1P2 PATHWAY, NONCANONICAL WNT SIGNALING, 
ARF6 PATHWAY, ERBB SIGNALING, TBXA2R SIGNALING  

301  7.06  7 

TRANSCRIPTIONAL MISREGULATION IN CANCER, RB REGULATION, INTERLEUKIN 
SIGNALING, C-MYB TRANSCRIPTION, INTERFERON SIGNALING, FOXA2/FOXA3 
TRANSCRIPTIONS, SMAD2/3 SIGNALING 

758  6.91  5  METABOLISM OF AMINO ACIDS AND DERIVATIVES 

762  6.59  12 
WNT SIGNALING, SECRETIN FAMILY OF RECEPTORS, HTLV-I INFECTION, SIGNALING 
BY GPCR 

240  6.59  28 

G PROTEIN SIGNALING, CAM PATHWAY, PLC-GAMMA1 SIGNALING, NUCLEOTIDE 
METABOLISM, SIGNALING BY ERBB2, SIGNALING BY EGFR, SIGNALING BY FGFR, 
SIGNALING BY PDGF 

757  6.53  12 

METABOLISM OF STEROID HORMONES AND VITA/D, METABOLISM OF LIPIDS AND 
LIPOPROTEINS, GLUCOCORTICOID & MINERALCORTICOID METABOLISM, BILE ACID AND 
BILE SALT METABOLISM 

410  6.49  6 

JAK-STAT SIGNALING, CYTOKINE-CYTOKINE RECEPTOR INTERACTION, SHP2 
SIGNALING, INTERLEUKIN SIGNALING, ROLE OF ERBB2 IN SIGNAL TRANSDUCTION AND 
ONCOLOGY 

412  6.21  9 
DNA REPLICATION, CELL CYCLE, UNWINDING OF DNA, ATR SIGNALING, E2F 
TRANSCRIPTION 
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345  6.13  14 

NEUROTROPHIN SIGNALING, GNRH SIGNALING, CREB PHOSPHORYLATION, PKA 
ACTIVATION, CAM PATHWAY, INSULIN SIGNALING, PGC-1A REGULATION, RAS 
REGULATION, SMAD2/3 SIGNALING  

267  6.06  6  METABOLISM OF PROTEINS 

334  6.04  12 

BETA-CATENIN PHOSPHORYLATION CASCADE, SIGNALING BY WNT, GLYCOGEN 
METABOLISM, PLATELET HOMEOSTASIS, DNA REPLICATION, CELL CYCLE, DNA DAMAGE 
RESPONSE 

111  5.74  11 

ECM-RECEPTOR INTERACTION, FOCAL ADHESION, INTEGRIN INTERACTIONS, NCAM 
INTERACTIONS, SYNDECAN SIGNALING, PROTHROMBIN ACTIVATION, PDGF SIGNALING, 
VEGFR3 SIGNALING 

54  5.73  4  NONE 

125  5.67  20 

CHEMOKINE SIGNALING, G ALPHA SIGNALING, SIGNALING BY GPCR, ACTIVATION OF 
PKA, INTESTINAL IGA IMMUNE NETWORK, CELL SIGNALING IN HELICOBACTER PYLORI 
INFECTION 

183  5.41  6 

BETA-CATENIN PHOSPHORYLATION CASCADE, CTLA4 INHIBITORY SIGNALING, GLYCOGEN 
METABOLISM, WNT SIGNALING, DNA REPLICATION, CELL CYCLE, IMMUNE SYSTEM, DNA 
DAMAGE  

156  5.38  4  HEMATOPOIETIC CELL LINEAGE 

144  5.35  16 

CELL CYCLE, P38/MAPKAP SIGNALING, LKB1 SIGNALING, INSULIN-MEDIATED GLUCOSE 
TRANSPORT, PI3K/AKT SIGNALING, INTEGRIN SIGNALING, FOXO FAMILY SIGNALING, 
MTOR SIGNALING, ERBB1 SIGNALING, PDGFR-BETA SIGNALING, ATR SIGNALING, PLK1 
SIGNALING, RB TUMOR SUPPRESSOR/CHECKPOINT, RAP1 SIGNALING, INTEGRATED 
CANCER PATHWAY, ATM PATHWAY, SHC SIGNALING, ARMS-MEDIATED ACTIVATION, IGF1 
PATHWAY, IRS SIGNALING 
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4.3.2: Breast Cancer 
 

BC fold change measurements were filtered below an FDR-adjusted p-value of .01 

and data associated with the remaining 2074 probes was used to weigh the network.  The 

merge process reached a maximum size at step 2069, and the community search resulted in 

8116 singletons, 206 pairs, 77 triplets, and 174 modules (module size ሺ	3 ൐ size ൑ 	200	ሻ.  

The top-scoring modules are summarized in Table3 and presented in Appendix B and in high 

resolution as Supplementary Files.  I examined the top-scoring modules in more detail by 

manually reviewing functional annotation and reviewing visualizations of the modules.  

These modules were investigated to identify target genes, interactions with known cancer 

gnes, and interactions between pathways.   

Significant BC modules are annotated with relevant cancer-associated pathways 

(Table 3) and plausible cancer-related interactions.  Module 143 (Figure 11) is composed of 

cyclins regulating the cell cycle and a link to telomere formation (E2F5).  SKP2 is a known 

oncogene and interacts with cyclins to promote cell proliferation and evade apoptosis 184.  

SKP2 and cyclin CCNA2 both show significantly altered activity in the expression data.  Both 

genes interact with BRCA2 via CDK2.  Module 79 (Figure 12) shows interactions between 

inflammatory markers and JAK which are involved in JAK/STAT transcription activity, 

cellular proliferation and differentiation.  The JAK/STAT pathway is associated with B-cell 

growth and proliferation and genes in this pathway have been shown to be involved in cancer.  

SOCS1, SOCS2, SOCS3 and CBLC mediate growth and are involved in the cytokine 

response.  Differentially expressed genes include SOC2, SOC3, CBLC and IL20RA; and the 

coordinated interaction and altered expression of these genes suggest they play a concerted 

role in BC progression.  Module 82 (Figure 13) shows interaction between a number of 

growth factors and receptors, including VEGFA, FIGF, IGFIR, PDGFRA, EGFR and the 

oncogene MET and the tumor regulator ErbB4.  IRS2 affects proliferation and regeneration of 

cells, its expression is critical during development and growth, and the gene may influence 

cancer survival 185,186. Oncogene MET interacts with several growth factors, including FGF7 

which is involved in epithelial proliferation and may play a role in gastric cancer 186,187.  

VEGFA is a known metastatic vascular growth marker and a therapeutic target for breast 

cancer survival.  Both IRS2 and FGF7 represent interesting candidate disease genes given 

their key functions in cell proliferation and growth.   
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Table 4: Key Genes described in BC Modules 

Gene   Gene Description  Module  Function 

SKP2  S-phase kinase-associated 
protein 2 

143 Mediates the ubiquitination and subsequent proteasomal degradation of target proteins involved in cell cycle progression, 
signal transduction and transcription 

CCNA2  cyclin A2  143 Essential for the control of the cell cycle at the G1/S (start) and the G2/M (mitosis) transitions

BRCA2  breast cancer 2, early onset  143 Involved in double-strand break repair and/or homologous recombination.

CDK2  cyclin-dependent kinase 2  143  Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis. 

JAK1  Janus kinase 1  79 Tyrosine kinase, involved in the IFN-alpha/beta/gamma signal pathway.  Kinase partner for the interleukin (IL)-2 receptor

SOCS1,-
2,-3 

suppressor of cytokine 
signaling1,-2,-3 

79  SOCS family proteins form part of a classical negative feedback system that regulates cytokine signal transduction, 
involved in negative regulation of cytokines that signal through the JAK/STAT pathway. 

IL21R  interleukin 21 receptor  79  Transduces the growth promoting signal of IL21, and is important for the proliferation and differentiation of T cells, B 
cells, and natural killer (NK) cells. The ligand binding of this receptor leads to the activation of multiple downstream 
signaling molecules, including JAK1, JAK3, STAT1, and STAT3.  

CBLC  Cbl proto-oncogene  79 Regulator of EGFR mediated signal transduction

FIGF  c-fos induced growth factor 
(VEGF D) 

82 Growth factor active in angiogenesis, lymphangiogenesis and endothelial cell growth, stimulating their proliferation and 
migration and also has effects on the permeability of blood vessels. 

IFGIR  insulin-like growth factor 1 
receptor 

82  Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1).  The activated IGF1R is involved in 
cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cells. 

PDGFRA  platelet-derived growth factor 
receptor, alpha polypeptide 

82 Tyrosine-protein kinase that acts as a cell-surface receptor for PDGFA, PDGFB and PDGFC and plays an essential role in the 
regulation of embryonic development, cell proliferation, survival and chemotaxis. 

EGFR  epidermal growth factor receptor  82 Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades.   Binding of EFGR to a 
ligand induces receptor dimerization and tyrosine autophosphorylation leads to cell proliferation. 

MET  met proto-oncogene (hepatocyte 
growth factor receptor) 

82 Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte 
growth factor/HGF ligand. Regulates many physiological processes including proliferation, morphogenesis and survival. 

ErbB4  v-erb-a erythroblastic leukemia 
viral oncogene homolog 4 

82  Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins and EGF family members and 
regulates organ development, gene transcription, cell proliferation, differentiation, migration and apoptosis. 

IRS2  insulin receptor substrate 2  82  Mediates the control of various cellular processes by insulin 

FGF7  fibroblast growth factor  82  Plays an important role in the regulation of embryonic development, cell proliferation and differentiation. 

VEGFA  vascular endothelial growth 
factor A 

82 This gene encodes a member of the PDGF (platelet-derived growth factor)/VEGF (vascular endothelial growth factor) 
family.  Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell 
proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels.  Binds to 
FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. 

INSRR  insulin receptor-related receptor  82 Receptor with tyrosine-protein kinase activity.  Activates a signaling pathway that involves IRS1 and AKT1/PKB

INSR  insulin receptor  82  Binding of insulin to the insulin receptor (INSR) stimulates glucose uptake . Many tumors have altered expression of IGF1R 
and its ligands and this constitutes an early, possible initiating, event in tumorigenesis. 

PDGFRB  platelet-derived growth factor 
receptor, beta polypeptide 

82  Tyrosine-protein kinase that acts as cell-surface receptor for PDGFB, PDGFD and PDGFA.  Plays an essential role in the 
regulation of embryonic development, cell proliferation, survival, differentiation, chemotaxis and migration. 
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4.3.3: Hepatocellular Carcinoma  
 

HCC data included 16,360 probes after filtering by p-values.  The maximal score was 

reached at 2393 steps, resulting in 7666 singletons, 352 pairs, 128 triplets, and 198 modules.  

At this step size, the maximum module size was 54 (module size   ሺ	3 ൐ size ൑ 	54	ሻ.  Top 

scoring modules are summarize in Table 3, and presented in Appendix B and in high 

resolution as Supplementary Files.  I reviewed modules 361, 429 and 414 (Figures 14-16) in 

greater detail.  Module 361 consists of interactions between a family of cyclins, origin 

recognition complexes and minchromosome maintenance genes.  These genes exhibit high 

differential expression and function in regulation of the cell-cycle and cellular proliferation.  

The series of interactions in this module have implications in cancer.   Kinase activation of 

CDC7, a gene known to be highly expressed in cancer, is dependent on expression of DBF4 
188.  MCM5 forms a complex with MCM2 189, a candidate oncogene that is phosphorylated by 

CDC7.  ORC5L associates with both CDC7 and MCM5 in the network and this group of 

genes display altered expression in HCC tissue.  Module 429, includes upregulation of IGFI 

which is known to alter cancer risk 190, the oncogene NOV, and transcription factors 

RPS6KA2 and RPS6KA6.  These transcription factors are associated with the RSK family of 

genes, involved in activation of map kinase growth signaling, cell cycle control and 

differentiation and may be implicated in cancer development 191,192.  Given their importance 

in cell development and association with IGFI and NOV, these RSK transcription factors are 

compelling candidate genes.  Module 414 shows the interaction between MAPK signaling 

genes, the DUSP family and well known FOS and JUND oncogenes.  The DUSP genes are 

known to regulate MAPK signaling cascades, and a number of these MAPK genes are known 

to be involved in cancer.  RIPK2 is not well-described, but is believed to play an important 

role in apoptosis.  DUSP1, DUSP4, PTPRR and RIPK2 are also highly upregulated.  By their 

association with known cancer genes and high differential expression, these genes are 

promising targets for therapeutic research.   
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Table 5: Key Genes described in HCC Modules 

Gene  Gene Description  Module  Function 

CDC7  cell division cycle 7 homolog  361  Phosphorylates substrates that regulate the G1/S phase transition and DNA replication, including MCM2 and MCM3. 

DBF4  DBF4 homolog  361 Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA
replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4 selectively 
phosphorylates MCM2 and is then involved in regulating the initiation of DNA replication during cell cycle 

ORC5L  origin recognition complex, 
subunit 5 

361 The origin recognition complex (ORC) is a highly conserved protein complex essential for the initiation of the DNA 
replication in eukaryotic cells. Studies in yeast demonstrated that ORC binds specifically to origins of replication and 
serves as a platform for the assembly of additional initiation factors such as Cdc6 and Mcm proteins.  

CDC6  cell division cycle 6 homolog  361 Involved in the initiation of DNA replication and s in checkpoint controls that ensure complete DNA replication before 
mitosis. Reported to be regulated in response to mitogenic signals and transcriptional control involving E2F proteins. 

MCM2,-3,-
4,-5,-7 

minichromosome maintenance 
complex component 2,-3,-4,-5,-7 

361  The MCM2-7 complex (MCM complex) is the putative replicative helicase essential for 'once per cell cycle' DNA replication 
initiation and elongation in eukaryotic cells. Required for DNA replication and cell proliferation 

IGF1  insulin-like growth factor 1 
(somatomedin C) 

429  The insulin-like growth factors are structurally and functionally related to insulin but have a much higher growth-
promoting activity. 

IDE  insulin-degrading enzyme  429  Plays a role in the cellular breakdown of insulin, IAPP, glucagon, bradykinin, kallidin and other peptides, and thereby plays 
a role in intercellular peptide signaling. 

NOV  nephroblastoma overexpressed  429  Immediate-early protein likely to play a role in cell growth regulation 

IGFBP7  insulin-like growth factor binding 
7  

429 Binds IGF-I and IGF-II with low affinity. Stimulates prostacyclin (PGI2) production and cell adhesion.

RPS6KA2  ribosomal protein S6 kinase, 
90kDa, polypeptide 2 

429 Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates 
mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, 
survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. 

RPS6KA6  ribosomal protein S6 kinase, 
90kDa, polypeptide 6 

429  Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity. 
Participates in p53/TP53-dependent cell growth arrest signaling and plays an inhibitory role during embryogenesis 

DUSP1,-2,-
6,-9 

dual specificity phosphatase 1, -
2,-6,-9 

414  These phosphatases inactivate their target kinases by dephosphorylation.  They negatively regulate members of the MAP- 
kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which are associated with cellular proliferation and differentiation.  

MAPK9,-
10,-12,-14 

mitogen-activated protein 
kinase 9,-10,-12,-14 

414   MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular 
processes such as proliferation, differentiation, transcription regulation and development. 

PTPRR  protein tyrosine phosphatase, 
receptor type, R 

414  PTPs are signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic 
cycle, and oncogenic transformation. Silencing of this gene has been associated with colorectal cancer. Sequesters 
mitogen-activated protein kinases (MAPKs) such as MAPK1, MAPK3 and MAPK14 in the cytoplasm in an inactive form. 

FOSL1  FOS-like antigen, FBJ murine 
osteosarcoma viral oncogene B 

414 Fos proteins interact with Jun proteins enhancing their DNA binding activity.  FOS proteins have been implicated as 
regulators of cell proliferation, differentiation, and transformation. 

RIPK2  receptor-interacting serine-
threonine kinase 2 

414 Serine/threonine/tyrosine kinase that plays an essential role in modulation of innate and adaptive immune responses.  It 
is a potent activator of NF-kappaB and inducer of apoptosis in response to various stimuli. 

SH3BP5  SH3-domain binding protein 5  414 Plays a negative regulatory role in BTK-related signaling in B-cells. May be involved in BCR-induced apoptotic cell death.

JUNB  jun B proto-oncogene  414  Transcription factor involved in regulating gene activity following the primary growth factor response. 
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4.3.4: Colorectal Cancer 
 

CCA data included 21648 probes after filtering by p-values.  The maximal score was 

reached at 2967 steps.   The resulting community structure included 6879 singletons, 385 

pairs, 149 triplets, and 253 modules.  The maximum module size at this step was 160 

(module size   ሺ	3 ൐ size ൑ 	160	ሻ. The top scoring modules are summarized in Table 3 and 

are presented in Appendix B and in high resolution as Supplementary Files.  I reviewed 

functional annotation and visualized scoring modules 301, 144 and 762.  There are three 

known oncogenes in module 301 (Figure 17): SPI1, RUNX1 and IRF4. CEBPB and CEBPE 

interact with these oncogenes, affect cellular proliferation and alter tumor development and 

cancer risk193,194.  Transcription factors SPI1and RUNX1 participate in hematopoietic stem 

cell formation and can lead to the development of multiple cell lineages in cancer195,196.  

These genes show altered expression in the network, and specifically, the role of the highly 

differentially regulated transcription factor SPIB may play in colorectal cancer is an 

interesting area for further research. Module 144 (Figure 18) shows interaction between 

CDK1, a regulator of the cell cycle and proliferation, and genes associated with cancer: PBK, 

HMGA2 and FOXM1.  Putative candidates among neighboring genes include: BRSK1, WEE1 

and CDC25C, which are involved in cell-cycle checkpoints and are overexpressed in CCA.  

Specifically, WEE1 and CDC25C are both significantly differentially regulated and are 

known to play a mutually antagonistic role in cell-cylce control.  BRSK1 is not well 

described, but exhibits key interactions with genes involved in cell-cycle control.  Module 

762 (Figure 19) consists of interactions among SFRP1 and SFRP2 genes and FZD genes in 

the Wnt-frizzled pathway.  The Wnt pathway is involved in cell polarity and malignant cell 

transformation in colorectal cancer, and the SFRP1 and SFRP2197 genes are known to 

interfere with Wnt signaling.  Given the topology of SFRP1 and SFRP2 as hubs in this 

module and their altered expression, these genes appear to play a central role in the Wnt 

pathway and CCA development.   
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Table 6: Key Genes described in CCA Modules 

Gene  Gene Description  Module  Function 

SPI1  spleen focus forming virus (SFFV) 
proviral integration oncogene 

301  Binds to the PU-box, a purine-rich DNA sequence that can act as a lymphoid-specific enhancer. A transcriptional activator 
involved in the differentiation or activation of macrophages or B-cells. Binds RNA and modulates pre-mRNA splicing. 

SPIB  Spi-B transcription factor   301 Transcriptional activator which binds to the PU-box, a purine-rich DNA sequence that can act as a lymphoid-specific 
enhancer. Required for B-cell receptor (BCR) signaling, necessary for normal B-cell development and antigenic stimulation 

RUNX1  runt-related transcription factor 1  301 Core binding factor (CBF) is a transcription factor that binds to many enhancers and promoters and is involved in normal 
hematopoiesis development. Chromosomal translocations are well-documented and are associated with leukemia. 

IRF4  interferon regulatory factor 4  301  A member of the IRF (interferon regulatory factor) family of transcription factors, important in the regulation of 
interferons in response to infection by virus, and in the regulation of interferon-inducible genes. IRF4 negatively regulates 
Toll-like-receptor (TLR) signaling. A translocation involving this gene and the IgH may be a cause of multiple myeloma. 

CEBPB  CCAAT/enhancer binding protein 
(C/EBP), beta 

301  Transcriptional activator in the regulation of genes involved in immune and inflammatory responses. Binds to an IL-1 
response element in the IL-6 gene and plays a role in regulation of acute-phase reaction, inflammation and hemopoiesis. 

CDK1  cyclin-dependent kinase 1  144  A member of the Ser/Thr protein kinase family that acts as a catalytic subunit of the protein kinase complex known as M-
phase promoting factor (MPF), which is essential for G1/S and G2/M phase transitions of eukaryotic cell cycle.  

PBK  PDZ binding kinase  144 Phosphorylates MAP kinase p38 and may be active only in mitosis.  Can form a complex with TP53, leading to TP53 
destabilization and attenuation of G2/M checkpoint in response to DNA damage. 

HMGA2  high mobility group AT-hook 2  144 A transcriptional regulator that plays an key role in the meiotic G2/M transition and in cell cycle regulation via CCNA2.  

FOXM1  forkhead box M1  144  Transcriptional factor regulating the expression of cell cycle genes essential for DNA replication and mitosis.  

BRSK1  BR serine/threonine kinase 1  144  Serine/threonine-protein kinase that plays a key role in neuron polarization and centrosome duplication. Phosphorylates 
CDC25B, CDC25C, MAPT/TAU, RIMS1, TUBG1, TUBG2 and WEE1.  Involved in the DNA damage checkpoint, probably by 
inhibiting CDK1 activity through phosphorylation and activation of WEE1, and inhibition of CDC25B and CDC25C. 

WEE1  WEE1 homolog  144 A nuclear tyrosine kinase belonging to the Ser/Thr family of protein kinases. Catalyzes the inhibitory tyrosine 
phosphorylation of CDC2/cyclin B kinase, and appears to coordinate the transition between DNA replication and mitosis. 

CDC25A  cell division cycle 25 homolog A  144 Tyrosine protein phosphatases and is required for progression from G1 to S phase of the cell cycle.  It dephosphorylates
CDK1 and CDK2 and it is involved in the DNA damage response.  It has oncogenic properties that are not well-understood.  

CDC25B  cell division cycle 25 homolog B  144  Tyrosine protein phosphatase required for G2/M phases of the cell cycle progression and abscission during cytokinesis. 
Dephosphorylates CDK1 and stimulates its kinase activity. CDC25B has oncogenic properties that are not well-understood.  

CDC25C  cell division cycle 25 homolog C  144  Tyrosine protein phosphatase required for progression of the cell cycle by activating G2 cells into prophase. Directly 
dephosphorylates CDK1 and activates its kinase activity. It is also thought to suppress p53-induced growth arrest. 

YWHAB, -
E 

tyrosine 3-monooxygenase 
/tryptophan 5-monooxygenase 
activation protein, beta, -epsilon 

144  The 14-3-3 family of proteins interacts with CDC25 phosphatases, RAF1 and IRS1 proteins, suggesting a role in biochemical 
activities related to signal transduction, such as cell division, mitogenic signaling and regulation of insulin sensitivity.  
YWHAE has been implicated in the pathogenesis of small cell lung cancer. 

RAP1GAP  RAP1 GTPase activating protein  144  T GTPase-activating-protein (GAP) that down-regulates activity of the ras-related RAP1 protein. RAP1 plays a role in 
diverse processes such as cell proliferation, adhesion, differentiation, and embryogenesis. 

SFRP1,-2  secreted frizzled-related protein 
1-2 

762 Soluble frizzled-related proteins (sFRPS)are modulators of Wnts and Wnt signaling. They regulate differentiation and cell 
growth. Epigenetic silencing of SFRP genes leads to deregulation of the Wnt-pathway which is associated with cancer. 

