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Abstract 

Mining Mountains of Data: Organizing All Atom Molecular Dynamics 
Protein Simulation Data into SQL and OLAP Cubes 

Andrew M. Simms 

Chair of the Supervisory Committee: 
Professor Valerie Daggett 

Bioengineering 

Across scientific disciplines, the ability to generate, collect, and store data has outpaced the 

ability to make sense of them. Methods and technology exist today for working with ex­

tremely large data sets, yet the most common data organization paradigm in science is to cre­

ate files, in some cases millions of files, and store them in file systems. Despite the best 

intentions, these repositories quickly become disorganized, fragile, and difficult to manage; 

hindering mining and exploitation of the data they contain. This is fundamentally an infor­

matics problem, and here I present the design of a very large scale repository to organize and 

mine molecular dynamics simulation data. 
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Chapter 1: Introduction 

Across scientific disciplines, the ability to generate, collect, and store data has outpaced 

the ability to make sense of them. Methods and technology exist today for working with ex­

tremely large data sets, yet the most common data organization paradigm in science is to create 

files, in some cases millions of files, and store them in file systems. Despite the best intentions, 

these repositories quickly become disorganized, fragile, and difficult to manage; hindering min­

ing and exploitation of the data they contain. This is fundamentally an informatics problem, 

and the following chapters detail the design of a very large scale repository to organize and 

mine molecular dynamics simulation data. 

The design of large-scale informatics infrastructure begins with a thorough analysis of 

the underlying data. The goal of this analysis is to discover and establish the interrelationships 

and boundaries of the data being captured or generated, as the data do not organize themselves. 

This process is by no means static, and will evolve as hypotheses are generated, tested, and re­

fined. The urge to rush toward implementing persistence for internal data structures of specific 

algorithms must be avoided, as this will only result in needless data transformation and code 

refactoring as new algorithms are developed. Instead, data storage should be designed around 

conceptual structure of the data and intended paths of analysis. It should then be implemented 

using the primary objects of the chosen storage engine. 

Dimensional modeling is an approach to database design that focuses analysis as a pri­

mary consideration. Originally pioneered as a method to organize large volumes of financial 

data, it is well suited to scientific data. Chapter 2 describes the dimensional model for protein 

simulation data and its implementation using a relational database. 

On-line Analysis Processing (OLAP) is type of database developed specifically to ad­

dress the needs of data analysis as opposed to managing transactions. In contrast to relational 

databases, OLAP databases fundamentally store and operate on multi-dimensional data. Chap­

ter 3 explores OLAP and details the implementation of the Dynameomics data model using the 
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multi-dimensional OLAP feature of SQL Server Analysis Services. 

Relational databases are general purpose tools and are largely agnostic to the semantics 

of the data they house. By coding inherent data features into relational primitives, huge per­

formance gains are possible. Chapter 4 describes spatial indexing, where three-dimensional 

coordinates are placed into a 1-dimensional index and implemented as a simple foreign key, 

enabling rapid calculation of contact distances. 

A single data model is unlikely to be effective for all potential applications. Large repos­

itories can contain many interesting subsets of data, each with specific organizational semantics. 

Chapter 5 describes the Consensus Domain Dictionary, a unification of protein fold classifica­

tion systems with a relational database linked to the primary data warehouse at its core. 

As repositories grow, even the relatively small amount of information used by the tools 

that generate the data can grow to the point of being unmanageable. Molecular dynamics sim­

ulations must manage thousands of force field parameters that are associated with each atom 

in simulation. Chapter 6 describes the Molecular Mechanics Parameter markup Language 

(MMPL), an XML language for managing and sharing force-field parameters. 

There are four fundamental problems in building large data repositories. These are: the 

design of the data model, the implementation and operation of the model, and the mining of 

the data, and sharing of the data. The previous chapters have described methods for the ad­

dressing the first three in the context of protein dynamics, and can clearly be applied to other 

scientific domains. The fourth problem, sharing, remains an issue even with a well-organized 

repository. Chapter 7 discusses future directions and ideas to solve sharing large volumes of 

scientific data. 
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Chapter 2: Protein Simulation Data in the Relational Model 

High performance computing is leading to unprecedented volumes of data. Relational 

databases offer a robust and scalable model for storing and analyzing scientific data. However, 

these features do not come without a cost—significant design effort is required to build a func­

tional and efficient repository. Modeling protein simulation data in a relational database pres­

ents several challenges: the data captured from individual simulations are large, 

multi-dimensional, and must integrate with both simulation software and external data sites. 

Here we present the dimensional design and relational implementation of a comprehensive data 

warehouse for storing and analyzing molecular dynamics simulations using SQL Server. 

Introduction 

Increasing processor power and access to supercomputer facilities have created an un­

precedented amount of data in a variety of scientific disciplines. As the volume of data increases, 

the problem is no longer one of performing calculations utilizing high performance computing 

resources. Instead the challenge has become how to manage, organize, mine, and exploit the 

data. As such, this has become an informatics problem, one created by high performance com­

puting. Such large datasets become intractable to efficiently manage and exploit on traditional 

file systems. However, they are well served, on many levels, by well-designed databases. 

There are two schools of design for building systems with relational databases: rela­

tional modeling, which is used with transactional systems; and dimensional modeling, which 

is used in data warehousing applications. Both can be traced to E. F. Codd, who created the re­

lational model (Codd, 1970) and proposed the on-line analytical processing (OLAP) model 

(Codd, 1993). Relational design is the organization of data into collections of sets known as re­

lations. The process begins with a requirements analysis, which identifies all the attributes to 

be modeled and their functional dependencies. The Cartesian product of all attributes in the 

system, called the universal relation, can be conceptualized as a table where columns correspond 



to attributes and the rows contain specific data items. Functional dependencies identify sets of 

attributes whose values are wholly determined by other attributes. The universal relation is 

broken up into smaller relations following a design pattern known as a loss-less join decompo­

sition. The goal of decomposition is to significantly reduce or eliminate duplicate information. 

Although it is possible to automatically calculate decompositions that minimize duplicated data 

using functional dependencies, the process is typically driven by a designer. The designer will 

consider other constraints, such transactional and query performance of the application as well 

as the target database platform. 

In contrast, dimensional modeling is driven almost entirely by both the innate structure 

of the data being modeled and reporting requirements. Dimensional modeling involves classi­

fying data into two categories: facts and dimensions. Facts are continuous numerical quantities, 

dimensions are discrete classification values. Although space efficiency is important, it is not 

a central design goal. Instead, the primary goal of dimensional design is to yield a structure 

that is both easy and efficient to query. Dimensional models assume that data are primarily 

read-only, which allows liberal use of indexes to achieve query performance. 

Dimensional models can be implemented in a relational database. Fact data are organ-
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Figure 1. Star and Snowflake Schemas. A star schema (A) is distinguished by a central 
fact table and a set of dimensional tables surrounding it. Each dimensional row is associ­
ated with one or more fact table rows. A snowflake schema is a star schema with the addi­
tion of secondary dimensions (DIM2-1 and DIM2-2) that are related to a dimension and 
thus only indirectly related to the fact table. 

ized into fact tables; dimensional data are placed in dimension tables that are linked via foreign 

key relationships. When visualized using UML or an ER diagram, fact tables appear as the 

center of a cluster of dimensions, forming a star shape. If dimensions relate to facts indirectly 
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through other dimensions, a snow-flake shape is observed. These are referred to as a star and 

snow-flake schemas, respectively. 

Molecular dynamics (MD) simulation data can be described using a dimensional model. 

Fact data, at a high level, are sets of three-dimensional Cartesian coordinates for all simulated 

atoms. Secondary analyses are either related directly to atom coordinates, or aggregated at the 

residue, molecule, or simulation level. Dimensional data organize these facts by chemical struc­

ture, simulation time, and into groups of simulations and structures. The following sections 

detail the dimensional model, its translation to a relational model, and its implementation in 

SQL Server. 

A Dimensional Model for MD Simulation Data 

We have developed a four-dimensional model for representing MD simulation data. The pri­

mary dimensions: (A) simulations, (B) structures, (C) simulation groups, and (D) structure 

groups; are illustrated in Figure 2. The structure and simulation dimensions are organized hi­

erarchically and are used to identify specific facts. The remaining dimensions are used to or­

ganize one or more simulations or structures into specific curated sets for analysis. 

Structure and Structure Group Dimensions 

The structure dimension provides the semantic context for interpreting and mining co­

ordinate and analysis data from simulations. Attributes of this dimension are organized into a 

five level hierarchy as shown in Figure 2B, with structure type (Type) as the highest and atoms 

(Atom) as the lowest level. The structure dimension contains the attributes that describe struc­

tures being simulated and as well as links to the Protein Databank (PDB) for initial structures 

(Berman, 2000), the Chemical Component Dictionary for standard atom and residue names 

(Henrick, 2008), the Parameter Library, and Simulations as shown in Figure 3. 

The Type level classifies structures (molecules) by creation method; current types are 



6 

SIMULATION 

_t 
TYPE 

STRUCTURE 
INSTANCE 

i: 
SIMULATION 

GROUP 

J 
STEP 

STRUCTURE 

4. 
SIMULATION 

t 
HAir CHAIN 

RESIDUE 

1 
STRUCTURE 

GROUP' 

ATOM 

4 
J^SS 

N STRUCTURE 

Figure 2. Dimensional Hiearchies and Groups. The simulation hierarchy (A) links simu­
lation time (step) through structure to simulation parameters. The structure hierarchy 
describes chemical structure starting from individual atoms. The simulation group (C) 
and structure group (D) dimensions allow simulations and structures to be placed in cu­
rated groups for analysis. 

X-Ray, NMR, Homology Model, or Engineered Rotomer. The structure level includes identi­

fying information such as the structure identifier (structid), structure, PDB code, name, and 

additional attributes that apply to an entire structure. 

Organization within a structure begins at the chain level of the hierarchy. A single PDB 

entry may contain multiple polymers, each are assigned a unique chain identifier. A polymer 

is composed of a sequence of residues. A residue is a logical grouping of atoms, usually cor­

responding to an amino acid, but it can also be used for non-polymers such small molecules, 

ions, and ligands. Non-polymers will be assigned the same chain identifier as the polymer with 

which they are associated. 

Residue attributes include a residue name and abbreviation, description and general 

properties. Also included are residue number, and insertion code (ICode). When combined 

with the PDB code and chain identifier, the residue number and insertion code provide a direct 

link back to the original PDB entry. Residue numbers are sequential integers and are applied 
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PDB 

Figure 3. Structure Dimension Links. The structure dimension links simulations to the 
parameter library, the Protein Databank, and also uses standard atom and residue names 
from the Chemical Component Dictionary. 

within a chain, but the sequence may include gaps (missing residues) or insertions (residues 

added with the same residue number). Gaps are not stored in the dimensional model. An inser­

tion code will be set for each residue added at the same residue number; the sequence is typically 

"A,B,C..."etc. 

The lowest level of the structure hierarchy is Atom. Atom attributes include a name, 

type, and a sequence number. Following the PDB convention, atoms are numbered sequentially 

within structures using positive integers. The atom number and structure identifier uniquely 

identify members and thus serve as the key of the dimension. 

The Simulation Dimension 

Molecular dynamics (MD) is a technique from theoretical physics to simulate the inter­

action and motion of a system of particles. The simulation dimension models starting parame­

ters, the set of molecules being simulated, and time. The simulation attribute hierarchy reflects 

this organization and includes levels for simulation, system, and step. 

The simulation level holds simulation starting parameters, including the set of parameters that 



8 

Table 1. Unique Simulation Attributes. These dimension attributes are the set of starting 
parameters that uniquely identify a simulation. Each combination of these values is as­
signed a single integer simulation identifier (simid), which is then used throughout the 
warehouse. Managing simulations based on these attributes allows for a clean separation 
of physical storage and simulation definition. 

Attribute Description 

structures 

minimized structures 

temp 

run 

pH 

density 

random seed 

time step 

initial box size 

c scale 

a scale 

cutoff range 

h3d sync 

simulation engine 

The set of structures included in the simulation system 

The set of minimized structures used as starting structures 

Simulation temperature (K) 

A locally assigned positive integer used to differentiate multiple exe­
cutions 
Qualitative definition of acidity/basicity of the simulation environment 
(high, medium, low) 

Solvent density (g/ml) 

Random number seed used for initial random assignment of velocities 

Conversion factor for calculating time in picoseconds from a step (ps), 
typical value is 0.002 ps 

Dimensions (x, y, z) of periodic box (A) 

Charge scalaing factor for electrostatic potential 

Scaling factor for 12/6 attractive and 12/6 repulsive terms of the 
Lennard Jones potential 
Maximum distance between two atoms to include electrostatic interac­
tions (A) 

Number of steps to reuse the non-bonded interaction pair list 

Simulation software used to run the simulation 

uniquely identify a simulation (Table 1). A simulation identifier and some annotation attributes 

are also part of the simulation level of the dimension. A simulation will contain one or more 

structures, and are referenced by structure instance in the system level of the hierarchy. 

The lowest level of the simulation dimension hierarchy is step. At the core of simulation engine 

is a potential function, which is an equation used to calculate the energy of a system based on 

the relative locations of participating particles. In all-atom protein simulations, the number of 

particles being tracked is large, and the classical equations of motion must be solved numeri-
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cally. This is accomplished by employing the assumption that for sufficiently small periods of 

time, positions for participating particles can be calculated based solely on their location relative 

to other particles. The implication is that the primary simulation output, coordinates, will be 

output at regular intervals referred to as steps or frames. A step, structure instance, and simu­

lation identifier form the key of the simulation dimension. 

The Structure and Simulation Group Dimensions 

The structure group dimension allows structures of any type to be placed into curated 

sets, which can be referenced easily in queries, used in aggregates, and annotated using detailed 

description attributes. A structure may participate in zero or more structure groups. The sim­

ulation group dimension performs a similar function—it allows simulations to be placed into 

curated sets, and similar to structure groups allows sets of simulations to be referenced easily 

in queries. 

Relational Design and Implementation 

A dimensional model must be mapped to tables in order to be implemented in a rela­

tional database. In addition to tables required for dimensional attributes, tables must be created 

to hold fact data and to manage identifiers. An initial design was described by Simms et al. 

(Simms, 2008), but it has changed significantly since the first implementation. Major changes 

include extensions to support multiple MD simulation packages, better integration with the 

PDB, structure groups, the 2009 Consensus Domain Dictionary (CDD) (Schaeffer, 2011), Mo­

lecular Mechanics Parameter markup Language (MMPL) (Simms, 2011), in lucem molecular 

mechanics v2009 (Beck, 2000-2011), spatial indexing (Toofanny, 2011), and standardizing on 

step to represent simulation time. The following sections discuss the relational design and data­

base platform-independent implementation. 
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Directory and Simulation Databases 

MD simulations are fundamentally very large sets of three-dimensional spatial coordi­

nates, ordered by time. Analyses are derived from coordinates by calculating various statistics, 

which can be associated with any level of the structural hierarchy. Simulations and analyses 

are facts in the dimensional model. The raw coordinates and analyses cannot be interpreted 

without being tightly integrated with structural information, and coordinates from two simula­

tions of the same structure are independent. Thus, a natural organization is to store each sim­

ulation and associated analyses in separate relational tables. To avoid having thousands of 

tables in a single database, simulations and analyses are grouped by project and structure into 

multiple simulation databases. A single database, called the Directory database, is used to house 

structure dimensions, manage identifiers, and record the physical location of simulation data­

bases. This model facilitates the distribution of simulation data across multiple servers. 

The schema of the Directory database is illustrated in Figure 4. It includes tables related 

to the structure, simulation, structure group, and simulation group dimensions; mechanism for 

managing structure identifiers, simulation identifiers; dimensions for analyses; and tables to 

support MMPL. Tables that are part of the dimensional model, provide identifier support, or 

used by front-end applications for navigating the model are named with "Master" as a prefix. 

Molecular Structure 

The structure and structure group dimensions are implemented using the set of tables 

shown in Figure 4 (C, D). The primary structure dimension tables are MasterStructure and 

MasterlD, which are the store of record for structure attributes. Two additional tables, Mas-

terProteinMap and MasterStructureMap, and stored procedures implement the allocation of 

new structures. The MasterJVfinStructure, MasterJVlinID, MasterJVlinStructureMap, and 

MasterMinlDMap tables mirror their counterparts for the management of minimized structure 

attributes; however, these are currently used only for structure allocation are not part of the di-
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Figure 4. Directory Schema Diagram. The Directory database contains a relational im­
plementation of the four primary dimensions: Simulation (A), Simulation Group (B), 
Structure (C) and Structure Group (D). 
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mensional model. Following the dimensional model, the MasterlD table is keyed on structid 

and atomnumber. Since the MasterStructure table does not contain atom attributes, it is keyed 

only on structid, and a foreign key constraint insures that all rows of MasterlD are associated 

with a structure. 

MasterStructure also manages a second key, called structure. This identifier was in­

troduced because although it is common practice to refer to simulated proteins by their PDB 

code (a four character identifier assigned by the Protein Databank), there are several issues with 

attempting to use these codes directly as identifiers. First, PDB structures are routinely modified 

in order to prepare them for simulation. This process can involve selecting a specific chain, 

adding hydrogens, excising residues, mutating residues, building in missing residues, and many 

other transformations. The result of any of these transformations is a new structure, which al­

though derived from a PDB structure, is a unique entity. A second issue involves the simulation 

of small molecule cofactors that are included in the PDB structure. It is common to simulate 

the protein by itself (apo) and with the cofactor present (holo). These are different structures 

from the standpoint of simulation. Lastly, there are many structures that do not have a PDB 

code. Some examples include synthetic proteins and homology models. The structure field 

addresses these shortcomings by combining a character prefix called a structure base (e.g., a 

PDB code) and numeric suffix. 

A stored procedure manages the creation of both the structure and structid identifiers. 

It performs a residue sequence structural comparison when determining whether or not to allo­

cate a new structure identifier. This comparison considers only at the supplied structure base 

and the residue sequence. If the structure base and residue sequence exactly match an existing 
Table 2. Structure Group Type. Structure groups are classified by a type value stored in the 
MasterStructureGroupType table. The current types are shown below and can be expanded by 
adding new rows to this table. 

ID Name Description 
1 simulation modification structure changes required for simulation (e.g. protenation). 

2 SNP mutation single nucleotide polymorphism 

3 holo/apo indicates structure was formed from holo structure 



13 

structure, the existing structure will be used. If there is any deviation, a new structure will be 

allocated. Minimized structures (MasterJVIinStructure, MasterMinID) are handled similarly, 

but are currently only used for simulation allocation, which is discussed in the next section. 

Structure groups allow for a simple two-level hierarchical organization of related struc­

tures. One structure serves as the parent, and one or more related structures as children. This 

concept was introduced to accommodate accurate counting and tracking of structures that are 

derived by modifying a base structure. There are currently three types of structure groups in 
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Figure 5. Simulation and Simulation Group Dimension Tables. Relationships for the sim­
ulation dimension and associated snowflake dimensions. 

MasterStructureGroupType, as shown in Table 2, and more can be defined as needed. 

The MasterStructureGroup table stores identifiers, names, and a description. The Mas-

terStructureStructureGroup table links a child structure to a parent structure. The optional 
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Table 3. Simulation Dimension Attributes and Relational Columns. The attrib­
utes of the simulation dimension are mapped to SQL Server data types and 
stored in the MasterJSimulation table. The fixed exact size type DECIMAL 
(9,5) (a 5 byte floating point value) is used for floating point quantities because 
these columns will be included in a unique index. Structures (and minimized 
structures) are mapped to a single integer identifier; other integer values are 
represented directly. 

Attribute Relational Column(s) SQL Datatype 

structures 

minimized structures 

temp 

run 

pH 

density 

random seed 

time step 

box dimensions 

c scale 

a scale 

cutoff range 

h3d sync 

simulation engine 

struct_alloc_grp_id 

minstructallocgrpid 

temp 

run 

pH 

density 

randomseed 

timestep 

boxx, box_y, boxz 

cscale 

ascale 

cutoffjange 

h3d_sync 

sim id type 

INT 

INT 

SMALLINT 

SMALLINT 

SMALLINT 

DECIMAL(9,5) 

INT 

DECIMAL(9,5) 

DECIMAL(9,5) 

DECIMAL(9,5) 

DECIMAL(9,5) 

DECIMAL(9,5) 

INT 

SMALLINT 

relationshiptag field is used to annotate a specific parent-child relationship, for example this 

field is used with single nucleotide polymorphisms (SNPs) to record the residue number and 

mutation. 

Simulation Parameters 

Simulation and simulation group dimensions attributes are stored in the set of tables il­

lustrated in Figure 5. Simulations are assigned unique integers based on the attributes listed in 

Table 1, which are mapped to columns as shown in Table 3. It is a requirement that the struc­

tures being simulated be previously allocated. Since a simulation may contain multiple struc­

tures (or even multiple copies of the same structure), the MasterStructureAllocationGroup 

table is used to assign a single integer id to sets of structures, structallocgrpid. Sets of min­

imized structures are also assigned a single integer id, minstructallocgrpid, and stored in 

the MasterMinStructureAllocationGroup table. An important consequence of this approach is 
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that the order structures are added to a simulation is not considered when determining if a sim­

ulation has been previously allocated. 

Once structure allocation group identifiers have been assigned, a stored procedure uses a map­

ping table, MasterSimulationMap, to generate a new simulation identifier (sim_id) or to find 

an existing id. Similar to the structure dimension tables, restricted data types and check con­

straints are employed to prevent invalid values from being entered manually or by software 

failures. Check constraints for secondary dimension attributes, such as pH, are defined on the 

associated table, and enforced via foreign key constraints. 

The simulation dimension hierarchy contains two more levels: system and step. The system 

level accounts for the structures included in the simulation, and step is a proxy for time. Mul­

tiple structures can be associated with a simulation, and more than one copy of a structure may 

be present. Each structure is assigned a structure instance identifier (structinst), which is 

scoped to that simulation. Because each structid, structinst, and step are stored in the fact 

table, there is no need to create an additional relational table with these values. 

The simulation group dimension enables simulations to be organized into groups. The dimen­

sion consists of the MasterSimulationGroup table and linking table, MasterSimulationSim-

ulationGroup, which implements a many-to-many relationship between the group definitions 

and simulations. Simulation groups are assigned an identifier (simgrpid) as well as a name 

(simgroupname), description, and a curation status (curated). The curated flag, when set, in­

dicates that the simulations associated with the group are final. Simulation group membership 

cannot be altered while the curated flag is set. 
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Facts 

Fact tables store continuous measurements and are linked to dimensions through key 

attributes. In a relational implementation, the key of the fact table is the set of dimension at­

tributes for a row. The warehouse currently supports 18 distinct fact types, which are listed in 

Table 4. Each fact type is linked to a level in the attribute hierarchy in one or more dimensions. 
Table 4. Supported and Planned Fact Types. Fact data are stored as tables named using 
a type abbreviation, an underscore ("_"), and a simulation identifier. Coordinate tra­
jectories are produced during simulation and stored in Coord tables (centered and 
aligned, suitable for viewing) and GCoord tables (untranslated). The remaining fact 
types are used to store analysis data derived from the coordinates. 

