
©Copyright 2011
Andrew M. Simms

Mining Mountains of Data: Organizing All Atom Molecular Dynamics
Protein Simulation Data into SQL and OLAP Cubes

Andrew M. Simms

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2011

Program Authorized to Offer Degree:
Medical Education and Biomedical Informatics

UMI Number: 3472310

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI'
Dissertation Publishing

UMI 3472310
Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Andrew M. Simms

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Valerie Daggett'

Reading Committee:

^J CtJ..JLA^~JL
Valerie Daggett

(sA^d^/^y
Ira Kalet

^PUl« P,.
JMer Myler

Date: ^ ' / ^ v - Z O / / r*y.

In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree
at the University of Washington, I agree that the Library shall make its copies freely available
for inspection. I further agree that extensive copying of the dissertation is allowable only for
scholarly purposes, consistent with "fair use" as prescribed in the U.S. Copyright Law. Requests
for copying or reproduction of this dissertation may be referred to ProQuest Information and
Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the
author has granted "the right to reproduce and sell (a) copies of the manuscript in microform
and/or (b) printed copies of the manuscript made from microform."

Signature

Date m ^ y 2,2,011

University of Washington

Abstract

Mining Mountains of Data: Organizing All Atom Molecular Dynamics
Protein Simulation Data into SQL and OLAP Cubes

Andrew M. Simms

Chair of the Supervisory Committee:
Professor Valerie Daggett

Bioengineering

Across scientific disciplines, the ability to generate, collect, and store data has outpaced the

ability to make sense of them. Methods and technology exist today for working with ex­

tremely large data sets, yet the most common data organization paradigm in science is to cre­

ate files, in some cases millions of files, and store them in file systems. Despite the best

intentions, these repositories quickly become disorganized, fragile, and difficult to manage;

hindering mining and exploitation of the data they contain. This is fundamentally an infor­

matics problem, and here I present the design of a very large scale repository to organize and

mine molecular dynamics simulation data.

TABLE OF CONTENTS

Page
List of Figures iii
List of Tables iv
Chapter 1: Introduction 1
Chapter 2: Protein Simulation Data in the Relational Model 3

Introduction 3
A Dimensional Model for MD Simulation Data 5
Relational Design and Implementation 9
SQL Server Implementation 18
Conclusions and Future Directions 30

Chapter 3: Augmenting the Relational Model using Online Analytical Processing 31
Introduction 31
SQL Server Analysis Services 33
Dynameomics OLAP Database Design and Implementation 39
Storage and Calculation Performance Analysis 48
Discussion 51
Conclusions 53

Chapter 4: Beyond the Relational Model: 3D Spatial Hashing 54
Introduction 55
Results 57
Conclusions 64
Methods 65

Chapter 5: Generation of a Consensus Domain Dictionary 73
Introduction 73
Methods 76
Results 82
Discussion 92

Chapter 6: The Molecular Mechanics Parameter Markup Language 94
Introduction 94
Force Field Parameters 95
The MMPL Data Model 96
Validation of elements and relationships 102
MMPL Components and Extending the Parameter Library 104
Conclusions 106

l

Chapter 7: Conclusions and Future Directions 108
Paying for Storage Infrastructure 108
Cloud Computing 109
Moving to the Cloud 110
Conclusions 112

Bibliography 113

l i

LIST OF FIGURES

Figure Number Page
1. Star and Snowflake Schemas 4
2. Dimensional Hiearchies and Groups 6
3. Structure Dimension Links 7
4. Directory Schema Diagram 11
5. Simulation and Simulation Group Dimension Tables 13
6. High level view of an Analysis Services Database 34
7. Example MDX Statement 38
8. Dimensions and hierarchies 41
9. MDX lookup query execution times 51

10. MDX calculation query execution times 52
11. Illustration of spatial binning within a periodic box 57
12. 11 metafolds representative of sequence length in Dynameomics 58
13. Contacts query execution times 58
14. Compression and execution times 62
15. Comparison of total execution times and table sizes 63
16. Comparison of compression 64
17. Heavy atom contacts query % 67
18. Cache clearing commands 71
19. Target Selection and Preparation ('Prep') database schema 77
20. Overview of the consensus domain dictionary (CDD) generation process 78
21. Overview of the mapping and target selection process 81
22. Distribution of domain populations between folds and metafolds 84
23. Example metafolds rejected for not being autonomous units 90
24. Structure representatives 91
26. MMPL schema 97
27. Illustration of relationships between structural elements 100
28: Parameter types 102
29. Parameter mask matching algorithm 103
30. A minimal parameter library 105
31. Cloud services and repositories I l l

in

LIST OF TABLES

Table Number Page
1. Unique Simulation Attributes 8
2. Structure Group Type 12
3. Simulation Dimension Attributes and Relational Columns 14
4. Supported and Planned Fact Types 16
5. Shared Identifiers 17
6. Common SQL Server Data Types 21
7. Dimensional Key Column Usage 28
8. Secondary Dimensions for dihedral angles, secondary structure, and OAP state 29
9. Naming rules for coordinate and analysis tables 30

10. Dimensions and attributes 42
11. Measure group definitions 44
12. Measure groups and relationships to cube dimensions 48
13. Test server configuration 49
14. Storage analysis 50
15. Test set definition 59
16. Comparison of average execution times by protein 59
17. Compression comparison 65
18. Test server hardware configuration, hardware and software 70
19. SCOP, CATH, and Dali 83
20. Justifications for rejection for 888 metafolds in the v2009 CDD 90
21. MMPL Elements 98
22. MMPL File Manifest 106

IV

ACKNOWLEDGEMENTS

I would like to give thanks to my wife, Merianne White, for all her encouragement and support
that has made this journey possible.

1

Chapter 1: Introduction

Across scientific disciplines, the ability to generate, collect, and store data has outpaced

the ability to make sense of them. Methods and technology exist today for working with ex­

tremely large data sets, yet the most common data organization paradigm in science is to create

files, in some cases millions of files, and store them in file systems. Despite the best intentions,

these repositories quickly become disorganized, fragile, and difficult to manage; hindering min­

ing and exploitation of the data they contain. This is fundamentally an informatics problem,

and the following chapters detail the design of a very large scale repository to organize and

mine molecular dynamics simulation data.

The design of large-scale informatics infrastructure begins with a thorough analysis of

the underlying data. The goal of this analysis is to discover and establish the interrelationships

and boundaries of the data being captured or generated, as the data do not organize themselves.

This process is by no means static, and will evolve as hypotheses are generated, tested, and re­

fined. The urge to rush toward implementing persistence for internal data structures of specific

algorithms must be avoided, as this will only result in needless data transformation and code

refactoring as new algorithms are developed. Instead, data storage should be designed around

conceptual structure of the data and intended paths of analysis. It should then be implemented

using the primary objects of the chosen storage engine.

Dimensional modeling is an approach to database design that focuses analysis as a pri­

mary consideration. Originally pioneered as a method to organize large volumes of financial

data, it is well suited to scientific data. Chapter 2 describes the dimensional model for protein

simulation data and its implementation using a relational database.

On-line Analysis Processing (OLAP) is type of database developed specifically to ad­

dress the needs of data analysis as opposed to managing transactions. In contrast to relational

databases, OLAP databases fundamentally store and operate on multi-dimensional data. Chap­

ter 3 explores OLAP and details the implementation of the Dynameomics data model using the

2

multi-dimensional OLAP feature of SQL Server Analysis Services.

Relational databases are general purpose tools and are largely agnostic to the semantics

of the data they house. By coding inherent data features into relational primitives, huge per­

formance gains are possible. Chapter 4 describes spatial indexing, where three-dimensional

coordinates are placed into a 1-dimensional index and implemented as a simple foreign key,

enabling rapid calculation of contact distances.

A single data model is unlikely to be effective for all potential applications. Large repos­

itories can contain many interesting subsets of data, each with specific organizational semantics.

Chapter 5 describes the Consensus Domain Dictionary, a unification of protein fold classifica­

tion systems with a relational database linked to the primary data warehouse at its core.

As repositories grow, even the relatively small amount of information used by the tools

that generate the data can grow to the point of being unmanageable. Molecular dynamics sim­

ulations must manage thousands of force field parameters that are associated with each atom

in simulation. Chapter 6 describes the Molecular Mechanics Parameter markup Language

(MMPL), an XML language for managing and sharing force-field parameters.

There are four fundamental problems in building large data repositories. These are: the

design of the data model, the implementation and operation of the model, and the mining of

the data, and sharing of the data. The previous chapters have described methods for the ad­

dressing the first three in the context of protein dynamics, and can clearly be applied to other

scientific domains. The fourth problem, sharing, remains an issue even with a well-organized

repository. Chapter 7 discusses future directions and ideas to solve sharing large volumes of

scientific data.

3

Chapter 2: Protein Simulation Data in the Relational Model

High performance computing is leading to unprecedented volumes of data. Relational

databases offer a robust and scalable model for storing and analyzing scientific data. However,

these features do not come without a cost—significant design effort is required to build a func­

tional and efficient repository. Modeling protein simulation data in a relational database pres­

ents several challenges: the data captured from individual simulations are large,

multi-dimensional, and must integrate with both simulation software and external data sites.

Here we present the dimensional design and relational implementation of a comprehensive data

warehouse for storing and analyzing molecular dynamics simulations using SQL Server.

Introduction

Increasing processor power and access to supercomputer facilities have created an un­

precedented amount of data in a variety of scientific disciplines. As the volume of data increases,

the problem is no longer one of performing calculations utilizing high performance computing

resources. Instead the challenge has become how to manage, organize, mine, and exploit the

data. As such, this has become an informatics problem, one created by high performance com­

puting. Such large datasets become intractable to efficiently manage and exploit on traditional

file systems. However, they are well served, on many levels, by well-designed databases.

There are two schools of design for building systems with relational databases: rela­

tional modeling, which is used with transactional systems; and dimensional modeling, which

is used in data warehousing applications. Both can be traced to E. F. Codd, who created the re­

lational model (Codd, 1970) and proposed the on-line analytical processing (OLAP) model

(Codd, 1993). Relational design is the organization of data into collections of sets known as re­

lations. The process begins with a requirements analysis, which identifies all the attributes to

be modeled and their functional dependencies. The Cartesian product of all attributes in the

system, called the universal relation, can be conceptualized as a table where columns correspond

to attributes and the rows contain specific data items. Functional dependencies identify sets of

attributes whose values are wholly determined by other attributes. The universal relation is

broken up into smaller relations following a design pattern known as a loss-less join decompo­

sition. The goal of decomposition is to significantly reduce or eliminate duplicate information.

Although it is possible to automatically calculate decompositions that minimize duplicated data

using functional dependencies, the process is typically driven by a designer. The designer will

consider other constraints, such transactional and query performance of the application as well

as the target database platform.

In contrast, dimensional modeling is driven almost entirely by both the innate structure

of the data being modeled and reporting requirements. Dimensional modeling involves classi­

fying data into two categories: facts and dimensions. Facts are continuous numerical quantities,

dimensions are discrete classification values. Although space efficiency is important, it is not

a central design goal. Instead, the primary goal of dimensional design is to yield a structure

that is both easy and efficient to query. Dimensional models assume that data are primarily

read-only, which allows liberal use of indexes to achieve query performance.

Dimensional models can be implemented in a relational database. Fact data are organ-

isi
\

III
/

anp'iBHl
pMBBBnjHimmUHJIllH

Figure 1. Star and Snowflake Schemas. A star schema (A) is distinguished by a central
fact table and a set of dimensional tables surrounding it. Each dimensional row is associ­
ated with one or more fact table rows. A snowflake schema is a star schema with the addi­
tion of secondary dimensions (DIM2-1 and DIM2-2) that are related to a dimension and
thus only indirectly related to the fact table.

ized into fact tables; dimensional data are placed in dimension tables that are linked via foreign

key relationships. When visualized using UML or an ER diagram, fact tables appear as the

center of a cluster of dimensions, forming a star shape. If dimensions relate to facts indirectly

5

through other dimensions, a snow-flake shape is observed. These are referred to as a star and

snow-flake schemas, respectively.

Molecular dynamics (MD) simulation data can be described using a dimensional model.

Fact data, at a high level, are sets of three-dimensional Cartesian coordinates for all simulated

atoms. Secondary analyses are either related directly to atom coordinates, or aggregated at the

residue, molecule, or simulation level. Dimensional data organize these facts by chemical struc­

ture, simulation time, and into groups of simulations and structures. The following sections

detail the dimensional model, its translation to a relational model, and its implementation in

SQL Server.

A Dimensional Model for MD Simulation Data

We have developed a four-dimensional model for representing MD simulation data. The pri­

mary dimensions: (A) simulations, (B) structures, (C) simulation groups, and (D) structure

groups; are illustrated in Figure 2. The structure and simulation dimensions are organized hi­

erarchically and are used to identify specific facts. The remaining dimensions are used to or­

ganize one or more simulations or structures into specific curated sets for analysis.

Structure and Structure Group Dimensions

The structure dimension provides the semantic context for interpreting and mining co­

ordinate and analysis data from simulations. Attributes of this dimension are organized into a

five level hierarchy as shown in Figure 2B, with structure type (Type) as the highest and atoms

(Atom) as the lowest level. The structure dimension contains the attributes that describe struc­

tures being simulated and as well as links to the Protein Databank (PDB) for initial structures

(Berman, 2000), the Chemical Component Dictionary for standard atom and residue names

(Henrick, 2008), the Parameter Library, and Simulations as shown in Figure 3.

The Type level classifies structures (molecules) by creation method; current types are

6

SIMULATION

_t
TYPE

STRUCTURE
INSTANCE

i:
SIMULATION

GROUP

J
STEP

STRUCTURE

4.
SIMULATION

t
HAir CHAIN

RESIDUE

1
STRUCTURE

GROUP'

ATOM

4
J^SS

N STRUCTURE

Figure 2. Dimensional Hiearchies and Groups. The simulation hierarchy (A) links simu­
lation time (step) through structure to simulation parameters. The structure hierarchy
describes chemical structure starting from individual atoms. The simulation group (C)
and structure group (D) dimensions allow simulations and structures to be placed in cu­
rated groups for analysis.

X-Ray, NMR, Homology Model, or Engineered Rotomer. The structure level includes identi­

fying information such as the structure identifier (structid), structure, PDB code, name, and

additional attributes that apply to an entire structure.

Organization within a structure begins at the chain level of the hierarchy. A single PDB

entry may contain multiple polymers, each are assigned a unique chain identifier. A polymer

is composed of a sequence of residues. A residue is a logical grouping of atoms, usually cor­

responding to an amino acid, but it can also be used for non-polymers such small molecules,

ions, and ligands. Non-polymers will be assigned the same chain identifier as the polymer with

which they are associated.

Residue attributes include a residue name and abbreviation, description and general

properties. Also included are residue number, and insertion code (ICode). When combined

with the PDB code and chain identifier, the residue number and insertion code provide a direct

link back to the original PDB entry. Residue numbers are sequential integers and are applied

7

PDB

Figure 3. Structure Dimension Links. The structure dimension links simulations to the
parameter library, the Protein Databank, and also uses standard atom and residue names
from the Chemical Component Dictionary.

within a chain, but the sequence may include gaps (missing residues) or insertions (residues

added with the same residue number). Gaps are not stored in the dimensional model. An inser­

tion code will be set for each residue added at the same residue number; the sequence is typically

"A,B,C..."etc.

The lowest level of the structure hierarchy is Atom. Atom attributes include a name,

type, and a sequence number. Following the PDB convention, atoms are numbered sequentially

within structures using positive integers. The atom number and structure identifier uniquely

identify members and thus serve as the key of the dimension.

The Simulation Dimension

Molecular dynamics (MD) is a technique from theoretical physics to simulate the inter­

action and motion of a system of particles. The simulation dimension models starting parame­

ters, the set of molecules being simulated, and time. The simulation attribute hierarchy reflects

this organization and includes levels for simulation, system, and step.

The simulation level holds simulation starting parameters, including the set of parameters that

8

Table 1. Unique Simulation Attributes. These dimension attributes are the set of starting
parameters that uniquely identify a simulation. Each combination of these values is as­
signed a single integer simulation identifier (simid), which is then used throughout the
warehouse. Managing simulations based on these attributes allows for a clean separation
of physical storage and simulation definition.

Attribute Description

structures

minimized structures

temp

run

pH

density

random seed

time step

initial box size

c scale

a scale

cutoff range

h3d sync

simulation engine

The set of structures included in the simulation system

The set of minimized structures used as starting structures

Simulation temperature (K)

A locally assigned positive integer used to differentiate multiple exe­
cutions
Qualitative definition of acidity/basicity of the simulation environment
(high, medium, low)

Solvent density (g/ml)

Random number seed used for initial random assignment of velocities

Conversion factor for calculating time in picoseconds from a step (ps),
typical value is 0.002 ps

Dimensions (x, y, z) of periodic box (A)

Charge scalaing factor for electrostatic potential

Scaling factor for 12/6 attractive and 12/6 repulsive terms of the
Lennard Jones potential
Maximum distance between two atoms to include electrostatic interac­
tions (A)

Number of steps to reuse the non-bonded interaction pair list

Simulation software used to run the simulation

uniquely identify a simulation (Table 1). A simulation identifier and some annotation attributes

are also part of the simulation level of the dimension. A simulation will contain one or more

structures, and are referenced by structure instance in the system level of the hierarchy.

The lowest level of the simulation dimension hierarchy is step. At the core of simulation engine

is a potential function, which is an equation used to calculate the energy of a system based on

the relative locations of participating particles. In all-atom protein simulations, the number of

particles being tracked is large, and the classical equations of motion must be solved numeri-

9

cally. This is accomplished by employing the assumption that for sufficiently small periods of

time, positions for participating particles can be calculated based solely on their location relative

to other particles. The implication is that the primary simulation output, coordinates, will be

output at regular intervals referred to as steps or frames. A step, structure instance, and simu­

lation identifier form the key of the simulation dimension.

The Structure and Simulation Group Dimensions

The structure group dimension allows structures of any type to be placed into curated

sets, which can be referenced easily in queries, used in aggregates, and annotated using detailed

description attributes. A structure may participate in zero or more structure groups. The sim­

ulation group dimension performs a similar function—it allows simulations to be placed into

curated sets, and similar to structure groups allows sets of simulations to be referenced easily

in queries.

Relational Design and Implementation

A dimensional model must be mapped to tables in order to be implemented in a rela­

tional database. In addition to tables required for dimensional attributes, tables must be created

to hold fact data and to manage identifiers. An initial design was described by Simms et al.

(Simms, 2008), but it has changed significantly since the first implementation. Major changes

include extensions to support multiple MD simulation packages, better integration with the

PDB, structure groups, the 2009 Consensus Domain Dictionary (CDD) (Schaeffer, 2011), Mo­

lecular Mechanics Parameter markup Language (MMPL) (Simms, 2011), in lucem molecular

mechanics v2009 (Beck, 2000-2011), spatial indexing (Toofanny, 2011), and standardizing on

step to represent simulation time. The following sections discuss the relational design and data­

base platform-independent implementation.

10

Directory and Simulation Databases

MD simulations are fundamentally very large sets of three-dimensional spatial coordi­

nates, ordered by time. Analyses are derived from coordinates by calculating various statistics,

which can be associated with any level of the structural hierarchy. Simulations and analyses

are facts in the dimensional model. The raw coordinates and analyses cannot be interpreted

without being tightly integrated with structural information, and coordinates from two simula­

tions of the same structure are independent. Thus, a natural organization is to store each sim­

ulation and associated analyses in separate relational tables. To avoid having thousands of

tables in a single database, simulations and analyses are grouped by project and structure into

multiple simulation databases. A single database, called the Directory database, is used to house

structure dimensions, manage identifiers, and record the physical location of simulation data­

bases. This model facilitates the distribution of simulation data across multiple servers.

The schema of the Directory database is illustrated in Figure 4. It includes tables related

to the structure, simulation, structure group, and simulation group dimensions; mechanism for

managing structure identifiers, simulation identifiers; dimensions for analyses; and tables to

support MMPL. Tables that are part of the dimensional model, provide identifier support, or

used by front-end applications for navigating the model are named with "Master" as a prefix.

Molecular Structure

The structure and structure group dimensions are implemented using the set of tables

shown in Figure 4 (C, D). The primary structure dimension tables are MasterStructure and

MasterlD, which are the store of record for structure attributes. Two additional tables, Mas-

terProteinMap and MasterStructureMap, and stored procedures implement the allocation of

new structures. The MasterJVfinStructure, MasterJVlinID, MasterJVlinStructureMap, and

MasterMinlDMap tables mirror their counterparts for the management of minimized structure

attributes; however, these are currently used only for structure allocation are not part of the di-

11

Figure 4. Directory Schema Diagram. The Directory database contains a relational im­
plementation of the four primary dimensions: Simulation (A), Simulation Group (B),
Structure (C) and Structure Group (D).

12

mensional model. Following the dimensional model, the MasterlD table is keyed on structid

and atomnumber. Since the MasterStructure table does not contain atom attributes, it is keyed

only on structid, and a foreign key constraint insures that all rows of MasterlD are associated

with a structure.

MasterStructure also manages a second key, called structure. This identifier was in­

troduced because although it is common practice to refer to simulated proteins by their PDB

code (a four character identifier assigned by the Protein Databank), there are several issues with

attempting to use these codes directly as identifiers. First, PDB structures are routinely modified

in order to prepare them for simulation. This process can involve selecting a specific chain,

adding hydrogens, excising residues, mutating residues, building in missing residues, and many

other transformations. The result of any of these transformations is a new structure, which al­

though derived from a PDB structure, is a unique entity. A second issue involves the simulation

of small molecule cofactors that are included in the PDB structure. It is common to simulate

the protein by itself (apo) and with the cofactor present (holo). These are different structures

from the standpoint of simulation. Lastly, there are many structures that do not have a PDB

code. Some examples include synthetic proteins and homology models. The structure field

addresses these shortcomings by combining a character prefix called a structure base (e.g., a

PDB code) and numeric suffix.

A stored procedure manages the creation of both the structure and structid identifiers.

It performs a residue sequence structural comparison when determining whether or not to allo­

cate a new structure identifier. This comparison considers only at the supplied structure base

and the residue sequence. If the structure base and residue sequence exactly match an existing
Table 2. Structure Group Type. Structure groups are classified by a type value stored in the
MasterStructureGroupType table. The current types are shown below and can be expanded by
adding new rows to this table.

ID Name Description
1 simulation modification structure changes required for simulation (e.g. protenation).

2 SNP mutation single nucleotide polymorphism

3 holo/apo indicates structure was formed from holo structure

13

structure, the existing structure will be used. If there is any deviation, a new structure will be

allocated. Minimized structures (MasterJVIinStructure, MasterMinID) are handled similarly,

but are currently only used for simulation allocation, which is discussed in the next section.

Structure groups allow for a simple two-level hierarchical organization of related struc­

tures. One structure serves as the parent, and one or more related structures as children. This

concept was introduced to accommodate accurate counting and tracking of structures that are

derived by modifying a base structure. There are currently three types of structure groups in

Mi*l -» J._ l o i i f r o p

Simulation Dimension

PRIMARY KEY
slm id

"7V"

V I np

bfflV&i,
run(.̂ srna^JL

~̂ Mas .e .^>

HS

" • 'm i ••

0 *

1 1

\

m.
rs^

Vs*

i r
C * 3

^S

£

^

1 1 0 '

1

/
if » 1

>$f&i — i t

sp -i.?jr^

Figure 5. Simulation and Simulation Group Dimension Tables. Relationships for the sim­
ulation dimension and associated snowflake dimensions.

MasterStructureGroupType, as shown in Table 2, and more can be defined as needed.

The MasterStructureGroup table stores identifiers, names, and a description. The Mas-

terStructureStructureGroup table links a child structure to a parent structure. The optional

14

Table 3. Simulation Dimension Attributes and Relational Columns. The attrib­
utes of the simulation dimension are mapped to SQL Server data types and
stored in the MasterJSimulation table. The fixed exact size type DECIMAL
(9,5) (a 5 byte floating point value) is used for floating point quantities because
these columns will be included in a unique index. Structures (and minimized
structures) are mapped to a single integer identifier; other integer values are
represented directly.

Attribute Relational Column(s) SQL Datatype

structures

minimized structures

temp

run

pH

density

random seed

time step

box dimensions

c scale

a scale

cutoff range

h3d sync

simulation engine

struct_alloc_grp_id

minstructallocgrpid

temp

run

pH

density

randomseed

timestep

boxx, box_y, boxz

cscale

ascale

cutoffjange

h3d_sync

sim id type

INT

INT

SMALLINT

SMALLINT

SMALLINT

DECIMAL(9,5)

INT

DECIMAL(9,5)

DECIMAL(9,5)

DECIMAL(9,5)

DECIMAL(9,5)

DECIMAL(9,5)

INT

SMALLINT

relationshiptag field is used to annotate a specific parent-child relationship, for example this

field is used with single nucleotide polymorphisms (SNPs) to record the residue number and

mutation.

Simulation Parameters

Simulation and simulation group dimensions attributes are stored in the set of tables il­

lustrated in Figure 5. Simulations are assigned unique integers based on the attributes listed in

Table 1, which are mapped to columns as shown in Table 3. It is a requirement that the struc­

tures being simulated be previously allocated. Since a simulation may contain multiple struc­

tures (or even multiple copies of the same structure), the MasterStructureAllocationGroup

table is used to assign a single integer id to sets of structures, structallocgrpid. Sets of min­

imized structures are also assigned a single integer id, minstructallocgrpid, and stored in

the MasterMinStructureAllocationGroup table. An important consequence of this approach is

15

that the order structures are added to a simulation is not considered when determining if a sim­

ulation has been previously allocated.

Once structure allocation group identifiers have been assigned, a stored procedure uses a map­

ping table, MasterSimulationMap, to generate a new simulation identifier (sim_id) or to find

an existing id. Similar to the structure dimension tables, restricted data types and check con­

straints are employed to prevent invalid values from being entered manually or by software

failures. Check constraints for secondary dimension attributes, such as pH, are defined on the

associated table, and enforced via foreign key constraints.

The simulation dimension hierarchy contains two more levels: system and step. The system

level accounts for the structures included in the simulation, and step is a proxy for time. Mul­

tiple structures can be associated with a simulation, and more than one copy of a structure may

be present. Each structure is assigned a structure instance identifier (structinst), which is

scoped to that simulation. Because each structid, structinst, and step are stored in the fact

table, there is no need to create an additional relational table with these values.