FZD2,-3,-
5,-6, -8,-9 

frizzled family receptor 2,-3,-5,-6, 
-8,-9 

762 Most Frizzled receptors are coupled to the beta-catenin canonical signaling pathway, which leads to the activation of 
disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. 
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4.3.5: Evaluation: Overlap with GSEA 
 
 To evaluate pathway annotation, I analyzed the three cancer datasets using GSEA 

against MSigDB canonical pathways.  Overlap of top-scoring Walktrap results with GSEA 

results was evaluated by cross-validating the top GSEA pathways with pathways significantly 

over-represented in the data (p ≤ .01).   Notably in the BC data, module 224 exhibits 

significant over-representation in Cell Cycle, Pyrimidine Metabolism, and Apoptosis 

pathways which are among the top 10 enriched pathways in GSEA.  Module 205 overlaps 

with the following highest-ranking GSEA pathways: Cell Cycle, Ubiquitin-mediated 

Proteolysis, DNA Replication and Apoptosis.  HCC module 408 shows significant 

enrichment with the highest-ranking GSEA results, including: Tryptophan, Tyrosine, 

Phenylalanine, Beta-Alanine and Fatty Acid Metabolism, and Metabolism of Xenobiotics by 

Cytochrome P450 and Nuclear Receptors.  Significant pathways over-represented in module 

314 are Tryptophan, Tyrosine, Beta-Alanine, Lysine, Glycerophospholipid, Phenylalanine, 

Glycerolipid and Fatty Acid Metabolism.  In CCA, module 144 overlaps with the top 10 

ranked pathways in GSEA, including the ATM pathway, Cell Cycle, the P53 pathway, the 

ATR/BRCA pathway, and DNA replication, and module 487 shows overlap with Cell Cycle, 

P53, ATM and FAS pathways.  Overall, the observed consistency with GSEA suggests that 

processes similar to those highlighted by GSEA are also found by searching for for enriched 

modules. 

 
 

4.3.6: Evaluation: Comparison with jActiveModules and Matisse 
  

The performance of Walktrap is compared with two highly cited platforms developed 

to find network modules using gene expression data in interaction networks, jActiveModules 
149 and Matisse 151.  jActiveModules applies a simulated annealing algorithm to find modules 

across experimental conditions in gene expression data.  An activity score is then calculated 

based on significance values associated with differential expression.  Matisse applies a seed 

clustering algorithm that iteratively improves seed data, finds modules across expression 

data, and similarly determines a module score based on expression values.  Walktrap modules 

do not include overlapping nodes and jActiveModules was configured to not allow overlap, 

while Matisse modules do include overlap.  As a result, Matisse modules include more 

coverage of relevant interactions, but redundant sets of significant genes. 
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Parameters set to execute jActiveModules were regional scoring, adjust score for size, 

overlap = 0, and number of modules =1000.  Parameters set for Matisse were beta=.95, min 

seed size =2, min module size = 2, max module size =200, search strategy all neighbors, and 

no regulation priors.  The ability of these tools to identify cancer-related genes and 

interactions is evaluated using a list of derived from OMIN (Section 4.2.5).  To assess the 

significance of each module, genes in the interaction network were randomly sampled to 

generate 5000 random distributions of cancer class labels for each module size.  The 

performance of each platform is assessed by calculating a cancer-enrichment score for each 

module, summarized by a z-score assessing the number of known cancer genes in each 

module compared to a random distribution.   

 A comparison of of cancer-gene enrichment for the top twenty scoring modules 

generated by each platform is presented in Figure 20.  Walktrap generally performed as well 

or better than Matisse or jActiveModules using the HCC and CCA data and performs 

consistently well overall.  Matisse modules include overlap, so the corresponding set of top 

modules include redundancy and overlap between significant genes.  By excluding overlap 

Walktrap does not find multiple modules including the same genes, but this design increases 

coverage of unique interactions across modules.  I also consider module size; distribution of 

module sizes for each dataset and platform are shown in Figure 21.  jActiveModules 

generated several large modules, including a module of 981 nodes and a module of 377 

nodes.  The majority of significant modules generated by Matisse were over 100 nodes.  

Generally, such large clusters demand further mining to discover the most relevant 

interactions and genes in each module.  The smaller distribution of module sizes associated 

with Walktrap highlights a more specific and informative set of biological interactions that 

facilitates interpretation of modules; the functional annotation of large modules my be too 

general to be meaningful.  Further, the performance of Walktrap computation was more 

efficient than the other tools, I was able to run all analyses on an 2.8 GHz, 64-bit machine 

using 8GB RAM, where other tools required additional computing resources.  The efficiency 

of the algorithm is described by the original authors7. 
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This approach is used to discover cancer-associated modules in a network of biological 

interactions weighted by differential gene expression of breast cancer, hepatocellular 

carcinoma and colorectal cancer data.  

This study identifies modules relevant to the etiology of multiple cancer outcomes, 

and suggests interactions among promising candidate genes for further study of molecular 

interaction that influence cancer or potential therapeutic interventions. Functional analysis of 

modules discovered in this analysis reveals strong enrichment of cancer related pathways and 

known cancer genes.  Pathways enriched across the three data sets include those involved in 

cell cycle control, DNA replication, DNA damage and repair, amino acid metabolism, 

inflammation, and cell adhesion and migration.  Specifically, several genes may represent 

targets for further research, including CBLC or IRS2 which influence breast cancer survival; 

transcription factors RPS6KA2 and RPS6KA6 and the interaction among MCM/CDC and 

ORC cell cycle control genes in the onset of hepatocellular carcinoma; or cell-cycle genes 

BRSK1, WEE1, CDC25C, and the transcription factor SPIB in colorectal adenoma 

development.  These genes and their interactions can serve as a strong basis for hypothesis 

generation regarding their functional roles and therapeutic value in cancer. 

The Walktrap approach identifies biologically relevant modules associated with 

cancer and performs well compared to other module search platforms, Matisse and 

jActiveModules.  Strong performance combined with smaller, more specific, and non-

overlapping modules, facilitates the biological interpretation of these results.  These modules 

reflect known pathways in cancer and present hypotheses for new studies.  Future work may 

include an analysis across additional cancer and other complex disease data, or apply these 

methods to integrate additional classes of genomic data.   In Chapter 5, I investigate 

expanding the network to include microRNA-mRNA regulatory information from cancer 

expression studies. 

 

 

.                                             
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Chapter 5: Analysis of miRNA Data in Random Walk-Generated 
Expression Modules 

 
 

 
 

5.1: Introduction 

 
With technological advancement in measuring biological variability in genes, 

mutations and epigenetic interactions, there is a corresponding demand for analytical methods 

to integrate large and diverse data sets and investigate their association with complex 

phenotypes.  These include, for example, mRNA expression, SNP, copy number, proteomic, 

genomic mappings and microRNA (miRNA) measurements.  Modeling of these data requires 

sophisticated analytical approaches and high computational efficiency to merge and analyze 

the breadth and scope of these interactions.  Biological networks are powerful frameworks to 

integrate disparate data types, and explore high dimensional data for interactions associated 

with disease outcomes.  Network-based approaches have been applied to genomic studies to 

better understand the complexity of such data20,107,112,124, and have been proven useful in 

analyses of regulatory interactions; for example, investigating transcription factors, 

methylation activity, and miRNA silencing of gene expression and downstream targets 
120,133,134,198.  In Chapter 3, I examined the application of graph-based analyses to module 

discovery using evidence of biological interactions and cancer expression data.  To better 

understand the post-translational behavior of cancer genomics; in this chapter, I integrate 

miRNA coexpression data into the molecular interaction network to find significant cancer-

associated modules enriched with miRNA regulatory interactions.  

While analysis of transcription factor networks is developing as a mature area of 

research, relatively new work employs a network approach to examine miRNA-mRNA 

interactions and their associations with disease outcomes.  MiRNAs are short non-coding 

RNA molecules (between 19-22 nucleotides in length) that bind to mRNA post 

transcriptionally and interfere with mRNA translation199 (Figure 22).  Comparable to 

transcription factor regulation of gene expression, miRNAs typically bind to a “seed” region 

of their mRNA targets, usually nucleotides 2-7 in the 3′ UTR of the target mRNA.  Multiple 

miRNAs can bind to a particular mRNA, and a miRNA may bind to as many as hundreds of 

distinct mRNAs in its mRNA “targetome”.  There are approximately 2,000 known mature 

human miRNAs (miRBase Release 19; August 2012)200 that regulate greater than 60% of all 
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protein-encoding genes, where sequence similarity helps determine specificity.  Based on 

their role in epigenetic control of gene expression, and their broad “targetome”, these 

molecules are capable of regulating diverse cellular functions, including development, 

differentiation, proliferation, apoptosis and metabolism 198,201.   

 

 

 
 

 

Figure 22: The miRNA Lifecycle.  This figure from Ryan 2010199 shows the miRNA lifecycle.  RNA 
polymerase II (Pol II) produces a 500–3,000 nucleotide transcript, called the primary microRNA (miRNA), 
or pri-miRNA, that is then cropped to form a pre-miRNA hairpin by a multi-protein complex that includes 
DROSHA (~60–100 nucleotides) (a simplified view is shown here). This double-stranded hairpin structure is 
exported from the nucleus by RAN GTPase and exportin 5 (XPO5). Finally, the pre-miRNA is cleaved by 
DICER1 to produce two miRNA strands, a mature miRNA sequence, approximately 20 nucleotides in 
length, and a short-lived complementary sequence, which is denoted miR* and is sometimes referred to as 
the passenger strand or 3p strand. The single stranded miRNA is incorporated into RISC, which then binds 
to the 3′ untranslated region of the target mRNA sequence to regulate repression and cleavage. 

 

 



 

78 
 

 

MiRNAs play an important role in cancer where they play a role in regulating 

oncogenic and tumor-suppressor pathways198,202.  Burchard et al. analyze a correlated set of 

miRNAs and mRNAs in hepatocellular carcinoma and find miR-122 is under-expressed in 

tumor tissue11.  They confirm that the putative targets of this miRNA, SMARCD1, MAP3K3, 

CAT-1 are down-regulated miR-122 with an increase in miR-122 expression while secondary 

target PPARGC1A is up-regulated with a decrease in miR-122.  These genes participate in 

mitochondrial biogenesis pathways, including fatty acid metabolism; and miR-122 acts as a 

tumor suppressor where it can play a role to stabilize metabolic function in the liver and thus 

improve patient survival.  In a breast cancer study including correlated miRNA-mRNA 

prognostic profiles, Buffa et al.12 find miR-210, miR-128a and miR-27b to be differentially 

regulated and prognostic of breast cancer survival.  Fu et al. study miRNA-mRNA pairs co-

regulated in colorectal cancer and involved in the Wnt pathway and find mir-21, mir-223, 

mir-224, mir-29a, mir-29b to be upregulated and their predicted targets, SFRP1, SFRP2, 

RNF138, and KLF4 to be downregulated.   They experimentally confirm the relationship 

between mir-29a and KLF4 at both the RNA and protein levels in colorectal cancer cells.  

Laios et al. investigate miRNAs and their association with pathways involved in ovarian 

cancer 203 and show miR-214 induces cell survival and cisplatin resistance by targeting PTEN 

regulation of the Akt pathway, and miR-15b and miR-16 were found to inhibit BCL2-mediated 

apoptosis.  Findings by Gennarino et al.204, show that miR-519d, miR-190 inhibit and miR-

340 enhances TGFβ signaling, cell proliferation and ceullular migration in lung carcinoma. 

These studies demonstrate a diverse means of miRNA-based regulation of cancer-related 

pathways and suggest miRNA co-expression analysis as a general approach to identify 

miRNA targets in cancer.   

Biological networks have been applied to model interactions between miRNAs and 

their targets and to identify miRNA subnetworks associated with cancer198,202.  Satoh et al.106 

assemble a human miRNA targetome incorporating differentially expressed miRNAs and 

their predicted targets from thousands of human tissue samples. They use a neighboring 

network-search algorithm to find co-regulated miRNA-mRNA pairs in normal and cancer 

tissues and use expression data to validate miRNA-mRNA interactions.  Dysregulated 

processes were found to be associated with differentially expressed miRNAs in invasive 

breast cancer cells, including key pathways regulated by MYB (miR-15a), Rb/E2F (miR-

106b), p53 (let-7d), ZEB and EMT (miR-200b).  Overall, the most relevant pathological event 

in their human miRNA targetome was “cancer”, suggesting that miRNAs play a specialized 
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role in oncogenesis.  Bandyopadhyay et al.137 generate a bipartite network by mining 

experimentally verified cancer-miRNA relationships from the literature, miRNA-mRNA 

interactions based on predicted targets, experimentally-supported interactions, and co-

expression models.  They mine for cancer-miRNA modules and show that neighboring 

miRNAs are often similarly up- or down-regulated, suggesting coordinated activity of the 

miRNAs on target gene regulation in cancer tissues or cell lines.  Specifically, they find 

downregulation of miR-143 and miR-145 in colon cancer, downregulation of miR-127 in 

bladder carcinoma, and overexpression of miR-99 is in pancreatic cancer.  O’Day et al. 202 

analyze a network of mRNAs and their predicted miRNAs in breast cancer and find a well-

connected gene-interaction network including MYC as a hub interacting with critical cell-

cycle genes and regulated by key miRNAs including:  miR-206, -34a, -200, -17-5p, -125a/b, -

21, -155, -373/-520c, -31 and let-7.  Nam et al.205 extract network clusters from an integrated 

network to distinguish drug resistant states from drug sensitive states in breast cancer. They 

identify clusters that contribute to antiestrogen resistance which include miRNAS miR-146a, 

-27a, -145, -21, -155, -15a, -125b, and let-7s, and miR-221/222.  Zhang et al.206 perform a 

network cluster analysis to identify correlated miRNA-mRNA pairs to distinguish primary 

and metastatic prostate cancer tumor subtypes and miR-106b, -191, -19b, -92a, -92b, -93, and 

-141 were found to be enriched in metastatic samples.  Several studies also note that miRNA 

networks consist of well-connected miRNA hubs that are dysregulated in cancer137,138,207, and 

that miRNAs tend to target hub-genes in human protein interaction (PPI) networks106.   

Modeling interactions among miRNAs and their correlated mRNA targets provides an 

additional layer of evidence to identify key gene interactions and increases confidence in the 

discovery of functional associations between genes and disease.  In high-dimensional data, 

this additional knowledge source reduces the feature space to narrow the search for candidate 

genes.  Combined evidence summarizing the coordinated activity of miRNAs and their 

predicted targets in cancer tissues, the significance of biological modules in networks 

weighted with cancer outcomes, and relevant functional annotation of those modules, 

increases the likelihood that they have true causal relationships with cancer.  Thus, such 

network analysis using interaction, experimental and regulatory data can improve the search 

for miRNAs, miRNA-miRNA interactions, or target mRNAs associated with disease.   

Earlier, in Chapter 4, I investigated the application of a weighted random walk and a 

modularity-driven clustering algorithm to search for modules of interacting genes 

significantly associated with cancer onset and progression.  This framework merges gene 

expression data and protein interaction and metabolic interaction data in a weighted network, 
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a random walk algorithm with a module-searching component, and a bootstrap scoring metric 

to find significant modules.  In this chapter, I further leverage the ability of this molecular 

interaction network to integrate interaction, experimental, and miRNA regulatory data to 

improve the search for modules associated with cancer.   I assess the value of using miRNAs 

and their targets by comparing these results to previously published findings of miRNA-

mRNA interactions in cancer and to the analysis of breast cancer and hepatocellular 

carcinoma outcomes using only mRNA data in Chapter 4.  Finally, the biological relevance 

of these findings is evaluated by functional annotation and supported evidence in the 

literature.   

 

 

 

5.2: Methods 

 

5.2.1:Overview 
 

A graph-based random walk algorithm is employed in an integrated interaction 

network to mine hepatocellular carcinoma (HCC) and breast cancer (BC) expression data, 

including correlated mRNA and miRNA expression, to search for modules of genes 

associated with cancer outcomes.  First, metabolic, signaling and protein interactions from 

the Kyoto Encyclopedia of Genes and Genomes (KEGG)35 and the Human Protein Reaction 

Database (HPRD)31 are used to construct a network of biological interactions.  I evaluate 

matching and integration methods to include miRNAs in the network analysis.  Matching 

methods include selecting the best overall match for each miRNA, filtering the best three and 

five matches, or including all correlated matches.  Methods to integrate miRNA/mRNA pairs 

to the interaction network include using miRNAs as an additional interaction type with edges 

weighted directly corresponding to fold change as in section 4.2.4, or using a linear 

transformation of the fold change values to create edge weights.  The Walktrap random walk 

algorithm is applied to this wieghted network to discover cancer-associated module that are 

enriched with differential miRNA regulatory activity.  To evaluate findings I review 

functional annotation of the results, and compare these results to published data and to the 

study of HCC and BC datasets not including miRNA data (as described in Chapter 4).  These 

methods are summarized in Figure 23. 
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Figure 23: miRNA Network Analysis and Evaluation.  This flowchart summarizes miRNA network analysis 
and evaluation.  HCC and BC miRNA/mRNA expression data are downloaded from GEO.  MiRNA-mRNA 
pairs are integrated into the interaction network and the Walktrap algorithm is applied to search for dense 
modules significantly associated with cancer outcomes and enriched with miRNA targets. 
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5.2.2: Gene Expression Data 
 

Two cancer data sets including mRNA and miRNA expression data were downloaded 

from the Gene Expression Omnibus (GEO) 181.  GSE22058 includes genome-wide expression 

profiles of both miRNAs and mRNAs from a cohort of hepatocellular carcinoma patients 

(HCC) in Hong Kong, comparing expression levels of paired tumor tissue and normal 

adjacent tissue 11. The platform used for measuring mRNA expression is the Rosetta/Merck 

Mouse 23.6K 3.0 A1 microarray, and the Rosetta human miRNA qPCR array is used for 

miRNA measurement (Rosetta Inpharmatics/ Merck Pharmaceuticals, Seattle, WA).   

GSE22220 is a study of early primary breast cancer (BC) including correlations between 

mRNA and miRNA expression in 210 tumor samples12.  mRNA expression levels are 

assessed by the Illumina humanRef-8 v1.0 expression beadchip, and miRNAs expression 

levels using the Illumina Human v1 MiRNA expression beadchip (Illumina Inc, San Diego, 

CA).  The study includes clinical features (ER status, adjuvant treatment, endocrine therapy 

or combination chemotherapy, and CMF) and follow-up at 10 years, to assess prognostic 

features.  Prognosis indicators include relapse, which I extract to assess risk (no relapse= 131, 

relapse= 79).  The data are summarized in Table 4.  I calculate normalized, log-transformed 

fold change values and p-values for each data set.  P-values were corrected for multiple 

testing using the Benjamini and Hochberg false discovery rate182.  All analyses were 

performed in R using Bioconductor 53. 

 

 

Table 7: Description of Cancer Expression Data 

GEO 
Accession 

Reference Clinical Outcome Cases Controls 

GSE22058 
Burchard et al. 
2010 

HCC tumors (HCC) 192 
hepatocellular 
tumors 

192 paired 
adjacent non-
tumor 

GSE22220 
Buffa et al. 2011 BC prognosis (BC) 210 mRNA and 

miRNA samples 
prognosis scores 
for each sample 
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5.2.3: MiRNA-mRNA Matching 
 

Correlation among samples is measured by calculating a Pearson Correlation 

coefficient comparing differential expression of miRNAs and mRNAs in the HCC and BC 

data sets.  Significantly correlated pairs below a p-value of .05 were selected for further 

investigation and integration into the molecular network.  Four different methods were 

examined to match miRNA to mRNAs.  First, I took the best matches using an optimal 

matching algorithm208.  This approach finds an exclusive best match based on correlation 

scores for each miRNA.  Next, the best (up to three) matches and the best (up to five) 

matches for each miRNA were selected based on ranked correlation values.  Both the best 

three and the best five matches are non-exclusive matches.  Finally, in the last approach, all 

possible matches are included for each miRNA. 

Further, I tested these approaches using a biological filter to select only those matches 

that had a seed match based on TargetScan Human Release 6.2 41.  This tool finds predicted 

miRNA targets based on 7-mer and 8-mer seed matches.  The TargetScan configuration for 

these queries incorporated conserved and non-conserved regions to include a broad base of 

potential mRNA-miRNA interactions.  All predicted targets based on the TargetScan 

prediction algorithm using sequence alignment, conservation across species and flanking 

seqments were retained, no threshold for conservation score or context score were 

configured41.  Altogether, across the four matching approaches, I consider filtered and non-

filtered data, resulting in eight matching combinations.  Code for matching and filtering 

miRNA-mRNA pairs is presented in Appendix B. 

 
 
 

5.2.4:Network Construction 
 

The interactome in this study was built by extracting human interactions from the 

Kyoto Encyclopedia of Genes and Genomes 35and HPRD 31, and this network is used to 

assess the incorporation of miRNA-target interactions extracted from correlated expression 

samples.  Details of the network construction are discussed in section 4.2.3.   
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5.2.5: Weighting Scheme 
 

To calculate edge weights for mRNA-mRNA interactions in the network, I use an 

average of the absolute fold change values of the two adjacent nodes as discussed in section 

4.2.4. 

I include miRNA-mRNA interactions based on matching schemes discussed in 

section 5.2.3, using 1) optimal matching 2) the best three matches 3) the best five matches, or 

4) all matches.  Each network is assessed using matches filtered based on their seed match 

using TargetScan, or unfiltered matches.   Two weighting schemes are used to add weights to 

edges representing interactions between miRNAs and their targets.  In the first scheme, I add 

miRNA expression weights to the network applying the same weighing scheme as mRNA-

mRNA matching, using a square of the mean fold-change values.  The second scoring 

scheme applies a weight that is a linear transformation of the fold change based on the 

number of mRNA matches multiplied by the fold change of the miRNA (n x fold change).  

The matching and weighting schemes are summarized in Figure 24. 
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Figure 24: miRNA Match and Weight Scheme Evaluation:  Flowchart showing the four matching schemes, 
and filtering used to select miRNA-mRNA pairs.  These pairs are then added using a square of the mean 
fold change values, or after a linear transformation of the weights.  After applying the Walktrap algorithm, 
the methods are evaluated by Precision/Recall and Matthews Correlation.  The best 5 matches and using a 
square of the mean weights showed the best performance. 
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5.2.6: Community Analysis 
 

Random walks have been shown to be valuable when applied to study genomic data 

in biological networks112,167.  The random walk algorithm implemented here was chosen 

because it incorporates the topology of the network to calculate distance metrics, and 

optimizes the community search componenet by using the graph theoretic concept of 

modularity.  Details of the random walk are described in section 2.5, modifications to adjust 

the merge stopping criteria based on module size, score and modularity are reviewed in 

section 4.2.5. 

 

 

5.2.7: Module Scoring 
 

The magnitude of the expression signal for each module was compared against a 

random distribution. Module weight was calculated by taking an average of the node weights; 

each node corresponds to a squared transformation of the maximum fold change for probes 

corresponding to each gene symbol.  Higher-confidence modules greater than three nodes in 

size were tested for significance.  A module score was then calculated by comparing the 

significance of the module weight to a distribution of 5000 random samples of expression 

values for each module size.  Enrichment of miRNAs in each module is assessed by 

comparison with a random distribution of 5000 random samples of miRNA matches where 1 

is a correlated/predicted target and 0 is not.   Code for module scoring and significance 

testing is presented in Appendix A. 