Abbreviation Description 

astrand 

Box 

Bins 

Congen 

Contact 

Coord 

Dihed 

DSSP 

FContact 

FContactSolv 

FDSASum 

Flex 

Forces 

ForcesSolv 

ForVel 

GCoord 

GCoordSolv 

NOE 

period 

PhiPsi 

Radgee 

RMSD 

RMSF 

SASA 

VCont 

Alpha Sheet Residue1 

Periodic Box Size2 

Hash 3D Spatial Index of Neighbors 

Conformational Geneology2 

Native Contacts By Time2 

Coordinate Trajectory2 

Dihedral Angles2 

Dictionary Secondary Structure Prediction2 

Full Heavy Atom Contact Distance By Time 

Full Heavy Atom Contact Distance by Time with Solvent 

Fine Detail Structure Analysis Summary By Time 

Flexibility (Per Atom) 

Instantaneous forces 

Instantaneous forces with solvent 

Per Atom Force and Velocity 

Global Coordinate Trajectory 

Global Coordinate Trajectory with Solvent 

Nuclear Overhauser Effect1 

Periodic Contacts' 

Phi Psi Angles2 

Radius of Gyration2 

Root Mean Square Distance from Starting Structure2 

Root Mean Square Fluctuation 

Solvent Accessible Surface Area2 

Verbose Contacts Summary 
'Reserved for future implmentation; 2Original 2007 release 



17 

When the linking attribute corresponds to primary key in a dimension table, a formal foreign-

key relationship is created and enforced via a constraint. In other cases, the relationship is im­

plied. As mentioned previously, simulations are distributed to multiple databases to avoid large 

numbers of tables in a single database. Because referential constraints only apply within a data­

base, dimensional data from the Directory database must be replicated to individual databases 

in order to create and enforce explicit foreign key constraints. However, since each database 
Table 5. Shared Identifiers. The data warehouse andthe ilmm simulation engine share semantics for these 
identifiers, allowing interoperability between the warehouse and simulations. In general, the warehouse is 
responsible for allocating identifiers. 

Identifier Type Description Valid Ranges Notes 

step Int32 

struct_inst Int32 

struct_id Int32 

atom_number Int32 

residueid Int32 

°0 is a reserved value. 

contains only a subset of the entire set of structures and simulations, only dimension data related 

to the subset are required. 

General Simulation Engine and PDB Integration 

Key goals for the Dynameomics data warehouse after 2007 were to achieve deep inte­

gration with the lab's in-house simulation package, ilmm v2009; the Protein Databank (PDB); 

and to support simulations created by other simulation packages. Achieving tight ilmm inte­

gration required that there be a fundamental alignment of data types and recognition of respon­

sibilities for managing data between ilmm and the warehouse. This alignment consists of two 

parts, first there are shared identifiers which are to be supported natively by ilmm and the ware­

house; second is an accepted definition of a set of attributes, other than file system location, 

that uniquely identifies a simulation. The shared identifiers are listed in Table 5. 

Simulation step (frame) [0, +2bilhon) 

Structure Instance [0, +2billion)a ilmm Molecule Number + I 

0 i ^ . , ,.,- r„ ,„, .„. ,„ Stored in system mmpl.xml after alloca-Structure Identifier [0, +2bilhon)a ,. - v 

tion 

Atom Number [0, +2billion)a Defined by MMPL 

_ ., , . , . . - r„ „, •„• ,„ Proxy for PDB residue number, chain 
Residue Identifier [0, +2bilhon)a , . , 

and icode 
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PDB integration was determined to be a critical requirement for all simulations using PDB 

based structures. Earlier versions of //mm systematically pruned PDB residue number infor­

mation out of structure data, replacing it with more computationally convenient zero based 

identifier, which the warehouse would store as well. Because PDB structures can contain miss­

ing residues (gaps), negative residue numbers, and can even contain duplicate residue numbers 

(which are differentiated by insertion codes), both the warehouse and ilmm were modified to 

preserve and support the original PDB residue numbering. 

Supporting other simulation packages involved identifying the key set of starting pa­

rameters and then storing these values for each loaded simulation. The canonical list of simu­

lation attributes was shown earlier in Table 1 and accommodate both ilmm and ENCAD (Levitt, 

1983)(Levitt, 1995)[11] style simulation engines. Supporting other engines involves defining 

a simulation engine and mapping additional attributes unique to that engine into the conditions 

text field. 

SQL Server Implementation 

SQL Server is a relational database platform from Microsoft (Microsoft Corporation, 

2007). The latest versions include many features defined in the SQL99 (International Organi­

zation for Standardization, 2001) specification in addition to proprietary features. This database 

platform was chosen based on prior experience and support from Microsoft Research. In order 

to understand the implementation approach of the data warehouse, it is important to know about 

the physical data model of SQL Server and to consider the configuration of servers. In this 

section the decisions made to produce an optimal SQL Server implementation are detailed; 

however, many of the choices can be adapted to any vendor's implementation. 

SQL Server Architecture 

SQL Server is available in several editions that vary widely in cost and features. This 
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project uses SQL Server 2008 Enterprise Edition R2 x64 (Microsoft Corporation, 2007) in­

stalled on Windows 2008 Server R2 Enterprise Edition x64; the database engine, critical data­

base services, and the Windows Server operating system are all native 64 bit binaries running 

in a 64 bit environment. The enterprise edition of Windows 2008 x64 was chosen as the base 

operating system primarily because it can support a maximum of 2TB of RAM (the standard 

edition is limited to 32GB of RAM). SQL 2008 Enterprise edition R2 was chosen for its support 

of partitioning, data compression, and large memory support (2TB maximum). The project 

currently does not utilize failover clustering. SQL Server supports a concept of instances, which 

are independent environments that contain databases. Currently, a single instance (referred to 

as the default instance) is configured on each server in the warehouse. 

Databases 

The fundamental unit of organization within an instance is the database. Databases consist of 

sets of data and transaction log files, and each type is managed differently. Multiple data files 

are used to manage space and to distribute I/O activity to multiple disks and/or disk controllers. 

In contrast, only a single log file is active at a time and thus multiple files are used only to man­

age growth. By default, when a database is created it will consist of a single data file (MDF) 

and a single log data file (LDF). Storage for tables is allocated inside both the MDF and LDF 

during loading, and moves entirely to the MDF file once transactions are committed and the 

log file is truncated. Data files contain data structures called pages, which are 8KB in size and 

are read and written to disk in groups of 8 called extents (64KB). LDF files contain transactional 

log information, effectively recording changes to pages in the MDF. 

Tables and Indexes 

Within a database, the primary objects are tables and indexes and the data for each are 
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stored in pages. Tables are classified into two types based on storage—heap mode (no clustered 

index) and index mode (clustered index present). Heap mode tables are unordered collections 

of pages; Index tables contain pages sequenced in the order of the clustered index. Indexes on 

a table, including clustered indexes, are implemented as Balanced Trees (BTrees) for efficient 

searching. In the non-clustered case, leaf nodes contain pointers to the data pages for the table. 

For clustered indexes the leaf nodes of the index are the data pages for that table, thus tables 

can have only one clustered index. 

The lowest level of data organization in SQL Server is the row, which contains the in­

dividual data items for each column of a table. Rows are stored in pages, sequentially. The 

number of rows that can be stored in a page depends on the data types chosen for the columns. 

However, a fundamental rule is that rows cannot span page boundaries, which constrains the 

total size of a row to 8060 bytes. There are some exceptions for specific data types, variable 

length text fields will be moved automatically to special overflow data pages if they would 

cause a row to exceed the limit. Large object types store only a pointer in the data row, and the 

actual column content is stored in a page type reserved for binary large object (BLOB) type 

data. Additional details on how tables are mapped to pages can be found in SQL Server Books 

Online (Microsoft Corporation, 2010) and Fritchey and Dam (Fritchey, 2009). 

Performance Optimization 

Fundamentally, all performance tuning of a SQL database comes down to minimizing 

I/O operations. When a query is executed on a heap mode table, the data engine reads all the 

extents associated with that table, literally traversing every row looking for data to satisfy the 

query in a costly operation known as a table scan. When a table with indexes is queried, the 

query optimizer will attempt to use the indexes to limit reads to fewest extents as possible to 

satisfy the query. In contrast, the fastest write (insert) operations occur on heap-mode tables 

because the server can add pages without regard for order. This makes indexes highly desirable 
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Table 6. Common SQL Server Data Types. SQL Server supports a variety of data types. For numeric di­
mensional columns, the smallest fixed size exact numeric types that can accomodate the data are preferred. 
Fixed characters can be used but it usually preferable to code categorical string values to fixed numerics. 

Type 
Exact Numerics 

Approximate Numeric 

Strings 

Binary 
Strings 

Binary 

Domain 
Integer 

Real 

Real 

Characters 

Binary 
Characters 

Binary 

Name 
B1GINT 
INT 
SMALLINT 
TINYINT 
DECIMAL 
MONEY 
SMALLMONEY 
FLOAT 
REAL 
CHAR 
NCHAR 
BINARY 
VARCHAR2 

NVARCHAR2 

VARBINARY2 

Min Size1 

8 
4 
2 
1 
5 
8 
4 
4 
4 
1 
2 
1 
1 
2 
1 

Max Size1 

8 
4 
2 
1 
17 
8 
4 
8 
4 
8000 
8000 
8000 
8000 
8000 
8000 

'Size in bytes 2Supports large object extension MAX, resulting in off-page storage 

for read operations but a severe burden on write operations. In a data warehouse, data are pri­

marily read-only and thus indexes are used extensively to limit I/O operations for queries. In 

this project, fact tables are created as heap-mode tables, loaded using fast bulk load primitives, 

and then indexed afterwards. A SQL Server feature, used for coordinate tables only, builds an 

empty table with a clustered primary key and the loads the data in clustered key order. Re­

maining indexes and constraints are added after loading. 

Design Considerations for Fact Tables 

Fact tables will contain columns for measures and for a set of dimensional keys that 

link the measures to the dimensional hierarchy. The set of dimensional keys columns are a can­

didate key of the table, meaning they uniquely identify a row and are not null-able. Beyond 

meeting the requirements of the dimensional model, there are three primary considerations in 

designing fact tables: total row size, indexes, and check constraints. Although these consider­

ations apply to any relational design, they are especially important for fact tables as they house 

the majority of data in a warehouse. 
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Row Size 

SQL Server supports a variety of data types for columns, which are classified into three 

major categories: native types, native large object types, and Common Language Runtime 

(CLR) user defined types. A subset of native data types used for fact and dimensional quantities 

as are listed in Table 6. The implementation of these data types is highly optimized for search 

and storage. Native types are subdivided into five subgroups: fixed length numeric, fixed 

length character, fixed length binary, variable length character, and variable length binary. Nu­

meric data types include approximate floating point types based on the IEEE 754 standard 

(IEEE Computer Society Standards Committee, 1985), integers, and a set of exact numeric 

types. Native large object types are used specifically to work with binary or text data that are 

too large to be stored in an individual data page. These were originally vendor extensions, and 

have been largely subsumed by variable length native types. SQL Server also supports common 

language runtime (CLR) user-defined data types, used for object-relational applications. The 

use of various data types in fact tables are discussed in the following sections. 

It is always preferable to implement fact tables using the smallest native fixed size data 

types that will accommodate the data. Variable length fields cause row sizes to vary within a 

page, and if the actual field length plus the size of other columns exceeds 8060 bytes, data are 

moved into one or more overflow pages. Variable length columns require additional bookkeep­

ing overhead to track field length. Overflow pages and bookkeeping overhead reduce the num­

ber of rows that can be stored per page, increasing overall table size and decreasing efficiency. 

In contrast, the size of a row containing only fixed length data types is determined by equation 

(2.1). Although there is some overhead for tracking column null-ability, the primary row size 

contribution is the fundamental size of the data type (see Table 6). The net results of using only 

4 + 
(columns + 7) 

2 + 
8 j (=1 

columns 

+ y_, datatypesize(i) (2.1) 
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fixed data types are a consistent and minimal row size. 

Index Design 

Indexes are used to limit I/O operations during queries, and to enforce primary key and 

unique constraints. Indexes in SQL Server are implemented as balanced trees (BTrees) and are 

stored in page structures similar to data. Index rows contain the nodes of the BTree. Each 

node, starting at the root, contains lowest value of and a pointer to each subtree. The leaf nodes 

of a clustered index are the data pages of the table, the leaf nodes of a non-clustered index con­

tain the primary key columns if the table has a clustered primary key or a row identifier pointer 

otherwise. This means that indexes benefit from using narrow fixed length data types, to enable 

the greatest number of sub-trees per node. The rows of an index are ordered by the contents of 

the index's columns. Indexes can be built on any column data types with the exception of the 

large object types; however, there are special issues for some of the remaining column types. 

For character and native variable length columns, the index can only include data the data that 

fits in the standard index page—characters outside this range will not be included. This is a 

second reason not use variable length columns in a fact table. Approximate floating point data 

types should be avoided in index columns—these types use an efficient but non-unique bit rep­

resentation of values (meaning that more than one real number is mapped to the same bit pat­

tern). This makes indexes built on approximate types unpredictable. CLR data types can be 

included in indexes, but are treated as binary values. Four final special cases are the native 

fixed size integer types, TiNYTNT, SMALLINT, INT and BIGINT. These values can be directly 

loaded, tested and manipulated in integer registers found on x64 architecture microprocessors, 

and are the most frequently used key types in star schemas. 

In order for an index to be used in the processing of a query, the query must contain a 

sargable predicate. The term sargable predicate, which is a contraction of "search argument 

able," refers to an expression in the where clause of a query containing tests of equality (=), 
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less than (<), greater than (>), less than or equal (<=), greater than or equal (>=), BETWEEN, 

or LIKE using a prefix search (Fritchey, 2009). This is the direct result of the underlying data 

type's or types' support for comparison operations based on mathematical inequality (less than, 

greater than), or equality (equal to). All integer and exact numeric types support less than, 

greater than, or equal to operations and thus when indexed can be searched with sargable pred­

icates. This makes these types useful for fact tables. Character types (fixed and variable) can 

be as well, but row and index size considerations discussed earlier make these poor choices for 

fact columns. An interesting corner case is the fixed size uniqueidentifer (uid, also called a 

globally unique identifier or guid). This data type supports equality and inequality comparisons, 

but does not support any mathematical operations. In this sense, a sargable predicate can be 

used with a uid. However, since uids have no intuitive data ordering, they are really only useful 

for decentralizing identity assignment. Uids cannot be used as a partitioning scheme, and their 

16 byte size adds significant row size overhead both in a data page and any index pages. 

Check Constraints 

Check constraints are used to block incorrect data from either being inserted into a table 

or existing data being incorrectly modified. Check constraints are declared at the table level in 

the form of a predicate expression that can reference columns and constants. The expression 

is evaluated as data are modified or added, and if the new or modified data does not satisfy the 

check constraint expression, an error is thrown and the row is rejected. In SQL server, check 

constraints are also used by the query optimizer in selecting rows from views, unions, and in­

dividual tables. For an individual table with a column simid, and a constraint limiting the 

value of this column to 123, a query against that table asking for simid 234 will immediately 

return with no results. When a view or a set of tables combined using UNION are queried, and 

the query predicate references a column with a constraint, and the data requested is outside the 

range of the constraint for some tables, the query optimizer will drop those tables from consid-
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eration. 

Coordinate Fact Table Design 

For MD simulations, coordinates make up most of the data being stored. Even when 

simulations are stored as individual tables, they may contain as many as a billion rows of in­

formation. This makes the choice of data types and design of indexes extremely important as 

it will determine how efficiently data and index rows can be mapped to pages, which in turn 

dictates table size, and ultimately query performance. For a coordinate fact table, there are 

nine columns, four columns for the three-dimensional atomic coordinate and bin index, and 5 

dimensional columns that relate the coordinate back to a structure. The range of each coordx, 

coordy, and coordz value is limited by the box size of a simulation, and are well within a 

range of-500.0 A and 500.0 A. Because coordinates do not participate in an index, the 4 byte 

REAL approximate type is used for these columns. The bin column is used to store a non-neg­

ative integer quantity, which is also limited by box size and will not exceed 100,000, allowing 

a 4 byte signed integer (INT) column to be used. At the current resolution of 0.002 ps per step, 

an INT can accommodate a simulation of up to 4 ĵ s in length. The remaining dimensional 

columns of structid, structinst, and atomnumber are all implemented as 4 byte INTs. Recall 

that after overhead, 8060 bytes are available for row storage. All nine coordinate table columns 

are 4 byte fields, 3 are type REAL and the remaining are INT. The data storage per row con­

sumed by this structure is 36 bytes, three bytes of null tracking overhead, and a 4 byte row 

header, which means a single data page can accommodate 187 coordinate rows. 

It is critical to allow coordinate rows to be efficiently located. A candidate key in a re­

lational table includes a set of columns that uniquely identify a row and which cannot take on 

null values. In a dimensional model, the set of dimension foreign keys constitute a candidate 

key. One candidate key is typically chosen as the primary key, which usually only includes 

only the minimum set of columns that uniquely identify a row. Although column order is not 
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a consideration for key purposes, the primary key is most often implemented in tandem with a 

clustered index in which column order is essential. Looking again at the coordinate fact table, 

a minimal data column footprint has been determined by choosing 4 byte data types for columns. 

The columns specified and the order they appear in the key should follow the most common 

pattern of usage. For coordinates this pattern is to locate frames and then atoms within frames. 

However, there are two opportunities for optimization. First, since simulations are placed in 

separate tables, the simid should not be included in the clustered index. Structure identifiers 

(structid) should also not be included, as this column is always determined by structinst. The 

second opportunity is to not even include structinst, when there is only one structure in a sim­

ulation. These two changes reduce the index row size by 12 bytes for single structure simula­

tions, a significant savings over simply building an index on all dimension columns. The 

minimal clustered primary key also benefits to two additional non-clustered indexes for spatial 

index queries and an index for fast coordinate retrieval by atomnumber. Non-clustered index 

leaf nodes store the primary key columns of the target data table, so reducing the size of a pri­

mary key will also reduce the size of non-clustered indexes. 

Coordinate fact tables use CHECK constraints to both protect against bad data and to 

optimize queries where fact tables are grouped in views joined using UNION. The simid col­

umn is always constrained to single value and is not included in the clustered primary key. If 

the simulation contains only one structure, the structinst column is limited to a value of 1 and 

the structid column is limited to one value. If the simulation contains more than one structure, 

structid is constrained to a set of values, and structinst is constrained to a range of values. 

Analysis Fact Table Design 

Analysis fact tables contain data that are derived from coordinates, but can have different 

dimensionality. Coordinates are linked to the lowest level of the simulation and structure hier­

archies, and thus establish the primary dimension keys for simulation (simid, step) and struc-
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ture (structid, atom_number). Analyses that contain per atom and per step quantities, such as 

instantaneous forces, use the same dimension keys as coordinates. Other physical properties 

are associated with different levels of the simulation and structure hierarchies through many-

to-one relationships. For example, Ca root-mean-squared-deviation root from starting structure 

(RMSD) is linked to structure at the residue level, and to simulation at the step level. Relation­

ships between all analysis fact tables and dimensions are summarized in Table 7. Like coordi­

nates, analysis tables never include the simid column in the primary key and only include 

structinst for multi-structure simulations. Check constraints are also used to ensure that the 

simid column is a constant, structid is either a constant or a limited range of values, and other 

columns limited as appropriate. 

Some analyses include multiple distinct quantities that are associated with the same 

structure and step, or that contain categorical names. These are modeled through the use of an 

additional dimension, which is unique to the analysis. One example is the dihedral analysis, 

which contains a variable number of rows that are associated with a structure at the residue 

level and a simulation at the step level. Each row contains a dihedral angle, which is a meas­

urement rotation about specific named bond inside the residue or along the main chain at the 

Ca where the residue is attached. The number of rows depends on the number of carbon-carbon 

bonds present in the residue, as each angle is associated with a specific named bond. Dihedral 

angle names and abbreviations are broken out to a small dimension table called DihedralAngle 

(Table 8), allowing the Dihedral fact table to use a single byte identifier (dhid) as a link to the 

angle name. The Dictionary of Secondary Structure Prediction (DSSP) analysis follows a sim­

ilar partem, using the dimension table SecondaryStructure (Table 8) to define secondary struc­

ture types under a single byte identifier (ssid). The PhiPsi analysis includes only one set of 

values per residue, but includes an assignment to secondary structure state categories shown in 

Table 8. Here a small dimension table is used to avoid placing character data in the PhiPsi fact 

tables, saving space. 



Table 7. Dimensional Key Column Usage. A consistent set of column names are used throughout the warehouse to refer to dimension table keys. 
Where possible, these relationships are enforced explicitly through the use of primary key/foreign key constraints. 

Columns 
Fact Table Type step structinst structid residueid atomnumber d h i d ss_id stid hash3d_index hash3d_index_neighbor 

Box 

Congen 

Contact 

FDSASum 

Radgee 

RMSD 

Vcont 

Flex 

Dihed 

DSSP 

PhiPsi 

SASA 

Coord 

Forces 

ForVel 

S2 

RMSF 

Bins 

PK 

PK 

PK 

PK 

PK 

PK 

PK 

PK 

PK 

PK 

PK 

PK 

PK 

PK 

PK 

PK 

0 

0 

0 

0 

0 

0 

0 

0 

0 

O 

0 

0 

0 

0 

0 

0 

FK1 

FK1 

FK' 

FK1 

FK1 

FK1 

FK1 

FK1 

FK1 

FK1 

FK' 

FK1'2 

FK1'2 

FK'-2 

FK1-2 

FK' 

PK 

PK 

PK 

PK 

PK 

PK 

PK,FK2 

PK,FK2 

PK,FK2 

PK,FK2 

FK3 

PK,FK4 oo 

PK,FK5 

PK PK 

PK = Primary Key Column, O = Optional Primary Key Column, FK = Primary Key Column referencing dimensional table: 1. Structure, table 2. ID table. 3. DihedralAngle 
table. 4. SecondaryStructure table. 5. State table. 5.State table. 
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Table 8. Secondary Dimensions for dihedral angles, secondary structure, and 0/*P state. The dihedral analy­
sis calculates multiple bond angle values per residue at each time step. Each value is associated with a spe­
cific named bond, which are assigned to an id defined in this dimension table. This identifier is then used 
in the fact table in place of an explicit string constant. Secondary Structure is produced by the DSSP analysis. 
It produces multiple values per residue and step, and similar to dihedral analysis, an id is defined for each 
character and structure definition. The <D/T analysis produces only one value per residue, the calculation 
also includes a structure state prediction. The state labels are assigned ids defined in this table and then 
used in the fact table in place of string labels. These dimensions can be extended and additional dimensions 
added at any time to support new analysis. 