The simulation group dimension enables simulations to be organized into groups. The dimen­

sion consists of the MasterSimulationGroup table and linking table, MasterSimulationSim-

ulationGroup, which implements a many-to-many relationship between the group definitions

and simulations. Simulation groups are assigned an identifier (simgrpid) as well as a name

(simgroupname), description, and a curation status (curated). The curated flag, when set, in­

dicates that the simulations associated with the group are final. Simulation group membership

cannot be altered while the curated flag is set.

16

Facts

Fact tables store continuous measurements and are linked to dimensions through key

attributes. In a relational implementation, the key of the fact table is the set of dimension at­

tributes for a row. The warehouse currently supports 18 distinct fact types, which are listed in

Table 4. Each fact type is linked to a level in the attribute hierarchy in one or more dimensions.
Table 4. Supported and Planned Fact Types. Fact data are stored as tables named using
a type abbreviation, an underscore ("_"), and a simulation identifier. Coordinate tra­
jectories are produced during simulation and stored in Coord tables (centered and
aligned, suitable for viewing) and GCoord tables (untranslated). The remaining fact
types are used to store analysis data derived from the coordinates.

Abbreviation Description

astrand

Box

Bins

Congen

Contact

Coord

Dihed

DSSP

FContact

FContactSolv

FDSASum

Flex

Forces

ForcesSolv

ForVel

GCoord

GCoordSolv

NOE

period

PhiPsi

Radgee

RMSD

RMSF

SASA

VCont

Alpha Sheet Residue1

Periodic Box Size2

Hash 3D Spatial Index of Neighbors

Conformational Geneology2

Native Contacts By Time2

Coordinate Trajectory2

Dihedral Angles2

Dictionary Secondary Structure Prediction2

Full Heavy Atom Contact Distance By Time

Full Heavy Atom Contact Distance by Time with Solvent

Fine Detail Structure Analysis Summary By Time

Flexibility (Per Atom)

Instantaneous forces

Instantaneous forces with solvent

Per Atom Force and Velocity

Global Coordinate Trajectory

Global Coordinate Trajectory with Solvent

Nuclear Overhauser Effect1

Periodic Contacts'

Phi Psi Angles2

Radius of Gyration2

Root Mean Square Distance from Starting Structure2

Root Mean Square Fluctuation

Solvent Accessible Surface Area2

Verbose Contacts Summary
'Reserved for future implmentation; 2Original 2007 release

17

When the linking attribute corresponds to primary key in a dimension table, a formal foreign-

key relationship is created and enforced via a constraint. In other cases, the relationship is im­

plied. As mentioned previously, simulations are distributed to multiple databases to avoid large

numbers of tables in a single database. Because referential constraints only apply within a data­

base, dimensional data from the Directory database must be replicated to individual databases

in order to create and enforce explicit foreign key constraints. However, since each database
Table 5. Shared Identifiers. The data warehouse andthe ilmm simulation engine share semantics for these
identifiers, allowing interoperability between the warehouse and simulations. In general, the warehouse is
responsible for allocating identifiers.

Identifier Type Description Valid Ranges Notes

step Int32

struct_inst Int32

struct_id Int32

atom_number Int32

residueid Int32

°0 is a reserved value.

contains only a subset of the entire set of structures and simulations, only dimension data related

to the subset are required.

General Simulation Engine and PDB Integration

Key goals for the Dynameomics data warehouse after 2007 were to achieve deep inte­

gration with the lab's in-house simulation package, ilmm v2009; the Protein Databank (PDB);

and to support simulations created by other simulation packages. Achieving tight ilmm inte­

gration required that there be a fundamental alignment of data types and recognition of respon­

sibilities for managing data between ilmm and the warehouse. This alignment consists of two

parts, first there are shared identifiers which are to be supported natively by ilmm and the ware­

house; second is an accepted definition of a set of attributes, other than file system location,

that uniquely identifies a simulation. The shared identifiers are listed in Table 5.

Simulation step (frame) [0, +2bilhon)

Structure Instance [0, +2billion)a ilmm Molecule Number + I

0 i ^ . , ,.,- r„ ,„, .„. ,„ Stored in system mmpl.xml after alloca-Structure Identifier [0, +2bilhon)a ,. - v

tion

Atom Number [0, +2billion)a Defined by MMPL

_ ., , . , . . - r„ „, •„• ,„ Proxy for PDB residue number, chain
Residue Identifier [0, +2bilhon)a , . ,

and icode

18

PDB integration was determined to be a critical requirement for all simulations using PDB

based structures. Earlier versions of //mm systematically pruned PDB residue number infor­

mation out of structure data, replacing it with more computationally convenient zero based

identifier, which the warehouse would store as well. Because PDB structures can contain miss­

ing residues (gaps), negative residue numbers, and can even contain duplicate residue numbers

(which are differentiated by insertion codes), both the warehouse and ilmm were modified to

preserve and support the original PDB residue numbering.

Supporting other simulation packages involved identifying the key set of starting pa­

rameters and then storing these values for each loaded simulation. The canonical list of simu­

lation attributes was shown earlier in Table 1 and accommodate both ilmm and ENCAD (Levitt,

1983)(Levitt, 1995)[11] style simulation engines. Supporting other engines involves defining

a simulation engine and mapping additional attributes unique to that engine into the conditions

text field.

SQL Server Implementation

SQL Server is a relational database platform from Microsoft (Microsoft Corporation,

2007). The latest versions include many features defined in the SQL99 (International Organi­

zation for Standardization, 2001) specification in addition to proprietary features. This database

platform was chosen based on prior experience and support from Microsoft Research. In order

to understand the implementation approach of the data warehouse, it is important to know about

the physical data model of SQL Server and to consider the configuration of servers. In this

section the decisions made to produce an optimal SQL Server implementation are detailed;

however, many of the choices can be adapted to any vendor's implementation.

SQL Server Architecture

SQL Server is available in several editions that vary widely in cost and features. This

19

project uses SQL Server 2008 Enterprise Edition R2 x64 (Microsoft Corporation, 2007) in­

stalled on Windows 2008 Server R2 Enterprise Edition x64; the database engine, critical data­

base services, and the Windows Server operating system are all native 64 bit binaries running

in a 64 bit environment. The enterprise edition of Windows 2008 x64 was chosen as the base

operating system primarily because it can support a maximum of 2TB of RAM (the standard

edition is limited to 32GB of RAM). SQL 2008 Enterprise edition R2 was chosen for its support

of partitioning, data compression, and large memory support (2TB maximum). The project

currently does not utilize failover clustering. SQL Server supports a concept of instances, which

are independent environments that contain databases. Currently, a single instance (referred to

as the default instance) is configured on each server in the warehouse.

Databases

The fundamental unit of organization within an instance is the database. Databases consist of

sets of data and transaction log files, and each type is managed differently. Multiple data files

are used to manage space and to distribute I/O activity to multiple disks and/or disk controllers.

In contrast, only a single log file is active at a time and thus multiple files are used only to man­

age growth. By default, when a database is created it will consist of a single data file (MDF)

and a single log data file (LDF). Storage for tables is allocated inside both the MDF and LDF

during loading, and moves entirely to the MDF file once transactions are committed and the

log file is truncated. Data files contain data structures called pages, which are 8KB in size and

are read and written to disk in groups of 8 called extents (64KB). LDF files contain transactional

log information, effectively recording changes to pages in the MDF.

Tables and Indexes

Within a database, the primary objects are tables and indexes and the data for each are

20

stored in pages. Tables are classified into two types based on storage—heap mode (no clustered

index) and index mode (clustered index present). Heap mode tables are unordered collections

of pages; Index tables contain pages sequenced in the order of the clustered index. Indexes on

a table, including clustered indexes, are implemented as Balanced Trees (BTrees) for efficient

searching. In the non-clustered case, leaf nodes contain pointers to the data pages for the table.

For clustered indexes the leaf nodes of the index are the data pages for that table, thus tables

can have only one clustered index.

The lowest level of data organization in SQL Server is the row, which contains the in­

dividual data items for each column of a table. Rows are stored in pages, sequentially. The

number of rows that can be stored in a page depends on the data types chosen for the columns.

However, a fundamental rule is that rows cannot span page boundaries, which constrains the

total size of a row to 8060 bytes. There are some exceptions for specific data types, variable

length text fields will be moved automatically to special overflow data pages if they would

cause a row to exceed the limit. Large object types store only a pointer in the data row, and the

actual column content is stored in a page type reserved for binary large object (BLOB) type

data. Additional details on how tables are mapped to pages can be found in SQL Server Books

Online (Microsoft Corporation, 2010) and Fritchey and Dam (Fritchey, 2009).

Performance Optimization

Fundamentally, all performance tuning of a SQL database comes down to minimizing

I/O operations. When a query is executed on a heap mode table, the data engine reads all the

extents associated with that table, literally traversing every row looking for data to satisfy the

query in a costly operation known as a table scan. When a table with indexes is queried, the

query optimizer will attempt to use the indexes to limit reads to fewest extents as possible to

satisfy the query. In contrast, the fastest write (insert) operations occur on heap-mode tables

because the server can add pages without regard for order. This makes indexes highly desirable

21

Table 6. Common SQL Server Data Types. SQL Server supports a variety of data types. For numeric di­
mensional columns, the smallest fixed size exact numeric types that can accomodate the data are preferred.
Fixed characters can be used but it usually preferable to code categorical string values to fixed numerics.

Type
Exact Numerics

Approximate Numeric

Strings

Binary
Strings

Binary

Domain
Integer

Real

Real

Characters

Binary
Characters

Binary

Name
B1GINT
INT
SMALLINT
TINYINT
DECIMAL
MONEY
SMALLMONEY
FLOAT
REAL
CHAR
NCHAR
BINARY
VARCHAR2

NVARCHAR2

VARBINARY2

Min Size1

8
4
2
1
5
8
4
4
4
1
2
1
1
2
1

Max Size1

8
4
2
1
17
8
4
8
4
8000
8000
8000
8000
8000
8000

'Size in bytes 2Supports large object extension MAX, resulting in off-page storage

for read operations but a severe burden on write operations. In a data warehouse, data are pri­

marily read-only and thus indexes are used extensively to limit I/O operations for queries. In

this project, fact tables are created as heap-mode tables, loaded using fast bulk load primitives,

and then indexed afterwards. A SQL Server feature, used for coordinate tables only, builds an

empty table with a clustered primary key and the loads the data in clustered key order. Re­

maining indexes and constraints are added after loading.

Design Considerations for Fact Tables

Fact tables will contain columns for measures and for a set of dimensional keys that

link the measures to the dimensional hierarchy. The set of dimensional keys columns are a can­

didate key of the table, meaning they uniquely identify a row and are not null-able. Beyond

meeting the requirements of the dimensional model, there are three primary considerations in

designing fact tables: total row size, indexes, and check constraints. Although these consider­

ations apply to any relational design, they are especially important for fact tables as they house

the majority of data in a warehouse.

22

Row Size

SQL Server supports a variety of data types for columns, which are classified into three

major categories: native types, native large object types, and Common Language Runtime

(CLR) user defined types. A subset of native data types used for fact and dimensional quantities

as are listed in Table 6. The implementation of these data types is highly optimized for search

and storage. Native types are subdivided into five subgroups: fixed length numeric, fixed

length character, fixed length binary, variable length character, and variable length binary. Nu­

meric data types include approximate floating point types based on the IEEE 754 standard

(IEEE Computer Society Standards Committee, 1985), integers, and a set of exact numeric

types. Native large object types are used specifically to work with binary or text data that are

too large to be stored in an individual data page. These were originally vendor extensions, and

have been largely subsumed by variable length native types. SQL Server also supports common

language runtime (CLR) user-defined data types, used for object-relational applications. The

use of various data types in fact tables are discussed in the following sections.

It is always preferable to implement fact tables using the smallest native fixed size data

types that will accommodate the data. Variable length fields cause row sizes to vary within a

page, and if the actual field length plus the size of other columns exceeds 8060 bytes, data are

moved into one or more overflow pages. Variable length columns require additional bookkeep­

ing overhead to track field length. Overflow pages and bookkeeping overhead reduce the num­

ber of rows that can be stored per page, increasing overall table size and decreasing efficiency.

In contrast, the size of a row containing only fixed length data types is determined by equation

(2.1). Although there is some overhead for tracking column null-ability, the primary row size

contribution is the fundamental size of the data type (see Table 6). The net results of using only

4 +
(columns + 7)

2 +
8 j (=1

columns

+ y_, datatypesize(i) (2.1)

23

fixed data types are a consistent and minimal row size.

Index Design

Indexes are used to limit I/O operations during queries, and to enforce primary key and

unique constraints. Indexes in SQL Server are implemented as balanced trees (BTrees) and are

stored in page structures similar to data. Index rows contain the nodes of the BTree. Each

node, starting at the root, contains lowest value of and a pointer to each subtree. The leaf nodes

of a clustered index are the data pages of the table, the leaf nodes of a non-clustered index con­

tain the primary key columns if the table has a clustered primary key or a row identifier pointer

otherwise. This means that indexes benefit from using narrow fixed length data types, to enable

the greatest number of sub-trees per node. The rows of an index are ordered by the contents of

the index's columns. Indexes can be built on any column data types with the exception of the

large object types; however, there are special issues for some of the remaining column types.

For character and native variable length columns, the index can only include data the data that

fits in the standard index page—characters outside this range will not be included. This is a

second reason not use variable length columns in a fact table. Approximate floating point data

types should be avoided in index columns—these types use an efficient but non-unique bit rep­

resentation of values (meaning that more than one real number is mapped to the same bit pat­

tern). This makes indexes built on approximate types unpredictable. CLR data types can be

included in indexes, but are treated as binary values. Four final special cases are the native

fixed size integer types, TiNYTNT, SMALLINT, INT and BIGINT. These values can be directly

loaded, tested and manipulated in integer registers found on x64 architecture microprocessors,

and are the most frequently used key types in star schemas.

In order for an index to be used in the processing of a query, the query must contain a

sargable predicate. The term sargable predicate, which is a contraction of "search argument

able," refers to an expression in the where clause of a query containing tests of equality (=),

24

less than (<), greater than (>), less than or equal (<=), greater than or equal (>=), BETWEEN,

or LIKE using a prefix search (Fritchey, 2009). This is the direct result of the underlying data

type's or types' support for comparison operations based on mathematical inequality (less than,

greater than), or equality (equal to). All integer and exact numeric types support less than,

greater than, or equal to operations and thus when indexed can be searched with sargable pred­

icates. This makes these types useful for fact tables. Character types (fixed and variable) can

be as well, but row and index size considerations discussed earlier make these poor choices for

fact columns. An interesting corner case is the fixed size uniqueidentifer (uid, also called a

globally unique identifier or guid). This data type supports equality and inequality comparisons,

but does not support any mathematical operations. In this sense, a sargable predicate can be

used with a uid. However, since uids have no intuitive data ordering, they are really only useful

for decentralizing identity assignment. Uids cannot be used as a partitioning scheme, and their

16 byte size adds significant row size overhead both in a data page and any index pages.

Check Constraints

Check constraints are used to block incorrect data from either being inserted into a table

or existing data being incorrectly modified. Check constraints are declared at the table level in

the form of a predicate expression that can reference columns and constants. The expression

is evaluated as data are modified or added, and if the new or modified data does not satisfy the

check constraint expression, an error is thrown and the row is rejected. In SQL server, check

constraints are also used by the query optimizer in selecting rows from views, unions, and in­

dividual tables. For an individual table with a column simid, and a constraint limiting the

value of this column to 123, a query against that table asking for simid 234 will immediately

return with no results. When a view or a set of tables combined using UNION are queried, and

the query predicate references a column with a constraint, and the data requested is outside the

range of the constraint for some tables, the query optimizer will drop those tables from consid-

25

eration.

Coordinate Fact Table Design

For MD simulations, coordinates make up most of the data being stored. Even when

simulations are stored as individual tables, they may contain as many as a billion rows of in­

formation. This makes the choice of data types and design of indexes extremely important as

it will determine how efficiently data and index rows can be mapped to pages, which in turn

dictates table size, and ultimately query performance. For a coordinate fact table, there are

nine columns, four columns for the three-dimensional atomic coordinate and bin index, and 5

dimensional columns that relate the coordinate back to a structure. The range of each coordx,

coordy, and coordz value is limited by the box size of a simulation, and are well within a

range of-500.0 A and 500.0 A. Because coordinates do not participate in an index, the 4 byte

REAL approximate type is used for these columns. The bin column is used to store a non-neg­

ative integer quantity, which is also limited by box size and will not exceed 100,000, allowing

a 4 byte signed integer (INT) column to be used. At the current resolution of 0.002 ps per step,

an INT can accommodate a simulation of up to 4 ĵ s in length. The remaining dimensional

columns of structid, structinst, and atomnumber are all implemented as 4 byte INTs. Recall

that after overhead, 8060 bytes are available for row storage. All nine coordinate table columns

are 4 byte fields, 3 are type REAL and the remaining are INT. The data storage per row con­

sumed by this structure is 36 bytes, three bytes of null tracking overhead, and a 4 byte row

header, which means a single data page can accommodate 187 coordinate rows.

It is critical to allow coordinate rows to be efficiently located. A candidate key in a re­

lational table includes a set of columns that uniquely identify a row and which cannot take on

null values. In a dimensional model, the set of dimension foreign keys constitute a candidate

key. One candidate key is typically chosen as the primary key, which usually only includes

only the minimum set of columns that uniquely identify a row. Although column order is not

26

a consideration for key purposes, the primary key is most often implemented in tandem with a

clustered index in which column order is essential. Looking again at the coordinate fact table,

a minimal data column footprint has been determined by choosing 4 byte data types for columns.

The columns specified and the order they appear in the key should follow the most common

pattern of usage. For coordinates this pattern is to locate frames and then atoms within frames.

However, there are two opportunities for optimization. First, since simulations are placed in

separate tables, the simid should not be included in the clustered index. Structure identifiers

(structid) should also not be included, as this column is always determined by structinst. The

second opportunity is to not even include structinst, when there is only one structure in a sim­

ulation. These two changes reduce the index row size by 12 bytes for single structure simula­

tions, a significant savings over simply building an index on all dimension columns. The

minimal clustered primary key also benefits to two additional non-clustered indexes for spatial

index queries and an index for fast coordinate retrieval by atomnumber. Non-clustered index

leaf nodes store the primary key columns of the target data table, so reducing the size of a pri­

mary key will also reduce the size of non-clustered indexes.

Coordinate fact tables use CHECK constraints to both protect against bad data and to

optimize queries where fact tables are grouped in views joined using UNION. The simid col­

umn is always constrained to single value and is not included in the clustered primary key. If

the simulation contains only one structure, the structinst column is limited to a value of 1 and

the structid column is limited to one value. If the simulation contains more than one structure,

structid is constrained to a set of values, and structinst is constrained to a range of values.

Analysis Fact Table Design

Analysis fact tables contain data that are derived from coordinates, but can have different

dimensionality. Coordinates are linked to the lowest level of the simulation and structure hier­

archies, and thus establish the primary dimension keys for simulation (simid, step) and struc-

27

ture (structid, atom_number). Analyses that contain per atom and per step quantities, such as

instantaneous forces, use the same dimension keys as coordinates. Other physical properties

are associated with different levels of the simulation and structure hierarchies through many-

to-one relationships. For example, Ca root-mean-squared-deviation root from starting structure

(RMSD) is linked to structure at the residue level, and to simulation at the step level. Relation­

ships between all analysis fact tables and dimensions are summarized in Table 7. Like coordi­

nates, analysis tables never include the simid column in the primary key and only include

structinst for multi-structure simulations. Check constraints are also used to ensure that the

simid column is a constant, structid is either a constant or a limited range of values, and other

columns limited as appropriate.

Some analyses include multiple distinct quantities that are associated with the same

structure and step, or that contain categorical names. These are modeled through the use of an

additional dimension, which is unique to the analysis. One example is the dihedral analysis,

which contains a variable number of rows that are associated with a structure at the residue

level and a simulation at the step level. Each row contains a dihedral angle, which is a meas­

urement rotation about specific named bond inside the residue or along the main chain at the

Ca where the residue is attached. The number of rows depends on the number of carbon-carbon

bonds present in the residue, as each angle is associated with a specific named bond. Dihedral

angle names and abbreviations are broken out to a small dimension table called DihedralAngle

(Table 8), allowing the Dihedral fact table to use a single byte identifier (dhid) as a link to the

angle name. The Dictionary of Secondary Structure Prediction (DSSP) analysis follows a sim­

ilar partem, using the dimension table SecondaryStructure (Table 8) to define secondary struc­

ture types under a single byte identifier (ssid). The PhiPsi analysis includes only one set of

values per residue, but includes an assignment to secondary structure state categories shown in

Table 8. Here a small dimension table is used to avoid placing character data in the PhiPsi fact

tables, saving space.

Table 7. Dimensional Key Column Usage. A consistent set of column names are used throughout the warehouse to refer to dimension table keys.
Where possible, these relationships are enforced explicitly through the use of primary key/foreign key constraints.

Columns
Fact Table Type step structinst structid residueid atomnumber d h i d ss_id stid hash3d_index hash3d_index_neighbor

Box

Congen

Contact

FDSASum

Radgee

RMSD

Vcont

Flex

Dihed

DSSP

PhiPsi

SASA

Coord

Forces

ForVel

S2

RMSF

Bins

PK

PK

PK

PK

PK

PK

PK

PK

PK

PK

PK

PK

PK

PK

PK

PK

0

0

0

0

0

0

0

0

0

O

0

0

0

0

0

0

FK1

FK1

FK'

FK1

FK1

FK1

FK1

FK1

FK1

FK1

FK'

FK1'2

FK1'2

FK'-2

FK1-2

FK'

PK

PK

PK

PK

PK

PK

PK,FK2

PK,FK2

PK,FK2

PK,FK2

FK3

PK,FK4 oo

PK,FK5

PK PK

PK = Primary Key Column, O = Optional Primary Key Column, FK = Primary Key Column referencing dimensional table: 1. Structure, table 2. ID table. 3. DihedralAngle
table. 4. SecondaryStructure table. 5. State table. 5.State table.

29

Table 8. Secondary Dimensions for dihedral angles, secondary structure, and 0/*P state. The dihedral analy­
sis calculates multiple bond angle values per residue at each time step. Each value is associated with a spe­
cific named bond, which are assigned to an id defined in this dimension table. This identifier is then used
in the fact table in place of an explicit string constant. Secondary Structure is produced by the DSSP analysis.
It produces multiple values per residue and step, and similar to dihedral analysis, an id is defined for each
character and structure definition. The <D/T analysis produces only one value per residue, the calculation
also includes a structure state prediction. The state labels are assigned ids defined in this table and then
used in the fact table in place of string labels. These dimensions can be extended and additional dimensions
added at any time to support new analysis.

Dihedral Angl

id

1

2

3
4

5

6

7

8

9
10
11

12

13
14

15
16

17

name

chil

chi2

chi21

chi22

chi3

chi31

chi32

chi4

chi5

chi6

chi61

chi62

cis

omega

phi

psi

theta

es

angle

XI

X2

X21

X22

X3

X31

X32

X4

X5

X6

X61

X62

cis

Q

4>

«P

0

id

1

2

3
4

5

6
7

8
9

10

11
12

13
14

character

a

A

b

B

c

C

r

R

s

S

G

H
I

-

Secondary Structure

description

alpha strand, parallel

alpha strand, anti-parallel

beta strand, parallel

beta strand, anti-parallel

mixed alpha/beta strand, parallel

mixed alpha/beta strand, anti-parallel

alpha bridge, parallel

alpha bridge, anti-parallel

beta bridge, parallel

beta bridge, anti-parallel

3-10 helix (3 residues per turn)

alpha helix (4 residues per turn)

pi helix (5 residues per turn)

loop, or no assigned structure

id

1

2

3

4

O/f

state

beta

other

extended

helix

New fact tables can be added to the warehouse as new analyses are developed. The

process requires the selection of a short name, which will become the prefix of the tables cre­

ated; the determination of dimensions, and the selection column data types. The short name

must follow the naming conventions listed in Table 9 to avoid conflicts and to maintain consis­

tency across the warehouse. This name is combined with a single underscore character ("_")

and simulation identifier to form the final table name. All tables associated with a simulation

are tracked through property views available in individual simulation databases and in aggregate

in the Directory database MasterPropertyv view.

30

Table 9. Naming rules for coordinate and analysis tables. Table names conform to a simple naming standard
to avoid conflicts and to maintain a consistent interface for users.
_ _ _

~ Length: 7 Character max on the main name, note that a clarifying suffix may be added such as "Sum" or
"PerAtom" does not count towards the total.

2 Characters: No spaces, characters from this set [a-zA-Zl-9_] only.

3 Capitalization: Words capped and abbreviations ALL CAPS.

4 Names and definitions must be assigned in both the Simulation and Directory databases

Conclusions and Future Directions

We have presented a detailed model for storing and analyzing data from MD simulations

and its implementation in a relational database. The dimensional approach of organizing data

into continuous facts and discreet dimensions is well suited to MD simulation data and could

be used in many scientific applications. The implementation of this model in a relational data­

base required careful design to overcome challenges inherent in a 100 TB data set. A directory

database centralizes management of identifiers and data location, facilitating the distribution

of data to multiple databases and servers. Within databases tables are highly optimized by care­

fully choosing column data types, building efficient clustered indexes, and using check con­

straints for query efficiency and data quality.

Initial work on the data model described here began in 2005 and was first released in

2007. Since the beginning, both the model and relational implementation have been in contin­

uous development, adding new analyses, extending the relational schema, improving perform­

ance, adding more (and larger) servers, upgrading through two operating system releases and

three SQL Server releases. Overall capacity has increased by nearly an order of magnitude to

150TB since the first two servers were purchased, and trajectories and analyses for over 11,000

simulations are available in the warehouse.