 
 
 

5.3: Results 

 

5.3.1: Assessment of Weighting and Scoring Schemes 
 

I evaluate several approaches to match miRNAs and weigh miRNA-enriched modules 

in the community network analysis.  To assess the performance of weights and scoring 

schemes, I measure the precision and recall of these methods in the BC data to detect known 

cancer genes (the gold standard list was created by text mining and manual curation of 

OMIM, details discussed in sections 4.2.5 and 4.3.6).  Evaluation data for these approaches 
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are described in Appendix B.  The most sensitive approaches use all the network data but 

may have many false positives.  More selective approaches using only the top filtered 

matches are more precise but generally are not sufficiently sensitive to identify many 

important modules.  Results were filtered by top-ranked Precision and Recall values.  I then 

calculated Matthew’s correlation coefficient 209  to evaluate the best overall performance.  

The filtered data using non-transformed network weights and the best five matches performed 

best in the BC data.  The BC data were used as the training set and the methods were then 

validated using the HCC data; the Precision, Recall and Matthews Correlation Coefficient 

figures performed best in the HCC data as well.   

When incorporating the best five filtered miRNA-mRNA matches in the data, 95 

edges are added to the BC data and 19 edges added to HCC data.  I evaluate the results of 

these analyses compared with findings with the original studies from which the HCC and BC 

data were obtained, by Burchard11and Buffa12, and compared with analyses of similar HCC 

and BC data sets using only mRNA data in Chapter 4.  Finally, these results are evaluated by 

their functional annotation and biological relevance; I evaluate functional annotation of 

miRNAs and mRNA targets in the significant modules using ConsensusPathDB and evidence 

of the functional relevance of the interactions from previous literature. 

 

 

5.3.2: Functional Annotation 
 

Functional annotation of significant modules is assessed using ConsensusPathDB55.   I 

queried genes in the top-scoring modules for over-representation analysis comparing against 

pathway gene sets (including: KEGG, WikiPathways 183, PID 34 and Reactome 30), and a 

minimum overlap of two genes with the input gene list and the consensus pathway.  Results 

were filtered using a default p-value of .01. Canonical cancer pathways and pathways 

associated with hallmarks of cancer are enriched in each cancer dataset: cell-cycle control 

(including MAPK, JNK, TGF, and Wnt), DNA replication/repair, cellular 

adhesion/migration, cell differentiation apoptosis, angiogenesis, evasion of the immune 

response and immortality.  A summary of statistics and a sample of representative pathways 

for the top scoring modules are presented in Table 8. 

BC modules are highly enriched with cell cycle control, transcriptional regulation, 

growth signaling, cytokine and chemokine signaling, T-cell and B-cell signaling, focal 
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adhesion and angiogenesis-related genes.  A number of BC modules are also annotated with 

progesterone and estrogen hormone signaling, and levels of these hormones are known to 

correlate with BC risk.  In HCC, detoxifying pathways, including cytochrome P450, 

nucleotide and fatty acid metabolism, cellular adhesion and interactions, DNA repair and 

cell-cycle signaling are among the most enriched pathways.  Inflammation and deregulation 

of liver-related detoxifying pathways are frequent markers of carcinogenic toxicity, oxidative 

stress and tumorigenesis.  Amino acid synthesis and metabolism pathways, related to the 

stability of DNA replication and repair are over-represented across all three cancer types, 

though most notably in HCC.  These findings are consistent with overrepresented pathways 

in mRNA-only modules discussed in section 4.3.1. 
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Table 8: Functional Annotation for Significant Modules 

Breast Cancer 

Module  Score  Size  Functional Annotation 

22  56.72  21 

SIGNALING MEDIATED BY HDAC CLASS I, II AND III, SIGNALING BY NOTCH, 
TRANSCRIPTIONAL MISREGULATION IN CANCER, REGULATION OF PGC-1A, CELL 
DIFFERENTIATION, CELL CYCLE, RANBP2 REGULATES TRANSCRIPTIONAL REPRESSION, 
VIRAL CARCINOGENESIS, TGF BETA SIGNALING, ADIPOGENESIS, C-MYB 
TRANSCRIPTION, BCR SIGNALING, P38 MAPK SIGNALING, TRANSCRIPTIONAL 
ACTIVITY OF SMAD2/SMAD3:SMAD4, HTERC TRANSCRIPTIONAL REGULATION, 
REGULATION OF TELOMERASE, FATTY ACID, TRIACYLGLYCEROL, AND KETONE BODY 
METABOLISM, GENE REGULATION BY PEROXISOME PROLIFERATORS VIA PPARA, ACUTE 
MYELOID LEUKEMIA, REGULATION OF RB, NUCLEAR ESTROGEN RECEPTOR ALPHA 
NETWORK, IL4-MEDIATED SIGNALING, HIF-1-ALPHA TRANSCRIPTION 

63  63.79  143 

ANDROGEN RECEPTOR SIGNALING, PROSTATE CANCER, INTEGRATED BC PATHWAY, 
TRANSCRIPTIONAL ACTIVITY OF SMAD2/SMAD3:SMAD4, TGF BETA SIGNALING, 
INTEGRATED CANCER PATHWAY, DNA DAMAGE RESPONSE, CELL CYCLE, P73 
TRANSCRIPTION, INTEGRATED PANCREATIC CANCER PATHWAY, TRANSCRIPTIONAL 
ACTIVITY BY PML, MIRNA REGULATION OF DDR, RANBP2 REGULATES 
TRANSCRIPTIONAL REPRESSION, C-MYC PATHWAY, CHROMATIN REMODELING, 
GLUCOCORTICOID RECEPTOR NETWORK, BARD1 SIGNALING, VIRAL CARCINOGENESIS, 
RB TUMOR SUPPRESSOR/CHECKPOINT, TRANSCRIPTIONAL MISREGULATION IN CANCER, 
PATHWAYS IN CANCER, P53 PATHWAY, EFP CONTROLS CELL CYCLE AND BREAST 
TUMORS GROWTH, UBIQUITIN MEDIATED PROTEOLYSIS, NON-HOMOLOGOUS END-
JOINING, ATM SIGNALING, REGULATION OF TELOMERASE, SIGNALING MEDIATED BY 
HDAC CLASS I/II, ARF INHIBITS RIBOSOMAL BIOGENESIS, LKB1 SIGNALING, WNT 
SIGNALING, AP-1 TRANSCRIPTION, AHR PATHWAY, NUCLEAR ESTROGEN RECEPTOR 
NETWORK, ADIPOGENESIS, REGULATION OF NUCLEAR BETA CATENIN, DEGRADATION OF 
CYCLIN D1, SEROTONIN RECEPTOR 4-6-7 AND NR3C SIGNALING, DNA REPAIR, BTG 
PROTEINS AND CELL CYCLE REGULATION, PTC1 REGULATES CELL CYCLE, FOXM1 
TRANSCRIPTION, ADHERENS JUNCTION, E2F NETWORK, INTERFERON SIGNALING, 
NOTCH SIGNALING, AURORA A SIGNALING, NGF SIGNALING VIA TRKA, ID 
SIGNALING, AKAP95 IN MITOSIS/CHROMOSOME DYNAMICS, RNA POLYMERASE 
TRANSCRIPTION, SIGNALING BY EGFR IN CANCER, FAS SIGNALING (CD95), BRCA1 
BRCA2 AND ATR IN CANCER, CDC25 AND CHK1 REGULATORY PATHWAY IN DDR, PI3K-
AKT SIGNALING, SREBP SIGNALING, ERBB SIGNALING, CALCINEURIN-DEPENDENT 
NFAT SIGNALING, NF-KAPPA B SIGNALING, RETINOIC ACID RECEPTORS-MEDIATED 
SIGNALING, ALPHA-SYNUCLEIN SIGNALING, SCF-BETA-TRCP DEGRADATION OF EMI1, 
P38 MAPK SIGNALING, TSH SIGNALING, HIF-1-ALPHA TRANSCRIPTION, REGULATION 
OF APC/C ACTIVATORS 

74  57.13  27 

ENDOCYTOSIS, SIGNALING BY SCF-KIT, EGF-EGFR SIGNALING, SIGNALING BY EGFR 
IN CANCER, SIGNALING BY ERBB, IMMUNE SYSTEM, JAK-STAT SIGNALING, 
NEUROTROPHIN SIGNALING, SIGNALING BY NGF, TRANSCRIPTIONAL TARGETS OF 
DELTANP63, NOTCH SIGNALING, PTP1B SIGNALING, TRANSCRIPTIONAL TARGETS OF 
TAP63 

212  61.48  30 

CHEMOKINE SIGNALING, LIGAND-BINDING RECEPTORS, SIGNALING BY GPCR, 
CYTOKINE-CYTOKINE RECEPTOR INTERACTION, ENDOCYTOSIS, ADRENOCEPTORS, IL8- 
AND CXCR1-MEDIATED SIGNALING, ACTIVATION OF PKA, TOLL-LIKE RECEPTOR 
SIGNALING, CSK INHIBITS SIGNALING THROUGH THE T CELL RECEPTOR, EBV LMP1 
SIGNALING, ARF6 SIGNALING

269  139.06  75 

T CELL RECEPTOR SIGNALING, FC EPSILON RI SIGNALING, BCR SIGNALING, GPVI-
MEDIATED ACTIVATION CASCADE, FC GAMMA R-MEDIATED PHAGOCYTOSIS, IMMUNE 
SYSTEM, SIGNALING BY CBL, NK CELL CYTOTOXICITY, DAP12 SIGNALING, 
INTERLEUKIN SIGNALING, SCF-KIT SIGNALING, LEUKOCYTE MIGRATION, GAB1 
SIGNALOSOME, PLATELET ACTIVATION, CHEMOKINE SIGNALING, PI3K/AKT SIGNALING 
IN CANCER, PROLACTIN SIGNALING, GENERATION OF SECOND MESSENGER MOLECULES, 
T-CELL APOPTOSIS, INTERFERON TYPE I, KIT RECEPTOR SIGNALING, ACUTE 
MYELOID LEUKEMIA, SIGNALING BY EGFR IN CANCER, FOCAL ADHESION, FGFR 
SIGNALING, CHRONIC MYELOID LEUKEMIA, ENDOMETRIAL CANCER, VEGF SIGNALING, 
COLORECTAL CANCER, PHOSPHATIDYLINOSITOL SIGNALING, SIGNALING BY PDGF, 
APOPTOSIS, JAK-STAT SIGNALING, NEUROTROPHIN SIGNALING, NGF SIGNALING VIA 
TRKA, MTOR SIGNALING, CELL SURFACE INTERACTIONS, CHOLINERGIC SYNAPSE, 
TIE2 SIGNALING, ERBB SIGNALING, NF-KAPPA B SIGNALING, REGULATION OF ACTIN 
CYTOSKELETON, INSULIN SIGNALING, AMPK SIGNALING, TOLL-LIKE RECEPTOR 
SIGNALING, NEPHRIN INTERACTIONS, TRANSLOCATION OF ZAP-70 TO PECAM1 
INTERACTIONS, G ALPHA SIGNALING, VIRAL CARCINOGENESIS, RANKL-RANK 
SIGNALING, PHOSPHOLIPID METABOLISM, CTLA4 SIGNALING, NEF SIGNAL 
TRANSDUCTION, PD-1 SIGNALING, INFLAMMATORY RESPONSE, G13 SIGNALING, CELL-
CELL COMMUNICATION, IRS-MEDIATED SIGNALING, RAS SIGNALING, PATHWAYS IN 
CANCER, EPO RECEPTOR SIGNALING, RAC1 CELL MOTILITY, CELL ADHESION 
MOLECULES (CAMS), CXCR4 SIGNALING, TRKA RECEPTOR SIGNALING, METABOLISM OF 
LIPIDS/LIPOPROTEINS, NRAGE SIGNALS DEATH THROUGH JNK, NOTCH SIGNALING, 
LEPTIN SIGNALING, TGF BETA SIGNALING, IGF-1 SIGNALING, ANGIOGENESIS 

292  51.78  20  CALCIUM SIGNALING, GASTRIN-CREB SIGNALING VIA PKC/MAPK, SIGNALING BY 
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GPCR, REGULATION OF INSULIN, SECRETION BY ACETYLCHOLINE, PEPTIDE LIGAND-
BINDING RECEPTORS, THROMBOXANE SIGNALING, REGULATION OF ACTIN 
CYTOSKELETON, ACTIVATION OF PKA, THROMBIN SIGNALING, CHREBP REGULATION BY 
CARBOHYDRATES AND CAMP, CSK INHIBITS SIGNALING THROUGH THE T CELL 
RECEPTOR, ACE INHIBITOR PATHWAY, ADP SIGNALING, COMPLEMENT AND 
COAGULATION CASCADES, SEROTONIN RECEPTOR 2 AND ELK-SRF-GATA4 SIGNALING, 
PROSTAGLANDIN SYNTHESIS AND REGULATION, ANGIOTENSIN II MEDIATED 
ACTIVATION OF JNK PATHWAY VIA PYK2 SIGNALING 

327  30.42  4 
CROSS-PRESENTATION OF PHAGOSOMES, LEUKOCYTE MIGRATION, CLASS I MHC 
ANTIGEN PROCESSING & PRESENTATION, IMMUNE SYSTEM 

 379  41.04  9 

REGULATION OF IGF, SENESCENCE AND AUTOPHAGY, P53 SIGNALING, MYOMETRIAL 
RELAXATION AND CONTRACTION PATHWAYS, TRANSCRIPTIONAL MISREGULATION IN 
CANCER 

516  30.42  4  NA 
Hepatocellular carcinoma 

650  32.48  23 

TIGHT JUNCTION INTERACTIONS, CELL-CELL JUNCTION ORGANIZATION, 
TRANSENDOTHELIAL MIGRATION, CELL ADHESION MOLECULES (CAMS), CELL-CELL 
COMMUNICATION, HEPATITIS C  

647  21.37  6 
CGMP EFFECTS, NITRIC OXIDE STIMULATES GUANYLATE CYCLASE, POTASSIUM 
CHANNELS  

583  60.30  15 

METABOLISM OF XENOBIOTICS BY CYTOCHROME P450, ARACHIDONIC ACID METABOLISM, 
RETINOL METABOLISM, CHEMICAL CARCINOGENESIS, LINOLEIC ACID METABOLISM, 
TAMOXIFEN METABOLISM, BENZO(A)PYRENE METABOLISM,  SEROTONERGIC SYNAPSE, 
TRYPTOPHAN METABOLISM, STEROID HORMONE BIOSYNTHESIS, FATTY ACID 
METABOLISM, PPAR SIGNALING 

582  30.01  42 

PURINE METABOLISM, CGMP EFFECTS, MORPHINE ADDICTION, NITRIC OXIDE 
STIMULATES GUANYLATE CYCLASE, PLATELET HOMEOSTASIS, DARPP-32 EVENTS, 
SIGNALING BY GPCR, ALANINE, ASPARTATE AND GLUTAMATE METABOLISM, PYRIMIDINE 
METABOLISM, CALMODULIN INDUCED EVENTS, DAG AND IP3 SIGNALING, PLC-GAMMA1 
SIGNALING 

567  35.92  16 

SIGNALING BY SCF-KIT, PI3K/AKT SIGNALING IN CANCER, GAB1 SIGNALOSOME, 
GLIOBLASTOMA, DAP12 SIGNALING, FGFR SIGNALING, BCR SIGNALING, SIGNALING BY 
EGFR IN CANCER, DAP12 INTERACTIONS, PDGF SIGNALING, SIGNALING BY NGF, 
PATHWAYS IN CANCER, REGULATION OF ACTIN CYTOSKELETON, PROSTATE CANCER, 
FOCAL ADHESION, CALCIUM SIGNALING, IMMUNE SYSTEM, SHC-MEDIATED CASCADE, 
IRS SIGNALING, CYTOKINE-CYTOKINE RECEPTOR INTERACTION, FRS2-MEDIATED 
CASCADE, ERBB SIGNALING, ADHERENS JUNCTION, ANGIOGENESIS, SEMAPHORIN 
INTERACTIONS, HELICOBACTER PYLORI INFECTION 

398  27.97  15 

TCR SIGNALING, BCR SIGNALING, IMMUNE SYSTEM, PRIMARY IMMUNODEFICIENCY, 
GENERATION OF SECOND MESSENGER MOLECULES, T-CELL APOPTOSIS, NK CELL 
CYTOTOXICITY, NF-KAPPA B SIGNALING 

389  29.48  11 

MITOTIC G1-G1/S, SCF(SKP2)-MEDIATED DEGRADATION OF P27/P21, CELL CYCLE, 
VIRAL CARCINOGENESIS, MIRNA REGULATION OF DDR, E2F1 DESTRUCTION, SMALL 
CELL LUNG CANCER, DNA REPLICATION, INTEGRATED CANCER PATHWAY, REGULATION 
OF APC/C ACTIVATORS, TSH SIGNALING, P53 SIGNALING, ID SIGNALING, PROSTATE 
CANCER, ATR RESPONSE TO REPLICATION STRESS, PI3K-AKT SIGNALING 

348  22.69  7 

NEUROTROPHIN SIGNALING, AXONAL GROWTH, CERAMIDE SIGNALING, SIGNALLING BY 
NGF, P75 NTR RECEPTOR SIGNALING, NF-KB SIGNALS SURVIVAL, NRIF SIGNALS CELL 
DEATH, ARMS-MEDIATED ACTIVATION, SIGNALLING TO ERKS, VASOPRESSIN-REGULATED 
WATER REABSORPTION, CELL DEATH SIGNALLING VIA NRAGE, NRIF AND NADE, RHO 
GTPASE CYCLE, MAPK SIGNALING 

343  21.37  6 
ARACHIDONIC ACID METABOLISM, EICOSANOID METABOLISM, PROSTAGLANDIN 
SYNTHESIS AND REGULATION, PROSTANOID METABOLISM  

318  29.52  10 
FRUCTOSE AND MANNOSE METABOLISM, PENTOSE PHOSPHATE PATHWAY, GLYCOLYSIS AND 
GLUCONEOGENESIS, GALACTOSE METABOLISM, INSULIN SIGNALING 

309  22.69  7 

ECM-RECEPTOR INTERACTION, FOCAL ADHESION, INFLAMMATORY RESPONSE, PI3K-AKT 
SIGNALING, COLLAGEN BIOSYNTHESIS, PLATELET ACTIVATION, NCAM1 INTERACTIONS, 
SIGNALING BY PDGF, SMALL CELL LUNG CANCER, INTEGRIN CELL SURFACE 
INTERACTIONS, PROTHROMBIN ACTIVATION, GPVI-MEDIATED CASCADE, PATHWAYS IN 
CANCER 

232  19.51  5 
SUMOYLATION AS A MECHANISM TO MODULATE CTBP-DEPENDENT GENE RESPONSES, TGF 
BETA SIGNALING, CHRONIC MYELOID LEUKEMIA, PATHWAYS IN CANCER 

200  27.25  9 
CALCIUM SIGNALING, GASTRIN-CREB SIGNALING VIA PKC/MAPK, GPCR SIGNALING, 
EICOSANOID METABOLISM 

186 
62.9

5  47 

STEROID HORMONE BIOSYNTHESIS, RETINOL METABOLISM, METABOLISM OF 
XENOBIOTICS BY CYTOCHROME P450, CHEMICAL CARCINOGENESIS, GLUCURONIDATION, 
ASCORBATE AND ALDARATE METABOLISM, PORPHYRIN AND CHLOROPHYLL METABOLISM, 
STARCH AND SUCROSE METABOLISM, HEME DEGRADATION, TAMOXIFEN METABOLISM, 
THYROID HORMONE METABOLISM, OXIDATIVE STRESS INDUCED GENE EXPRESSION VIA 
NRF2, ESTROGEN METABOLISM, NICOTINE METABOLISM, CODEINE/MORPHINE 
METABOLISM, FATTY ACID OMEGA OXIDATION, AHR PATHWAY, ARYLAMINE METABOLISM, 
FLUOROPYRIMIDINE ACTIVITY, AFLATOXIN B1 METABOLISM, BENZO(A)PYRENE 
METABOLISM, TRYPTOPHAN METABOLISM, IL-10 SIGNALING 

92  69.28  34 
JAK-STAT SIGNALING, CYTOKINE SIGNALING, INTERLEUKIN SIGNALING, TSLP 
SIGNALING, IMMUNE SYSTEM, GHR SIGNALING, EPO RECEPTOR SIGNALING, PI3K-AKT 
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SIGNALING, INFLAMMATORY RESPONSE, PROLACTIN SIGNALING, TPO SIGNALING, 
LEPTIN SIGNALING, FGFR SIGNALING, KIT RECEPTOR SIGNALING, INHIBITION OF 
CELLULAR PROLIFERATION BY GLEEVEC, AGE-RAGE PATHWAY, ERBB4 SIGNALING, PDGF 
SIGNALING, VIRAL CARCINOGENESIS, ACUTE MYELOID LEUKEMIA, HEPATITIS C, EGF-
EGFR SIGNALING, CHEMOKINE SIGNALING, ERBB2 IN SIGNAL TRANSDUCTION AND 
ONCOLOGY 

44  35.33  38 

INTEGRATED BC PATHWAY, INTEGRATED PANCREATIC CANCER PATHWAY, COLORECTAL 
CANCER, PROSTATE CANCER, INTEGRATED CANCER PATHWAY, ANDROGEN RECEPTOR 
SIGNALING, MAPK SIGNALING, DNA DAMAGE RESPONSE, P53 SIGNALING, CELL CYCLE, 
CASPASE-MEDIATED CLEAVAGE OF CYTOSKELETAL PROTEINS, APOPTOSIS, TNF ALPHA 
SIGNALING, PATHWAYS IN CANCER, MIRNA REGULATION OF DDR, ATM SIGNALING, 
APOPTOSIS MODULATION BY HSP70, ERBB SIGNALING, ARF INHIBITS RIBOSOMAL 
BIOGENESIS, ADHERENS JUNCTION, SMAC-MEDIATED APOPTOTIS, WNT SIGNALING, P75 
NTR MEDIATED SIGNALING, BTG FAMILY PROTEINS AND CELL CYCLE REGULATION, 
AUTODEGRADATION OF COP1, SENESCENCE AND AUTOPHAGY, TGF BETA SIGNALING, 
VIRAL CARCINOGENESIS, RB CELL SURVIVAL PATHWAY, PI3K-AKT SIGNALING, 
TELOMERASE CELLULAR AGING AND IMMORTALITY, NOTCH SIGNALING, CHROMATIN 
REMODELING, CELL DEATH SIGNALING VIA NRAGE, NRIF AND NADE, TNFR1 
SIGNALING, INTERNAL RIBOSOME ENTRY PATHWAY, FAS SIGNALING (CD95), 
SIGNALING BY HIPPO, SIGNALING BY NGF, APOPTOSIS THROUGH DR3 AND DR4/5, 
CASPASE CASCADE IN APOPTOSIS, SIGNALING BY EGFR IN CANCER, TRANSCRIPTIONAL 
MISREGULATION IN CANCER, NF-KAPPA B SIGNALING, TRANSCRIPTIONAL ACTIVITY OF 
SMAD2/SMAD3:SMAD4, DNA REPAIR, SIGNAL TRANSDUCTION BY L1, TWEAK SIGNALING, 
MRNA PROCESSING 

18  17.94  4  WNT SIGNALING 
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5.3.3: Breast Cancer 
 

The optimal step size for clustering of BC data was reached with the maximal cluster 

size, at 4175 steps.  BC clusters described in Table 8 include all modules significantly 

enriched with miRNA targets and these modules are presented in Appendix B and in high 

resolution as Supplementary Files.  The network includes 5607 singletons, 457 pairs, 149 

triplets and 326 communities with greater than three nodes.  For the nine significant miRNA-

enriched modules, I visualized and evaluated these clusters and present the most relevant, 

interpretable clusters.  Module 379 (Figure 25) includes interactions between various growth 

factors, a number of which are associated with cancer, and the oncogene NOV.  In this 

module, IGFI interacts with several binding proteins and the oncogene NOV, and is a target 

of the highly differentially regulated miRNA miR-33b.  This growth factor is involved in 

growth and proliferation signaling and is suspected to alter cancer risk190.  IGFBP are IGF 

binding proteins help increase the half-life of IGF and target it to specific tissues.  IGFBP7, 

IGFBP5, IGFBP3 appear to function as tumor suppressors 210-213 and are associated with 

growth pathways and apoptosis in breast carcinomas.  Conversely, IGFBP’s can also increase 

risk due to proliferative activity.   
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MiRNA miR-223 intersects three modules, modules 292, 269 and 327 (Figure 28).  

