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Over the past decade, electronic health record (EHR) adoption has led to an explosion in the 

volume of electronic health record and log data, then efforts to effectively harness the potential of 

these data for knowledge discovery (KD) and quality improvement (QI). In parallel, recent gains 

in artificial intelligence have produced powerful methods to analyze, use, and even create synthetic 

data which are statistically or mathematically reflective of real data yet are generated by a 

computer algorithm. However, limitations in data utility (e.g. bias, data quality, 

comprehensiveness) and accessibility (e.g. privacy, interoperability, availability), as well as 

limited means to measure and manage tradeoffs between the two are significant barriers to using 

these data effectively. Determining whether data are suitable to be used in a specific analysis or 



 

 

context, known as “fitness for use” is not included in current frameworks for general health record 

data quality characterization nor evaluated by data quality assessment (DQA) tools. EHR log data 

use is particularly unrefined for QI and KD due to an absence of validated standards and methods. 

Thus, users of electronic health record and log data remain uninformed as to the fitness for use of 

their data at baseline and are unable to effectively assess subsequent tradeoffs between utility and 

privacy when applying privacy preserving technologies. 

To address these challenges, we sought to assess the fitness for use of electronic health record 

and log data - both synthetic and real - across three use cases. First, we 1) developed a framework 

for data utility assessment of electronic health records, then 2) adapted open-source tools to make 

use of this framework which we then applied to assess the utility of real and synthetic EHR data 

for observational research related to COVID-19 and future influenza pandemics. Second, we 

evaluated whether synthetic data derived from a national COVID-19 data set could be used for 

geospatial and temporal epidemic analyses. To do so we conducted replication studies and 

computed general summary statistics on original and synthetic data, then compared the similarity 

of results between the two datasets. Third, we conducted a retrospective, observational analysis - 

with and without privacy preserving technology - of clinical workstation authentication behaviors 

from the UW Medicine health system to inform customized solutions that balance usability and 

security. 

 The three use cases studied advance our understanding of 1) the fitness for use of varied 

electronic health record and clinical workstation log data with and without privacy preserving 

technologies as well as 2) methods to conduct these assessments. As the use of synthetic data 

rises, so will the importance of fitness for use assessments on both original and synthetic data. 

Synthetic data that are broadly distributed will reach less expert users than those who have 



 

 

access to the original data. Thus, in addition to helping those creating synthetic data manage 

tradeoffs, fitness for use assessments will provide guidance to synthetic data end-users on 1) the 

approximate similarity between the synthetic data and the original data as well as 2) the overall 

limitations of the likely inaccessible (to the end-users, at least at the time of analyzing the 

synthetic data) original data which have a downstream effect on the synthetic data.  
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Chapter 1. INTRODUCTION  

1.1 SIGNIFICANCE OF THE PROBLEM 

The past decade has seen dramatic growth in the adoption and use of electronic health records in 

the United States due to the Meaningful Use federal incentive program.[1–7] Additional 

investments in expanding various secondary use activities of EHR data have followed, from the 

Patient Centered Outcomes Research Network (PCORNet) through the Electronic Medical 

Records and Genomics Network (eMERGE), All of Us Research program[8–17] and various 

organizations developing standards for both electronic health records and log data.[18,19] Both 

the National Library of Medicine (NLM) and the National Institutes of Health (NIH) have 

highlighted the value of data from EHRs in strategic planning, with the latter identifying that 

EHR “records present great opportunities for advancing medical research and improving human 

health—particularly in the area of precision medicine”[20], and the former stating the “NLM 

must create the controls for effective stewardship of data generated in the course of clinical care” 

and that “aggregated collections of such data, properly curated, will enable analyses of 

subpopulations based on aspects of their medical care and on demographic characteristics such 

as gender, age, race, and ethnicity.”[21] However, EHR data remain challenging for secondary 

use due to barriers associated with utility (quality, bias, comprehensiveness)[22–31] and 

accessibility (e.g. privacy, interoperability, availability)[32] as well as limited means to measure 

and manage tradeoffs between the two. Data quality and barriers to access and sharing have been 

identified as two of the top five “Challenges Hindering the Use of Machine Learning in Drug 

Development” in a 2019 technology assessment conducted by the National Academy of 

Medicine and Science, Technology Assessment, and Analytics U.S. Government Accountability 

Office.[32] 
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 At the same time, data mining, predictive analytics, and other artificial intelligence and 

advanced analytics methods have generated promise and hope in their applications to healthcare, 

that they can advance both the value and methods of EHR data use.[15,33–44] The result has 

been an emphasis on data science, which the NLM defines as “the interdisciplinary field of 

inquiry in which quantitative and analytical approaches, processes, and systems are developed 

and used to extract knowledge and insights from increasingly large and/or complex sets of 

data.”[21,45] However, there have also been challenges in applying data mining and data science 

methods to EHR data.[46] Research publications using deep learning methods in healthcare have 

greatly increased since 2010, yet the number of studies using EHR data is disproportionately less 

in medical informatics than in other areas such as imaging, bioinformatics, public health and 

sensors.[43,46] There are 5 to 10 times fewer deep learning publications in medical informatics 

than any of the other listed fields in health informatics, illustrating the challenges EHR data 

present for analysis. Nascent efforts to harness EHR log data for tasks such as characterizing and 

reducing IT burden on healthcare providers have faced similar challenges, spurring the creation 

of a National Research Network for EHR Audit-log and Meta-data[19]. 

 Overcoming data sharing barriers is critical for advancing secondary use of EHR data, 

since without sharing all analyses must be done within healthcare organizations where data are 

initially collected for care and the amount of data available for analysis is limited in size and 

diversity. The primary barriers are related to effectively protecting privacy and confidentiality 

while sharing data (84). While sharing of data across institutions is possible, the required 

agreements and regulatory reviews are sufficiently difficult to hamper most sharing efforts[47], 

especially when working to produce “generalizable knowledge” opposed to conducting “quality 

assessment and improvement activities.”[48] De-identification of data has been used as a 
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primary method to reduce some of this burden, but is increasingly limited.[47,49–52] Newer 

privacy preserving technologies - some of which seek to achieve formal epsilon-differential 

privacy[53] - have gained traction as an alternative to traditional de-identification methods both 

inside and outside of medicine.[54–57] Differential privacy promises that “the analyst knows no 

more about any individual in the data set after the analysis is completed than she knew before the 

analysis was begun.”[58] One promising privacy preserving technology that can be used with 

EHR data is the creation of synthetic data.[56,59–74] Synthetic data conserve the statistical 

distributions of the real data they are modeled on yet prevent the two from being linked together 

because synthetic data rows are not tied to paired rows within its source data. Synthetic data have 

been generated for a wide variety of biomedical use cases[54,58,75–79] and can be made 

differentially private by adding noise during the training of deep learning models used in the 

generative process.[57] The major challenge in differential privacy approaches with synthetic 

data is that the amount of noise introduced must be calibrated in a tradeoff of accuracy and utility 

of the data against privacy. This need to determine whether synthetic data are “fit for use” as 

substitutes to real data has recently been identified as a pressing need by the National Library of 

Medicine.[80] 

 The potential benefit of applying privacy preserving methods to data in medicine extends 

beyond patients. Increased interest in worker data in and outside of medicine[81–83] has brought 

with it concerns for balancing the use of these data in alignment with worker and employer 

interests. A 2018 international survey of 1,400 C-level executives and 10,000 workers reported 

that “62% of businesses are using new technologies and sources of workforce data today but 

only 30% of these leaders are confident that they are using new sources of workforce data in a 

highly responsible way.”[84] The same survey showed that workers have concerns about use of 
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their data yet are willing to share their data in exchange for benefits, listing a customized work 

experience as the number one desired benefit. 

 Real-World Data utility issues encompassing quality, bias, and comprehensiveness limit 

the effective use of EHR data for knowledge discovery and quality improvement. In a 2017 

survey of over 16,000 data scientists, “dirty data” was listed as the number one barrier faced at 

work[85] and a separate survey in 2016 of data scientists found that their least enjoyable task at 

work was collecting, cleaning, and organizing data yet those tasks took up nearly 80% of their 

time.[86] Within healthcare, data quality issues can undermine use of EHRs for knowledge 

discovery, precision medicine, comparative effectiveness research, and other research using 

secondary data analysis.[20,32,47,49,87–91] Bias in datasets used to train AI outside of 

healthcare are well documented and have resulted in high-profile public relations issues.[92,93] 

Bias in EHR data is also a major issue for its secondary use. Some examples of bias are that: 

sicker patients have more complete data[94], vulnerable populations have a higher probability of 

visiting multiple health care system for care[95–97], patients of lower socioeconomic status have 

limited healthcare access and are less likely to receive diagnoses and medications[95,98], female 

patients receive less aggressive coronary revascularization approaches compared to men[99]. 

Comprehensiveness of the EHR is limited in multiple ways by insufficient granularity or lack of 

data capture - especially in structured data - of social determinants of health[100,101], nutrition 

and exercise data[102,103], patient data from wearable health technology[104], and more. EHR 

log data use suffers from a lack of data standards and methodological transparency.[105] 

 While privacy preserving technologies provide opportunity to increase the accessibility of 

data by mitigating privacy concerns of data sharing, they simultaneously degrade the utility of 

these data. Formal epsilon- differential privacy degrades data quality by adding noise.[58] 
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Synthetic data reduce comprehensiveness by struggling to capture longitudinal relationships 

continuous variables.[72] Both technologies perform worse on smaller groups of data[76,106] 

which increases bias and may exacerbate preexisting health disparities. 

 Paradoxically, synthetic data generation can be used in non-privacy-related applications 

as a solution for, rather than a cause of, bias in datasets. To do so, synthetic data are injected into 

real data as augmentation to reduce bias and provide balancing of data. A hybrid dataset results. 

Hybrid datasets may reduce known health disparities[107] by reducing the bias of data used for 

training AI. In a recent study, hybrid data greatly improved classification of skin lesions from 

underrepresented patients with skin of color at a small cost in performance overall.[108] Similar 

hybrid data methods could be applied to EHR data. However, the means to assess biases within 

datasets is a critical prerequisite to adjusting for them with synthetic data. 

 Recent work has been done to characterize and assess dimensions of EHR data utility, 

leading to open tools to make these assessments. Electronic health record data quality 

characterization[109–111] has matured to yield a harmonized terminology and framework[110] 

for describing EHR data quality. Multiple organizations have produced DQA methods[112–115] 

adhering to this framework that assess common data model conformance and a limited number 

of overall data quality checks against rules such as "birthdate prior to 1850."[113] DQA has been 

conducted across distributed research networks[116–121]. Limited, if any, open tools currently 

exist to assess bias and comprehensiveness of electronic health records nor EHR audit-log data. 

 Publicly available, synthetic data quality has rarely been assessed for its 

representativeness of the population it was modeled on yet doing so is becoming more common. 

Chen et al. assessed limited clinical quality measures (n=4) within the 1.2 million person, 

Massachusetts-modeled Synthea dataset[59], finding that it performs well on demographics and 
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services offered, but poorly on heterogenous outcomes[122]. Zhang et al. evaluated the similarity 

between its limited synthetic data generated compared to real data it was modeled on for the 

distribution of diagnosis codes, interdimensional relationships of data, local data structure, and 

latent factorized representations of data.[72] A multi-site study assessed the similarity of five 

retrospective, observational EHR studies conducted on both real and synthetic data.[106] In the 

last couple years, more synthetic data have been assessed for utility[125-129] using a variety of 

the methods by which one can validate synthetic data.[130] 

 While each of these guidelines, tools and examples can identify and address specific data 

utility issues, they do not assess overall data utility in terms of fitness for use with extrinsic 

context in mind to enable knowledge discovery or other research. Instead, the tools that exist are 

data quality-focused and primarily measure atemporal plausibility and conformance.[123] 

Current best practices that do address the need for fit for use within a DQA context includes an 

assessment of data elements’ quality for the specific goal of novel heart failure biomarker 

discovery.[124] Electronic health record log data have been identified as having great potential 

to improve health services research yet suffer from many similar data utility issues and a lack of 

methods to assess their fitness for use.[131] Ultimately, the literature is relatively rich with 

recently developed methods for assessments of data quality yet there is a dearth of methods to 

assess the fitness for use of electronic health records and log data before and after applying 

privacy preserving technologies. 

1.2 STATEMENT OF THE STUDY PURPOSE 

Although there has been work done on data quality assessment of electronic health records, little 

work has been done to enable fitness for use assessments of electronic health records or EHR log 

data. Because the data quality and fitness for use issues are similar and both data are available 
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electronically due to EHRs, we study both data types. COVID-19 has increased the use and 

sharing of real-world EHR data for observational research, which heightens the importance of 

ensuring the data used are good enough for the task at hand and that patient and healthcare 

worker data is managed in a responsible way that protects their privacy. Emerging privacy-

preserving technologies provide an opportunity to analyze and/or share clinical data while 

maintaining privacy yet these methods degrade the utility of the data which increases the 

importance of assessing synthetic and original data fitness for use. This research will attempt to 

enable the Data Utility Assessment (DUA) of EHR data - both records and logs - before and after 

the application of privacy preserving technologies. In this study, there are three main objectives: 

 

Aim 1: Collect and curate a repository of clinical facts as raw input needed for our health records 

DUA framework. 

Aim 2: Inform, develop, and evaluate a DUA framework and DUA tool to support secondary use 

of EHR data - synthetic and real - across diverse contexts, using standards. 

Aim 3: Assess SSO authentication behaviors to inform customized solutions using log data - 

while maintaining privacy and promoting standards. 

1.3 CONTENT OF THE DISSERTATION 

Our work is spread out across three separate use cases described in chapters 2-4. Each of these 

chapters includes an independent analysis that enables and/or conducts fitness for use 

assessments of clinical or log data - with and without the application of privacy preserving 

technology. Chapters 2 and 3 contain analyses on electronic health records whereas chapter 4 

contains an analysis on clinical workstation authentication log data. 
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 In Chapter 2 (the first use case), we developed and tested a new framework by which 

one can determine whether electronic health records are fit for use and also assessed the impact 

of privacy preserving technology on fitness for use. To do so, we made use of the Cochrane 

Database of Systematic Reviews (CDSR). We built up a repository of outcomes from the CDSR 

as individual research findings to be replicated within electronic health records formatted in the 

OMOP CDM. Due to the present relevance of the COVID-19 pandemic and its implications on 

observational research and disease surveillance going forward, we focused our replications on 

COVID-19 related outcomes. 

 In Chapter 3 (the second use case), we described methods and results focused on 

evaluating whether synthetic N3C data can be used for geospatial and temporal epidemic 

analyses. Our replication studies focused on what we deemed were important and common 

analyses to be performed, such as epidemic curves for key indicators and creation of public-

facing dashboards. Our validation included replication of studies and general utility metrics for: 

analyses at the zip code level over time, construction of epidemic curves, and aggregate 

population characteristics. We believe these approaches balance the need to provide broad utility 

results for a wide range of analyses while also providing specific validation results relevant to 

analyses of common interest. 

 In Chapter 4 (the third use case), we used Imprivata Onesign SSO log data from the 

UW Medicine Health system (Seattle, WA USA) - comprised of a Trauma Level 1 hospital, 

academic medical center, and outpatient clinics - to inform customized SSO authentication 

protocols and report on the utility of observational SSO log data to do so. In addition to 

characterizing SSO behaviors broadly, we considered two potential SSO implementation 

changes and their simulated impacts stratified by user role and location. The first potential 
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change was variation of the challenge period from 1-12 hours in 1-hour increments. The second 

was requiring a challenge for each new workstation a user logs into with and without 

incorporating their prior workstation access history.  Additionally, we piloted the creation and 

use of synthetic SSO log data to re-create portions of our analysis in an effort to protect the 

privacy of worker data. 

In Chapter 5, we summarize the findings of the dissertation. In addition, we outline future 

directions for the research. 
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Chapter 2. CREATION AND TESTING OF A NOVEL FITNESS FOR 

USE FRAMEWORK FOR ASSESSING THE UTILITY OF 

SYNTHETIC AND REAL ELECTRONIC HEALTH 

RECORDS 

2.1 ABSTRACT 

Objective: Evaluate the fitness for use of privacy preserving and non-privacy preserving 

electronic health record (EHR) data to enable influenza pandemic surveillance or research. 

Materials and Methods: A total of 50 reviews from the Cochrane Database of Systematic 

Reviews were assessed for their feasibility to be replicated in the EHR along with other factors 

such as their evidence level per the GRADE criteria. Findings (n=31) from a COVID-19 related 

Cochrane review were replicated through the use of open-source Observational Health Data 

Science and Informatics (OHDSI) software applied to three EHR databases: the UW Medicine 

COVID-19 Research data set (UWM-CRD) from September 2020, the UWM-CRD from May 

2021, and a public synthetic data (Synthea COVID-19) set created for COVID-19 research. We 

compared the similarity of our replications to the results published by Cochrane. 

Results: Of the 50 CDSR reviews assessed, 15 reviews (30%) with 37 individual findings were 

found to be suitable for inclusion within our repository of clinical findings for future replication. 