Dihedral Angl 

id 

1 

2 

3 
4 

5 

6 

7 

8 

9 
10 
11 

12 

13 
14 

15 
16 

17 

name 

chil 

chi2 

chi21 

chi22 

chi3 

chi31 

chi32 

chi4 

chi5 

chi6 

chi61 

chi62 

cis 

omega 

phi 

psi 

theta 

es 

angle 

XI 

X2 

X21 

X22 

X3 

X31 

X32 

X4 

X5 

X6 

X61 

X62 

cis 

Q 

4> 

«P 

0 

id 

1 

2 

3 
4 

5 

6 
7 

8 
9 

10 

11 
12 

13 
14 

character 

a 

A 

b 

B 

c 

C 

r 

R 

s 

S 

G 

H 
I 

-

Secondary Structure 

description 

alpha strand, parallel 

alpha strand, anti-parallel 

beta strand, parallel 

beta strand, anti-parallel 

mixed alpha/beta strand, parallel 

mixed alpha/beta strand, anti-parallel 

alpha bridge, parallel 

alpha bridge, anti-parallel 

beta bridge, parallel 

beta bridge, anti-parallel 

3-10 helix (3 residues per turn) 

alpha helix (4 residues per turn) 

pi helix (5 residues per turn) 

loop, or no assigned structure 

id 

1 

2 

3 

4 

O/f 

state 

beta 

other 

extended 

helix 

New fact tables can be added to the warehouse as new analyses are developed. The 

process requires the selection of a short name, which will become the prefix of the tables cre­

ated; the determination of dimensions, and the selection column data types. The short name 

must follow the naming conventions listed in Table 9 to avoid conflicts and to maintain consis­

tency across the warehouse. This name is combined with a single underscore character ("_") 

and simulation identifier to form the final table name. All tables associated with a simulation 

are tracked through property views available in individual simulation databases and in aggregate 

in the Directory database MasterPropertyv view. 
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Table 9. Naming rules for coordinate and analysis tables. Table names conform to a simple naming standard 
to avoid conflicts and to maintain a consistent interface for users. 
_ _ _ 

~ Length: 7 Character max on the main name, note that a clarifying suffix may be added such as "Sum" or 
"PerAtom" does not count towards the total. 

2 Characters: No spaces, characters from this set [a-zA-Zl-9_] only. 

3 Capitalization: Words capped and abbreviations ALL CAPS. 

4 Names and definitions must be assigned in both the Simulation and Directory databases 

Conclusions and Future Directions 

We have presented a detailed model for storing and analyzing data from MD simulations 

and its implementation in a relational database. The dimensional approach of organizing data 

into continuous facts and discreet dimensions is well suited to MD simulation data and could 

be used in many scientific applications. The implementation of this model in a relational data­

base required careful design to overcome challenges inherent in a 100 TB data set. A directory 

database centralizes management of identifiers and data location, facilitating the distribution 

of data to multiple databases and servers. Within databases tables are highly optimized by care­

fully choosing column data types, building efficient clustered indexes, and using check con­

straints for query efficiency and data quality. 

Initial work on the data model described here began in 2005 and was first released in 

2007. Since the beginning, both the model and relational implementation have been in contin­

uous development, adding new analyses, extending the relational schema, improving perform­

ance, adding more (and larger) servers, upgrading through two operating system releases and 

three SQL Server releases. Overall capacity has increased by nearly an order of magnitude to 

150TB since the first two servers were purchased, and trajectories and analyses for over 11,000 

simulations are available in the warehouse. 
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Chapter 3: Augmenting the Relational Model using Online Analytical Pro­
cessing 

A relational database provides great flexibility for describing data and building interac­

tive applications. With nearly 40 years of development and improvement, this technology 

can easily manage extremely large volumes of data as well as service multiple users simulta­

neously. Unfortunately, the fundamental unit of storage, the two dimensional table, is not ideal 

for efficiently storing and analyzing multidimensional data. On-line Analytical Processing was 

proposed early on as an alternative to die relational model, specifically to address this and other 

shortcomings. The market need to store and analyze an increasing volume of financial infor­

mation spawned an entire software industry segment focused on development of analysis centric 

tools. Despite wide spread adoption for commercial applications, using these tools to manage 

and analyze scientific data is far less common. In this chapter I demonstrate how this model 

can be applied to protein simulation data, describe an implementation using a commercial OLAP 

product, and present results of a storage and query performance analysis. 

Introduction 

Relational databases were first described in 1970 by Codd (Codd, 1970) and commer­

cial implementations quickly established dominance in a rapidly growing and very fluid data­

base market. Relational databases provide a rich and diverse ecosystem of general purpose 

features. However, much of the relational database's success can be attributed to just three: 

SQL, transactions, and constraints. SQL is described as "intergalactic dataspeak," (Stonebraker, 

1990) and is the most common language used for expressing queries today. Although vendors 

implement their own dialects and special features, an analyst who knows SQL can quickly be 

productive accessing and manipulating data if the underlying database server supports it. Trans­

actions enable multiple agents to safely access and modify data, eliminating the potential for 

data corruption and inconsistency when multiple writers and readers attempt to access the same 

data. In addition to supporting concurrency, transactions also protect hardware failures by in-
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suring that changes are either written in their entirety, or rolled back in their entirety in the event 

of a failure. Finally, constraints insure data integrity by expressing business logic as declarative 

statements that are enforced at the server level, relieving client programs from having to enforce 

the same checks. 

Ironically, two of the three features that make relational databases such a powerful so­

lution are actually a detriment for data warehousing. As data in a warehouse are primarily read 

only (and typically modified only during bulk import from primary sources), the overhead of 

transaction support is a significant performance burden. Constraints, specifically foreign key 

constraints, introduce significant storage overhead when every fact row contains several 

columns referencing dimensional tables. Codd recognized the requirements of a database to 

support analysis are fundamentally different than the requirements for a transactional database 

and coined the term Online Analysis Processing (OLAP) in 1993 (Codd, 1993). This report 

outlines a set of principles that should be supported by an analysis centric database. Unlike 

Codd's papers describing the relational model, this document was written under commission 

for a software company and not published in a peer-reviewed journal. More importantly, it did 

not contain a mathematical description of the concepts, leaving this as an implementation detail 

for future developers. Nonetheless, the report established the importance of OLAP databases 

in general and specifically called for the support of sparse multi-dimensional matrices as the 

fundamental unit of storage. The report also emphasized the complementary approach of OLAP 

to other database technologies and highlighted the concept that OLAP could mediate between 

other data sources to present a consistent model for analysis. 

Multi-dimensional matrices are the fundamental unit of analysis in OLAP systems. Al­

though vendor products vary widely in their fundamental storage engine implementation, they 

all are designed to efficiently locate fact data by filtering on dimensions (slicing), to pre-calcu-

late aggregate functions along dimensional hierarchies (aggregation), and to efficiently accom­

modate missing data (sparsity). Multi-dimensional matrices are referred to as hypercubes, and 
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the term hypercube is typically shortened to just "cube." OLAP systems typically do not support 

transactions, data modification after initial loading, nor constraint frameworks to protect against 

malformed data. Although some error checking is available during import, OLAP systems tend 

to assume that data being loaded has already been checked for errors (scrubbed). Thus OLAP 

systems are not used as the primary data store or "store-of-record" and depend on other systems, 

typically relational databases, to perform this function. Extraction, transformation, and loading 

(ETL) is the process of regularly importing data from existing data sources into the data ware­

house. An additional step, called "processing" is often called after ETL to compile imported 

data into one or more cubes. 

SQL Server Analysis Services 

As described in Simms and Daggett (Simms, 2011), multidimensional data can imple­

mented in a relational database by translating the dimensional model into a set of fact and di­

mension tables. Fact tables use columns to represent fact data (also known as measures) and 

additional columns that link each fact row back to one or more dimension tables. The links be­

tween facts and dimensions are implemented explicitly as primary keys in dimension tables 

and foreign key constraints in fact tables. Optimal performance on specific hardware is 

achieved by designing tables, indexes, and constraints. In an OLAP system, the translation of 

the multidimensional model to fundamental storage varies widely. For example, Oracle, Mi­

crosoft, and many others provide customized versions of their relational database software pre-

installed and tuned for specific server hardware configurations and are sold together as an 

information appliance. Other vendors, such as Neteeza, provide a relational database engine 

stripped of transactional functions and that is tightly integrated with massively parallel propri­

etary hardware. For this project I focused on Microsoft SQL Server Analysis Services 2008 

R2 (SSAS)(Microsoft Corporation, 2007), a non-relational OLAP product that is bundled with 

SQL Server 2008 R2. 
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SQL Server Analysis Services (SSAS) uses a proprietary multi-dimensional storage en­

gine that runs on general purpose hardware, and there is no concept of tables at all. The top 

level of organization in SSAS is a database, which is illustrated in Figure 6. Data sources are 

typically relational databases, but can also include files and other database formats. A data 

source view is used to capture the set tables (files) from the data sources and to define their in­

terrelationships. These relationships, taken together, are mapped to dimensions and eventually 

to cubes. Cubes can then be queried using the Multi-dimensional Expressions (MDX) query 

language (Microsoft Corporation, 1997). Each of these components is described in the follow­

ing sections. Additional details on SSAS and MDX can be found in Gorbach et al. (Gorbach, 

2009), Webb et al. (Webb, 2009), and Whitehorn et al. (Whitehorn, 2006) 

Dimension 1 Dimension 2 Dimension ... Dimension n 

y \. ' r^^'V/ 

Data Source View n 

J V .J 

fc * i£^^Si^E#^, s 

Figure 6. High level view of an Analysis Services Database. Analysis Services databases hold data sources, 
data source views, dimensions, and cube structures. 
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Data Sources 

A data source is a description of the resource containing data to be imported. Data 

sources allow SSAS databases to include data from remote servers, and SSAS databases can 

contain multiple data sources. Each data source has a name and a connection string that de­

scribes the location of the data, drivers required, and authentication credentials. Simple data 

sources, such as files, only require the location of the files in an accessible file system. Other 

database sources, such as SQL Server instances, require a server name and a database name. 

Data Source Views 

Data Source Views (DSVs) are an abstraction layer between data sources and the Analy­

sis Services database. The DSV maps the data available in each data source to a set of data ta­

bles and relationships. The DSV can use existing tables from the data source, extend existing 

tables with computed columns, or create virtual tables constructed from SQL queries. DSV re­

lationships can be established between any two data table objects, and these relationships are 

not restricted to primary key columns and foreign key columns. This extension makes it pos­

sible to define explicit partial foreign-key relationships between arbitrary columns. The im­

portance of virtual tables and partial foreign-key relationships will be shown later. 

Dimensions 

Dimensions are the fundamental data structures used to organize and locate fact data. 

They are represented explicitly in SSAS as first class objects in contrast to a relational database, 

where a dimension is only implied for a given table by the existence of foreign keys. Dimen­

sions contain two types of information: attributes and attribute relationships. Attributes are 

discreet values that are associated with fact data and are similar to the columns in a relational 

dimension table. These values are called members, and members contain Attributes are 

bound to columns in DSV data table objects and to the relationships defined on those objects. 

In addition, attributes can be related to each other using attribute relationships. One attribute 



36 

will be used as the key of the dimension, meaning that component columns from the original 

data source can uniquely identify any other attribute in the dimension. The key attribute is also 

called the granularity attribute, as it is the fundamental unit of aggregation in cubes. The key 

attribute and attribute relationships allow attributes to be organized into hierarchies that can 

later be used in queries. An important aspect of dimension attributes and associated hierarchies 

is that these data are ordered. This is a fundamental difference between SSAS and relational 

databases and is a key to understanding MDX. 

Cubes 

A cube is an object that contains dimensions, measure groups, and fact data. Cubes 

are created within SSAS databases, and a database can contain multiple cubes. Cube dimen­

sions are references to any of the dimensions defined in the database, and can also include mul­

tiple references (uniquely named) to the same database dimension. Fact data are stored in a 

data structures called partitions, each measure group can have one or more partitions. Cubes 

are typically used to facilitate analysis of specific sets of fact data and are largely self-contained, 

although there are facilities for linking to other cubes. Cubes are queried using the MDX query 

language, described in the next section. 

Cubes contain cells, one cell for the Cartesian product of all cube dimensions key at­

tributes. Inside each cell are the measure data taken from each measure group partition. Cubes 

are in effect, very large multi-dimensional arrays. However, instead of allocating space for 

every possible value from all dimensions, SSAS implements an extremely efficient multidi­

mensional storage engine that reduces dimension data to bit vector indexes. In addition, the 

engine supports fact data sparsity, meaning that space is allocated only when fact data are ac­

tually present for a given cell. This loading and compaction of data, referred to as processing, 

makes cube data structures effectively read only, as fact and dimension data are compiled down 

to minimal representations. Once a cube's dimension structure is processed, the only ways to 
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modify fact data are to remove partitions or add new partitions. Dimension data can be added 

but dimension data that references existing fact data cannot be removed. 

The set of dimensions form an addressing mechanism to find any given cell in the cube. 

This makes dimensions similar to numbers on a number line, but tick marks are not limited to 

integers. A unique address in a dimension is called a member, and as mentioned previously, at­

tributes and hence members can be organized into hierarchies. A set of members from all cube 

dimensions is called a tuple, and a tuple uniquely identifies a cell in the cube. Tuples can be 

grouped into sets called tuple sets or simply sets. When a tuple does not contain a member 

from one or more dimensions, the result is a set of cells called a slice. 

A measure group is created from a data table in the DSV, and contains a set of measures, 

i.e. facts, which are stored in cells at the intersection of dimensions. The underlying DSV data 

table defines the data type of each measure (fact) and dimensional column. A measure is a col­

umn present in the DSV data table and explicitly linked to at least one dimension through the 

dimensional columns present in the fact table. The measure is also assigned an aggregation 

function, which is applied when a measure is projected from multiple source cells into a single 

result cell during an MDX query. When a cube is processed, one or more partitions matching 

the shape of the DSV data table are loaded into the measure group populating it with data. It is 

important to note that fact data are only loaded into a cell when a dimensional tuple exists defin­

ing that cell, otherwise the data are skipped. 

MDX 

MDX is a query language designed specifically for multi-dimensional data, and is avail­

able on several vendors' OLAP platforms. At first glance it appears similar to SQL because 

the main statement of the language, SELECT, uses some of the same keywords; however, the 

languages are completely different. The purpose of MDX is to operate on and to produce mul­

tidimensional result sets, i.e. sub-cubes, by selecting a set of data from a cube, applying calcu-
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lations, and returning a result projected to multiple axes. 

The primary statement used to retrieve data is the SELECT statement, an example is 

shown in Figure 7. MDX employs a two-pass query process. The first step, slicing, selects the 

set of data to be analyzed and produces a logical sub-cube that is used for the rest of the query. 

Slicing is controlled by the WHERE clause of the query, using a tuple set expression. The 

second pass, dicing, projects the desired results onto one or more axes. After both passes, the 

result cube is returned to the caller. MDX makes no distinction between result axes, making it 

possible to build a variety of result sets. Among the most useful of these options are matrices, 

which would involve complex UNION and/or PIVOT statements to achieve in SQL. It should 

be noted that the most common tool for viewing MDX results, SQL Server Management Studio, 

can only display two dimensional results. 

WITH 
SET 

SET 

mystatoms AS SUBSET(FILTER( 
DESCENDANTS! [Structure].[2adr- 3] 

, [Structure].[Structure Hierarchy]. 
, [Measures].[distance] > 

mystlatoms AS SUBSET(FILTER( 
DESCENDANTS( [Structurel].[2adr-

, [Structurel].[Structure 
, [Measures].[distance] > 

SELECT mystatoms on columns 

FROM 
WHERE 

, mystlatoms on rows 

[Spatial Index] 
( Time.Step.&[5438]&[0] 
/ 

r 

Timel.Step.&[5438]&[0] 

[Measures].[distance]) 

0), 

-3] 

0,10) 

Hierarchy] 
0 ) ,0,10) 

[Atom] ) 

.[Atom] ) 

Figure 7. Example MDX Statement. This slices the cube called [Spatial Index] to include only step 
zero of simulation 5438. The first 10 atoms of the structure 2adr-3 are projected onto the columns 
and rows of the result. Listing a single measure, in this case distance, in the WHERE clause causes it 
tp be projected into the result at the intersection of the defined rows and columns. 

In addition to projecting existing attribute or fact data onto axes, MDX also supports a 

variety of scalar and set calculations. The results of these calculations fall into two categories, 

named sets and calculated members. Named sets facilitate additional calculation by creating 
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additional cells; calculated members provide a mechanism for creating new measures. Measures 

and calculated members are always evaluated in an aggregation context. For example, if a 

single measure from multiple cells is projected into a result cube in a single cell, the values of 

the measures will be aggregated according to their defined aggregation function, typically sum­

mation. A small variety of other aggregation functions are available. 

Dynameomics OLAP Database Design and Implementation 

The Dynameomics OLAP database is based on the dimensional model described by 

Simms and Daggett (Simms, 2011) and includes an implementation of spatial indexing as de­

scribed in Toofanny et al. (Toofanny, 2011). The entire database structure is built using two 

C# command line utilities that communicate with an SSAS server using the Analysis Manage­

ment Object API (AMO). The buildssascube (bcube) creates a new database on an existing 

SSAS server, populating it with three data source views for interacting with the primary data 

warehouse, a set of data sources, 9 OLAP dimensions, and one OLAP cube definition supporting 

17 measure groups. The second utility, addpartitions (addp), creates data table objects in the 

data source view and then adds data partitions to measure groups. The entire process is driven 

by a simulation group identifier, which defines a group of simulations and analyses in the pri­

mary data warehouse. 

Data Sources 

Data in the primary data warehouse are distributed across multiple servers. The bcube 

utility creates three data source views to hold data table objects: DimensionDSV, Warehouse-

FactData, and DerivedWarehouseFactData. SQL queries are executed against the Directory 

database to determine the servers, databases, and table names for all data associated with user 

supplied simulation id. The bcube utility then adds data sources for each required server and 

database. Next bcube then assembles shape fact and dimension data table objects in the Di­

mensionDSV data source view to facilitate the creation of dimensions. Small dimension tables 
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that do not contain simulation or structure identifiers, such as the list of dihedral angle types 

are copied directly into the data source view. Other dimensional tables that can be limited based 

on the simulation group id are built as named queries. The time dimension is a special case, 

because in the main warehouse time is not broken out as its own dimensional table. Instead of 

using a table, the named query facility is used to create a view based on a SQL SELECT state­

ment. The FROM clause does not reference a table, instead it uses a SQL CLR user defined 

table function that generates step values at up to a specified simulation length and granularity, 

defaulting to 65 ns at O.lps granularity. Finally, the bcube utility builds foreign key and partial 

foreign key relationships between fact and dimension objects in the DSV. These relationships 

are required for dimensions to be created and built. 

Dimensions 

After the primary data source view is created and populated with shape tables, named 

queries, and relationships, dimension structures are created. The primary dimensions of the 

model are Simulation, SimulationStructures, Structures, and Time. Analysis specific dimen­

sions are DihedralAngle, SecondaryStructure, and PhiPsiStructureState. Also included are the 

Spatiallndex and SpatiallndexNeighbor dimensions, which are used to implement spatial hash­

ing. Dimensions and hierarchies are illustrated in Figure 8. 

The Simulation and SimulationStructures dimensions model parameters that do not vary 

over the course of the simulation. The Simulation dimension contains multiple hierarchies that 

facilitate easy assembly of simulation sets based on temperature, run, and other attributes. The 

Time dimension models simulation time and contains a single hierarchy allowing selection of 

time by step or picosecond. SimulationStructures uses a single hierarchy, but the level structure 

is inverted—simulation is at the top. Three additional dimensions, DihedralAngle, SecondaryS­

tructure, and PhiPsi Structure support analysis specific attributes specific to the dihedral, DSSP, 

PhiPsi analyses, respectively. Two additional dimensions are included specifically to support 
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Figure 8. Dimensions and hierarchies. Discreet data in an OLAP database are organized into dimensions 
as attributes. Attribute values are called members, and attributes can be organized as hierarchies. For ex­
ample, attributes in structure are organized into PDB structure, chain, residue and atom. 

spatial indexing: Spatiallndex and SpatiallndexNeighbor. The complete list of all dimension 

and their attributes are in Table 10. 

Cube Design 

The cube design consists of 17 measure groups and 78 distinct measures. Measure 

groups and measures are detailed in Table 11. Source data for dimensions are taken from the 

primary data source view DimensionDSV. Data for measure groups are loaded from partitions, 
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Table 10. Dimensions and attributes. The attributes associated with each of the 9 database dimension are 
listed along with their definition. Attributes marked with "(key)" are the key attribute, defining the gran­
ularity of the dimension. 

Simulation: 

Simulation (key) 

Simulation Name 

Simulation Comment 

Time Step 

Random Seed 

Density 

Initial Box x 

Initial Box y 

Initial Box z 

C Scale 

A Scale 

Simulation Temperature 

Run Number 

Simulation pH 

Simulation Software 

Software Description 

Software Comment 

Simulation Status 

Status Description 

Simulation Conditions 

Simulation identifier from the Dynameomics Data Warehouse 

Simulation name 

Optional comment 
Conversion factor to calculate time in picoseconds from a simulation step (units = ps) 
Integer value used to seed random number generator prior for initial velocity assign­
ment 
Solvent density (g/ml) 

Initial box x dimension (A) 

Initial box y dimension (A) 

Initial box z dimension (A) 

Charge scaling factor for electrostatic potential 
Scaling factor for 12/6 attractive and 12/6 repulsive terms of the Lennard Jones poten­
tial 
Simulation temperature (Kelvin) 

Simulation run number 

Simulation acidity environment (low, medium, high) 

Molecular dynamics simulation engine used for this simulation 

Full name of the simulation software used for this simulation 

Optional comment for the simulation software used to create this simulation 

Simulation status 

Status description 

Other simulation conditions 

Time: 
Step (key) 

Time 

Simulation 

Simulation Name 

Simulation step 

Simulation time (picoseconds) 

Simulation identifier 

Simulation name 

SimulationStructures: 
Structure Instance (key) 

Structure 

Simulation 

Instance identifier for structure within this simulation 

Structure identifier 

Simulation identifier 

Spatiallndex: 

Bin (key) 

Simulation 

1 dimensional bin index within periodic box 

Simulation identifier 

SpatiallndexNeighbors: 

NeighborBin (key) 

Bin 

Simulation 

1 dimensional bin index of adjacent bin within periodic box 

1 dimensional bin index within periodic box 

Simulation identifier 
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Table 10, continued 

Structure: 

Atom (key) 

Atom Number 

Atom Type 

Main Chain 

Heavy Atom 

Residue 

Residue ID 

Residue Number 

ICode 

Built 

MMPL Name 

Residue Name 

Residue Abbreviation 

Polar 

Non-Polar 

Acidic 

Basic 

Chain 

Structure 

PDB4 

Structure Description 

Resolution 

Structure Type 

Structure Determination 

DihedralAngle: 

Angle (key) 

Angle Symbol 

SecondaryStructure: 

SS Char (key) 

SS Description 

SS Comment 

PhiPsiStructureState: 

Structure State (key) Phi Psi analysis structure state prediction 

created by the addpartitions utility (addp). After the initial empty cube structure is created, 

addp is run to locate all fact tables associated with the specified simulation group identifier. 