31

Chapter 3: Augmenting the Relational Model using Online Analytical Pro­
cessing

A relational database provides great flexibility for describing data and building interac­

tive applications. With nearly 40 years of development and improvement, this technology

can easily manage extremely large volumes of data as well as service multiple users simulta­

neously. Unfortunately, the fundamental unit of storage, the two dimensional table, is not ideal

for efficiently storing and analyzing multidimensional data. On-line Analytical Processing was

proposed early on as an alternative to die relational model, specifically to address this and other

shortcomings. The market need to store and analyze an increasing volume of financial infor­

mation spawned an entire software industry segment focused on development of analysis centric

tools. Despite wide spread adoption for commercial applications, using these tools to manage

and analyze scientific data is far less common. In this chapter I demonstrate how this model

can be applied to protein simulation data, describe an implementation using a commercial OLAP

product, and present results of a storage and query performance analysis.

Introduction

Relational databases were first described in 1970 by Codd (Codd, 1970) and commer­

cial implementations quickly established dominance in a rapidly growing and very fluid data­

base market. Relational databases provide a rich and diverse ecosystem of general purpose

features. However, much of the relational database's success can be attributed to just three:

SQL, transactions, and constraints. SQL is described as "intergalactic dataspeak," (Stonebraker,

1990) and is the most common language used for expressing queries today. Although vendors

implement their own dialects and special features, an analyst who knows SQL can quickly be

productive accessing and manipulating data if the underlying database server supports it. Trans­

actions enable multiple agents to safely access and modify data, eliminating the potential for

data corruption and inconsistency when multiple writers and readers attempt to access the same

data. In addition to supporting concurrency, transactions also protect hardware failures by in-

32

suring that changes are either written in their entirety, or rolled back in their entirety in the event

of a failure. Finally, constraints insure data integrity by expressing business logic as declarative

statements that are enforced at the server level, relieving client programs from having to enforce

the same checks.

Ironically, two of the three features that make relational databases such a powerful so­

lution are actually a detriment for data warehousing. As data in a warehouse are primarily read

only (and typically modified only during bulk import from primary sources), the overhead of

transaction support is a significant performance burden. Constraints, specifically foreign key

constraints, introduce significant storage overhead when every fact row contains several

columns referencing dimensional tables. Codd recognized the requirements of a database to

support analysis are fundamentally different than the requirements for a transactional database

and coined the term Online Analysis Processing (OLAP) in 1993 (Codd, 1993). This report

outlines a set of principles that should be supported by an analysis centric database. Unlike

Codd's papers describing the relational model, this document was written under commission

for a software company and not published in a peer-reviewed journal. More importantly, it did

not contain a mathematical description of the concepts, leaving this as an implementation detail

for future developers. Nonetheless, the report established the importance of OLAP databases

in general and specifically called for the support of sparse multi-dimensional matrices as the

fundamental unit of storage. The report also emphasized the complementary approach of OLAP

to other database technologies and highlighted the concept that OLAP could mediate between

other data sources to present a consistent model for analysis.

Multi-dimensional matrices are the fundamental unit of analysis in OLAP systems. Al­

though vendor products vary widely in their fundamental storage engine implementation, they

all are designed to efficiently locate fact data by filtering on dimensions (slicing), to pre-calcu-

late aggregate functions along dimensional hierarchies (aggregation), and to efficiently accom­

modate missing data (sparsity). Multi-dimensional matrices are referred to as hypercubes, and

33

the term hypercube is typically shortened to just "cube." OLAP systems typically do not support

transactions, data modification after initial loading, nor constraint frameworks to protect against

malformed data. Although some error checking is available during import, OLAP systems tend

to assume that data being loaded has already been checked for errors (scrubbed). Thus OLAP

systems are not used as the primary data store or "store-of-record" and depend on other systems,

typically relational databases, to perform this function. Extraction, transformation, and loading

(ETL) is the process of regularly importing data from existing data sources into the data ware­

house. An additional step, called "processing" is often called after ETL to compile imported

data into one or more cubes.

SQL Server Analysis Services

As described in Simms and Daggett (Simms, 2011), multidimensional data can imple­

mented in a relational database by translating the dimensional model into a set of fact and di­

mension tables. Fact tables use columns to represent fact data (also known as measures) and

additional columns that link each fact row back to one or more dimension tables. The links be­

tween facts and dimensions are implemented explicitly as primary keys in dimension tables

and foreign key constraints in fact tables. Optimal performance on specific hardware is

achieved by designing tables, indexes, and constraints. In an OLAP system, the translation of

the multidimensional model to fundamental storage varies widely. For example, Oracle, Mi­

crosoft, and many others provide customized versions of their relational database software pre-

installed and tuned for specific server hardware configurations and are sold together as an

information appliance. Other vendors, such as Neteeza, provide a relational database engine

stripped of transactional functions and that is tightly integrated with massively parallel propri­

etary hardware. For this project I focused on Microsoft SQL Server Analysis Services 2008

R2 (SSAS)(Microsoft Corporation, 2007), a non-relational OLAP product that is bundled with

SQL Server 2008 R2.

34

SQL Server Analysis Services (SSAS) uses a proprietary multi-dimensional storage en­

gine that runs on general purpose hardware, and there is no concept of tables at all. The top

level of organization in SSAS is a database, which is illustrated in Figure 6. Data sources are

typically relational databases, but can also include files and other database formats. A data

source view is used to capture the set tables (files) from the data sources and to define their in­

terrelationships. These relationships, taken together, are mapped to dimensions and eventually

to cubes. Cubes can then be queried using the Multi-dimensional Expressions (MDX) query

language (Microsoft Corporation, 1997). Each of these components is described in the follow­

ing sections. Additional details on SSAS and MDX can be found in Gorbach et al. (Gorbach,

2009), Webb et al. (Webb, 2009), and Whitehorn et al. (Whitehorn, 2006)

Dimension 1 Dimension 2 Dimension ... Dimension n

y \. ' r^^'V/

Data Source View n

J V .J

fc * i£^^Si^E#^, s

Figure 6. High level view of an Analysis Services Database. Analysis Services databases hold data sources,
data source views, dimensions, and cube structures.

35

Data Sources

A data source is a description of the resource containing data to be imported. Data

sources allow SSAS databases to include data from remote servers, and SSAS databases can

contain multiple data sources. Each data source has a name and a connection string that de­

scribes the location of the data, drivers required, and authentication credentials. Simple data

sources, such as files, only require the location of the files in an accessible file system. Other

database sources, such as SQL Server instances, require a server name and a database name.

Data Source Views

Data Source Views (DSVs) are an abstraction layer between data sources and the Analy­

sis Services database. The DSV maps the data available in each data source to a set of data ta­

bles and relationships. The DSV can use existing tables from the data source, extend existing

tables with computed columns, or create virtual tables constructed from SQL queries. DSV re­

lationships can be established between any two data table objects, and these relationships are

not restricted to primary key columns and foreign key columns. This extension makes it pos­

sible to define explicit partial foreign-key relationships between arbitrary columns. The im­

portance of virtual tables and partial foreign-key relationships will be shown later.

Dimensions

Dimensions are the fundamental data structures used to organize and locate fact data.

They are represented explicitly in SSAS as first class objects in contrast to a relational database,

where a dimension is only implied for a given table by the existence of foreign keys. Dimen­

sions contain two types of information: attributes and attribute relationships. Attributes are

discreet values that are associated with fact data and are similar to the columns in a relational

dimension table. These values are called members, and members contain Attributes are

bound to columns in DSV data table objects and to the relationships defined on those objects.

In addition, attributes can be related to each other using attribute relationships. One attribute

36

will be used as the key of the dimension, meaning that component columns from the original

data source can uniquely identify any other attribute in the dimension. The key attribute is also

called the granularity attribute, as it is the fundamental unit of aggregation in cubes. The key

attribute and attribute relationships allow attributes to be organized into hierarchies that can

later be used in queries. An important aspect of dimension attributes and associated hierarchies

is that these data are ordered. This is a fundamental difference between SSAS and relational

databases and is a key to understanding MDX.

Cubes

A cube is an object that contains dimensions, measure groups, and fact data. Cubes

are created within SSAS databases, and a database can contain multiple cubes. Cube dimen­

sions are references to any of the dimensions defined in the database, and can also include mul­

tiple references (uniquely named) to the same database dimension. Fact data are stored in a

data structures called partitions, each measure group can have one or more partitions. Cubes

are typically used to facilitate analysis of specific sets of fact data and are largely self-contained,

although there are facilities for linking to other cubes. Cubes are queried using the MDX query

language, described in the next section.

Cubes contain cells, one cell for the Cartesian product of all cube dimensions key at­

tributes. Inside each cell are the measure data taken from each measure group partition. Cubes

are in effect, very large multi-dimensional arrays. However, instead of allocating space for

every possible value from all dimensions, SSAS implements an extremely efficient multidi­

mensional storage engine that reduces dimension data to bit vector indexes. In addition, the

engine supports fact data sparsity, meaning that space is allocated only when fact data are ac­

tually present for a given cell. This loading and compaction of data, referred to as processing,

makes cube data structures effectively read only, as fact and dimension data are compiled down

to minimal representations. Once a cube's dimension structure is processed, the only ways to

37

modify fact data are to remove partitions or add new partitions. Dimension data can be added

but dimension data that references existing fact data cannot be removed.

The set of dimensions form an addressing mechanism to find any given cell in the cube.

This makes dimensions similar to numbers on a number line, but tick marks are not limited to

integers. A unique address in a dimension is called a member, and as mentioned previously, at­

tributes and hence members can be organized into hierarchies. A set of members from all cube

dimensions is called a tuple, and a tuple uniquely identifies a cell in the cube. Tuples can be

grouped into sets called tuple sets or simply sets. When a tuple does not contain a member

from one or more dimensions, the result is a set of cells called a slice.

A measure group is created from a data table in the DSV, and contains a set of measures,

i.e. facts, which are stored in cells at the intersection of dimensions. The underlying DSV data

table defines the data type of each measure (fact) and dimensional column. A measure is a col­

umn present in the DSV data table and explicitly linked to at least one dimension through the

dimensional columns present in the fact table. The measure is also assigned an aggregation

function, which is applied when a measure is projected from multiple source cells into a single

result cell during an MDX query. When a cube is processed, one or more partitions matching

the shape of the DSV data table are loaded into the measure group populating it with data. It is

important to note that fact data are only loaded into a cell when a dimensional tuple exists defin­

ing that cell, otherwise the data are skipped.

MDX

MDX is a query language designed specifically for multi-dimensional data, and is avail­

able on several vendors' OLAP platforms. At first glance it appears similar to SQL because

the main statement of the language, SELECT, uses some of the same keywords; however, the

languages are completely different. The purpose of MDX is to operate on and to produce mul­

tidimensional result sets, i.e. sub-cubes, by selecting a set of data from a cube, applying calcu-

38

lations, and returning a result projected to multiple axes.

The primary statement used to retrieve data is the SELECT statement, an example is

shown in Figure 7. MDX employs a two-pass query process. The first step, slicing, selects the

set of data to be analyzed and produces a logical sub-cube that is used for the rest of the query.

Slicing is controlled by the WHERE clause of the query, using a tuple set expression. The

second pass, dicing, projects the desired results onto one or more axes. After both passes, the

result cube is returned to the caller. MDX makes no distinction between result axes, making it

possible to build a variety of result sets. Among the most useful of these options are matrices,

which would involve complex UNION and/or PIVOT statements to achieve in SQL. It should

be noted that the most common tool for viewing MDX results, SQL Server Management Studio,

can only display two dimensional results.

WITH
SET

SET

mystatoms AS SUBSET(FILTER(
DESCENDANTS! [Structure].[2adr- 3]

, [Structure].[Structure Hierarchy].
, [Measures].[distance] >

mystlatoms AS SUBSET(FILTER(
DESCENDANTS([Structurel].[2adr-

, [Structurel].[Structure
, [Measures].[distance] >

SELECT mystatoms on columns

FROM
WHERE

, mystlatoms on rows

[Spatial Index]
(Time.Step.&[5438]&[0]
/

r

Timel.Step.&[5438]&[0]

[Measures].[distance])

0),

-3]

0,10)

Hierarchy]
0) ,0,10)

[Atom])

.[Atom])

Figure 7. Example MDX Statement. This slices the cube called [Spatial Index] to include only step
zero of simulation 5438. The first 10 atoms of the structure 2adr-3 are projected onto the columns
and rows of the result. Listing a single measure, in this case distance, in the WHERE clause causes it
tp be projected into the result at the intersection of the defined rows and columns.

In addition to projecting existing attribute or fact data onto axes, MDX also supports a

variety of scalar and set calculations. The results of these calculations fall into two categories,

named sets and calculated members. Named sets facilitate additional calculation by creating

39

additional cells; calculated members provide a mechanism for creating new measures. Measures

and calculated members are always evaluated in an aggregation context. For example, if a

single measure from multiple cells is projected into a result cube in a single cell, the values of

the measures will be aggregated according to their defined aggregation function, typically sum­

mation. A small variety of other aggregation functions are available.

Dynameomics OLAP Database Design and Implementation

The Dynameomics OLAP database is based on the dimensional model described by

Simms and Daggett (Simms, 2011) and includes an implementation of spatial indexing as de­

scribed in Toofanny et al. (Toofanny, 2011). The entire database structure is built using two

C# command line utilities that communicate with an SSAS server using the Analysis Manage­

ment Object API (AMO). The buildssascube (bcube) creates a new database on an existing

SSAS server, populating it with three data source views for interacting with the primary data

warehouse, a set of data sources, 9 OLAP dimensions, and one OLAP cube definition supporting

17 measure groups. The second utility, addpartitions (addp), creates data table objects in the

data source view and then adds data partitions to measure groups. The entire process is driven

by a simulation group identifier, which defines a group of simulations and analyses in the pri­

mary data warehouse.

Data Sources

Data in the primary data warehouse are distributed across multiple servers. The bcube

utility creates three data source views to hold data table objects: DimensionDSV, Warehouse-

FactData, and DerivedWarehouseFactData. SQL queries are executed against the Directory

database to determine the servers, databases, and table names for all data associated with user

supplied simulation id. The bcube utility then adds data sources for each required server and

database. Next bcube then assembles shape fact and dimension data table objects in the Di­

mensionDSV data source view to facilitate the creation of dimensions. Small dimension tables

40

that do not contain simulation or structure identifiers, such as the list of dihedral angle types

are copied directly into the data source view. Other dimensional tables that can be limited based

on the simulation group id are built as named queries. The time dimension is a special case,

because in the main warehouse time is not broken out as its own dimensional table. Instead of

using a table, the named query facility is used to create a view based on a SQL SELECT state­

ment. The FROM clause does not reference a table, instead it uses a SQL CLR user defined

table function that generates step values at up to a specified simulation length and granularity,

defaulting to 65 ns at O.lps granularity. Finally, the bcube utility builds foreign key and partial

foreign key relationships between fact and dimension objects in the DSV. These relationships

are required for dimensions to be created and built.

Dimensions

After the primary data source view is created and populated with shape tables, named

queries, and relationships, dimension structures are created. The primary dimensions of the

model are Simulation, SimulationStructures, Structures, and Time. Analysis specific dimen­

sions are DihedralAngle, SecondaryStructure, and PhiPsiStructureState. Also included are the

Spatiallndex and SpatiallndexNeighbor dimensions, which are used to implement spatial hash­

ing. Dimensions and hierarchies are illustrated in Figure 8.

The Simulation and SimulationStructures dimensions model parameters that do not vary

over the course of the simulation. The Simulation dimension contains multiple hierarchies that

facilitate easy assembly of simulation sets based on temperature, run, and other attributes. The

Time dimension models simulation time and contains a single hierarchy allowing selection of

time by step or picosecond. SimulationStructures uses a single hierarchy, but the level structure

is inverted—simulation is at the top. Three additional dimensions, DihedralAngle, SecondaryS­

tructure, and PhiPsi Structure support analysis specific attributes specific to the dihedral, DSSP,

PhiPsi analyses, respectively. Two additional dimensions are included specifically to support

41

/ \ Temperatu
/ \ Simulation

/ \ Run
/ \ Simulation

A pH
/ \ Simulation

Si

e

mulation

A
A

Conditions
\ Simulation

Status
v Simulation

Software
\ Simulation

Time

Simulation
Step

SimulationStructures

Simulation
Structures

Spatiallndex

Simulation
Bin

Structure

Structure
Chain
Residue
Atom

DihedralAngle

No hiearchies

SecondaryStructure

Wo hiearchies

PhiPsiStructureState

Wo hiearchies

SpatiallndexNeighbor

Simulation
Bin
NeighborBin

Figure 8. Dimensions and hierarchies. Discreet data in an OLAP database are organized into dimensions
as attributes. Attribute values are called members, and attributes can be organized as hierarchies. For ex­
ample, attributes in structure are organized into PDB structure, chain, residue and atom.

spatial indexing: Spatiallndex and SpatiallndexNeighbor. The complete list of all dimension

and their attributes are in Table 10.

Cube Design

The cube design consists of 17 measure groups and 78 distinct measures. Measure

groups and measures are detailed in Table 11. Source data for dimensions are taken from the

primary data source view DimensionDSV. Data for measure groups are loaded from partitions,

42

Table 10. Dimensions and attributes. The attributes associated with each of the 9 database dimension are
listed along with their definition. Attributes marked with "(key)" are the key attribute, defining the gran­
ularity of the dimension.

Simulation:

Simulation (key)

Simulation Name

Simulation Comment

Time Step

Random Seed

Density

Initial Box x

Initial Box y

Initial Box z

C Scale

A Scale

Simulation Temperature

Run Number

Simulation pH

Simulation Software

Software Description

Software Comment

Simulation Status

Status Description

Simulation Conditions

Simulation identifier from the Dynameomics Data Warehouse

Simulation name

Optional comment
Conversion factor to calculate time in picoseconds from a simulation step (units = ps)
Integer value used to seed random number generator prior for initial velocity assign­
ment
Solvent density (g/ml)

Initial box x dimension (A)

Initial box y dimension (A)

Initial box z dimension (A)

Charge scaling factor for electrostatic potential
Scaling factor for 12/6 attractive and 12/6 repulsive terms of the Lennard Jones poten­
tial
Simulation temperature (Kelvin)

Simulation run number

Simulation acidity environment (low, medium, high)

Molecular dynamics simulation engine used for this simulation

Full name of the simulation software used for this simulation

Optional comment for the simulation software used to create this simulation

Simulation status

Status description

Other simulation conditions

Time:
Step (key)

Time

Simulation

Simulation Name

Simulation step

Simulation time (picoseconds)

Simulation identifier

Simulation name

SimulationStructures:
Structure Instance (key)

Structure

Simulation

Instance identifier for structure within this simulation

Structure identifier

Simulation identifier

Spatiallndex:

Bin (key)

Simulation

1 dimensional bin index within periodic box

Simulation identifier

SpatiallndexNeighbors:

NeighborBin (key)

Bin

Simulation

1 dimensional bin index of adjacent bin within periodic box

1 dimensional bin index within periodic box

Simulation identifier

43

Table 10, continued

Structure:

Atom (key)

Atom Number

Atom Type

Main Chain

Heavy Atom

Residue

Residue ID

Residue Number

ICode

Built

MMPL Name

Residue Name

Residue Abbreviation

Polar

Non-Polar

Acidic

Basic

Chain

Structure

PDB4

Structure Description

Resolution

Structure Type

Structure Determination

DihedralAngle:

Angle (key)

Angle Symbol

SecondaryStructure:

SS Char (key)

SS Description

SS Comment

PhiPsiStructureState:

Structure State (key) Phi Psi analysis structure state prediction

created by the addpartitions utility (addp). After the initial empty cube structure is created,

addp is run to locate all fact tables associated with the specified simulation group identifier.

Once located, addp builds data table objects by measure group, adding appropriate data tables

Atom within a structure

Identifier within structure for this atom

Atom type code from the Chemical Component Dictionary

Atom is not part of a side chain

Atom is not hydrogen

Protein Data Bank residue abbreviation

Database residue id

Protein Data Bank residue number

Protein Data Bank insertion code

This residue was added to the original PDB structure

The official MMPL name of this residue

Chemical name for residue

The official single character abbreviation for this residue

Polar charge

Non-polar charge

Acidic

Basic

Protein Data Bank chain identifier

A collection of residues and atoms

Protein Data Bank PDB code

Optional description for this structure

Optional resolution for X-Ray crystallographic structures

Structure determination method

Method Structure determination method, detailed

Dihedral angle name

Dihedral angle symbol

Secondary structure abbreviation

Secondary structure definition

Secondary structure comment

44

in the WarehouseFactData DSV for pre-calculated measures and named queries into the De­

rivedWarehouseFactData DSV for on-the-fly analyses. As each data table object is created it

is added to the partition group collection of its measure group.

The cube contains all 9 database dimensions, and creates an additional 3 role-playing

dimensions (also known as shadow dimensions) on Time, Structure, and SimulationStructures.

Measure groups are linked to all 12 defined cube dimensions, as detailed in Table 12. The ma­

jority of measure group relationships are regular, meaning that fact tables participate in a many-

to-one relationship with their associated dimensions. The one exception is the Coordinate

measure group, which participates in a reflexive many-to-many relationship used to implement

spatial indexing for the efficient calculation of contact distances. The Spatiallndex and Spa-
Table 11. Measure group definitions. Measure groups hold fact data in partitions. The complete set of
measure groups and their associated fact data columns in the data source view are defined here. The fact
tables are placeholders for the actual fact data which comes from partitions.

Box (Size of periodic box, 4 measures)
boxcount Box row count FactBox.xsize

x_size x component of periodic box size (A) FactBox.xsize

y_size y component of periodic box size (A) FactBox.y_size

zsize z component of periodic box size (A) FactBox.zsize

Congen (CONGENEAL structural dissimilarity score, 2 measures)
congencount Congen row count FactCongen.dissimilar-

ityscore

dissimlarityscore CONGENEAL structural dissimilarity score FactCongen.dissimilar-
(http://dx.doi.org/10.1002/pro.5560020603) ityscore

Contact (Periodic contact summary, 4 measures)
contactcount Contact row count FactContact.total

totalcontacts Total of native and nonnative contacts FactContact.total

native_contacts Number of contacts between residues that are three or moreFactContact.native
residues apart in sequence

nonnativecontacts Number of contacts between adjacent residues FactContact.nonnative

Dihed (Dihedral angle measurements, 2 measures)
dihedcount Coordinate row count

dhangle Dihedral angle (degrees)

FactDihed.dhangle

FactDihed.dhangle

DSSP (Dictionary of Secondary Structure Prediction (http://dx.doi.org/10.1002/bip.360221211), 2 meas­
ures)
dsspcount DSSP row count FactDSSP.ssid
ss id Secondary Structure Code FactDSSP.ssid

http://dx.doi.org/10.1002/pro.5560020603
http://dx.doi.org/10.1002/bip.360221211

45

Table llcontinued.

FDSASum (Fine Detail Structure Analysis Summary, 7 measures)

fdsasum_count

intrahbonds

intrahphobs

intra others

FDSA Summary row count FactFDSASum.intrahbo
nds

Intra-molecular hydrogen bond: max separation is 2.6 A D- FactFDSASum.intrahbo
H <- 2.6 A -> A where D is donor and A is acceptor 45.0 deg. nds
> theta > 135.0 deg. is the angular range theta is angle D-H-
A where D is donor and A is acceptor

Intra-molecular hydrophobic contacts: max separation is 5.4 FactFDSASum.intrahph
A CHx <-5.4 A-> CHx where x <= 1 obs

Intra-molecular other contacts: 4.6 A is the max distance be- FactFDSASum.intra_oth-
tween heavy atoms must not be a valid hphob or valid hbond ers

inter hbonds

interhphobs

Inter-molecular hydrogen bond: max separation is 2.6 A D- FactFDSASum.interhbo
H <-2.6 A-> A where D is donor and A is acceptor 45.0 deg. nds
> theta > 135.0 deg. is the angular range theta is angle D-H-
A where D is donor and A is acceptor

Inter-molecular hydrophobic contacts: max separation is 5.4 FactFDSASum.interhph
A CHx <-5.4 A-> CHx where x <= 1 obs

inter others Inter-molecular other contacts: 4.6 A is the max distance be- FactFDSASum.interoth-
tween heavy atoms must not be a valid hphob or valid hbond ers

Forces (Instaneous forces, 4 measures)

forces count Forces row count

x_force

yforce

z force

Instantaneous force, x component (amu • A/sA2)

Instantaneous force, y component (amu • A/sA2)

Instantaneous force, z component (amu • A/sA2)

FactForces.x_force

FactForces.x_force

FactForces.xforce

FactForces.z force

PhiPSi (Phi/Psi angles (see Dihedral), 4 measures)

phpsicount PhiPsi row count

phi Phi angle (degrees)

psi

jcoup

Psi angle (degrees)

Instantaneous Jcoupling constant from Karplus relation

FactPhiPsi.phi

FactPhiPsi.phi

FactPhiPsi.psi

FactPhiPsi.Jcoup

Radgee (Radius of Gyration, 3 measures)
radgeecount radgee row count

radgyr Radius of Gyration (A), aggregation function: Max

end2end End to end distance (A), aggregation function: Max

FactRadgee.radgyr

FactRadgee. radgyr

FactRadgee. end2end

46

Table 11 continued.