All COVID-19 related CDSR outcomes were able to be calculated in the UWM-CRD 2021 and 

Synthea OMOP databases. In contrast, only about ⅓ of the CDSR outcomes were able to be 

calculated in the UWM-CRD 2020 dataset. Nearly all the replicated results across all three 

databases showed lower prevalence or incidence than the Cochrane review’s results. UWM-CRD 

2021 results were most similar to the CDSR results whereas Synthea COVID-19 had roughly ⅓ 

of outcomes falling below (mostly due to counts of zero) the range reported in the CDSR review. 
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Discussion: Results from our broad review of the CDSR demonstrate that the EHR may be a rich 

source of real-world data to supplement systematic review findings and, in the process, can 

enable fitness for use assessments. Barriers to using real-world data and potential causes of 

underreporting cohorts were identified, however. 

Conclusion: We demonstrated the feasibility of replicating CDSR reviews using electronic 

health record data for both synthetic and real data as a method to assess their fitness for use. Our 

EHR databases did have lower values for prevalence and incidence of cardiovascular events 

compared to the CDSR review’s weighted averages for the vast majority of outcomes. We 

observed heterogeneity between databases. The Synthea COVID-19 data set released in the 

Spring of 2020 may not be fit for use for analysis of cardiovascular outcomes. 

2.2 INTRODUCTION 

Electronic health records (EHRs), which are now used in nearly all of the United States’ 

hospitals[1], provide a rich source of real-world data (RWD) to create real-world evidence 

(RWE) from. In contrast to traditional clinical trials, real-world data are generated by the routine 

provision of medical care to patients; real-world evidence is the clinical knowledge created from 

the analysis of real-world data[2]. In acknowledgement of the potential for RWE to inform 

health care decisions, the United States Food and Drug administration created a framework for 

the use of real-world evidence in 2018 - including that from Electronic Health Records - to 

inform their decision-making[2]. With increasing importance placed on the use of real-world 

evidence and the key role of EHR data in national-scale research such as the National COVID 

Cohort Collaborative (N3C)[3] and the All of Us Research program[4], scrutinizing the “fitness 

for use” - meaning whether the data are suitable to be used in a specific analysis or context or 

not[5] - of real-world data becomes more important. 
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Real-World Data utility issues encompassing quality, bias, and comprehensiveness limit 

the effective use of EHR data. Within healthcare, data quality issues can undermine use of EHRs 

for knowledge discovery, precision medicine, comparative effectiveness research, and other 

research using secondary data analysis[6–12]. Biases are seen in that sicker patients have more 

complete data[13], vulnerable populations have a higher probability of visiting multiple health 

care system for care[14–17], patients of lower socioeconomic status have limited healthcare 

access and are less likely to receive diagnoses and medication[14,17], and female patients 

receive less aggressive coronary revascularization approaches compared to men.[18] 

Comprehensiveness of the EHR is limited in multiple ways by insufficient granularity or lack of 

data capture - especially in structured data - of social determinants of health[19,20], nutrition and 

exercise data[21,22], and patient data from wearable health technology.[23] All these issues can 

affect the fitness for use of EHR data. 

Despite the importance of assessing fitness for use, determining whether EHR data are fit 

for use is not included in current frameworks for general health record data quality 

characterization[24,25] nor evaluated by data quality assessment (DQA) tools.[26–28] Recent 

work has been done to characterize and assess dimensions of EHR data utility, leading to open 

tools to make these assessments. Electronic health record data quality characterization[24,25,29] 

has matured to yield a harmonized terminology and framework[24] for describing EHR data 

quality. Multiple organizations have produced DQA methods[26,27,30] adhering to this 

framework that assess common data model conformance, completeness and a limited number of 

overall data quality checks against rules such as age less than zero.[27] DQA has been conducted 

across distributed research networks.[31–36] 
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 New technologies such as synthetic data aim to reduce the barriers to data accessibility 

yet they can degrade data utility.[37–41] Studies have been conducted on synthetic data sets to 

compare their utility in comparison to the original “ground truth” data they were modeled on[41–

49]. Yet these assessments still don’t help EHR data analysts to understand the fitness for use of 

their original data at baseline let alone manage subsequent tradeoffs between utility and privacy 

when applying privacy preserving technologies (PPT). COVID-19 catalyzed interest in EHR data 

analysis and sharing[3], further increasing the need to assess the fitness for use of both real and 

synthetic EHR data formatted in common data models such as the observational health data 

sciences and informatics’ (OHDSI) observational medical outcomes partnership (OMOP) 

common data model (CDM).[50] 

A potential method to assess the fitness for use of EHR data and their synthetic 

derivatives involves creating a feedback loop between traditional clinical trials and/or systematic 

reviews and the real-world data provided by EHRs. A broad library of findings from traditional 

evidence sources could be built up to then compared with EHR data to assess the fitness for use 

of EHR data along axes such as whether the necessary data elements and patients exist within the 

EHR and if so, whether the same results can be obtained through analyzing the EHR data. 

Limited related work has been conducted so far. Bartlett et al., 2019 explored the feasibility of 

replicating clinical trial evidence with real-world data and found that 15% of the trials could 

feasibly be replicated using claims and/or EHR data.[51] Chen et. al, 2019 compared the rates of 

four clinical quality measures in a synthetic data set to publicly reported rates that would be 

expected in that synthetic population, finding that the synthetic data performed well modeling 

demographics but not on heterogeneous outcomes.[52] 
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2.2.1 Objective 

In this study, we sought to develop and test a new framework by which one can determine 

whether electronic health records are fit for use and also assess the impact of privacy preserving 

technology on fitness for use. To do so, we made use of the Cochrane Database of Systematic 

Reviews (CDSR). We built up a repository of outcomes from the CDSR as individual research 

findings to be replicated within electronic health records formatted in the OMOP CDM. Due to 

the present relevance of the COVID-19 pandemic and its implications on observational research 

and disease surveillance going forward, we focused our replications on COVID-19 related 

outcomes. 

2.3 METHODS 

2.3.1 Cochrane Review Search 

Prior to the onset of COVID-19, we conducted a cursory review of the Cochrane Database of 

Systematic Reviews (CDSR)[53] to evaluate the abundance of potential clinical findings for our 

repository and their suitability to be mined in an Electronic Health Record as part of a data utility 

assessment (DUA). A single reviewer (author JAT) assessed the most recent 2-4 reviews for 24 

randomly selected Cochrane Review Groups and Topics (e.g. Common Mental Disorders) to 

determine whether or not review findings met the following criteria created by the study team: 

(1) had sufficient (≥low) evidence, (2) could be mined from an EHR, (3) could be mined from 

structured data in an EHR, (4) were pediatric specific, and (5) overall suitability for preliminary 

inclusion within our repository of clinical findings.  The criteria were designed to select for 

findings with evidence high enough to be expected to change less over time and to collect other 

important metadata (e.g. whether the finding could be mined from structured data) to provide 
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insight into reasons for exclusion and/or applicability of findings to a dabatase of interest (e.g. 

pediatric population or not). A subset was reviewed by a second reviewer (ABW) for validation. 

We created a pilot version of the repository data visualization using R Shiny.[54] Interactive 

features included within the visualization are free-text search and filtering by multiple drop-

down boxes. In response to the COVID-19 pandemic, we decided to focus actual replications on 

CDSR findings related to COVID-19. To gather COVID-19 related findings for replication, we 

searched the CDSR further for reviews that contained the phrase “COVID-19” in the title, 

abstract, or its list of keywords through the July, 2021 Cochrane issue. 

2.3.2 Electronic Health Record Data sets 

The UW Medicine COVID Research Data set (UWM-CRD) was created in March 2020 to 

enable observational COVID-19 related research. Authors ABW, GL, JAT, were involved in the 

creation of the UWM-CRD along with many other personnel from UW Medicine and the 

University of Washington (Seattle, USA). The UWM-CRD is formatted in the OMOP CDM 

v5.3.1 and hosted in Microsoft SQL Server. The dataset includes UW Medicine patients who 

have been tested for COVID-19 that have information within the UW Medicine Electronic 

Health Record. The dataset is a subgroup of the non-OMOP clinical data warehouse of UW 

Medicine, comprised of Harborview Medical Center, UW Medical Center - Montlake, and 

Northwest hospital in Seattle WA, and is based on its current electronic health record systems, 

with data spanning over 10 years and including roughly 5 million patients. As part of the 

iterative extract, transform, load (ETL) process, OHDSI’s Data Quality Dashboard was run (by 

author JAT) on the UWM-CRD to identify data quality issues which were remedied by the broad 

UW Medicine ETL team. The UWM-CRD is one of the data sets within the National Covid 

Cohort Collaborative and has been used in OHDSI network studies.[55,56] 
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Synthea data are synthetic data created using PADARSER, the Publicly Available Data 

Approach to the Realistic Synthetic EHR[57], which creates synthetic data that use publicly 

available statistics and clinical practice guidelines in an attempt to create realistic EHR data.[58] 

A Synthea dataset (n = 12,359 patients) simulating a COVID-19 outbreak over Jan-March 2020 

and formatted in the Observational Medical Outcomes Partnership (OMOP) Common Data 

Model (CDM) v5.3.1[50] was downloaded from the Observational Health Data Sciences and 

Informatics (OHDSI) forums.[59] We then loaded the data into a PostgreSQL database using the 

SQL scripts OHDSI provides for v5.3.1.[60] We loaded the default vocabulary files as of July 

09, 2021 from the ATHENA OHDSI vocabularies repository.[61] For the purposes of this study, 

the Synthea database will be referred to as “Synthea COVID-19.” More detailed information 

about each database is shown in Table 2.1. 

Table 2.1. Data set summaries 

Data Set Date Range 

 

Description 

UWM-CRD 2020  2010 - 

09/20/2020 

The dataset includes UW Medicine patients who 

have been tested for COVID-19 that have 

information within the UW Medicine Electronic 

Health Record. The dataset is a subgroup of the 

non-OMOP clinical data warehouse of University 

of Washington Medical Center, comprised of 

Harborview Medical Center, UW Medical Center - 

Montlake, and Northwest hospital in Seattle WA, 

and is based on its current electronic health record 

systems, with data spanning over 10 years and 

including roughly 5 million patients. 

UWM-CRD 2021 2010  - 

05/19/2021 

The dataset includes UW Medicine patients who 

have been tested for COVID-19 that have 

information within the UW Medicine Electronic 

Health Record. The dataset is a subgroup of the 

non-OMOP clinical data warehouse of University 

of Washington Medical Center, comprised of 

Harborview Medical Center, UW Medical Center - 

Montlake, and Northwest hospital in Seattle WA, 
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and is based on its current electronic health record 

systems, with data spanning over 10 years and 

including roughly 5 million patients. 

Synthea COVID-19 01/01/2020 - 

03/29/2020 

Synthea COVID-19 data set distributed on the 

OHDSI forums March 2020.[59] The data were 

created by 1) starting with the Synthea COVID-19 

github branch as of late March 2020[62] which 

enriched the data with COVID-19 related 

diagnosis and tests SNOMED and LOINC codes 

that were known of at that time, 2) creating a 

Massachusetts data set, then 3) converted to the 

OMOP CDM using ETL-Synthea[63] 

 

2.3.3 Replication of Cochrane Reviews 

To replicate outcomes from the CDSR, we used computable phenotypes from the OHDSI open-

source tool ATLAS[64,65] which enables auto-generation of SQL queries and translation into 

multiple SQL dialects. Computable phenotypes previously developed by and used in OHDSI 

network studies such as CHARYBDIS (Characterizing Health Associated Risks, and Your 

Baseline Disease In SARS-COV-2)[55] were used, when available, by running the 

CHARYBDIS software package on all databases to generate cohorts. The full list of 

CHARYBDIS phenotypes can be found within the study package[66] with hyperlinks to their 

cohort definitions in ATLAS.[64] Some replications included the use of condition_era groups 

which roll up conditions found in the condition_era table into the highest ancestor as described in 

the OHDSI FeatureExtraction package.[67] The presence of standardized derived elements tables 

(drug_era, dose_era, condition_era tables) allow selection of patients based off the timeframe a 

patient a patient has a diagnosis or is taking a drug.[68] 

 For each replication and database, CHARYBDIS phenotypes were used to create cohorts 

for or calculate each of the following replication components: the patients and/or population (e.g. 
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COVID-19 diagnosis or tested positive), setting (e.g. hospitalized), the target (e.g. deep vein 

thrombosis), comparison (if applicable), and outcome (e.g. 30-day incidence). We performed a 

qualitative analysis to investigate why the calculated outcomes in each database may differ from 

the outcome result in the CDSR. 

2.4 RESULTS 

2.4.1 Cochrane Review Search 

Our review evaluated 50 CDSRs yielding a total of 15 reviews (30%) with 37 individual findings 

suitable for inclusion within our repository of clinical findings. A total of three CDSRs (6%) of 

the fifty reviewed were excluded solely due to the need for analysis of unstructured data. Of the 

15 CDSRs suitable for our repository, seven (46%) were conducted on solely pediatric (≤18 

years old) populations. Detailed information on each Cochrane review that was assessed can be 

found in supplemental table 2.5. The flowchart of our assessment can be seen in Figure 2.1.  

 

Figure 2.1. Study flowchart of the review process and results from our search of the CDSR for 

replicable reviews within the EHR. 
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 We found 35 COVID-19 related reviews within the CDSR as a result of our keyword 

search. Of those, “COVID‐19 and its cardiovascular effects: a systematic review of prevalence 

studies”[69] was selected for replication since it provided 31 outcomes to be replicated, 

incorporated over 200 studies into its review, is broadly relevant to covariates studied in 

COVID-19[70] and non-COVID-19 cardiology research (to enable fitness for use assessments 

for cardiology research), and will be updated by the authors as more evidence is accumulated 

over time. The countries of origin in the review consisted of China (47.7%), USA (20.9%), Italy 

9.5%. The majority of studies were retrospective (89.5%) while the remaining were prospective 

(9.1%) or randomized clinical  trials(1.4%). All other study designs were excluded by the 

authors. The main criteria for the study were that the study was written in English, had >100 

participants and was peer reviewed. The details of this study are presented in Table 2.2. 

Table 2.2. CDSR Study used in replication with the EHR 

Title Search 

Period 

Main Criteria No. of 

studies 

Country of 

origin 

Study type 

COVID‐19 

and its 

cardiovascular 

effects: a 

systematic 

review of 

prevalence 

studies 

 

December 

2019 to 24 

July 2020 

Prospective and 

retrospective cohort 

studies, controlled 

before‐and‐after, case‐

control and cross‐

sectional studies, and 

randomised controlled 

trials (RCTs). Peer-

reviewed studies only 

with >100 participants. 

Written in English. 

220 China 

(47.7%), 

USA 

(20.9%), 

Italy 9.5%  

Retrospective 

(89.5%), 

RCT (1.4%) 

prospective 

(9.1%) 

 

2.4.2 Characteristics of each database 

As part of the replication process, database characteristics were generated using the 

CHARYBDIS package and reported in Table 2.3. UWM-CRD 2021 had the largest number of 
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patients with a COVID-19 diagnosis or SARS-CoV-2 positive test without requiring prior history 

on those patients (n = 7,609) followed by UWM-CRD 2020 (n = 3,245) and the Synthea 

COVID-19 (n = 1,835). Notably, the Synthea COVID-19 database has zero count for all tested 

positive (versus tested positive or diagnoses) cohorts despite having patients with COVID-19 

diagnoses. All patients within the UWM-CRD 2021 database were tested for SARS-COV-2 

which is expected since COVID-19 testing is a mandatory inclusion criterion for the UWM-

CRD. In contrast, a minority (n = 1,826; 14.8%) of those in the Synthea COVID-19 database 

were tested for SARS-CoV-2. 
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Table 2.3. COVID-19 and influenza-related cohort counts across the three databases 

 Cohorts UWM-CRD 

2020  

UWM-CRD 

2021 

Synthea 

COVID-19 

CHARYBDIS 

Cohort ID 

Total Patients (n) NaN* 125,340 12,359 

127 

Persons tested for SARS-CoV-2 with no required prior 

observation 83,921 125,340 1,826 

126 

Persons tested for SARS-CoV-2 with at least 365d prior 

observation 53,581 78,896 1,800 

133 

Persons with a COVID-19 diagnosis or a SARS-CoV-2 positive 

test with no required prior observation 3,245 7,609 1,835 

131 

Persons tested with a COVID-19 diagnosis record or a SARS-

CoV-2 positive test with no required prior observation 3,177 6,963 1,825 

129 

Persons tested positive for SARS-CoV-2 with no required prior 

observation 3,140 4,886 0 

132 

Persons with a COVID-19 diagnosis or a SARS-CoV-2 positive 

test with at least 365d prior observation 1,848 4,690 1,809 

130 

Persons tested with a COVID-19 diagnosis record or a SARS-

CoV-2 positive test with at least 365d prior observation 1,797 4,168 1,799 

128 

Persons tested positive for SARS-CoV-2 with at least 365d prior 

observation 1,777 3,042 0 

135 

Persons hospitalized with a COVID-19 diagnosis record or a 

SARS-CoV-2 positive test with no required prior observation 733 2,166 701 

139 

Persons hospitalized with a SARS-CoV-2 positive test with no 

required prior observation 676 1,300 0 
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134 

Persons hospitalized with a COVID-19 diagnosis record or a 

SARS-CoV-2 positive test with at least 365d prior observation 534 1,436 694 

138 

Persons hospitalized with a SARS-CoV-2 positive test with at 

least 365d prior observation 494 957 0 

112 

Persons with Influenza diagnosis or positive test 2017-2018 

with no required prior observation 364 569 NaN 

137 

Persons hospitalized and requiring intensive services with a 

COVID-19 diagnosis record or a SARS-CoV-2 positive test 

with no required prior observation 117 201 273 

141 

Persons hospitalized and requiring intensive services with a 

SARS-CoV-2 positive test with no required prior observation 112 171 0 

136 

Persons hospitalized and requiring intensive services with a 

COVID-19 diagnosis record or a SARS-CoV-2 positive test 

with at least 365d prior observation 68 149 0 

114 

Persons hospitalized with influenza diagnosis or positive test 

2017-2018 with no required prior observation 68 126 NaN 

*Total patients NaN due to the UWM-CRD database changing over time and the total patient was not recorded at the time cohorts 

were generated.
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2.4.3 Replications of CDSR findings 

Results from the replication of CDSR findings are shown in Table 2.4. All CDSR outcomes were 

able to be calculated in the UWM-CRD 2021 and Synthea COVID-19 databases. In contrast, 

only about ⅓ of the CDSR outcomes were able to be calculated in the UWM-CRD 2020 dataset. 