Once located, addp builds data table objects by measure group, adding appropriate data tables 

Atom within a structure 

Identifier within structure for this atom 

Atom type code from the Chemical Component Dictionary 

Atom is not part of a side chain 

Atom is not hydrogen 

Protein Data Bank residue abbreviation 

Database residue id 

Protein Data Bank residue number 

Protein Data Bank insertion code 

This residue was added to the original PDB structure 

The official MMPL name of this residue 

Chemical name for residue 

The official single character abbreviation for this residue 

Polar charge 

Non-polar charge 

Acidic 

Basic 

Protein Data Bank chain identifier 

A collection of residues and atoms 

Protein Data Bank PDB code 

Optional description for this structure 

Optional resolution for X-Ray crystallographic structures 

Structure determination method 

Method Structure determination method, detailed 

Dihedral angle name 

Dihedral angle symbol 

Secondary structure abbreviation 

Secondary structure definition 

Secondary structure comment 
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in the WarehouseFactData DSV for pre-calculated measures and named queries into the De­

rivedWarehouseFactData DSV for on-the-fly analyses. As each data table object is created it 

is added to the partition group collection of its measure group. 

The cube contains all 9 database dimensions, and creates an additional 3 role-playing 

dimensions (also known as shadow dimensions) on Time, Structure, and SimulationStructures. 

Measure groups are linked to all 12 defined cube dimensions, as detailed in Table 12. The ma­

jority of measure group relationships are regular, meaning that fact tables participate in a many-

to-one relationship with their associated dimensions. The one exception is the Coordinate 

measure group, which participates in a reflexive many-to-many relationship used to implement 

spatial indexing for the efficient calculation of contact distances. The Spatiallndex and Spa-
Table 11. Measure group definitions. Measure groups hold fact data in partitions. The complete set of 
measure groups and their associated fact data columns in the data source view are defined here. The fact 
tables are placeholders for the actual fact data which comes from partitions. 

Box (Size of periodic box, 4 measures) 
boxcount Box row count FactBox.xsize 

x_size x component of periodic box size (A) FactBox.xsize 

y_size y component of periodic box size (A) FactBox.y_size 

zsize z component of periodic box size (A) FactBox.zsize 

Congen (CONGENEAL structural dissimilarity score, 2 measures) 
congencount Congen row count FactCongen.dissimilar-

ityscore 

dissimlarityscore CONGENEAL structural dissimilarity score FactCongen.dissimilar-
(http://dx.doi.org/10.1002/pro.5560020603) ityscore 

Contact (Periodic contact summary, 4 measures) 
contactcount Contact row count FactContact.total 

totalcontacts Total of native and nonnative contacts FactContact.total 

native_contacts Number of contacts between residues that are three or moreFactContact.native 
residues apart in sequence 

nonnativecontacts Number of contacts between adjacent residues FactContact.nonnative 

Dihed (Dihedral angle measurements, 2 measures) 
dihedcount Coordinate row count 

dhangle Dihedral angle (degrees) 

FactDihed.dhangle 

FactDihed.dhangle 

DSSP (Dictionary of Secondary Structure Prediction (http://dx.doi.org/10.1002/bip.360221211), 2 meas­
ures) 
dsspcount DSSP row count FactDSSP.ssid 
ss id Secondary Structure Code FactDSSP.ssid 

http://dx.doi.org/10.1002/pro.5560020603
http://dx.doi.org/10.1002/bip.360221211
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Table llcontinued. 

FDSASum (Fine Detail Structure Analysis Summary, 7 measures) 

fdsasum_count 

intrahbonds 

intrahphobs 

intra others 

FDSA Summary row count FactFDSASum.intrahbo 
nds 

Intra-molecular hydrogen bond: max separation is 2.6 A D- FactFDSASum.intrahbo 
H <- 2.6 A -> A where D is donor and A is acceptor 45.0 deg. nds 
> theta > 135.0 deg. is the angular range theta is angle D-H-
A where D is donor and A is acceptor 

Intra-molecular hydrophobic contacts: max separation is 5.4 FactFDSASum.intrahph 
A CHx <-5.4 A-> CHx where x <= 1 obs 

Intra-molecular other contacts: 4.6 A is the max distance be- FactFDSASum.intra_oth-
tween heavy atoms must not be a valid hphob or valid hbond ers 

inter hbonds 

interhphobs 

Inter-molecular hydrogen bond: max separation is 2.6 A D- FactFDSASum.interhbo 
H <-2.6 A-> A where D is donor and A is acceptor 45.0 deg. nds 
> theta > 135.0 deg. is the angular range theta is angle D-H-
A where D is donor and A is acceptor 

Inter-molecular hydrophobic contacts: max separation is 5.4 FactFDSASum.interhph 
A CHx <-5.4 A-> CHx where x <= 1 obs 

inter others Inter-molecular other contacts: 4.6 A is the max distance be- FactFDSASum.interoth-
tween heavy atoms must not be a valid hphob or valid hbond ers 

Forces (Instaneous forces, 4 measures) 

forces count Forces row count 

x_force 

yforce 

z force 

Instantaneous force, x component (amu • A/sA2) 

Instantaneous force, y component (amu • A/sA2) 

Instantaneous force, z component (amu • A/sA2) 

FactForces.x_force 

FactForces.x_force 

FactForces.xforce 

FactForces.z force 

PhiPSi (Phi/Psi angles (see Dihedral), 4 measures) 

phpsicount PhiPsi row count 

phi Phi angle (degrees) 

psi 

jcoup 

Psi angle (degrees) 

Instantaneous Jcoupling constant from Karplus relation 

FactPhiPsi.phi 

FactPhiPsi.phi 

FactPhiPsi.psi 

FactPhiPsi.Jcoup 

Radgee (Radius of Gyration, 3 measures) 
radgeecount radgee row count 

radgyr Radius of Gyration (A), aggregation function: Max 

end2end End to end distance (A), aggregation function: Max 

FactRadgee.radgyr 

FactRadgee. radgyr 

FactRadgee. end2end 
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Table 11 continued. 

RMSD (Root-means-square deviation from starting structure, 3 measures) 
rmsdcount radgee row count FactRMSD.rmsd 
rmsd Root-means-square distance from starting structure, aggre-FactRMSD.rmsd 

gation function: AverageOfChildren 

rmsdlOO Normalized root-means-square distance from starting struc-FactRMSD.rmsd 100 
ture, aggregation function: AverageOfChildren 

RMSF (Root-means-square fluctuation, 4 measures) 
rmsfcount radgee row count FactRMSF.rmsfwavg 
rmsfwavg Root-means-square fluctuation, windowed average FactRMSF.rmsfwavg 
rmsfwstd Root-means-square fluctuation, windowed standard devia-FactRMSF.rmsfwstd 

tion 
rmsf Root-means-square fluctuation FactRMSF.rmsf 
S2 (S2 Order parameters, 4 measures) 
s2_count S2 row count 
s2_x S2 parameter x 
s2_y S2 parameter y 
s2_z S2 parameter z 

FactS2.x 
FactS2.x 
FactS2.y 
FactS2.z 

SASA (Solvent Accessible Surface Area, 10 measures) 
sasacount SASA row count FactSASA.main chain 
mainchain Solvent accessible surface area (main chain) FactSAS A.main_ chain 

sidechain Solvent accessible surface area (side chain) FactSASA.sidechain 

polar Solvent accessible surface area (polar residues) FactSASA.polar 

nonpolar Solvent accessible surface area (nonpolar residues) FactSASA.non_polar 

mc_polar Solvent accessible surface area (main chain polar residues) FactSASA.mcpolar 

mcnonpolar Solvent accessible surface area (main chain nonpolarFactSASA.mc_non_polar 
residues) 

scjpolar Solvent accessible surface area (side chain polar residues) FactSASA.sc_polar 

sc_non_polar Solvent accessible surface area (side chain nonpolar residues) FactSAS A. sc_non polar 

total Solvent accessible surface area (total) FactSASA.total 

VCont (Verbose contacts summary, 18 measures) 
vcont count 

nat_atom_mc_mc 

na ta tommcsc 

nat_atom_total 

nnata tommcmc 

nnata tommcsc 

nnat atom sc sc 

VCont row count 

Native atom-atom main chain-main chain contacts 

Native atom-atom main chain-side chain contacts 

Native atom-atom contacts, total 

Fact VCont. natatommc 
_mc 
Fact VCont. natatommc 
_mc 
FactVCont.natatommc 
_sc 
FactVCont.natatomtota 
1 

Non-native atom-atom main chain-main chain contacts FactVCont.nnat_atom_m 
c m c 

Non-native atom-atom main chain-side chain contacts Fact VCont. nnatatomm 
e s c 

Non-native atom-atom side chain-side chain chain contacts FactVCont.nnatatomsc 
sc 
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Table 11 continued. 

VCont (Verbose contacts summary, 18 measures, continued) 
nnat_atom_total Native atom-atom contacts, total FactVCont.nnatatomtot 

al 
nat_res_mc_mc Native residue-residue main chain-main chain contacts, ag- Fact VCont. nat_res_mc_ 

gregation function: Sum mc 
n a t r e s m c s c Native residue-residue main chain-side chain contacts, ag- FactVCont.natresmcs 

gregation function: Sum c 
n a t r e s s c s c Native residue-residue side chain-side chain contacts, aggre- FactVCont.nat_res_sc_sc 

gation function: Sum 
natrestotal Native residue-residue contacts, total, aggregation function: FactVCont.natrestotal 

Sum 
nnat_res_mc_mc Non-native residue-residue main chain-main chain contacts Fact VCont. nnat_atom_m 

c_mc 
nna t re smcsc Non-native residue-residue main chain-side chain contacts FactVCont.nnat_res_mc_ 

sc 
nna t r e s scsc Non-native residue-residue side chain-side chain contacts FactVCont.nnatresscs 

c 
nnat_res_total Non-native residue-residue contacts, total FactVCont.nnat_res_total 

totatm Total atom contacts FactVCont.totatm 

tot_res Total residue contacts FactVCont.tot_res 

Bins (Bridge measure group for Spatial Index Support, 1 measures) 
neighbors Bridge table, aggregation function: Count FactBins.hash3d_index_n 

eighbor 

Coord (Atomic coordinates, 4 measures) 
coordcount Coordinate row count FactCoord.xcoord 

x x coordinate FactCoord.xcoord 

y y coordinate FactCoord.ycoord 

z z coordinate FactCoord.zcoord 

Con tact Distance (Heavy atom contact distance, 2 measures) 
contactdistancecount ContactDistance row count FactContactDistance.dis­

tance 
distance Distance (A) FactContactDistance.dis­

tance 

tiallndexNeighbor dimensions are built from a single fact table structure in the primary data 

warehouse. To avoid duplicating data, the named query facility of the data source view is used 

to produce views that serve as the two tables required by SSAS to make a many-to-many rela­

tionship (DimSpatiallndex, DimSpatiallndexNeighbor). The Bins measure group is linked to 

Spatiallndex and SpatiallndexNeighbors using regular relationships, similarly the Coord meas­

ure group is linked to the Spatiallndex dimension. The Coord measure group is then linked to 
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Table 12. Measure groups and relationships to cube dimensions. Regular many-to-one relationships are 
denoted by R, N indicates no relationship. M indicates a many-to-many relationship. 

Simulation 

Time 

Timel 

SimulationStructures 

SimulationStructuresl 

Structure 

Structurel 

DihedralAngle 

PhiPsiStructureState 
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SpatiallndexNeighbor through the Bins measure group, forming a many-to-many relationship 

Storage and Calculation Performance Analysis 

Four SSAS databases, each containing a single cube, were created and processed on a 

Dell server as described in Table 13 using the bcube and addp utilities described earlier. Each 

cube structure includes a different combination of spatial indexing dimensions and pre-com-

puted heavy atom contact distances. All four cubes were loaded with 51ns coordinate trajec­

tories and analyses for the set of proteins described by Toofanny et al. (Toofanny, 2011). The 
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Table 13. Test server configuration. 

Hardware 

Server 

Processors 

Memory 

Storage 

System Disks 

Data Disks 

Description 

Dell R710 

Dual Intel Xeon X5650s (x64 Hex Core) 

48 GB 

H700 Integrated RAID SAS Disk Controller 

136 GB on two 15K RPM 150GB SAS disks , RAID 1 (Mirrored) 

7,450 GB on six 7200 RPM 2TB SAS disks, RAID 0 (Striped) 

bcube and addp utilities together take around 2 minutes to run, creating the complete database 

structure including data and data source views, dimensions, and cubes. After the structure is 

created, the database must be processed in order to load data into measure group partitions. Al­

though processing time is dependent on the load of source servers providing data, complete 

processing time not including the ContactDistance measure group was consistently 45 minutes. 

When the ContactDistance measure group is included, processing time jumps to just over 6.5 

hours to complete. 

After processing was completed, the disk space used by each cube and its measure group 

partitions were measured. These results, as well as the size of the original SQL data, are sum­

marized in Table 14. SSAS data structures are significantly more efficient than uncompressed 

SQL tables, showing an 80% reduction in space required for cubes built without the Contact-

Distance measure group. It is interesting that even when ContactDistance data are added, the 

total cube size is still 20% smaller than the raw SQL tables which do not contain contact dis­

tances. 

After all cubes were processed, a set of timing tests were performed on each cube variant 

to determine how quickly heavy atom contact distances could be determined. An initial attempt 

was made to duplicate timing results described by Toofanny using a lookup query and a calcu­

lation query. The same limitations of 1,000 (Ins) and 51,000 frames (51ns) were attempted, 

but neither returned successfully. The raw result set was either too large to processed by the 

client library or the server failed with an out of memory exception preparing the result set. 
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Table 14. Storage analysis. Four SSAS databases each containing a single cube were created and processed. 
When processing completed, storage space was measured and is summarized below. It is interesting to note 

Measure Group 

Bins 

Box 

Congen 

Contact 

ContactDistance 

Coord 

Dihed 

DSSP 

FDSASum 

PhiPsi 

Radgee 

RMSD 

RMSF 

SASA 

VCont 

Cube Dimension Data 

TOTAL 

Space Savings vs. SQL 

Rows 

399,033 

574,408 

574,408 

574,408 

1,649,285,467 

614,699,496 

105,263,035 

131,995 

104,006,194 

574,408 

574,408 

2,033 

105,155,010 

574,397 

+SI +CD 
4.92 

30.14 

24.92 

25.41 

49,801.19 

34,439.45 

5,370.12 

835.61 

5.69 

1,292.96 

25.62 

25.52 

0.03 

2,598.43 

34.06 

1,664.99 

96,179.05 

Cube Storage (MB) 

+SI -CD 

4.922 

30.137 

24.918 

25.412 

34,439.45 

5,370.12 

835.36 

5.688 

1,292.96 

25.62 

25.52 

0.03 

2,598.43 

34.06 

1,664.68 

46,377.31 

80% 

-SI -CD 

30.137 

24.918 

25.412 

49,935.87 

31,691.52 

5,370.12 

836.22 

5.688 

1,292.96 

25.621 

25.52 

0.03 

2,598.43 

34.06 

1,619.00 

93,516.52 

-SI+CD SQL Storage (MB) 

30.137 

24.918 

25.412 

31,691.52 

5,370.12 

832.915 

5.688 

1,292.96 

25.621 

25.52 

0.03 

2,598.43 

34.06 

1,619.68 

43,577.01 

81% 

8.94 

16.83 

18.39 

22.91 

197414.92 

20226.15 

3066.70 

6.52 

5537.63 

20.70 

20.72 

0.22 

6751.23 

57.95 

233169.81 

100% 

The lookup query was limited to include only 100 simulation frames and was run against 

the two cubes containing the ContactDistance measure group. Three runs for each protein were 

completed, and the results are shown in Figure 9. Then a set of contact calculations were at­

tempted, using cubes that specifically excluded the ContactDistance measure group and either 

using or excluding the Spatiallndex dimensions. These queries had to be repeatedly reduced 

in size, finally stopping at a mere 5 frames in order to avoid memory errors in the client library. 

The partial results of these timings are shown in Figure 10. Although it is clear that finding de­

sired data is faster than attempting to do the calculation on-demand, the behavior of the calcu­

lation query is unexplained. First query plan appears to change for proteins larger than lokt 

(85 residues) and again beyond lhgu (189 residues). However, the bigger issue is highlighted 

by the blue lines shown both Figures 9 and 10. The lower line is the slowest execution time 

taken by a 1,000 frame contact calculation using spatial indexing for the largest protein in the 
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Figure 9. MDX lookup query execution times. Execution time of a lookup of data from the ContactDistance 
measure, limited to 100 frames. The lower blue line is the slowest recorded time for SQL Server to produce 
1000 frames of contact data for lehe, the largest protein in the test set using spatial indexing. The upper 
blue line is the for the SQL execution time for lehe not using spatial indexing. 

test set (lehe, 400 residues) on SQL Server using the same host machine. The upper blue line 

is the slowest time for 1 ehe not using spatial indexing. 

Discussion 

The ability to store large, multi-dimensional scientific data sets efficiently and without 

have to translate them into two-dimensional tables certainly has great appeal. Interacting with 

those result sets using a multi-dimensional query language also opens up interesting possibilities 

for data exploration. Consider the formulation of a query to present a matrix of distances be­

tween CA carbons on columns and all other carbons on rows. Constructing this query in SQL 

would require use a complex PIVOT or JOIN. Unfortunately, the severe penalty for performing 

calculations or even just retrieving large data sets using MDX severely limits how it can be 

used and even if it will be a viable option for analysis of large data sets. 
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Figure 10. MDX calculation query execution times. Timing results for a calculating heavy atom contact dis­
tance in MDX, limited to 5 frames. Blue lines are as described in Figure 9. The query is extremely slow 
for all three cube variants tested, and the application of spatial indexing dimension has no effect on execution 
time. 

There are many potential causes for the lack of performance in this model, some of 

which could be addressed through a different query design. For example, the spatial indexing 

implementation in SQL significantly reduces query time over that of exhaustive calculation. 

In this OLAP model, it appears to have no significant effect, indicating that the MDX query 

optimizer may incorrectly be calculating distances when it could utilize the Spatiallndex di­

mensions to avoid them. Another possibility is that cube model itself is less than optimal. It 

was designed to exactly mimic the rich set of data stored in the main data warehouse, exhaus­

tively representing every dimensional property. Reducing the size and complexity of attributes 

within the existing dimensions could speed things up. However, the low performance could 

also be an issue with underlying XMLA protocol (Microsoft Corporation, 2002) used by SSAS 

to return result sets to clients. This protocol is XML based and contains a rich language for de­

scribing result values, dimensionality, and even display attributes such as text color to an ap­

plication. Returning large numbers of values in a single result set may simply be impractical 
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with XMLA. 

Conclusions 

SSAS is a multidimensional database that includes a multidimensional query language 

called MDX. The fundamental multi-dimensional storage engine stores data very efficiently, 

achieving an 80% reduction in data size as compared to the source data stored in SQL Server. 

In addition, the MDX language offers great flexibility in assembling result sets, without out the 

fundamental column and row restrictions found in SQL. Unfortunately these valuable features 

are overshadowed by serious deficiencies in handling large result sets as well as poor query 

performance. 
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Chapter 4: Beyond the Relational Model: 3D Spatial Hashing 

One of the most attractive features of molecular dynamics simulations of proteins is the 

ability to monitor the atomic interactions between pairs of atoms across the protein over time. 

Atomic contacts, when combined with experiment, provide insight into protein folding, dy­

namics, and function. The calculation of contacts is non-trivial in MD simulations, as the pos­

sible number of contacts increases exponentially with the number of amino acids. The resultant 

data of such a calculation is often larger in size than the original coordinate data from which it 

was derived. In this paper we describe the implementation of a spatial indexing algorithm, in 

our multi-terabyte MD simulation database (Dynameomics), to significantly speed up the dis­

covery of atomic interactions in a simulation. Spatial indexing, also known as spatial hashing 

is a method that divides a finite 3 dimensional space into regular sized bins and applies an index 

to each bin and hence it can be used to decrease the time of calculating the distance of nearest 

neighbor objects in 3 dimensional space. Since, the calculation of contacts is an often used 

computationally demanding calculation in the simulation field; we also use this as the basis for 

testing compression of data tables. We investigate the compression of coordinate tables with 

different permutations of data and index compression within MS SQL SERVER 2008 R2. The 

effect of compression of tables on query times is also investigated. 

Our implementation of spatial indexing speeds up the calculation of contacts over a Ins 

window by between 14 and 90%. For a 'full' simulation trajectory (51 ns) spatial indexing has 

negative to no effect on the two smallest proteins, however the calculation speed up is between 

31 and 81% for the remaining simulations. Testing all permutations of data and index compres­

sion revealed there was no significant difference in the total execution time for all the proteins 

in our test set. The greatest compression (-36%) was achieved using page compression on both 

the data and indexes. 

We implement a spatial indexing scheme in our simulation database that significantly 

decreases the time taken to calculate atomic contacts opening the door for rapid cross simulation 
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analysis and on the fly calculation and visualization of contacts. Using page compression across 

the data and index for the atomic coordinate tables will save -36% of space without any sig­

nificant decrease in calculation time. 

Introduction 

Many laboratories use molecular dynamics (MD) simulations to study the dynamic and 

structural properties of proteins. MD simulations provide atomic level resolution of the protein 

and its surrounding solvent environment; there are currently no experimental techniques that 

can provide this level of detail. The key to a protein's dynamics across time is the multitude of 

atomic interactions that occur between bonded and nonbonded atoms. Fluctuations in these 

contacts in the protein dictate the conformations accessible to the protein and its overall behav­

ior. The dynamics of a protein are key to understanding protein function (Karplus, 2005), pro­

tein folding and misfolding(Chiti, 2006; Fersht, 2002). 

Our lab has recently undertaken and completed a large scale project, named Dy­

nameomics, in which we have simulated the native states and unfolding pathways of represen­

tatives of essentially all autonomous protein fold families(van der Kamp, 2010). These fold 

families, or metafolds, were chosen based on a consensus between the SCOP, CATH and DALI 

domain dictionaries, which we call a consensus domain dictionary (CDD) ((Day, 2003; Scha-

effer, 2011 a). For our 2009 release set there are 807 metafolds, representing 95% of the known 

autonomous domains in the Protein Data Bank (PDB). The coordinates of the MD simulations 

and standard analyses are loaded into a relational database. Our Dynameomics database is im­

plemented using Microsoft SQL server with the Windows Server operating system (see (Simms, 

2008) for a more detailed description). For our Dynameomics simulations we run one native 

state simulation, and at least 5 thermal unfolding simulations. In order to explore the dynamics 

and folding in these simulations we often calculate the contacts between pairs of atoms. The 

calculation is non-trivial as all possible pairs of atoms in the system must be evaluated. The 
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average number of protein atoms in our Dynameomics set simulations is 2150 with the smallest 

system consisting of 494 protein atoms and the largest of 6584 protein atoms. This problem 

has been well studied and is also known as the nearest neighbor search problem (Clarkson, 

2005). As the atoms in our system are in motion, all pairs of atoms need to be re-evaluated for 

each frame of the simulation, so in the case of a 51 ns native state simulation, we have 51,000 

frames of pairs of contacts to evaluate. Whilst ad hoc one-off calculations of contacts are pos­

sible, calculating contacts for a large number of simulations, in a project like Dynameomics, 

without any acceleration method is simply not possible. 