RMSD (Root-means-square deviation from starting structure, 3 measures)
rmsdcount radgee row count FactRMSD.rmsd
rmsd Root-means-square distance from starting structure, aggre-FactRMSD.rmsd

gation function: AverageOfChildren

rmsdlOO Normalized root-means-square distance from starting struc-FactRMSD.rmsd 100
ture, aggregation function: AverageOfChildren

RMSF (Root-means-square fluctuation, 4 measures)
rmsfcount radgee row count FactRMSF.rmsfwavg
rmsfwavg Root-means-square fluctuation, windowed average FactRMSF.rmsfwavg
rmsfwstd Root-means-square fluctuation, windowed standard devia-FactRMSF.rmsfwstd

tion
rmsf Root-means-square fluctuation FactRMSF.rmsf
S2 (S2 Order parameters, 4 measures)
s2_count S2 row count
s2_x S2 parameter x
s2_y S2 parameter y
s2_z S2 parameter z

FactS2.x
FactS2.x
FactS2.y
FactS2.z

SASA (Solvent Accessible Surface Area, 10 measures)
sasacount SASA row count FactSASA.main chain
mainchain Solvent accessible surface area (main chain) FactSAS A.main_ chain

sidechain Solvent accessible surface area (side chain) FactSASA.sidechain

polar Solvent accessible surface area (polar residues) FactSASA.polar

nonpolar Solvent accessible surface area (nonpolar residues) FactSASA.non_polar

mc_polar Solvent accessible surface area (main chain polar residues) FactSASA.mcpolar

mcnonpolar Solvent accessible surface area (main chain nonpolarFactSASA.mc_non_polar
residues)

scjpolar Solvent accessible surface area (side chain polar residues) FactSASA.sc_polar

sc_non_polar Solvent accessible surface area (side chain nonpolar residues) FactSAS A. sc_non polar

total Solvent accessible surface area (total) FactSASA.total

VCont (Verbose contacts summary, 18 measures)
vcont count

nat_atom_mc_mc

na ta tommcsc

nat_atom_total

nnata tommcmc

nnata tommcsc

nnat atom sc sc

VCont row count

Native atom-atom main chain-main chain contacts

Native atom-atom main chain-side chain contacts

Native atom-atom contacts, total

Fact VCont. natatommc
_mc
Fact VCont. natatommc
_mc
FactVCont.natatommc
_sc
FactVCont.natatomtota
1

Non-native atom-atom main chain-main chain contacts FactVCont.nnat_atom_m
c m c

Non-native atom-atom main chain-side chain contacts Fact VCont. nnatatomm
e s c

Non-native atom-atom side chain-side chain chain contacts FactVCont.nnatatomsc
sc

47

Table 11 continued.

VCont (Verbose contacts summary, 18 measures, continued)
nnat_atom_total Native atom-atom contacts, total FactVCont.nnatatomtot

al
nat_res_mc_mc Native residue-residue main chain-main chain contacts, ag- Fact VCont. nat_res_mc_

gregation function: Sum mc
n a t r e s m c s c Native residue-residue main chain-side chain contacts, ag- FactVCont.natresmcs

gregation function: Sum c
n a t r e s s c s c Native residue-residue side chain-side chain contacts, aggre- FactVCont.nat_res_sc_sc

gation function: Sum
natrestotal Native residue-residue contacts, total, aggregation function: FactVCont.natrestotal

Sum
nnat_res_mc_mc Non-native residue-residue main chain-main chain contacts Fact VCont. nnat_atom_m

c_mc
nna t re smcsc Non-native residue-residue main chain-side chain contacts FactVCont.nnat_res_mc_

sc
nna t r e s scsc Non-native residue-residue side chain-side chain contacts FactVCont.nnatresscs

c
nnat_res_total Non-native residue-residue contacts, total FactVCont.nnat_res_total

totatm Total atom contacts FactVCont.totatm

tot_res Total residue contacts FactVCont.tot_res

Bins (Bridge measure group for Spatial Index Support, 1 measures)
neighbors Bridge table, aggregation function: Count FactBins.hash3d_index_n

eighbor

Coord (Atomic coordinates, 4 measures)
coordcount Coordinate row count FactCoord.xcoord

x x coordinate FactCoord.xcoord

y y coordinate FactCoord.ycoord

z z coordinate FactCoord.zcoord

Con tact Distance (Heavy atom contact distance, 2 measures)
contactdistancecount ContactDistance row count FactContactDistance.dis­

tance
distance Distance (A) FactContactDistance.dis­

tance

tiallndexNeighbor dimensions are built from a single fact table structure in the primary data

warehouse. To avoid duplicating data, the named query facility of the data source view is used

to produce views that serve as the two tables required by SSAS to make a many-to-many rela­

tionship (DimSpatiallndex, DimSpatiallndexNeighbor). The Bins measure group is linked to

Spatiallndex and SpatiallndexNeighbors using regular relationships, similarly the Coord meas­

ure group is linked to the Spatiallndex dimension. The Coord measure group is then linked to

48

Table 12. Measure groups and relationships to cube dimensions. Regular many-to-one relationships are
denoted by R, N indicates no relationship. M indicates a many-to-many relationship.

Simulation

Time

Timel

SimulationStructures

SimulationStructuresl

Structure

Structurel

DihedralAngle

PhiPsiStructureState

SecondaryStructure

Spatiallndex

SpatiallndexNeighbors

o
09

R

R

R

N

N

N

N

N

N

N

N

N

s
M
fi
o
U

R

R

R

R

R

R

R

N

N

N

N

N

U

a
B s

R

R

R

R

R

R

R

N

N

N

N

N

•9

5
R

R

R

R

R

R

R

R

N

N

N

N

CM

1/3
Q

R

R

R

R

R

R

R

N

N

R

N

N

E
s

<
(73
©

R

R

R

R

R

R

R

N

N

N

N

N

o u
1-

o

R

R

R

R

R

R

R

N

N

N

N

N

1c

R

R

R

R

R

R

R

N

R

N

N

N

01
Ol
6J3

• o
s
OS

R

R

R

R

R

R

R

N

N

N

N

N

R

R

R

R

R

R

R

N

N

N

N

N

DC

R

N

N

R

R

R

R

N

N

N

N

N

R

R

R

R

R

R

R

N

N

N

N

N

<
<

R

R

R

R

R

R

R

N

N

N

N

N

4-»

c
o
U
>
R

R

R

R

R

R

R

N

N

N

N

N

B

s
R

T3
i-
O

o
U
R

N R

N

N

N

R

R

R

i

N ! R

N i R

N

N

N

R

R

N

N

N

R

M

Ol u
B a

5
u «
B
©

R

R

R

R

R

R

R

N

N

N

N

N

SpatiallndexNeighbor through the Bins measure group, forming a many-to-many relationship

Storage and Calculation Performance Analysis

Four SSAS databases, each containing a single cube, were created and processed on a

Dell server as described in Table 13 using the bcube and addp utilities described earlier. Each

cube structure includes a different combination of spatial indexing dimensions and pre-com-

puted heavy atom contact distances. All four cubes were loaded with 51ns coordinate trajec­

tories and analyses for the set of proteins described by Toofanny et al. (Toofanny, 2011). The

49

Table 13. Test server configuration.

Hardware

Server

Processors

Memory

Storage

System Disks

Data Disks

Description

Dell R710

Dual Intel Xeon X5650s (x64 Hex Core)

48 GB

H700 Integrated RAID SAS Disk Controller

136 GB on two 15K RPM 150GB SAS disks , RAID 1 (Mirrored)

7,450 GB on six 7200 RPM 2TB SAS disks, RAID 0 (Striped)

bcube and addp utilities together take around 2 minutes to run, creating the complete database

structure including data and data source views, dimensions, and cubes. After the structure is

created, the database must be processed in order to load data into measure group partitions. Al­

though processing time is dependent on the load of source servers providing data, complete

processing time not including the ContactDistance measure group was consistently 45 minutes.

When the ContactDistance measure group is included, processing time jumps to just over 6.5

hours to complete.

After processing was completed, the disk space used by each cube and its measure group

partitions were measured. These results, as well as the size of the original SQL data, are sum­

marized in Table 14. SSAS data structures are significantly more efficient than uncompressed

SQL tables, showing an 80% reduction in space required for cubes built without the Contact-

Distance measure group. It is interesting that even when ContactDistance data are added, the

total cube size is still 20% smaller than the raw SQL tables which do not contain contact dis­

tances.

After all cubes were processed, a set of timing tests were performed on each cube variant

to determine how quickly heavy atom contact distances could be determined. An initial attempt

was made to duplicate timing results described by Toofanny using a lookup query and a calcu­

lation query. The same limitations of 1,000 (Ins) and 51,000 frames (51ns) were attempted,

but neither returned successfully. The raw result set was either too large to processed by the

client library or the server failed with an out of memory exception preparing the result set.

50

Table 14. Storage analysis. Four SSAS databases each containing a single cube were created and processed.
When processing completed, storage space was measured and is summarized below. It is interesting to note

Measure Group

Bins

Box

Congen

Contact

ContactDistance

Coord

Dihed

DSSP

FDSASum

PhiPsi

Radgee

RMSD

RMSF

SASA

VCont

Cube Dimension Data

TOTAL

Space Savings vs. SQL

Rows

399,033

574,408

574,408

574,408

1,649,285,467

614,699,496

105,263,035

131,995

104,006,194

574,408

574,408

2,033

105,155,010

574,397

+SI +CD
4.92

30.14

24.92

25.41

49,801.19

34,439.45

5,370.12

835.61

5.69

1,292.96

25.62

25.52

0.03

2,598.43

34.06

1,664.99

96,179.05

Cube Storage (MB)

+SI -CD

4.922

30.137

24.918

25.412

34,439.45

5,370.12

835.36

5.688

1,292.96

25.62

25.52

0.03

2,598.43

34.06

1,664.68

46,377.31

80%

-SI -CD

30.137

24.918

25.412

49,935.87

31,691.52

5,370.12

836.22

5.688

1,292.96

25.621

25.52

0.03

2,598.43

34.06

1,619.00

93,516.52

-SI+CD SQL Storage (MB)

30.137

24.918

25.412

31,691.52

5,370.12

832.915

5.688

1,292.96

25.621

25.52

0.03

2,598.43

34.06

1,619.68

43,577.01

81%

8.94

16.83

18.39

22.91

197414.92

20226.15

3066.70

6.52

5537.63

20.70

20.72

0.22

6751.23

57.95

233169.81

100%

The lookup query was limited to include only 100 simulation frames and was run against

the two cubes containing the ContactDistance measure group. Three runs for each protein were

completed, and the results are shown in Figure 9. Then a set of contact calculations were at­

tempted, using cubes that specifically excluded the ContactDistance measure group and either

using or excluding the Spatiallndex dimensions. These queries had to be repeatedly reduced

in size, finally stopping at a mere 5 frames in order to avoid memory errors in the client library.

The partial results of these timings are shown in Figure 10. Although it is clear that finding de­

sired data is faster than attempting to do the calculation on-demand, the behavior of the calcu­

lation query is unexplained. First query plan appears to change for proteins larger than lokt

(85 residues) and again beyond lhgu (189 residues). However, the bigger issue is highlighted

by the blue lines shown both Figures 9 and 10. The lower line is the slowest execution time

taken by a 1,000 frame contact calculation using spatial indexing for the largest protein in the

51

o o o
CO

o o

2°
CD

E
i -
c g

ss

o

6 100 200 300 400
Residues

Figure 9. MDX lookup query execution times. Execution time of a lookup of data from the ContactDistance
measure, limited to 100 frames. The lower blue line is the slowest recorded time for SQL Server to produce
1000 frames of contact data for lehe, the largest protein in the test set using spatial indexing. The upper
blue line is the for the SQL execution time for lehe not using spatial indexing.

test set (lehe, 400 residues) on SQL Server using the same host machine. The upper blue line

is the slowest time for 1 ehe not using spatial indexing.

Discussion

The ability to store large, multi-dimensional scientific data sets efficiently and without

have to translate them into two-dimensional tables certainly has great appeal. Interacting with

those result sets using a multi-dimensional query language also opens up interesting possibilities

for data exploration. Consider the formulation of a query to present a matrix of distances be­

tween CA carbons on columns and all other carbons on rows. Constructing this query in SQL

would require use a complex PIVOT or JOIN. Unfortunately, the severe penalty for performing

calculations or even just retrieving large data sets using MDX severely limits how it can be

used and even if it will be a viable option for analysis of large data sets.

52

o
o

O
O
O
co

-jo.
CD

E o

^ 8

o
CD

UJ O
O
O

1p88 1qaz 1ehe

1fzw

1okt

1hgu

1bp5

1nr2 idOn
© 2tgi t

2adr

0 100 200 300 400
Number of Residues

Figure 10. MDX calculation query execution times. Timing results for a calculating heavy atom contact dis­
tance in MDX, limited to 5 frames. Blue lines are as described in Figure 9. The query is extremely slow
for all three cube variants tested, and the application of spatial indexing dimension has no effect on execution
time.

There are many potential causes for the lack of performance in this model, some of

which could be addressed through a different query design. For example, the spatial indexing

implementation in SQL significantly reduces query time over that of exhaustive calculation.

In this OLAP model, it appears to have no significant effect, indicating that the MDX query

optimizer may incorrectly be calculating distances when it could utilize the Spatiallndex di­

mensions to avoid them. Another possibility is that cube model itself is less than optimal. It

was designed to exactly mimic the rich set of data stored in the main data warehouse, exhaus­

tively representing every dimensional property. Reducing the size and complexity of attributes

within the existing dimensions could speed things up. However, the low performance could

also be an issue with underlying XMLA protocol (Microsoft Corporation, 2002) used by SSAS

to return result sets to clients. This protocol is XML based and contains a rich language for de­

scribing result values, dimensionality, and even display attributes such as text color to an ap­

plication. Returning large numbers of values in a single result set may simply be impractical

53

with XMLA.

Conclusions

SSAS is a multidimensional database that includes a multidimensional query language

called MDX. The fundamental multi-dimensional storage engine stores data very efficiently,

achieving an 80% reduction in data size as compared to the source data stored in SQL Server.

In addition, the MDX language offers great flexibility in assembling result sets, without out the

fundamental column and row restrictions found in SQL. Unfortunately these valuable features

are overshadowed by serious deficiencies in handling large result sets as well as poor query

performance.

54

Chapter 4: Beyond the Relational Model: 3D Spatial Hashing

One of the most attractive features of molecular dynamics simulations of proteins is the

ability to monitor the atomic interactions between pairs of atoms across the protein over time.

Atomic contacts, when combined with experiment, provide insight into protein folding, dy­

namics, and function. The calculation of contacts is non-trivial in MD simulations, as the pos­

sible number of contacts increases exponentially with the number of amino acids. The resultant

data of such a calculation is often larger in size than the original coordinate data from which it

was derived. In this paper we describe the implementation of a spatial indexing algorithm, in

our multi-terabyte MD simulation database (Dynameomics), to significantly speed up the dis­

covery of atomic interactions in a simulation. Spatial indexing, also known as spatial hashing

is a method that divides a finite 3 dimensional space into regular sized bins and applies an index

to each bin and hence it can be used to decrease the time of calculating the distance of nearest

neighbor objects in 3 dimensional space. Since, the calculation of contacts is an often used

computationally demanding calculation in the simulation field; we also use this as the basis for

testing compression of data tables. We investigate the compression of coordinate tables with

different permutations of data and index compression within MS SQL SERVER 2008 R2. The

effect of compression of tables on query times is also investigated.

Our implementation of spatial indexing speeds up the calculation of contacts over a Ins

window by between 14 and 90%. For a 'full' simulation trajectory (51 ns) spatial indexing has

negative to no effect on the two smallest proteins, however the calculation speed up is between

31 and 81% for the remaining simulations. Testing all permutations of data and index compres­

sion revealed there was no significant difference in the total execution time for all the proteins

in our test set. The greatest compression (-36%) was achieved using page compression on both

the data and indexes.

We implement a spatial indexing scheme in our simulation database that significantly

decreases the time taken to calculate atomic contacts opening the door for rapid cross simulation

55

analysis and on the fly calculation and visualization of contacts. Using page compression across

the data and index for the atomic coordinate tables will save -36% of space without any sig­

nificant decrease in calculation time.

Introduction

Many laboratories use molecular dynamics (MD) simulations to study the dynamic and

structural properties of proteins. MD simulations provide atomic level resolution of the protein

and its surrounding solvent environment; there are currently no experimental techniques that

can provide this level of detail. The key to a protein's dynamics across time is the multitude of

atomic interactions that occur between bonded and nonbonded atoms. Fluctuations in these

contacts in the protein dictate the conformations accessible to the protein and its overall behav­

ior. The dynamics of a protein are key to understanding protein function (Karplus, 2005), pro­

tein folding and misfolding(Chiti, 2006; Fersht, 2002).

Our lab has recently undertaken and completed a large scale project, named Dy­

nameomics, in which we have simulated the native states and unfolding pathways of represen­

tatives of essentially all autonomous protein fold families(van der Kamp, 2010). These fold

families, or metafolds, were chosen based on a consensus between the SCOP, CATH and DALI

domain dictionaries, which we call a consensus domain dictionary (CDD) ((Day, 2003; Scha-

effer, 2011 a). For our 2009 release set there are 807 metafolds, representing 95% of the known

autonomous domains in the Protein Data Bank (PDB). The coordinates of the MD simulations

and standard analyses are loaded into a relational database. Our Dynameomics database is im­

plemented using Microsoft SQL server with the Windows Server operating system (see (Simms,

2008) for a more detailed description). For our Dynameomics simulations we run one native

state simulation, and at least 5 thermal unfolding simulations. In order to explore the dynamics

and folding in these simulations we often calculate the contacts between pairs of atoms. The

calculation is non-trivial as all possible pairs of atoms in the system must be evaluated. The

56

average number of protein atoms in our Dynameomics set simulations is 2150 with the smallest

system consisting of 494 protein atoms and the largest of 6584 protein atoms. This problem

has been well studied and is also known as the nearest neighbor search problem (Clarkson,

2005). As the atoms in our system are in motion, all pairs of atoms need to be re-evaluated for

each frame of the simulation, so in the case of a 51 ns native state simulation, we have 51,000

frames of pairs of contacts to evaluate. Whilst ad hoc one-off calculations of contacts are pos­

sible, calculating contacts for a large number of simulations, in a project like Dynameomics,

without any acceleration method is simply not possible.

Spatial indexing overview

Spatial indexing is an often commonly used method by programmers of 3D video

games, in which collision between particles/objects are detected (Lefebvre, 2006). In order to

accelerate the detection of collisions the 3D space is split into many smaller 3D bins, which

are often uniform in size. Each of the bins is then given an index and the particles/objects in

the system are rapidly evaluated to determine which of the indexed bins it falls in. Collisions

can then be detected by evaluating only those particles/objects in the same or immediately ad­

jacent neighboring bins.

In our MD simulation engine (Beck, 2000-2011) we already implement a spatial in­

dexing (hashing) algorithm for the calculation of nonbonded terms (Beck, 2004). Our MD sim­

ulations are carried out in a periodic box of water molecules where the protein is solvated in

the center of the box; this is conceptually similar to an orthorhombic unit cell in crystallography.

Since the dimensions of the periodic box are constant throughout the simulation, one can create

a spatial hash that is consistent throughout the simulation. In practice we split our periodic box

into smaller bins of at least 5.4 A since this the maximum distance we consider a pair of atoms

to be in contact (Beck, 2008) (Figure 11 A). Each bin is then assigned an unique integer. We

then only evaluate the pairs of atoms in the current bin and the immediately adjacent 26 bins

57

(Figure 11B), which are calculated using simple algebra.

Figure 11. Illustration of spatial binning within a periodic box. The protein (lenh, the engrailed home-
odomain) is simulated in a periodic box of water molecules with dimensions of 50 A (A). The periodic box
is split into smaller boxes of 10 A, these are the 3 dimensional bins. Each bin is assigned an index and every
atom at every time point will have associated X,Y, Z coordinates and a bin index. Illustration describing
the evaluation of adjacent bins (B). Finding the distance to neighboring atoms within a prescribed cutoff
is reduced to only evaluating euclidean distance between an atom and other atoms in the same bin or the 26
surrounding bins.

Results

We investigated the effect of using spatial indexing in the simulation coordinate table

to accelerate the discovery of atomic contacts between pairs of atoms. We compared the exe­

cution times for the heavy atoms contact query for 1 ns (1000 frames) of each of our 11 repre­

sentative metafolds (Figure 12, Table 15) and Figure 13 shows the average execution time for

the 1 ns heavy atom contact queries with and without the use of spatial indexing. Table 16

58

6217 5495

Figure 12. 11 metafolds representative of sequence length in Dynameomics. The proteins are ordered by
the number of amino acid residues in each protein. See also, Table 1.

0 100 200 300 400
Residues

Figure 13. Contacts query execution times. Comparison of heavy atom contacts query with and without
spatial indexing for 11 metafold representatives over Ins. With no spatial indexing (circles) applied the cal­
culation of heavy atom contacts over 1 ns (1000 frames) takes an average of ~20 minutes (n=6) for the largest
protein lehe. For the smallest protein, 2adr, the average time taken is around 10 seconds. When spatial in­
dexing is applied (triangles) the is a dramatic decrease in execution time for lehe from -20 minutes to an
average of 1 minute 46 seconds. There is almost no change in execution time for 2adr since it is an extremely
small protein, spatial indexing has little effect.

59

Table 15. Test set definition. The test set consisting of 11 representative proteins taken from the Dy­
nameomics project.

PDB4 Name Residue Range residues protein atoms

2adr Domain of Adrl DBD from S. cerevisiae

1 nr2 Thymus and activation-regulated chemokine

1 okt Glutathione S-transferase

2tgi Domain of transforming growth factor-beta 2 (TGF-B2)

IdOn Horse plasma gelsolin

lbp5 Domain of serum transferrin

Ihgu Human growth hormone

1 p88 3-phosphoshikimate 1-carboxyvinyltransferase

1 fzw Monomer of glucose-1 -phosphate thymidy lyltransferase

lqaz Alginate Lyase Al-III

lehe Cytochrome P450nor

shows in detail the comparison of the execution times with and without the spatial index. The

results show that for 10 out of the 11 cases that we achieved a significant decrease in execution

time when using spatial indexing. As expected, query times decreased as the number of distance

calculations is significantly reduced (p< 0.05) for 11 metafolds. For one metafold (2adr) the

Table 16. Comparison of average execution times by protein. All observations indicated that the spatial
index optimized query ran faster than its non-optimized counterpart and except in the case of 2adr, that
observed speed improvement was statistically significant (p < 0.0001).

02-130

8-69

1-85

1-112

27-159

82-246

2-190

25-240

2-293

4-354

5-403

29

62

85

112

133

165

189

216

292

351

399

496

1011

1412

1750

2095

2487

3011

3272

4560

5495

6217

PDB

2adr

lnr2

lokt

2tgi

IdOn

lbp5

lhgu

lp88

lfzw

lqaz

lehe

'Time (s)

11.6

29.3

56.1

89.7

127.9

180.2

256.4

294.4

578.3

860.4

1091.8

2Time (s)

10

16.7

23.7

28.2

32.6

37.5

42.4

51.7

73.4

95.1

105.6

3A(s)

1.6

12.6

32.5

61.5

95.3

142.7

214

242.7

504.8

765.3

986.2

95% CI

(-5.34, 8.55)

(11.18, 14.10)

(30.85, 34.09)

(56.53, 66.38)

(90.63, 99.99)

(138.40, 147.03)

(210.81,217.25)

(236.38, 248.92)

(498.92,510.77)

(753.80, 776.85)

(974.65, 997.79)

p-value
0.3092

0

0

0

0

0

0

0

0

0

0

Note
No significant change

Significantly faster

Significantly faster

Significantly faster

Significantly faster

Significantly faster

Significantly faster

Significantly faster

Significantly faster

Significantly faster

Significantly faster

'Average time not using spatial index, N=6.2Average time using spatial index, N=6. 'mean difference.

60

heavy atom contact execution time did not significantly change (P>0.05) when using spatial

indexing. Investigating further, we found that for 2adr that spatial indexing had little effect

since 2adr is a very small protein. 2adr has a an average radius of gyration of 8.5 A and since

each spatial bin has the minimum dimensions of 5.4 A by 5.4 A by 5.4 A , the entire protein is

covered by only a small number of bins. In this instance there is no significant difference in the

number of pairs of atoms considered when the query uses the spatial indexing. Also, since the

execution time is so short, it is likely that the cost of selecting out only the immediately adjacent

bins instead of joining all atomic coordinates is more apparent.

The significant decrease in execution time for the calculation of atomic contacts is im­

portant for 3 main reasons. First, the reduction in execution time enables us to calculate contacts

in a tractable time frame for large proteins, considering the largest fold representative in our

Dynameomics set, lehe which contains 399 residues, the average execution time reduced from

around 18 minutes to just under 1 minute and 45 seconds. With such a tractable execution time,

we can perform rapid ad hoc queries in our database, which is extremely useful in an exploratory

sense and enables us to ask and quickly answer questions about the atomic interactions in a

simulation. Second, the query execution time is quick enough to enable us to perform large-

scale multi-simulation analysis. For example, if we wanted to find all the long-range contacts

in the denatured state of the 807 metafold representatives and look for patterns, it would not be

difficult to execute multiple contacts queries across multiple servers to return back that result

rapidly. Third, since the calculation can be run in a short period of time, this analysis could be

performed on the fly where the data would only need to be stored temporarily or regenerated

rapidly when required. The size of the resultant contact data often exceeds the size of the original

uncompressed tables they were derived from and hence we would need to more than double

the size of our existing database configuration if we were to consider storing the result of contact

queries for all simulations. The ability to run on fly analyses such as this in the database also

61

lends itself well to exploratory visualization tools which can connect directly to the database.

For extremely large datasets like ours we have found that current commercial software is inad­

equate for our needs and our lab has developed a powerful data visualization engine dubbed

DIVE (Data Intensive Visualization Engine) that can connect to our SQL database and rapidly

visualize millions of data points in many dimensions (Bromley, 2010).

Since the heavy atom contact query is a computationally expensive calculation that

queries the atomic coordinate tables, the largest tables in our database, we decided to use this

query (utilizing spatial indexing) as the basis for testing permutations of data and index com­

pression. The aim here was to find a data and index compression permutation on the coordinate

tables that saved disk space but did not significantly affect query execution times. We looked

at 9 permutations of data and index compression - we applied each of these to each of our 11

metafold representative coordinate tables. As an initial test we calculated the heavy atom con­

tacts for the first nanosecond of each metafold with each permutation of compression for the

coordinates table. Figure 14 shows the average execution times for calculating heavy atom con­

tacts (with and without spatial indexing) for 1 ns for each metafold with every permutation of

compression. Figure 15 shows a box plot which compares the average % compression for each

permutation of data and index compression across all the 11 metafolds The average % com­

pression ranges from 8 - 36%. Having no data compression and row index compression gives

the smallest % compression and page data compression and page index compression giving the

greatest % compression.