Nearly all the replicated results showed lower prevalence or incidence than the CDSR weighted 

averages across all three databases. Only COVID-19+ prevalence of obesity within the last 365 

days prior to index in Synthea COVID-19, COVID-19+ 30-day incidence of myocardial 

infarction or acute coronary syndrome, COVID-19+ and hospitalized 30-day incidence of 

vasopressor support, and COVID-19+ and intensive care death 30-day incidence of death in the 

UWM-CRD 2021, and COVID-19+ and hospitalized incidence of ECMO in the UWM-CRD 

2020 were equal to or greater than the CDSR weighted average. Compared to the CDSR 

findings’ ranges, only two of the UWM-CRD 2021 and about ⅓ of the Synthea COVID-19 

replication results were outside of the ranges. Results outside of the ranges are bolded in Table 

2.4. Roughly ⅔ of the Synthea COVID-19 results for prevalence and incidence were 0.0%. 
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Table 2.4. Outcome results in EHR databases compared to the CDSR 

Cohort 

ID 

Domain Replication 

Target 

CDSR Target CDSR weighted 

average (range) 

UWM-CRD 

2020 

UWM-

CRD 2021 

Synthea 

COVID

-19 

Prevalence (-365 through -1 days relative to index) 

133 Cohort 
Prevalent 

hypertension  
Hypertension 36.1% (4.5 - 100%) 20.6% 23.8% 23.9% 

133 Cohort 
Prevalent obesity

  
Obesity 21.6% (0.2 - 57.6%) 6.3% 11.8% 45.3% 

133 Cohort 

Prevalent Type 2 

Diabetes Mellitus

  

Diabetes 22.1% (0.0% to 100%) 10.8% 12.0% 4.4% 

133 
Condition_era 

group 

Ischemic heart 

disease 

Ischemic heart 

disease 
10.5% (1.0% to 28.2%) NaN 2.7% 0.0% 

133 Cohort 
Prevalent heart 

disease 

Cardiovascular 

disease 
23.5% (0.7% to 68.7%) 11.9% 15.5% 8.6% 

133 
Condition_era 

group 
Heart failure  Heart failure 6.5% (0.0% to 28.0%) NaN 3.6% 0.2% 

133 
Condition_era 

group 

Sequela of 

cerebrovascular 

accident 

Cerebrovascular 

accident 
5.1% (0.5% to 19.6%) NaN 0.6% 0.2% 

133 
Condition_era 

group 
Atrial fibrillation Atrial fibrillation 11.1% (1.0% to 22.8%) NaN 3.0% 0.1% 
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133 
Condition_era 

group 
Heart valve disorder Valve disease 3.7% (1.8% to 6.8%) NaN 2.3% 0.0% 

Incidence (index to 30 days) 

133 
Condition_era 

group 

Myocardial 

infarction 

Myocardial 

infarction or Acute 

coronary syndrome 

1.7% (0.0% to 3.6%) NaN 1.7% 0.0% 

133 Cohort 
Stroke (ischemic or 

hemorrhagic) events 
Stroke 1.2% (0.0% to 9.6%) 0.6% 0.6% 0.0% 

133 Condition_era  Heart failure Heart failure 6.8% (0.0% to 24.0%) NaN 3.6% 0.0% 

133 Cohort 

Venous 

thromboembolic 

(pulmonary 

embolism and deep 

vein thrombosis) 

events  

Venous 

thromboembolism 
7.4% (0.0% to 46.2%) 0.9% 1.2% 0.0% 

133 Condition_era 
Deep venous 

thrombosis 

Deep vein 

thrombosis 
6.1% (0.0% to 46.2%) NaN 0.6% 0.0% 

133 Condition_era 
Pulmonary 

embolism 

Pulmonary 

embolism 
4.3% (0.0% to 23.8%) NaN 1.0% 0.0% 

133 
Condition_era 

group 

Blood coagulation 

disorder  
Coagulopathy 8.0% (0.5% to 38.0%) NaN 0.7% 0.0% 

133 
Condition_era 

group  
Cardiac arrhythmia Arrhythmia 9.3% (0.0% to 30.3%) NaN 4.2% 0.1% 

133 
Condition_era 

group 

Supraventricular 

arrhythmia  

Arrhythmia: Supra-

ventricular 
8.5% (0.0% to 24.7%) NaN 3.3% 0.1% 
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133 Cohort 

ventricular 

arrhythmia or 

cardiac arrest during 

hospitalization  

Arrhythmia: 

Ventricular 
2.7% (0.0% to 12.4%) 0.4% 0.7% 0.0% 

133 
Condition_era 

group 
Heart block AV-block 1.3% (0.0% to 2.6%) NaN 0.8% 0.0% 

133 
Condition_era 

group 
Long QT syndrome Prolonging QT 7.6% (0.0% to 20.0%) NaN <0.1% 0.0% 

135 
Condition_era 

group  
Shock Shock1 17.1%(0.2% to 67.0%) NaN 7.0% 0.0% 

135 
Drug_era 

group 
Vasoproctectives 

Vasopressor 

support1 
20.9% (3.0% to 71.0%) NaN 22.0% 0.4% 

135 
Condition_era 

group 

Acute renal failure 

syndrome 
RRT1 5.1% (0.0% to 50.0%) NaN 13.5% 0.0% 

135 Cohort 
ECMO during 

hospitalization 
ECMO1 

1.1% (0.0% to 8.1%) 

 
1.5% 0.6% 0.0% 

135 
Condition_era 

group 
Myocarditis Myocarditis2 2.6% (0.0 to 12.5) NaN <0.5% 0.0% 

135 
Condition_era 

group 
Myocardial necrosis Cardiac injury2 27.6% (0.6% to 100%) NaN 6.3% 0.0% 

135 
Condition_era 

group 

Left ventricular 

abnormality 
LV dysfunction2 13% (4.0% to 30.0%) NaN <0.5% 0.0% 

135 
Condition_era 

group 

Right ventricular 

abnormality 
RV dysfunction2 14.2% (3.6% to 25.0%) NaN <0.5% 0.0% 
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133 Cohort Death 
Death due to any 

cause 
6.1% (0.0% to 100%) 3.3% 1.9% 0.1% 

137 Cohort Death 
Death due to any 

cause 
32.0% (8.7% to 72%) NaN 33.3% 0.0% 

Prevalence: prevalence of pre-existing disease: weighted mean (range) 

CHARYBDIS Cohort ID corresponds to the counts and longer descriptions seen in Table 2.3. 
1These targets were primarily from source articles studying patients receiving intensive services. 
2These targets were primarily from imaging and lab tests in the source articles
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2.5 DISCUSSION 

Results from our broad review of the CDSR demonstrate that the EHR may be a rich source of 

real-world data to supplement systematic review findings. We found a higher percentage of 

potentially replicable findings from the CDSR as compared to an assessment by Bartlett et al. of 

220 individual clinical trials published in high-impact journals articles, which found that 15% of 

the clinical trial findings could theoretically be discovered in structured EHR or claims data[51]. 

Reasons for the higher percentage from our review may be due to: 1) the CDSR frequently 

assessing multiple clinical outcomes as endpoints within a single review and 2) potential bias 

within the CDSR dataset towards older or more established interventions with enough 

publications to warrant a review - as opposed to potentially more cutting edge & translational 

studies - that are more likely to be already used in practice. This work demonstrates the 

feasibility of identifying a sufficient number of clinical findings for a fitness for use tool using 

our approach beyond COVID-19 specific research, even assuming the 15% level found by 

Bartlett et al, 2019.[51] 

Our replications of the CDSR findings revealed that all the outcomes could be calculated 

by the stock OHDSI software and that the UWM-CRD 2021 data most closely matched the 

CDSR results with only two of the outcomes falling outside of the documented ranges while 

Synthea COVID-19 had about ⅓ of outcomes fall outside of the ranges. The limited number of 

cohorts calculated on the UWM-CRD 2020 was due to our OMOP ETL process being 

incomplete at that time; standardized derived elements (e.g. the condition_era table)[68] were not 

yet generated. The impact of missing standardized derived elements on our analysis highlights 

the importance of prioritizing the ETL of these tables when sites are building out an OMOP data 

warehouse. Our results also emphasize the value of iteratively running these replications to 
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capture changes to an EHR database ranging from data quality fixes to the natural growth of the 

database over time. 

For the outcomes that were able to be calculated across all three databases, our 

prevalence and incidence rates were nearly all lower than the CDSR results, which is similar to 

findings of EHR observational network studies on COVID-19. In two OHDSI network studies 

using the CHARYBDIS software package, potential underreporting of symptoms and covariates 

was identified yet the results between sites were heterogeneous.[55,56] For results in this study 

with a value of 0.0%, which was common in the Synthea COVID-19 database, data quality 

issues such as a lack of mapping the required concepts source concepts to the OMOP CDM or 

utility issues such as a lack of realism in the data could be the root cause.  

A few examples from the replication targets illustrate the barriers to using real-world data 

and potential causes of underreporting. Myocarditis, cardiac injury, left ventricular (LV) 

dysfunction, and right ventricular (RV) dysfunction CDSR results were primarily sourced from 

studies using imaging and laboratory tests to calculate incidence. The source article documenting 

LV dysfunction and RV dysfunction incidence relied upon granular echocardiogram findings 

such as wall motion abnormalities.[71] These findings are commonly locked in text and, despite 

efforts to extract them with natural language processing, the main focus of these extractions has 

been limited to left ventricular ejection fraction values.[72,73] The electrocardiography results 

likely suffer from a similar problem with information ‘locked’ in electrocardiograms. All the 

arrhythmias and AV-block have lower incidence in the UWM-CRD 2021 database than the 

CDSR review, yet the intra-database proportions of these targets are roughly similar which 

suggests a denominator issue across all the UWM-CRD electrocardiology results. Transient 

events recorded in labs or test values likely increased the chances of underreporting as well. The 
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prolonging QT target would most reliably be calculated by analyzing the QRS duration of each 

electrocardiogram directly rather than relying upon the condition of “long QT syndrome” to be 

established and documented. Similarly, the coagulopathy phenotyping would have been 

improved by including patients with an abnormal prothrombin time test. 

2.6 LIMITATIONS AND FUTURE WORK 

 Our study was limited in its size and scope. Our broad review of the CDSR to assess the 

feasibility of replication consisted of evaluating only 50 total reviews and their outcomes. The 

replications conducted were on more than 30 outcomes yet they were from a single Cochrane 

Review with a focus on COVID-19 and cardiovascular events. Thus, our replications are best 

suited to aiding the assessment of fitness for use of EHR data in either or both of these domains. 

The Synthea COVID-19 data assessed were limited in size and have been improved upon in 

future iterations. In future work, we will increase the quantity of synthetic data sets assessed, the 

quantity and variety of domains of Cochrane reviews to be replicated, and expand beyond 

prevalence and incidence to study other outcomes such as the effects of interventions. 

Additionally, we plan to build upon existing OHDSI software to build an R package that 1) 

assesses solely the replications of interest with the results automatically compared to the results 

of the Cochrane reviews being replicated and 2) enables user-driven filtering of results relative to 

the data task at hand (e.g. filtering on relevant MeSH terms and domain-specific concepts). 

2.7 CONCLUSION 

We demonstrated the feasibility of replicating CDSR reviews using electronic health 

record data for both synthetic and real data as a method to assess their fitness for use. Our EHR 

databases did consistently have lower values for prevalence and incidence of cardiovascular 
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events compared to the CDSR review’s weighted averages, for the vast majority of outcomes. 

This may be a result of the data used in the Cochrane review being more complete because it 

used more assessments missed by EHR data or used concepts not directly collected or collected 

only in narrative form within the EHR. We observed heterogeneity between databases. UWM-

CRD 2021 results were most similar to the CDSR results whereas Synthea COVID-19 had 

roughly ⅓ of outcomes falling below the range reported in the CDSR review, primarily due to 

outcomes that had a 0.0% incidence or prevalence in the Synthea COVID-19 database. This 

suggests the Synthea COVID-19 data set released in the Spring of 2020 may not be fit for use for 

analysis of cardiovascular outcomes. 
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2.9 SUPPLEMENT 

Table 2.5. Characteristics of non-COVID-19 related Cochrane reviews assessed for replicability in electronic health records 

Cochrane 

Database 

ID Review Title Date 

Cochrane 

Network 

Cochrane 

Group 

Eligible in 

Repository 

Eligible 

Outcomes 

Excluded 

due to 

NLP 

need 

Pediatric 

Only Type MeSH_Keywords Doi_link 

CD012941 

Probiotics for 

preventing 

acute otitis 

media in 

children 

18-Jun-19 

Acute and 

Emergenc

y Care 

Acute 

Respiratory 

Infections 

Yes 1 No Yes 
Interventio

n 

Acute Disease;Anti_Bacterial Agents 

[therapeutic use];Disease 

Susceptibility;Otitis Media [epidemiology, 

*prevention & control];Probiotics [adverse 

effects, *therapeutic use];Randomized 

Controlled Trials as Topic [statistics & 

numerical data]; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D012941.pu

b2/full 

CD001480 

Pneumococcal 

conjugate 

vaccines for 

preventing 

acute otitis 

media in 

children 

28-May-

19 

Acute and 

Emergenc

y Care 

Acute 

Respiratory 

Infections 

Yes 1 No Yes 
Interventio

n 

*Pneumococcal Vaccines [therapeutic 

use];Acute Disease;Otitis Media 

[microbiology, *prevention & 

control];Otitis Media with Effusion [drug 

therapy];Vaccines, Conjugate [therapeutic 

use]; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D001480.pu

b5/full 

CD010473 

Continuous 

positive airway 

pressure 

(CPAP) for 

acute 

bronchiolitis in 

children 

31-Jan-19 

Acute and 

Emergenc

y Care 

Acute 

Respiratory 

Infections 

Yes 1 No Yes 
Interventio

n 

Acute Disease;Bronchiolitis [blood, 

*therapy];Carbon Dioxide;Continuous 

Positive Airway Pressure [*methods, 

statistics & numerical data];Length of 

Stay;Oxygen [blood];Partial 

Pressure;Randomized Controlled Trials as 

Topic;Respiration, Artificial [statistics & 

numerical data];Respiratory Rate;Selection 

Bias; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D010473.pu

b3/full 

CD010126 

Inhaled 

corticosteroids 

in children with 

persistent 

asthma: effects 

of different 

drugs and 

10-Jun-19 

Circulation 

and 

Breathing 

Airways Yes 1 No Yes 
Interventio

n 

Administration, Inhalation;Adrenal Cortex 

Hormones [administration & dosage, 

*pharmacology];Anti_Asthmatic Agents 

[administration & dosage, 

*pharmacology];Asthma [*drug 

therapy];Beclomethasone [administration 

& dosage, pharmacology];Body Height 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D010126.pu

b2/full 
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delivery devices 

on growth 

[drug effects];Budesonide [administration 

& dosage, pharmacology];Fluticasone 

[administration & dosage, 

pharmacology];Growth [*drug 

effects];Metered Dose 

Inhalers;Randomized Controlled Trials as 

Topic;Time Factors; 