Spatial indexing overview 

Spatial indexing is an often commonly used method by programmers of 3D video 

games, in which collision between particles/objects are detected (Lefebvre, 2006). In order to 

accelerate the detection of collisions the 3D space is split into many smaller 3D bins, which 

are often uniform in size. Each of the bins is then given an index and the particles/objects in 

the system are rapidly evaluated to determine which of the indexed bins it falls in. Collisions 

can then be detected by evaluating only those particles/objects in the same or immediately ad­

jacent neighboring bins. 

In our MD simulation engine (Beck, 2000-2011) we already implement a spatial in­

dexing (hashing) algorithm for the calculation of nonbonded terms (Beck, 2004). Our MD sim­

ulations are carried out in a periodic box of water molecules where the protein is solvated in 

the center of the box; this is conceptually similar to an orthorhombic unit cell in crystallography. 

Since the dimensions of the periodic box are constant throughout the simulation, one can create 

a spatial hash that is consistent throughout the simulation. In practice we split our periodic box 

into smaller bins of at least 5.4 A since this the maximum distance we consider a pair of atoms 

to be in contact (Beck, 2008) (Figure 11 A). Each bin is then assigned an unique integer. We 

then only evaluate the pairs of atoms in the current bin and the immediately adjacent 26 bins 
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(Figure 11B), which are calculated using simple algebra. 

Figure 11. Illustration of spatial binning within a periodic box. The protein (lenh, the engrailed home-
odomain) is simulated in a periodic box of water molecules with dimensions of 50 A (A). The periodic box 
is split into smaller boxes of 10 A, these are the 3 dimensional bins. Each bin is assigned an index and every 
atom at every time point will have associated X,Y, Z coordinates and a bin index. Illustration describing 
the evaluation of adjacent bins (B). Finding the distance to neighboring atoms within a prescribed cutoff 
is reduced to only evaluating euclidean distance between an atom and other atoms in the same bin or the 26 
surrounding bins. 

Results 

We investigated the effect of using spatial indexing in the simulation coordinate table 

to accelerate the discovery of atomic contacts between pairs of atoms. We compared the exe­

cution times for the heavy atoms contact query for 1 ns (1000 frames) of each of our 11 repre­

sentative metafolds (Figure 12, Table 15) and Figure 13 shows the average execution time for 

the 1 ns heavy atom contact queries with and without the use of spatial indexing. Table 16 
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6217 5495 

Figure 12. 11 metafolds representative of sequence length in Dynameomics. The proteins are ordered by 
the number of amino acid residues in each protein. See also, Table 1. 

0 100 200 300 400 
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Figure 13. Contacts query execution times. Comparison of heavy atom contacts query with and without 
spatial indexing for 11 metafold representatives over Ins. With no spatial indexing (circles) applied the cal­
culation of heavy atom contacts over 1 ns (1000 frames) takes an average of ~20 minutes (n=6) for the largest 
protein lehe. For the smallest protein, 2adr, the average time taken is around 10 seconds. When spatial in­
dexing is applied (triangles) the is a dramatic decrease in execution time for lehe from -20 minutes to an 
average of 1 minute 46 seconds. There is almost no change in execution time for 2adr since it is an extremely 
small protein, spatial indexing has little effect. 
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Table 15. Test set definition. The test set consisting of 11 representative proteins taken from the Dy­
nameomics project. 

PDB4 Name Residue Range residues protein atoms 

2adr Domain of Adrl DBD from S. cerevisiae 

1 nr2 Thymus and activation-regulated chemokine 

1 okt Glutathione S-transferase 

2tgi Domain of transforming growth factor-beta 2 (TGF-B2) 

IdOn Horse plasma gelsolin 

lbp5 Domain of serum transferrin 

Ihgu Human growth hormone 

1 p88 3-phosphoshikimate 1-carboxyvinyltransferase 

1 fzw Monomer of glucose-1 -phosphate thymidy lyltransferase 

lqaz Alginate Lyase Al-III 

lehe Cytochrome P450nor 

shows in detail the comparison of the execution times with and without the spatial index. The 

results show that for 10 out of the 11 cases that we achieved a significant decrease in execution 

time when using spatial indexing. As expected, query times decreased as the number of distance 

calculations is significantly reduced (p< 0.05) for 11 metafolds. For one metafold (2adr) the 

Table 16. Comparison of average execution times by protein. All observations indicated that the spatial 
index optimized query ran faster than its non-optimized counterpart and except in the case of 2adr, that 
observed speed improvement was statistically significant (p < 0.0001). 

02-130 

8-69 

1-85 

1-112 

27-159 

82-246 

2-190 

25-240 

2-293 

4-354 

5-403 

29 

62 

85 

112 

133 

165 

189 

216 

292 

351 

399 

496 

1011 

1412 

1750 

2095 

2487 

3011 

3272 

4560 

5495 

6217 

PDB 

2adr 

lnr2 

lokt 

2tgi 

IdOn 

lbp5 

lhgu 

lp88 

lfzw 

lqaz 

lehe 

'Time (s) 

11.6 

29.3 

56.1 

89.7 

127.9 

180.2 

256.4 

294.4 

578.3 

860.4 

1091.8 

2Time (s) 

10 

16.7 

23.7 

28.2 

32.6 

37.5 

42.4 

51.7 

73.4 

95.1 

105.6 

3A(s) 

1.6 

12.6 

32.5 

61.5 

95.3 

142.7 

214 

242.7 

504.8 

765.3 

986.2 

95% CI 

(-5.34, 8.55) 

(11.18, 14.10) 

(30.85, 34.09) 

(56.53, 66.38) 

(90.63, 99.99) 

(138.40, 147.03) 

(210.81,217.25) 

(236.38, 248.92) 

(498.92,510.77) 

(753.80, 776.85) 

(974.65, 997.79) 

p-value 
0.3092 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Note 
No significant change 

Significantly faster 

Significantly faster 

Significantly faster 

Significantly faster 

Significantly faster 

Significantly faster 

Significantly faster 

Significantly faster 

Significantly faster 

Significantly faster 

'Average time not using spatial index, N=6.2Average time using spatial index, N=6. 'mean difference. 
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heavy atom contact execution time did not significantly change (P>0.05) when using spatial 

indexing. Investigating further, we found that for 2adr that spatial indexing had little effect 

since 2adr is a very small protein. 2adr has a an average radius of gyration of 8.5 A and since 

each spatial bin has the minimum dimensions of 5.4 A by 5.4 A by 5.4 A , the entire protein is 

covered by only a small number of bins. In this instance there is no significant difference in the 

number of pairs of atoms considered when the query uses the spatial indexing. Also, since the 

execution time is so short, it is likely that the cost of selecting out only the immediately adjacent 

bins instead of joining all atomic coordinates is more apparent. 

The significant decrease in execution time for the calculation of atomic contacts is im­

portant for 3 main reasons. First, the reduction in execution time enables us to calculate contacts 

in a tractable time frame for large proteins, considering the largest fold representative in our 

Dynameomics set, lehe which contains 399 residues, the average execution time reduced from 

around 18 minutes to just under 1 minute and 45 seconds. With such a tractable execution time, 

we can perform rapid ad hoc queries in our database, which is extremely useful in an exploratory 

sense and enables us to ask and quickly answer questions about the atomic interactions in a 

simulation. Second, the query execution time is quick enough to enable us to perform large-

scale multi-simulation analysis. For example, if we wanted to find all the long-range contacts 

in the denatured state of the 807 metafold representatives and look for patterns, it would not be 

difficult to execute multiple contacts queries across multiple servers to return back that result 

rapidly. Third, since the calculation can be run in a short period of time, this analysis could be 

performed on the fly where the data would only need to be stored temporarily or regenerated 

rapidly when required. The size of the resultant contact data often exceeds the size of the original 

uncompressed tables they were derived from and hence we would need to more than double 

the size of our existing database configuration if we were to consider storing the result of contact 

queries for all simulations. The ability to run on fly analyses such as this in the database also 
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lends itself well to exploratory visualization tools which can connect directly to the database. 

For extremely large datasets like ours we have found that current commercial software is inad­

equate for our needs and our lab has developed a powerful data visualization engine dubbed 

DIVE (Data Intensive Visualization Engine) that can connect to our SQL database and rapidly 

visualize millions of data points in many dimensions (Bromley, 2010). 

Since the heavy atom contact query is a computationally expensive calculation that 

queries the atomic coordinate tables, the largest tables in our database, we decided to use this 

query (utilizing spatial indexing) as the basis for testing permutations of data and index com­

pression. The aim here was to find a data and index compression permutation on the coordinate 

tables that saved disk space but did not significantly affect query execution times. We looked 

at 9 permutations of data and index compression - we applied each of these to each of our 11 

metafold representative coordinate tables. As an initial test we calculated the heavy atom con­

tacts for the first nanosecond of each metafold with each permutation of compression for the 

coordinates table. Figure 14 shows the average execution times for calculating heavy atom con­

tacts (with and without spatial indexing) for 1 ns for each metafold with every permutation of 

compression. Figure 15 shows a box plot which compares the average % compression for each 

permutation of data and index compression across all the 11 metafolds The average % com­

pression ranges from 8 - 36%. Having no data compression and row index compression gives 

the smallest % compression and page data compression and page index compression giving the 

greatest % compression. 

Comparing the total execution times (Figure 15) for the heavy atom contacts over 1 ns 

on the compressed tables versus the non compressed tables we observe that all permutations of 

compression fall within the standard deviation of the total execution times for the non-com­

pressed tables. This result is important as it indicates that we can choose any permutation of 

compression and still retain the same execution time for the heavy atom contacts query. The 

tantalizing prospect of being able to compress our coordinate data by 36%, by using the page 
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NN NR NP 

Figure 14. Compression and execution times. Comparison of 9 combinations of compression and their 
affect on query execution times with and without spatial indexing. P = page, R= row, N=none, e.g. PP rep­
resents Page compression on both the data and index where as NR represents no data compression but row 
compression on the index. 

data and page index compression was investigated further by then calculating heavy atom con­

tacts for the full 51 ns (51,000 frames) of each simulation. We compared the execution times 

(with and without spatial indexing) of the non-compressed coordinate tables to that of the 36% 

compressed data (Figure 16). We observe that that there is no significant difference (Table 17, 

b) in execution times for examining the full trajectories when calculating contacts from an un­

compressed coordinate table and page/page compressed coordinate with and without spatial in­

dexing, which confirms our earlier finding (Figure 15). The implication of this will be far 
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NN NR RP NP RR RP RN PN PP 

Figure 15. Comparison of total execution times and table sizes. Total table sizes for tables for all compression 
combinations and total execution times for the 1 ns contacts query. Total execution times are the sum of 
the individual representatives query times. Even with the largest compression using page compression on 
both the data and indexes, total execution times were comparable to the none compressed tables. 

reaching in our lab since we can now proceed confidently in applying the page/page compres­

sion scheme across all our coordinate tables in our entire database. Since, 85% of our database 

is taken up with simulation atomic coordinate data a 36% space saving is extremely significant 

since our database comprised of 70 TB of uncompressed data across 6 servers. This compression 

scheme is oriented towards repeated values, such as those found in dimension keys. For those 

bioinformaticians with databases implemented in MS SQL Server 2008, compression permu­

tations should be investigated with an appropriate representative data set. 

Importantly, our implementation of a spatial indexing scheme in a SQL database to 

speed up the discovery of nearest neighbor atoms can be applied to other nearest neighbor prob­

lems, indeed the indexing is not bound to 3 dimensions. An indexing scheme, based on many 

dimensions is possible and thus adjacent bins in many dimensions could also be determined to 

speed up the detection of nearest neighbors in a many dimensional space -(need a good example 

here...hmmm) 
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pp 

Number of Residues 

Figure 16. Comparison of compression. Execution time comparison for heavy atom contacts query, with 
and without spatial indexing, using uncompressed tables and page/page compression. NN denotes no data 
and no index compression while PP denotes page compression on the data and index. No significant differ­
ence is observed in execution times. 
Conclusions 

We investigated the use of spatial indexing to speed up the discovery of atomic 

contacts/interactions in our MD Dynameomics simulation database. We compared the discovery 

of contacts for 11 representative metafolds with and without spatial indexing and found that 

using spatial indexing decreases execution times by up to 90%. We note that for a small protein, 

2adr, execution times using spatial indexing actually increased execution time. We also discov­

ered that we could improve the execution time by providing the query optimizer a hint to use 

the correct index. Since the coordinate tables are the largest tables in our database we investi­

gated permutations of page and row compression across the data and indexes. We determined 

that whichever permutation of compression we used the execution time for the heavy atom con­

tact query was not significantly different. Further investigation into the compression permutation 

that gave us 36% savings (page/page compression) across the entire trajectories showed that 

this also applied to a large-scale query We can now proceed with applying the page/page com­

pression across our entire database and make use of the space savings without losing query per­

formance. 
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Table 17. Compression comparison. Comparison of non-compressed vs. page-page compressed tables both 
without and with spatial indexing. In no case was the observed difference in average execution time signif­
icant for non-compressed vs. page-page compress source tables for 51ns trajectories. 

Spatial PDB 'Time(s) 2Time(s) 3A 95% CI p-value Note 
No 2adr 

lnr2 

lokt 

2tgi 

IdOn 

lbp5 

Ihgu 

lp88 

Ifzw 

lqaz 

lehe 

Yes 2adr 

lnr2 

lokt 

2tgi 

IdOn 
lbp5 

Ihgu 

lp88 

Ifzw 

lqaz 

lehe 

482.2 

1592.9 

2866.5 

4438.3 

6256.6 

8922.4 

12578.6 

14310.3 

27756.2 

43456.2 

52838.7 

1064.1 

1632.1 

1977.1 

2508.5 

2854.3 

3738 

4343.3 

4688.2 

6821 

8751 

10049.6 

486.4 

1608.7 

2918.4 

4464.8 

6252.9 

9113.9 

12634 

14358.3 

30548.9 

42074.9 

53669.9 

963.7 

1545.8 

2065.1 

2732.8 

2833.8 

3790 

4395.7 

4820.8 

6868.9 

8390.1 

9941.4 

-4.2 

-15.8 

-51.9 

-26.4 

3.7 

-191.5 

-55.4 

-48 

-2792.7 

1381.3 

-831.3 

100.5 

86.3 

-88 

-224.3 

20.4 
-52 

-52.4 

-132.6 

-48 

360.9 

108.1 

(-26.19, 17.82) 

(-59.20, 27.58) 

(-244.00, 140.28) 

(-140.83, 87.96) 

(-149.68, 157.05) 

(-1058.00,674.98) 

(-472.06,361.28) 

(-326.01, 230.06) 

(-9959.08, 4373.64) 

(-5140.15,7902.75) 

(-2309.40, 646.87) 

(-61.07,262.03) 

(-260.31,433.00) 

(-294.22, 118.21) 

(-480.51,31.96) 

(-272.43,313.32) 
(-413.02, 309.00) 

(-515.52,410.65) 

(-502.85, 237.61) 

(-575.63,479.66) 

(-619.33, 1341.05) 

(-1004.09, 1220.36) 

0.6921 

0.8242 

0.7758 

0.7233 

0.4748 

0.771 

0.677 

0.6746 

0.8184 

0.2873 

0.9271 

0.0924 

0.2841 

0.8218 

0.9612 

0.4373 

0.6231 

0.5971 

0.7788 

0.5786 

0.2156 

0.4163 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 

No significant difference 
'Average time for non-compressed tables. 2Averagc time using page-page compressed tables. 3mean difference. 
Methods 

MD Simulations 

Details of how we selected the 807 metafolds for simulation in our Dynameomics proj­

ect can be found elsewhere ((Schaeffer, 2011b; van der Kamp, 2010)). The MD simulations 

were performed using in lucem molecular mechanics (ilmm) (Beck, 2000-2011) following the 

Dynameomics protocol described by Beck et al. (Beck, 2008). Each of the metafolds was sub­

jected to at least one native-state at 298 K simulation of at least 51 ns, and five to eight simu­

lations at 498 K, with two of these simulations being at least 51 ns long. Structures were saved 

every 0.2 ps for the shorter runs and every 1 ps for the longer simulations. Coordinates and 
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analyses from the simulations were loaded into our Dynameomics database (Simms, 2008). 

When a simulation is loaded into the database, it is assigned an integer identifier and a 

specific database. Three tables are created in the assigned database to hold the fact data for the 

simulation: a Coordinate table (abbreviated to "Coord"), a Box table, and Bins table. Each 

table is named by the simulation id, for example the tables for simulation id 37 would be 

"Coord_37," "Box_37," and "Bins_37." The Coord table contains columns for each of the 

three-dimensional coordinates, atom number, step, structure, and instance. The step and coor­

dinate columns are considered fact data, the instance, structure and atom number are dimension 

data linking each fact back to a specific structure. The Box table has columns for the x, y, and 

z dimensions of the periodic box at each time point. The Bins table records the set of adjacent 

bins for each bin. All three tables have clustered primary keys and constraints; the Coord table 

also has a secondary covering index. 

We selected 11 metafolds to represent the range in sequence size that our Dynameomics 

project covers from the smallest: ADRl DNA-binding domain from Saccharomyces Cerevisiae 

(2adr, 30 residues,(Bowers, 1999)) to cytochrome P450 (lehe, 400 residues,(Shimizu, 2000)). 

Figure 12, shows the metafolds selected. In the test conducted in this study we chose to look at 

the native (298 K) simulations for each of these proteins. Each 298 K simulation was 51 ns in 

length and coordinates were written out every lps. 

Implementation of spatial indexing in the database 

To calculate contacts in SQL, an expensive self-join of the coordinate table must be 

used in addition to joins with structural data tables. A version of this query is shown in Figure 

17. Conditions in the JOIN clauses ensure that comparisons are made within the same frame 

(a.step = b.step) and with a granularity of lps (a.step % 500 = 0 and b.step % 500 = 0). Since 

distance is reflexive, we only calculate the distance from a heavy atom in "a" to another in "b" 

(a.atom_number < b.atomnumber). We also exclude contacts in the same or adjacent residues 
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SELECT 

FROM ( 
SELECT 

FROM 

WHERE j 

( 

j.sim id 
j.step 
j.residue id x 
j.atom number x 
j.residue id y 
j.atom number y 
SQRT(j.distance) as distance 

a.sim id 
, a.step 
, c.residue id as residue id x 
, c.atom number as atom number x 
, c.atom type as atom type x 
, d.residue id as residue id y 
, d.atom number as atom number y 
, d.atom type as atom type y 
, (b.x coord - a.x coord) * (b.x coord -

(b.y coord - a.y coord) * (b.y coord -
(b.z coord - a.z coord) * (b.z coord -

dbo.Coord_2029 AS a 
INNER MERGE JOIN dbo.id as c 
ON ( c.heavy atom = 1 

AND a.struct id = c.struct id 
AND a.atom number = c.atom number 
AND a.[step] % 500 = 0 
AND a.[step] between 0 and 500000 

JOIN dbo.Bins 2029 AS n 
ON ( n.hash3d index = a..bin ) 

INNER MERGE JOIN ( dbo.Coord 2029 AS b 

dn 

INNER MERGE JOIN dbo.id as d 
ON ( d.heavy_atom = 1 

a.x coord) 
a.y coord) 
a.z coord) 

)) 

AND b.struct id = d.struct id 
AND b.atom number = d.atom 
AND b.[step] % 500 = 0 
AND b.[step] between 0 and 

ON ( a.[step] = b.[step] 
AND a.atom number <b.atom 
AND c.residue id < d.resi 
AND n.hash3d_index_neighb 

LStance < (CASE WHEN j.atom type x = 'C 
AND j.atom type y = ' 

ELSE 21.16 END) 

number 

500000 )) 

number 
due id-1 
or = b.bin 

2' THEN 29. 

+ 
+ 
as distance 

)) AS j 

16 

Figure 17. Heavy atom contacts query. The size of the coordinate table self-join is reduced by applying two 
right associative join clauses, shown in bold. Right associative joins are a mechanism to control the order 
of join evaluation. In this case we insure that only the rows meeting satisfying the given predicates partic­
ipate in the final self-join (i.e. heavy atoms and only the first Ins of simulation time). The spatial-index join 
in shown in bold-italics. This clause allows SQL to trim away most atoms outside the cutoff range without 
needing to perform the distance calculation, greatly reducing the number of operations as well as rows that 
would later be thrown away by the distance cutoff. Finally, MERGE joins are explicitly specified to avoid 
the optimizer choosing a HASH join for the coordinate table self-join. 
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(a.residueid < b.residueid - 1). Finally, the query only considers heavy atoms 

(c.heavy_atom=l and d.heavy_atom=l). 

There are three supported join types in SQL Server: Hash, Merge, and Loop. Normally 

queries are expressed using only the keyword JOIN, leaving the optimizer free to choose the 

join type when an execution plan for a query is prepared. Join types are described in detail 

elsewhere (Fritchey, 2009). The self-join of the coordinate table presents unique difficulty be­

cause of its size. We have observed that the optimizer will consistently choose a hash join, 

which will cause an expensive build of a temporary hash structure. In contrast, the merge join 

type does not require the temporary structure, and since the data are ordered based on the pri­

mary key, this approach is significantly faster. 

We have optimized the structure of the query with the use of two right associative joins 

to cause early evaluation of the Coordinate and ID table joins. We have also pushed predicates 

directly into the join clauses. However, despite these optimizations a great deal of time is spent 

calculating distances for atoms that are far outside the 5.4 A distance of interest. These addi­

tional calculations generate result rows that add a significant performance burden, making it 

impractical to run this query over more than a handful of trajectories. 

We have implemented a spatial indexing algorithm in the database to accelerate the dis­

covery of atomic contacts. In our implementation we subdivide the periodic box used for sim­

ulation and divide it into as many smaller cubes with sides of at least 5.4 A. We then 

consistently number these cubes, creating a one-dimensional hash. For simulation data, the 

number of these smaller cubes in a simulation will never come close to 232-1 bins, so it is pos­

sible to represent in a SQL 32bit integer. We then iterate over all atoms in a simulation and 

map each atom's coordinates into a single bin using equations 1.1 and 1.2. This result is stored 

in the coordinate table. A second smaller table named binsx (where x is the simulation id) is 

created for each simulation, which stores rows for each combination of a bin index and itself 

and the 26 possible adjacent bin indices. This table is populated using a C# user defined func-
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tion at the time the simulation coordinate data are loaded. 