Comparing the total execution times (Figure 15) for the heavy atom contacts over 1 ns

on the compressed tables versus the non compressed tables we observe that all permutations of

compression fall within the standard deviation of the total execution times for the non-com­

pressed tables. This result is important as it indicates that we can choose any permutation of

compression and still retain the same execution time for the heavy atom contacts query. The

tantalizing prospect of being able to compress our coordinate data by 36%, by using the page

62

NN NR NP

Figure 14. Compression and execution times. Comparison of 9 combinations of compression and their
affect on query execution times with and without spatial indexing. P = page, R= row, N=none, e.g. PP rep­
resents Page compression on both the data and index where as NR represents no data compression but row
compression on the index.

data and page index compression was investigated further by then calculating heavy atom con­

tacts for the full 51 ns (51,000 frames) of each simulation. We compared the execution times

(with and without spatial indexing) of the non-compressed coordinate tables to that of the 36%

compressed data (Figure 16). We observe that that there is no significant difference (Table 17,

b) in execution times for examining the full trajectories when calculating contacts from an un­

compressed coordinate table and page/page compressed coordinate with and without spatial in­

dexing, which confirms our earlier finding (Figure 15). The implication of this will be far

63

NN NR RP NP RR RP RN PN PP

Figure 15. Comparison of total execution times and table sizes. Total table sizes for tables for all compression
combinations and total execution times for the 1 ns contacts query. Total execution times are the sum of
the individual representatives query times. Even with the largest compression using page compression on
both the data and indexes, total execution times were comparable to the none compressed tables.

reaching in our lab since we can now proceed confidently in applying the page/page compres­

sion scheme across all our coordinate tables in our entire database. Since, 85% of our database

is taken up with simulation atomic coordinate data a 36% space saving is extremely significant

since our database comprised of 70 TB of uncompressed data across 6 servers. This compression

scheme is oriented towards repeated values, such as those found in dimension keys. For those

bioinformaticians with databases implemented in MS SQL Server 2008, compression permu­

tations should be investigated with an appropriate representative data set.

Importantly, our implementation of a spatial indexing scheme in a SQL database to

speed up the discovery of nearest neighbor atoms can be applied to other nearest neighbor prob­

lems, indeed the indexing is not bound to 3 dimensions. An indexing scheme, based on many

dimensions is possible and thus adjacent bins in many dimensions could also be determined to

speed up the detection of nearest neighbors in a many dimensional space -(need a good example

here...hmmm)

NN

64

pp

Number of Residues

Figure 16. Comparison of compression. Execution time comparison for heavy atom contacts query, with
and without spatial indexing, using uncompressed tables and page/page compression. NN denotes no data
and no index compression while PP denotes page compression on the data and index. No significant differ­
ence is observed in execution times.
Conclusions

We investigated the use of spatial indexing to speed up the discovery of atomic

contacts/interactions in our MD Dynameomics simulation database. We compared the discovery

of contacts for 11 representative metafolds with and without spatial indexing and found that

using spatial indexing decreases execution times by up to 90%. We note that for a small protein,

2adr, execution times using spatial indexing actually increased execution time. We also discov­

ered that we could improve the execution time by providing the query optimizer a hint to use

the correct index. Since the coordinate tables are the largest tables in our database we investi­

gated permutations of page and row compression across the data and indexes. We determined

that whichever permutation of compression we used the execution time for the heavy atom con­

tact query was not significantly different. Further investigation into the compression permutation

that gave us 36% savings (page/page compression) across the entire trajectories showed that

this also applied to a large-scale query We can now proceed with applying the page/page com­

pression across our entire database and make use of the space savings without losing query per­

formance.

65

Table 17. Compression comparison. Comparison of non-compressed vs. page-page compressed tables both
without and with spatial indexing. In no case was the observed difference in average execution time signif­
icant for non-compressed vs. page-page compress source tables for 51ns trajectories.

Spatial PDB 'Time(s) 2Time(s) 3A 95% CI p-value Note
No 2adr

lnr2

lokt

2tgi

IdOn

lbp5

Ihgu

lp88

Ifzw

lqaz

lehe

Yes 2adr

lnr2

lokt

2tgi

IdOn
lbp5

Ihgu

lp88

Ifzw

lqaz

lehe

482.2

1592.9

2866.5

4438.3

6256.6

8922.4

12578.6

14310.3

27756.2

43456.2

52838.7

1064.1

1632.1

1977.1

2508.5

2854.3

3738

4343.3

4688.2

6821

8751

10049.6

486.4

1608.7

2918.4

4464.8

6252.9

9113.9

12634

14358.3

30548.9

42074.9

53669.9

963.7

1545.8

2065.1

2732.8

2833.8

3790

4395.7

4820.8

6868.9

8390.1

9941.4

-4.2

-15.8

-51.9

-26.4

3.7

-191.5

-55.4

-48

-2792.7

1381.3

-831.3

100.5

86.3

-88

-224.3

20.4
-52

-52.4

-132.6

-48

360.9

108.1

(-26.19, 17.82)

(-59.20, 27.58)

(-244.00, 140.28)

(-140.83, 87.96)

(-149.68, 157.05)

(-1058.00,674.98)

(-472.06,361.28)

(-326.01, 230.06)

(-9959.08, 4373.64)

(-5140.15,7902.75)

(-2309.40, 646.87)

(-61.07,262.03)

(-260.31,433.00)

(-294.22, 118.21)

(-480.51,31.96)

(-272.43,313.32)
(-413.02, 309.00)

(-515.52,410.65)

(-502.85, 237.61)

(-575.63,479.66)

(-619.33, 1341.05)

(-1004.09, 1220.36)

0.6921

0.8242

0.7758

0.7233

0.4748

0.771

0.677

0.6746

0.8184

0.2873

0.9271

0.0924

0.2841

0.8218

0.9612

0.4373

0.6231

0.5971

0.7788

0.5786

0.2156

0.4163

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference

No significant difference
'Average time for non-compressed tables. 2Averagc time using page-page compressed tables. 3mean difference.
Methods

MD Simulations

Details of how we selected the 807 metafolds for simulation in our Dynameomics proj­

ect can be found elsewhere ((Schaeffer, 2011b; van der Kamp, 2010)). The MD simulations

were performed using in lucem molecular mechanics (ilmm) (Beck, 2000-2011) following the

Dynameomics protocol described by Beck et al. (Beck, 2008). Each of the metafolds was sub­

jected to at least one native-state at 298 K simulation of at least 51 ns, and five to eight simu­

lations at 498 K, with two of these simulations being at least 51 ns long. Structures were saved

every 0.2 ps for the shorter runs and every 1 ps for the longer simulations. Coordinates and

66

analyses from the simulations were loaded into our Dynameomics database (Simms, 2008).

When a simulation is loaded into the database, it is assigned an integer identifier and a

specific database. Three tables are created in the assigned database to hold the fact data for the

simulation: a Coordinate table (abbreviated to "Coord"), a Box table, and Bins table. Each

table is named by the simulation id, for example the tables for simulation id 37 would be

"Coord_37," "Box_37," and "Bins_37." The Coord table contains columns for each of the

three-dimensional coordinates, atom number, step, structure, and instance. The step and coor­

dinate columns are considered fact data, the instance, structure and atom number are dimension

data linking each fact back to a specific structure. The Box table has columns for the x, y, and

z dimensions of the periodic box at each time point. The Bins table records the set of adjacent

bins for each bin. All three tables have clustered primary keys and constraints; the Coord table

also has a secondary covering index.

We selected 11 metafolds to represent the range in sequence size that our Dynameomics

project covers from the smallest: ADRl DNA-binding domain from Saccharomyces Cerevisiae

(2adr, 30 residues,(Bowers, 1999)) to cytochrome P450 (lehe, 400 residues,(Shimizu, 2000)).

Figure 12, shows the metafolds selected. In the test conducted in this study we chose to look at

the native (298 K) simulations for each of these proteins. Each 298 K simulation was 51 ns in

length and coordinates were written out every lps.

Implementation of spatial indexing in the database

To calculate contacts in SQL, an expensive self-join of the coordinate table must be

used in addition to joins with structural data tables. A version of this query is shown in Figure

17. Conditions in the JOIN clauses ensure that comparisons are made within the same frame

(a.step = b.step) and with a granularity of lps (a.step % 500 = 0 and b.step % 500 = 0). Since

distance is reflexive, we only calculate the distance from a heavy atom in "a" to another in "b"

(a.atom_number < b.atomnumber). We also exclude contacts in the same or adjacent residues

67

SELECT

FROM (
SELECT

FROM

WHERE j

(

j.sim id
j.step
j.residue id x
j.atom number x
j.residue id y
j.atom number y
SQRT(j.distance) as distance

a.sim id
, a.step
, c.residue id as residue id x
, c.atom number as atom number x
, c.atom type as atom type x
, d.residue id as residue id y
, d.atom number as atom number y
, d.atom type as atom type y
, (b.x coord - a.x coord) * (b.x coord -

(b.y coord - a.y coord) * (b.y coord -
(b.z coord - a.z coord) * (b.z coord -

dbo.Coord_2029 AS a
INNER MERGE JOIN dbo.id as c
ON (c.heavy atom = 1

AND a.struct id = c.struct id
AND a.atom number = c.atom number
AND a.[step] % 500 = 0
AND a.[step] between 0 and 500000

JOIN dbo.Bins 2029 AS n
ON (n.hash3d index = a..bin)

INNER MERGE JOIN (dbo.Coord 2029 AS b

dn

INNER MERGE JOIN dbo.id as d
ON (d.heavy_atom = 1

a.x coord)
a.y coord)
a.z coord)

))

AND b.struct id = d.struct id
AND b.atom number = d.atom
AND b.[step] % 500 = 0
AND b.[step] between 0 and

ON (a.[step] = b.[step]
AND a.atom number <b.atom
AND c.residue id < d.resi
AND n.hash3d_index_neighb

LStance < (CASE WHEN j.atom type x = 'C
AND j.atom type y = '

ELSE 21.16 END)

number

500000))

number
due id-1
or = b.bin

2' THEN 29.

+
+
as distance

)) AS j

16

Figure 17. Heavy atom contacts query. The size of the coordinate table self-join is reduced by applying two
right associative join clauses, shown in bold. Right associative joins are a mechanism to control the order
of join evaluation. In this case we insure that only the rows meeting satisfying the given predicates partic­
ipate in the final self-join (i.e. heavy atoms and only the first Ins of simulation time). The spatial-index join
in shown in bold-italics. This clause allows SQL to trim away most atoms outside the cutoff range without
needing to perform the distance calculation, greatly reducing the number of operations as well as rows that
would later be thrown away by the distance cutoff. Finally, MERGE joins are explicitly specified to avoid
the optimizer choosing a HASH join for the coordinate table self-join.

68

(a.residueid < b.residueid - 1). Finally, the query only considers heavy atoms

(c.heavy_atom=l and d.heavy_atom=l).

There are three supported join types in SQL Server: Hash, Merge, and Loop. Normally

queries are expressed using only the keyword JOIN, leaving the optimizer free to choose the

join type when an execution plan for a query is prepared. Join types are described in detail

elsewhere (Fritchey, 2009). The self-join of the coordinate table presents unique difficulty be­

cause of its size. We have observed that the optimizer will consistently choose a hash join,

which will cause an expensive build of a temporary hash structure. In contrast, the merge join

type does not require the temporary structure, and since the data are ordered based on the pri­

mary key, this approach is significantly faster.

We have optimized the structure of the query with the use of two right associative joins

to cause early evaluation of the Coordinate and ID table joins. We have also pushed predicates

directly into the join clauses. However, despite these optimizations a great deal of time is spent

calculating distances for atoms that are far outside the 5.4 A distance of interest. These addi­

tional calculations generate result rows that add a significant performance burden, making it

impractical to run this query over more than a handful of trajectories.

We have implemented a spatial indexing algorithm in the database to accelerate the dis­

covery of atomic contacts. In our implementation we subdivide the periodic box used for sim­

ulation and divide it into as many smaller cubes with sides of at least 5.4 A. We then

consistently number these cubes, creating a one-dimensional hash. For simulation data, the

number of these smaller cubes in a simulation will never come close to 232-1 bins, so it is pos­

sible to represent in a SQL 32bit integer. We then iterate over all atoms in a simulation and

map each atom's coordinates into a single bin using equations 1.1 and 1.2. This result is stored

in the coordinate table. A second smaller table named binsx (where x is the simulation id) is

created for each simulation, which stores rows for each combination of a bin index and itself

and the 26 possible adjacent bin indices. This table is populated using a C# user defined func-

69

tion at the time the simulation coordinate data are loaded.

With the Bins table in place, the contact query presented earlier can be modified slightly

to filter coordinates considered using the bin column in the coordinate table. The modification

is shown in bold below (Figure 18). This simple join allows the query optimizer to quickly re­

move distance calculations based on a comparison of integer columns instead of projecting and

transforming x, y, z from each half of the join. The result is a spectacular increase in speed, as

the Bins table acts as a highly optimized spatial index.

The spatial indexing optimization increases query performance significantly by reducing

the number of pairs of atoms it has to evaluate. The first part of this paper looks at the perform­

ance gains when utilizing the spatial indexing by comparing the time taken to calculate contacts

over a 1 ns window (1000 frames) of time over 11 representative proteins ranging from 30 to

400 amino acids (Figure 12, Table 15).

The second question we address is whether performance can be enhanced further by

making I/O operations more efficient. SQL Server 2008 supports two types of compression,

which can be applied separately to the data and indices associated with a table. Row compres­

sion is a more efficient representation of row data; the implementation involves storing fixed

length columns in a manner similar to variable length columns. For coordinate columns, which

are a set of 5 32 bit fixed length columns, the storage savings for row compression are small.

Page compression, which is built on top of row compression, stores repeating values in a single

structure and then references them. This can result in significant savings in a fact table since

the table contains numerous constant dimension columns like simid. For the combination of

data and index page compression, we observe a consistent 36% reduction in table storage space.

Although storage space reductions with data and index page compression are significant

for coordinate data, a major concern was the potential for decompression to ruin the perform­

ance of analysis queries. To investigate this, we return to the contacts query introduced earlier

in this section (since this is a commonly used and computationally expensive query in the lab)

70

and review performance data collected against all combinations of compression options across

our sample set of 11 protein simulations. We also considered non-compressed and fully page

compressed contact queries for the first 1 nanosecond that did not utilize the spatial indexing

optimization.

Database and System setup

Two Dell R710 servers each equipped with dual hex-core processors were used to collect

timing information. The base operating system is Windows Server 2008 Enterprise x64 R2 and

the database engine used was SQL Server 2008 R2 Enterprise x64 R2. Detailed hardware and

software configuration information is shown in Table 18.

One database called hash3d-700 was created on each testing server and populated with

a set of coordinate trajectory tables and dimension tables from our primary data warehouse.

The base coordinate tables were then copied to additional tables, adding an additional suffix to

indicate data and index compression settings. After all coordinate tables were created and pop­

ulated, identical primary keys, constraints and indexes were applied. Tables were then com­

pressed using ALTER TABLE statements. A script was run on all the coordinate table

compression combinations to create contact tables. The size of each hash3d-700 database size

Table 18. Test server hardware configuration, hardware and software.

Hardware Description
_____ __________

Processors Dual Intel Xeon X5650s (x64 Hex Core)

Memory 48 GB

Storage H700 Integrated RAID SAS Disk Controller

System Disks 136 GB on two 15K RPM 150GB SAS disks , RAID 1 (Mirrored)

Data Disks 7,450 GB on six 7200 RPM 2TB SAS disks, RAID 0 (Striped)

Software Description

OS Windows Server 2008 R2 Enterprise x64

Database SQL Server 2008 R2 Enterprise x64

SQL Enabled for all CPUs

SQL Memory Limited to 40,960 MB (8GB for OS)

Anti-Virus Sophos Endpoint Security and Control, version 9

71

CHECKPOINT;
DBCC FREESYSTEMCACHE (''ALL*') WITH MARK_IN_USE_FOR_REMOVAL;
DBCC DROPCLEANBUFFERS;

Figure 18. Cache clearing commands. These command are executed before each timing query to insure
that SQL Server's cache is set to the same state as if the server were rebooted.

was then adjusted upwards to 1.2 TB and the SQL Server process shutdown. The defrag.exe

utility was then run on the data and system partitions clean up file system fragmentation caused

by auto-growth during loading.

In our primary data warehouse, a simulation's coordinate fact data are stored in three

distinct tables: a coordinate table, a box table, and a bins table. Dimensional data describing

simulation and structure parameters are stored in shared tables. For testing purposes, coordinate,

box and bins tables were copied to each testing server and the set of dimensional meta-data for

the simulations in our sample set were copied locally. This approach allows the fact and di­

mension data for these tests to be completely self-contained.

Queries were run in SQL Server Management studio running on a remote machine with

a connection to the test database server. Queries were executed with SET STATISTICS IO

ON and SET STATISTICS TIME ON to capture logical and physical read statistics. To control

for performance gains caused by data and/or query plan caching; and background write opera­

tions from result tables, a series of three system statements were executed prior to running the

test query (Figure 18). The CHECKPOINT statement insures that any dirty pages (such as

those result rows written out by the previous query) are written to disk. The FREESYSTEM­

CACHE command eliminates any stored query or procedure plans. The DROPCLEAN­

BUFFERS flushes out the current cache leaving it effectively cold, as though SQL Server had

just started. During the collection of timing information, access to both servers was restricted

and only the timing query was allowed to run.

Performance of heavy atom contacts query with and without spatial indexing

We calculated the pairs of heavy atom contacts for the 1st nanosecond of each simulation

72

and compared the execution times with and without spatial indexing. Queries were written in

SQL and executed in MS SQL management studio as described in the above section. Heavy

atom contacts were calculated 3 times for each simulation, ensuring the system cache was

cleared between each run to obtain performance statistics. To utilize spatial indexing, a simple

join to the 'Bin' table was employed, which ensured that only atoms within the current spatial

bin and immediately adjacent bins were considered for evaluation. Statistics were calculated

using a two sample two-sided t-test for unequal variances.

Comparison of page and row compression on data and indexes for coordinate tables

MS SQL Server 2008 supports two types of compression that can be applied to both

data and indexes independently. We investigated 9 permutations of non-compressed, page com­

pression and row compression on both data and indices for each coordinate table for each of

the 11 simulation's coordinate table in our test set. We recorded the % compression of each

compression permutation compared with the non-compressed coordinate tables. We then ran

an initial test of performance by investigating the execution time and disk I/O operations of the

heavy atom contacts query over the first nanosecond of the simulation. Performance of heavy

atom contacts query Data (page) and Index (page) compression on data and indexes for coor­

dinate tables. When compressing data and indices there is inherently a trade-off between the

reduction in the size of the table and the time taken to decompress the table and access the data.

Ideally, a data intensive query run on a compressed table would not take significantly longer to

process than the same query on an uncompressed table. Based on the results obtained from an­

alyzing the multiple compression permutations on the data and the related indexes we examined

the execution time of the heavy atom contacts query over a full 51 ns (51,000 frames) trajectory

for each of the proteins in our test set.

73

Chapter 5: Generation of a Consensus Domain Dictionary

The discovery of new protein folds is a relatively rare occurrence even as the rate of

protein structure determination increases. This rarity reinforces the concept of folds as reusable

units of structure and function shared by diverse proteins. If the folding mechanism of proteins

is largely determined by their topology, then the folding pathways of members of existing folds

could encompass the full set used by globular protein domains.

We have used recent versions of three common protein domain dictionaries (SCOP,

CATH, and Dali) to generate a consensus domain dictionary (CDD). Surprisingly, 40% of the

metafolds in the CDD are not composed of autonomous structural domains, i.e. they aren't

plausible independent folding units. This finding has serious ramifications for informatics stud­

ies mining these domain dictionaries for globular protein properties. However, our main pur­

pose in deriving this consensus domain dictionary was to generate an updated 2009 CDD to

choose targets for MD simulation as part of our Dynameomics effort, which aims to simulate

the native and unfolding pathways of representatives of all globular protein consensus folds

(metafolds). Consequently, we also compiled a list of representative protein targets of each

metafold in the CDD. This domain dictionary is available at www.dynameomics.org.

Introduction

Structurally similar proteins need not share significant sequence identity. The early ob­

servation of structurally and functionally similar proteins (such as hemoglobin and myoglobin)

led to the partition of different sets of structurally similar proteins into folds (Kendrew, 1959;

Perutz, 1960). However, as more structures were determined and more folds discovered, it be­

came clear that not all members of a fold are necessarily linked by a common function (Nagano,

2002). Also, the determination of structures with conserved structural cores surrounded by vari­

able regions complicated the classification of new structures into existing folds. What degree

of structural variation is tolerable between a domain and a potential cousin before they no longer

http://www.dynameomics.org

74

can be considered to belong to the same fold?

The inconsistencies of analyzing and generating protein domain dictionaries are one

component of the vigorous discussion surrounding the properties of protein 'fold space' (Csaba,

2009; Pascual-Garcia, 2009; Sam, 2006). Distinct folds can contain regions of shared structural

similarity (Grishin, 2001). Folds are both populated to different degrees and structurally het­

erogeneous (Coulson, 2002; Majumdar, 2009; Wolf, 2000). This heterogeneity complicates es­

timates of the size and 'shape' of fold space, and is likely responsible for the wide range of the

estimated number of protein folds. The presence of unclear domain boundaries in regions of

fold space have led some to question the utility of a hierarchal definition (Kolodny, 2006). Fur­

thermore, fold assignment is dependent on the prior problem of domain detection (Holland,

2006; Majumdar, 2009).

The gold standards among domain dictionaries, SCOP (Structural Classification of Pro­

teins) (Murzin, 1995) and CATH (Class, Architecture, Topology, Homology) (Orengo, 1997),

have been the subject of many detailed comparisons (Day, 2003; Hadley, 1999; Jefferson, 2008;

Pascual-Garcia, 2009; Veretnik, 2004). In general, both dictionaries weigh potential functional

and evolutionary relationships between fold members with different strengths at different levels

of their hierarchies. The presence of shared fragments between differing folds and/or regions

of "conserved" structure have been well documented and are one reason for the development

of different empirical classification methodologies, as more knowledge of protein structural

evolution emerges, hope remains that an evolutionary classification will be derived (Valas,

2009). In their early formulations, these domain dictionaries represented different design

methodologies. Whereas SCOP was hand curated by experts, CATH was maintained by a com­

bination of automated process and expert curation. However, SCOP has assumed more auto­

mated pre-classification of new structures in responses to the increasing rate of structure

determination, diluting this methodological distinction (Andreeva, 2008).

Although individual domain dictionaries may contain their own biases, we can minimize

75

the effect of those differences by extracting a consensus from a group of such dictionaries. We

previously demonstrated the application of this method to SCOP, CATH, and the Dali Domain

Dictionary (Dietmann, 2001) to generate a consensus domain dictionary (CDD 2003 version,

v2003) (Day, 2003). This domain dictionary was the basis of our initial high-throughput survey

of native dynamics (Beck, 2008). Additionally, the concept of the metafold that we introduced

in the v2003 CDD was further developed in a study of 'cradle-loop' structures (Alva, 2008). A

subset of the representative domains from v2003 was used to conduct benchmark simulations

of standard molecular dynamics (MD) force fields (Rueda, 2007).

Here we present an updated CDD (v2009) derived using recent versions of the input

domain dictionaries, which incorporate many of the new structures determined since the v2003

CDD. The CDD is the backbone of our high-throughput molecular dynamics initiative, Dy­

nameomics (Beck, 2008; van der Kamp, 2010). This project seeks to simulate the native and

unfolding behavior of representatives of all protein folds. Consequently, we need an objective

basis for selection of simulation targets. Therefore, it is important that the CDD be monitored

so that we can identify novel topologies as they are classified and observe potential splits within,

and mergers between, our metafolds as classifications shift. It is important that we identify do­

mains that appear to be autonomous units, since we use the contents of the CDD as potential

targets for simulation of folding/unfolding pathways. The selection process was complicated

by the discovery that roughly a third of the consensus folds (metafolds) in the CDD are not au­

tonomous structural units, but instead are dependent components of multi-domain or complex

structures (or are small structural motifs).

We present our data model for representing domains and their metafolds over time in a

relational database (Simms, 2008). We discuss the use of this data model to map domains and

their annotations from older versions of our dictionary to the newer one (v2003 ® v2009). We

present the full v2009 CDD consisting of 1695 metafolds. We then filter the set to remove

metafolds that do not represent autonomous units or cannot be simulated for other reasons,

76

which yields 807 metafolds. In addition to being of use to our Dynameomics efforts, the filtered

807 target list is more appropriate for bioinformatics studies investigating globular protein prop­

erties than the full consensus domain dictionary or the three parent domain dictionaries by re­

moving folds that do not represent autonomous folded structures.

Methods

Relational model for consensus set data

The relational schema for the 'Target Selection and Preparation' (or 'Prep') database,

which houses our CDD, is shown in Figure 19 in a unified modeling language (UML) repre­

sentation (Simms et al, 2008). Consensus domains are stored in the Domain table consisting

of an identifier, PDB code, and fold identifiers from the SCOP, CATH, and Dali domain dic­

tionaries. A domain must contain fold identifiers from at least two of the three input domain

dictionaries. Metafold data are stored in the Fold table, which contains a metafold identifier,

name, and the metafold's rank (based on domain population). Note that the Fold table is, in

fact, a table of metafolds. There may be multiple versions of the same domain in the Domain

table (due to multiple CDD versions), and these differing versions may link to multiple

metafolds (also due to multiple CDD versions). The many-to-many relationship between Fold

and Domain is implemented via the FoldDomain table. Metafold representatives chosen for

simulation are captured in the Target table.

As previously stated, domain classifications evolve over time, which can cause changes

in the CDD. To capture these changes, the Fold, FoldDomain, Domain, and Target tables in­

clude a consensus set identifier to allow multiple versions of metafold and domain definitions

to be stored in the same primary tables. To facilitate cross-consensus set queries, fold identifiers

77

Figure 19. Target Selection and Preparation ('Prep') database schema. Prep schema as modified to account
for multiple consensus sets and simulation associations. UML schema describes one-to-one (1..1) and one-
to-many(l..*) relationships.

are maintained across consensus set releases where this is meaningful. It is possible for new

identifiers to be introduced and existing identifiers to be removed in subsequent releases.

Domains and targets are both linked to external data sources. The Domain table contains

a field for the PDB code, and we populate a local cache table (PDB) with specific information

synthesized from a given structure's PDBml (Westbrook et al., 2005). Examples include a struc­

ture title, dates, methods, and source organism. These fields facilitate local searches and analy­

sis. The TargetSimuIation table links targets in the Prep database to simulations contained in

the Dynameomics data warehouse (Simms, 2008).