CD006715 

Epidural 

analgesia for 

adults 

undergoing 

cardiac surgery 

with or without 

cardiopulmonar

y bypass 

1-Mar-19 

Acute and 

Emergenc

y Care 

Anaesthesia Yes 4 No No 
Interventio

n 

*Cardiac Surgical Procedures [adverse 

effects, mortality];Analgesia, Epidural 

[*adverse effects, methods, 

mortality];Anesthesia, General [*adverse 

effects, methods, mortality];Arrhythmias, 

Cardiac [prevention & control];Coronary 

Artery Bypass [adverse effects, 

mortality];Myocardial Infarction 

[*etiology];Randomized Controlled Trials 

as Topic;Respiration Disorders 

[etiology];Stroke [*etiology]; 

https://doi.or

g/10.1002/14

651858.CD0

06715.pub3 

CD001026 

Antidepressants 

plus 

benzodiazepines 

for adults with 

major 

depression 

3-Jun-19 

Mental 

Health and 

Neuroscie

nce 

Common 

Mental 

Disorders 

Yes 3 No No 
Interventio

n 

*Antidepressive Agents [therapeutic 

use];*Benzodiazepines [therapeutic 

use];*Depressive Disorder, Major [drug 

therapy];Anxiety [drug therapy];Drug 

Therapy, Combination; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D001026.pu

b2/full 

CD012943 

Inhaled 

corticosteroids 

for cystic 

fibrosis 

4-Jul-19 

Children 

and 

Families 

Cystic 

Fibrosis and 

Genetic 

Disorders 

Yes 4 No No 
Interventio

n 
NaN 

https://doi.or

g/10.1002/14

651858.CD0

12943.pub2 

CD013069 

Cognitive 

training for 

people with 

mild to 

moderate 

dementia 

25-Mar-

19 

Mental 

Health and 

Neuroscie

nce 

Dementia 

and 

Cognitive 

Improvemen

t 

Yes 3 No No 
Interventio

n 

*Cognition;Activities of Daily 

Living;Cognitive Dysfunction 

[rehabilitation, *therapy];Dementia 

[complications, rehabilitation, 

*therapy];Randomized Controlled Trials 

as Topic;Task Performance and 

Analysis;Therapy, Computer_Assisted 

[methods]; 

https://doi.or

g/10.1002/14

651858.CD0

13069.pub2 

CD004328 

Tranexamic 

acid for patients 

with nasal 

31-Dec-

18 

Musculosk

eletal, 

Oral, Skin 

ENT Yes 2 No No 
Interventio

n 

Administration, Oral;Administration, 

Topical;Antifibrinolytic Agents 

[administration & dosage, adverse effects, 

*therapeutic use];Blood Transfusion 

https://doi.or

g/10.1002/14

651858.CD0

04328.pub3 
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haemorrhage 

(epistaxis) 

and 

Sensory 

[statistics & numerical data];Epinephrine 

[therapeutic use];Epistaxis [*drug 

therapy];Length of Stay;Lidocaine 

[therapeutic use];Phenylephrine 

[therapeutic use];Placebos [therapeutic 

use];Randomized Controlled Trials as 

Topic;Recurrence;Secondary Prevention 

[statistics & numerical data];Tranexamic 

Acid [administration & dosage, adverse 

effects, *therapeutic use]; 

CD010541 
Surgery for 

epilepsy 
25-Jun-19 

Mental 

Health and 

Neuroscie

nce 

Epilepsy Yes 2 No No 
Interventio

n 

Analysis of Variance;Anticonvulsants 

[therapeutic use];Epilepsies, Partial [drug 

therapy, *surgery];Hippocampus 

[surgery];Prognosis;Randomized 

Controlled Trials as Topic;Retrospective 

Studies;Treatment Outcome; 

https://doi.or

g/10.1002/14

651858.CD0

10541.pub3 

CD012065 

Topiramate 

versus 

carbamazepine 

monotherapy 

for epilepsy: an 

individual 

participant data 

review 

24-Jun-19 

Mental 

Health and 

Neuroscie

nce 

Epilepsy Yes 2 No No 
Interventio

n 
NaN 

https://doi.or

g/10.1002/14

651858.CD0

12065.pub3 

CD004317 

Strategies to 

improve 

adherence and 

continuation of 

shorter-term 

hormonal 

methods of 

contraception 

23-Apr-

19 

Children 

and 

Families 

Fertility 

Regulation 
Yes 2 No No 

Interventio

n 

*Counseling;*Family Planning 

Services;Contraception 

[*methods];Contraceptive Agents, Female 

[*administration & 

dosage];Contraceptives, Oral, 

Hormonal;Pregnancy, Unplanned; 

https://doi.or

g/10.1002/14

651858.CD0

04317.pub5 

CD005351 

Non-invasive 

positive 

pressure 

ventilation 

(CPAP or 

bilevel NPPV) 

for cardiogenic 

pulmonary 

oedema 

5-Apr-19 

Circulation 

and 

Breathing 

Heart Yes 3 No No 
Interventio

n 

*Hospital Mortality;Continuous Positive 

Airway Pressure [adverse effects, 

*methods];Intensive Care 

Units;Intubation, Intratracheal [statistics & 

numerical data];Length of 

Stay;Noninvasive Ventilation;Pulmonary 

Edema [*therapy];Randomized Controlled 

Trials as Topic; 

https://doi.or

g/10.1002/14

651858.CD0

05351.pub4 
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CD006150 

Adjunctive 

corticosteroids 

for 

Pneumocystis 

jiroveci 

pneumonia in 

patients with 

HIV infection 

2-Apr-15 

Public 

Health and 

Health 

Systems 

HIV/AIDS Yes 4 No No 
Interventio

n 

*Pneumocystis carinii;AIDS_Related 

Opportunistic Infections [*drug 

therapy];Adrenal Cortex Hormones 

[*therapeutic use];Chemotherapy, 

Adjuvant;Hypoxia [etiology, 

therapy];Pneumonia, Pneumocystis [*drug 

therapy];Randomized Controlled Trials as 

Topic;Respiration, Artificial; 

https://doi.or

g/10.1002/14

651858.CD0

06150.pub2 

CD000028 

Pharmacotherap

y for 

hypertension in 

adults 60 years 

or older 

5-Jun-19 

Circulation 

and 

Breathing 

Hypertensio

n 
Yes 4 No No 

Interventio

n 

*Antihypertensive Agents [therapeutic 

use];*Hypertension [drug 

therapy];Coronary Disease [prevention & 

control];Randomized Controlled Trials as 

Topic;Stroke [prevention & control]; 

https://doi.or

g/10.1002/14

651858.CD0

00028.pub3 

CD010406 

Corticosteroids 

as adjunctive 

therapy in the 

treatment of 

influenza 

24-Feb-

19 

Acute and 

Emergenc

y Care 

Acute 

Respiratory 

Infections 

No 0 No No 
Interventio

n 

Adrenal Cortex Hormones [adverse 

effects, *therapeutic use];Chemotherapy, 

Adjuvant [adverse effects];Cross Infection 

[etiology, mortality];Hospital 

Mortality;Influenza A Virus, H1N1 

Subtype;Influenza, Human [*drug therapy, 

mortality];Intensive Care Units [statistics 

& numerical data];Observational Studies 

as Topic;Randomized Controlled Trials as 

Topic;Respiration, Artificial [statistics & 

numerical data]; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D010406.pu

b3/full 

CD010473 

Adverse events 

in people taking 

macrolide 

antibiotics 

versus placebo 

for any 

indication 

18-Jan-19 

Acute and 

Emergenc

y Care 

Acute 

Respiratory 

Infections 

No 0 No No 
Interventio

n 

Abdominal Pain [chemically 

induced];Anti_Bacterial Agents [*adverse 

effects];Bile Duct Diseases [chemically 

induced];Diarrhea [chemically 

induced];Hearing Loss [chemically 

induced];Heart Diseases [chemically 

induced];Macrolides [*adverse effects, 

therapeutic use];Nausea [chemically 

induced];Numbers Needed To 

Treat;Placebos;Randomized Controlled 

Trials as Topic;Taste Disorders 

[chemically induced];Vomiting 

[chemically induced]; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D011825.pu

b2/full 

CD013024 

Head_to_head 

oral 

prophylactic 

antibiotic 

therapy for 

24-May-

19 

Circulation 

and 

Breathing 

Airways No 0 No No 
Interventio

n 

Anti_Bacterial Agents [*therapeutic 

use];Antibiotic Prophylaxis 

[*methods];Disease 

Progression;Pulmonary Disease, Chronic 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C
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chronic 

obstructive 

pulmonary 

disease 

Obstructive [*drug therapy];Quality of 

Life;Treatment Outcome; 

D013024.pu

b2/full 

CD012212 

Supplemental 

perioperative 

intravenous 

crystalloids for 

postoperative 

nausea and 

vomiting 

29-Mar-

19 

Acute and 

Emergenc

y Care 

Anaesthesia No 0 Yes No 
Interventio

n 

Administration, Intravenous;Anesthesia, 

General [*adverse effects];Crystalloid 

Solutions [administration & dosage, 

*therapeutic use];Postoperative Nausea 

and Vomiting [chemically induced, 

epidemiology, *prevention & 

control];Randomized Controlled Trials as 

Topic;Time Factors; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D012212.pu

b2/full 

CD011686 

Triage tools for 

detecting 

cervical spine 

injury in 

pediatric trauma 

patients 

7-Dec-17 

Musculosk

eletal, 

Oral, Skin 

and 

Sensory 

Back and 

Neck 
No 0 No Yes Diagnostic 

*Decision Support Techniques;Cervical 

Vertebrae [diagnostic imaging, 

*injuries];Checklist;Cohort 

Studies;Magnetic Resonance 

Imaging;Radiography;Reference 

Standards;Spinal Injuries [*diagnosis, 

diagnostic imaging, 

etiology];Tomography, X_Ray 

Computed;Triage [*methods];Wounds, 

Nonpenetrating [*complications, 

diagnostic imaging]; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D011686.pu

b2/full 

CD011674 

Back Schools 

for chronic non-

specific low 

back pain 

3-Aug-17 

Musculosk

eletal, 

Oral, Skin 

and 

Sensory 

Back and 

Neck 
No 0 No No 

Interventio

n 

Chronic Pain [*therapy];Disability 

Evaluation;Exercise Therapy 

[*methods];Low Back Pain 

[*therapy];Pain Measurement;Patient 

Education as Topic [*methods, 

organization & 

administration];Randomized Controlled 

Trials as Topic;Time Factors; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D011674.pu

b2/full 

CD004962 

Conservative 

management 

following 

closed reduction 

of traumatic 

anterior 

dislocation of 

the shoulder 

10-May-

19 

Acute and 

Emergenc

y Care 

Bone, Joint, 

and Muscle 

Trauma 

No 0 No No 
Interventio

n 

*Conservative Treatment;Immobilization 

[adverse effects, *methods];Joint 

Instability [etiology];Randomized 

Controlled Trials as Topic;Shoulder 

Dislocation [complications, *therapy]; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D004962.pu

b4/full 
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CD012424 

Exercise for 

preventing falls 

in older people 

living in the 

community 

31-Jan-19 

Acute and 

Emergenc

y Care 

Bone, Joint, 

and Muscle 

Trauma 

No 0 Yes No 
Interventio

n 

*Exercise;*Independent Living;Accidental 

Falls [*prevention & control, statistics & 

numerical data];Dance Therapy [statistics 

& numerical data];Exercise Therapy 

[*statistics & numerical data];Fractures, 

Bone [epidemiology, prevention & 

control];Gait;Postural Balance;Quality of 

Life;Randomized Controlled Trials as 

Topic;Resistance Training [statistics & 

numerical data];Tai Ji [statistics & 

numerical data]; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D012424.pu

b2/full 

CD011518 

Mindfulness-

based stress 

reduction for 

women 

diagnosed with 

breast cancer 

27-Mar-

19 
Cancer 

Breast 

Cancer 
No 0 No No 

Interventio

n 

*Mindfulness;Anxiety 

[psychology];Breast Neoplasms 

[*psychology];Depression 

[psychology];Fatigue 

[psychology];Quality of Life;Randomized 

Controlled Trials as Topic;Sleep Wake 

Disorders [psychology];Stress, 

Psychological [*therapy];Time Factors; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D011518.pu

b2/full 

CD009219 

Medical 

interventions 

for the 

prevention of 

platinum-

induced hearing 

loss in children 

with cancer 

7-May-19 Cancer 
Childhood 

Cancer 
No 0 No Yes 

Interventio

n 

Antineoplastic Agents [*adverse effects, 

therapeutic 

use];Carboplatin;Cisplatin;Hearing Loss 

[*chemically induced, *prevention & 

control];Neoplasms [drug 

therapy];Organoplatinum Compounds 

[*adverse effects, therapeutic 

use];Oxaliplatin;Randomized Controlled 

Trials as Topic; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D009219.pu

b5/full 

CD012442 

Anti-GD2 

antibody-

containing 

immunotherapy 

postconsolidatio

n therapy for 

people with 

high-risk 

neuroblastoma 

treated with 

autologous 

haematopoietic 

stem cell 

transplantation 

24-Apr-

19 
Cancer 

Childhood 

Cancer 
No 0 No Yes 

Interventio

n 

*Hematopoietic Stem Cell 

Transplantation;Antibodies, Monoclonal 

[*therapeutic use];Consolidation 

Chemotherapy;Disease_Free 

Survival;Immunologic Factors [therapeutic 

use];Immunotherapy;Neuroblastoma 

[immunology, mortality, 

*therapy];Randomized Controlled Trials 

as Topic; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D012442.pu

b2/full 
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CD008237 

Virtual reality 

simulation 

training for 

health 

professions 

trainees in 

gastrointestinal 

endoscopy 

17-Aug-

18 

Abdomen 

and 

Endocrine 

Colorectal 

Cancer 
No 0 No No 

Interventio

n 

*Clinical Competence;*Virtual 

Reality;Endoscopy, Gastrointestinal 

[*education];Health Personnel 

[*education];Randomized Controlled 

Trials as Topic;Simulation Training 

[*methods]; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D008237.pu

b3/full 

CD010168 

Abdominal 

drainage to 

prevent intra-

peritoneal 

abscess after 

open 

appendectomy 

for complicated 

appendicitis 

9-May-18 

Abdomen 

and 

Endocrine 

Colorectal 

Cancer 
No 0 No No 

Interventio

n 

Abdominal Abscess [*prevention & 

control];Appendectomy [*adverse 

effects];Appendicitis [complications, 

*surgery];Drainage 

[*methods];Emergencies;Length of 

Stay;Peritoneal Diseases [*prevention & 

control];Postoperative Complications 

[*prevention & control];Randomized 

Controlled Trials as Topic; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D010168.pu

b3/full 

CD011271 

Melatonin and 

agomelatine for 

preventing 

seasonal 

affective 

disorder 

17-Jun-19 

Mental 

Health and 

Neuroscie

nce 

Common 

Mental 

Disorders 

No 0 No No 
Interventio

n 

Acetamides [*therapeutic 

use];Antidepressive Agents [*therapeutic 

use];Melatonin [agonists, *therapeutic 

use];Placebos [therapeutic use];Seasonal 

Affective Disorder [*prevention & 

control]; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D011271.pu

b3/full 

CD009912 

Psychosocial 

interventions 

for informal 

caregivers of 

people living 

with cancer 

17-Jun-19 

Public 

Health and 

Health 

Systems 

Consumers 

and 

Communicat

ion 

No 0 No No 
Interventio

n 

*Anxiety [therapy];*Caregivers 

[psychology];*Depression 

[therapy];*Neoplasms [nursing];Health 

Status;Quality of Life;Randomized 

Controlled Trials as Topic; 

https://doi.or

g/10.1002/14

651858.CD0

09912.pub2 

CD012533 

Telephone 

interventions, 

delivered by 

healthcare 

professionals, 

for providing 

education and 

psychosocial 

support for 

informal 

caregivers of 

adults with 

14-May-

19 

Public 

Health and 

Health 

Systems 

Consumers 

and 

Communicat

ion 

No 0 No No 
Interventio

n 

*Chronic Disease 

[psychology];*Psychosocial Support 

Systems;*Telephone;Adaptation, 

Psychological;Anxiety 

[psychology];Caregivers 

[*psychology];Depression 

[psychology];Family;Mental 

Health;Quality of Life;Randomized 

Controlled Trials as Topic;Stress, 

Psychological [*psychology]; 

https://doi.or

g/10.1002/14

651858.CD0

12533.pub2 
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diagnosed 

illnesses 

CD012943 

Interventions 

for treating 

neuropathic 

pain in people 

with sickle cell 

disease 

5-Jul-19 

Children 

and 

Families 

Cystic 

Fibrosis and 

Genetic 

Disorders 

No 0 No No 
Interventio

n 
NaN 

https://doi.or

g/10.1002/14

651858.CD0

12943.pub2 

CD009537 

Interventions 

for preventing 

delirium in 

older people in 

institutional 

long-term care 

23-Apr-

19 

Mental 

Health and 

Neuroscie

nce 

Dementia 

and 

Cognitive 

Improvemen

t 

No 0 No No 
Interventio

n 

*Long_Term Care;Activities of Daily 

Living;Delirium [chemically induced, 

epidemiology, *prevention & 

control];Frail 

Elderly;Incidence;Institutionalization;Med

ication Reconciliation;Quality of 

Life;Randomized Controlled Trials as 

Topic; 

https://doi.or

g/10.1002/14

651858.CD0

09537.pub3 

CD013135 

A realist review 

of which 

advocacy 

interventions 

work for which 

abused women 

under what 

circumstances 

29-Jun-19 

Mental 

Health and 

Neuroscie

nce 

Developmen

tal, 

Psychosocial 

and 

Learning 

Problems 

No 0 No No Prototype NaN 

https://doi.or

g/10.1002/14

651858.CD0

13135.pub2 

CD008223 

Social skills 

training for 

attention deficit 

hyperactivity 

disorder 

(ADHD) in 

children aged 5 

to 18 years 

21-Jun-19 

Mental 

Health and 

Neuroscie

nce 

Developmen

tal, 

Psychosocial 

and 

Learning 

Problems 

No 0 No No 
Interventio

n 

*Attention Deficit Disorder with 

Hyperactivity [therapy];*Behavior 

Therapy;*Social Skills;Cognitive 

Behavioral Therapy;Interpersonal 

Relations; 

https://doi.or

g/10.1002/14

651858.CD0

08223.pub3 

CD012287 

Family-based 

prevention 

programmes for 

alcohol use in 

young people 

19-Mar-

19 

Mental 

Health and 

Neuroscie

nce 

Drugs and 

Alcohol 
No 0 No No 

Interventio

n 

*Family Health;*Family Therapy 

[methods];*Program Evaluation;Alcohol 

Drinking [epidemiology, *prevention & 

control];Prevalence;Randomized 

Controlled Trials as Topic; 

https://doi.or

g/10.1002/14

651858.CD0

12287.pub2 

CD008940 

Pharmacotherap

ies for cannabis 

dependence 

28-Jan-19 
Mental 

Health and 

Drugs and 

Alcohol 
No 0 Yes No 

Interventio

n 

Acetylcysteine [adverse effects, 

therapeutic use];Anticonvulsants [adverse 

effects, therapeutic use];Antidepressive 

https://doi.or

g/10.1002/14
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Neuroscie

nce 

Agents [adverse effects, therapeutic 

use];Buspirone [adverse effects, 

therapeutic use];Dronabinol [adverse 

effects, therapeutic use];Marijuana Abuse 

[*drug therapy];Randomized Controlled 

Trials as Topic;Serotonin Receptor 

Agonists [adverse effects, therapeutic 

use];Serotonin Uptake Inhibitors 

[therapeutic use]; 

651858.CD0

08940.pub3 

CD011156 

Pay for 

performance for 

hospitals 

5-Jul-19 

Public 

Health and 

Health 

Systems 

Effective 

Practice and 

Organisation 

of Care 

No 0 No No 
Interventio

n 
NaN 

https://doi.or

g/10.1002/14

651858.CD0

11156.pub2 

CD000125 

Local opinion 

leaders: effects 

on professional 

practice and 

healthcare 

outcomes 

24-Jun-19 

Public 

Health and 

Health 

Systems 

Effective 

Practice and 

Organisation 

of Care 

No 0 No No 
Interventio

n 
NaN 

https://doi.or

g/10.1002/14

651858.CD0

00125.pub5 

CD011811 

Plasma 

interleukin-6 

concentration 

for the 

diagnosis of 

sepsis in 

critically ill 

adults 

30-Apr-

19 

Acute and 

Emergenc

y Care 

Emergency 

and Critical 

Care 

No 0 No No Diagnostic 

Biomarkers [blood];Critical 

Illness;Diagnosis, 

Differential;Interleukin_6 [*blood];Sepsis 

[*diagnosis]; 

https://doi.or

g/10.1002/14

651858.CD0

11811.pub2 

CD013315 

Interventions 

for preventing 

high altitude 

illness: Part 3. 