With the Bins table in place, the contact query presented earlier can be modified slightly 

to filter coordinates considered using the bin column in the coordinate table. The modification 

is shown in bold below (Figure 18). This simple join allows the query optimizer to quickly re­

move distance calculations based on a comparison of integer columns instead of projecting and 

transforming x, y, z from each half of the join. The result is a spectacular increase in speed, as 

the Bins table acts as a highly optimized spatial index. 

The spatial indexing optimization increases query performance significantly by reducing 

the number of pairs of atoms it has to evaluate. The first part of this paper looks at the perform­

ance gains when utilizing the spatial indexing by comparing the time taken to calculate contacts 

over a 1 ns window (1000 frames) of time over 11 representative proteins ranging from 30 to 

400 amino acids (Figure 12, Table 15). 

The second question we address is whether performance can be enhanced further by 

making I/O operations more efficient. SQL Server 2008 supports two types of compression, 

which can be applied separately to the data and indices associated with a table. Row compres­

sion is a more efficient representation of row data; the implementation involves storing fixed 

length columns in a manner similar to variable length columns. For coordinate columns, which 

are a set of 5 32 bit fixed length columns, the storage savings for row compression are small. 

Page compression, which is built on top of row compression, stores repeating values in a single 

structure and then references them. This can result in significant savings in a fact table since 

the table contains numerous constant dimension columns like simid. For the combination of 

data and index page compression, we observe a consistent 36% reduction in table storage space. 

Although storage space reductions with data and index page compression are significant 

for coordinate data, a major concern was the potential for decompression to ruin the perform­

ance of analysis queries. To investigate this, we return to the contacts query introduced earlier 

in this section (since this is a commonly used and computationally expensive query in the lab) 
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and review performance data collected against all combinations of compression options across 

our sample set of 11 protein simulations. We also considered non-compressed and fully page 

compressed contact queries for the first 1 nanosecond that did not utilize the spatial indexing 

optimization. 

Database and System setup 

Two Dell R710 servers each equipped with dual hex-core processors were used to collect 

timing information. The base operating system is Windows Server 2008 Enterprise x64 R2 and 

the database engine used was SQL Server 2008 R2 Enterprise x64 R2. Detailed hardware and 

software configuration information is shown in Table 18. 

One database called hash3d-700 was created on each testing server and populated with 

a set of coordinate trajectory tables and dimension tables from our primary data warehouse. 

The base coordinate tables were then copied to additional tables, adding an additional suffix to 

indicate data and index compression settings. After all coordinate tables were created and pop­

ulated, identical primary keys, constraints and indexes were applied. Tables were then com­

pressed using ALTER TABLE statements. A script was run on all the coordinate table 

compression combinations to create contact tables. The size of each hash3d-700 database size 

Table 18. Test server hardware configuration, hardware and software. 

Hardware Description 
_____ __________ 

Processors Dual Intel Xeon X5650s (x64 Hex Core) 

Memory 48 GB 

Storage H700 Integrated RAID SAS Disk Controller 

System Disks 136 GB on two 15K RPM 150GB SAS disks , RAID 1 (Mirrored) 

Data Disks 7,450 GB on six 7200 RPM 2TB SAS disks, RAID 0 (Striped) 

Software Description 

OS Windows Server 2008 R2 Enterprise x64 

Database SQL Server 2008 R2 Enterprise x64 

SQL Enabled for all CPUs 

SQL Memory Limited to 40,960 MB (8GB for OS) 

Anti-Virus Sophos Endpoint Security and Control, version 9 
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CHECKPOINT; 
DBCC FREESYSTEMCACHE (''ALL*') WITH MARK_IN_USE_FOR_REMOVAL; 
DBCC DROPCLEANBUFFERS; 

Figure 18. Cache clearing commands. These command are executed before each timing query to insure 
that SQL Server's cache is set to the same state as if the server were rebooted. 

was then adjusted upwards to 1.2 TB and the SQL Server process shutdown. The defrag.exe 

utility was then run on the data and system partitions clean up file system fragmentation caused 

by auto-growth during loading. 

In our primary data warehouse, a simulation's coordinate fact data are stored in three 

distinct tables: a coordinate table, a box table, and a bins table. Dimensional data describing 

simulation and structure parameters are stored in shared tables. For testing purposes, coordinate, 

box and bins tables were copied to each testing server and the set of dimensional meta-data for 

the simulations in our sample set were copied locally. This approach allows the fact and di­

mension data for these tests to be completely self-contained. 

Queries were run in SQL Server Management studio running on a remote machine with 

a connection to the test database server. Queries were executed with SET STATISTICS IO 

ON and SET STATISTICS TIME ON to capture logical and physical read statistics. To control 

for performance gains caused by data and/or query plan caching; and background write opera­

tions from result tables, a series of three system statements were executed prior to running the 

test query (Figure 18). The CHECKPOINT statement insures that any dirty pages (such as 

those result rows written out by the previous query) are written to disk. The FREESYSTEM­

CACHE command eliminates any stored query or procedure plans. The DROPCLEAN­

BUFFERS flushes out the current cache leaving it effectively cold, as though SQL Server had 

just started. During the collection of timing information, access to both servers was restricted 

and only the timing query was allowed to run. 

Performance of heavy atom contacts query with and without spatial indexing 

We calculated the pairs of heavy atom contacts for the 1st nanosecond of each simulation 
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and compared the execution times with and without spatial indexing. Queries were written in 

SQL and executed in MS SQL management studio as described in the above section. Heavy 

atom contacts were calculated 3 times for each simulation, ensuring the system cache was 

cleared between each run to obtain performance statistics. To utilize spatial indexing, a simple 

join to the 'Bin' table was employed, which ensured that only atoms within the current spatial 

bin and immediately adjacent bins were considered for evaluation. Statistics were calculated 

using a two sample two-sided t-test for unequal variances. 

Comparison of page and row compression on data and indexes for coordinate tables 

MS SQL Server 2008 supports two types of compression that can be applied to both 

data and indexes independently. We investigated 9 permutations of non-compressed, page com­

pression and row compression on both data and indices for each coordinate table for each of 

the 11 simulation's coordinate table in our test set. We recorded the % compression of each 

compression permutation compared with the non-compressed coordinate tables. We then ran 

an initial test of performance by investigating the execution time and disk I/O operations of the 

heavy atom contacts query over the first nanosecond of the simulation. Performance of heavy 

atom contacts query Data (page) and Index (page) compression on data and indexes for coor­

dinate tables. When compressing data and indices there is inherently a trade-off between the 

reduction in the size of the table and the time taken to decompress the table and access the data. 

Ideally, a data intensive query run on a compressed table would not take significantly longer to 

process than the same query on an uncompressed table. Based on the results obtained from an­

alyzing the multiple compression permutations on the data and the related indexes we examined 

the execution time of the heavy atom contacts query over a full 51 ns (51,000 frames) trajectory 

for each of the proteins in our test set. 
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Chapter 5: Generation of a Consensus Domain Dictionary 

The discovery of new protein folds is a relatively rare occurrence even as the rate of 

protein structure determination increases. This rarity reinforces the concept of folds as reusable 

units of structure and function shared by diverse proteins. If the folding mechanism of proteins 

is largely determined by their topology, then the folding pathways of members of existing folds 

could encompass the full set used by globular protein domains. 

We have used recent versions of three common protein domain dictionaries (SCOP, 

CATH, and Dali) to generate a consensus domain dictionary (CDD). Surprisingly, 40% of the 

metafolds in the CDD are not composed of autonomous structural domains, i.e. they aren't 

plausible independent folding units. This finding has serious ramifications for informatics stud­

ies mining these domain dictionaries for globular protein properties. However, our main pur­

pose in deriving this consensus domain dictionary was to generate an updated 2009 CDD to 

choose targets for MD simulation as part of our Dynameomics effort, which aims to simulate 

the native and unfolding pathways of representatives of all globular protein consensus folds 

(metafolds). Consequently, we also compiled a list of representative protein targets of each 

metafold in the CDD. This domain dictionary is available at www.dynameomics.org. 

Introduction 

Structurally similar proteins need not share significant sequence identity. The early ob­

servation of structurally and functionally similar proteins (such as hemoglobin and myoglobin) 

led to the partition of different sets of structurally similar proteins into folds (Kendrew, 1959; 

Perutz, 1960). However, as more structures were determined and more folds discovered, it be­

came clear that not all members of a fold are necessarily linked by a common function (Nagano, 

2002). Also, the determination of structures with conserved structural cores surrounded by vari­

able regions complicated the classification of new structures into existing folds. What degree 

of structural variation is tolerable between a domain and a potential cousin before they no longer 

http://www.dynameomics.org
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can be considered to belong to the same fold? 

The inconsistencies of analyzing and generating protein domain dictionaries are one 

component of the vigorous discussion surrounding the properties of protein 'fold space' (Csaba, 

2009; Pascual-Garcia, 2009; Sam, 2006). Distinct folds can contain regions of shared structural 

similarity (Grishin, 2001). Folds are both populated to different degrees and structurally het­

erogeneous (Coulson, 2002; Majumdar, 2009; Wolf, 2000). This heterogeneity complicates es­

timates of the size and 'shape' of fold space, and is likely responsible for the wide range of the 

estimated number of protein folds. The presence of unclear domain boundaries in regions of 

fold space have led some to question the utility of a hierarchal definition (Kolodny, 2006). Fur­

thermore, fold assignment is dependent on the prior problem of domain detection (Holland, 

2006; Majumdar, 2009). 

The gold standards among domain dictionaries, SCOP (Structural Classification of Pro­

teins) (Murzin, 1995) and CATH (Class, Architecture, Topology, Homology) (Orengo, 1997), 

have been the subject of many detailed comparisons (Day, 2003; Hadley, 1999; Jefferson, 2008; 

Pascual-Garcia, 2009; Veretnik, 2004). In general, both dictionaries weigh potential functional 

and evolutionary relationships between fold members with different strengths at different levels 

of their hierarchies. The presence of shared fragments between differing folds and/or regions 

of "conserved" structure have been well documented and are one reason for the development 

of different empirical classification methodologies, as more knowledge of protein structural 

evolution emerges, hope remains that an evolutionary classification will be derived (Valas, 

2009). In their early formulations, these domain dictionaries represented different design 

methodologies. Whereas SCOP was hand curated by experts, CATH was maintained by a com­

bination of automated process and expert curation. However, SCOP has assumed more auto­

mated pre-classification of new structures in responses to the increasing rate of structure 

determination, diluting this methodological distinction (Andreeva, 2008). 

Although individual domain dictionaries may contain their own biases, we can minimize 
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the effect of those differences by extracting a consensus from a group of such dictionaries. We 

previously demonstrated the application of this method to SCOP, CATH, and the Dali Domain 

Dictionary (Dietmann, 2001) to generate a consensus domain dictionary (CDD 2003 version, 

v2003) (Day, 2003). This domain dictionary was the basis of our initial high-throughput survey 

of native dynamics (Beck, 2008). Additionally, the concept of the metafold that we introduced 

in the v2003 CDD was further developed in a study of 'cradle-loop' structures (Alva, 2008). A 

subset of the representative domains from v2003 was used to conduct benchmark simulations 

of standard molecular dynamics (MD) force fields (Rueda, 2007). 

Here we present an updated CDD (v2009) derived using recent versions of the input 

domain dictionaries, which incorporate many of the new structures determined since the v2003 

CDD. The CDD is the backbone of our high-throughput molecular dynamics initiative, Dy­

nameomics (Beck, 2008; van der Kamp, 2010). This project seeks to simulate the native and 

unfolding behavior of representatives of all protein folds. Consequently, we need an objective 

basis for selection of simulation targets. Therefore, it is important that the CDD be monitored 

so that we can identify novel topologies as they are classified and observe potential splits within, 

and mergers between, our metafolds as classifications shift. It is important that we identify do­

mains that appear to be autonomous units, since we use the contents of the CDD as potential 

targets for simulation of folding/unfolding pathways. The selection process was complicated 

by the discovery that roughly a third of the consensus folds (metafolds) in the CDD are not au­

tonomous structural units, but instead are dependent components of multi-domain or complex 

structures (or are small structural motifs). 

We present our data model for representing domains and their metafolds over time in a 

relational database (Simms, 2008). We discuss the use of this data model to map domains and 

their annotations from older versions of our dictionary to the newer one (v2003 ® v2009). We 

present the full v2009 CDD consisting of 1695 metafolds. We then filter the set to remove 

metafolds that do not represent autonomous units or cannot be simulated for other reasons, 



76 

which yields 807 metafolds. In addition to being of use to our Dynameomics efforts, the filtered 

807 target list is more appropriate for bioinformatics studies investigating globular protein prop­

erties than the full consensus domain dictionary or the three parent domain dictionaries by re­

moving folds that do not represent autonomous folded structures. 

Methods 

Relational model for consensus set data 

The relational schema for the 'Target Selection and Preparation' (or 'Prep') database, 

which houses our CDD, is shown in Figure 19 in a unified modeling language (UML) repre­

sentation (Simms et al, 2008). Consensus domains are stored in the Domain table consisting 

of an identifier, PDB code, and fold identifiers from the SCOP, CATH, and Dali domain dic­

tionaries. A domain must contain fold identifiers from at least two of the three input domain 

dictionaries. Metafold data are stored in the Fold table, which contains a metafold identifier, 

name, and the metafold's rank (based on domain population). Note that the Fold table is, in 

fact, a table of metafolds. There may be multiple versions of the same domain in the Domain 

table (due to multiple CDD versions), and these differing versions may link to multiple 

metafolds (also due to multiple CDD versions). The many-to-many relationship between Fold 

and Domain is implemented via the FoldDomain table. Metafold representatives chosen for 

simulation are captured in the Target table. 

As previously stated, domain classifications evolve over time, which can cause changes 

in the CDD. To capture these changes, the Fold, FoldDomain, Domain, and Target tables in­

clude a consensus set identifier to allow multiple versions of metafold and domain definitions 

to be stored in the same primary tables. To facilitate cross-consensus set queries, fold identifiers 
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Figure 19. Target Selection and Preparation ('Prep') database schema. Prep schema as modified to account 
for multiple consensus sets and simulation associations. UML schema describes one-to-one (1..1) and one-
to-many(l..*) relationships. 

are maintained across consensus set releases where this is meaningful. It is possible for new 

identifiers to be introduced and existing identifiers to be removed in subsequent releases. 

Domains and targets are both linked to external data sources. The Domain table contains 

a field for the PDB code, and we populate a local cache table (PDB) with specific information 

synthesized from a given structure's PDBml (Westbrook et al., 2005). Examples include a struc­

ture title, dates, methods, and source organism. These fields facilitate local searches and analy­

sis. The TargetSimuIation table links targets in the Prep database to simulations contained in 

the Dynameomics data warehouse (Simms, 2008). 

Generation of the v2009 CDD 

The v2009 CDD was generated as described by Day et al. (Day, 2003). To generate the 
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CDD, we integrate recent versions of three major domain dictionaries: SCOP (Andreeva, 2008), 

CATH (Cuff, 2009), and Dali (Dietmann, 2001). SCOP vl.73, CATH v3.2, and a March 2005 

download of the Dali Domain Dictionary were used as input for consensus generation. CDD 

generation is a two-step process: First, consensus domains are generated by pairwise comparison 

between domain dictionaries of residue ranges from the same chain. Where a significant overlap 

between input domains is detected, a consensus domain is assigned. Second; the set of consen­

sus domains is filtered for sequence similarity and then clustered into a set of metafolds based 

on their composite fold identifiers. The set of consensus domains and metafolds comprise our 

CDD. The workflow of this process is outlined in Figure 20. 

Our domain matching procedure follows the criteria specified by Dietmann and Holm 

(Dietmann, 2001). A given domain in one input dictionary is compared against analogous do­

mains in the other domain dictionaries. Where the given domain and an analogous domain both 

overlap to a significant extent (80%) a consensus domain pair is assigned. If a given domain 

matches domains from both other input dictionaries, the three resulting domain pairs are col-
Figure 20. Overview of the consensus domain dictionary (CDD) generation process. Consensus domains 

are first found between pairs of input dictionaries. The resulting domain list is filtered for sequence identity. 

The resulting non-redundant domain list is clustered into a list of metafolds. The collected domain lists and 

metafold list are the contents of the CDD. 

[ PDB: -30,000 structures j 

SCOP: CATH- DALI: 
96,973 domains 108.691 domains 73.609 domains 

, ' * - • | 

£ . 1 .Domain matching 

! Consensus Domain List: 80,062 domains 

I 2.Sequenee filtering 

[ Non-redundant Domain List: 13.345 domains] 
1 

A 3.Metafold clustering 

Metafold List: 1695 metafolds! 



79 

lapsed into a single consensus domain spanning analogous domains from all three input dic­

tionaries. If a domain from any single domain dictionary has no consensus with any domain 

from either of the remaining domain dictionaries, it is discarded. Each consensus domain pre­

serves the source data from its input dictionaries (PDB, chain, residue range, and fold identifier). 

This list is loaded into our database to assist with metafold representative selection and report 

generation. The schema is described in Figure 19. 

The full domain list is filtered by sequence using the SCOP ASTRAL95 sequence-fil­

tered domain list and the CATH 'SOLID' sequence identifiers (Chandonia, 2004; Greene, 2007). 

The non-redundant domain list produced by the sequence filter is used as the basis for generation 

of metafolds. Each domain contains a composite fold identifier derived from its input domain 

definitions. SCOP and CATH are hierarchal classifications, for SCOP we chose the 'Fold' level 

to cluster, for CATH we chose the 'Topology' level. Domains whose composite fold identifiers 

share two of three elements are clustered together into a metafold. Those metafolds are then 

sorted and ranked by their non-redundant population. 

Mapping between CDD versions 

The CDD is a product of clustering across input domain dictionaries. As these input 

dictionaries change with the release of new versions, so should the CDD. However, without a 

detailed description of the changes made, it can be difficult to assign equivalence between two 

domains from CDDs generated from different inputs. A mapping between the v2003 and v2009 

CDD was generated based on domain identifier and fold identifier equivalence. Changes in 

fold representation in new versions of both CATH and Dali motivated the mapping criteria. Be­

tween the release of CATH v2.4 and v3.0, "working" CATH classes [6-9] were no longer in­

cluded in production releases (Greene, 2007). Since the v2003 CDD included these classes, 
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criteria were chosen such that v2003 domains could be reassigned to regular (1-4) CATH 

classes. Since fold identifiers do not persist between v3. lb and the March 2005 version of Dali, 

identify between these versions could not be used as the basis for a mapping. In the period of 

time since we acquired this version of Dali, this domain dictionary has been discontinued (Holm, 

2008). 

Four mapping criteria were defined based on the mapping classification a domain pos­

sessed in the v2003 CDD. A v2003 domain possessing composite SCOP, CATH, and Dali fold 

identifiers is mapped to a v2009 domain if both the SCOP and CATH composite chain and do­

main (PDB6) and the v2009 Dali PDB6 is defined (though not necessarily equivalent). A v2003 

domain possessing only SCOP and CATH fold identifiers is mapped to a v2009 domain if both 

the SCOP PDB6 identifier and CATH PDB6 identifier are equivalent. A v2003 domain pos­

sessing only CATH and Dali fold identifiers is mapped to a v2009 domain if the CATH PDB6 

and fold identifiers are equivalent and the Dali fold identifier and PDB6 is defined. A v2003 

domain possessing only SCOP and Dali identifiers is mapped to a v2009 domain if the SCOP 

PDB6 and fold identifiers are equivalent and the Dali fold identifier and PDB6 is defined. 

Selection of domains as metafold representatives 

We examined domains by manual inspection within each metafold to assess their suit­

ability as a simulation target. We chose targets diat were self-contained domains in a single pro­

tein chain that were less than 450 residues in length. Where the structure was determined by 

X-ray crystallography, we only chose crystal structures with resolutions higher than 3.0 A. Do­

mains with obligate cofactors (other than Zn2+, Ca2+, and heme) were rejected. Also, domains 

with multiple Zn2+, Ca2+, and heme sites were rejected, with a few exceptions (e.g. calbindin). 

Many of the domains rejected for this reason are chains where the cofactor is a major structural 

element. Domains with a single Zn2+, Ca2+, or heme were selected (i.e. myoglobin) regardless 

of whether folding information was available regarding the role of the cofactor. When multiple 
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domains within a metafold met our selection criteria, we preferred domains with biomedical 

relevance or with experimental folding studies available for comparison. The workflow for tar­

get selection where targets exist from a previous CDD is outlined in Figure 21. 

The determination of whether a given domain was self-contained was primarily deter­

mined by manual inspection. Several factors could lead to the rejection of a domain as not self-

contained; these factors could occur either in isolation or in concert with one another. Where a 

domain existed was deposited as a multi-domain structure, we used a simple "sheet of paper" 

criteria to examine the interface of the domain of interest with the rest of the protein. Where a 

domain could not be cleanly separated from the remainder of the protein, it was rejected for its 

convoluted interface. In addition, we examined the proposed biological unit from the deposited 

transform. Structures with extensive domain swapping or crystal contacts could be rejected 

even though appearing to be in isolation. Furthermore, structures that were 'irregular' (those 

that possessed little to no structure or hydrophobic core) could also be rejected for being not 

self-contained. This range of factors led to a broad spectrum of possible buried surface area in 

rejected metafolds (10% - 60%). Furthermore, where the domain boundary occurred in the mid­

dle of a significant secondary structure element (helix or beta sheet), this disruption could be 

v2003 targets 

V2009 CD 

s5 1 Domain mapping 

New V2009 metafolds Existing targets 

2,Target Selection 

Release Set. (807) 
95% fold space coverage 

Rejected Targets: (189) 
5% fold space coverage 

Figure 21. Overview of the mapping and target selection process. Existing v2003 targets are mapped to the 
v2009 CDD. (l)Where a mapped domain was selected or rejected in the v2003 CDD, this status is main­
tained in the v2009 CDD. (2)Where a new metafold is observed, targets are selected from available domains 
in that metafold. 
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used as a reason for rejection as not self-contained. This was not used as a basis for rejection 

where the secondary structure was a linking region and could be safely truncated to the previous 

loop region and where that truncation would not expose significant hydrophobic surface area. 

Where a single suitable domain was selected as a target for simulation it was designated 

a representative for its metafold. If, after examining all domains within a metafold, a suitable 

domain could not be found, a domain was chosen as a fold representative and the reasons for 

its rejection were annotated. Once a domain was selected as a metafold representative, we chose 

a residue range to simulate that incorporated the input domain definitions such that we avoided 

disrupting secondary structure elements while removing long, unstructured tails (many of which 

are cloning artifacts). 