Generation of the v2009 CDD

The v2009 CDD was generated as described by Day et al. (Day, 2003). To generate the

78

CDD, we integrate recent versions of three major domain dictionaries: SCOP (Andreeva, 2008),

CATH (Cuff, 2009), and Dali (Dietmann, 2001). SCOP vl.73, CATH v3.2, and a March 2005

download of the Dali Domain Dictionary were used as input for consensus generation. CDD

generation is a two-step process: First, consensus domains are generated by pairwise comparison

between domain dictionaries of residue ranges from the same chain. Where a significant overlap

between input domains is detected, a consensus domain is assigned. Second; the set of consen­

sus domains is filtered for sequence similarity and then clustered into a set of metafolds based

on their composite fold identifiers. The set of consensus domains and metafolds comprise our

CDD. The workflow of this process is outlined in Figure 20.

Our domain matching procedure follows the criteria specified by Dietmann and Holm

(Dietmann, 2001). A given domain in one input dictionary is compared against analogous do­

mains in the other domain dictionaries. Where the given domain and an analogous domain both

overlap to a significant extent (80%) a consensus domain pair is assigned. If a given domain

matches domains from both other input dictionaries, the three resulting domain pairs are col-
Figure 20. Overview of the consensus domain dictionary (CDD) generation process. Consensus domains

are first found between pairs of input dictionaries. The resulting domain list is filtered for sequence identity.

The resulting non-redundant domain list is clustered into a list of metafolds. The collected domain lists and

metafold list are the contents of the CDD.

[PDB: -30,000 structures j

SCOP: CATH- DALI:
96,973 domains 108.691 domains 73.609 domains

, ' * - • |

£ . 1 .Domain matching

! Consensus Domain List: 80,062 domains

I 2.Sequenee filtering

[Non-redundant Domain List: 13.345 domains]
1

A 3.Metafold clustering

Metafold List: 1695 metafolds!

79

lapsed into a single consensus domain spanning analogous domains from all three input dic­

tionaries. If a domain from any single domain dictionary has no consensus with any domain

from either of the remaining domain dictionaries, it is discarded. Each consensus domain pre­

serves the source data from its input dictionaries (PDB, chain, residue range, and fold identifier).

This list is loaded into our database to assist with metafold representative selection and report

generation. The schema is described in Figure 19.

The full domain list is filtered by sequence using the SCOP ASTRAL95 sequence-fil­

tered domain list and the CATH 'SOLID' sequence identifiers (Chandonia, 2004; Greene, 2007).

The non-redundant domain list produced by the sequence filter is used as the basis for generation

of metafolds. Each domain contains a composite fold identifier derived from its input domain

definitions. SCOP and CATH are hierarchal classifications, for SCOP we chose the 'Fold' level

to cluster, for CATH we chose the 'Topology' level. Domains whose composite fold identifiers

share two of three elements are clustered together into a metafold. Those metafolds are then

sorted and ranked by their non-redundant population.

Mapping between CDD versions

The CDD is a product of clustering across input domain dictionaries. As these input

dictionaries change with the release of new versions, so should the CDD. However, without a

detailed description of the changes made, it can be difficult to assign equivalence between two

domains from CDDs generated from different inputs. A mapping between the v2003 and v2009

CDD was generated based on domain identifier and fold identifier equivalence. Changes in

fold representation in new versions of both CATH and Dali motivated the mapping criteria. Be­

tween the release of CATH v2.4 and v3.0, "working" CATH classes [6-9] were no longer in­

cluded in production releases (Greene, 2007). Since the v2003 CDD included these classes,

80

criteria were chosen such that v2003 domains could be reassigned to regular (1-4) CATH

classes. Since fold identifiers do not persist between v3. lb and the March 2005 version of Dali,

identify between these versions could not be used as the basis for a mapping. In the period of

time since we acquired this version of Dali, this domain dictionary has been discontinued (Holm,

2008).

Four mapping criteria were defined based on the mapping classification a domain pos­

sessed in the v2003 CDD. A v2003 domain possessing composite SCOP, CATH, and Dali fold

identifiers is mapped to a v2009 domain if both the SCOP and CATH composite chain and do­

main (PDB6) and the v2009 Dali PDB6 is defined (though not necessarily equivalent). A v2003

domain possessing only SCOP and CATH fold identifiers is mapped to a v2009 domain if both

the SCOP PDB6 identifier and CATH PDB6 identifier are equivalent. A v2003 domain pos­

sessing only CATH and Dali fold identifiers is mapped to a v2009 domain if the CATH PDB6

and fold identifiers are equivalent and the Dali fold identifier and PDB6 is defined. A v2003

domain possessing only SCOP and Dali identifiers is mapped to a v2009 domain if the SCOP

PDB6 and fold identifiers are equivalent and the Dali fold identifier and PDB6 is defined.

Selection of domains as metafold representatives

We examined domains by manual inspection within each metafold to assess their suit­

ability as a simulation target. We chose targets diat were self-contained domains in a single pro­

tein chain that were less than 450 residues in length. Where the structure was determined by

X-ray crystallography, we only chose crystal structures with resolutions higher than 3.0 A. Do­

mains with obligate cofactors (other than Zn2+, Ca2+, and heme) were rejected. Also, domains

with multiple Zn2+, Ca2+, and heme sites were rejected, with a few exceptions (e.g. calbindin).

Many of the domains rejected for this reason are chains where the cofactor is a major structural

element. Domains with a single Zn2+, Ca2+, or heme were selected (i.e. myoglobin) regardless

of whether folding information was available regarding the role of the cofactor. When multiple

81

domains within a metafold met our selection criteria, we preferred domains with biomedical

relevance or with experimental folding studies available for comparison. The workflow for tar­

get selection where targets exist from a previous CDD is outlined in Figure 21.

The determination of whether a given domain was self-contained was primarily deter­

mined by manual inspection. Several factors could lead to the rejection of a domain as not self-

contained; these factors could occur either in isolation or in concert with one another. Where a

domain existed was deposited as a multi-domain structure, we used a simple "sheet of paper"

criteria to examine the interface of the domain of interest with the rest of the protein. Where a

domain could not be cleanly separated from the remainder of the protein, it was rejected for its

convoluted interface. In addition, we examined the proposed biological unit from the deposited

transform. Structures with extensive domain swapping or crystal contacts could be rejected

even though appearing to be in isolation. Furthermore, structures that were 'irregular' (those

that possessed little to no structure or hydrophobic core) could also be rejected for being not

self-contained. This range of factors led to a broad spectrum of possible buried surface area in

rejected metafolds (10% - 60%). Furthermore, where the domain boundary occurred in the mid­

dle of a significant secondary structure element (helix or beta sheet), this disruption could be

v2003 targets

V2009 CD

s5 1 Domain mapping

New V2009 metafolds Existing targets

2,Target Selection

Release Set. (807)
95% fold space coverage

Rejected Targets: (189)
5% fold space coverage

Figure 21. Overview of the mapping and target selection process. Existing v2003 targets are mapped to the
v2009 CDD. (l)Where a mapped domain was selected or rejected in the v2003 CDD, this status is main­
tained in the v2009 CDD. (2)Where a new metafold is observed, targets are selected from available domains
in that metafold.

82

used as a reason for rejection as not self-contained. This was not used as a basis for rejection

where the secondary structure was a linking region and could be safely truncated to the previous

loop region and where that truncation would not expose significant hydrophobic surface area.

Where a single suitable domain was selected as a target for simulation it was designated

a representative for its metafold. If, after examining all domains within a metafold, a suitable

domain could not be found, a domain was chosen as a fold representative and the reasons for

its rejection were annotated. Once a domain was selected as a metafold representative, we chose

a residue range to simulate that incorporated the input domain definitions such that we avoided

disrupting secondary structure elements while removing long, unstructured tails (many of which

are cloning artifacts).

Results

v2009 Consensus Domain Dictionary

The CDD consists of a set of consensus domains and a list of consensus fold identifiers

binding these domains together into metafolds. The process of CDD generation is summarized

in Figure 20. Consensus domains were identified between pairs of domain dictionaries

(SCOP/CATH, SCOP/DALI, Dali/CATH). Summary statistics from each of the domain dic­

tionaries are presented in Table 19. The agreement between domain dictionaries was measured

as the fraction of shared consensus domains divided by the total number of domains originating

from structures shared between the two dictionaries.

We reduced the effect of differing release dates (and thus different numbers of structures)

by considering only shared structures. CATH and Dali have the highest agreement, with 96%

of CATH domains and 90% of Dali domains included in the CATH/Dali consensus domain set.

SCOP and CATH have the next highest agreement, with 79% of SCOP domains and 82% of

CATH domains in the SCOP domains in the SCOP/CATH consensus domain set. Finally, SCOP

83

Table 19. SCOP, CATH, and Dali. Summary statistics of the SCOP, CATH,
and Dali domain dictionaries used in the v2003 and v2009 CDD.

Version Dictionary Chains (C) Domains (D) Folds' D/C2

v2003 S C 0 P 2 7 ' 3 0 8 3 5>0 9 5 7 8 3 L 2 9

CATH 25,622 36,480 1,453 1.42

Dali 21,493 35,492 1,088 1.65

v2009 S C 0 P 7 4>6 0 8 9 6>9 7 3 i . 2 8 0 1 2 9

CATH 74,240 108,691 1,110 1.46

Dali 52,740 73,609 2,783 1.39

'Number of unique folds at the chosen level within each domain dictionary
'Number of distinct domains (D) per distinct chain (C)

and Dali had the lowest agreement, with 65% of SCOP domains and 61% of Dali domains in­

cluded in the SCOP/Dai consensus domain set. A consensus domain need not exist solely be­

tween a single pair of domain dictionaries. Where a consensus domain was determined by each

of the three pairwise comparisons, it was collapsed into a single triple consensus domain in the

CDD. Thus, four classes of consensus domains were created, SCOP/CATH, SCOP/Dali,

Dali/CATH, and SCOP/CATH/Dali.

The v2009 CDD is composed of 80,062 domains, originating from 27,140 PDB struc­

tures. The total number of PDB structures considered is lower than the structures available due

to the lag between PDB and domain dictionary releases. The domains of the CDD were dis­

tributed among the aforementioned classes as follows: 51% SCOP/CATH/Dali, 30%

SCOP/CATH, 10% CATH/Dali, and 9% Dali/CATH. To generate the metafold list, the CDD

first must be filtered by sequence identity. The nrCDD was composed of 13,345 domains. The

domains in the CDD clustered into 1695 metafolds. On the whole, these metafolds incorporate

4217 unique consensus fold identifiers derived from 971 unique SCOP folds, 923 unique CATH

topologies, and 2362 Dali folds. The distribution of domains per fold for the input domain dic­

tionaries is shown in Figure 22.

84

A) B)

16-

8 14-
o
* 12-

.1 10'
15 8 ~

Q. 6-
o
a. 4 .
-_
o 2-0-

C)

.110°"
as

_ a
o
a. I 0 i "O
>£
m *•*
<u
2 0-
OC

_:
_0

*4
°„

3

\
\ \ \

0

°"®******»<*»'f • » » « • « • _ • * <

5

V

V *1

2

10 15 20
Fold Index

!. \.
I 1

4 6 8 10 12

25

14 16
Metafold Index (xl 00)

MM

30

18

o o
o
5,
c
o

3
Q.
O a.
•a
o

u.

D)

1 6 '

14

12

10

8 -

6 -

4-
2-
0-

C

g>100-
as 01 >
o <~l

^
Q
a i_i

>
<ti

3
£
_

80-

60-

40-

20-

n
u -

c

a

\
.

"\ '

11 c r- a

***»•'J'SSUi?.W»?W»58«8*»l

) 5 10 15 20 25 30
Fold Index

————
^ -

j T

/
j
1

j

) 2 4 6 8 10 12 14 16

Metafold Index (x100)

E) 50 -i

_ 25
CL
O

a.

I accepted
|l I rejected

200 400 600
1

800 1000
Metafold bin

1200 1400 1600

Figure 22. Distribution of domain populations between folds and metafolds. A) Population distribution of
top 30 most populated folds in the SCOP (filled squares), CATH (open squares), and DALI (crossed dia­
mond) dictionaries for the v2003 CDD. B) Population distribution of top 30 most populated folds in the
SCOP, CATH, and DALI dictionaries for the v2009 CDD. C) Non-redundant population distribution of the
top 100 most populated metafolds in the v2009 CDD. D) Cumulative percentage of domains represented by
metafold rank. The most populated metafolds account for a large percentage of the domains in the CDD.
E) Metafold distribution binned by 50-fold increments, sorted by rank into rejected and accepted popula­
tions
Comparison ofv2009 to v2003

Both the residue range of a domain and its fold classification can change over time.

85

These changes affect the output of the metafold clustering and the domain contents of the CDD.

Since our Dynameomics simulations are indexed against the CDD, it is necessary to track do­

mains across multiple dictionary versions so that information about our simulated domains is

current. Where possible, we generated a map between domains in our v2003 and v2009 CDD

based on their fold identifiers. There were 31,141 domains in the v2003 CDD. From this dic­

tionary, 4,693 domains could not be mapped forward from v2003 to v2009 and are considered

obsolete (discussed below). 26,448 domains were mapped from v2003 to v2009. There are

53,614 domains in the v2009 dictionary that were not in the v2003 dictionary.

The domains that were not mapped from the v2003 CDD can be broadly partitioned

into three categories: (1) domains from structures that were dropped from consideration in one

of the input domain dictionaries, (2) domains whose boundaries changed significantly in one

of the input domain dictionaries, and (3) domains that were split into multiple domains or

merged into a single domain. From each of our input dictionaries used in v2003 CDD, 95% of

the structures considered also had at least one domain in the input dictionaries used in the v2009

CDD. The - 5 % of structures that were in the v2003 CDD but not in the v2009 CDD had the

following properties: the structure was deemed obsolete by the PDB, the structure consisted

primarily of nucleic acids, or the structure was a purely computational model. Of those chains

that were removed from consideration that were not part of the aforementioned dropped struc­

ture set, the majority are rare cases arising from the presence of synthetic linkers and/or multi­

chain domains arising from viral capsid structures. In some cases where neither the chain nor

structure containing a domain were dropped, but it could still not be mapped, the domain bound­

aries in the structure were significantly altered. Alternatively a domain was split into multiple

domains or merged with other domains. Although we can observe these transitions, we prefer

to treat the resulting domain(s) as new. The 4,393 dropped domains from the v2003 ® v2009

CDD mapping originated from 2,198 PDB structures. 3,314 of those v2003 domains originate

86

from PDB structures that still contain domains in the v2009 CDD. There are 1,379 v2003 do­

mains originating from 608 PDB structures not found in the v2009 CDD. 319 of these v2003

domains originate from structures that were superseded by newer structures in the PDB. The

remaining 1,060 domains are dropped either because they were removed from one of the input

dictionaries, or because the domain definition was changed in one or more of the input diction­

aries, breaking the original v2003 consensus.

Domains that were mapped from v2003 to v2009 met specific criteria for their particular

class (SCOP/CATH, SCOP/Dali, etc.). Of the 26,448 mapped domains, 15,735 were mapped

using the SCOP/CATH/Dali class, 7,736 were mapped using the SCOP/CATH class, 1,734

were mapped using the SCOP/Dali class, and 995 were mapped using the CATH/Dali class. A

majority of the domains in our CDD could be mapped based on their SCOP and CATH identi­

fiers alone. The mapped domains originated from 11.896 PDB structures, leading to an average

of 2.23 mapped domains per PDB structure. The mapped domains originate from 857 metafolds

in the v2003 CDD and are mapped into 719 metafolds in the v2009 CDD, indicating that some

v2003 metafolds and their domain contents were merged into larger v2009 metafolds. Any do­

mains were also folded into larger metafolds as they gained a third input fold identifier. 6,613

mapped domains with defined SCOP, CATH, and Dali domain identifiers in the v2009 CDD

contained only two fold identifiers in the v2003 CDD.

'New' domains are those that exist in the v2009 CDD and did not exist in the v2003

CDD. The 53,614 new domains originate from 17,949 PDB structures. These new domains fall

into 1565 metafolds. There were 976 metafolds in the v2009 CDD that consisted entirely of

new domains, 589 metafolds composed of a mix of mapped and new domains, and 130

metafolds that consist entirely of mapped domains. A majority of the new v2009 domains were

placed into metafolds with other mapped domains. 8,401 v2009 domains fell into metafolds

composed solely of new domains. The domain population was less than five for 633 of the new

v2009 metafolds.

87

SCOP and CATH in the v2009 CDD

The consensus generation process can separate an input fold into multiple metafolds or

merge multiple input folds into a single metafold. We examined the location of input folds from

SCOP and CATH within the CDD closely because it indirectly addresses the continuity of fold

space. This analysis also serves as an internal check of the consistency of our metafold clustering

method. The domains of an input fold can be distributed into multiple metafolds and/or com­

bined into a metafold with domains from other input folds. To quantify this effect, we analyzed

the number of metafolds into which an input fold and its domains are distributed. An input fold

can be distributed over many metafolds and yet the vast majority of that fold's domains can

still be assigned to a single metafold. Thus, we are primarily interested in the fractional domain

population of the metafold containing the majority of an input fold's domains, or the 'most pop­

ulated metafold.' The net effect of this treatment is that outliers within a fold are partitioned

into their own poorly populated or singleton metafolds (metafolds containing only a single do­

main).

Certain structurally variable topologies (such as the Rossmann folds) are split more

evenly across a number of metafolds. The 860 input SCOP folds were spread over 815 CDD

metafolds. 12 of these metafolds contained multiple SCOP input folds. The metafold containing

the most SCOP input folds was metafold #2 (consisting of a number of Rossmann folds), fol­

lowed by metafold #16 (consisting of parallel a-helical bundles), and metafold #1 (consisting

of IgG-like b-sandwiches). These SCOP folds are bound together by highly populated CATH

topologies. A full listing of merged SCOP folds is provided in Table S1. 815 metafolds contained

only a single SCOP fold. Of these 815 metafolds, 290 also contained only a single non-redun­

dant domain. We also examined those SCOP folds where the most populated metafold contained

a diminished fraction of the total domains, indicating that the SCOP fold was distributed across

multiple metafolds. 112 of the input SCOP folds had a fractional population within the most

populated metafold of 80% or less. The significance of this fraction can vary, however, if the

88

input fold is poorly populated or if the input fold was not a child of one of the 4 main structural

classes (all-a, all-b, a+b, or a/b).

The 892 input CATH folds were distributed over 862 metafolds. 26 metafolds contained

domains from multiple CATH folds. The most populated metafold, consisting of IgG-like b-

sandwiches, contained four CATH folds. Metafolds #16 and #46 contained three CATH folds.

The remaining 23 metafolds each contained two CATH folds. The most populated metafold of

the 30 most populated CATH folds is presented in Table S2. Of the 866 metafolds containing

only a single CATH fold, 277 also contained only a single nonredundant domain, signifying

singleton metafolds. The CATH Rossmann fold (3.40.50) was the most populated of the CATH

folds that were significantly distributed over multiple metafolds. This fold was distributed over

42 metafolds, and the most populated metafold of these (#2) contained only 49% of the input

fold.

The v2009 CDD has 881 unique SCOP folds from the 11 different SCOP classes (all-a,

all-b, a+b, a/b, multidomain a and b, membrane and cell surface, small proteins, coiled coil,

low resolution, peptides, and designed) There were 434 SCOP folds that only appeared in

metafolds with a simulated metafold representative and 332 SCOP folds that were only found

in rejected metafolds. The rejected SCOP folds represent about a third of the folds from each

of the top four classes (all-a, all-b, a+b, a/b) found in our CDD, between 27 to 38% of each

class. We rejected approximately 70% of each of the multidomain and membrane classes in our

set. Similarly, there are 894 CATH topologies in our domain dictionary from the four CATH

classes: mainly-a, mainly-b, mixed a-b, and irregular/few secondary structures. The majority

(77%) of the irregular class CATH topologies are only found in rejected metafolds. The other

three CATH classes all had between 36-47% of topologies found only in rejected metafolds.

These classes had a similar number of topologies found only in selected metafolds (40-55%).

This analysis of the SCOP and CATH folds reveals that we have not biased our set of selected

metafolds towards any fold class or systematically rejected any class, except for unstructured

89

peptides and membrane proteins.

Selection of Metafold Representatives

The primary purpose of the CDD was to facilitate the simulation of both the native state

dynamics and the unfolding behavior of at least one domain from each metafold. As such, we

examined domains from each metafold to find a high quality structure suitable for simulation.

Such domains were then selected as a 'metafold representative', or target, of that metafold and

prepared for simulation. If no suitable domain could be found we chose one domain from the

metafold to represent the reason that the metafold was rejected. The selected representatives

for the top 30 most populated metafolds are presented in Figure 24, the full target set is provided

in Table S3. Selected representatives could come from a variety of structural contexts; 387 rep­

resentatives were the full contents of their PDB structure deposition, 165 representatives were

a full chain from a multi-chain deposition, and 165 representatives were excised domains where

a chain was chopped to select the domain.

We identified at least one domain suitable for simulation from 807 of 1695 metafolds

in the v2009 CDD. Of the remaining 888 metafolds, 585 metafolds consisted of domains that

were not self-contained and 87 metafolds consisted of domains that were irregular. Of these

672 metafolds, none were autonomous units (75% of the rejected metafolds or 40% of the total

number of metafolds). A summary of the reasons a domain from a metafold was rejected is pre­

sented in Table 20. These rejected domains fell into three categories: domain-swapped dimers,

domains with a large buried interface in the experimentally determined structure of a complex,

and domains with secondary structure elements that continue into other domains of the protein

(Figure 23). There was no significant bias in major fold class (all a, all b, mixed a/b) in the re­

jected metafolds. In 11 metafolds, no domains of less than 450 residues were present so the

metafold was rejected for reasons of size. In 27 cases, the domains of the metafolds in question

were contained a transmembrane region. There were 54 metafolds whose domains required an

90

Table 20. Justifications for rejection for 888 metafolds in the v2009 CDD.

Reject Reason Definition Metafolds

Not an autonomous Poor interface, continuation of secondary structure into other do-
domain mains, small with little secondary structure

Large gaps Backbone gap of more than seven residues
Non-parameterized

672

85

r ^ , Structurally necessary non-protein molecules that have not been pa- ,_
co-factors or struc- . , 57
. , . rametenzed tural ions

Membrane Domain penetrates membrane

Size Larger than 450 residues

Resolution Resolution lower than 3.0 A

Rejected by simula-
Did not pass native (298 K) simulation quality control

27

11

20

14
tion

<-)mer Structures in dispute 2

aStructure 1BEF was retracted from the PDB, causing rejection of domains 1BEFA01 and 1BEFA02. (Murthy, 2009)

obligate cofactor. There were 85 metafolds where each of the domains contained a large (greater

than 7 residue) gap and were rejected. In 87 cases, the metafold consisted of domains that lacked

regular secondary elements and/or were unstructured peptides. In 20 metafolds, all domains

had a resolution lower than 3.0 A. Finally there were two singleton metafolds that were rejected

because their domains were of disputed structural validity at the time of writing (Murthy, 2009).

In 14 cases, we selected a domain but the resulting native state simulation was not stable and

the metafold was rejected. For these 'rejected by simulation' cases, no alternative replacement

could be found from their respective metafolds (See (van der Kamp, 2010) for more details).

Figure 23. Example metafolds rejected for not being autonomous units. A) Metafold #232, chain 4 of Pl/Ma-
honey poliovirus mutant (1AL2). B) Metafold #2232, Chain A of d-crystallin I (1I0A). C) Metafold #489,
chain B of HSP33 (1HW7). D) Metafold #172, Chain C of cathepsin D (1LYA).

91

l)Twitchirt(IWIT) 2) CheY (3CHYJ 3)T1M(1YPI) 4)S6(1RIS) 5)EnHD0ENH)

6)FynSH3(15HF)
7) Serum amyloid P
component (1 SAC)

8)Ubiquit in(lUBQ) 9)MajorCSP7.4(lMJO 10)GSTAMOOKT)

11)Calbindin(4IC8) 12) Myoglobin (1A6N)
13} Achromobacter
protease I (1ARB)

14) Triacyl-glyeceroi
acylhydrolase {3TGL)

£jf52&

15) Histidinol-PO,,
aminotranferase (1UU2)

16!a-spectrin(lCUN} 17)RNaseH(1RIL) 18) Capsid protein gpf (1GFF)
19) Chemotaxis
receptor (1 WAS)

20)RmlC(1EP0)

21)Peptldyl-tRNA
hydrolase [2PTH)

22) Neuronal nitric acid
synthase (1QAU)

23) Dihydrolipoamide
dehydrogenase (1EBD)

24) Catechol
O-methyttranferase (1VID)

25) Winged bean CI
(4WBC)

26) Dynamln PH domain
(1DYN)

27) Casein kinase II, a-chain
(UAM)

28) Human pancreatitis-
associated protein (2GO0)

29) Horse heart Cytc
(2GIW)

30) MHCI domain
(1TMC)

Figure 24. Structure representatives. Structures of the representative domains of the 30 most populated
metafolds in the 2009 CDD. Domains are named based on their source structure, where a domain was an
excised chain or domain, it is named according to the PDB-deposited name for its chain.

92

Discussion

The recognition of spatially distinct motifs and structural patterns is a long-standing

component of structural protein studies (Phillips, 1967; Wetlaufer, 1973). The understanding

of the term 'domain' to denote an autonomous, structurally cohesive unit is similarly well es­

tablished (Levitt, 1976). However, the multiple extant definitions for 'domain' do not always

converge (Majumdar, 2009; Sowdhamini, 1995). A spatially distinct region within a structure

may not coincide with an autonomous, stable unit. Our interest in domain dictionaries is to es­

tablish a systematic, broad sampling of topologies that satisfy our autonomy criterion. The

single most striking conclusion from this endeavor was that a significant fraction of metafolds

generated by our consensus method contained no domain suitable for simulation. This occurred

due to a variety of factors, but the single largest reason for rejection was that the domain was

not self-contained. Identification of protein domains can be split into two problems: the partition

of a chain into multiple domains, and the separation of domains into folds. The difficulty of

partitioning a chain into domains has been well studied (Holland, 2006; Veretnik, 2004). The

separation of domains into fold has been similarly examined. Both problems share similar ele­

ments. It may be that the smallest repeating structural element observed between two structures

is not necessarily a shared domain. For example, if chain discontinuity is allowed within a do­

main to increase structural similarity of the domains in a fold, then the structural integrity of

the excised region may be sacrificed. The problem becomes more complex when considering

domains that are solely observed in the context of multimeric structures or in complexes. In

our opinion, one must be very careful to consider the effect inadvertent inclusion of such do­

mains may have on bioinformatics studies; they are not independent, globular structures. We

note that the distribution of autonomous and non-autonomous domains is not necessarily related

to the dependent or independent folding of these domains in nature. Indeed, discovering the

folding behavior of the autonomous domains is one of the primary goals of the native and fold­

ing simulations we have performed of these domains.