Miscellaneous 

and non-

pharmacologica

l interventions 

23-Apr-

19 

Acute and 

Emergenc

y Care 

Emergency 

and Critical 

Care 

No 0 No No 
Interventio

n 

Acetazolamide [therapeutic use];Altitude 

Sickness [*prevention & control];Brain 

Edema [prevention & 

control];Hypertension, Pulmonary 

[prevention & 

control];Medroxyprogesterone 

[therapeutic use];Plant Extracts 

[therapeutic use];Randomized Controlled 

Trials as Topic; 

https://doi.or

g/10.1002/14

651858.CD0

13315 

CD012173 

Restriction of 

salt, caffeine 

and alcohol 

intake for the 

31-Dec-

18 

Musculosk

eletal, 

Oral, Skin 

and 

Sensory 

ENT No 0 No No 
Interventio

n 

*Caffeine;*Central Nervous System 

Stimulants;*Diet, 

Sodium_Restricted;*Sodium Chloride, 

Dietary;Meniere Disease 

[*therapy];Syndrome; 

https://doi.or

g/10.1002/14

651858.CD0

12173.pub2 
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treatment of 

Ménière's 

 disease or 

syndrome 

CD013000 

Interventions 

for orbital 

lymphangioma 

15-May-

19 

Musculosk

eletal, 

Oral, Skin 

and 

Sensory 

Eyes & 

Vision 
No 0 No No 

Interventio

n 

*Lymphangioma [drug therapy, 

surgery];*Orbital Neoplasms [drug 

therapy, surgery];Antibiotics, 

Antineoplastic [therapeutic use];Treatment 

Outcome; 

https://doi.or

g/10.1002/14

651858.CD0

13000.pub2 

CD011150 

Intrastromal 

corneal ring 

segments for 

treating 

keratoconus 

14-May-

19 

Musculosk

eletal, 

Oral, Skin 

and 

Sensory 

Eyes & 

Vision 
No 0 No No 

Interventio

n 

Corneal Stroma [*surgery];Corneal 

Transplantation [methods];Keratoconus 

[*surgery];Prostheses and 

Implants;Prosthesis Implantation 

[*methods]; 

https://doi.or

g/10.1002/14

651858.CD0

11150.pub2 

CD012521 

Interventions 

using social 

networking sites 

to promote 

contraception in 

women of 

reproductive 

age 

1-Mar-19 

Children 

and 

Families 

Fertility 

Regulation 
No 0 No No 

Interventio

n 

*Health Knowledge, Attitudes, 

Practice;*Online Social 

Networking;Condoms [statistics & 

numerical data];Contraception [*statistics 

& numerical data];Contraception Behavior 

[*statistics & numerical data];Randomized 

Controlled Trials as Topic;Sexual Health 

[*statistics & numerical data]; 

https://doi.or

g/10.1002/14

651858.CD0

12521.pub2 

CD009825 

Mediterranean-

style diet for the 

primary and 

secondary 

prevention of 

cardiovascular 

disease 

13-Mar-

19 

Circulation 

and 

Breathing 

Heart No 0 No No 
Interventio

n 

*Diet, Mediterranean;Blood 

Pressure;Cardiovascular Diseases [blood, 

mortality, *prevention & 

control];Cholesterol [blood];Cholesterol, 

HDL [blood];Cholesterol, LDL 

[blood];Primary Prevention 

[*methods];Randomized Controlled Trials 

as Topic;Secondary Prevention 

[*methods]; 

https://doi.or

g/10.1002/14

651858.CD0

09825.pub3 

CD004039 

Plasma 

expanders for 

people with 

cirrhosis and 

large ascites 

treated with 

abdominal 

paracentesis 

28-Jun-19 

Abdomen 

and 

Endocrine 

Hepato_Bili

ary Group 
No 0 No No 

Interventio

n 
NaN 

https://doi.or

g/10.1002/14

651858.CD0

04039.pub2 
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CD013106 

Radix Sophorae 

flavescentis 

versus other 

drugs or herbs 

for chronic 

hepatitis B 

24-Jun-19 

Abdomen 

and 

Endocrine 

Hepato_Bili

ary Group 
No 0 No No 

Interventio

n 
NaN 

https://doi.or

g/10.1002/14

651858.CD0

13106.pub2 

CD007497 

Low dose 

versus high 

dose stavudine 

for treating 

people with 

HIV infection 

28-Jan-15 

Public 

Health and 

Health 

Systems 

HIV/AIDS No 0 No No 
Interventio

n 

Anti_HIV Agents [*administration & 

dosage, adverse effects];Developing 

Countries;HIV Infections [*drug therapy, 

virology];HIV_1;Randomized Controlled 

Trials as Topic;Stavudine [*administration 

& dosage, adverse effects];Viral Load 

[drug effects]; 

https://doi.or

g/10.1002/14

651858.CD0

07497.pub2 

CD012873 

Sequencing of 

anthracyclines 

and taxanes in 

neoadjuvant and 

adjuvant 

therapy for 

early breast 

cancer 

18-Feb-

19 
Cancer 

Breast 

Cancer 
No 0 No No 

Interventio

n 

Anthracyclines [*administration & dosage, 

adverse effects];Antibiotics, 

Antineoplastic [*administration & dosage, 

adverse effects];Antineoplastic Agents 

[*administration & dosage, adverse 

effects];Breast Neoplasms [*drug therapy, 

mortality, pathology];Chemotherapy, 

Adjuvant;Cyclophosphamide 

[administration & dosage, adverse 

effects];Disease_Free Survival;Docetaxel 

[administration & dosage, adverse 

effects];Doxorubicin [administration & 

dosage, adverse effects];Drug 

Administration Schedule;Epirubicin 

[administration & dosage, adverse 

effects];Fluorouracil [administration & 

dosage, adverse effects];Neoadjuvant 

Therapy;Nervous System [drug 

effects];Neutropenia [chemically 

induced];Paclitaxel [administration & 

dosage, adverse effects];Quality of 

Life;Randomized Controlled Trials as 

Topic;Taxoids [*administration & dosage, 

adverse effects]; 

https://www.

cochranelibra

ry.com/cdsr/

doi/10.1002/

14651858.C

D012873.pu

b2/full 
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Chapter 3. DEMONSTRATING AN APPROACH FOR EVALUATING 

SYNTHETIC GEOSPATIAL AND TEMPORAL 

EPIDEMIOLOGIC DATA UTILITY: RESULTS FROM 

ANALYZING >1.8 MILLION SARS-COV-2 TESTS IN 

THE UNITED STATES COVID COHORT 

COLLABORATIVE (N3C) 

3.1 ABSTRACT 

Objective: To evaluate whether synthetic data derived from a national COVID-19 data set could 

be used for geospatial and temporal epidemic analyses. 

Materials and Methods: Using an original data set (n=1,854,968 SARS-CoV-2 tests) and its 

synthetic derivative, we compared key indicators of COVID-19 community spread through 

analysis of aggregate and zip-code level epidemic curves, patient characteristics and outcomes, 

distribution of tests by zip code, and indicator counts stratified by month and zip code. Similarity 

between the data was statistically and qualitatively evaluated. 

Results: In general, synthetic data closely matched original data for epidemic curves, patient 

characteristics, and outcomes. Synthetic data suppressed labels of zip codes with few total tests 

(mean=2.9±2.4; max=16 tests; 66% reduction of unique zip codes). Epidemic curves and 

monthly indicator counts were similar between synthetic and original data in a random sample of 

the most tested (top 1%; n=171) and for all unsuppressed zip codes (n=5,819), respectively. In 

small sample sizes, synthetic data utility was notably decreased. 



 

  

62 

Discussion: Analyses on the population-level and of densely-tested zip codes (which contained 

most of the data) were similar between original and synthetically-derived data sets. Analyses of 

sparsely-tested populations were less similar and had more data suppression. 

Conclusion: In general, synthetic data were successfully used to analyze geospatial and temporal 

trends. Analyses using small sample sizes or populations were limited, in part due to purposeful 

data label suppression - an attribute disclosure countermeasure. Users should consider data 

fitness for use in these cases. 

3.2 INTRODUCTION 

3.2.1 Background and significance 

COVID-19 has illustrated the need to disseminate accurate, timely, and useful epidemiologic 

public health data - especially data related to ongoing pandemics or pandemic preparedness. It 

has also highlighted the need to protect the privacy of individuals.[1,2] The National COVID 

Cohort Collaborative (N3C) was created to share and harmonize individual-level electronic 

health record (EHR) data into a single data set.[3] The N3C has received, ingested, harmonized, 

and characterized[4] data from across the United States (US). To balance data access and 

privacy, N3C created two levels of data sets: (1) the limited data set (LDS) which has 16 HIPAA 

Privacy Rule[5,6] direct identifiers stripped out except dates and zip codes, and (2) synthetic data 

which are computationally derived from the LDS to mimic the LDS data statistical distributions, 

covariance, and higher order interactions. Synthetic data generation can potentially protect 

privacy because synthetic data rows are not directly tied to the original source data.[7–11] 

Pending a pilot study and privacy validation, synthetic data sets are the only data under 

consideration to be shared outside of the N3C enclave.[3] 
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Applying privacy-preserving methods to data comes at varying cost to utility, producing 

a privacy-utility trade-off.[9,12–15] De-identification removes granular geographic information 

such as street-level address. Obscuring dates reduces the utility of temporal data for some 

analyses, such as epidemic curves. However, these geographic and temporal data are critical 

components needed to measure key indicators of COVID-19 community spread[16] used to 

inform pandemic management decisions such as determining when to reopen schools[17] and 

businesses.[18] Thus, synthetic data are likely the only privacy-preserving N3C data that can be 

used to analyze some of the most critically-important data related to pandemic management and 

preparedness while also providing citizens more transparency into the underlying data. However, 

previous research has reported deficits in how well synthetic data mimic original data including 

limitations in their: ability to capture longitudinal relationships, model multiple data types, and 

perform well on small sample sizes.[10,19,20] Due to the combination of potential widespread 

synthetic data dissemination, heightened research interest in COVID-19[21], and the rise of 

“citizen science”[22–24], the user base and applications of pandemic-related synthetic data will 

likely be heterogenous and broad. Therefore, it is important to evaluate N3C synthetic data in a 

manner that can inform users with a wide range of intended use cases and definitions for 

synthetic data fitness for use.[25] 

The utility of synthetic health data has been evaluated in other work[15,19,20,26–30] 

outside of N3C which applied a variety of the ways one can validate synthetic data.[31] 

However, N3C synthetic data utility has only been evaluated once before. Recently, the N3C 

synthetic data validation task team evaluated the utility of N3C synthetic data (MDClone, Beer 

Sheva, Israel) across three use cases, one of which had a geospatial and temporal focus.[32] 

Foraker et al. (2021) found the synthetic data had high utility for construction of a single 
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aggregate epidemic curve of COVID-19 cases. However, it showed that rural zip codes with 

smaller population counts were more likely than urban zip codes to have zip code labels 

censored (suppressed) in the synthetic data, which is where a categorical variable’s value is 

replaced with the word ‘censored’ to protect privacy of patients with particularly uncommon, and 

thus identifiable, features. To date, no analyses have been conducted on the N3C synthetic data 

to assess utility for analyses by individual zip codes and/or aggregate indicators beyond case 

counts (e.g. percent positive) over time. 

3.2.2 Objective 

In this paper, we describe the N3C Synthetic data validation task team methods and results 

focused on evaluating whether synthetic N3C data can be used for geospatial and temporal 

epidemic analyses. Our replication studies focused on what we deemed were important and 

common analyses to be performed, such as epidemic curves for key indicators and creation of 

public-facing dashboards.[33–35] Our validation included replication of studies and general 

utility metrics[31] for: analyses at the zip code level over time, construction of epidemic curves, 

and aggregate population characteristics. We believe these approaches balance the need to 

provide broad utility results for a wide range of analyses while also providing specific validation 

results relevant to analyses of common interest. 

3.3 MATERIALS AND METHODS 

3.3.1 Data 

The N3C data analyzed include individual-level EHR data enriched with social determinants of 

health (SDOH) at the 5-digit zip code level. The data have been harmonized into the 

Observational Medical Outcomes Partnership (OMOP) common data model (CDM) v5.3.1[3,36] 
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and are the same data sets described in a previous N3C synthetic data validation use case.[32] 

The N3C LDS as of November 30, 2020 - which included 34 data source partners - was used as 

the data source. MDClone received a copy of the LDS then transformed these data from the N3C 

harmonized data model into MDClone’s data model. Afterwards, the required data needed for 

the study team’s analyses were extracted by MDClone from the transformed LDS for use as the 

“original” data set. A synthetic derivative of this transformed original data set was then created 

by MDClone. MDClone provided both the original and synthetic data sets to the research team 

for evaluation within the N3C secure enclave environment (flowchart Figure 3.8 in supplement). 

Both the original and synthetic data were formatted as a single table adhering to the same 

schema, with each row representing a single COVID-19 test. The table had the following 

columns: test result (positive/negative; only each patient’s first negative and/or first positive test 

included), age at confirmed test result; admission start date days from reference if admission 

occurred within ±7 days of COVID-19 positive test result; death (null/yes) during admission; 

admission length of stay (LOS); patient's state of residence; source partner with which the patient 

was affiliated; and patient’s 5-digit zip code. The data also included the following SDOH 

columns determined by the patient’s zip code: total population in zip code; percent of residents 

under the poverty line; percent without health insurance; and median household income. 

As in Foraker et al. (2021), we used consistent definitions for censored and uncensored 

zip codes. Censored zip codes were those present within the original data not found (n=11,222) 

within the synthetic data set either because the zip code was suppressed by labeling the zip code 

'censored' or removed within the synthetic data set to protect privacy. Conversely, uncensored 

zip codes were defined as discrete zip codes found in the original and the synthetic data 

(n=5,819). 
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3.3.2 Analysis 

All analyses were conducted solely by one author (JAT). All code was written in Python 

(v3.6.10) and - as required by N3C - ran within the secure N3C enclave using the Palantir 

Foundry Analytic Platform (Palantir Technologies, Denver, CO). The entirety of code used in 

this analysis is contained within a single Foundry Code Workbook using a saved Spark 

environment to preserve required software versions and dependencies. The code workbook and 

source data have been stored within the N3C enclave so that they may inform and be reused in 

future validation work. 

3.3.3 Summary of data 

Descriptive statistics were calculated and reported for age, number of unique zip codes present, 

LOS, and admission date after positive test stratified by patients who were tested, positive, 

admitted, and who died during admission. Number of unique zip codes present excluded null or 

censored zip codes. The difference between original and synthetic values was reported as the raw 

synthetic difference (synthetic - original). The difference as a percentage of the original value 

was reported as synthetic difference percentage (raw synthetic difference/original). 