Results 

v2009 Consensus Domain Dictionary 

The CDD consists of a set of consensus domains and a list of consensus fold identifiers 

binding these domains together into metafolds. The process of CDD generation is summarized 

in Figure 20. Consensus domains were identified between pairs of domain dictionaries 

(SCOP/CATH, SCOP/DALI, Dali/CATH). Summary statistics from each of the domain dic­

tionaries are presented in Table 19. The agreement between domain dictionaries was measured 

as the fraction of shared consensus domains divided by the total number of domains originating 

from structures shared between the two dictionaries. 

We reduced the effect of differing release dates (and thus different numbers of structures) 

by considering only shared structures. CATH and Dali have the highest agreement, with 96% 

of CATH domains and 90% of Dali domains included in the CATH/Dali consensus domain set. 

SCOP and CATH have the next highest agreement, with 79% of SCOP domains and 82% of 

CATH domains in the SCOP domains in the SCOP/CATH consensus domain set. Finally, SCOP 
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Table 19. SCOP, CATH, and Dali. Summary statistics of the SCOP, CATH, 
and Dali domain dictionaries used in the v2003 and v2009 CDD. 

Version Dictionary Chains (C) Domains (D) Folds' D/C2 

v2003 S C 0 P 2 7 ' 3 0 8 3 5>0 9 5 7 8 3 L 2 9 

CATH 25,622 36,480 1,453 1.42 

Dali 21,493 35,492 1,088 1.65 

v2009 S C 0 P 7 4>6 0 8 9 6>9 7 3 i . 2 8 0 1 2 9 

CATH 74,240 108,691 1,110 1.46 

Dali 52,740 73,609 2,783 1.39 

'Number of unique folds at the chosen level within each domain dictionary 
'Number of distinct domains (D) per distinct chain (C) 

and Dali had the lowest agreement, with 65% of SCOP domains and 61% of Dali domains in­

cluded in the SCOP/Dai consensus domain set. A consensus domain need not exist solely be­

tween a single pair of domain dictionaries. Where a consensus domain was determined by each 

of the three pairwise comparisons, it was collapsed into a single triple consensus domain in the 

CDD. Thus, four classes of consensus domains were created, SCOP/CATH, SCOP/Dali, 

Dali/CATH, and SCOP/CATH/Dali. 

The v2009 CDD is composed of 80,062 domains, originating from 27,140 PDB struc­

tures. The total number of PDB structures considered is lower than the structures available due 

to the lag between PDB and domain dictionary releases. The domains of the CDD were dis­

tributed among the aforementioned classes as follows: 51% SCOP/CATH/Dali, 30% 

SCOP/CATH, 10% CATH/Dali, and 9% Dali/CATH. To generate the metafold list, the CDD 

first must be filtered by sequence identity. The nrCDD was composed of 13,345 domains. The 

domains in the CDD clustered into 1695 metafolds. On the whole, these metafolds incorporate 

4217 unique consensus fold identifiers derived from 971 unique SCOP folds, 923 unique CATH 

topologies, and 2362 Dali folds. The distribution of domains per fold for the input domain dic­

tionaries is shown in Figure 22. 
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Figure 22. Distribution of domain populations between folds and metafolds. A) Population distribution of 
top 30 most populated folds in the SCOP (filled squares), CATH (open squares), and DALI (crossed dia­
mond) dictionaries for the v2003 CDD. B) Population distribution of top 30 most populated folds in the 
SCOP, CATH, and DALI dictionaries for the v2009 CDD. C) Non-redundant population distribution of the 
top 100 most populated metafolds in the v2009 CDD. D) Cumulative percentage of domains represented by 
metafold rank. The most populated metafolds account for a large percentage of the domains in the CDD. 
E) Metafold distribution binned by 50-fold increments, sorted by rank into rejected and accepted popula­
tions 
Comparison ofv2009 to v2003 

Both the residue range of a domain and its fold classification can change over time. 



85 

These changes affect the output of the metafold clustering and the domain contents of the CDD. 

Since our Dynameomics simulations are indexed against the CDD, it is necessary to track do­

mains across multiple dictionary versions so that information about our simulated domains is 

current. Where possible, we generated a map between domains in our v2003 and v2009 CDD 

based on their fold identifiers. There were 31,141 domains in the v2003 CDD. From this dic­

tionary, 4,693 domains could not be mapped forward from v2003 to v2009 and are considered 

obsolete (discussed below). 26,448 domains were mapped from v2003 to v2009. There are 

53,614 domains in the v2009 dictionary that were not in the v2003 dictionary. 

The domains that were not mapped from the v2003 CDD can be broadly partitioned 

into three categories: (1) domains from structures that were dropped from consideration in one 

of the input domain dictionaries, (2) domains whose boundaries changed significantly in one 

of the input domain dictionaries, and (3) domains that were split into multiple domains or 

merged into a single domain. From each of our input dictionaries used in v2003 CDD, 95% of 

the structures considered also had at least one domain in the input dictionaries used in the v2009 

CDD. The - 5 % of structures that were in the v2003 CDD but not in the v2009 CDD had the 

following properties: the structure was deemed obsolete by the PDB, the structure consisted 

primarily of nucleic acids, or the structure was a purely computational model. Of those chains 

that were removed from consideration that were not part of the aforementioned dropped struc­

ture set, the majority are rare cases arising from the presence of synthetic linkers and/or multi­

chain domains arising from viral capsid structures. In some cases where neither the chain nor 

structure containing a domain were dropped, but it could still not be mapped, the domain bound­

aries in the structure were significantly altered. Alternatively a domain was split into multiple 

domains or merged with other domains. Although we can observe these transitions, we prefer 

to treat the resulting domain(s) as new. The 4,393 dropped domains from the v2003 ® v2009 

CDD mapping originated from 2,198 PDB structures. 3,314 of those v2003 domains originate 
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from PDB structures that still contain domains in the v2009 CDD. There are 1,379 v2003 do­

mains originating from 608 PDB structures not found in the v2009 CDD. 319 of these v2003 

domains originate from structures that were superseded by newer structures in the PDB. The 

remaining 1,060 domains are dropped either because they were removed from one of the input 

dictionaries, or because the domain definition was changed in one or more of the input diction­

aries, breaking the original v2003 consensus. 

Domains that were mapped from v2003 to v2009 met specific criteria for their particular 

class (SCOP/CATH, SCOP/Dali, etc.). Of the 26,448 mapped domains, 15,735 were mapped 

using the SCOP/CATH/Dali class, 7,736 were mapped using the SCOP/CATH class, 1,734 

were mapped using the SCOP/Dali class, and 995 were mapped using the CATH/Dali class. A 

majority of the domains in our CDD could be mapped based on their SCOP and CATH identi­

fiers alone. The mapped domains originated from 11.896 PDB structures, leading to an average 

of 2.23 mapped domains per PDB structure. The mapped domains originate from 857 metafolds 

in the v2003 CDD and are mapped into 719 metafolds in the v2009 CDD, indicating that some 

v2003 metafolds and their domain contents were merged into larger v2009 metafolds. Any do­

mains were also folded into larger metafolds as they gained a third input fold identifier. 6,613 

mapped domains with defined SCOP, CATH, and Dali domain identifiers in the v2009 CDD 

contained only two fold identifiers in the v2003 CDD. 

'New' domains are those that exist in the v2009 CDD and did not exist in the v2003 

CDD. The 53,614 new domains originate from 17,949 PDB structures. These new domains fall 

into 1565 metafolds. There were 976 metafolds in the v2009 CDD that consisted entirely of 

new domains, 589 metafolds composed of a mix of mapped and new domains, and 130 

metafolds that consist entirely of mapped domains. A majority of the new v2009 domains were 

placed into metafolds with other mapped domains. 8,401 v2009 domains fell into metafolds 

composed solely of new domains. The domain population was less than five for 633 of the new 

v2009 metafolds. 
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SCOP and CATH in the v2009 CDD 

The consensus generation process can separate an input fold into multiple metafolds or 

merge multiple input folds into a single metafold. We examined the location of input folds from 

SCOP and CATH within the CDD closely because it indirectly addresses the continuity of fold 

space. This analysis also serves as an internal check of the consistency of our metafold clustering 

method. The domains of an input fold can be distributed into multiple metafolds and/or com­

bined into a metafold with domains from other input folds. To quantify this effect, we analyzed 

the number of metafolds into which an input fold and its domains are distributed. An input fold 

can be distributed over many metafolds and yet the vast majority of that fold's domains can 

still be assigned to a single metafold. Thus, we are primarily interested in the fractional domain 

population of the metafold containing the majority of an input fold's domains, or the 'most pop­

ulated metafold.' The net effect of this treatment is that outliers within a fold are partitioned 

into their own poorly populated or singleton metafolds (metafolds containing only a single do­

main). 

Certain structurally variable topologies (such as the Rossmann folds) are split more 

evenly across a number of metafolds. The 860 input SCOP folds were spread over 815 CDD 

metafolds. 12 of these metafolds contained multiple SCOP input folds. The metafold containing 

the most SCOP input folds was metafold #2 (consisting of a number of Rossmann folds), fol­

lowed by metafold #16 (consisting of parallel a-helical bundles), and metafold #1 (consisting 

of IgG-like b-sandwiches). These SCOP folds are bound together by highly populated CATH 

topologies. A full listing of merged SCOP folds is provided in Table S1. 815 metafolds contained 

only a single SCOP fold. Of these 815 metafolds, 290 also contained only a single non-redun­

dant domain. We also examined those SCOP folds where the most populated metafold contained 

a diminished fraction of the total domains, indicating that the SCOP fold was distributed across 

multiple metafolds. 112 of the input SCOP folds had a fractional population within the most 

populated metafold of 80% or less. The significance of this fraction can vary, however, if the 
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input fold is poorly populated or if the input fold was not a child of one of the 4 main structural 

classes (all-a, all-b, a+b, or a/b). 

The 892 input CATH folds were distributed over 862 metafolds. 26 metafolds contained 

domains from multiple CATH folds. The most populated metafold, consisting of IgG-like b-

sandwiches, contained four CATH folds. Metafolds #16 and #46 contained three CATH folds. 

The remaining 23 metafolds each contained two CATH folds. The most populated metafold of 

the 30 most populated CATH folds is presented in Table S2. Of the 866 metafolds containing 

only a single CATH fold, 277 also contained only a single nonredundant domain, signifying 

singleton metafolds. The CATH Rossmann fold (3.40.50) was the most populated of the CATH 

folds that were significantly distributed over multiple metafolds. This fold was distributed over 

42 metafolds, and the most populated metafold of these (#2) contained only 49% of the input 

fold. 

The v2009 CDD has 881 unique SCOP folds from the 11 different SCOP classes (all-a, 

all-b, a+b, a/b, multidomain a and b, membrane and cell surface, small proteins, coiled coil, 

low resolution, peptides, and designed) There were 434 SCOP folds that only appeared in 

metafolds with a simulated metafold representative and 332 SCOP folds that were only found 

in rejected metafolds. The rejected SCOP folds represent about a third of the folds from each 

of the top four classes (all-a, all-b, a+b, a/b) found in our CDD, between 27 to 38% of each 

class. We rejected approximately 70% of each of the multidomain and membrane classes in our 

set. Similarly, there are 894 CATH topologies in our domain dictionary from the four CATH 

classes: mainly-a, mainly-b, mixed a-b, and irregular/few secondary structures. The majority 

(77%) of the irregular class CATH topologies are only found in rejected metafolds. The other 

three CATH classes all had between 36-47% of topologies found only in rejected metafolds. 

These classes had a similar number of topologies found only in selected metafolds (40-55%). 

This analysis of the SCOP and CATH folds reveals that we have not biased our set of selected 

metafolds towards any fold class or systematically rejected any class, except for unstructured 
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peptides and membrane proteins. 

Selection of Metafold Representatives 

The primary purpose of the CDD was to facilitate the simulation of both the native state 

dynamics and the unfolding behavior of at least one domain from each metafold. As such, we 

examined domains from each metafold to find a high quality structure suitable for simulation. 

Such domains were then selected as a 'metafold representative', or target, of that metafold and 

prepared for simulation. If no suitable domain could be found we chose one domain from the 

metafold to represent the reason that the metafold was rejected. The selected representatives 

for the top 30 most populated metafolds are presented in Figure 24, the full target set is provided 

in Table S3. Selected representatives could come from a variety of structural contexts; 387 rep­

resentatives were the full contents of their PDB structure deposition, 165 representatives were 

a full chain from a multi-chain deposition, and 165 representatives were excised domains where 

a chain was chopped to select the domain. 

We identified at least one domain suitable for simulation from 807 of 1695 metafolds 

in the v2009 CDD. Of the remaining 888 metafolds, 585 metafolds consisted of domains that 

were not self-contained and 87 metafolds consisted of domains that were irregular. Of these 

672 metafolds, none were autonomous units (75% of the rejected metafolds or 40% of the total 

number of metafolds). A summary of the reasons a domain from a metafold was rejected is pre­

sented in Table 20. These rejected domains fell into three categories: domain-swapped dimers, 

domains with a large buried interface in the experimentally determined structure of a complex, 

and domains with secondary structure elements that continue into other domains of the protein 

(Figure 23). There was no significant bias in major fold class (all a, all b, mixed a/b) in the re­

jected metafolds. In 11 metafolds, no domains of less than 450 residues were present so the 

metafold was rejected for reasons of size. In 27 cases, the domains of the metafolds in question 

were contained a transmembrane region. There were 54 metafolds whose domains required an 
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Table 20. Justifications for rejection for 888 metafolds in the v2009 CDD. 

Reject Reason Definition Metafolds 

Not an autonomous Poor interface, continuation of secondary structure into other do-
domain mains, small with little secondary structure 

Large gaps Backbone gap of more than seven residues 
Non-parameterized 

672 

85 

r ^ , Structurally necessary non-protein molecules that have not been pa- ,_ 
co-factors or struc- . , 57 
. , . rametenzed tural ions 

Membrane Domain penetrates membrane 

Size Larger than 450 residues 

Resolution Resolution lower than 3.0 A 

Rejected by simula-
Did not pass native (298 K) simulation quality control 

27 

11 

20 

14 
tion 

<-)mer Structures in dispute 2 

aStructure 1BEF was retracted from the PDB, causing rejection of domains 1BEFA01 and 1BEFA02. (Murthy, 2009) 

obligate cofactor. There were 85 metafolds where each of the domains contained a large (greater 

than 7 residue) gap and were rejected. In 87 cases, the metafold consisted of domains that lacked 

regular secondary elements and/or were unstructured peptides. In 20 metafolds, all domains 

had a resolution lower than 3.0 A. Finally there were two singleton metafolds that were rejected 

because their domains were of disputed structural validity at the time of writing (Murthy, 2009). 

In 14 cases, we selected a domain but the resulting native state simulation was not stable and 

the metafold was rejected. For these 'rejected by simulation' cases, no alternative replacement 

could be found from their respective metafolds (See (van der Kamp, 2010) for more details). 

Figure 23. Example metafolds rejected for not being autonomous units. A) Metafold #232, chain 4 of Pl/Ma-
honey poliovirus mutant (1AL2). B) Metafold #2232, Chain A of d-crystallin I (1I0A). C) Metafold #489, 
chain B of HSP33 (1HW7). D) Metafold #172, Chain C of cathepsin D (1LYA). 
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l )Twitchirt(IWIT) 2) CheY (3CHYJ 3)T1M(1YPI) 4)S6(1RIS) 5)EnHD0ENH) 

6)FynSH3(15HF) 
7) Serum amyloid P 
component (1 SAC) 

8)Ubiquit in(lUBQ) 9)MajorCSP7.4(lMJO 10)GSTAMOOKT) 

11)Calbindin(4IC8) 12) Myoglobin (1A6N) 
13} Achromobacter 
protease I (1ARB) 

14) Triacyl-glyeceroi 
acylhydrolase {3TGL) 

£jf52& 

15) Histidinol-PO,, 
aminotranferase (1UU2) 

16!a-spectrin(lCUN} 17)RNaseH(1RIL) 18) Capsid protein gpf (1GFF) 
19) Chemotaxis 
receptor (1 WAS) 

20)RmlC(1EP0) 

21)Peptldyl-tRNA 
hydrolase [2PTH) 

22) Neuronal nitric acid 
synthase (1QAU) 

23) Dihydrolipoamide 
dehydrogenase (1EBD) 

24) Catechol 
O-methyttranferase (1VID) 

25) Winged bean CI 
(4WBC) 

26) Dynamln PH domain 
(1DYN) 

27) Casein kinase II, a-chain 
(UAM) 

28) Human pancreatitis-
associated protein (2GO0) 

29) Horse heart Cytc 
(2GIW) 

30) MHCI domain 
(1TMC) 

Figure 24. Structure representatives. Structures of the representative domains of the 30 most populated 
metafolds in the 2009 CDD. Domains are named based on their source structure, where a domain was an 
excised chain or domain, it is named according to the PDB-deposited name for its chain. 
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Discussion 

The recognition of spatially distinct motifs and structural patterns is a long-standing 

component of structural protein studies (Phillips, 1967; Wetlaufer, 1973). The understanding 

of the term 'domain' to denote an autonomous, structurally cohesive unit is similarly well es­

tablished (Levitt, 1976). However, the multiple extant definitions for 'domain' do not always 

converge (Majumdar, 2009; Sowdhamini, 1995). A spatially distinct region within a structure 

may not coincide with an autonomous, stable unit. Our interest in domain dictionaries is to es­

tablish a systematic, broad sampling of topologies that satisfy our autonomy criterion. The 

single most striking conclusion from this endeavor was that a significant fraction of metafolds 

generated by our consensus method contained no domain suitable for simulation. This occurred 

due to a variety of factors, but the single largest reason for rejection was that the domain was 

not self-contained. Identification of protein domains can be split into two problems: the partition 

of a chain into multiple domains, and the separation of domains into folds. The difficulty of 

partitioning a chain into domains has been well studied (Holland, 2006; Veretnik, 2004). The 

separation of domains into fold has been similarly examined. Both problems share similar ele­

ments. It may be that the smallest repeating structural element observed between two structures 

is not necessarily a shared domain. For example, if chain discontinuity is allowed within a do­

main to increase structural similarity of the domains in a fold, then the structural integrity of 

the excised region may be sacrificed. The problem becomes more complex when considering 

domains that are solely observed in the context of multimeric structures or in complexes. In 

our opinion, one must be very careful to consider the effect inadvertent inclusion of such do­

mains may have on bioinformatics studies; they are not independent, globular structures. We 

note that the distribution of autonomous and non-autonomous domains is not necessarily related 

to the dependent or independent folding of these domains in nature. Indeed, discovering the 

folding behavior of the autonomous domains is one of the primary goals of the native and fold­

ing simulations we have performed of these domains. 
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We have generated a consensus domain dictionary (CDD) from three major domain dic­

tionaries. This CDD contains 1695 metafolds. We have inspected each metafold and selected a 

single representative where suitable autonomous criteria were met. These representatives con­

stitute our release set, which consists of 807 'simulatable' domains. This set of autonomous do­

mains is the basis for our high-throughput MD simulation of representatives of all globular 

protein folds (Beck, 2008; van der Kamp, 2010). Also, to reduce artifacts, we would suggest 

that the reduced list of 807 metafolds be used for bioinformatics studies, not the full CDD, nor 

the domain dictionaries from which they were derived. 
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Chapter 6: The Molecular Mechanics Parameter Markup Language 

Molecular dynamics is a method from theoretical physics used to study the motion of a 

system of particles and has been validated in many applications, including the study of protein 

motion in solvent. A significant issue in the application of molecular dynamics simulations to 

map macromolecular motion is the correct determination, representation, and management of 

force field parameters. Numerous incompatible formats exist, including everything from tables 

in the literature to proprietary file formats tied to specific software packages. Here we introduce 

the Molecular Mechanics Parameter Library (MMPL), an extensible public standard for devel­

oping and sharing force field parameters, as well as a collection of validated parameters for 

common chemical entities. 

Introduction 

Molecular dynamics (MD) is a simulation method from theoretical physics used to study 

the motion of a system of particles (Allen, 1987; Haile, 1992). The method has been applied 

and validated in many applications(Daggett, 2002; Giudice, 2002; Hansson, 2002; Jungwirth, 

2002; Kremer, 2003; Norberg, 2002; Saiz, 2002; Wang, 2001; Warshel, 2002); here we focus 

on its practical application in the domain of protein dynamics, but the approach is general and 

the schema described here can accommodate any chemical moieties. At the core of MD are 

the classical equations of motion and an equation, known as a force field, which models the 

potential energy. The force field equation includes terms that capture the contribution of intra-

and intermolecular interactions. These terms are parameterized using constants for the specific 

types of atoms involved as well as spatial configuration. A simulation engine is used to solve 

these equations numerically, yielding a set of atomic coordinates. The details of these calcula­

tions are covered elsewhere (Levitt, 1983; van Gunsteren, 1990). 

Simulation engines read and write data in application specific file formats, including 

force field parameters. Parameter data formats are usually very compact, often only a thin syn-
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tactical veneer over the FORTRAN, C or C++ data structures they will ultimately be loaded 

into. This approach minimizes the work to parse the data into memory structures by the simu­

lation engine, but it does not facilitate data validation, annotation, or computability outside the 

simulation engine. Ultimately, these limitations make parameter data difficult to share, publish 

and maintain. We have addressed these limitations by designing the Molecular Mechanics Pa­

rameter markup Language (MMPL) and have implemented it in the in lucem Molecular Me­

chanics (/7mm) simulation engine (Beck, 2000-2011). 

Force Field Parameters 

ilmm is a highly scalable MD simulation and analysis software package that is fully in­

tegrated with a data warehouse (Simms, 2008). It implements the Levitt et al. (Levitt, 1995) 

potential function shown in Eqs. (1-3), which is similar to the force fields implemented in 

AMBER (Pearlman, 1995), CHARMM (Brooks, 2009), and many other simulation engines, 

with the bonded Ub and nonbonded Unb terms separated. 

This compact and elegant symbolic representation hides the complexity of all the bonded 

and nonbonded interactions, which must be mapped to the potentially thousands of specific 

atoms found in a simulation system. MMPL captures all the constants, bonds, and links to spe­

cific atoms, organizing them hierarchically as shown in Figure 25. This model, which is dis­

cussed in detail in the following sections, enables assembly of molecules from reusable 
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components. Although designed and tested using ilmm, MMPL is general purpose and can be 
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easily adopted by other simulation packages. As an example, an MMPL file was created using 

parameter information from the published AMBER parameter file (Cornell, 1995; Wang, 2000) 

(parm99.dat) and is included in the supplementary data. 

The MMPL Data Model 

MMPL consists of a data model for describing chemical entities and parameters, a W3C 

XML Schema (W3C.org, 2004a; W3C.org, 2004b) for representing the data model as an XML 

document, and a sample set of parameters for chemical entities described by Levitt et al.(Levitt, 

1995) and the F3C water model (Levitt, 1997). The data model defines a four-level hierarchy 

of structural entities and an ordered set of rules to map non-bonded interaction parameters to 

specific atoms. The highest level of structure within MMPL is a molecule; the lowest level is 

an atom. Molecules are composed of residues, which are in turn composed of groups, and 

groups are composed of individual atoms as illustrated in Figure 26. Nonbonded parameters 

are associated with individual atoms explicitly (van der Waals radius and energy), and through 

Simulation 
System -T. 