Module 292 is associated with genes involved in T and B-cell signaling, cell transformation 

and invasion. miR-223 is co-regulated with PTAFR.  PTFAR is part of a family of G-protein 

coupled receptors, including RGS4, and is associated with inflammation and cell invasion232.  

PTAFR targets include GNAQ, GNA11 and GNA14, part of a family of guanine-nucleotide 

binding cell-surface receptors, and intercellular signaling pathways.  There is little literature 

describing GNA14, but other genes in this family, GNAQ and GNA11 have known sites of 

oncogenic mutations233.  ADRAI1B has the capacity to induce oncogenic transformation in 

cells and has been described as a protooncogene 234.  F2R is involved in the thrombotic 

response and has been shown to be necessary and sufficient to induce proliferation and 

invasion in a BC model in mice235.  Further, EDNRB plays a role in allowing cancer cells to 

evade the T-cell immune response236.   

Module 269 is largely associated with proliferation, cell adhesion, cell-cell 

communication, and T-cell and B-cell signaling.  The pi3-pi4 kinase family of proteins 

consists of phosphoinositide 3-kinases phosphorylate inositol lipids important in extracellular 

communication and cellular adhesion.  PIK3CG is a target of miR-223, is involved in 

cytotoxicity of natural killer cells, and has been found to inhibit growth in tumor cells237.  

PIK3CD is a target of miR-146a and is involved in proliferation, adhesion and migration of 

mast cells 238. In BC, PIK3CA affects cancer progression by interacting with PTEN and 

blocking cell-cycle arrest 239.  FYN is induced by Ras-PIK3-AKT signaling and has been 

found to be necessary for cancer progression, cell invasion and migration in several cancer 

types240.   Various other genes in this module have implications in cancer.  The DOK1, DOK2 

and DOK3 genes are involved in transcriptional regulation and proliferation and are 

associated with tumorigenesis241.  VAV1 and VAV2 are oncogenes involved in development, 

transcription, angiogenesis and cell signaling242,243.  BLNK is a component of the B cell 

receptor pathway and acts as a tumor suppressor244,245.  MAP4K1 is an upstream activator of 

signaling pathways, including MLK3, JNK, SERK1, SAPK, MEKK pathways 246,247.  

Interaction among PTPRC, ZAP70, LCP2 and SKAP1 is involved cell-cell communication 

and cell migration in immune cells and these interactions shown in more detail in BC module 

398 (Section 4.3.3, Figure 32).   

Genes in module 327 consists of CYBB and the NCF family of genes which are also 

involved in the T-cell response.  GNA14 is also a target of a miRNA gene in HCC module 

200 (Figure 34).   
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Table 9: Key Genes described in BC miRNA Modules  

BC       

NOV  nephroblastoma overexpressed  379  Protein likely to play a role in cell growth regulation.   

IGF1  insulin-like growth factor 1   379 The insulin-like growth factor is structurally and functionally related to insulin but has higher growth-promoting activity.

IGFBP1,-
3,-5,-7 

insulin-like growth factor binding 
protein 1,-3,-5,-7 

379  IGFBPs are members of the insulin-like growth factor (IGF)-binding protein (IGFBP) family. IGFBPs bind IGFs, regulate IGF 
availability in body fluids and tissue and modulate IGF binding to its receptors.  IGFBPS can inhibit or stimulate the growth 
promoting effects of the IGFs and modulate cell adhesion and prostacyclin production. 

IFGALS  insulin-like growth factor binding 
protein, acid labile subunit 

379  Serum protein that binds insulin-like growth factors, increasing their half-life and their vascular localization. Its production is 
stimulated by growth hormone and it is involved in receptor-ligand binding and cell adhesion. 

YES1  v-yes-1 Yamaguchi sarcoma viral 
oncogene homolog 1 

74 Non-receptor protein tyrosine kinase involved in the regulation of cell growth and survival, apoptosis, cell-cell adhesion, 
cytoskeleton remodeling, and differentiation.  Stimulation by receptor tyrosine kinases (RTKs) including EGRF, PDGFR, CSF1R 
and FGFR recruits YES1 to the phosphorylated receptor. Regulates the G1 phase, G2/M progression and cytokinesis. 

CSF1R  colony stimulating factor 1 receptor  74 Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of 
survival, proliferation and differentiation of hematopoietic precursor cells.  It promotes reorganization of the actin 
cytoskeleton, regulates cell adhesion and cell migration, and promotes cancer cell invasion. Phosphorylates PIK3R1, PLCG2, 
GRB2, SLA2 and CBL.  Activated CSF1R also mediates activation of the AKT1 signaling pathway, MAP kinases MAPK1/ERK2 
and/or MAPK3/ERK1, the SRC family kinases SRC, FYN and YES1 and STAT family members STAT3, STAT5A and/or STAT5B. . 

KIT  v-kit Hardy-Zuckerman 4 feline sarcoma 
viral oncogene homolog 

74  Tyrosine-protein kinase that acts as cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the 
regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, 
migration and function, and melanogenesis.  Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 
signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also 
transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes 
activation of STAT family members STAT1, STAT3, STAT5A and STAT5B.  Mutations in this gene are associated with 
gastrointestinal stromal tumors, mast cell disease, acute myelogenous lukemia, and piebaldism.  

MATK  megakaryocyte-associated tyrosine 
kinase 

74 Plays an important role in signal transduction of hematopoietic cells, regulates tyrosine kinase activity of SRC-family 
members and plays an inhibitory role in the control of T-cell proliferation.  May be involved in some cases of breast cancer. 

EPS15  epidermal growth factor receptor 
pathway substrate 15 

74 Protein is present at clatherin-coated pits and is involved in receptor-mediated endocytosis of EGF. This gene is rearranged 
with the HRX/ALL/MLL gene in acutemyelogeneous leukemias.  Involved in cell growth regulation, regulation of mitogenic 
signals and control of cell proliferation.  

ITCH  itchy E3 ubiquitin protein ligase  74  A member of the Nedd4 family of HECT domain E3 ubiquitin ligases that plays a role in erythroid and lymphoid cell 
differentiation and the regulation of immune responses.   Mediates antiapoptotic activity of EGFR through ubiquitination 
and proteasomal degradation of p15 BID. 

SH3GL1-3  SH3-domain GRB2-like 1, -2, -3  74  Implicated in endocytosis. May recruit other proteins to membranes with high curvature. 

ETV6  ets variant 6  22  Transcriptional repressor important in hematopoiesis and maintenance of the developing vascular network. Involved in a 
large number of chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. 

BCL6  B-cell CLL/lymphoma 6  22  A zinc finger transcription factor and contains an N-terminal POZ domain. This protein acts as a sequence-specific repressor 
of transcription, and has been shown to modulate the transcription of START-dependent IL-4 responses of B cells. 
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RUNX1T1  runt-related transcription factor 1; 
translocated to, 1 

22 A member of the myeloid translocation gene family which binds to histone deacetylases interacts with DNA-bound 
transcription factors to facilitate transcriptional repression. The t(8;21)(q22;q22) translocation is one of the most frequent 
karyotypic abnormalities in acute myeloid leukemia.  Can repress transactivation mediated by TCF12. 

HDAC3, -
4,-5,-9 

histone deacetylase 3, -4, -5,-9  22 Histone Deacetylases (HDACs) are a group of enzymes that catalyze the removal of acetyl groups from lysine residues in 
histones and non-histone proteins, which alters chromosome structure and affects transcription factor access to DNA. 
HDAC3 can also down-regulate p53 function and thus modulate cell growth and apoptosis and it is regarded as a potential 
tumor suppressor gene. HDACs play a critical role in transcriptional regulation, cell cycle progression, cell growth arrest, cell 
differentiation and death and this has led to substantial interest in HDAC inhibitors as possible antineoplastic agents. 

SIN3A  SIN3 transcription regulator homolog A  22  A transcriptional repressor that interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic 
activities.  Can repress transcription by tethering SIN3A to DNA, and in parallel with histone deacetylation. 

NCOR1  nuclear receptor corepressor 1  22  Mediates transcriptional repression by acting as part of a complex which promotes histone deacetylation and the formation 
of repressive chromatin structures which may impede the access of basal transcription factors 

ZBTB16  zinc finger and BTB domain containing 
16 

22 A member of the Krueppel C2H2-type zinc-finger protein family and encodes a zinc finger transcription factor that is 
involved in cell cycle progression, and interacts with a histone deacetylase.  Instances of gene rearrangement at this locus 
have been associated with acute promyelocytic leukemia (APL) 

MEF1D  myocyte enhancer factor 2D  22 Transcriptional activator which binds specifically to MEF2.  Plays diverse roles in the control of cell growth, survival and 
apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription 

KLF4  Kruppel-like factor 4  22 Transcription factor that plays an important role in maintaining embryonic stem cells.  Involved in cellular differentiation of 
epithelial contributes to the down-regulation of p53/TP53 transcription 

MEF1C  myocyte enhancer factor 2C  22  Transcription activator which binds specifically to MEF2 element in the regulatory regions of many muscle-specific genes. 
Controls cardiac morphogenesis and myogenesis, and is involved in vascular development. 

PTAFR  platelet-activating factor receptor  292  A G-protein-coupled receptor for platelet-activating factor (PAF). PAF is a phospholipid that plays a significant role in 
oncogenic transformation, tumor growth, angiogenesis, metastasis, and pro-inflammatory processes. Binding of PAF to the 
PAF-receptor (PAFR) stimulates numerous signal transduction pathways including phospholipase C, D, A2, mitogen-
activated protein kinases (MAPKs), and the phosphatidylinositol-calcium second messenger system. 

RGS4  regulator of G-protein signaling 4  292 Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their 
inactive GDP-bound form.  

GNA11,-
14, -Q 

guanine nucleotide binding protein (G 
protein), alpha -11 -14, -Q 

292 Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane 
signaling systems 

ADRAI1B  adrenoceptor alpha 1B  292 Alpha-1-adrenergic receptors (alpha-1-ARs) are members of the G protein-coupled receptor superfamily. They activate 
mitogenic responses and regulate growth and proliferation of many cells. There are 3 alpha-1-AR subtypes: alpha-1A, -1B 
and -1D, all of which signal through the Gq/11 family of G-proteins and different subtypes show different patterns of 
activation. This gene encodes alpha-1B-adrenergic receptor, which induces neoplastic transformation when transfected into 
NIH 3T3 fibroblasts and other cell lines. Thus, this normal cellular gene is identified as a protooncogene.  

PTGIR  prostaglandin I2 (prostacyclin) receptor  292  The protein encoded by this gene is a member of the G-protein coupled receptor family 1 and has been shown to be a 
receptor for prostacyclin. Prostacyclin, the major product of cyclooxygenase in macrovascular endothelium, elicits a potent 
vasodilation and inhibition of platelet aggregation through binding to this receptor. 

TBXA2R  thromboxane A2 receptor  292  This gene encodes a member of the G protein-coupled receptor family. The protein interacts with thromboxane A2 to 
induce platelet aggregation and regulate hemostasis. 
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AGTR1  angiotensin II receptor, type 1  292 Angiotensin II is a potent vasopressor hormone and a primary regulator of aldosterone secretion. It is an important effector 
controlling blood pressure and volume in the cardiovascular system. 

EDNRB  endothelin receptor type B  292  The endothelinB receptor (ETB receptor) is a member of the endothelin receptor group of G-protein-coupled receptors 
located primarily in vascular endothelial cells where they play a role in vasoconstriction, vasodilation, bronchoconstriction 
and cell proliferation. 

CYBB  cytochrome b-245, beta polypeptide  327  Critical component of the membrane-bound oxidase of phagocytes that generates superoxide. Also functions as a voltage-
gated proton channel that mediates the H(+) currents of resting phagocytes. Participates in the regulation of cellular pH. 

PIK3CA,-
D,-G 

phosphatidylinositol-4,5-bisphosphate 
3-kinase, catalytic subunit gamma 

269  PI 3-Kinases (phosphoinositide 3-kinases, PI3Ks) are family of lipid kinases capable of phosphorylating the 3'OH of the 
inositol ring of phosphoinositides. They are responsible for coordinating a diverse range of cell functions including 
proliferation, cell survival, degranulation, vesicular trafficking and cell migration.  

FCGR2A, -
3A 

Fc fragment of IgG, low affinity IIIa, 
receptors 

269  Receptor for the Fc region of IgG that mediates antibody-dependent cellular cytotoxicity (ADCC) and other antibody-
dependent responses, such as phagocytosis 

PTEN  phosphatase and tensin homolog  269  Tumor suppressor that acts as a lipid phosphatase and as a dual-specificity protein phosphatase, dephosphorylating 
tyrosine-, serine- and threonine-phosphorylated proteins.  Antagonizes the PI3K-AKT/PKB signaling thereby modulating cell 
cycle progression and cell survival. Dephosphorylates tyrosine-phosphorylated focal adhesion kinase and inhibits cell 
migration and integrin-mediated cell spreading.   

FYN  FYN oncogene related to SRC, FGR, YES 269 A member of the protein-tyrosine kinase oncogene family implicated in the control of cell growth. Involved in the regulation 
of cell adhesion and motility through phosphorylation of CTNNB1 (beta-catenin) and CTNND1 (delta-catenin).  

DOK1, -2, 
-3 

docking protein 2, 56kDa  269 DOK proteins are enzymatically inert adaptor or scaffolding proteins that provide a docking platform for the assembly of 
multimolecular signaling complexes. DOK1 is a negative regulator of the insulin signaling and integrin activation DOK2 may 
modulate the cellular proliferation induced by IL-4, as well as IL-2 and IL-3, modulating Bcr-Abl signaling and EGF-stimulated 
MAP kinase activation.  DOK3 is a negative regulator of JNK signaling and may modulate ABL1. 

VAV3  vav 2 guanine nucleotide exchange 
factor 

269 Guanine nucleotide exchange factor for the Rho family of Ras-related GTPases.  Its recruitment by EPHA2 is critical for 
EFNA1-induced RAC1 GTPase activation and vascular endothelial cell migration and assembly.  Important in angiogenesis. 

PTPRC  protein tyrosine phosphatase, receptor 
type, C 

269,  Protein tyrosine phosphatase that regulates a variety of cellular processes including cell growth, differentiation, mitosis, and 
oncogenic transformation. PTPRC has been shown to be key regulator of T- and B-cell antigen receptor signaling. Upon T-
cell activation, recruits and dephosphorylates SKAP1 and FYN. Dephosphorylates and modulates LYN activity. 

ZAP70  zeta-chain (TCR) associated protein 
kinase 70kDa 

269,   Protein tyrosine kinase that plays a role in T-cell development and lymphocyte activation. This enzyme functions in the 
initial step of TCR-mediated signal transduction in combination with the Src family kinases, Lck and Fyn.   

SKAP2  src kinase associated phosphoprotein 2  269,   A src family kinase which  is an adaptor protein that is thought to play an essential role in the src signaling pathway  

BLNK  B-cell linker  269,   Cytoplasmic linker or adaptor protein that plays a critical role in B cell function and development and bridges SYK kinase to a 
multitude of signaling pathways.  Deficiency in this protein has also been shown in pre-B acute lymphoblastic leukemia.  
Plays a role in the activation of ERK/EPHB2, MAP kinase p38 and JNK, AP1, NF-kappa-B and NFAT,  PLCG1, PLCG2 and Ca(2+). 

MAP4K1  mitogen-activated protein kinase 
kinase kinase kinase 1 

269  May play a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway. May play 
a role in hematopoietic lineage decisions and growth regulation 

BLK  B lymphoid tyrosine kinase  269  Nonreceptor tyrosine-kinase of the src family of proto-oncogenes that are typically involved in cell proliferation and 
differentiation. Plays a role in B-cell receptor signaling and B-cell development. It also stimulates insulin synthesis and 
secretion in response to glucose and enhances the expression of several pancreatic beta-cell transcription factors. 
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Module 44 interacts with module 398 via miR-218 (Figure 32). Module 44 shows 

interaction among genes involved in T-cell signaling, histone and chromatin modification, 

and tumor suppressor genes including TP53, BRCA1 and FHL.  FHL is targeted by miR-218, 

associates with the BRCA1 tumor suppressor259, and has been shown to be associated with 

anti-proliferation and anti-apoptotic effects in liver cancer260.   PBK is commonly upregulated 

in BC and thought to influence tumor progression via histone modification261.   

In module 398, miR-218 interacts with protein tyrosine kinase PTPRC (CD45), which 

is known to mediate JAK/STAT signalling and is a genetic risk factor for hepatitis C 

infections262,263, which lead to higher incidence of HCC264.  Together, PTPRC, ZAP70, LCP2 

and SKAP1 form a cluster of key genes in T-cell signaling, cell-cell communication and 

cellular adhesion265,266,267.  The role of SKAP1 in HCC is not well documented and this gene 

is an interesting candidate for further study.  SMARCD1, which is involved in chromatin 

remodeling, is also shown to be associated with HCC in the Burchard study11.  Module 398 

overlaps with PTPRC, ZAP70 and LCP interactions in BC module 269 (Figure 28).   
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MiRNA-183 co-regulates genes in modules 583, 186 and 200 (Figure 33).  Module 

583 presents interactions among the CYP family of detoxification and carcinogen-

metabolizing genes and shows correlations between miR-183 and CYP1A2, and miR-196b 

and CYP4A11.  CYP4A11 is a major fatty-acid omega- hydroxylase active in the liver 277,278 

and CYP4A22 polymorphisms have been found to be associated with HCC 279.  Module 186 

similarly shows interaction among several miRNAs and detoxifying and carcinogen-

metabolizing genes.  CYP3A4 is a target of miRNAs miR-183 and miR-96, which have been 

found to co-regulate a cluster in prostate cancer280; and variants of CYP3A4 have been 

associated with tumor aggressiveness281.  In module 200, the target of miR-183 and miR-96, 

and miR-7 is GNA14280.  GNA14 also plays a central role in BC module 292, although this 

gene is not well described in the literature.  However, upregulated GNA14 affects the activity 

of PTGER3282 and HTR2B283, which have proliferative effects in cells and are involved in 

liver regeneration283; and CYSLTR1 which is involved in fatty acid metabolism and 

inflammation284.  Such interaction among clusters reveals the importance of the CYP 

detoxification genes, particularly CYP1A2, which is highly differentially regulated and 

known to be associated with cancer, and candidate cancer genes CYP4A22, CYP4A11 and 

GNA14.  The cluster also highlights mir-183, mir-96, and miR-196b as potential therapeutic 

targets in HCC.  
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response287.  This module also includes GHR, a target of miR-222, which is involved in 

development and growth and interacts with interleukin signaling and STAT signaling genes.  

Together, the genes in these interacting modules are related to the immune response, 

transcription and growth signaling, and cell cycle control.  Among these interactions, LIFR 

and OSMR are not well researched for their role in cancer, but these genes and their 

interaction are promising candiates for further cancer-based research. 

Module 318 shows the interaction of FBP1 with several PFKFB proteins, which play 

an important role in glycolysis and gluconeogenesis288,289.  Interactions with this enzyme help 

to maintain a steady metabolic state, and to maintain an anaerobic source of metabolism for 

tumor cells.  Depletion of PFKFB3 has been shown to decrease tumor size, and it is believed 

to be responsible for maintaining glycolytic activity for cancer cells, reduced cancer cell 

proliferation290, and the gene is a possible target for therapeutic intervention 289.   

Module 348 (Appendix B) shows NGFR as a hub protein interacting with FSCN1 and 

ARHGD1B, both involved in regulation of the actin cytoskeleton, influencing capacity of 

cells for metastasis.  NGFR is a regulator of apoptosis and has been shown to play a key role 

in the differentiation and proliferation of hepatocytes in the diseased liver 291.  In this module, 

it is associated with three miRNAs, miR-185, miR-186 and miR-191. 
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Table 10: Key Genes described in HCC miRNA Modules 

HCC       

THBS1  thrombospondin 1  309  An adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix interactions. Binds to fibrinogen, fibronectin, laminin, 
type V collagen and integrins alpha-V/beta-1 and plays roles in platelet aggregation, angiogenesis, and tumorigenesis. 

FN1  fibronectin 1  309 Fibronectin is a glycoprotein involved in cell adhesion and migration processes including embryogenesis, wound healing, 
blood coagulation, host defense, and metastasis. 

SPARC  secreted protein, acidic, cysteine-rich 
(osteonectin) 

309 This protein regulates cell growth through interactions with the extracellular matrix and cytokines. Binds calcium and 
copper, several types of collagen, albumin, thrombospondin, PDGF and cell membranes.   It is associated with tumor 
suppression and metastasis based its effects on cell shape which can promote tumor cell invasion. 

PDGFRA  platelet-derived growth factor 
receptor, alpha polypeptide 

567 Tyrosine-protein kinase that acts as a cell-surface receptor for PDGFA, PDGFB and PDGFC and plays an essential role in the 
regulation of embryonic development, cell proliferation, survival and chemotaxis. 

MET  met proto-oncogene (hepatocyte 
growth factor receptor) 

567  Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding 
to hepatocyte growth factor/HGF ligand. Regulates processes including proliferation, morphogenesis and survival. 

EGFR/ 
ErbB1-4 

v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 2, -3, -4, 

567  The ErbB family includes: EGFR (ErbB1, HER1), ErbB2 (HER2), ErbB3 (HER3) and ErbB4 (HER4).  Involved in a signaling 
cascade that drives many cellular responses, including changes in gene expression, cytoskeletal rearrangement, anti-
apoptosis and increased cell proliferation.  Amplification of these genes have been reported in numerous cancers. 

FGFR2  fibroblast growth factor receptor 2  567  Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays an essential role in cell 
proliferation, differentiation, migration and apoptosis, and in the regulation of embryonic development. Mutations in FGFR 
genes may cause of several developmental disorders, and upregulation of FGFR may lead to cell transformation and cancer.     

KDP  WNK lysine deficient protein kinase 1  567  Serine/threonine kinase that plays a key role in electrolyte homeostasis, cell signaling, survival, and proliferation 

SH3GL2  SH3-domain GRB2-like 2  567  Implicated in synaptic vesicle endocytosis. May recruit other proteins to membranes with high curvature. 