3.3.4 Aggregate epidemic curves 

We constructed aggregate epidemic curves using each data set spanning January 1st through 

November 30th 2020.  The following key indicators were calculated and visualized: tests, cases 

(reproduced from Foraker et al., 2021, to view others in context), percent positive, admissions, 

and deaths during admission. Each indicator had the following daily metrics calculated: count 

(discrete indicators) or value (continuous indicators), 7-day midpoint moving average, 7-day 

slope (count or daily value - its value six days prior). To assess the statistical difference between 
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original and synthetic epidemic curves, we conducted the paired two-sided t-test (scipy v1.5.3, 

stats.ttest_rel) and two-sided wilcoxon signed-rank test (scipy v1.5.3, stats.wilcoxon) for all 

metrics across all indicators, treating each data set’s daily results as a pair. 

3.3.5 Distribution of tests; censoring of zip codes 

To assess the distribution of tests by zip code and threshold of zip code censoring, we calculated 

the total number of tests per zip code in the original and synthetic data. In the synthetic data, we 

excluded rows with a censored (n=44,337; 2.4%) or null (n=444,092; 23.9%) zip code. In the 

original data, we excluded rows with a null (n=444,380; 24.0%) zip code. We computed the 

99th, 97.5th, and 90th percentiles of tests per zip code in the original data. The distributions of 

tests by zip code were plotted as a histogram with the synthetic and original data overlaid. 

Additionally, we calculated the distribution of tests by zip code in the original data that were 

censored in the synthetic data, then plotted the result as a histogram. We then calculated the 

difference in patients’ SDOH values within the original data, comparing patients whose zip 

codes were censored within the synthetic data to those whose zip codes were not censored. 

3.3.6 Top 1% paired zip codes’ epidemic curves 

Next, we assessed synthetic epidemic curves’ performance at the zip code level, focusing on zip 

codes with relatively abundant data. We created a list of zip codes from the original data in the 

99th percentile (n=171) by total number of tests, then removed any zip codes without an 

uncensored matched zip code pair in the synthetic data (n=0). We randomly sampled ten zip 

codes from the list and constructed epidemic curves for these zip codes’ original and synthetic 

data. Each epidemic curve was constructed using the same date range, methods, and metrics as 

the aggregate epidemic curves described above with the following change: we only assessed tests 
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and admissions indicators due to the infrequency of death during admission at the zip code level 

and manuscript space limitations. 

3.3.7 Monthly zip code pairwise synthetic error 

We compared the difference in monthly counts of tests, cases, and admissions between the 

original data and paired uncensored synthetic zip codes. To do so, we calculated each data set’s 

number of tests, cases and admissions for every zip code stratified by month for each month the 

zip code had ≥ 1 test. Then, the data sets were outer merged on month and zip code (Figure 3.1). 

Synthetic error, defined as the difference between the synthetic monthly count and the original 

data monthly count value, was computed for every zip code month pair. The distribution of 

synthetic error was visualized for tests, cases, and admissions. 

 

Figure 3.1. Workflow of synthetic error stratified by zip code and month analysis.  

Workflow of synthetic error experiment showing synthetic data on the left, original data on 

the right which are then merged to allow the calculation of synthetic error to be made. 
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3.3.8 Visualizations 

All visualizations (Plotly v4.14.1, Plotly Technologies Inc.) were interactive, allowing N3C 

enclave users to zoom in/out, pan, and hover to see values and/or labels. In this manuscript, static 

figures are presented. Log scales were avoided when possible and, when used, annotated to draw 

attention to the scale. 

Visualizations that overlaid both datasets adhered to consistent style conventions. We 

encoded synthetic and original data sources as red and blue, respectively. Vertical overlaid bars 

were set to an opacity of 0.35 to 1) provide contrast between two datasets and 2) allow additional 

tracings, such as 100% opacity 7-day moving averages used in epidemic curves, to be seen on 

top of the bars. 

All visualizations were created using colorblind-safe color mappings. Categorical 

mappings encoding values besides data source (synthetic or original) used hexadecimal color 

codes found in the seaborn colorblind palette.[37,38] Each visualization was qualitatively tested 

for colorblind deuteranopia, protanopia, and tritanopia interpretability by one member of the 

research team (JAT) using Color Oracle.[39] 

3.4 RESULTS 

There were nearly two million tested patients (Original n=1,854,968; Synthetic n=1,854,950) in 

each data set. As seen in Table 3.6, the overall central tendencies of variables of interest overall 

were similar between the synthetic data and original data, especially for age and percent 

positive/admitted/died. The raw synthetic difference was zero, rounded to two decimal points, 

roughly one third (18/50 rows in Table 3.6) of the time. The variable with the greatest synthetic 
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difference was unique zip codes, with between a 65-98% reduction in unique zip codes. Median 

LOS and IQR for admitted patients were exactly the same, yet the mean LOS was 6.48 (±290.81) 

and 8.32 (±10.66) days for original and synthetic values, respectively. The extreme LOS 

standard deviation observed in the original data was due to an erroneous outlier. A single row in 

the original data had an extreme negative LOS [~-44,000 days; ~-120 years] and 11 rows with a 

LOS=-1. The synthetic data also had negative LOS values (n<10) but the values were greatly 

attenuated, ranging from -1 to roughly -175. 
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Table 3.6. Testing and outcomes characteristics: comparison of original vs synthetic data  

 

 Original Synthetic 

Synthetic 

difference 

(raw) 

Synthetic 

difference 

(%) 

Tests (n) 1854968 1854950 -18.00 0.00 

    Age (mean) 44 44 0.00 0.00 

    Age (stdev) 22.16 22.16 0.00 0.00 

    Age (median) 43.52 43.51 -0.01 -0.02 

    Age (IQR) 35.08 35.04 -0.04 -0.11 

    Unique zip codes (n) 17041 5819 -11222.00 -65.85 

Positive (count) 195200 195198 -2.00 0.00 

    Positive (%) 10.52 10.52 0.00 0.00 

    Age (mean) 41.54 41.53 -0.01 -0.02 

    Age (stdev) 20.4 20.42 0.02 0.10 

    Age (median) 39.65 39.56 -0.09 -0.23 

    Age (IQR) 31.84 31.81 -0.03 -0.09 

    Unique zip codes (n) 6660 1798 -4862.00 -73.00 

Negative (n) 1659768 1659752 -16.00 0.00 

    Negative (%) 89.48 89.48 0.00 0.00 

    Age (mean) 44.29 44.29 0.00 0.00 

    Age (stdev) 22.34 22.34 0.00 0.00 

    Age (median) 44.08 44.08 0.00 0.00 

    Age (IQR) 35.36 35.34 -0.02 -0.06 

    Unique zip codes (n) 16668 5805 -10863.00 -65.17 

Admitted (n) 23044 23044 0.00 0.00 

    Admitted (%) 1.24 1.24 0.00 0.00 

    Age (mean) 57.87 57.85 -0.02 -0.03 

    Age (stdev) 19.77 19.74 -0.03 -0.15 

    Age (median) 59.98 60 0.02 0.03 

    Age (IQR) 28.2 28.22 0.02 0.07 

    Days after positive test (mean) -0.07 -0.1 -0.03 42.86 

    Days after positive test (stdev) 1.77 1.74 -0.03 -1.69 
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    Days after positive test (median) -0.05 -0.04 0.01 -20.00 

    Days after positive test (iqr) 0.88 0.88 0.00 0.00 

    LOS (mean) 6.48 8.32 1.84 28.40 

    LOS (stdev) 290.81 10.66 -280.15 -96.33 

   LOS (median) 5 5 0.00 0.00 

    LOS (IQR) 8 8 0.00 0.00 

    Unique zip codes (n) 3132 1515 -1617.00 -51.63 

Died (n) 2032 2032 0.00 0.00 

    Died (%) 0.11 0.11 0.00 0.00 

    Age (mean) 71.81 71.81 0.00 0.00 

    Age (stdev) 14.57 14.65 0.08 0.55 

    Age (median) 73.26 73.21 -0.05 -0.07 

    Age (IQR) 19.68 19.58 -0.10 -0.51 

    Days after positive test (mean) -0.32 -0.32 0.00 0.00 

    Days after positive test (stdev) 1.39 1.36 -0.03 -2.16 

    Days after positive test (median) -0.14 -0.11 0.03 -21.43 

    Days after positive test (IQR) 0.91 0.93 0.02 2.20 

    LOS (mean) 13.69 13.71 0.02 0.15 

    LOS (stdev) 12.93 13.05 0.12 0.93 

    LOS (median) 10 10 0.00 0.00 

    LOS (IQR) 13 13 0.00 0.00 

    Unique zip codes (n) 831 16 -815.00 -98.07 

 

Aggregate epidemic curves are shown in Figure 3.2. In our statistical analysis, no 

differences were found between the aggregate epidemic curves besides the 7-day average of 

percent positive [(t-test p-value=0.025; wilcoxon p-value=0.072), Table 3.7]. 
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Figure 3.2. Aggregate epidemic curves of key indicators.  

Aggregate epidemic curves with counts (vertical bars) and 7-day moving averages (smoothed 

line) for A) tests, B) cases, C) percent positive, D) admissions, and E) deaths during admission. 

Color encodings include original data (light blue) and synthetic data (light red), with their 

overlap (purple). As counts get smaller from tests to deaths, the epidemic curves visually appear 

less similar. 

 

Table 3.7. Tests for significant differences between aggregate original and synthetic 

epidemic curves. 

Key Indicator Metric Wilcoxon 

result 

P-value T-test stat P-value 

Tests Counts 25354.5 0.300 -0.007 0.994 

7-day average 25458.5 0.428 -0.025 0.980 



 

  

74 

7-day slope 26075 0.735 -0.002 0.998 

Cases Counts 26288 0.496 -0.002 0.998 

7-day average 26005 0.775 -0.006 0.996 

7-day slope 25788.5 0.898 -0.002 0.998 

Percent Positive Counts 26407 0.426 -0.932 0.352 

7-day average 24038 0.072 -2.258 0.025 

7-day slope 27083 0.972 0.129 0.896 

Admissions Counts 21405 0.247 -0.007 0.995 

7-day average 24299 0.197 -0.030 0.976 

7-day slope 22825.5 0.894 -0.011 0.991 

Deaths Counts 13881 0.748 0 1 

7-day average 19171.5 0.247 -0.023 0.982 

7-day slope 16632 0.866 -0.011 0.992 

 

Differences were observed between patients’ SDOH values whose zip codes were 

uncensored in the synthetic data compared to patients whose zip codes were censored in the 

synthetic data (Table 3.8). The largest differences were found in the total population of zip code 

and age. Patients with uncensored zip codes lived in more populous zip codes (median median 

total population: uncensored=28,479, censored=7,935) and were younger (median age: 

uncensored=43.5, censored=48.7). 
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Table 3.8. SDOH and age of patients in the original data whose zip codes were censored vs. 

uncensored 

SDOH  Censored Status Mean 

Standard 

deviation  Median  IQR 

Age (years) 

Uncensored 44.0 22.2 43.5 35.0 

Censored 46.4 22.0 48.7 40.1 

Uncensored 

Difference (raw) -2.4 0.2 -5.2 -5.1 

Median household 

income ($) 

Uncensored 64092.6 23973.9 59324.0 29241.0 

Censored 63101.5 28964.1 55625.0 28857.0 

Uncensored 

Difference (raw) 991.1 -4990.2 3699.0 384.0 

Percent under the 

poverty line 

Uncensored 13.7 9.0 11.3 11.2 

Censored 13.3 9.6 11.2 10.9 

Uncensored 

Difference (raw) 0.4 -0.6 0.1 0.3 

Percent without 

health insurance 

Uncensored 8.7 5.1 7.6 7.0 

Censored (raw) 9.2 6.7 7.8 7.7 

Uncensored 

Difference (raw) -0.5 -1.6 -0.2 -0.7 

Total population 

of zip code 

Uncensored 29758.7 17992.4 28479.0 25220.0 

Censored 15493.9 17967.1 7935.0 23119.3 

Uncensored 

Difference (raw) 14264.8 25.3 20544.0 2100.7 

 

 

The randomly sampled top 1% paired zip codes’ epidemic curves are presented in Figure 3.3 and 

Figure 3.4. 
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Figure 3.3. Zip code-level epidemic curves for random sample set #1 of the most tested (top 

1%) zip codes.  
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Zip code-level epidemic curves with counts (vertical bars) and 7-day moving averages 

(smoothed line). Color encodings include original data (light blue) and synthetic data (light red), 

with their overlap (purple). Each row (A-E) corresponds to a different randomly sampled zip 

code visualizing cases (left column) and admissions (right column). Synthetic data are more 

similar to original data when indicator density is higher, Overall, synthetic data closely match 

overall trends and closely match start and end dates. 
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Figure 3.4. Zip code-level epidemic curves for random sample set #2 of the most tested (top 

1%) zip codes.  
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Zip code-level epidemic curves with counts (vertical bars) and 7-day moving averages 

(smoothed line). Color encodings include original data (light blue) and synthetic data (light red), 

with their overlap (purple). Each row (F-J) corresponds to a different randomly sampled zip code 

visualizing cases (left column) and admissions (right column). Synthetic data are more similar to 

original data when indicator density is higher, Overall, synthetic data closely match overall 

trends and closely match start and end dates. 

 

3.4.1 Distribution of tests by zip code and of censored zip codes: 

The 90th, 97.5th, and 99th percentiles for total tests by zip code in the original data were 125, 

784, and 1,636 tests, respectively (see Figure 3.5A). Thus, a small minority of zip codes account 

for the vast majority of total tests. There were 15,108 (88.7%) unique zip codes in the original 

data with <100 total tests and 11,039 (64.7%) with <10 tests. Above this threshold (n≥10 tests), 

the synthetic data mimic the original data distribution closely (see Figure 3.5B). There were 

17,041 unique zip codes and 5,819 unique uncensored zip codes in the original and synthetic 

data, respectively. The vast majority of censored zip codes are those that had <10 total tests in 

the original data (mean=2.9±2.4; median=2, IQR=3; max=16) as seen in Figure 3.7 of the 

supplement. 
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Figure 3.5. Distributions of total tests by zip code. 

Original data (light blue) and synthetic data (light red), and their overlap (purple). A) All data 

binned by 100. B) Filtered data with a bin size of 10 to only show the distribution of tests by zip 

code in zip codes with <100 tests. Both y-axes use a log scale. As seen in panel A, the vast 

majority of tests are conducted in a minority of zip codes. As seen in panels A & B, the 

distribution of the synthetic data closely matches the original data at >10 tests per zip code. 
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3.4.2 Monthly zip code pairwise synthetic error 

 The absolute value of pairwise synthetic error stratified by month and zip code increased 

as the original data value of counts increased (see Figure 3.6; supplement Table 3.9). Thus, as 

sample size of data increased, so did the absolute synthetic error and vice versa. The synthetic 

error for tests ranged from an IQR=2 when the original value of tests was between 0 to 19 to 

IQR=9 when the original value of tests was between 250 and 1,705. All synthetic error for zip 

codes with an original bin value of zero count was positive. All other bins’ synthetic error across 

key indicators was skewed negative, indicating that the synthetic data had lower counts than the 

original data. 
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Figure 3.6. Synthetic error stratified by zip code and month.  

Synthetic error distributions per zip code stratified by month for tests (top row), cases (middle 

row), and admissions (bottom row) shown both at original scale (left column) and zoomed in to 

the peak of each row’s middle bin (legend showing bin ranges and color encodings seen on the 

far right of each row). Original data value denotes the monthly count in the original data for the 

key indicator of interest. Box plots of synthetic error are shown in the top 30% of each sub-plot 

(A-F), with a histogram of synthetic error shown in the bottom 70%. Within each sub-plot, the 

box plot and histogram have a shared x-axis corresponding to synthetic error and shared bins 

corresponding to the original data value. The y-axis shows the number of zip codes stratified by 
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month (e.g. zip code month pairs). Boxes in the box plots span from Q1 to Q3, with median 

marked inside the box. Fences span +/-1.5 times the IQR. Error increased as the size (count) of 

the original data increased, which allows users to estimate the level of error in their data of 

interest. The synthetic data systematically underestimate the monthly count of key indicators in 

zip codes with the most tests, cases, and deaths, and overestimate them in zip codes with the 

least. 

3.5 DISCUSSION 

 Overall, analyses on the population-level and of densely-tested zip codes (which 

contained most of the data) were similar between original and synthetically-derived data sets. 

Analyses of sparsely-tested populations with smaller sample sizes were notably less similar and 

had more data suppression, which is in agreement with prior work.[19,32] Synthetic data most 

closely matched the original data on aggregate data tasks such as aggregate epidemic curves 

(Figure 3.2) and broad summary statistics (Table 3.6). At the aggregate level, only one metric 

(percent positive, 7-day average) across all indicators showed a significant difference between 

synthetic and original data aggregate epidemic curves (Table 3.7). Scarcity of data - as data 

collection used in this manuscript tapered off in November - is likely a contributing factor to the 

difference. 

 The summary statistics shown of both data sets’ populations in Table 3.6 were similar. 

Major exceptions were the number of unique zip codes due to censoring in the synthetic data and 

attenuation in the synthetic data of a single extreme outlier (~-44,000 day LOS) caused by a data 

quality issue in the original data. Other erroneous negative LOS values persisted within the 

synthetic data, yet the bulk of the erroneous values remaining were a LOS=-1 which has been 

reported as a data quality issue attributed to daylight savings.[40,41] Thus, we show that 
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synthetic data can reduce the impact of data quality issues by removing or attenuating erroneous 

outliers in order to protect the privacy of rare, and thus identifiable, data. 