93

We have generated a consensus domain dictionary (CDD) from three major domain dic­

tionaries. This CDD contains 1695 metafolds. We have inspected each metafold and selected a

single representative where suitable autonomous criteria were met. These representatives con­

stitute our release set, which consists of 807 'simulatable' domains. This set of autonomous do­

mains is the basis for our high-throughput MD simulation of representatives of all globular

protein folds (Beck, 2008; van der Kamp, 2010). Also, to reduce artifacts, we would suggest

that the reduced list of 807 metafolds be used for bioinformatics studies, not the full CDD, nor

the domain dictionaries from which they were derived.

94

Chapter 6: The Molecular Mechanics Parameter Markup Language

Molecular dynamics is a method from theoretical physics used to study the motion of a

system of particles and has been validated in many applications, including the study of protein

motion in solvent. A significant issue in the application of molecular dynamics simulations to

map macromolecular motion is the correct determination, representation, and management of

force field parameters. Numerous incompatible formats exist, including everything from tables

in the literature to proprietary file formats tied to specific software packages. Here we introduce

the Molecular Mechanics Parameter Library (MMPL), an extensible public standard for devel­

oping and sharing force field parameters, as well as a collection of validated parameters for

common chemical entities.

Introduction

Molecular dynamics (MD) is a simulation method from theoretical physics used to study

the motion of a system of particles (Allen, 1987; Haile, 1992). The method has been applied

and validated in many applications(Daggett, 2002; Giudice, 2002; Hansson, 2002; Jungwirth,

2002; Kremer, 2003; Norberg, 2002; Saiz, 2002; Wang, 2001; Warshel, 2002); here we focus

on its practical application in the domain of protein dynamics, but the approach is general and

the schema described here can accommodate any chemical moieties. At the core of MD are

the classical equations of motion and an equation, known as a force field, which models the

potential energy. The force field equation includes terms that capture the contribution of intra-

and intermolecular interactions. These terms are parameterized using constants for the specific

types of atoms involved as well as spatial configuration. A simulation engine is used to solve

these equations numerically, yielding a set of atomic coordinates. The details of these calcula­

tions are covered elsewhere (Levitt, 1983; van Gunsteren, 1990).

Simulation engines read and write data in application specific file formats, including

force field parameters. Parameter data formats are usually very compact, often only a thin syn-

95

tactical veneer over the FORTRAN, C or C++ data structures they will ultimately be loaded

into. This approach minimizes the work to parse the data into memory structures by the simu­

lation engine, but it does not facilitate data validation, annotation, or computability outside the

simulation engine. Ultimately, these limitations make parameter data difficult to share, publish

and maintain. We have addressed these limitations by designing the Molecular Mechanics Pa­

rameter markup Language (MMPL) and have implemented it in the in lucem Molecular Me­

chanics (/7mm) simulation engine (Beck, 2000-2011).

Force Field Parameters

ilmm is a highly scalable MD simulation and analysis software package that is fully in­

tegrated with a data warehouse (Simms, 2008). It implements the Levitt et al. (Levitt, 1995)

potential function shown in Eqs. (1-3), which is similar to the force fields implemented in

AMBER (Pearlman, 1995), CHARMM (Brooks, 2009), and many other simulation engines,

with the bonded Ub and nonbonded Unb terms separated.

This compact and elegant symbolic representation hides the complexity of all the bonded

and nonbonded interactions, which must be mapped to the potentially thousands of specific

atoms found in a simulation system. MMPL captures all the constants, bonds, and links to spe­

cific atoms, organizing them hierarchically as shown in Figure 25. This model, which is dis­

cussed in detail in the following sections, enables assembly of molecules from reusable

F =
dU
dx (1)

bonds bond angles torsion angles

tf_=EM*'-*w)2+ X KeA6'-0*;)2* X ^ { l - c o s f n , ^ - ^ ,)] } (2)

U. nb
r..

V v J

-Is „ \u Y l

Kr0 J
+ 332 £

pairs•i, j

r \

v rv J
(3)

components. Although designed and tested using ilmm, MMPL is general purpose and can be

96

easily adopted by other simulation packages. As an example, an MMPL file was created using

parameter information from the published AMBER parameter file (Cornell, 1995; Wang, 2000)

(parm99.dat) and is included in the supplementary data.

The MMPL Data Model

MMPL consists of a data model for describing chemical entities and parameters, a W3C

XML Schema (W3C.org, 2004a; W3C.org, 2004b) for representing the data model as an XML

document, and a sample set of parameters for chemical entities described by Levitt et al.(Levitt,

1995) and the F3C water model (Levitt, 1997). The data model defines a four-level hierarchy

of structural entities and an ordered set of rules to map non-bonded interaction parameters to

specific atoms. The highest level of structure within MMPL is a molecule; the lowest level is

an atom. Molecules are composed of residues, which are in turn composed of groups, and

groups are composed of individual atoms as illustrated in Figure 26. Nonbonded parameters

are associated with individual atoms explicitly (van der Waals radius and energy), and through

Simulation
System -T.

Torsion \
Parameter j

Atom A
1__

Atom B
= " = - , | 1 —
Atom C | I Atom D

.-.J
! Molecules

Residues

Angle
Parameter

Atom A Atom B
r____
AtomC

Groups

Bond
Parameter

Atoms Atom A Atom B

Figure 25. The MMPL as a multi-dimensional data model. MMPL has 4 hierarchies, the
simulation system which consists of structural elements and three types of bond parame­
ters. Non-bonded parameters for van der Waals radii and energy are stored at the atoms
level; charge parameters are stored in atom at the groups level.

http://W3C.org
http://W3C.org

97

molecule

0..*

1. . *

r\ *
^ ^ _ _ J u..

0..*

residues

0..*

1. . *

0..*

0..*

groups
__ o..*

n *

residues_r

bonds_b

groups_g

bonds_b

0..1

2..2

atoms_a

2..2
0..1

bonds_b

2..2

0..1

0..1

2..2

0..1

2..2

0..* 1..1

ce

1

0

atoms

..1

*

Figure 26. MMPL schema. A Unified Modeling Language (UML) representation of the
MMPL structural hierarchy. Complex chemical structures are assembled from reusable
components, atoms are assembled into groups, which are then composed into residues, and
finally into molecules.

groups (charge). These parameters are base values, which may be overridden in a simulation.

For example, a simulation may apply general a-scale or b-scale factors to interactions between

non-bonded atoms (van der Waals attractive and repulsive portions of potential, respectively);

may include and scale specific interactions between atoms (c-scale); or may apply a cutoff

range to exclude interactions between non-bonded atoms. Bonded parameters are mapped using

98

a wildcard facility that matches on atom names. The set of structural entity and parameter match­

ing rules are listed in Table 21 and described below. All primary elements support the concept

of a comment and Digital Object Identifier field (DOI) for data provenance.

Table 21. MMPL Elements. This table lists the principle elements of MMPL.

Element Type Usage

mmpl

atom

group

residue

molecule

ce

bp

ap

tp

Root Element

Structural

Structural

Structural

Structural

Annotation

Parameter

Parameter

Parameter

Root of a valid MMPL document

Defines an atom

Defines a collection of atom elements

Defines a collection of group elements

Defines a collection of residue elements

Chemical element, used to classify atoms

Bond length parameter

Angle parameter

Torsion parameter

Atom elements

An atom element is used to define van der Waals radius, r, van der Waals energy, 8, and

atomic mass, m, using the r, epsilon, and mass attributes, respectively. Atoms are referenced

by name and can be assigned multiple names, so long as they are unique across all atoms. Since

radius and energy parameters will vary depending on the surrounding structure, it is possible

to define multiple atom elements for the same atom type. For example, a hydrogen atom may

appear in a polar configuration, such as exists in a water molecule, and will have r = 0.91 A and

e = 0.01001 kcal/mol; a hydrogen atom in a nonpolar molecule will have r = 2.825A and e =

0.038 kcal/mol. Atoms can optionally be explicitly associated with a ce (chemical element def­

inition) element.

Group elements

A group element is used to describe charges on individual atoms and to define bonds

99

between atoms in the group. Groups are keyed on a name attribute; atoms within a group linked

to previously defined atoms by name. Each atom reference is assigned a locally unique integer

index attribute, idx, and a charge, using the q attribute. If a group contains more than one atom,

and these atoms participate in a chemical bond, b elements are used to describe the participating

atoms by index. Figure 27 illustrates the relationship between the carbon atom in the group

named "CH" and its definition (A), as well as assignment of a covalent bond to that same carbon

and a hydrogen within the group (B).

Residue elements

A residue element corresponds to a reusable unit of structure such as an amino acid. A

residue element contains a list of group elements; each referenced by the attribute name and

assigned a locally unique integer index attribute idx. Similar to the group element, residue el­

ements can also define bonds between atoms in different groups. Bonds at the residue level

are bonds between groups. Thus, they reference the local group index groupidxA and an

atom index attribute a tomidxA that identifies a specific atom within the referenced group.

Figure 27 illustrates the relationship between a group named "CH" and its definition (C); bonds

between groups, such as the covalent bond between carbon and nitrogen (D); and an indirect

reference to the "CI" carbon via the attribute atom_idx_B (E).

Molecule elements

A molecule element represents the highest level of structure within MMPL. A molecule

element contains a list of residues and two attributes: name and an optional struct_id (used to

link to the Dynameomics data warehouse). Similar to elements described earlier, an r element

is linked to a previously defined residue by the name attribute and is assigned a locally unique

integer index attribute idx. Unlike other elements, the r also supports the pdb_num and

pdb_icode attribute which allows the element to be linked to a Protein Databank (PDB) residue

number and insertion code, respectively. Similar to the residue element, the molecule element

100

<residue name=,PRO'>
<groups>

<g name=
———————-"^g-fiarrrt

<g name:

<g name:

<g name=
<g name:

</groups>
<bonds>

<b group.
<b group.
<b group.
<b group.
<b group.
<b group.

</bonds>
<names>

<n name:

<n name:

</names>
</residue>

='CPH2' idx='2V>
=,CPH2* idx='37>
='CPH2* idx='4V>
='AO' idx='57>

idx <^_'P'.,afbm idx A^f/group idx <j=M^jbrrr idx 8=
jdx_A='1' atom_idx_A-0' group_idx_B='2' atom_idx_B:

jdx_A='1' atom_idx_A='0' group_idx_B='5' atom_idx_B::

jdx_A-2' atom_idx_A='0' group_idx_B='3' atom_idx_B:

jdx_A='3' atom_idx_A='0' group_idx_B='4' atom_idx_B:

jdx_A='0' atom_idx_A='0' group_idx_B='4' atom_idx_B=

: 'N' group_idx='0' atom_idx='07>
='CA' group_idx='1' atom_idx='0'/>

:'07>>i
•'07> I
:'07> ;
•'0'l> I
:'07> |
•07> i

^ ^yi uup 11Jwt^£H_v
<atoms>

jf to nam^ 'CI
<a name-H' q='0.119' id^T7>

</atoms>
<bonds>

<b atom_idx_(^0\^m_idx
A </bonds> t

</group>

<atom r='4.315' epsilon='0.07382' mass='12.011'>
<names> V— — •**«^&££J&

<n name='C27>
<n name='C37>
<n name-CP7>
<nname=TETRA_VALENT_ALPHIPHATIC_CARBON7>

</names>
</atom>

Figure 27. Illustration of relationships between structural elements. A carbon-hydrogen
group named "CH" references a carbon atom named "CI" (A), and defines a bond between
the carbon and hydrogen atoms (B). This group is part of a proline amino acid residue,
and is linked via a t o m i d x B attribute (C). The group is bonded to a nitrogen group (D)
specifically to atoms specified by the atom_idx_A and a tomidxB attributes. The atoms
referenced are indexed at the group level; a t o m i d x B is shown (E).

101

supports defining bonds between atoms in different residues.

Bonded parameter elements bp, ap, and tp

Bonded parameter elements bp, ap, and tp use a simple pattern match facility to asso­

ciate parameters to specific configurations of atoms. These correspond to the bond, bond angle

and torsion angle terms, respectively, of Eq. (2). This facility allows bonded parameters to be

expressed concisely without having to exhaustively enter elements for each atom combination.

Ambiguity is resolved by the order that rules appear—the last rule to match takes precedence.

Match attributes are always two characters. The first character may consist of an upper-case

letter A-Z or '? ' . The second character can consist of a letter A-Z, a number 0-9, a dash '-', a

period '.', apostrophe ' " , or double-quote "". Apostrophes and double quotes correspond to

notational naming conventions of "prime" and "double-prime", respectively. These values are

always URL encoded ("'" or """) to avoid conflicts with XML text delimiters.

The bp element consists of two atom name reference pattern attributes (A, B) and two

parameters: ideal bond length attribute 1 (bg) and energy attribute k (ify). The atoms referenced

are separated by one covalent bond. The ap element consists of three atom name reference pat­

tern attributes (A, B, C) and two parameters, ideal angle attribute theta (90) and energy attribute

k (KG). The first and last atoms referenced are separated by two covalent bonds. The tp element

consists of four atom name references (A, B, C, D), and four parameters: a torsion angle type

attribute (0 = normal and 1 = out-of-plane), ideal angle attribute phi (cpg), energy attribute k

(K<p) periodicity attribute n. Here the first and last atoms are separated by three covalent bonds.

All three types of bonded parameters are illustrated graphically in Figure 28.

The match algorithm for bonded parameters is illustrated in Figure 29. Bond length,

angle, and torsion parameters are matched against atoms in the appropriate bond configuration.

Because more than one rule can match a given set of atoms, the algorithm will keep reading

rules and storing any match until there are no more rules.

102

Chemical Element (ce) Definitions

The final type of top level element is the chemical element definition ce. These elements

form a simple list containing a symbol and name for the set of chemical elements defined in

the periodic table (CRC Press, 2010). Linking atom elements to ce elements enables a variety

of secondary analyses and reporting.

Validation of elements and relationships

Although MMPL top-level elements can occur in any order, extensive explicit con­

straints are used to ensure that parameter data stored in MMPL are valid. First, domain level

constraints are used wherever possible to limit attributes to a specific data type and a range of

correct values. For example, we use the standard XML Schema type "nonNegativelnteger" for

-r0~

Non-Bonded Parameters (^A)
e

0
<7

«
1
1
1

Bond parameters(bp) w < _)

Angle Parameters(ap)

e0

Torsion Parameters(tp)

Figure 28: Parameter types. The non-bonded parameters van der Waals radius and van
der Waals energy are encoded directly in the atom element using the r and epsilon attrib­
utes, respectively. The non-bonded charge parameter is encoded at the group level (hashed
box) in a group/atoms/a element, allowing different charges to be assigned to the same
atom based on local structure. In contrast, bonded parameters are matched to specific sets
of atoms using patterns, allowing rules to be reused.

103

M/

Read Match Pattern

V V V

.___
Read Next Parameter Rule

[End of Rules]

d

Y
<>

Y
< >

[Match Wild-Card]

V

Set Matched Rule - Current

Y

9
[No Matched Rule]

.

No Rule Matched I Use Matched Rule J

T
Figure 29. Parameter mask matching algorithm.

idx attributes and "double" for floating point values such as distances and charges. This allows

downstream consumers of MMPL data to map these values to an appropriately typed data struc­

ture in their programming language of choice.

Structured cardinality constraints are used to ensure required elements are present and

to explicitly define optional attributes and elements. For example, it is possible to define a

valid parameter library that does not include torsion parameters, thus tp top level elements are

104

optional. However, if a torsion parameter is later added, additional constraints ensure that the

tp element will contain all required fields.

Finally, relational constraints are enforced using XML Schema key and Areyre/concepts.

For example, this allows the ce attribute of an atom element to be assigned only to one prede­

fined chemical element. Similar restrictions allow groups to be composed from previously de­

fined atoms, residues from groups, and so on. Currently, XML schema can only be used to

define direct foreign key relationships. Indirect relationships, such as the atom index attribute

in a residue pointing to a group atom index, cannot be expressed as an explicit key/keyref con­

straint (See Figure 27, relationship E). Encoding all of these constraints in the schema relieves

MMPL client code from having to implement these error checks. It should be emphasized that

although these constraints help reduce or eliminate certain types of errors, there are still many

other errors that cannot be detected by these mechanisms.

MMPL Components and Extending the Parameter Library

MMPL is distributed as a set of files as outlined in Table 22 and accessible via

http://www.dynameomics.org/mmpl/v2009/sample_parmlib.xml. The files listed in Table 22

of type "XML Fragment" contain the parameters defined in Levitt et al. (Levitt, 1995) encoded

as MMPL elements. The schema defines a single XML namespace:

http://www.dynameomics.Org/schemas#mmpl. The mmpl document element is defined as a

complex type containing an unbounded choice group, meaning the allowed element types can

occur in any order. This element type enables the use of the Document Type Definition (DTD)

system facility for including base definitions and then adding additional definitions and mole­

cules. A sample empty parameter library, containing only base definitions is shown in Figure

30. A typical usage pattern is to store reusable components (such as new atom types) in a frag­

ment file accessible via http, and then assemble molecules of interest in a local file. This local

file should be edited using an XML aware editor, maintaining the assigned schema definition

http://www.dynameomics.org/mmpl/v2009/sample_parmlib.xml
http://www.dynameomics.Org/schemas%23mmpl

105

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mmpl [

<!ENTITY celements SYSTEM "http://mmpl/v2009/elements.xml">
<!ENTITY atoms SYSTEM "http://mmpl/v2009/atoms.xml">
<!ENTITY groups SYSTEM "http.7/mmpl/v2009/groups.xml">
<!ENTITY residues SYSTEM "http://mmpl/v2009/residues.xmr>
<!ENTITY molecules SYSTEM "http://mmpl/v2009/molecules.xmr>
<!ENTITY bonds SYSTEM "http://mmpl/v2009/bonds.xml">
<!ENTITY angles SYSTEM "http://mmpl/v2009/angles.xml,,>
<!ENTITY torsions SYSTEM "http://mmpl/v2009/torsions.xml">

]>
<mmpl name="empty"

version="2009.03.13"
xmlns="http://www.dynameomics.org/schemas#mmpl"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.dynameomics.org/schemas#mmpl

http://www.dynameomics.org/mmpl/mmpl.xsd">
&celements;
&atoms;
&groups;
&residues;
&molecules;
&bonds;
&angles;
&torsions;

</mmpl>

Figure 30. A minimal parameter library. This valid XML document imports components
from all the base fragment files using the Document Type Definition (DTD) SYSTEM im­
port facility.

similar to the example. The resulting document can then be easily confirmed as being properly

formed XML and explicitly validated against the schema. All validation issues should be re­

solved prior to using any parameter library—simulating a system based on an invalid MMPL

document will yield unpredictable results.

The parameters included with MMPL are sufficient for many types of simulations, but

they do not include many other parameters of interest such as metals. These can be added by

creating additional XML fragment files with the atoms, groups, or residues needed. New pa­

rameters can take advantage of a key feature of the MMPL XML Schema—support for com-

http://mmpl/v2009/elements.xml
http://mmpl/v2009/atoms.xml
http://http.7/mmpl/v2009/groups.xml
http://mmpl/v2009/residues.xmr
http://mmpl/v2009/molecules.xmr
http://mmpl/v2009/bonds.xml
http://mmpl/v2009/angles.xml
http://mmpl/v2009/torsions.xml
http://www.dynameomics.org/schemas%23mmpl
http://www.w3.org/2001/XMLSchema-instance
http://www.dynameomics.org/schemas%23mmpl
http://www.dynameomics.org/mmpl/mmpl.xsd

106

Table 22. MMPL File Manifest.

File Type Description

angles.xml

atoms.xml

bonds.xml

elements.xml

groups.xml

mmpl.xsd

residues.xml

sample_parmlib.xml

torsions.xml

XML Fragment

XML Fragment

XML Fragment

XML Fragment

XML Fragment

W3C XML Schema

XML Fragment

XML

XML Fragment

Standard library bond angle parameters

Standard library atoms

Standard library bond length parameters

Definition of chemical elements and symbols

Standard library groups

MMPL Annotated Schema

Standard library amino acids

MMPL Standard Library example

Standard library torsion parameters

ment and DOI elements. The former allows descriptive text to be stored directly in the XML

with the parameters, and the latter provides a standard mechanism to directly link a parameter

to a literature citation. Use of both of these fields is optional but strongly encouraged. Once

validated, new parameter files can be shared and easily incorporated into new simulation sys­

tems.

Conclusions

MMPL is a comprehensive data standard for representing molecular mechanics/dynam­

ics force field parameters. It includes a rigorous and fully annotated XML Schema as well as

an extensive library of previously published and validated parameters based on Levitt et al.

(Levitt, 1995) and the F3C water model (Levitt, 1997). Key features include a component ori­

ented design that allows atoms, groups, and residues to be assembled into complex chemical

structures; comprehensive explicit constraints to prevent data errors; and data provenance

through comments and DOI references. The data model and schema facilitate the independent

development, sharing, and publication of new parameters for force fields similar to Eqs. (1-3)

107

and can easily be extended to accommodate parameters unique to other force fields, as has al­

ready been done for AMBER.

108

Chapter 7: Conclusions and Future Directions

The availability of multi-terabyte disk drives and processors with multiple 64 bit cores

has made it both possible and less expensive than ever to build large, fast servers. Commercial

and open source software can take advantage of these large, cheap servers; allowing very large

data repositories to be created. However, software and hardware alone do not magically or­

ganize data into a model that can be easily mined and maintained. Instead, building large sys­

tems requires extensive planning and design to arrive at a flexible data model that can scale to

the size of the data and to the processing capacity required to mine the data. It is inevitable

that the initial design costs coupled with ongoing operational costs will be similar to or even

exceed the cost of the sensor network or computing network that creates the data being stored.

Despite this reality, data repository design, ongoing operation, and mining of data are considered

to be somehow tangential to the "science" of a grant proposal. This perception must change if

data intensive science is to succeed.

Paying for Storage Infrastructure

The previous chapters have described the methods and the design behind the Dy­

nameomics data warehouse and laid out a path to building large scale repositories. However,

these methods and design do not grapple with the fundamental economics of scientific research

funding. With the notable exception of calculation resources (super computers, compute-clus­

ters); storage infrastructure is not generally covered. The reasons for this are understandable.

Building out and maintaining a large storage server facility, with power, cooling, and network

connectivity for an undetermined period of time and with an unknown number of potential

users cannot be easily justified or budgeted. At the same time, if a large data resource were

made generally available, it could open doors to many areas of discovery not imagined by the

original creators.

The fundamental problem is one of appropriate monetization of data infrastructure.

109

Labs tend to be largely capable of serving their own data needs, especially when rigorous data

design methods and technologies are used. However, this model breaks when they attempt to

share those data with other researchers. The two options have been either scaling up the primary

data repository to support multiple labs, or replicating the data to multiple labs. In the scale up

scenario, the original lab builds up their own infrastructure to support sharing partners, pur­

chasing and deploying sufficient machines and network bandwidth to support their own needs

and the needs of their collaborators. In the replication scenario, each sharing lab builds up their

own infrastructure and effectively copies the original data for their own use. Both of these so­

lutions are wrought with problems.

In the scaling scenario, beyond some number of collaborations (usually 0) the ability

of the primary lab to simply absorb the cost of supporting partner labs will cease. This means

that alternative arrangements must be made to share costs. These could include charging fees,

jointly purchasing hardware, or sharing costs of power and cooling. These arrangements are

complicated for a single partner, and grow exponentially with multiple partners. In the repli­

cation scenario, each lab must duplicate some portion of the original infrastructure and take on

the role of building and maintaining it. In addition, as research continues, the data set at each

site has the potential to diverge. This creates problems of ongoing synchronization and/or cre­

ating multiple independent versions of the data.

Cloud Computing

Cloud computing at first glance offers a third potential solution, placing data at third

party that completely manages server rooms, machines, and network connectivity. As an ex­

ample, Amazon's Elastic Compute Cloud (EC2) and Simple Storage Service (S3) (Amazon

Web Services) are part of a larger "computing as a service" product line that allows anyone to

rent whatever number of processors and storage they need and for whatever period of time is

110

required. Microsoft's Windows Azure (Microsoft Corporation, 2011) is another alterative, also

supplying an effectively unlimited number of processors and storage on an as needed rental

basis. These solutions effectively address the dynamic upsizing and downsizing of resources

required by research; you simply rent exactly what you need for only as long as you need it.

Unfortunately, the pricing models for these services are based on processor time, network band­

width, and storage capacity over time. In a sense these services provide a better implementation

of scaling and replication, but they do not help distribute the costs. However, a newly available

cloud service can provide the means to solve this problem.

Amazon's S3 Infrastructure supports sharing of data restricted to requests marked with

a "user pays" header. Although the owner is responsible for paying the monthly cost of main­

taining S3 storage units (called buckets), it is possible for transfers to and from buckets to be

billed to the user of the buckets, as opposed to the owner. The concept of user pays has been

generalized and extended in Microsoft's Windows Azure Marketplace DataMarket (Microsoft

Corporation), which supports the creation of data products available through free or paid sub­

scriptions. In a sense the DataMarket takes on all the responsibility of managing access to the

data—managing accounts, regulating access, providing a generalized data interface, and even

collecting subscription revenue.

Moving to the Cloud

The Dynameomics Data Warehouse is currently hosted on 6 primary database servers

ranging in size from 12TB to 25TB. These 6 servers contain 74 databases, over 90 thousand

tables, and 725 billion rows of information. In addition, a small subset of simulations is hosted

on two small externally facing machines (one web server, one database server). This is sufficient

for the small number of external users who hit www.dynameomics.org, but these machines are

limited to a few terabytes of storage and can only serve simple queries. In order to make all of

http://www.dynameomics.org

Il l

the data available to external users, a different approach is required.