ZEB2  zinc finger E-box binding homeobox 2  232 A member of the Zfh1 family of 2-handed zinc finger/homeodomain proteins that functions as a DNA-binding transcriptional 
repressor and interacts with activated SMADs. Represses transcription of E-cadherin. 

ZEB1  zinc finger E-box binding homeobox 1  232  Zinc finger transcription factor that inhibits interleukin-2 (IL-2) gene expression and regulates activity of ATP1A1. Represses 
E-cadherin and induces an epithelial-mesenchymal transition (EMT) by recruiting SMARCA4/BRG1. Represses BCL6 
transcription with corepressor CTBP1.  Promotes tumorigenicity by repressing stemness-inhibiting miRNAs 

CTBP1  C-terminal binding protein 1  232  A protein that binds to the C-terminus of adenovirus E1A proteins. This phosphoprotein is a transcriptional repressor and is 
involved in cellular proliferation. It can form a complex including CTBP2 that regulates gene expression during development. 

MECOM  MDS1 and EVI1 complex locus  232  A transcriptional regulator and oncoprotein that may be involved in hematopoiesis, apoptosis, development, differentiation 
and proliferation. Interacts with CTBP1, SMAD3, CREBBP, KAT2B, MAPK8, and MAPK9. May undergo translocation with the 
AML1 gene, resulting in onset of leukemia.  May play a role in apoptosis through regulation of JNK and TGF-beta signaling.  

SMAD4  SMAD family member 4  44  A member of the Smad family of signal transduction proteins which are phosphorylated and activated by transmembrane 
serine-threonine receptor kinases in response to TGF-beta signaling. These genes forms complexes with other activated 
Smad proteins, which then regulate the transcription of target genes. Mutations or deletions in this gene are associated 
with pancreatic cancer, juvenile polyposis syndrome, and hereditary hemorrhagic telangiectasia syndrome. 

TGFBR2  transforming growth factor, beta 
receptor II 

44  A member of the Ser/Thr protein kinase family and the TGFB receptor subfamily that acts to phosphorylate proteins, which 
regulate the transcription genes related to cell proliferation. Mutations in this gene have been associated with Marfan 
Syndrome, Loeys-Deitz Aortic Aneurysm Syndrome, and the development of various types of tumors. 
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TP53  tumor protein p53  44 The tumor protein p53 responds to diverse cellular stresses to regulate target genes that induce cell cycle arrest, apoptosis, 
senescence, DNA repair, or changes in metabolism.  p53 mutants that frequently occur in human cancers fail to bind the 
consensus DNA binding site, and hence cause the loss of tumor suppressor activity. Whilst the activation of p53 often leads 
to apoptosis, p53 inactivation facilitates tumor progression; inactivating p53 mutations occur in over 50% of cancers. 

BRCA1  breast cancer 1, early onset  44  A nuclear phosphoprotein that plays a role in maintaining genomic stability, and it also acts as a tumor suppressor. The 
encoded protein combines with other tumor suppressors, DNA damage sensors, and signal transducers to form a large 
multi-subunit protein complex known as the BRCA1-associated genome surveillance complex (BASC). BRCA1 mutations are 
responsible for approximately 40% of inherited breast cancers and more than 80% of inherited breast and ovarian cancers.  

FHL1  four and a half LIM domains 1  44 A member of the four-and-a-half-LIM-only protein family.  Expression of these family members occurs in a cell- and tissue-
specific mode and these proteins are involved in many cellular processes 

CASP3, -7  caspase 7, apoptosis-related cysteine 
peptidase 

44 A member of the cysteine-aspartic acid protease (caspase) family.  Sequential activation of caspases plays a central role in 
the execution-phase of cell apoptosis. 

CDC25B  cell division cycle 25 homolog B  44  Tyrosine protein phosphatase which functions as an inducer of mitotic progression. Required for G2/M phases of the cell 
cycle progression and abscission during cytokinesis in an ECT2-dependent manner. Directly dephosphorylates CDK1 and 
stimulates its kinase activity. CDC25B has oncogenic properties, although its oncogenic role is not well-understood.  

CCND1  cyclin D1  44  This cyclin forms a complex with and functions as a regulatory subunit of CDK4 or CDK6, whose activity is required for cell 
cycle G1/S transition. This protein has been shown to interact with tumor suppressor protein Rb and its expression is 
regulated positively by Rb. Mutations, amplification and overexpression of this gene  are observed frequently in tumors. 

CSNK2A1  casein kinase 2, alpha 1 polypeptide  44  Subunit of a serine/threonine-protein kinase complex that regulates numerous cellular processes, such as cell cycle 
progression, apoptosis and transcription, and viral infection. CSNK2A1 is required for p53/TP53-mediated apoptosis. 
Phosphorylates CASP9 and CASP2, NOL3; RNA polymerases; and numerous transcription factors including NF-kappa-B, 
STAT1, CREB1, IRF1/2, ATF1, SRF, MAX, JUN, FOS, MYC and MYB. Phosphorylates Hsp90 and its co-chaperones FKBP4 and 
CDC37. Regulates Wnt signaling by phosphorylating CTNNB1 and LEF1. Phosphorylates proteins involved in viral life cycles.. 

UBB  ubiquitin B 
44 

Ubiquitin is a highly conserved protein required for intracellular protein degradation of proteins. Ubiquitin also binds to 
histone H2A but does not cause histone H2A degradation, suggesting involvement in regulation of gene expression.  

MDM4  Mdm4 p53 binding protein homolog  44 Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis.  

SMARCD1  SWI/SNF related, matrix associated, 
actin dependent regulator of 
chromatin, subfamily d, member 1 

44  A member of the SWI/SNF family of proteins, whose members display helicase and ATPase activities and which are thought 
to regulate transcription of certain genes by altering their chromatin structure. 

MS4A1  membrane-spanning 4-domains, 
subfamily A, member 1 

44  This protein may be involved in the regulation of B-cell activation and proliferation 

SLA  Src-like-adaptor  398  Adapter protein which negatively regulates positive selection and mitosis of T-cells. May link signaling proteins such as 
ZAP70 with CBL, leading to a CBL dependent degradation of signaling proteins 

PTPRC  protein tyrosine phosphatase, receptor 
type, C 

398  Protein tyrosine phosphatase that regulates a variety of cellular processes including cell growth, differentiation, mitosis, and 
oncogenic transformation. PTPRC has been shown to be key regulator of T- and B-cell antigen receptor signaling. Upon T-
cell activation, recruits and dephosphorylates SKAP1 and FYN. Dephosphorylates and modulates LYN activity. 

ZAP70  zeta-chain (TCR) associated protein 
kinase 70kDa 

398 Protein tyrosine kinase that plays a role in T-cell development and lymphocyte activation. This enzyme functions in the 
initial step of TCR-mediated signal transduction in combination with the Src family kinases, Lck and Fyn.  

LCP2  lymphocyte cytosolic protein 2   398 Involved in T-cell antigen receptor mediated signaling 

SKAP2  src kinase associated phosphoprotein 2  398  Src family kinases that acts as an adaptor protein and is thought to play a key role in the src signaling pathway. 
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BLNK  B-cell linker  398 Cytoplasmic linker or adaptor protein that plays a critical role in B cell function and development and bridges SYK kinase to a 
multitude of signaling pathways.  Deficiency in this protein has also been shown in pre-B acute lymphoblastic leukemia.  
Plays a role in the activation of ERK/EPHB2, MAP kinase p38 and JNK, AP1, NF-kappa-B and NFAT,  PLCG1, PLCG2 and Ca(2+). 

CCNE1  cyclin E1  389 This cyclin forms a complex with and functions as a regulatory subunit of CDK2, whose activity is required for cell cycle G1/S 
transition.  Overexpression of this gene, which results in chromosome instability has been observed in many tumors. 

CDKN1B  cyclin-dependent kinase inhibitor 1B 
(p27, Kip1) 

389  Important regulator of cell cycle progression and G1 arrest. Potent inhibitor of cyclin E- and cyclin A-CDK2 complexes and is 
involved in the assembly, stability, and modulation of CCND1-CDK4 complex activation.  Degradation of this protein, 
triggered by CDK-dependent phosphorylation and subsequent ubiquitination by SCF complexes, is required for the cellular 
transition from quiescence to the proliferative state. 

FOXM1  forkhead box M1  389 Transcriptional factor regulating the expression of cell cycle genes essential for DNA replication and mitosis. Plays a role in 
the control of cell proliferation. Plays also a role in DNA breaks repair participating in the DNA damage checkpoint response 

CYP4A11, 
-22 

cytochrome P450, family 4, subfamily 
A, polypeptide 111 

583  A member of the cytochrome P450 superfamily of enzymes which catalyze many reactions involved in drug metabolism and 
synthesis of cholesterol, steroids and other lipids and hydroxylation of fatty acids. CYP4A11 oxidizes arachidonic acid to 20-
HETE, while CYP4A22 shows no activity towards arachidonic acid and prostaglandin A1. 

CYP2E1  cytochrome P450, family 2, subfamily E, 
polypeptide 1 

583  A member of the cytochrome P450 superfamily of enzymes which catalyze many reactions involved in drug metabolism and 
synthesis of cholesterol, steroids and other lipids. Expression of this protein is induced by ethanol, the diabetic state, and 
starvation. The enzyme metabolizes both endogenous substrates, such as ethanol, acetone, and acetal, as well as 
exogenous substrates including benzene, carbon tetrachloride, ethylene glycol, and nitrosamines which are premutagens 
found in cigarette smoke. This enzyme is involved in processes as gluconeogenesis, hepatic cirrhosis, diabetes, and cancer.  
Bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms. 

CYP1A2  cytochrome P450, family 1, subfamily 
A, polypeptide 2 

583 A member of the cytochrome P450 superfamily of enzymes which catalyze many reactions involved in drug metabolism and 
synthesis of cholesterol, steroids and other lipids. Expression of this protein is induced by some polycyclic aromatic 
hydrocarbons (PAHs), some of which are found in cigarette smoke. The enzyme is able to metabolize some PAHs to 
carcinogenic intermediates. Other xenobiotic substrates for this enzyme include caffeine, aflatoxin B1, and acetaminophen 

CYP3A4  cytochrome P450, family 3, subfamily 
A, polypeptide 4 

183  A member of the cytochrome P450 superfamily of enzymes that catalyze many reactions involved in drug metabolism and 
synthesis of cholesterol, steroids and other lipids.  Expression of this protein is induced by glucocorticoids and some 
pharmacological agents. This enzyme is involved in the metabolism of approximately half the drugs in use today, including 
acetaminophen, codeine, cyclosporin A, diazepam and erythromycin. The enzyme also metabolizes carcinogens.  

CYP2A6  cytochrome P450, family 2, subfamily 
A, polypeptide 6 

186  A member of the cytochrome P450 superfamily of enzymes that catalyze many reactions involved in drug metabolism and 
synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is 
induced by phenobarbital. The enzyme is known to hydroxylate coumarin, and also metabolizes nicotine, aflatoxin B1, 
nitrosamines, and some pharmaceuticals inlcuding the anti-cancer drugs cyclophosphamide and ifosphamide.  

CYP2A7  cytochrome P450, family 2, subfamily 
A, polypeptide 7 

186  A member of the cytochrome P450 superfamily of enzymes that catalyze many reactions involved in drug metabolism and 
synthesis of cholesterol, steroids and other lipids.  It oxidizes compounds including steroids, fatty acids, and xenobiotics. 

CYP1A1  cytochrome P450, family 1, subfamily 
A, polypeptide 1 

186  A member of the cytochrome P450 superfamily of enzymes that catalyze many reactions involved in drug metabolism and 
synthesis of cholesterol, steroids and other lipids. Expression of this protein is induced by some polycyclic aromatic 
hydrocarbons (PAHs), some of which are found in cigarette smoke and it is able to metabolize some PAHs to carcinogenic 
intermediates. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.  

GNA14  guanine nucleotide binding protein (G 
protein), alpha 14 

186 Guanine nucleotide-binding proteins (G proteins) are modulators or transducers in various transmembrane signaling 
systems 
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SULT1E1  sulfotransferase family 1E, estrogen-
preferring, member 1 

186 Sulfotransferase enzymes catalyze the sulfate conjugation of many hormones, neurotransmitters, drugs, and xenobiotic 
compounds. This protein transfers a sulfo moiety to and from estrone, which may control levels of estrogen receptors. 

UGT2B7, 
-10, -11 

UDP glucuronosyltransferase 2 family, 
polypeptide B10, -11 

186  UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and 
endogenous compounds. 

FBP1  fructose-1,6-bisphosphatase 1  318  Fructose-1,6-bisphosphatase 1, a gluconeogenesis regulatory enzyme, catalyzes the hydrolysis of fructose 
1,6-bisphosphate to fructose 6-phosphate and inorganic phosphate 

PFKFB1,-
2,-3,-4 

6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 1,-2,-3,-4 

318  Family of bifunctional 6-phosphofructo-2-kinase:fructose-2,6-biphosphatase enzymes involved in the synthesis and 
degradation of fructose 2,6-bisphosphate 

PFKM, -L  phosphofructokinase, liver, muscle  318 Phosphofructokinase isozymes catalyzes the phosphorylation of D-fructose-6-phosphate to fructose-1,6-bisphosphate.

LIFR  leukemia inhibitory factor receptor 
alpha 

92 Cytokine receptor that interacts with gp130 to form a complex that mediates the action of the leukemia inhibitory factor, a 
cytokine involved in cellular differentiation, proliferation and survival. May have a common pathway with IL6ST.  

OSM  oncostatin M  92  A member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and 
interleukin 6. This gene encodes a growth regulator which inhibits the proliferation of a number of tumor cell lines.  

GHR  growth hormone receptor  92  A member of the type I cytokine receptor family, which is a transmembrane receptor for growth hormone.  

STAT3, -4  signal transducer and activator of 
transcription 3, -4 

92 Members of the STAT family of transcription factors. In response to cytokines and growth factors, STAT family members are 
phosphorylated by receptor associated kinases, and act as transcription activators that mediate the expression of a various 
genes in response to cell stimuli, and play a key role in cellular processes such as cell growth, differentiation and apoptosis.  

PTPN2  protein tyrosine phosphatase, non-
receptor type 2 

92 A protein tyrosine phosphatase that regulates a variety of cellular processes including cell growth, differentiation, mitotic
cycle, and oncogenic transformation. Substrates include EGFR and Shc, suggesting a role in growth factor cell signaling. 

CSF3R,-
2RA, 2RB 

colony stimulating factor 3, -2A, -2B 
receptor (granulocyte) 

92 Receptors for granulocyte colony-stimulating factor (CSF3), essential for granulocytic maturation.  They play a key role in the 
proliferation, differientation and survival of neutrophilic cells. They may also function in cell adhesion or recognition events. 

EPOR  erythropoietin receptor  92 Erythropoietin cytokine receptor.  Mediates erythropoietin-induced erythroblast proliferation and differentiation and 
erythroid cell survival. Upon binding, this receptor activates Jak2 which activates pathways including: Ras/MAP kinase, 
phosphatidylinositol 3-kinase and STAT transcriptions. Dysregulation of this gene may affect the growth of certain tumors. 

IL2RB  interleukin 2 receptor, beta  92 Receptor for interleukin-2 involved in receptor mediated endocytosis and transduction of mitogenic signals.

IRF9  interferon regulatory factor 9  92  Transcription regulatory factor that mediates signaling by type I IFNs (IFN-alpha and IFN-beta). Following type I IFN binding 
to cell surface receptors, Jak kinases (TYK2 and JAK1) are activated, leading to tyrosine phosphorylation of STAT1 and STAT2. 

IL15RA  interleukin 15 receptor, alpha  92  High-affinity receptor for interleukin-15.  Signal transduction involves STAT3, STAT5, STAT6, JAK2 (By similarity) and SYK.  
This receptor is reported to enhance cell proliferation and expression of apoptosis inhibitor BCL2L1/BCL2-XL and BCL2. 

IL6ST  interleukin 6 signal transducer  92 A signal transducer shared by many cytokines, including interleukin 6 (IL6), ciliary neurotrophic factor (CNTF), leukemia 
inhibitory factor (LIF), and oncostatin M (OSM). Knockout studies suggest it plays a key role in regulating myocyte apoptosis. 

FSCN1  fascin homolog 1, actin-bundling 
protein 

348 A member of the fascin family of actin-binding proteins that plays a critical role in cell migration, motility, adhesion and 
cellular interactions. Expression of this gene is known to be regulated by several miRNAs, and overexpression of this gene 
may play a role in the metastasis of multiple types of cancer by increasing cell motility. 

ARHGDIB  Rho GDP dissociation inhibitor (GDI) 
beta 

348  Members of the Rho (or ARH) protein family and other Ras-related small GTP-binding proteins  are involved in diverse 
cellular events, including cell signaling, proliferation, cytoskeletal organization, and secretion 

NGFR  nerve growth factor receptor  348  This receptor can bind to NGF, BDNF, NT-3, and NT-4 and can mediate cell survival and cell death of neural cells.  It is an 
oncogene commonly mutated in cancers. 
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Table 11. Significant MicroRNAs and their Targets 

 
 

 
 
 

5.3.5: Overlap with other Studies 
 

To consider the extent to which my approach independently reproduced previous 

findings, I search for overlap of my and those of previous studies.  I compare these results to 

the original studies that produced the HCC and BC coexpression data used in this analysis.  

Burchard et al.11 study a training set of 96 matched samples and test sets of 180 and 40 

samples.  Other miRNAs that are highly differentially regulated include miR-139, miR-99a, 

miR-10a, miR-199a/miR-199a*, miR-450, miR-378, miR-125b, miR-214, miR-422b, miR-424, 

miR-451, and miR-101.  They find miR-122 expression positively correlated with 

mitochondrially localized proteins and metabolic functions including fatty acid metabolism, 

mircoRNA target module id

Breast Cancer

miR-33b IGF1 379

miR-770 YES1 74

miR-577 ETV6 22

miR-934 TP53BP2 63

miR-223 PTAFR, CYBB, PIK3CG 292, 327, 269

miR-146a PIK3CD 269

Hepatocellular Carcinoma
miR-34b THBS1 309

miR-184 PDGFRA 567

miR-219, miR-107 ZEB2 232

miR-382 PTGIS 343

miR-218 PTPRC, FHL2 398, 218

miR-22 MYBL2 389

miR-96 CYP2D6 186

miR-196b CYP4A11 583

miR-204 CLDN2 650

miR-301 UGT2B7 186

miR-222 FBP1 318

miR-151 FBP1 343

miR-128, miR-339, miR-93, 
miR-152 LIFR 92

miR-222 GHR 92

miR-194, miR-448, miR-142 PDE1A 582

miR-186, miR-185, miR-191 NGFR 348

miR-183 CYP1A2, GNA14, CYP3A4 583, 200, 186

miR-7 GNA14 200
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and valine, leucine and isoleucine degradation.  miR-122 has been found to be under-

expressed in HCC and the miRNA is associated with metabolic function in tumors and HCC 

metastasis 292-294.  They validate putative direct targets of miRNA-122: SMARCD1, MAP3K3, 

and CAT-1, which were reduced with increased expression of miRNA-122; while putative 

secondary target genes, PPARGC1A, and SDH subunits A and B, were increased with 

decreased expression of miRNA-122.  The most connected secondary target was PPARGC1A, 

with 27 functional similarities, including MED1, SMARCD1, LCMT1, PPP1CC, ATF4, 

MAP3K3, and MAPKAP2.  Dysregulation of normal mitochondrial functions may contribute 

to cancer metabolism and hepatocarcinogenesis, as the relationship between mitochondrial 

dysfunction and cancer is well documented295.  SMARCD1 stimiulates fatty-acid oxidation 

with PPARGC1A, also proposed to be a primary target of miR-122.  Other proposed links 

with miR-122 include CAT-1, Cyclin G1 and N-myc which were not reproducible, and BCl-w 

which was found in the BC modules.  Only the target SMARCD1 was among the enriched 

clusters in HCC and was reproduced using the Walktrap approach.  However, related 

metabolic functions isolated by Burchard were highly enriched in HCC modules 583 and 343. 

Buffa et al.12 analyze coordinated expression of prognostic miRNAs and predicted 

target genes in 207 early-invasive cancers.  They integrate mRNA and miRNA data to 

elucidate miRNA function in vivo and to identify interactions between miRNAs and targeted 

mRNAs for enhanced marker and therapeutic discovery.  They evaluated predicted targets 

and their statistical significance to identify the following prognostic miRNAs: miR-767-3p, 

miR-128a, miR-769-3, and miR-135a in ER+ samples; miR-27b, miR-144, miR-210, miR-342, 

miR-150 and miR-30c in ER- samples; and miR-29c, miR-642 and miR-548d in all samples.  

The targets are implicated in pathways that play important roles in tumor growth and 

metastasis; altered pathways represent activity in apoptosis, FGF receptor signaling, PTEN 

and FOX01, tumor repressors, glutamate receptors, the Wnt pathway, immunity, proliferation, 

glycolysis, DNA repair, mitochondrial respiration, notch signaling, map kinase and JNK 

signaling.  Most of these pathways were also enriched in the Walktrap modules.  miR-210 

targets the cited study include ISCU, CBX7 and IGF1R.  IGF1 was a hub and a direct target 

of miR-33b in the Walktrap modules. I found miR-128 and miR-7 to be enriched in the HCC 

data, but not in the BC data; and miR-150 is among the miRNAs enriched in the BC clusters 

and is associated with immune functions. 

Liu et al. 296 investigate miRNAs as alternate biomarkers to detect early-stage HCC.  

They find miR-15b and miR-130b to perform very well as predictive serum biomarkers, better 

than the state of the art method using AFP as a biomarker. MiRNAs can serve as valuable 
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biomarkers, as different cancer types have distinct miRNA expression profiles, and miRNA 

expression levels may be reliably detected in plasma or serum with high stability.  However, 

miR-15b and miR-130 did not appear in the Walktrap list of miRNAs associated with HCC, 

miR-15b, -21, -130b, -183, -224 and -301 were found to be consistently highly expressed in 

all HCC samples.  miR-301 and miR-183 were also reproduced in the Walktrap analysis.  

Among genes found to be regulated by these miRNAs are E2F, RUNX3 and Bim.  RUNX1 

(HCC module 301) and RUNX1T1 (HCC module 22), are members of significant Walktrap 

modules, and these transcription factors bind to the same type of Runt DNA-binding domain 

as RUNX3. 

To summarize, I identified candidate genes including miRNAs, their targets and 

related genes that overlap with genes in the cancer studies that produced the data.  The 

reproducible findings help validate these results.  However, the overlap was not extensive, 

and many genes highlighted in Walktrap modules were not discussed in the Burchard and 

Buffa investigations.  This is, in part, expected, and in some instances, may be explained by 

the fact that I applied matching criteria based on biological filters and significance values that 

filtered these matches.  Further, cancers studies, and in particular, miRNA studies, yield 

varied independent findings as revealed by review of the literature.  This may be a function of 

the large number of combinations and permutations of miRNA-mRNA pairings and the 

complexity of such gene regulation. 