 At the zip code and month level, the synthetic data error performed well on an absolute 

level; the error increased as the size of the original data increased (Figure 3.6 & Supplementary 

Table 3.9). Therefore, the amount of synthetic error is predictable which gives users the ability to 

estimate the level of error in their data of interest. Additionally, the synthetic error relative to the 

original data value is likely small enough for most uses of synthetic data. For example, a zip 

code in the synthetic data with a monthly positive count of 6-49 is off from the original data by 

an average of -0.59±2.63. The overrepresentation of negative tests in the original data by 8.5-fold 

(Table 3.6) appears to bias synthetic error. Since it is impossible to have less than zero count, the 

synthetic data cannot add privacy-producing noise in the negative direction for zip code monthly 

counts equal to zero. Consequently, the synthetic data systematically underestimate the monthly 

count of key indicators in zip codes with the most tests, cases, and deaths, and overestimate them 

in zip codes with the least. Our results relate to Flaxman et al., 2020 which observed a similar 

effect resulting from a non-negativity constraint in the US Census’ TopDown differential privacy 

algorithm.[12] The magnitude of the synthetic error skewing negative in a smaller concentration 

of zip codes increased as a key indicator became less frequent, which is fundamentally a signal 

problem in low-density data sets and is not specific to synthetic data generation. 

The top 1% most tested zip codes’ epidemic curves provide users with 10 qualitative 

examples of densely tested zip codes. Overall, the synthetic data closely matched the start and 

end dates of the original data and followed the overall trend of the original data over time (e.g. 

Figure 3.4A matched spike in late April). The ten examples show users the 99th percentile best-
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case scenario of key indicator original data availability and synthetic data performance at the zip 

code level, yet the size and testing density of N3C data will likely continue to increase. 

Our findings show the importance of understanding the characteristics and limitations of 

the original data since we found these biases affected synthetic data utility. Data biases resulting 

in poorer performance of software tools, clinical guidelines and other applications for groups 

underrepresented in source data has been previously reported for separate tasks.[12,42–45] 

Foraker et al. (2021) found that censored zip codes had greater missingness of SDOH values in 

the original data than uncensored zip codes. In our study, we found the bulk of patients in the 

N3C data live in a small minority of zip codes (Figure 3.5), likely those most adjacent to 

institutions contributing data. These zip codes are therefore more likely to be urban and less 

likely to have their zip code censored (Table 3.8). As a consequence, rural zip codes, which are 

already underrepresented in the original data, become even less available to directly analyze. 

Additionally, patients with censored zip codes were older, potentially due to older patients 

traveling from sparsely tested regions to receive care offered at distant academic medical centers 

which participate in N3C. 

While our results demonstrate the utility of using synthetic data for a broad range of 

geospatial analyses, a caveat to synthetic data use is its utility to analyze rural N3C populations 

since nearly all zip codes with <10 tests were censored and much more likely to be rural within 

the original data. Suppression of non-zero counts <10 is a common convention within state and 

federal guidelines to avoid inadvertent disclosure of protected health information for publicly 

released data.[46–48] Analyses such as choropleth maps at the zip code level including sparsely 

tested regions would benefit from using the LDS to obtain access to all zip codes without 

suppression, or by generating and using a different MDClone synthetic dataset that reports 
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geospatial data at a lower level of granularity (e.g. 3-digit zip codes). Our results may inform 

future N3C discussions about data set balancing ranging from 1) creation of artificially balanced 

hybrid data sets to improve statistical models’ performance on underrepresented data[42,49], 2) 

source partners sending a random sample of negative tests alongside all positive tests, or 3) 

expansion of data ingestion from rural regions. 

Whether these synthetic data are “good enough” hinges on a fitness for use determination 

to be made by each user. The authors believe the data will be useful enough for a wide variety of 

use cases. Educational software engineering projects or pandemic preparedness tool development 

could be especially well-served by these data. A major limitation of the data, however, is that 

they are output in a different data model than the OMOP CDM.[36] Thus, tools built on the 

synthetic data would not be transferable to run on the LDS without modification. Other users 

may find the synthetic data well suited to rapid, iterative hypothesis generation/testing without 

the delays of acquiring the relatively more restricted LDS.[3] 

3.6 LIMITATIONS AND FUTURE WORK 

To date, no privacy analysis has been published on these synthetic data to provide context for its 

utility in relation to its privacy. The data used in this manuscript do not reflect the current size 

nor state of the N3C LDS. Other statistical techniques such as equivalence testing, bhattacharyya 

distance[50,51], or adversarial challenges[28] could be used in the future to compare similarity 

between epidemic curves. The Wilcoxon signed-rank and paired t-tests assume the null 

hypothesis that the original and synthetic datasets are equivalent. Equivalence testing, which 

flips the null hypothesis, may be better suited. Equivalence testing was not used in this 

manuscript due to the challenge of selecting an equivalence bound without knowing what 

threshold(s) data end-users would find most applicable. Future work conducting equivalence 
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testing specific to well-defined, high-impact use cases may be merited. However, the work 

required to do so in an ad hoc manner may suggest the LDS is a better alternative in those cases. 

3.7 CONCLUSION 

Overall, the synthetic data are promising for a wide range of use cases including: population 

level summary statistics, epidemic curves for the data in aggregate and for the most densely 

tested zip codes, and analyses necessitating monthly counts of key indicators for the top third of 

zip codes by number of tests. However, analyses requiring unsuppressed zip code analyses on 

populations with <10 tests may be better served by the LDS. Biases found in the original data - 

namely an underrepresentation of positive tests and tests in rural zip codes - were reflected in the 

synthetic data. Therefore, it is important to understand the limitations and biases of the original 

data in addition to the synthetic data impacted downstream from it. We expect the user base of 

N3C synthetic data to be heterogeneous and the use cases of the data to be broad, resulting in a 

wide range of fitness for use definitions. To date, there is no published evaluation that quantifies 

the privacy afforded by this synthetic dataset specifically - nor of the MDClone system itself 

broadly - to contextualize this synthetic dataset’s utility in relation to a privacy-utility tradeoff; 

such evaluations are beyond the scope of this work. Future privacy evaluations of MDClone will 

not necessarily reflect the privacy of the synthetic data analyzed in this study unless the same 

dataset and/or the same MDClone system version and parameters are evaluated. Our evaluation 

of the N3C synthetic data utility provides users the ability to assess whether the synthetic data 

are fit for use through its combination of general-purpose data utility assessments and visualized 

replications of analyses of common interest. 
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3.9 SUPPLEMENT 

Table 3.9. Zip code month pairs’ synthetic error central tendencies and counts stratified by 

indicator and bin size. 

Indicator 

Number of 
zip codes 
stratified by 
month 

Bin value 
original count 

Synthetic Error 
mean (stdev) 

Synthetic 
Error median 
(IQR) 

Tests 33328 0-19 -0.14 (±1.9) 0 (2) 

Tests 5283 20-49 -0.54 (±3.31) -1 (5) 

Tests 2697 50-99 -0.4 (±4.11) 0 (5) 

Tests 2230 100-249 -0.28 (±5.17) 0 (6) 

Tests 1102 250-1705 -0.59 (±7.29) 0 (9) 

Positives 26707 0 0.07 (±0.37) 0 (0) 

Positives 6499 1 -0.55 (±0.92) -1 (1) 

Positives 6264 2-5 -0.78 (±1.76) -1 (2) 

Positives 4715 6-49 -0.59 (±2.63) -1 (3) 

Positives 455 50-520 -1.13 (±4.22) -1 (5) 

Admissions 37963 0 0.04 (±0.25) 0 (0) 

Admissions 3837 1 -0.43 (±0.82) -1 (1) 

Admissions 2078 2-4 -0.66 (±1.42) -1 (2) 

Admissions 499 5-9 -1.37 (±2.29) -1 (3) 

Admissions 263 10-80 -2.16 (±3.33) -2 (4) 
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Figure 3.7. Distribution of total tests per zip code in original data which were censored 

within the synthetic data. 

 

 

Figure 3.8. MDClone data synthesis workflow 
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Chapter 4. ASSESSING SINGLE SIGN-ON AUTHENTICATION 

BEHAVIORS TO INFORM CUSTOMIZED SOLUTIONS 

USING REAL AND SYNTHETIC LOG DATA 

4.1 ABSTRACT 

Objective: To investigate the potential for and impact of customized shared clinical workstation 

access policies by user role and location and 2) assess the utility of single sign-on (SSO) log 

data, and its synthetic derivative for this task. 

Materials and Methods: SSO log data from January-March 2020 were analyzed. We assessed 

the impact of two potential policy changes in the second half of Q1. First, adjusting the duration 

(default=4 hours) SSO can rely on a password before 'challenging' a user to provide it again. 

Second, requiring a challenge for every ‘new’ workstation accessed with and without users’ prior 

history. Policy burden was stratified by user role (e.g. physician) and workstation location (e.g. 

emergency department). Synthetic data were generated from the SSO data, then used for analysis 

as well. 

Results: Relative to the default, the percent of logins requiring a challenge ranged from an 

average increase of 18.13 and decrease of -6.67 percentage points for 1-hour and 12-hour 

challenge periods, respectively. Requiring a challenge for each new workstation increased 

challenges by an average of 4.19 and 8.55 percentage points with and without prior user history. 

For both policy changes, burden varied greatly between roles and locations. Synthetic data 

performed well on conformance to the real data but its results were not similar, or its features 

were at least muted, compared to the real data. 
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Discussion: The burden or relief from policy changes investigated, if implemented, would be 

unevenly distributed. Incorporating past user behavior can greatly attenuate the burden of 

policies that rely on user-specific behaviors. 

Conclusion: Shared clinical workstation login behavior varies between individuals, roles and 

locations. This heterogeneity should be factored into policy discussions and presents an 

opportunity to afford users customized authentication solutions. Synthetic data that were 

generated from a model trained for a limited number of epochs on a subset of the real performed 

well on conformance but poorly on replicating the results of analyses conducted on the real data. 

Overall, SSO log data and the roles data they were merged with showed that granular 

authentication behavior patterns and the effects of simulated policy changes can be gleaned from 

these data.  

4.2 INTRODUCTION 

4.2.1 Background and Significance 

The association between burdensome health information technology (HIT) and negative impacts 

on clinicians is well documented[1–3] and has spurred efforts to reduce this burden.[4–7] In 

2020, the Office of the National Coordinator (ONC) identified optimization of system log-on for 

end users as a key strategy for reducing clinician burden, specifically citing token based 

authentication (e.g. a proximity card) as a potential solution to do so while balancing security 

and privacy risks.[6] Proximity cards are a key part of many hospital single sign-on (SSO) 

implementations. SSO allows users to log-on or off by solely tapping their card to the clinical 

workstation as long as they supplied another form of authentication (e.g. a password) recently in 

addition to tapping the card. The length of time a user may use the card to log-on and off by 

“tapping in and tapping out (TITO)” before being challenged to re-authenticate is called the 
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‘challenge period.’ The impact of SSO implementation on clinician satisfaction, time savings, 

password sharing, and institutional financial savings has been studied - often through analysis of 

SSO log data - with promising results.[8–11] 

However, analysis of SSO data brings with it concerns for balancing the use of these data 

in alignment with worker and employer interests. A 2018 international survey of 1,400 C-level 

executives and 10,000 workers reported that “62% of businesses are using new technologies and 

sources of workforce data today but only 30% of these leaders are confident that they are using 

new sources of workforce data in a highly responsible way.”[12] The same survey showed that 

workers have concerns about use of their data yet are willing to share their data in exchange for 

benefits, listing a customized work experience as the number one desired benefit. Those survey 

responses suggest that the customization of authentication experience could be a good target for 

use of worker data. One such potential customization is the challenge period, which is set to four 

hours for all users at UW Medicine. From the literature it can be gleaned that the duration of the 

single sign-on challenge period in healthcare settings is variable across sites, with sites/health 

systems setting their challenge period to four[8,13], eight[14], twelve[10,11], or a not explicitly 

disclosed length of hours.[9] 

While retrospective, observational SSO log data might be useful to inform granular 

changes in SSO implementation policies (e.g. challenge period duration) and the potential for 

customized solutions, their utility to do so is unknown and may suffer from the same limitations 

of EHR log data utility. EHR log data have varying levels of comprehensiveness and granularity 

across EHR systems which can pose challenges to their use.[15] To the authors’ knowledge, no 

study has been done to evaluate the utility of SSO log data for this purpose nor of the potential 

for customized SSO implementations and the differential impact of these customizations. 
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4.2.2 Objective 

In this paper, we sought to use Imprivata Onesign SSO log data from the UW Medicine Health 

system (Seattle, WA USA) - comprised of a Trauma Level 1 hospital, academic medical center, 

and outpatient clinics - to inform customized SSO authentication protocols and report on the 

utility of observational SSO log data to do so. In addition to characterizing SSO behaviors 

broadly, we considered two potential SSO implementation changes and their simulated impacts 

stratified by user role and location. The first potential change was variation of the challenge 

period from 1-12 hours in 1-hour increments. The second was requiring a challenge for each new 

workstation a user logs into with and without incorporating their prior workstation access 

history.  Additionally, we piloted the creation and use of synthetic SSO log data to re-create 

portions of our analysis in an effort to protect the privacy of worker data. 

4.3 METHODS 

This study was approved by the University of Washington Institutional Review Board. 

All analyses were performed by a single author (JAT) using python (version 3.7.4). 

4.3.1 Data collection and cleaning 

We obtained Imprivata SSO log data extracted from the UW Medicine Health System (Seattle, 

WA, USA) which included: a Trauma Level I hospital (Harborview), an Academic Medical 

Center (UWMC), and outpatient neighborhood clinics. The dates of SSO data extracted spanned 

from the beginning of system testing (2015) until part of July 2020. The raw data were obtained 

in .csv file format. Each row represented an action in the SSO system with the following relevant 

columns: Datetime (down to the second), User ID, SSO Activity (e.g. Shared Workstation 

Login), Method (e.g. Proximity Card + Password), and Host (e.g. UWM-ED-**** which denotes 
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the site, then subsite location, then specific workstation). SSO data were cleaned to remove 

duplicate rows and combined into separate files by month. The total count of actions (rows) after 

cleaning was 65,072,552. 

User data were extracted from and/or combined with multiple data sources. First, from 

UW Medicine’s privileged user and management audit system which, for users with medical 

licenses, included 1) the first two characters (eg. ‘MD’, ‘AP’) of the user’s Washington State 

medical license number denoting medical license type and 2) userID start date (when available). 

Medical license prefix information was scraped from the Washington State Department of Health 

Provider Credential Search Website Credential Type dropdown box.[16] We constructed a 

dictionary for the one-to-many mapping of medical license prefix to credential type, and selected 

the most recent license for each user when dates were available. Similar medical licenses (e.g. 

Physicians = Medical or Osteopathic doctors) were grouped together into higher-level roles or 

clusters. More information regarding these mappings including the way licenses were grouped 

can be seen in the supplement (Table 4.12). For the purposes of this study, users without medical 

licenses were excluded. 

Location information was extracted from the host column of the SSO log data using the 

second part of the host’s three hyphen separated strings (e.g. UWM-ED-**** = ED). Four 

categories were created: emergency department (ED), intensive care unit (ICU), other (all others 

besides ED and ICU), and all locations to denote all the combined locations. ED included all 

hosts with “ED” as the second part of the host string. ICU included all hosts with neonatal 

(NICU), trauma/surgical (TSICU), burn and pediatric (BPICU), Medical cardiac (MCICU), or 

standard (ICU) intensive care units as the second part of the host string. 
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4.3.2 Characterization of SSO TITO activity and its rollout within the UW Medicine system 

Monthly SSO data were analyzed to calculate and visualize distributions of unique monthly 

active users and total logins. The distributions were put into context by overlaying the rollout 

start date of the system (July 2018) onto visualizations. Through our analysis of the rollout and 

overall characteristics of adoption, quarter 1 (Q1; January-March) 2020 was selected as the most 

stable time period for user-specific analyses. Q1 was selected due to 1) rollout being complete by 

this time, 2) its relatively stable unique monthly active user and TITO actions counts over this 

time period, and 3) the impact of COVID-19 confounding the data in Q2 and beyond. 

4.3.3 Summary of the data 

For the core analyses in this manuscript, only data of users with medical licenses were analyzed. 

A variety of summary statistics were calculated broken down by Q1 2020 overall and then by 

individual months within Q1. Summary statistics included the number of unique users stratified 

by role, the unique number of workstations accessed, total actions and actions stratified by site 

and workstation location as well as the number of Shared Workstation Logins stratified by 

whether the user used a proximity card and password, just the proximity card or just the 

password. For the remaining analyses, the data were filtered to the Q1 timeframe and users with 

medical licenses who worked (defined as having present data that calendar day) for seven or 

more days during the time period. 

4.3.4 User-specific behaviors 

The following metrics were calculated. First, the number of days worked which was defined as 

the number of days where data are present. Second, the number of unique workstations accessed. 

Third, the range from the first to last day worked was calculated as the date difference between 



 

  

110 

the first calendar date the user was present in the SSO log data to the last date. Fourth, the 

number of new workstations per workday was calculated by dividing unique workstations 

accessed by days worked. 