Torsion \ 
Parameter j 

Atom A 
1__ 

Atom B 
= " = - , | 1 — 
Atom C | I Atom D 

.-.J 
! Molecules 

Residues 

Angle 
Parameter 

Atom A Atom B 
r____ 
AtomC 

Groups 

Bond 
Parameter 

Atoms Atom A Atom B 

Figure 25. The MMPL as a multi-dimensional data model. MMPL has 4 hierarchies, the 
simulation system which consists of structural elements and three types of bond parame­
ters. Non-bonded parameters for van der Waals radii and energy are stored at the atoms 
level; charge parameters are stored in atom at the groups level. 

http://W3C.org
http://W3C.org
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Figure 26. MMPL schema. A Unified Modeling Language (UML) representation of the 
MMPL structural hierarchy. Complex chemical structures are assembled from reusable 
components, atoms are assembled into groups, which are then composed into residues, and 
finally into molecules. 

groups (charge). These parameters are base values, which may be overridden in a simulation. 

For example, a simulation may apply general a-scale or b-scale factors to interactions between 

non-bonded atoms (van der Waals attractive and repulsive portions of potential, respectively); 

may include and scale specific interactions between atoms (c-scale); or may apply a cutoff 

range to exclude interactions between non-bonded atoms. Bonded parameters are mapped using 
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a wildcard facility that matches on atom names. The set of structural entity and parameter match­

ing rules are listed in Table 21 and described below. All primary elements support the concept 

of a comment and Digital Object Identifier field (DOI) for data provenance. 

Table 21. MMPL Elements. This table lists the principle elements of MMPL. 

Element Type Usage 

mmpl 

atom 

group 

residue 

molecule 

ce 

bp 

ap 

tp 

Root Element 

Structural 

Structural 

Structural 

Structural 

Annotation 

Parameter 

Parameter 

Parameter 

Root of a valid MMPL document 

Defines an atom 

Defines a collection of atom elements 

Defines a collection of group elements 

Defines a collection of residue elements 

Chemical element, used to classify atoms 

Bond length parameter 

Angle parameter 

Torsion parameter 

Atom elements 

An atom element is used to define van der Waals radius, r, van der Waals energy, 8, and 

atomic mass, m, using the r, epsilon, and mass attributes, respectively. Atoms are referenced 

by name and can be assigned multiple names, so long as they are unique across all atoms. Since 

radius and energy parameters will vary depending on the surrounding structure, it is possible 

to define multiple atom elements for the same atom type. For example, a hydrogen atom may 

appear in a polar configuration, such as exists in a water molecule, and will have r = 0.91 A and 

e = 0.01001 kcal/mol; a hydrogen atom in a nonpolar molecule will have r = 2.825A and e = 

0.038 kcal/mol. Atoms can optionally be explicitly associated with a ce (chemical element def­

inition) element. 

Group elements 

A group element is used to describe charges on individual atoms and to define bonds 
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between atoms in the group. Groups are keyed on a name attribute; atoms within a group linked 

to previously defined atoms by name. Each atom reference is assigned a locally unique integer 

index attribute, idx, and a charge, using the q attribute. If a group contains more than one atom, 

and these atoms participate in a chemical bond, b elements are used to describe the participating 

atoms by index. Figure 27 illustrates the relationship between the carbon atom in the group 

named "CH" and its definition (A), as well as assignment of a covalent bond to that same carbon 

and a hydrogen within the group (B). 

Residue elements 

A residue element corresponds to a reusable unit of structure such as an amino acid. A 

residue element contains a list of group elements; each referenced by the attribute name and 

assigned a locally unique integer index attribute idx. Similar to the group element, residue el­

ements can also define bonds between atoms in different groups. Bonds at the residue level 

are bonds between groups. Thus, they reference the local group index groupidxA and an 

atom index attribute a tomidxA that identifies a specific atom within the referenced group. 

Figure 27 illustrates the relationship between a group named "CH" and its definition (C); bonds 

between groups, such as the covalent bond between carbon and nitrogen (D); and an indirect 

reference to the "CI" carbon via the attribute atom_idx_B (E). 

Molecule elements 

A molecule element represents the highest level of structure within MMPL. A molecule 

element contains a list of residues and two attributes: name and an optional struct_id (used to 

link to the Dynameomics data warehouse). Similar to elements described earlier, an r element 

is linked to a previously defined residue by the name attribute and is assigned a locally unique 

integer index attribute idx. Unlike other elements, the r also supports the pdb_num and 

pdb_icode attribute which allows the element to be linked to a Protein Databank (PDB) residue 

number and insertion code, respectively. Similar to the residue element, the molecule element 
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<residue name=,PRO'> 
<groups> 

<g name= 
———————-"^g-fiarrrt 

<g name: 

<g name: 

<g name= 
<g name: 
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<bonds> 

<b group. 
<b group. 
<b group. 
<b group. 
<b group. 
<b group. 

</bonds> 
<names> 

<n name: 

<n name: 

</names> 
</residue> 
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='CPH2* idx='4V> 
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jdx_A-2' atom_idx_A='0' group_idx_B='3' atom_idx_B: 

jdx_A='3' atom_idx_A='0' group_idx_B='4' atom_idx_B: 

jdx_A='0' atom_idx_A='0' group_idx_B='4' atom_idx_B= 

: 'N' group_idx='0' atom_idx='07> 
='CA' group_idx='1' atom_idx='0'/> 

:'07>>i 
•'07> I 
:'07> ; 
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^ ^yi uup 11Jwt^£H_v 
<atoms> 

jf to nam^ 'CI 
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</atoms> 
<bonds> 

<b atom_idx_(^0\^m_idx 
A </bonds> t 

</group> 

<atom r='4.315' epsilon='0.07382' mass='12.011'> 
<names> V— — •**«^&££J& 

<n name='C27> 
<n name='C37> 
<n name-CP7> 
<nname=TETRA_VALENT_ALPHIPHATIC_CARBON7> 

</names> 
</atom> 

Figure 27. Illustration of relationships between structural elements. A carbon-hydrogen 
group named "CH" references a carbon atom named "CI" (A), and defines a bond between 
the carbon and hydrogen atoms (B). This group is part of a proline amino acid residue, 
and is linked via a t o m i d x B attribute (C). The group is bonded to a nitrogen group (D) 
specifically to atoms specified by the atom_idx_A and a tomidxB attributes. The atoms 
referenced are indexed at the group level; a t o m i d x B is shown (E). 
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supports defining bonds between atoms in different residues. 

Bonded parameter elements bp, ap, and tp 

Bonded parameter elements bp, ap, and tp use a simple pattern match facility to asso­

ciate parameters to specific configurations of atoms. These correspond to the bond, bond angle 

and torsion angle terms, respectively, of Eq. (2). This facility allows bonded parameters to be 

expressed concisely without having to exhaustively enter elements for each atom combination. 

Ambiguity is resolved by the order that rules appear—the last rule to match takes precedence. 

Match attributes are always two characters. The first character may consist of an upper-case 

letter A-Z or '? ' . The second character can consist of a letter A-Z, a number 0-9, a dash '-', a 

period '.', apostrophe ' " , or double-quote "". Apostrophes and double quotes correspond to 

notational naming conventions of "prime" and "double-prime", respectively. These values are 

always URL encoded ("&apos;" or "&quot;") to avoid conflicts with XML text delimiters. 

The bp element consists of two atom name reference pattern attributes (A, B) and two 

parameters: ideal bond length attribute 1 (bg) and energy attribute k (ify). The atoms referenced 

are separated by one covalent bond. The ap element consists of three atom name reference pat­

tern attributes (A, B, C) and two parameters, ideal angle attribute theta (90) and energy attribute 

k (KG). The first and last atoms referenced are separated by two covalent bonds. The tp element 

consists of four atom name references (A, B, C, D), and four parameters: a torsion angle type 

attribute (0 = normal and 1 = out-of-plane), ideal angle attribute phi (cpg), energy attribute k 

(K<p) periodicity attribute n. Here the first and last atoms are separated by three covalent bonds. 

All three types of bonded parameters are illustrated graphically in Figure 28. 

The match algorithm for bonded parameters is illustrated in Figure 29. Bond length, 

angle, and torsion parameters are matched against atoms in the appropriate bond configuration. 

Because more than one rule can match a given set of atoms, the algorithm will keep reading 

rules and storing any match until there are no more rules. 



102 

Chemical Element (ce) Definitions 

The final type of top level element is the chemical element definition ce. These elements 

form a simple list containing a symbol and name for the set of chemical elements defined in 

the periodic table (CRC Press, 2010). Linking atom elements to ce elements enables a variety 

of secondary analyses and reporting. 

Validation of elements and relationships 

Although MMPL top-level elements can occur in any order, extensive explicit con­

straints are used to ensure that parameter data stored in MMPL are valid. First, domain level 

constraints are used wherever possible to limit attributes to a specific data type and a range of 

correct values. For example, we use the standard XML Schema type "nonNegativelnteger" for 
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Non-Bonded Parameters (^A) 
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0 
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« 
1 
1 
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Bond parameters(bp) w < _ ) 

Angle Parameters(ap) 

e0 

Torsion Parameters(tp) 

Figure 28: Parameter types. The non-bonded parameters van der Waals radius and van 
der Waals energy are encoded directly in the atom element using the r and epsilon attrib­
utes, respectively. The non-bonded charge parameter is encoded at the group level (hashed 
box) in a group/atoms/a element, allowing different charges to be assigned to the same 
atom based on local structure. In contrast, bonded parameters are matched to specific sets 
of atoms using patterns, allowing rules to be reused. 
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Figure 29. Parameter mask matching algorithm. 

idx attributes and "double" for floating point values such as distances and charges. This allows 

downstream consumers of MMPL data to map these values to an appropriately typed data struc­

ture in their programming language of choice. 

Structured cardinality constraints are used to ensure required elements are present and 

to explicitly define optional attributes and elements. For example, it is possible to define a 

valid parameter library that does not include torsion parameters, thus tp top level elements are 
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optional. However, if a torsion parameter is later added, additional constraints ensure that the 

tp element will contain all required fields. 

Finally, relational constraints are enforced using XML Schema key and Areyre/concepts. 

For example, this allows the ce attribute of an atom element to be assigned only to one prede­

fined chemical element. Similar restrictions allow groups to be composed from previously de­

fined atoms, residues from groups, and so on. Currently, XML schema can only be used to 

define direct foreign key relationships. Indirect relationships, such as the atom index attribute 

in a residue pointing to a group atom index, cannot be expressed as an explicit key/keyref con­

straint (See Figure 27, relationship E). Encoding all of these constraints in the schema relieves 

MMPL client code from having to implement these error checks. It should be emphasized that 

although these constraints help reduce or eliminate certain types of errors, there are still many 

other errors that cannot be detected by these mechanisms. 

MMPL Components and Extending the Parameter Library 

MMPL is distributed as a set of files as outlined in Table 22 and accessible via 

http://www.dynameomics.org/mmpl/v2009/sample_parmlib.xml. The files listed in Table 22 

of type "XML Fragment" contain the parameters defined in Levitt et al. (Levitt, 1995) encoded 

as MMPL elements. The schema defines a single XML namespace: 

http://www.dynameomics.Org/schemas#mmpl. The mmpl document element is defined as a 

complex type containing an unbounded choice group, meaning the allowed element types can 

occur in any order. This element type enables the use of the Document Type Definition (DTD) 

system facility for including base definitions and then adding additional definitions and mole­

cules. A sample empty parameter library, containing only base definitions is shown in Figure 

30. A typical usage pattern is to store reusable components (such as new atom types) in a frag­

ment file accessible via http, and then assemble molecules of interest in a local file. This local 

file should be edited using an XML aware editor, maintaining the assigned schema definition 

http://www.dynameomics.org/mmpl/v2009/sample_parmlib.xml
http://www.dynameomics.Org/schemas%23mmpl
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<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE mmpl [ 

<!ENTITY celements SYSTEM "http://mmpl/v2009/elements.xml"> 
<!ENTITY atoms SYSTEM "http://mmpl/v2009/atoms.xml"> 
<!ENTITY groups SYSTEM "http.7/mmpl/v2009/groups.xml"> 
<!ENTITY residues SYSTEM "http://mmpl/v2009/residues.xmr> 
<!ENTITY molecules SYSTEM "http://mmpl/v2009/molecules.xmr> 
<!ENTITY bonds SYSTEM "http://mmpl/v2009/bonds.xml"> 
<!ENTITY angles SYSTEM "http://mmpl/v2009/angles.xml,,> 
<!ENTITY torsions SYSTEM "http://mmpl/v2009/torsions.xml"> 

]> 
<mmpl name="empty" 

version="2009.03.13" 
xmlns="http://www.dynameomics.org/schemas#mmpl" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.dynameomics.org/schemas#mmpl 

http://www.dynameomics.org/mmpl/mmpl.xsd"> 
&celements; 
&atoms; 
&groups; 
&residues; 
&molecules; 
&bonds; 
&angles; 
&torsions; 

</mmpl> 

Figure 30. A minimal parameter library. This valid XML document imports components 
from all the base fragment files using the Document Type Definition (DTD) SYSTEM im­
port facility. 

similar to the example. The resulting document can then be easily confirmed as being properly 

formed XML and explicitly validated against the schema. All validation issues should be re­

solved prior to using any parameter library—simulating a system based on an invalid MMPL 

document will yield unpredictable results. 

The parameters included with MMPL are sufficient for many types of simulations, but 

they do not include many other parameters of interest such as metals. These can be added by 

creating additional XML fragment files with the atoms, groups, or residues needed. New pa­

rameters can take advantage of a key feature of the MMPL XML Schema—support for com-

http://mmpl/v2009/elements.xml
http://mmpl/v2009/atoms.xml
http://http.7/mmpl/v2009/groups.xml
http://mmpl/v2009/residues.xmr
http://mmpl/v2009/molecules.xmr
http://mmpl/v2009/bonds.xml
http://mmpl/v2009/angles.xml
http://mmpl/v2009/torsions.xml
http://www.dynameomics.org/schemas%23mmpl
http://www.w3.org/2001/XMLSchema-instance
http://www.dynameomics.org/schemas%23mmpl
http://www.dynameomics.org/mmpl/mmpl.xsd
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Table 22. MMPL File Manifest. 

File Type Description 

angles.xml 

atoms.xml 

bonds.xml 

elements.xml 

groups.xml 

mmpl.xsd 

residues.xml 

sample_parmlib.xml 

torsions.xml 

XML Fragment 

XML Fragment 

XML Fragment 

XML Fragment 

XML Fragment 

W3C XML Schema 

XML Fragment 

XML 

XML Fragment 

Standard library bond angle parameters 

Standard library atoms 

Standard library bond length parameters 

Definition of chemical elements and symbols 

Standard library groups 

MMPL Annotated Schema 

Standard library amino acids 

MMPL Standard Library example 

Standard library torsion parameters 

ment and DOI elements. The former allows descriptive text to be stored directly in the XML 

with the parameters, and the latter provides a standard mechanism to directly link a parameter 

to a literature citation. Use of both of these fields is optional but strongly encouraged. Once 

validated, new parameter files can be shared and easily incorporated into new simulation sys­

tems. 

Conclusions 

MMPL is a comprehensive data standard for representing molecular mechanics/dynam­

ics force field parameters. It includes a rigorous and fully annotated XML Schema as well as 

an extensive library of previously published and validated parameters based on Levitt et al. 

(Levitt, 1995) and the F3C water model (Levitt, 1997). Key features include a component ori­

ented design that allows atoms, groups, and residues to be assembled into complex chemical 

structures; comprehensive explicit constraints to prevent data errors; and data provenance 

through comments and DOI references. The data model and schema facilitate the independent 

development, sharing, and publication of new parameters for force fields similar to Eqs. (1-3) 
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and can easily be extended to accommodate parameters unique to other force fields, as has al­

ready been done for AMBER. 
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Chapter 7: Conclusions and Future Directions 

The availability of multi-terabyte disk drives and processors with multiple 64 bit cores 

has made it both possible and less expensive than ever to build large, fast servers. Commercial 

and open source software can take advantage of these large, cheap servers; allowing very large 

data repositories to be created. However, software and hardware alone do not magically or­

ganize data into a model that can be easily mined and maintained. Instead, building large sys­

tems requires extensive planning and design to arrive at a flexible data model that can scale to 

the size of the data and to the processing capacity required to mine the data. It is inevitable 

that the initial design costs coupled with ongoing operational costs will be similar to or even 

exceed the cost of the sensor network or computing network that creates the data being stored. 

Despite this reality, data repository design, ongoing operation, and mining of data are considered 

to be somehow tangential to the "science" of a grant proposal. This perception must change if 

data intensive science is to succeed. 

Paying for Storage Infrastructure 

The previous chapters have described the methods and the design behind the Dy­

nameomics data warehouse and laid out a path to building large scale repositories. However, 

these methods and design do not grapple with the fundamental economics of scientific research 

funding. With the notable exception of calculation resources (super computers, compute-clus­

ters); storage infrastructure is not generally covered. The reasons for this are understandable. 

Building out and maintaining a large storage server facility, with power, cooling, and network 

connectivity for an undetermined period of time and with an unknown number of potential 

users cannot be easily justified or budgeted. At the same time, if a large data resource were 

made generally available, it could open doors to many areas of discovery not imagined by the 

original creators. 

The fundamental problem is one of appropriate monetization of data infrastructure. 
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Labs tend to be largely capable of serving their own data needs, especially when rigorous data 

design methods and technologies are used. However, this model breaks when they attempt to 

share those data with other researchers. The two options have been either scaling up the primary 

data repository to support multiple labs, or replicating the data to multiple labs. In the scale up 

scenario, the original lab builds up their own infrastructure to support sharing partners, pur­

chasing and deploying sufficient machines and network bandwidth to support their own needs 

and the needs of their collaborators. In the replication scenario, each sharing lab builds up their 

own infrastructure and effectively copies the original data for their own use. Both of these so­

lutions are wrought with problems. 

In the scaling scenario, beyond some number of collaborations (usually 0) the ability 

of the primary lab to simply absorb the cost of supporting partner labs will cease. This means 

that alternative arrangements must be made to share costs. These could include charging fees, 

jointly purchasing hardware, or sharing costs of power and cooling. These arrangements are 

complicated for a single partner, and grow exponentially with multiple partners. In the repli­

cation scenario, each lab must duplicate some portion of the original infrastructure and take on 

the role of building and maintaining it. In addition, as research continues, the data set at each 

site has the potential to diverge. This creates problems of ongoing synchronization and/or cre­

ating multiple independent versions of the data. 

Cloud Computing 

Cloud computing at first glance offers a third potential solution, placing data at third 

party that completely manages server rooms, machines, and network connectivity. As an ex­

ample, Amazon's Elastic Compute Cloud (EC2) and Simple Storage Service (S3) (Amazon 

Web Services) are part of a larger "computing as a service" product line that allows anyone to 

rent whatever number of processors and storage they need and for whatever period of time is 
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required. Microsoft's Windows Azure (Microsoft Corporation, 2011) is another alterative, also 

supplying an effectively unlimited number of processors and storage on an as needed rental 

basis. These solutions effectively address the dynamic upsizing and downsizing of resources 

required by research; you simply rent exactly what you need for only as long as you need it. 

Unfortunately, the pricing models for these services are based on processor time, network band­

width, and storage capacity over time. In a sense these services provide a better implementation 

of scaling and replication, but they do not help distribute the costs. However, a newly available 

cloud service can provide the means to solve this problem. 

Amazon's S3 Infrastructure supports sharing of data restricted to requests marked with 

a "user pays" header. Although the owner is responsible for paying the monthly cost of main­

taining S3 storage units (called buckets), it is possible for transfers to and from buckets to be 

billed to the user of the buckets, as opposed to the owner. The concept of user pays has been 

generalized and extended in Microsoft's Windows Azure Marketplace DataMarket (Microsoft 

Corporation), which supports the creation of data products available through free or paid sub­

scriptions. In a sense the DataMarket takes on all the responsibility of managing access to the 

data—managing accounts, regulating access, providing a generalized data interface, and even 

collecting subscription revenue. 

Moving to the Cloud 

The Dynameomics Data Warehouse is currently hosted on 6 primary database servers 

ranging in size from 12TB to 25TB. These 6 servers contain 74 databases, over 90 thousand 

tables, and 725 billion rows of information. In addition, a small subset of simulations is hosted 

on two small externally facing machines (one web server, one database server). This is sufficient 

for the small number of external users who hit www.dynameomics.org, but these machines are 

limited to a few terabytes of storage and can only serve simple queries. In order to make all of 

http://www.dynameomics.org
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the data available to external users, a different approach is required. 

Figure 31 describes a high level architecture that is based on several discussions held 

with Microsoft SQL Azure and DataMarket teams. The general idea is that minimal SQL stor­

age would be provided to house the data in the cloud. This storage would be implemented 

using storage nodes only powerful enough to receive data from the lab, and to serve data to 

standard data nodes, which would be "rented" on-demand by consumers of the data. The Data-

Market would provide user license validation (e.g. commercial or academic) and authentication, 

and optionally collect revenue from use of the data. 

For the Dynameomics project, this model offers several benefits. First, the lab would 

gain an active offsite repository hosted at a professionally maintained, high availability data 

Figure 31. Cloud services and repositories. An architecture to support large scale sharing of scientific data 
through cloud services. 
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center. Although it is anticipated that most analysis would continue to take place on local 

servers, this opens the door to utilizing compute nodes in the cloud. Second, lab could eliminate 

ongoing support of its externally facing web server and database server, replacing them with a 

small web server node that could brows the entire repository. Management of licenses and ac­

counts would absorbed by the DataMarket. The general public gains a more reliable web server, 

and are no longer limited to just looking at a limited number of trajectories. For academic and 

commercial researchers, they gain access the entire data set. This allows them to select portions 

of interest and replicate it SQL Azure nodes they control and pay for. They can add compute 

nodes and do analysis in the cloud, or transfer the data to their own machines for analysis. Fi­

nally, the Microsoft cloud teams (DataMarket and Azure) gain customers through the rental of 

computing and SQL resources on their cloud services. 

Conclusions 

Dimensional modeling has shown great flexibility organizing protein simulation data. 

The implementation of the dimensional model in a relational database has successfully organ­

ized over 100TB of simulation data and continues to scale as more data are generated. The 

SQL Server Analysis Services (SSAS) implementation of Online Analysis Processing (OLAP) 

showed some potential as a tool for specific analyses, but appears to lack the scalability of SQL 

Server. Spatial indexing was shown to be highly effective optimization for developing analysis 

directly in the database. The Consensus Domain Dictionary demonstrated how domain knowl­

edge can be linked across repositories. MMPL described an XML schema for organizing force 

field parameters. Finally, although sharing large data remains unsolved and a significant chal­

lenge; the potential of cloud services to change the economics of data intensive computing 

holds great promise. 
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