 
 
 

5.3.6: Overlap with mRNA-only Analysis 
 

Signficant miRNA-cancer modules were also compared with the modules identified in 

Chapter 4 using independent BC and HCC datasets (datasets BC: GSE7390, HCC: 

GSE14520, CC: GSE8671), to validate the miRNA findings against experiments using only 

miRNA data (HCC: GSE22850 and BC: GSE22058).  Considerable overlap was evident 

among miRNAs that were prominently enriched in modules from the BC and HCC datasets 

and significant clusters of Chapter 4 that did not include miRNA data.  The reproducibility of 

these results in independent data sets adds further validity to these findings.  BC data in 

module 379 overlaps with GSE7390.429 genes: IGF1, NOV, IGFALS, IGFBP’s and IDE 

interactions.  The LIFR and OSMR (GSE7390.89, GSE8671.410) genes and interleukin 

interactions overlap among GSE14520 and miRNA-associated HCC clusters.  GSE22058.567 

overlaps with GSE7390.82, including PDGFRA, ErbB signaling genes, KDR, GRB10, 
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FLT1/4 and RET genes.  GSE7390.143 and GSE22058.389 overlap among CCNA2, CDK2, 

CDKN1A and SKP2 genes, which are among the most differentially regulated genes in both 

clusters.  FN1 and collagen interactions and their interactions overlap in GSE22058.309 and 

GSE14520.111.  SPARC1, THBS1 and collagen genes also overlap with GSE14520.328.  

CYP*, FMO* and UGT* genes in modules 583 and 186 in GSE22058 also overlap with 

modules GSE14520.10 and GSE14520.408.  GSE22220.379 overlaps with genes IGF1, NOV, 

IGFBP7 and IDE in GSE14520.429.   

Considering this inclusive sample of significant miRNA-coregulated clusters, many 

significant modules found in this chapter overlap with those of independent datasets with 

similar outcomes in Chapter 4.  Such overlap shows that there is a reproducible signal in 

these significant clusters, which is validated by the coordinated differential activity of 

miRNA and mRNA expression data.     

 
 

5.3.7: Sensitivity Analysis 
 

To examine sensitivity of the community search methods to changes in node weights, 

the top 5% of significant miRNAs and their mRNA targets were retained using their original 

fold change weight values.  All other nodes in the network were given a nominal non-

significant fold change value of .01.  The random walk community search was applied to the 

modified network to determine the extent to which 1) significant miRNAs and their targets 

were identified in the altered network, and 2) the module composition of significant miRNA 

matches changed.   

Significant miRNAs were still detected in significant modules.  However, module 

composition did change, given that the edge weights were modified.  New modules consist of 

a different composition of neighboring interactions within the global network.  If genes A, B, 

C, D, E and miRNA X were in a module previously (where A and X were significant genes 

of interest), the new module may consist of interaction among A, B, F, E, G and miRNA X.  

Therefore, as expected, community structures appear to be sensitive to weights in the global 

network.  This behavior may be explained by the tendency of communities to be determined 

by average fold change values with adjacent nodes, and the influence of both weights and the 

degree connectivity on the random walk process. 
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5.4: Conclusion 

 

Given their prognostic importance and functional relevance, miRNA analysis is 

proving to be a key component in the development of future cancer diagnostics and therapies.  

Developing efficient and effective frameworks to model miRNAs and their correlated and 

predicted targets in the context biological processes is an important area of current research.  

Network-based approaches provide a framework for the integration and analysis of diverse 

genomic data, including mRNA and miRNA regulatory data with high-throughput interaction 

information and cancer outcomes.  

This study shows graph based models and the graph-based analytic methods are 

useful tools to integrate and model diverse types of genomic information.  I implement a 

random walk algorithm in a weighted network including mRNA, PPI, metabolic, signaling 

and miRNA interactions.  Several matching schemes are evaluated to integrate miRNAs in 

the network and multiple weighting schemes are investigated to score miRNA-enriched 

modules.  The optimal network integration approach incorporates the top five matching 

miRNAs per gene target and the best scoring strategy uses fold change based edge weights.  

Results demonstrate that modules associated with cancer and enriched with miRNA targets 

can identify important candidate genes and therapeutic targets.  Significant modules highlight 

differentially regulated genes of interest in based on their potential prognostic and therapeutic 

value in cancer, such as miR-22 miR-196b miR-151 miR-93,GNA14, CYP4A11, SKAP1, 

SH3GL2, MYBL2 and LIFR in hepatocellular carcinoma and miR-33b, mir-223, mir-770 

YES1, ETV6, PTAFR, and CYPB in breast cancer  

Network analysis integrating miRNA data enhances the search for relevant disease 

modules by adding an additional layer of evidence to correlated and differentially expressed 

targets associated with cancer outcomes.  The search for the association of miRNA/mRNA 

co-regulation and disease outcomes can be improved with better and more certain data.  

Further, more meta-analysis studies would be useful to summarize the effects of miRNAs on 

specific cancer types and stages, as well as to help track the reproducibility of such findings.  

Such studies can provide more resolution for the widespread variability across miRNA 

studies an their potential in personalized medicine, an important contribution to research 

where miRNAs are evaluated as therapeutic and prognostic targets.   
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Chapter 6: Conclusion 
 
 
Outstanding issues in the analysis of high-dimensional data in genomics include lack 

of sufficient statistical power, multiple testing, and overfitting data.  Developing better 

platforms to model interaction data and integrate prior evidence to address these issues is an 

important area of current research.  In this dissertation, I have implemented and evaluated a 

graph-based approach to analyze genomic data in an effort to improve upon current methods.  

Graph-based approaches are a powerful framework for genomic studies because they are 

tailored to model complex relationships, and support qualitative and quantitative analysis of 

interaction data.  I focus upon network centrality concepts and modularity in the analysis of 

cancer expression data to prioritize important interactions and functional groups of genes 

associated with cancer onset and progression.  

The principal hypothesis of this work is that the use of a graph-based approach to 

study large-scale genomic data, focusing on network characteristics and module generation in 

biological networks, provides a powerful framework for data integration and improves 

performance and interpretation in the analysis of the coordinated behavior of genes in 

complex disease.  I address this research question first by investigating the value of network 

features in a biological network, namely centrality, cohesion and modularity, to predict 

cancer genes.  I then test the graph-based platform applying a random walk-algorithm to an 

interaction network weighted by expression data to search for genes associated with cancer 

outcomes.  Finally, I investigate integrating multi-scale data and modeling regulatory 

relationships by including microRNA (miRNA) data in the interactome to study the influence 

of miRNA-mRNA regulatory activity on cancer onset and progression.  These methods are 

evaluated by measuring their ability to extract known cancer genes, and examining functional 

annotation and the literature to determine the relevance of significant interactions. 

Chapter 3 presents an analysis of network characteristics of cancer genes.  A custom 

parser is developed to extract metabolic and signaling interactions from the KEGG pathway 

database.  To provide a gold standard for cancer gene status, the OMIM database is mined for 

evidence of cancer-association of all genes in the metabolic and signaling networks.  

Centrality features and clustering coefficients are calculated for nodes in the network and a 

linear classifier is used to determine if these features are predictive of cancer gene status.  

Logistic regression estimates quantify the predictive ability of centrality and clustering 

coefficient and show more predictive power in signaling networks compared to metabolic 
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networks. In the assessment of the value of centrality features to predict cancer genes, 

centrality characteristics, in particular degree and closeness centrality, proved predictive of 

the status of cancer genes.  Metabolic and signaling networks exhibit significant topological 

differences in terms of degree, clustering coefficients and community cohesiveness of cancer 

genes; and centrality features demonstrate greater predictive value in signaling networks.  

Further, cancer genes were found to be more cohesive than non-cancer genes, and 

significantly clustered in modules.  Cancer genes in signaling communities tend to be more 

cohesive than those in metabolic communities and represent cell cycle, adhesion Wnt-

signaling and TGF signaling pathways among other cancer-related processes.  When 

investigating the metabolic network, communities of cancer genes frequently show 

methylation activity, amino acid synthesis and metabolism, and interact with signaling 

pathways. Network relationships can provide predictive value in identifying novel cancer 

genes, and definition of communities of cancer genes can help elucidate complex interactions 

influencing the onset and progression of cancer. These results provide an empirical basis for 

the application of algorithms using similar network-based measures to prioritize disease 

genes or predict disease states. 

In Chapter 4, pathway interactions, protein interactions and expression data are 

merged in a biological network to search for cancer-associatied modules.  The interactome is 

constructed from KEGG and HPRD data and the network is augmented with weights from 

three cancer expression studies.  I implement Walktrap, a random walk-based community 

detection algorithm to identify modules predisposing to disease onset in hepatocellular 

carcinoma (HCC), adenoma development in colorectal cancer (CCA), and prognosis in breast 

cancer (BC).  For each data set, the best scoring partitions under a maximum cluster size 

(max=200) were selected.  Significant modules are rich in functional annotation associated 

with known cancer processes.  These modules include interactions among transcription 

factors (SPIB, RPS6KA2 and RPS6KA6) and cell-cycle regulatory genes (BRSK1, WEE1 and 

CDC25C) that interact closely with other known cancer genes, are functionally related to 

cancer, and show promise as therapeutic targets. This approach is evaluated by comparing the 

cancer gene enrichment of modules discovered by Walktrap compared to those results from 

two other highly cited module-finding platforms, Matisse and jActiveModules.  Overall, 

Walktrap performs as well or better than these tools across all datasets. Further, a size 

restriction is imposed in the module-finding algorithm, and the resulting modules are 

generally smaller and more interpretable compared to Matisse and jActiveModules.  These 
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results demonstrate that the Walktrap algorithm performs well against related tools and can 

identify modules significantly enriched with cancer genes, their joint effects and promising 

candidate genes.  Findings from this work can be used to develop hypothesis for further 

cancer-based studies. 

In Chapter 5, miRNA data is mereged into the interactome built in Chapter 4 to 

investigate the ability of graph-based methods to integrate diverse data types and to use this 

information to search for high-confidence candidate genes.  Two cancer data studies, one 

breast cancer survival one hepatocellular carcinoma study, which include miRNA and mRNA 

coexpression data, are used to integrate regulatory information in the network.  Variations of 

matching methods were evaluated including using: the single optimal miRNA-mRNA match, 

retaining the best five or three pairs, or all miRNA-mRNA pairs. Multiple methods to 

integrate miRNA-mRNA matchings as edges in the network were also examined, including 

using fold change, a transformation of fold change to boost the importance of miRNA 

matches, and excluding miRNAs in the network but including their targets in enrichment 

analysis.  Using Precision, Recall and Matthew’s Correlation to measure performance, the 

best five filtered matches produced the best matching strategy, and using fold change without 

transformation produced the best network integration strategy.  The resulting modules include 

differentially regulated candidate genes based on their potential prognostic and therapeutic 

value in cancer, such as miR-22 miR-196b miR-151 miR-93,GNA14, CYP4A11, SKAP1, 

SH3GL2, MYBL2 and LIFR in hepatocellular carcinoma and miR-33b, mir-223, mir-770 

YES1, ETV6, PTAFR, and CYPB in breast cancer.  Further, overlap was evident in the 

functional annotation and specific gene groupings when comparing miRNAs and targets 

found by the Walktrap method with those of the original studies.  These findings overlapped 

in part with earlier cancer-based miRNA studies; however, Walktrap identified primarily 

novel interactions not supported by previous work.  These results demonstrate that modules 

associated with cancer and enriched with miRNA targets can identify important genes 

involved cancer pathways, and novel miRNAs associated with cancer.  
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6.1: Limitations 

 
Several limitations were encountered in the course of this research.  First, a there is a 

limitation considering the generation of the null hypothesis for significance testing of 

modules.  The methods presented in this dissertation did not consider network topology when 

determining module significance.  Specifically, the connectivity of genes within a module 

were not considered when evaluating the significance of a module; only the cumulative 

weights of the nodes were used as a basis for module activity scores, and the random 

distributions, independent of network structure.  Determining the direction of the bias in this 

approach, or if inclusion of network topology would add additional bias would require further 

systematic research.  I did not find a computationally efficient and scalable method to 

generate a random distribution for a null-hypothesis including network structure for each test 

case.  To address this limitation, modules were ranked by significance and incorporated up to 

the top-ranked 25 modules.  This limitation does not bias comparisons with other tools, as the 

same scoring metric was used for Walktrap modules and those discovered by Matisse and 

jActiveModules.  It should also be noted that there may be a study bias in the search for 

relevant modules in that well-studied genes may be appear more significant in the network 

due to the fact that their their relationships with other genes are better studied. 

A significant limitation of this work is lack of wet laboratory support, as the 

hypotheses generated by the module searches in Chapters 4 and 5 could not be verified 

experimentally.  Such support would have enabled experiments to validate the biological 

relevance of novel genes and interactions highlighted in signficant modules.  Without such 

support, I rely on evidence from the literature and previous work to validate my results.   

Hence, these methods generate hypotheses for several good candidate genes and interactions 

but further experiments to examine their effects and interactions in normal and cancer tissues 

are needed.  Establishing experimental evidence to support the significance for these findings 

is an important area for future research. 

The search for the association of protein-protein interactions, signaling and metabolic 

interactions, and miRNA/mRNA co‐regulation with disease outcomes can be improved with 

better and more certain data.   The interaction networks in my experiments were assembled 

using KEGG and HPRD data, but I also found that Reactome and INTACT would be suitable 

to generate interactomes for this study.  There are many differences between these databases, 

Reactome, for one, consists of a smaller set of direct PPI data than HPRD but includes an 

extended network of indirect interactions that may be of interest.  Appending additional PPI 
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data could be and area for future work.  Further, the miRNA-mRNA filter applied in target 

scan is neither certain nor complete.  The filter improves the search for likely regulatory 

pairs, but the pairs may be false positives, or may not interact in the given data, and important 

pairs may be omitted.  Continued investigation and validation of miRNA-mRNA pairs and 

improved tools for functional prediction would improve network models of these 

relationships.   

Findings in Chapter 5 did not show extensive overlap with previous findings, 

including the published findings from which the data were obtained.  This is partially 

explained due by the fact that I applied stringent biological filters which preliminarily 

eliminated some possible matches that were found in the original analyses.  I took this 

approach to focus my search on the most relevant pairings in the network, but in doing so, 

some information may have been lost.  Further, based on my review of the literature, many 

findings across miRNA studies are not reproducible, raising the question of whether miRNA 

analyses yield results that are more or less consistent than expression or SNP studies.  

Considering that each miRNA may have hundreds of possible targets, the contextual 

variability of miRNA expression and function seems to be substantial.   

The generalizability of extending the networks to more diverse data types, beyond 

miRNA data, has not been tested.  I have not applied the random walk algorithm to data types 

apart from expression data; for example, transcription factor, DNA methylation, mutation, 

and copy number variation.  Further, when integrating several expression data sets, as when 

merging mRNA and miRNA expression, the use of different normalization strategies affects 

the scoring of such modules and is a critical factor in the experimental design.  A systematic 

study of normalization strategies for merging of multiple expression data sets would improve 

this work.    

   
 
 

6.2: Contributions 

 
Contributions of this study to the fields of biomedical informatics, genomics and 

cancer biology include: the implementation and evaluation of methods for high-dimensional 

data analysis; applications of network algorithms in biology, and; approaches to data 

integration in biology.  The graph-based random walk is used to integrate prior biological 

evidence, including biological interactions, experimental and miRNA-mRNA regulatory 

information; and to detect significant network modules in large biological datasets.  Such an 
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approach narrows the feature space and enables the search for the combined effect of genes 

associated with cancer in data where the effects of these genes might have independently 

been considered non-significant.  Leveraging existing knowledge of the relationship between 

genes and their biological pathways facilitates interpretation of significant findings and the 

generation of high-quality hypotheses for further study. 

Building on previous network-based approaches used to discover modules in 

integrated interaction networks, this study focuses on the importance of biologically 

interpretable and focused modules.  Network analysis strategies vary based on their weight, 

scoring, and module-finding approaches.  Where many previous studies have used correlation 

values, this study focuses on fold change values to focus the analysis on outcomes rather than 

the strength of correlation between genes.   Prior work using seed-based algorithms and node 

weights may be sensitive to low values of single nodes, even if the adjacent nodes have high 

values.  Applying edge weights by using the average of adjacent nodes allows for breaks of 

links in the network, and prevents loss of data due to low-significance intermediate genes.  

Thus, where an intermediate gene may not have a high differential fold change, if 

neighboring genes show high-signficance, the continuity of the chain of genes, including the 

intermediate gene, is preserved.  Module activity is based on the cumulative weights of the 

fold-chance values in the module.  I develop scoring metrics using a bootstrapping method to 

determine module significance and evaluate Walktrap modules.   

Random walk algorithms vary based on their distance metrics, their heuristics, and 

optimization strategies.  Where most previous work using random walks has focused on gene 

prioritization, this research contributes to the scope of work covering module-finding with an 

optimized algorithm for discovering communities in large networks.  Several stopping 

thresholds were implemented to optimizing community-finding, including size, score and 

maximizing modularity.  I apply a workflow considering size, score and optimal modularity 

to determine a stopping point for the merge process to improve the search for significant and 

interpretable modules.  Evaluation results show that this approach shows strong performance 

when compared with similar tools and yields smaller, more interpretable modules.   

To estimate the enrichment of cancer genes in modules, I created a gold standard list 

for the annotation of cancer genes.  I considered several other lists, including the Sanger 

Cancer Gene Census297, the Cancer Gene Atlas298 and the Waldman Gene List by Locus 299, 

and a compilation of cancer gene lists compiled by Higgins et al.300.  However, these lists 

were either too restrictive: for example the Cancer Gene Census and Waldman Gene List 

include 487 and 510 genes, respectively; or too inclusive in their coverage of cancer-
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associated genes, where the Cancer Gene Atlas list of “possible” cancer genes consists of 

8395 genes.  The Cancer Gene Atlas list of 1174 genes had the best coverage; however there 

were cancer-associated genes in my network not in this list, and my best approximation to a 

gold standard to cover all genes in this study was achieved via text-mining of OMIM for 

evidence of cancer association.  To assemble this list, I queried each gene in the network for 

cancer-associated terms and manually verified each match.  This approach improves upon 

previous approaches to summarize cancer gene data, based on the specificity and coverage of 

queries and manual verification.  I reviewd 6639 genes and assembled a gold standard 

reference composed of 1239 cancer genes.  A recent study has gathered current data to 

construct a comprehensive consensus-driven list of annotated cancer genes301, but this 

reference was not available during the course of my evaluation.   

This research demonstrates the ability of the network to integrate pathway, protein-

protein interactions, expression measurements and miRNA-mRNA regulatory data.  Several 

strategies were considered to integrate miRNA data and the optimal strategy uses a subset of 

the best five pairings and searching for enrichment of miRNA.  Inclusion of miRNA evidence 

increases confidence in candidate genes and their interactions based on the mutual 

importance of the miRNA and its target in cancer data.   

Findings from this study identify candidate genes that are implicated in breast cancer, 

hepatocellular carcinoma and colorectal cancer.  In Chapter 4, several genes were identified 

as targets for further research, including CBLC and IRS2 which are associated with breast 

cancer survival; transcription factors RPS6KA2, RPS6KA6 and the interaction among 

MCM/CDC and ORC cell cycle genes, associated with the onset of hepatocellular carcinoma; 

and cell-cycle genes BRSK1, WEE1, CDC25C and the transcription factor SPIB, associated 

with colorectal adenoma development.  In Chapter 5, GNA14, CYP4A11, SKAP1, SH3GL2, 

MYBL2 and LIFR were identified as candidate genes related to miRNA hepatocellular 

carcinoma and IFGAL, SIN3A, PTAFR and CYPB, and HDAC genes were associated with 

breast cancer.  Candidate miRNAs include miR-33b and miR-223 in breast cancer and miR-

184, miR-93, and miR-183 in hepatocellular carcinoma. 

Finally, the random walk approach also provides a generalizable example to integrate 

diverse information and find communities of closely related entities to guide other 

applications of graph-based research.   
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6.3: Future Directions 

 
Future work may include studies focused on evaluation and interpretation of modules 

discovered in biological networks.  This dissertation makes a primary contribution to this area 

by focusing on the size of modules and emphasizing the interpretability of modules; however, 

further studies on the systematic interpretation of modules beyond functional annotation 

would be very useful to track the progress and success of methods in this area of research.  

Specifically, measuring the accuracy of such modules based on a suitable and common gold 

standard and further discussion of what constitutes the composition and size of an 

“interpretable” module.   

More research is needed to define the null hypothesis for network analysis.  A 

limitation in this study is that I did not consider network topology when assessing module 

significance.  Future research can investigate accounting for the connectivity of the genes 

within a module when evaluating the significance of a module.  The effects of this omission 

have not been studied in detail.  More systematic studies are needed to suggest the best and 

most efficient solutions to this problem and to review possible biases in various approaches to 

account for network structure.  A detailed review of the implications of significance testing in 

network modularity analysis, and how to standardize such testing, would be helpful to guide 

future work.   

A general analysis of the reproducibility of miRNAs data across studies, and the 

current generalizability of miRNA work, would be useful.  A possible approach would be to 

build classifiers with published miRNA signatures and apply these across published findings 

to judge the predictive value of these genes. Meta‐analysis studies would be useful to 

summarize the scope of associations between miRNAs and specific cancer types and stages, 

as well as to help track the reproducibility of such findings.   Such reviews could also provide 

a context for the widespread variability in past miRNA work and would help in the 

interpretation of these and studies. 

Further laboratory validation is needed to examine the therapeutic potential of genes 

and interactions highlighted in this study.   The connectivity and novelty of these genes in 

densely weighted networks suggest that they are good candidate genes for further study and 

provide a strong basis for experimental follow-up.  These findings are presented in the 

context of ther neighboring interactions and functional annotation which facilitates the design 

of further experiments to test the relevance of their interactions and their influence in cancer 
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pathways.  Constructing and testing hypothesis based on these genes and their interacting 

partners is a promising area for future studies.   

Network analysis provides a powerful framework to include and analyze multi-scale 

genomic data.  Further studies can explore the generalizability of these methods across a 

larger number of cancer data sets and investigate integration of additional data types; for 

example, mutation, SNP, methylation or transcription factor information.  Further work is 

needed to examine network-weighting and normalization strategies to enable the integration 

of diverse interaction data and associated annotation information reflecting significance 

values, experimental measurements, and binary relations.  In analyzing data across studies, 

methods to compare and quantify the similarity or differences between modules would also 

be helpful to evaluate reproducibility and consistency of module membership. 

 
 
 

6.4: Summary  

 
Graph and network based analyses present a unique capacity to represent and study 

relationships between entities in the network.  These approaches are more tailored than 

traditional statistical and analytical methods to represent and analyze genomic complex 

information.  Further, graph-based frameworks can incorporate attributes, including 

annotation, scores, and experimental measurements to nodes and edges, that are not easily 

included using other methods.  

In this dissertation, I implement a graph-theoretical approach to model genomic data 

and identify network modules associated with cancer outcomes.  I use a network approach to 

study integration of prior evidence and biological interactions in the context of cancer 

genomics.  I examine centrality and modularity features in the network and to establish a 

basis for empirical work using these network properties to define cancer genes.   I analyze 

cancer expression data using integrated interaction and miRNA regulatory data, and show 

that the Walktrap algorithm performs well against similar module discovery tools and 

discovers significant cancer-associated modules that highlight candidate genes for further 

study.  These modules present potential cancer genes in the context of their biological 

interactions and functional annotation to better understand their relevance, build hypotheses, 

and design laboratory experiments.  In comparison to single gene and pathway analysis, a 

modular approach also allows for the discovery of new genes of interest based on their 

relationships with more prominent cancer genes, and identification of complex genetic 
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interactions across pathway definitions.  The results of this investigation show that using 

graph-based methods provides a powerful suite of tools to integrate prior evidence and study 

the coordinated behavior of genetic risk factors in the analyses of complex disease.   