Figure 31 describes a high level architecture that is based on several discussions held

with Microsoft SQL Azure and DataMarket teams. The general idea is that minimal SQL stor­

age would be provided to house the data in the cloud. This storage would be implemented

using storage nodes only powerful enough to receive data from the lab, and to serve data to

standard data nodes, which would be "rented" on-demand by consumers of the data. The Data-

Market would provide user license validation (e.g. commercial or academic) and authentication,

and optionally collect revenue from use of the data.

For the Dynameomics project, this model offers several benefits. First, the lab would

gain an active offsite repository hosted at a professionally maintained, high availability data

Figure 31. Cloud services and repositories. An architecture to support large scale sharing of scientific data
through cloud services.

Research Lab

Cloud Service

General Public

Academic
Researchers

Commercial
Users

Minimal SQL
Storage

Repository

112

center. Although it is anticipated that most analysis would continue to take place on local

servers, this opens the door to utilizing compute nodes in the cloud. Second, lab could eliminate

ongoing support of its externally facing web server and database server, replacing them with a

small web server node that could brows the entire repository. Management of licenses and ac­

counts would absorbed by the DataMarket. The general public gains a more reliable web server,

and are no longer limited to just looking at a limited number of trajectories. For academic and

commercial researchers, they gain access the entire data set. This allows them to select portions

of interest and replicate it SQL Azure nodes they control and pay for. They can add compute

nodes and do analysis in the cloud, or transfer the data to their own machines for analysis. Fi­

nally, the Microsoft cloud teams (DataMarket and Azure) gain customers through the rental of

computing and SQL resources on their cloud services.

Conclusions

Dimensional modeling has shown great flexibility organizing protein simulation data.

The implementation of the dimensional model in a relational database has successfully organ­

ized over 100TB of simulation data and continues to scale as more data are generated. The

SQL Server Analysis Services (SSAS) implementation of Online Analysis Processing (OLAP)

showed some potential as a tool for specific analyses, but appears to lack the scalability of SQL

Server. Spatial indexing was shown to be highly effective optimization for developing analysis

directly in the database. The Consensus Domain Dictionary demonstrated how domain knowl­

edge can be linked across repositories. MMPL described an XML schema for organizing force

field parameters. Finally, although sharing large data remains unsolved and a significant chal­

lenge; the potential of cloud services to change the economics of data intensive computing

holds great promise.

113

BIBLIOGRAPHY

Adler J. 2010. R in a Nutshell. O'Reilly Media. Sebastopol, Calif.

Allen M. P. & D. J. Tildesley. 1989. Computer Simulation of Liquids. Oxford University Press.
New York.

Alva V., K. K. Koretke, M. Coles et al. 2008. Cradle-loop barrels and the concept of metafolds
in protein classification by natural descent. Curr. Opin. Struct. Biol. 18: 358-365.

Amazon Web Services. Amazon Web Services. 2011.

Amazon Web Services. 2010. AWS SDK for .NET API Reference. 12/28.

Amazon Web Services. 2010. AWS SDK for .NET Getting Started Guide.

Andreeva A., D. Howorth, J. M. Chandonia et al. 2008. Data growth and its impact on the SCOP
database: new developments. Nucleic Acids Res. 36: D419-25.

Beck D. A. C, D. O. V. Alonso & V. Daggett. 2000-2011. in lucem Molecular Mechanics
(ilmm).

Beck D. A. C. & V. Daggett. 2004. Methods for molecular dynamics simulations of protein
folding/unfolding in solution. Methods. 34: 112-120.

Beck D. A. C, A. L. Jonsson, R. D. Schaeffer et al. 2008. Dynameomics: mass annotation of
protein dynamics and unfolding in water by high-throughput atomistic molecular dy­
namics simulations. Protein Eng Des Sel. 21: 353-68.

Beck D. A. C. & V. Daggett. 2004. Methods for molecular dynamics simulations of protein
folding/unfolding in solution. Methods in Enzymology. 34: 112-120.

Berman H., K. Henrick & H. Nakamura. 2003. Announcing the worldwide Protein Data Bank.
Nat. Struct. Biol. 10: 980.

Berman H. M., J. Westbrook, Z. Feng et al. 2000. The Protein Data Bank. Nucleic Acids Res.
28: 235-242.

Bowers P. M., L. E. Schaufler & R. E. Klevit. 1999. A folding transition and novel zinc finger
accessory domain in the transcription factor ADRl. Nat Struct Biol. 6: 478-85.

114

Branden C. & J. Tooze. 1999. Introduction to Protein Structure. Garland Publishing, Inc. New
York, NY.

Brin S. & L. Page. 1998. The Anatomy of a Large-Scale Hypertextual Web Search Engine.

Bromley D., S. Rysavy, D. A. Beck et al. 2010. DIVE: A Data Intensive Visualization Engine.
In Microsoft Research eScience Workshop.

Brooks B. R., C. L. Brooks III, A. D. Mackerell et al. 2009. CHARMM: The Biomolecular
Simulation Program. Journal of Computational Chemistry. 30: 1545-1614.

Celko J. 2005. Joe Celko's SQL for Smarties : Advanced SQL Programming. Morgan Kauf-
mann. Amsterdam; Boston.

Celko J. 2008. Joe Celko's Thinking in Sets. Elsevier / Morgan Kaufmann. Amsterdam ; Boston.

Chandonia J. M., G. Hon, N. S. Walker et al. 2004. The ASTRAL Compendium in 2004. Nucleic
Acids Res. 32: Dl 89-92.

Chiti F. & C. M. Dobson. 2006. Protein misfolding, functional amyloid, and human disease.
Annu Rev Biochem. 75: 333-66.

Clarkson K. 2005. Nearest-neighbor searching and metric space dimensions. In Nearest-Neigh­
bor Methods for Learning and Visions: Theory and Practice. Anonymous MIT press.
Cambridge, MA.

Codd E. F. 1970. A relational model of data for large shared data banks. Commun ACM. 13:
377-387.

Codd E. F., S. B. Codd & C. T. Salley. 1993. Providing OLAP to User-Analysts: An IT Mandate.

Cornell W D., P. Cieplak, C. I. Bayly et al. 1995. A Second Generation Force Field for the Sim­
ulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117:
5179-5197.

CoulsonA. F. & J. Moult. 2002. Aunifold, mesofold, and superfold model of protein fold use.
Proteins. 46: 61-71.

CRC Press. 2010. CRC Handbook of Chemistry and Physics. CRC Press.

Csaba G., F. Birzele & R. Zimmer. 2009. Systematic comparison of SCOP and CATH: a new
gold standard for protein structure analysis. BMC Struct. Biol. 9: 23.

115

Cuff A., O. C. Redfern, L. Greene et al. 2009. The CATH hierarchy revisited-structural diver­
gence in domain superfamilies and the continuity of fold space. Structure. 17: 1051-
1062.

Daggett V. 2002. Molecular dynamics simulations of the protein unfolding/folding reaction.
Ace. Chem. Res. 35: 422-429.

David M. 1999. Advanced ANSI SQL Data Modeling and Structure Processing. Artech House.
Boston.

Day R., D. A. C. Beck, R. S. Armen et al. 2003. A consensus view of fold space: combining
SCOP, CATH, and the Dali Domain Dictionary. Protein Sci. 12: 2150-2160.

Dietmann S., J. Park, C. Notredame et al. 2001. A fully automatic evolutionary classification
of protein folds: Dali Domain Dictionary version 3. Nucleic Acids Res. 29: 55-57.

Dietrich S. W. & S. D. Urban. 2005. An Advanced Course in Database Systems Beyond Rela­
tional Databases. Pearson. Upper Saddle River, NJ.

Dudley J. T. & A. J. Butte. 2009. A quick guide for developing effective bioinformatics pro­
gramming skills. PLoS computational biology. 5: el000589.

Elmasri R. & S. B. Navathe. 2005. Fundamentals of Database Systems. Addison Wesley.

Fersht A. R. 1999. Structure and Mechanism in Protein Science. W. H. Freeman and Company.
New York, NY.

Fersht A. R. & V. Daggett. 2002. Protein folding and unfolding at atomic resolution. Cell. 108:
573-82.

Fletcher P. T., C. Lu, S. M. Pizer et al. 2004. Principal geodesic analysis for the study of non­
linear statistics of shape. IEEE Trans. Med. Imaging. 23: 995-1005.

Frenkel M., R. D. Chirico, V V. Diky et al. 2003. ThermoMLAn XML-Based Approach for
Storage and Exchange of Experimental and Critically Evaluated Thermophysical and
Thermochemical Property Data. 1. Experimental Data. Journal of Chemical & Engi­
neering Data. 48: 2-13.

Fritchey G. & S. Dam. 2009. SQL Server 2008 Query Performance Tuning Distilled. Apress.
New York.

Garey M. R. & D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. WH. Freeman.

116

Giudice E. & R. Lavery. 2002. Simulations of nucleic acids and their complexes. Ace. Chem.
Res. 35: 350-357.

Gorbach I., A. Berger & E. Melomed. 2009. Microsoft SQL Server 2008 Analysis Services Un­
leashed.

Greene L. H., T. E. Lewis, S. Addou et al. 2007. The CATH domain structure database: new
protocols and classification levels give a more comprehensive resource for exploring
evolution. Nucleic Acids Res. 35: D291-7.

Grishin N. V 2001. Fold change in evolution of protein structures. J. Struct. Biol. 134: 167-
185.

Hadley C. & D. T. Jones. 1999. A systematic comparison of protein structure classifications:
SCOP, CATH and FSSP. Structure. 7: 1099-1112.

Haile J. M. 1992. Molecular Dynamics Simulation: Elementary Methods. Wiley. New York.

Hansson T, C. Oostenbrink & W. van Gunsteren. 2002. Molecular dynamics simulations. Curr.
Opin. Struct. Biol. 12: 190-196.

Harinath S., M. Carroll, S. Meenakshisundaram et al. 2009. Professional Micrsoft SQL Server
Analaysis Services 2008 with MDX. Wiley Publishing, Inc. Indianapolis, IN.

Harold E. R. 2004. Effective XML. Addison-Wesley. Boston, MA.

Henrick K., Z. Feng, W. F. Bluhm et al. 2008. Remediation of the protein data bank archive.
Nucleic Acids Res. 36: D426-33.

Henry E. R., M. Levitt & W. a. Eaton. 1985. Molecular dynamics simulation of photodissoci-
ation of carbon monoxide from hemoglobin. Proc. Natl. Acad. Sci. U. S. A. 82: 2034-
2038.

Holand S. M. 2008. Principal Components Analysis (PCA). 2011: 8.

Holland T. A., S. Veretnik, I. N. Shindyalov et al. 2006. Partitioning protein structures into do­
mains: why is it so difficult? J. Mol. Biol. 361: 562-590.

Holm L., S. Kaariainen, P. Rosenstrom et al. 2008. Searching protein structure databases with
DaliLite v.3. Bioinformatics. 24: 2780-2781.

Hubbard T. J., B. Ailey, S. E. Brenner et al. 1999. SCOP: a Structural Classification of Proteins
database. Nucleic Acids Res. 27: 254-256.

117

Hucka M., A. Finney, H. M. Sauro et al. 2003. The systems biology markup language (SBML):
a medium for representation and exchange of biochemical network models. Bioinfor­
matics. 19:524-531.

IEEE Computer Society Standards Committee, IEEE Standards Board & American National
Standards Institute. 1985. IEEE standard for binary floating-point arithmetic.

Intel Corporation. 2007. First the Tick, Now the Tock: Intel® Microarchitecture (Nehalem).

Intel Corporation. 2009. An Introduction to the Intel® QuickPath Interconnect. : 1-22.

International Organization for Standardization & International Electrotechnical Commission.
2001. Information Technology: Database Languages: SQL. Part 1, Framework
(SQL/framework). ISO/IEC. Geneva.

International Standards Organization. 199. SQL99. In Anonymous .

Janert P. K. 2010. Data Analysis with Open Source Tools. O'Reilly. Farnham.

Jefferson E. R., T. P. Walsh & G. J. Barton. 2008. A comparison of SCOP and CATH with re­
spect to domain-domain interactions. Proteins. 70: 54-62.

Jones N. C. & P. A. Pevzner. 2004. An Introduction to Bioinformatics Algorithms. MIT Press.
Boston, MA.

Jungwirth P. & D. J. Tobias. 2002. Ions at the air/water interface. J Phys Chem B. 106: 6361-
6373.

Karplus M. 2003. Molecular dynamics of biological macromolecules: a brief history and per­
spective. Biopolymers. 68: 350-358.

Karplus M. & J. A. McCammon. 2002. Molecular dynamics simulations of biomolecules. Nat.
Struct. Biol. 9: 646-652.

Karplus M. & J. Kuriyan. 2005. Molecular dynamics and protein function. Proc Natl Acad Sci
USA. 102:6679-85.

Kazmirski S., A. Li & V. Daggett. 1999. Analysis Methods for Comparison of Molecular Dy­
namics Trajectories: Applications to Protein Unfolding Pathways and Denatured En­
sembles. Journal of Molecular Biology. 290: 283-283-304.

Kazmirski S. L. & V. Daggett. 1998. Non-native interactions in protein folding intermediates:
molecular dynamics simulations of hen lysozyme. J. Mol. Biol. 284: 793-806.

118

Kazmirski S. L., A. Li & V. Daggett. 1999. Analysis methods for comparison of multiple mo­
lecular dynamics trajectories: applications to protein unfolding pathways and denatured
ensembles. J. Mol. Biol. 290: 283-304.

Kehl C, A. M. Simms, R. D. Toofanny et al. 2008. Dynameomics: a multi-dimensional analy­
sis-optimized database for dynamic protein data. Protein Eng Des Sel. 21: 379-86.

Kendrew J. C. 1959. Structure and function in myoglobin and other proteins. Fed. Proc. 18:
740-751.

Kimball R., L. Reeves, M. Ross et al. 1998. The Data Warehouse Lifecycle Toolkit. Wiley Pub.

Kimball R. & M. Ross. 2002. The Data Warehouse Toolkit: The Complete Guide to Dimen­
sional Modeling. Wiley. New York.

Kolodny R., D. Petrey & B. Honig. 2006. Protein structure comparison: implications for the
nature of 'fold space', and structure and function prediction. Curr. Opin. Struct. Biol.
16:393-398.

Kremer K. 2003. Computer Simulations for Macromolecular Science. Macromolecular Chem­
istry and Physics. 204: 257-264.

Langtangen H. P. 2009. A Primer on Scientific Programming with Python. Springer Berlin Hei­
delberg. Berlin, Heidelberg.

Lefebvre S. & H. Hoppe. 2006. Perfect Spatial Hashing. ACM Transactions on Graphics. 25:
579-588.

Levitt M. 1983. Molecular dynamics of native protein. I. Computer simulation of trajectories.
J. Mol. Biol. 168:595-617.

Levitt M. 1983. Molecular dynamics of native protein. II. Analysis and nature of motion. J.
Mol. Biol. 168:621-657.

Levitt M. & C. Chothia. 1976. Structural patterns in globular proteins. Nature. 261: 552-558.

Levitt M., M. Hirshberg, R. Sharon et al. 1995. Potential energy function and parameters for
simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput.
Phys. Commun. 91: 215-231.

Levitt M., M. Hirshberg, R. Sharon et al. 1997. Calibration and Testing of a Water Model for
Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution. The
Journal of Physical Chemistry B. 101: 5051-5061.

Levitt M. & H. Meirovitch. 1983. Integrating the equations of motion. J. Mol. Biol.: 617-620.

119

Lifson S. & A. Warshel. 1968. Consistent Force Field for Calculations of Conformations , Vi­
brational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules. Chem. Phys.
49:5116.

Lin F. & R. Wang. 2010. Systematic Derivation of AMBER Force Field Parameters Applicable
to Zinc-Containing Systems. Journal of Chemical Theory and Computation. 6: 1852-
1870.

Lutz M. 2009. Learning Python. O'Reilly Media. Sebastopol, Calif.

Mahe P. & J. Vert. 2009. Virtual Screening with Support Vector Machines and Structure Kernels.
Comb. Chem. High Throughput Screen. 12: 409-423.

Majumdar I., L. N. Kinch & N. V. Grishin. 2009. A database of domain definitions for proteins
with complex interdomain geometry. PLoS One. 4: e5084.

McCammon J. A., B. R. Gelin & M. Karplus. 1977. Dynamics of folded proteins. Nature. 167:
585-590.

Menasce D. & V. Almeida. 2000. Scaling for E-Business, Technologies, Models, Perforamnce,
and Capacity Planning. Prentice Hall, PTR. Upper Saddle River, NJ.

Microsoft Corporation. Windows Azure Marketplace DataMarket. 2011.

Microsoft Corporation. 1997. OLEDB for OLAP.

Microsoft Corporation. 2007. SQL Server 2008. 2008 Enterprise Edition R2 x64.

Microsoft Corporation. 2007. SQL Server 2008 Analysis Services. 2008 Enterprise Edition R2
x64.

Microsoft Corporation. 2007. Windows. 2008 Server R2 Enterprise Edition x64.

Microsoft Corporation. 2010. SQL Server Books Online.

Microsoft Corporation. 2011. Windows Azure. 2011.

Microsoft Corporation & Hyperion Corporation. 2002. XML for Analysis Specification. : 1.

Muenchen R. A. & J. Hilbe. 2010. R for Stata Users. Springer. New York.

Murray-Rust P. & H. S. Rzepa. 1999. Chemical Markup, XML, and the Worldwide Web. 1.
Basic Principles. J. Chem. Inf. Comput. Sci. 39: 928-942.

120

Murthy H. M., S. Clum & R. Padmanabhan. 2009. Dengue virus NS3 serine protease. Crystal
structure and insights into interaction of the active site with substrates by molecular
modeling and structural analysis of mutational effects. J. Biol. Chem. 284: 34468.

Murzin A. G., S. E. Brenner, T. Hubbard et al. 1995. SCOP: a structural classification of proteins
database for the investigation of sequences and structures. J. Mol. Biol. 247: 536-540.

Nagano N., C. A. Orengo & J. M. Thornton. 2002. One fold with many functions: the evolu­
tionary relationships between TIM barrel families based on their sequences, structures
and functions. J. Mol. Biol. 321: 741-765.

Norberg J. & L. Nilsson. 2002. Molecular dynamics applied to nucleic acids. Ace. Chem. Res.
35: 465-472.

Orengo C. A., A. D. Michie, S. Jones et al. 1997. CATH—a hierarchic classification of protein
domain structures. Structure. 5: 1093-1108.

Pascual-Garcia A., D. Abia, A. R. Ortiz et al. 2009. Cross-over between discrete and continuous
protein structure space: insights into automatic classification and networks of protein
structures. PLoS Comput. Biol. 5: el000331.

Patel S., A. D. Mackerell & C. L. Brooks. 2004. CHARMM fluctuating charge force field for
proteins: II protein/solvent properties from molecular dynamics simulations using a
nonadditive electrostatic model. Journal of computational chemistry. 25: 1504-1514.

Pearlman D., D. Case, J. Caldwell et al. 1995. AMBER, a package of computer programs for
applying molecular mechanics, normal mode analysis, molecular dynamics and free en­
ergy calculations to simulate the structural and energetic properties of molecules. Com­
put. Phys. Commun. 91: 1-41.

Pearson W. 2008. Dimensional Model Components: Dimensions Part I. Database Journal.

Pearson W 2009. Introduction to Attribute Discretization. Database Journal.

Perutz M. F, M. G. ROSSMANN, A. F. CULLIS et al. 1960. Structure of haemoglobin: a three-
dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature.
185: 416-422.

Phillips D. C. 1967. The hen egg-white lysozyme molecule. Proc Natl Acad Sci USA. 57: 483-
483-495.

Phillips J. C, R. Braun, W Wang et al. 2005. Scalable molecular dynamics with NAMD. Journal
of computational chemistry. 26: 1781-1802.

121

Rueda M., C. Ferrer-Costa, T. Meyer et al. 2007. A consensus view of protein dynamics. Proc.
Natl. Acad. Sci. U. S. A. 104: 796-801.

Rutherford K. & V. Daggett. 2009. A hotspot of inactivation: The A22S and V108M polymor­
phisms individually destabilize the active site structure of catechol O-methyltransferase.
Biochemistry. 48: 6450-6460.

Saiz L., S. Bandyopadhyay & M. L. Klein. 2002. Towards an understanding of complex bio­
logical membranes from atomistic molecular dynamics simulations. Biosci. Rep. 22:
151-173.

Sam V, C. H. Tai, J. Gamier et al. 2006. ROC and confusion analysis of structure comparison
methods identify the main causes of divergence from manual protein classification.
BMC Bioinformatics. 7: 206.

Schaeffer R. D., A. L. Jonsson, A. M. Simms et al. 2011. Generation of a Consensus Protein
Domain Dictionary. Bioinformatics. 27: 46-54.

Schaid D. J. 2010. Genomic Similarity and Kernel Methods I: Advancements by Building on
Mathematical and Statistical Foundations. Hum. Hered. 70: 109-131.

Shimizu H., S. Park, D. Lee et al. 2000. Crystal structures of cytochrome P450nor and its mu­
tants (Ser286—>Val, Thr) in the ferric resting state at cryogenic temperature: a com­
parative analysis with monooxygenase cytochrome P450s. J. Inorg. Biochem. 81:
191-205.

Simms A. M., D. A. C. Beck, A. L. Jonsson et al. 2011. The Molecular Mechanics Parameter
Markup Language (in preparation).

Simms A. M. & V. Daggett. 2011. Protein Simulation Data in the Relational Model (in prepa­
ration).

Simms A. M., R. D. Toofanny, C. Kehl et al. 2008. Dynameomics: design of a computational
lab workflow and scientific data repository for protein simulations. Protein engineering,
design & selection. 21: 369-377.

Smith B. C, R. C. Clay & Hitachi Consulting. 2009. SQL Server 2008 MDX Step by Step. Mi­
crosoft Press.

Sowdhamini R. & T. L. Blundell. 1995. An automatic method involving cluster analysis of sec­
ondary structures for the identification of domains in proteins. Protein Sci. 4: 506-520.

Stephenson F. H. 2003. Calculations for Molecular Biology and Biotechnology A Guide to
Mathematics in the Laboratory. Academic Press. San Diego, CA.

122

Stonebraker M., L. A. Rowe, B. G. Lindsay et al. 1990. Third-generation database system man­
ifesto. SIGMOD Rec. 19: 31-44.

Tennick A. 2010. Practical MDX Queries for Microsoft SQL Server Analysis Services. Mc­
Graw-Hill.

Toofanny R. D., A. M. Simms, D. A. C. Beck et al. 2011. Implementation of 3D spatial indexing
and compression in a large-scale molecular dynamics simulation database for rapid
atomic contact detection (in preparation).

UCLA: Academic Technology Services, Statistical Consulting Group. Regression with Stata.
2011.

Valas R. E., S. Yang & P. E. Bourne. 2009. Nothing about protein structure classification makes
sense except in the light of evolution. Curr. Opin. Struct. Biol. 19: 329-334.

van der Kamp M. W, R. D. Schaeffer, A. L. Jonsson et al. 2010. Dynameomics: a comprehen­
sive database of protein dynamics. Structure. 18: 423-35.

van Gunsteren W F. & H. J. C. Berendsen. 1990. Computer Simulation of Molecular Dynamics:
Methodology, Applications, and Perspectives in Chemistry. Angewandte Chemie Inter­
national Edition in English. 29: 992-1023.

Vapnik V N. 1999. An overview of statistical learning theory. IEEE Trans. Neural Netw. 10:
988-999.

Veretnik S., P. E. Bourne, N. N. Alexandrov et al. 2004. Toward consistent assignment of struc­
tural domains in proteins. J. Mol. Biol. 339: 647-678.

W3C.org. 2004. XML Schema Part 1: Structures Second Edition.

W3C.org. 2004. XML Schema Part 2: Datatypes Second Edition.

Wagner B. 2010. Effective C#: 50 Specific Ways to Improve Your C#, 2nd Ed. Pearson Educa­
tion. Boston, MA.

Wang J., P. Cieplak & P. A. Kollman. 2000. How well does a restrained electrostatic potential
(RESP) model perform in calculating conformational energies of organic and biological
molecules? Journal of Computational Chemistry. 21: 1049-1074.

Wang W., O. Donini, C. M. Reyes et al. 2001. Biomolecular simulations: recent developments
in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and pro­
tein-nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30:
211-243.

http://W3C.org
http://W3C.org

123

Warshel A. 2002. Molecular dynamics simulations of biological reactions. Ace. Chem. Res. 35:
385-395.

Webb C, A. Ferrari & M. Russo. 2009. Expert Cube Development with Microsoft SQL Server
2008 Analysis Services.

Westbrook J., N. Ito, H. Nakamura et al. 2005. PDBML: the representation of archival macro­
molecular structure data in XML. Bioinformatics. 21: 988-992.

Westreich D., J. Lessler & M. J. Funk. 2010. Propensity score estimation: neural networks, sup­
port vector machines, decision trees (CART), and meta-classifiers as alternatives to lo­
gistic regression. J. Clin. Epidemiol. 63: 826-833.

Wetlaufer D. B. 1973. Nucleation, rapid folding, and globular intrachain regions in proteins.
Proc. Natl. Acad. Sci. U. S. A. 70: 697-701.

White T. 2009. Hadoop. O'Reilly Media, Inc. Sebastopol, Calif.

Whitehorn M., R. Zare & M. Pasumansky. 2006. Fast Track to MDX. Springer. New York ;
London.

Wilf H. S. Algorithms and Complexity. Prentice Hall. Englewood Cliffs, NJ.

Wolf Y. I., N. V. Grishin & E. V. Koonin. 2000. Estimating the number of protein folds and
families from complete genome data. J. Mol. Biol. 299: 897-905.

Wyke R. A. & A. Watt. 2002. XML Schema Essentials. John Wiley & Sons, Inc.

124

VITA

Andrew M. Simms was born in Ann Arbor, Michigan. He has lived in several states, including
New Jersey, California, Massachusetts, Arizona, and Washington. At the University of Michi­
gan, he earned a Bachelor of Science in Computer Science, and a Master of Science in Bio­
medical Health Informatics at the University of Washington, School of Medicine. In 2011, he
earned a Doctor of Philosophy at the University of Washington School of Medicine in Biomed­
ical Health Informatics.