Investigation of the null hypothesis for network models, integration of more types of 

multi-scale data, and a systematic meta-analysis of miRNA studies would be valuable future 

contributions to the field of network analysis and graph-based studies. A closer examination 

in the laboratory of novel genes and interactions prioritized in this study is also an important 

next step to investigate the functional and therapeutic role of these genes of interest in breast 

cancer, hepatocellular carcinoma and colorectal cancer.   

This work contributes to the fields of biomedical and health informatics, genomics 

and cancer biology an implementation and evaluation of a graph-based approach to model 

prior complex genomic data and to identify important genes of interest and their interactions 

in large-scale cancer data, where previous methods based on single candidate genes and a 

priori defined pathways have had limited success.  While these methods underscore the 

promise of network-based research, the field is still nascent and more promising research is 

anticipated to apply these powerful tools to better isolate and understand the intricate 

genomic interactions and biological processes that underlie complex disease.  
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A.1 Chapter 3 Workflow 

 
1. KEGG PARSER   
2.    
3. reaction.list <- c()   
4. relation.list <- c()   
5. entry.list<- c()   
6. attrs.list<- c()   
7.    
8. # manually download kgml file(s) from ftp://ftp.genome.jp/pub/kegg/xml/kgml/ to local directory   
9. file.vector<- c(#ENTER FILE NAMEs#)   
10.    
11. #loop through kgml files   
12. for (j in file.vector) {   
13.     entID2Name <- c()   
14.     #parse xml and store as list       
15.     TreeMet <-xmlParse(j)   
16.     KGMLList <- xmlToList(TreeMet)   
17.         #loop through xml elements   
18.         for (i in 1:length(KGMLList)) {   
19.         group.list <- c("(compound)")   
20.         nodeType <- names(KGMLList[i])   
21.             # store pathway attributes   
22.             if (nodeType == ".attrs") {   
23.                 attrs.list <- as.list(c(attrs.list, KGMLList[i]$.attrs[["name"]], KGMLList[i]$.attrs[["org"]]   
24.                 , KGMLList[i]$.attrs[["number"]], KGMLList[i]$.attrs[["title"]], KGMLList[i]$.attrs[["image"]],    
25.                 KGMLList[i]$.attrs[["link"]]   
26.                 ))   
27.                 print(KGMLList[i]$.attrs[["title"]])       
28.             }   
29.             #parse entry type including reaction attributes   
30.             if (nodeType == "entry" && length(KGMLList[i]$entry$.attrs) == 5) {   
31.                 entry.list <- as.list(c(entry.list, KGMLList$.attrs[["name"]], KGMLList[i]$entry$graphics[["name"]],    
32.                 KGMLList[i]$entry$.attrs[["id"]],   
33.                 KGMLList[i]$entry$.attrs[["name"]],KGMLList[i]$entry$.attrs[["type"]],   
34.                 KGMLList[i]$entry$.attrs[["link"]], KGMLList[i]$entry$.attrs[["reaction"]]   
35.                 ))   
36.                 entID2Name[KGMLList[i]$entry$.attrs[["id"]]] <-

 strsplit(gsub('  ', '',KGMLList[i]$entry$graphics[["name"]]), ",")   
37.             }   



 

156 
 

38.             #parse entry type without reaction attributes   
39.             if (nodeType == "entry" && length(KGMLList[i]$entry$.attrs) == 4) {   
40.                 entry.list <- as.list(c(entry.list, KGMLList$.attrs[["name"]], KGMLList[i]$entry$graphics[["name"]],    
41.                 KGMLList[i]$entry$.attrs[["id"]],   
42.                 KGMLList[i]$entry$.attrs[["name"]],KGMLList[i]$entry$.attrs[["type"]],   
43.                 KGMLList[i]$entry$.attrs[["link"]], "NA"   
44.                 ))   
45.                 entID2Name[KGMLList[i]$entry$.attrs[["id"]]] <-

 strsplit(gsub('  ', '',KGMLList[i]$entry$graphics[["name"]]), ",")   
46.             }   
47.             #parse entry type corresponding to group lists   
48.             if (nodeType == "entry" && length(KGMLList[i]$entry$.attrs) == 3 && KGMLList[i]$entry$.attrs[["type"]] ==    
49.                 "group") {   
50.                     #retrieve elements in group list   
51.                     for (z in 2:(length(KGMLList[i]$entry) - 1)) {   
52.                         group.list <- c(group.list, " ", entID2Name[KGMLList[i]$entry[[z]]])   
53.                     }   
54.                 entID2Name[KGMLList[i]$entry$.attrs[["id"]]] <- group.list   
55.                 entry.list <- as.list(c(entry.list, KGMLList$.attrs[["name"]], "NA",   
56.                 KGMLList[i]$entry$.attrs[["id"]],   
57.                 KGMLList[i]$entry$.attrs[["name"]],KGMLList[i]$entry$.attrs[["type"]],   
58.                 "NA", "NA"   
59.                 ))   
60.             }   
61.             #parse relation type   
62.             if (nodeType == "relation") {   
63.                 if (names(KGMLList[i]$relation[1]) == "text") {   
64.                     subtype_name <- "na"   
65.                     subtype_value <- "na"   
66.                 }   
67.                 else {   
68.                     subtype_name <- KGMLList[i]$relation$subtype[["name"]]   
69.                     subtype_value <- KGMLList[i]$relation$subtype[["value"]]   
70.                 }   
71.                 for (k in 1:length(entID2Name[KGMLList[i]$relation$.attrs[["entry1"]]][[1]])) {   
72.                     for (l in 1: length(entID2Name[KGMLList[i]$relation$.attrs[["entry2"]]][[1]])) {    
73.                         relation.list <- as.list(c(relation.list, KGMLList$.attrs[["name"]],    
74.                         subtype_name,    
75.                         subtype_value,   
76.                         KGMLList[i]$relation$.attrs[["entry1"]],    
77.                         KGMLList[i]$relation$.attrs[["entry2"]],    
78.                         gsub("\\.", "", entID2Name[KGMLList[i]$relation$.attrs[["entry1"]]][[1]][k]),    
79.                         gsub("\\.", "", entID2Name[KGMLList[i]$relation$.attrs[["entry2"]]][[1]][l]),     
80.                         KGMLList[i]$relation$.attrs[["type"]]   
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81.                         ))   
82.                     }   
83.                 }   
84.             }   
85.             #parse reaction type   
86.             if (nodeType == "reaction" && length(KGMLList[i]$reaction) >= 3) {   
87.                 substrateList <- c()   
88.                 productList <- c()   
89.                     for (s in 1:length(KGMLList[i]$reaction)) {   
90.                         if (names(KGMLList[i]$reaction[s]) == "substrate") {   
91.                             substrateList <- paste(substrateList, KGMLList[i]$reaction[s]$substrate[[2]], sep=" ")   
92.                         }   
93.                         if (names(KGMLList[i]$reaction[s]) == "product") {   
94.                             productList <- paste(productList, KGMLList[i]$reaction[s]$product[[2]], sep=" ")   
95.                         }   
96.                     }   
97.                 reaction.list <- as.list(c(reaction.list, KGMLList$.attrs[["name"]],    
98.                 productList, substrateList, KGMLList[i]$reaction$.attrs[["name"]],    
99.                 KGMLList[i]$reaction$.attrs[["type"]]   
100.                 ))   
101.             }   
102.         }   
103.     }   
104.    
105. #create dataframes   
106. entry.df <- as.data.frame(matrix(entry.list, ncol=7, byrow=TRUE))   
107. relation.df <- as.data.frame(matrix(relation.list, ncol=8,byrow=TRUE))   
108. reaction.df <- as.data.frame(matrix(reaction.list, ncol=5, byrow=TRUE)) #Only for metabolic pathways   
109. attrs.dft <- as.data.frame(matrix(attrs.list, ncol=6, byrow=TRUE))   
110. entry.names <- as.list(c("pathway.name", "graphics.name", "entry.id", "entry.name", "entry.type", "entry.link",    
111. "entry.reaction"))   
112. #add names to dataframes   
113. reaction.names <- as.list(c("pathway.name", "product", "substrate", "reaction.name", "reaction.type"))   
114. relation.names <- as.list(c("pathway.name", "subtype.name", "subtype.value", "entry1", "entry2", "entry1_name",    
115. "entry2_name", "relation.type"))   
116. attrs.names <- as.list(c("name", "org", "number", "title", "image", "link"))   
117. names(reaction.df) <- reaction.names   
118. names(relation.df)<- relation.names   
119. names(entry.df) <- entry.names   
120. names(attrs.df) <- attrs.names   
121. #extract list of relation pairs for graph analysis   
122. relationPairs <- as.data.frame(relation.df[,c(6,7)])   
123.    
124.    
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125. LOGISTIC REGRESSION SAMPLE TEST   
126.    
127. lrMetDeg15 <- lrm(metResults$Cancer ~ metResults$Degree15)   
128.    
129. vv <- diag(lrMetDeg15$var)     
130. cof <- lrMetDeg15$coef    
131. secof <- sqrt(vv)   
132. z <- cof/sqrt(vv)     
133. pv <- 1 - pchisq(z^2, 1)   
134. ap <- anova(lrMetDeg15)["metResults", "P"]   
135.    
136. lrResults[which(lrResults[,1] == "lrMetDeg15"),2] <- pv[[2]]   
137. lrResults[which(lrResults[,1] == "lrMetDeg15"),3] <- ap   
138. lrResults[which(lrResults[,1] == "lrMetDeg15"),4] <- cof[[2]]   
139. lrResults[which(lrResults[,1] == "lrMetDeg15"),5] <- secof[[2]]   
140. lrResults[which(lrResults[,1] == "lrMetDeg15"),6] <- exp(cof[[2]])   
141. lrResults[which(lrResults[,1] == "lrMetDeg15"),7] <- exp(secof[[2]])   
142. lrResults[which(lrResults[,1] == "lrMetDeg15"),8] <- z[[2]]   
143.    
144. GLOBAL NETWORK PROPERTIES   
145. metICC <- transitivity(metNet, type="local")   
146. metBetween <- betweenness(metNet)   
147. metDegree <- degree(metNet)   
148. metClose <- closeness(metNet)   
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A.2 Chapter 4 Workflow   

 
INSTALL AND LOAD IGRAPH PACKAGE   
0. install.packages("igraph", lib="/my/own/R-packages/")   
1. library("igraph", lib.loc="/my/own/R-packages/")   
2.    
3. PARSE GENE EXPRESSION DATA   
4. gse14520 <- getGEO("GSE14520")   
5. show(gse14520)   
6.    
7. EXPONENTIATE DATA   
8. exp14520 <- exprs(gse14520[[1]])   
9.    
10. PARSE PHENOTYPE DATA   
11. pheno14520.df <- pData(phenoData(gse14520[[1]]))   
12. TumorStatus14520 <- c()   
13. NonTumor14520 <- grep("Liver Non-Tumor", pheno14520.df$characteristics_ch1)   
14. Tumor14520 <- grep("Liver Tumor", pheno14520.df$characteristics_ch1)   
15. TumorStatus14520[c(Tumor14520)] <- 1   
16. TumorStatus14520[c(NonTumor14520)] <- 0   
17. design14520 = model.matrix(~ -1+factor(c(TumorStatus14520)))   
18. colnames(design14520) = c("Normal", "Tumor")   
19. contrast.matrix14520 <- makeContrasts(Tumor-Normal, levels=design14520)   
20.    
21. CALCULATE P-VALUES AND FOLD CHANGE   
22. fit14520 <- lmFit(exp14520, design14520)   
23. fit.contrast.14520 <- contrasts.fit(fit14520, contrast.matrix14520)   
24. fit.ebayes.14520 <- eBayes(fit.contrast.14520)   
25. names(fit.contrast.14520)   
26. names(fit.ebayes.14520)   
27. top14520.pval.1 <- topTable(fit.ebayes.14520, n=Inf, p.value=.1, sort.by="logFC", adjust.method="BH")   
28.    
29. MAP HUGO IDS TO GENE SYMBOLS   
30. pval1.14520.IDs <- top14520.pval.1[,1]   
31.    
32. x <- hgu133plus2SYMBOL   
33. mapped_probes <- mappedkeys(x)   
34. xx <- as.list(x[mapped_probes])   
35. if(length(xx) > 0) {   
36.     # Get the SYMBOL for the first five probes   
37.     xx[1:5]   
38.     # Get the first one   
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39.     xx[[1]]   
40. }   
41.    
42. count = 0   
43. for (i in pval1.14520.IDs) {   
44.     count = count + 1   
45.     if (length(xx[[i]]) > 0) {   
46.         top14520.pval.1[count, 8] <- xx[[i]]   
47.     }    
48. }   
49.    
50. BUILD INTERACTION NETWORK    
51. globalNet <- graph.data.frame(allKeggHPRD, directed=FALSE)]    
52. globalNet.bak <- globalNet   
53. globalNet <- set.edge.attribute(globalNet, "source", index=E(globalNet), labelEdges)   
54. sGlobalNet <- simplify(globalNet)   
55. sGlobalNet <- delete.vertices(sGlobalNet, V(sGlobalNet)[ degree(sGlobalNet)==0 ])   
56. summary(globalNet)   
57. summary(sGlobalNet)   
58. globalClusters <- clusters(sGlobalNet)   
59.    
60. FIND CONNECTED CLUSTERS   
61. globalClusters$csize   
62. cluster1 <- which(globalClusters$membership == 0)   
63. length(cluster1)   
64.    
65. EXTRACT CONNECTED CLUSTER   
66. cGlobalNet <- subgraph(sGlobalNet, cluster1 - 1)   
67. summary(cGlobalNet)   
68.    
69. SAVE EDGELIST AND VERTEX LIST   
70. globalEdges <- get.edgelist(cGlobalNet, names=TRUE)   
71. clusterNetVertices <- cGlobalNet[9][[1]][[3]][[1]]   
72. globalNetVertices <- globalNet[9][[1]][[3]][[1]]   
73.    
74. CREATE VECTOR OF EDGE WEIGHTS   
75. ExpWeights14520.p1 <- c()   
76. for (i in 1:length(globalEdges[,1])) {    
77.     tempEdge1 <- globalEdges[i,1]   
78.     tempEdge2 <-  globalEdges[i,2]   
79.     if ((length(which(top14520.pval.1[,8] == tempEdge1)) >0)  || (length(which(top14520.pval.1[,8] == tempEdge2)) >0)) {   
80.         if ((length(which(top14520.pval.1[,8] == tempEdge1)) >0)  && (length(which(top14520.pval.1[,8] == tempEdge2)) >0))

 {   
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81.              ExpWeights14520.p1[i] <-
 (max(abs(top14520.pval.1[which(top14520.pval.1[,8] == tempEdge1),][,2])) + max(abs(top14520.pval.1[which(top14520.pval.1[
,8] == tempEdge2),][,2])))/2}   

82.         else if  ((length(which(top14520.pval.1[,8] == tempEdge1)) >0)) {   
83.             ExpWeights14520.p1[i] <- (max(abs(top14520.pval.1[which(top14520.pval.1[,8] == tempEdge1),][,2])))/2}   
84.         else if ((length(which(top14520.pval.1[,8] == tempEdge2)) >0)) {   
85.             ExpWeights14520.p1[i] <- (max(abs(top14520.pval.1[which(top14520.pval.1[,8] == tempEdge2),][,2])))/2}   
86.         else { ExpWeights14520.p1[count] <- .01}   
87.     }   
88. }   
89.    
90. CREATE VECTOR OF VERTEX WEIGHTS   
91. ExpVWeights14520.p1 <- c()   
92. count = 0   
93. for (i in clusterNetVertices) {    
94.     count = count +1   
95.     if (length(which(top14520.pval.1[,8] == i)) >0)  {   
96.         ExpVWeights14520.p1[count] <- max(abs(top14520.pval.1[which(top14520.pval.1[,8] == i),][,2]))}   
97.     else {ExpVWeights14520.p1[count] <- .01}   
98. }   
99.    
100. wtc14520.p1 <-

 walktrap.community(cGlobalNet, steps = 3, merges=TRUE, modularity = TRUE, labels = TRUE, membership = TRUE, weights = Exp
Weights14520.p1)   

101.    
102. CREATE BOOTSTRAP DISTRIBUTION FOR CLUSTER SCORES   
103. draws14520.p1 <- matrix (ncol = 5000, nrow = 200)   
104. for (i in 3:200) {   
105.     draws <- matrix(sample(ExpVWeights14520.p1, size = i * 5000, replace = TRUE), i)   
106.         drawmeans <- apply(draws, 2, mean)   
107.         draws14520.p1[i,] <- drawmeans   
108. }   
109.    
110. CANCER LIST AND CANCER VERTEX WEIGHTS   
111. cancerVertexWeights <- c()   
112. count = 0   
113. for (i in clusterNetVertices) {    
114.     count = count +1   
115.     if (length(which(cancerList == i)) >0)  {   
116.         cancerVertexWeights[count] <- (cancerList[which(cancerList == i),2])    
117.     }   
118.     else{}   
119. }   
120.    
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121. drawsCancer <- matrix (ncol = 5000, nrow = 1000)   
122. for (i in 3:1000) {   
123.     draws <- matrix(sample(cancerVertexWeights, size = i * 5000, replace = TRUE), i)   
124.     drawmeans <- apply(draws, 2, mean)   
125.     drawsCancer[i,] <- drawmeans   
126. }   
127.    
128. MODULARITY CHECK   
129. which.max(wtc14520.p1$modularity)-1   
130.    
131. CHECK FOR BEST MODEL USING MAX SIZE <=200   
132. stop = 0   
133. comm.scores14520.p1 <- c(0)   
134. step.size <- round(.20 * (length(wtc14520.p1$labels)))   
135. increment <- round(.005 * (length(wtc14520.p1$labels)))   
136.    
137. while (step.size <= length(wtc14520.p1$labels)) {   
138.     comm.steps <- c(0)   
139.     comm.memb <-

  community.to.membership(cGlobalNet, wtc14520.p1$merges, steps=step.size,   membership=TRUE, csize=TRUE)   
140.     community.vector <-  which(comm.memb$csize > 3) -1   
141.     if(max(comm.memb$csize) <= 200) {   
142.         all.comm.means <- c(0)   
143.         for (i in community.vector) {   
144.             comm.size <- comm.memb$csize[i +1]   
145.             comm.total.mean <- mean(ExpVWeights14520.p1[which(comm.memb$memb == i)])   
146.             comm.total.zscore <- abs(comm.total.mean -

                                                     mean(draws14520.p1[comm.size,]))/sqrt(var(draws14520.p1[comm.size,]))
    

147.             all.comm.means <- c(all.comm.means, comm.total.zscore)   
148.         }   
149.     }    
150. else {}   
151.    
152. comm.scores14520.p1[step.size] <- max(all.comm.means)   
153. step.size <- step.size + increment   
154.    
155. }   
156.    
157. CHECK FOR OPTIMAL STEP SIZE   
158. which(comm.scores == max(comm.scores, na.rm=TRUE))   
159.    
160. RUN CLUSTERING WITH OPTIMAL STEP SIZE   
161.    
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162. rw14520.sigvalues <- matrix(ncol=4)   
163.  comm.memb14520 <-  community.to.membership(cGlobalNet, wtc14520.p1$merges, steps=2393, membership=TRUE, csize=TRUE)   
164.  community.vector <-  which(comm.memb14520$csize >= 3) -1   
165.  if(max(comm.memb14520$csize) <= 200) {   
166.     all.comm.means <- c(0)   
167.      for (i in community.vector) {   
168.          cancerScores <- cancerVertexWeights[which(comm.memb14520$memb == i)]   
169.         cmean <- mean(cancerScores)   
170.          comm.size <- comm.memb14520$csize[i +1]   
171.          comm.total.mean <- mean(ExpVWeights14520.p1[which(comm.memb14520$memb == i)])   
172.          comm.total.zscore <- (comm.total.mean -

                                             mean(draws14520.p1[comm.size,]))/sqrt(var(draws14520.p1[comm.size,]))    
173.         comm.total.cscore <- (cmean -

                                        mean(drawsCancer[length(cancerScores),]))/sqrt(var(drawsCancer[length(cancerScores
),]))    

174.         rw14520.sigvalues <-
 rbind(rw14520.sigvalues, c(i, comm.total.zscore, comm.size,                             comm.total.cscore))   

175.         print(comm.total.zscore)   
176.                    all.comm.means <- c(all.comm.means, comm.total.zscore)   
177.      }   

 }   
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A.3 Chapter 5 Workflow I 

 
1. LOAD BIOCONDUCTOR GEOquery and limma packages   

2. source("http://www.bioconductor.org/biocLite.R"   
3. biocLite("GEOquery")   
4. biocLite("limma")   
5.    
6. INSTALL AND LOAD IGRAPH, OPTMATCH PACKAGE   
7. install.packages("igraph")   
8. library("igraph")   
9. install.packages("optmatch")   
10. library("optmatch")   
11.    
12. gse22058 <- getGEO("GSE22058")   
13. show(gse22058)   
14. exp22058 <- exprs(gse22058[[1]])   
15. exp22058.3 <- exprs(gse22058[[3]])   
16. exp22058.2 <- exprs(gse22058[[2]])   
17. newmat <- apply(exprs(gse22058[[1]]), 2, as.numeric)    
18. exp22058.bak <- exp22058   
19. exp22058 <- newmat   
20. rownames(exp22058) <- rownames(exp22058.bak)   
21. pheno22058.df <- pData(phenoData(gse22058[[1]]))   
22. colnames(pheno22058.df)   
23. HCTumor <- c()   
24. nonTumor <- grep("adjacent", pheno22058.df[,11])   
25. tumor <- grep("liver tumor", pheno22058.df[,11])   
26. HCTumor[c(nonTumor)] <- 0   
27. HCTumor[c(tumor)] <- 1   
28. design22058 = model.matrix(~ -1+factor(c(HCTumor)))   
29. colnames(design22058) = c("nonTumor", "tumor")   
30. contrast.matrix22058 <- makeContrasts(tumor-nonTumor, levels=design22058)   
31.    
32. fit22058 <- lmFit(exp22058, design22058)   
33. fit.contrast.22058 <- contrasts.fit(fit22058, contrast.matrix22058)   
34. fit.ebayes.22058 <- eBayes(fit.contrast.22058)   
35. top22058.all <- topTable(fit.ebayes.22058, n=Inf, sort.by="logFC", adjust.method="BH")   
36. top22058.pval.1 <- topTable(fit.ebayes.22058, n=Inf, p.value=.1, sort.by="logFC", adjust.method="BH")   
37. top22058.pval.05 <- topTable(fit.ebayes.22058, n=Inf, p.value=.05, sort.by="logFC", adjust.method="BH")   
38. top22058.pval.05 <- topTable(fit.ebayes.22058, n=Inf, p.value=.05, sort.by="logFC", adjust.method="BH")   
39.    
40. miRNADS1.FCall <- top22058.all[,c(7,2)]   
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41. names(miRNADS1.FCall) <- names(miRNAFoldChange.p1[1:2])   
42. miRNA.RNADS1.FCall <- rbind(miRNAFoldChange.p1[,1:2], miRNADS1.FCall)   
43.    
44. #CREATE WEIGHT MATRICES   
45.    
46. miRNAbfc <- bigFoldChange[,1]   
47. miRNAmatchesP1FC2DS1 <- miRNAtable[miRNAtable$target %in% miRNAbfc,]   
48. miRNAmatchesSort <- miRNAmatchesP1FC2DS1[with(miRNAmatchesP1FC2DS1, order(miRNA, corr)),]   
49.    
50. for (i in unique(miRNAmatchesSort[,1])) {   
51.     newvec <- which(miRNAmatchesSort[,1] == i)   
52.     if (length(newvec) > 5) {   
53.         newvec <- newvec[1:5] }   
54.     best5DS1mat <- rbind(best5DS1mat, miRNAmatchesSort[newvec,])   
55. }   
56.    
57. best5DS1mat <- matrix(ncol=3)   
58. colnames(best5DS1mat) <- colnames(miRNAmatchesSort)   
59.    
60. #fbest5DS1mat filtered matches are parsed separately from best5DS1mat, perl code attached.   
61.    
62. FDS1B5Names <- c(t(fbest5DS1mat[1:194, 1:2]))   
63. FDS1B5UNames <- unique FDS1B5Names[!(FDS1B5Names %in% clusterNetVNames)])   
64. fDS1B5Targets <- fbest5DS1mat[2:194, 2]   
65.    
66. ADD MIRNA VERTICES AND EDGES   
67. fmiRNAB5DS1.net <- add.vertices(clusterGlobalNet.labels.test, c(115), name= FDS1B5UNames)   
68. fclusterNetDS1B5Names <- V(fmiRNAB5DS1.net)$name   
69.    
70. FDS1B5EdgeNames <- c()   
71.     count <- 0   
72.     for (i in  FDS1B5Names) {   
73.         count = count +1   
74.     FDS1B5EdgeNames[count] <- c(which(fclusterNetDS1B5Names  == i) -1)   
75. }   
76.    
77. fmiRNAB5DS1.net <- add.edges(fmiRNAB5DS1.net, FDS1B5EdgeNames, source="fmiRNAB5")   
78.  (fmiRNAallDS2.net, FDS2allEdgeNames, source="fmiRNAallMatch")   
79.    
80. EDGE AND VERTEX LIST   
81. fmiRNAB5DS1Vertices <- fmiRNAB5DS1.net[9][[1]][[3]][[1]]   
82. fglobalEdges.miRNAB5DS1 <- get.edgelist(fmiRNAB5DS1.net, names=TRUE)   
83.        
84. CALCULATE VERTEX WEIGHTS   
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85. fmiRNA.RNADS1B5.Weights.p1 <- c()   
86. count = 0   
87. for (i in fmiRNAB5DS1Vertices) {    
88.     count = count +1   
89.     if (length(which(miRNA.RNADS1.FCall[,1] == i)) >0)  {   
90.         fmiRNA.RNADS1B5.Weights.p1[count] <-

                                 max(abs(miRNA.RNADS1.FCall[which(miRNA.RNADS1.FCall[,1] == i),][,2]))}   
91.     else {fmiRNA.RNADS1B5.Weights.p1[count] <- .01}   
92.     }   
93. }   
94.    
95. BUILD BOOTSTRAP DISTRIBUTION FOR MODULE SCORES   
96. fdrawsB5.miRNA.RNADS1.p1 <- matrix (ncol = 5000, nrow = 200)   
97. for (i in 3:200) {   
98.     drawsDS1 <- matrix(sample(fmiRNA.RNADS1B5.Weights.p1, size = i * 5000, replace = TRUE), i)   
99.     drawmeansDS1 <- apply(drawsDS1, 2, mean)   
100.     fdrawsB5.miRNA.RNADS1.p1[i,] <- drawmeansDS1   
101. }   
102.    
103. CALCULATE EDGE WEIGHTS   
104. fExpWeightsmiRNAB5DS1.p1 <- c()   
105. for (i in 1:length(fglobalEdges.miRNAB5DS1[,1])) {    
106.     tempEdge1 <- fglobalEdges.miRNAB5DS1[i,1]   
107.     tempEdge2 <-  fglobalEdges.miRNAB5DS1[i,2]          
108.     if ((length(which(miRNA.RNADS1.FCall[,1] == tempEdge1)) >0)  ||                  (length(which(miRNA.RNADS1.FCall[,1] 

== tempEdge2)) >0)) {   
109.     if ((length(which(miRNA.RNADS1.FCall[,1] == tempEdge1)) >0)  &&      (length(which(miRNA.RNADS1.FCall[,1] == tempEdge2

)) >0)) {   
110.         fExpWeightsmiRNAB5DS1.p1[i] <-

                                    (max(abs(miRNA.RNADS1.FCall[which(miRNA.RNADS1.FCall[,1] == tempEdge1),][,2]))        
 + max(abs(miRNA.RNADS1.FCall[which(miRNA.RNADS1.FCall[,1] ==                    tempEdge2),][,2])))/2}   

111.     else if  ((length(which(miRNA.RNADS1.FCall[,1] == tempEdge1)) >0)) {   
112.         fExpWeightsmiRNAB5DS1.p1[i] <-

   (max(abs(miRNA.RNADS1.FCall[which(miRNA.RNADS1.FCall[,1] == tempEdge1),][,2])))/2}   
113.     else if ((length(which(miRNA.RNADS1.FCall[,1] == tempEdge2)) >0)) {   
114.         fExpWeightsmiRNAB5DS1.p1[i] <-

   (max(abs(miRNA.RNADS1.FCall[which(miRNA.RNADS1.FCall[,1] == tempEdge2),][,2])))/2}   
115.     else { fExpWeightsmiRNAB5DS1.p1[i] <- .01}   
116.  }   
117. }   
118.    
119. BUILD WALKTRAP COMMUNITY   
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120. fwtcmiRNAB5DS1 <-
 walktrap.community(fmiRNAB5DS1.net, steps = 3, merges=TRUE, modularity = TRUE, labels = TRUE, membership = TRUE, weights 
= fExpWeightsmiRNAB5DS1.p1)   

121.    
122. BUILD BOOTSTRAP DISTRIBUTION FOR CANCER GENES   
123. drawsCancer <- matrix (ncol = 5000, nrow = 1000)   
124. for (i in 3:1000) {   
125.     draws <- matrix(sample(cancerVertexWeights, size = i * 5000, replace = TRUE), i)   
126.     drawmeans <- apply(draws, 2, mean)   
127.     drawsCancer[i,] <- drawmeans   
128. }   
129.    
130. CALCULATE VERTEX WEIGHTS FOR MIRNA ENRICHMENT   
131. fmiRNAWeightsEAB5.DS1 <- c()   
132. count = 0   
133. for (i in clusterNetVertices) {    
134.     count = count +1   
135.     if (length(which(fDS1B5Targets == i)) >0)  {   
136.         fmiRNAWeightsEAB5.DS1[count] <- 1}   
137.     else {fmiRNAWeightsEAB5.DS1[count] <- 0}   
138. }   
139.    
140. BUILD BOOTSTRAP DISTRIBUTION FOR MODULE MIRNA ENRICHMENT SCORES   
141. fdrawsmiRNAEAB5DS1.p1 <- matrix (ncol = 5000, nrow = 200)   
142. for (i in 3:200) {   
143.     drawsDS1 <- matrix(sample(fmiRNAWeightsEAB5.DS1, size = i * 5000, replace = TRUE), i)   
144.     drawmeansDS1 <- apply(drawsDS1, 2, mean)   
145.     fdrawsmiRNAEAB5DS1.p1[i,] <- drawmeansDS1   
146. }   
147.    
148. CHECK MODULARITY   
149. which.max(fwtcmiRNAB5DS1$modularity)-1, membership=TRUE, csize=TRUE)   
150.    
151. FIND BEST STEP SIZE   
152. stop = 0   
153. comm.scoresmiRNAB5DS1 <- c(0)    
154. step.size <- round(.2 * (length(wtcmiRNAB5DS1$labels)))   
155. increment <- round(.005 * (length(wtcmiRNAB5DS1$labels)))   
156.    
157. while (step.size <= length(wtcmiRNAB5DS1$labels)) {   
158.     comm.steps <- c(0)   
159.     comm.memb <-

  community.to.membership(fmiRNAB5DS1.net, fwtcmiRNAB5DS1$merges,    steps=step.size, membership=TRUE, csize=TRUE)   
160.     community.vector <-  which(comm.memb$csize > 3) -1   
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161.     all.comm.means <- c(0)   
162.     if(max(comm.memb$csize) <= 200) {   
163.         for (i in community.vector) {   
164.             comm.size <- comm.memb$csize[i +1]   
165.             comm.total.mean <-

                                           mean((fmiRNA.RNADS1B5.Weights.p1[which(comm.memb$memb == i)]^2))   
166.             comm.total.zscore <- abs(comm.total.mean -

                               mean((fdrawsB5.miRNA.RNADS1.p1[comm.memb$csize[i                        +1],])^2))/sqrt(var
((fdrawsB5.miRNA.RNADS1.p1[comm.memb$csize[i +1],])^2))    

167.             all.comm.means <- c(all.comm.means, comm.total.zscore)   
168.         }   
169.     }    
170.     else {}   
171.    
172. comm.scoresmiRNAB5DS1[step.size] <- max(all.comm.means)   
173. step.size <- step.size + increment   
174. print(step.size)   
175. }    
176.    
177. which(comm.scoresmiRNAB5DS1 == max(comm.scoresmiRNAB5DS1, na.rm=TRUE))   
178.    
179. RUN MODEL AND ARCHIVE SCORES   
180. comm.miRNAB5DS1.2776 <-

 community.to.membership(fmiRNAB5DS1.net,  fwtcmiRNAB5DS1$merges, steps=2776, membership=TRUE, csize=TRUE)   
181.    
182. miRNADS1.2776B5.sigvalues <-  matrix(ncol=5)   
183.  community.vector <-  which(comm.miRNAB5DS1.2776$csize > 3) -1   
184.  if(max(comm.miRNAB5DS1.2776$csize) <= 200) {   
185.      all.comm.means <- c(0)   
186.      for (i in community.vector) {   
187.         cancerScores <- cancerVertexWeights[which(comm.miRNAB5DS1.2776$memb == i)]   
188.         cmean <- mean(cancerScores)   
189.         comm.total.cscore <- (cmean -

                                                 mean(drawsCancer[length(cancerScores),]))/sqrt(var(drawsCancer[length(can
cerScores),]))    

190.          comm.size <-comm.miRNAB5DS1.2776$csize[i +1]   
191.         comm.total.mean <-

                                           mean((fmiRNA.RNADS1B5.Weights.p1[which(comm.miRNAB5DS1.2776$memb ==            
 i)]^2))    

192.         comm.total.zscore <- abs(comm.total.mean -
                               mean((fdrawsB5.miRNA.RNADS1.p1[comm.miRNAB5DS1.2776$csize[i                     +1],])^2))/
sqrt(var((fdrawsB5.miRNA.RNADS1.p1   

193.         [comm.miRNAB5DS1.2776$csize[i +1],])^2))     
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194.         ecomm.total.mean <-
                                              mean((fmiRNAWeightsEAB5.DS1[which(comm.miRNAB5DS1.2776$memb == i)]^2))   

195.         comm.total.eascore <- abs(ecomm.total.mean -
                                 mean((fdrawsmiRNAEAB5DS1.p1[comm.miRNAB5DS1.2776$csize[i                    +1],])^2))/sq
rt(var((fdrawsmiRNAEAB5DS1.p1[comm.miRNAB5DS1.2776$csize[i             +1],])^2))   

196.         miRNADS1.2776B5.sigvalues <-
 rbind(miRNADS1.2776B5.sigvalues, c(i,               comm.total.zscore, comm.miRNAB5DS1.2776$csize[i +1], comm.total.cscor
e,                 comm.total.eascore))   

197.         print(comm.total.zscore)   
198.         all.comm.means <- c(all.comm.means, comm.total.zscore)   
199.     }   
200. }   
201.    
202. CODE FOR OPTIMAL MATCHING   
203. > miRNAtable <- read.csv("C:\\Users\\dpetroch\\downloads\\1_corrs_0.5.csv", header=TRUE, sep=",")   
204.    
205. > dim(miRNAtable)   
206. [1] 40809     3   
207.    
208. miRNAtable <- read.csv("C:\\Users\\dpetroch\\downloads\\1_corrs_0.5.csv", header=FALSE, sep=",")   
209. miRNAtableNames <- read.csv("C:\\Users\\dpetroch\\downloads\\1_corrs_0.5Unique.csv", header=FALSE, sep=",")   
210. colnames(miRNAtable) <- c("miRNA", "target", "corr")   
211. miRNAs <- levels(miRNAs)   
212. targets <- levels(targets)   
213. miRNAs <- miRNAs[2:156]))   
214.    
215. local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE)   
216. if(nchar(pkg)) library(pkg, character.only=TRUE)})   
217.    
218. bigFoldChange <- read.csv("C:\\Users\\dpetroch\\downloads\\Burchard HCC fold abv 2.csv", header = TRUE, sep = ",")   
219. bigFoldColumns <- bigFoldChange[which(levels(bigFoldChange[,1]) %in% colnames(miRNAmatrix)),]   
220.    
221. dim(miRNAmatrix[,which(colnames(miRNAmatrix) %in% bigFoldChange[,1])])   
222. miRNAmatrixFilt <- miRNAmatrix[,which(colnames(miRNAmatrix) %in% bigFoldChange[,1])]   
223.    
224. miRNAmatrix <- matrix(0, nrow=155, ncol=5057, dimnames = list(levels(miRNAtable[,1]), levels(miRNAtable[,2])))   
225. miRNAmatrix[1:155,1:5057] <-2   
226. miRNAmatrix[cbind(miRNAtable$miRNA, miRNAtable$target)] <- (2- abs(miRNAtable$corr))   
227. miRNAmatrixFilt <- miRNAmatrix[,which(colnames(miRNAmatrix) %in% bigFoldChange[,1])]   
228.    
229. #output: list of genes and miRNAs and their match numbers   
230. optPairMatch <- pairmatch(distance = miRNAmatrixFilt, tol = .0001, remove.unmatchables = TRUE, controls = 1)   
231. optPairMatches <- optPairMatch[where=(matched(optPairMatch))]   
232. optPairs <- matrix(ncol=2)   
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233. for (i in c(67:221)) {   
optPairs <-
 rbind(optPairs,c(names(optPairMatches[which(optPairMatches == optPairMatches[i])])[1], names(optPairMatches[which(optPairMatches
 == optPairMatches[i])])[2]))}     
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A.4: Chapter 5 Workflow II 

Finding Queries for miRNA family memebers 

1. open (OUTFAM, ">C:\\myDir\\FilteredFamilyInfo.txt") || warn "can not open file for writing: FilteredFamilyInfo.txt";   
2. open (MFAM, ">C:\\myDir\\familyMatches.txt") || warn "can not open file for writing:familyMatches.txt";   
3. open (NOFAM, ">C:\\myDir\\noMatches.txt") || warn "can not open file for writing:familyMatches.txt";;   
4.    
5.    
6.    
7.    
8. open (FAMMATCH, "C:\\myDir\\miRNAFamilies.txt") || warn "can not open file for reading:Nonconserved_Family_Info.txt";   
9.    
10.    
11.    
12. #read in $miRNA- $miRNA_family list as hash table   
13. my %mfams;    
14. my %mmaps;   
15. while($line = <FAMMATCH>){    
16. chomp $line;    
17. ($miRNA, $mfamily) = split(/\t/, $line);   
18. $mfamily =~ s/\s*//;   
19. $mfams{$mfamily} = $miRNA;   
20. %mmaps = reverse %mfams;   
21. }    
22.    
23. close (FAMMATCH);   
24.    
25. while ( ($k,$v) = each %mfams ) {   
26.    print "$k => $v end\n";   
27. }   
28.    
29. while ( ($keym,$valuem) = each %mmaps ) {   
30.    print "$keym => $valuem end\n";   
31. }   
32.    
33.    
34. open (INFAM, "C:\\myDir\\parsedmiRNA2s.txt") || warn "can not open file for reading: miRNAFamilies.txt";   
35.    
36. while($line2 = <INFAM>){    
37.     chomp $line2;   
38.     ($miRFamily, $GeneSymbol, $PCT) = split("\t", $line2);   
39.     #print "$line2\n";   
40.     if(exists($mfams{$miRFamily})) {   
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41.         if (! grep(/$GeneSymbol/, @{$famTargets{$miRFamily}})){   
42.         print OUTFAM "$miRFamily\t$GeneSymbol\t$PCT\n";   
43.         push @{$famTargets{$miRFamily}}, $GeneSymbol;}   
44.         else {}   
45.     }   
46.     else{print NOFAM "$miRFamily\n"};   
47. }    
48.    
49. foreach $mmiRNA (keys %mmaps) {   
50.     $fam = $mmaps{$mmiRNA};   
51.         $mmiRNA = lc($mmiRNA);   
52.     print MFAM "$mmiRNA\t$fam\t@{$famTargets{$fam}}\n";   
53.     $matNum =  @{$famTargets{$fam}};   
54.     print  "fam $matNum\n";   
55. }   
56.    
57. close (INFAM);   
58.    
59. close (OUTFAM);   
60. close (MFAM);     
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A.5: Chapter 5 Workflow III 
 

1. #matching to correlated results   
2. open (CORRMIRNA, "C:\\myDir\\optPairsDS2.txt") || warn "can not open file for reading: optPairsDS2.txt";   
3. open (INFAM, "C:\\myDir\\familyMatches.txt") || warn "can not open file for reading: miRNAFamilies.txt";   
4. open (FILTMIRNA, ">C:\\myDir\\optPairsDS2.filtered") || warn "can not open file for writing: optPairsDS2.filtered";   
5. open (EXTARGETS, ">C:\\myDir\\optPairsDS2.excluded") || warn "can not open file for writing: optPairsDS2.excluded";   
6.    
7.    
8. #reformat DS2   
9. #exclude unavailable targets   
10.    
11. #read in file 2 as a hash table   
12. %famtargets;    
13. my $count = 0;   
14. while($line = <INFAM>){    
15. chomp $line;    
16. $count = ($count + 1);   
17. ($miRNA, $family, @targets) = split(/\t/, $line);    
18. $miRNA =~ s/\s*//g;   
19. $famtargets{$miRNA} = [ @targets ];   
20. #print "@{$famtargets{$miRNA}}";   
21. print "$miRNA.";   
22. }   
23.    
24. close (INFAM);   
25.    
26. my $count2 = 0;   
27. while($line2 = <CORRMIRNA>){    
28. chomp $line2;    
29. $count2 = $count2 + 1;   
30. $line2 =~ s/"//g;   
31. ($id, $miRNA2, $target2, $corr) = split(/\t/, $line2);   
32.    
33. #debug statements   
34. #print "split $id, $miRNA2, $target2, $corr\n";   
35. #print "mirna family string $miRNA2 @{$famtargets{$miRNA2}}";   
36. #while ( ($k,$v) = each %famtargets ) {print "$k => @{$v} end\n";}   
37.    
38. if (!defined @{ $famtargets{$miRNA2} }) {   
39.     "$count2: $miRNA2 does  not exist in target list, continuing to next match.\n";   
40. }   
41. else {   
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42. #print "$count2: Processing $miRNA2 in target list...";   
43. }   
44.    
45. if (grep /$target2/, @{ $famtargets{$miRNA2} }) {   
46. print FILTMIRNA "$miRNA2\t$target2\n";   
47. }   
48. else {print EXTARGETS "$miRNA2\t$target2\n";}   
49. }   
50.    
51.    
52. close (CORRMIRNA);   
53. close (FILTMIRNA);   
close(EXTARGETS);   
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Significant Modules in Sebates-Bellver 2007 Data 
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Significant Modules in Burchard 2010 Data 
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miRNA Evaluation Table 

 

 

TOTAL

Cancer 

Enriched (CE)

MiRNA 

Enriched (ME)

CE + 

ME Precision Recall

Matthews 

Correlation 

Cofficient TOTAL

Cancer 

Enriched (CE)

MiRNA 

Enriched  (ME)

CE + 

ME Precision Recall

Matthews 

Correlation 

Cofficient

Results Object  Unfiltered Filtered

EA OM DS1 223 59 25 13 0.5200 0.2203 0.2716 223 59 3 2 0.6667 0.0339 0.1088

EA OM DS2 276 65 20 7 0.3500 0.1077 0.1109 276 65 5 2 0.4000 0.0308 0.0568

Net OM DS1 225 62 20 12 0.6000 0.1935 0.2705 222 61 10 6 0.6000 0.0984 0.1727

Net OM DS2 307 74 11 7 0.6364 0.0946 0.1906 331 68 3 1 0.3333 0.0147 0.0319

FW OM DS1 168 44 18 8 0.4444 0.1818 0.2044 222 61 10 6 0.6000 0.0984 0.1727

FW OM DS2 335 70 12 2 0.1667 0.0286 -0.0060 332 71 5 3 0.6000 0.0423 0.1202

Results Object   

EA B3 DS1 223 61 30 13 0.4333 0.2131 0.2264 223 61 15 10 0.6667 0.1639 0.2657

EA B3 DS2 276 67 23 9 0.3913 0.1343 0.1475 276 67 12 5 0.4167 0.0746 0.1018

Net B3 DS1 228 63 14 4 0.2857 0.0635 0.0311 226 64 12 7 0.5833 0.1094 0.1757

Net B3 DS2 327 67 12 6 0.5000 0.0896 0.1571 329 68 5 5 1.0000 0.0735 0.2505

FW B3 DS1 221 58 12 4 0.3333 0.0690 0.0597 224 60 12 4 0.3333 0.0667 0.0556

FW B3 DS2 332 66 20 10 0.5000 0.1515 0.2240 313 75 5 5 1.0000 0.0667 0.2325

Results Object 

EA B5 DS1 223 59 37 12 0.3243 0.2034 0.1879 223 61 19 11 0.5789 0.1803 0.2497

EA B5 DS2 276 67 30 10 0.3333 0.1493 0.1407 276 67 16 6 0.3750 0.0896 0.1007

Net B5 DS1 234 66 34 14 0.4118 0.2121 0.2134 224 63 17 10 0.5882 0.1587 0.2281

Net B5 DS2 338 68 25 13 0.5200 0.1912 0.2713 327 65 9 7 0.7778 0.1077 0.2577

FW B5 DS1 245 57 23 8 0.3478 0.1404 0.1419 234 62 19 10 0.5263 0.1613 0.2144

FW B5 DS2 349 69 38 12 0.3158 0.1739 0.1821 334 66 12 8 0.6667 0.1212 0.2451

Results Object 

EA All DS1 223 61 100 41 0.4100 0.6721 1.2655 223 61 97 41 0.4227 0.6721 1.2291

EA All DS2 276 67 59 20 0.3390 0.2985 0.3295 276 67 45 15 0.3333 0.2239 0.2249

Net All DS1 495 8 83 4 0.0482 0.5000 0.9607 272 70 130 47 0.3615 0.6714 1.4077

Net All DS2 699 50 70 9 0.1286 0.1800 0.2049 342 65 47 21 0.4468 0.3231 0.3967

FW All DS1 37 8 3 1 0.3333 0.1250 0.1298 83 27 28 12 0.4286 0.4444 0.5489

FW All DS2 351 67 80 27 0.3375 0.4030 0.5089 324 70 42 19 0.4524 0.2714 0.3257
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