Last, we analyzed the rate at which users reached the maximum number of workstations 

accessed by plotting the fraction of total workstations accessed compared to the fraction of days 

worked for each day worked by each user. The proportional relationship between the two was 

plotted in a heatmap with a Locally Weighted Scatterplot Smoothing (LOWESS) trendline 

superimposed on top of it. 

4.3.5 Simulation of potential changes in authentication policy 

Two potential changes to authentication policy were considered and their effects simulated 

within the second half of the Q1 time period. Policy change #1 required a challenge for each 

workstation a user logs into that the user has not before and updates each user’s list of accessed 

workstations in an ongoing manner. We considered this policy change in two different contexts: 

1) previous user workstation access history is ported into the algorithm used to determine 

whether the workstation is new prior to implementation and 2) no previous user workstation 

access history is ported into the algorithm used to determine whether the workstation is new 

prior to implementation. For the first context, we incorporated users’ workstation access history 

from the first half of Q1. The burden of policy change #1 was compared to the default, 

unchanged observed SSO data (which uses a challenge period of 4 hours) by calculating the 

number of extra challenges resulting from the policy in each context divided by the total count of 

shared workstation logins. Thus, burden is the percentage point increase in shared workstation 

logins requiring a challenge relative to the default. Burden was stratified by grouped role and 

location. 
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Policy change #2 varied the challenge period from one hour to 12 hours in increments of 

one hour. The number of challenges was compared relative to the 4-hour challenge period by 

calculating the number of extra challenges resulting from the policy in each context divided by 

the total count of shared workstation logins. Thus, burden is the percentage point increase in 

shared workstation logins requiring a challenge relative to the 4-hour challenge period. Burden 

was again stratified by grouped role and location. 

4.3.6 Privacy Preserving Technologies 

We used the Synthetic Data Vault’s[17] Deep Echo model[18] for time series to generate a 

synthetic data set from the dataset used to analyze the simulation of potential changes in 

authentication policy described above as our training data set. The training set was pre-processed 

by filtering to solely shared workstations logins and reducing its columns to solely Datetime, 

User ID, Method (e.g. password), Result (e.g. ‘successful’), grouped role, and grouped location. 

Deep Echo parameters[18] were set in the following manner: sequence_index as the datetime 

column, entity_columns as the user column, and context_columns was set to solely the binned 

group role. The model was trained on a random 12.5% sample of users, specifically selecting a 

random sample that contained at least one user in each grouped role, for 20 epochs.  

After the model was trained, the same number of users with shared workstation logins 

(n=3035) of the 3,177 in the real data were generated from the model to create the synthetic data 

set. Although the PAR model learns the distribution of the lengths of the sequences, the learned 

distribution yielded only roughly 0-30 rows (shared workstation logins) per user in preliminary 

synthetic data generations which was over an order of magnitude reduction in the range of row 

length per users in the real data. As a consequence, a specified row length of 100 per user was 

used for the final synthetic data set opposed to relying on the model’s learned row length. 
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Additionally, dates were manually shifted three weeks forward to improve the similarity of the 

date distribution between the synthetic and real data so that both the first and second halves of 

Q1 and Q2 could be studied. The synthetic data were then used to assess the impact of policy #1 

and #2, with its results compared to the original data. 

4.4 RESULTS 

4.4.1 Characterization of SSO TITO activity and its rollout within the UW Medicine system 

After a period of testing, SSO was steadily rolled out in waves to the University of Washington 

Health System’s hospitals and outpatient clinics starting July 2018 (red vertical line seen in 

Figure 4.1). A Dip that coincides with COVID-19’s effects on UW Medicine can be seen starting 

in March 2020 and dropping further in April 2020. 

 

Figure 4.1. Unique monthly active users over the entire time period of data collection. 

Testing and rollout phases are divided by a red vertical bar. The effect of COVID-19 can be seen 

in the reduction of unique monthly active users late Q1 2020 which reduces further in Q2. 
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4.4.2 Summary of the Data 

As seen in Table 4.10, there were a total of 4236 unique users with medical licenses that could be 

grouped into similar roles with ten or more users during Q1 2020. Grouping licenses by similar 

roles yielded 15 categories with at least 10 or more unique users. Only <10 users could not be 

grouped into a category of similar roles. By far the most common role categories were those 

consisting of physicians. Physicians and fellows (n = 1,428; 34%) were the most common role of 

all those grouped followed by RNs and LPNs [n = 968; 23% (this grouping consisted of <10 

LPNs)], then physician residents (n = 587; 14%), and nurse practitioners (n = 321; 8%). In Q1 

2020, these users totaled 817,221 shared workstations log-on, of which proximity card only was 

the most common method to log-on (n = 589,038; 72.1%) followed by proximity card + 

password (n = 120,291; 14.7%), then password only (n = 107,892; 13.2%). Therefore, challenges 

currently make up 14.7% of users log-ons. 

Table 4.10. Characteristics of the dataset in Q1 2020, filtered to data resulting from users 

with medical licenses. 

 Time Period 

 Q1 2020 Jan 2020 Feb 2020 March 2020 

Unique Users (n) 4,236* 3,504 3,614 3,606 

Physicians, fellows 1,428 1,109 1,169 1,177 

Nurses: RNs & LPNs 968 862 860 866 

Physician residents 587 503 500 484 

Nurses: nurse practitioners (NP) 321 248 266 270 

Occ/phys therapists, assistants 170 158 157 153 

Counselors, therapists, social 

workers 
168 132 136 140 

Physician assistants 156 121 138 138 
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Pharm: pharmacists, interns, 

techs 
117 88 95 93 

Respiratory therapists 106 98 99 99 

Medical assistants/techs 87 79 81 81 

Speech language pathologists 40 36 34 37 

Dieticians 33 27 31 27 

Dentists, residents 24 17 16 15 

Psychologists 21 14 19 15 

Podiatrists 10 <10 <10 <10 

Ungrouped <10 <10 <10 <10 

Unique workstations accessed 

(n) 
3,972 3,683 3,798 3,606 

Total system events (n) 3,141,374 1,090,173 1,079,516 900,181 

Enable SSO (n) 956,552 337,089 327,522 269,883 

Site: Harborview (relative %) 353,869 (37) 127,908 (38) 116,904 (36) 101,053 (37) 

Site: UWMC (relative %) 428,433 (45) 153,429 (46) 141,187 (43) 123,582 (46) 

Site: Outpatient Clinics 

(relative %) 
174,250 (18) 55,752 (17) 69,431 (21) 45,248 (17) 

Care location: ICU  

(relative %) 
120,609 (13) 43,034 (13) 39,731 (12) 34,699 (13) 

Care location: ED  

(relative %) 
33,075 (3) 12,348 (4) 10,491 (3) 9,519 (4) 

Care location: Other  

(relative %) 
802,868 (84) 281,707 (84) 277,300 (85) 225,665 (84) 

Shared Workstation Login 817,221 289,827 272,388 235,732 

Proximity Card only (relative 

%) 
589,038 (72) 212,046 (73) 197,482 (73) 165,133 (70) 

Proximity Card + Password 

(Relative %) 
120,291 (15) 41,436 (14) 39,304 (14) 36,863 (16) 

Password only (relative %) 107,892 (13) 36,345 (13) 35,602 (13) 33,736 (14) 
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Locked 806,833 283,313 268,895 235,572 

Shutdown Agent 18,694 6,447 6,630 5,229 

Enroll Proximity Card 328 185 82 57 

Replace proximity card 1,742 670 567 478 

Enroll Password 590 308 165 102 

Locked Out 98 36 34 26 

Locked Out (Confirm ID) 29 2 11 16 

*does not include ungrouped in the count 

4.4.3 User-Specific Behaviors 

The distributions of user behavior in unique workstations per workday, unique workstations 

accessed, and days worked was positively skewed and can be seen in Figure 4.2.  
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Figure 4.2. Distributions of individual user behavior in those with medical licenses who 

worked at least 7 days during Q2 2020.  

Counts of users by A) unique workstations accessed, B) new workstations per workday, and 

C) days worked over this time period. 
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 The rate at which users reached the maximum number of workstations accessed is shown 

in Figure 4.3. 

 

Figure 4.3. The rate at which unique workstations range is reached per user in those who worked 

7 days or more Q1 and had had a medical license.  

Dashed line shows y=x, solid white line shows the LOWESS of all data. Data are adjusted by the 

max number of days worked by each individual and the max number of workstations accessed. 

Bin size for both x and y axes is 0.075. 

 

 As seen in Table 4.11, users worked 28 days (IQR = 26), accessed 42 unique 

workstations (IQR = 50), had a range of days from their 1st to last day worked of 82 (IQR = 

19.0) and accessed 1.57 (IQR = 1.53) new workstations per workday. 

Table 4.11. Unique workstations accessed amongst users (n=3177) who worked at least 

seven days January-March 2020 

 Mean (stdev) Median (IQR) 

Days worked1 29.55(15.71) 28.0(26.0) 

Unique workstations 

accessed2 

56.2(53.53) 42.0(51.0) 
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Range from 1st to last day 

worked3 

75.48(17.09) 82(19.0) 

New workstations per 

workday4 

1.87(1.22) 1.57(1.53) 

1Number of days where data are present 
2Unique number of computers the user logged into 
3Date difference between the 1st day the user had data and the last 
4Unique workstations accessed/Workdays 

4.4.4 Simulation of potential changes in authentication policy 

Policy change #1 (challenges for new workstations)’s burden - measured by the percentage point 

change of shared workstation log-ons requiring a challenge compared to the policy not being 

implemented - was variable between roles and less so by location (Figure 4.4). Context #1 (½ a 

quarter’s prior history) resulted in increases of burden ranging from a minimum of 0.75 for 

podiatrists and 14.88 percentage points for speech language pathologists. All grouped roles 

averaged a 4.2 percentage point increase. The emergency department (ED) had the lowest burden 

increase at 2.51 compared to the ICU with the highest at 4.82 percentage points. Context #2 (no 

prior history) resulted in increases ranging from a minimum of 2.16 for podiatrists, 22.54 for 

speech language pathologists and 7.16 percentage points for all grouped roles. Overall, context 

#2 roughly doubled the burden of context #1 across each location. However, the burden 

reduction of incorporating prior history in context #1 relative to context #2 was variable across 

roles. 
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Figure 4.4. Real Data: Differences in burden over 2nd half of Q1 when not allowing solely 

proximity card to be used for shared workstation login to new workstations with and without 

prior user workstation access history in first half of Q1. 

X-axis shows the percentage point change in shared workstation logins requiring a challenge 

relative to the default (4 hours). 

 

 Policy change #2 (variation of challenge period) burden - measured by the percentage 

point change of log-ons requiring a challenge compared to the 4-hour challenge period - was also 

variable between roles and less so between locations (Figure 4.5). Across all grouped roles, the 

12-hour challenge period reduced burden by 6.67 and the 1-hour challenge period increased 

burden by 18.13 percentage points relative to the 4-hour challenge period. Shift length is 

associated with burden. Roles that do not typically work 12-hour shifts such as speech language 

pathologists, psychologists, and podiatrists experienced no or nearly no decrease in burden when 

increasing the challenge period from eight hours to twelve hours. Roles that do typically work 

12-hour or longer shifts such as nurses, respiratory therapists and physician residents 

experienced incremental decreases in burden as the challenge period increased from eight to 

twelve hours with a noticeable decrease from eleven to twelve hours observed in nurses and 
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physician residents. ICU locations had the biggest range between 1 hour and 12 hours’ burdens 

at +19.99 and -8.41 percentage points, respectively. Both the ED and ICU - and much less so 

other locations - experienced noticeable decreases in burden from 11 to 12 hours similar to the 

effect observed in roles that typically work 12-hour shifts. 

 

Figure 4.5. Real data: Differences in burden over 2nd half of Q1 when implementing longer or 

shorter challenge periods.  

X-axis shows the percentage point change in shared workstation logins requiring a challenge 

relative to the default (4 hours). 

4.4.5 Privacy Preserving Technologies 

Model training used up to 65GB of memory at its peak consumption. The model’s loss function 

was still decreasing without flattening out after 20 epochs so training was likely cut short of an 

optimal number of epochs. Automatic One-hot encoding of the locations was likely the cause of 

high memory use for the data set while training which is the reason a 12.5% sample was used 

rather than a larger sample. 
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The synthetic data’s results for policy #1 (challenges for new workstations) were skewed 

to a higher burden for all roles and locations than the real data (Figure 4.6). In addition, the 

synthetic data results showed a much narrower difference between the two contexts (prior history 

vs. no prior history). 

 

Figure 4.6. Synthetic data: Differences in burden over 2nd half of Q1 when not allowing solely 

proximity card to be used for shared workstation login to new workstations with and without 

prior user workstation access history in first half of Q1. 

X-axis shows the percentage point change in shared workstation logins requiring a challenge 

relative to the default (4 hours). 

 

The synthetic data’s results for policy #2 (variation in challenge period) had less variation 

between roles and location than the real data (Figure 4.7). The synthetic data results had a larger 

range on average between the 12 hour and 1 hour burden reductions or increases and were 

skewed more towards a reduction in burden than the real data. 
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Figure 4.7. Synthetic data: Differences in burden over 2nd half of Q1 when implementing longer 

or shorter challenge periods.  

X-axis shows the percentage point change in shared workstation logins requiring a challenge 

relative to the default (4 hours). 

4.5 DISCUSSION 

Shift length’s noticeable association with decrease in burden at the longer challenge periods (e.g. 

8 to 12 hours) points to the potential for customization of the challenge period in consideration of 

users’ expected shift lengths. In our data, nurses, physician residents, respiratory therapists, and 

physician assistants are the three groups who would stand to benefit the most from challenge 

period extensions beyond 8 hours. In contrast, other roles that likely work 8-hour shifts (in our 

health system) such as speech language pathologists, podiatrists, dieticians, psychologists, and 

occupational/physical therapists would see little to no benefit from increasing a challenge period 

beyond 8 hours. However, other health systems[8-11,13-14] should look at their own personnel’s 

shift lengths as shift lengths by role may be variable between and within health systems. 

Similarly, the ICU and ED had the most pronounced reduction in burden from challenge period 
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extensions beyond 8 hours which is likely due to a higher prevalence of 12-hour shifts inpatient 

vs. outpatient. 

 The results from policy change #1 show the importance of incorporating prior user 

behavior if this sort of policy or another approach, rules-based or not, was enacted to detect 

outlier behavior patterns then require challenges to verify authentication. The expected changes 

in burden by implementing this policy would not be distributed evenly across roles, location, nor 

of individuals.  

In general, the synthetic data performed poorly in their ability to allow an analyst to reach 

the same conclusions when analyzing the synthetic data compared to the real data, especially in 

regards to policy change #1 (challenges for new workstations). The synthetic data results for 

policy change #1 show the locations were not modeled well since the burden of context #1 

compared to #2 (prior history vs. no prior history incorporated) showed little to no difference. 

Thus, users in the synthetic data access nearly all new workstations in the latter half of Q2 

opposed to (in the real data) returning to many of the same workstations. The synthetic data 

results for policy change #2 (variation of challenge periods) did show some of the features in the 

real data yet these features were muted. The synthetic data did perform well on conformance to 

the real data, however, which provides value to analysts whose use case is to build out software 

infrastructure and/or analysis pipelines on the synthetic data prior to acquiring the real data to 

conduct actual analyses upon. 

 Overall, SSO log data and the roles data they were merged with showed that granular 

behavior patterns and the effects of simulated policy changes can be gleaned from these data. 

Despite the granularity of SSO workstation information, the challenge in analyzing locations at a 

high-level of granularity was from limited access to clinically meaningful mappings between 
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workstations and the type of care provided at that time and at that location. The challenge to 

determine the type of care provided at each workstation and the likelihood of changes to these 

mappings over time - as was seen during COVID-19 ICU expansions - suggests that dynamic, 

automated methods should be developed to do so. 

4.6 LIMITATIONS 

Most analyses were limited to just users who had medical licenses, which excluded roughly half 

of the unique users found in the SSO data. Location data groupings were very high-level due to a 

lack of clinically meaningful mappings from the workstation to the type of care provided at that 

time at that location. Only one synthetic data generation model was tested and the model likely 

should have been trained for more epochs and with a larger sample size to generate more realistic 

synthetic data. Additionally, our evaluation of the impact of changes to authentication policy 

were retrospective and hypothetical opposed to a real-world implementation. Due to the impact 

of COVID-19, the time period of data analysis was restricted to one quarter of the year. 

4.7 CONCLUSION 

Shared clinical workstation login behavior varies between individuals, roles and locations. 

Characteristics such as shift length have an observable effect on the burden of changes to 

challenge periods. To reduce burden, policies that operate by detecting outlier behavior in user 

authentication should incorporate prior user history to the model or rules-based system before 

rolling out such a policy. These findings should be factored into policy discussions as they 

present an opportunity to afford users customized authentication solutions, which is the number 

one thing workers would like in exchange for employer use of their data. Synthetic data that 

were generated from a model trained for a limited number of epochs on a subset of the real 



 

  

125 

performed well on conformance but poorly on replicating the results of analyses conducted on 

the real data. Overall, SSO log data and the roles data they were merged with showed that 

granular authentication behavior patterns and the effects of simulated policy changes can be 

gleaned from these data.  
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4.10 SUPPLEMENT 

Table 4.12. Mapping of Washington State licenses to grouped roles 

 

Grouped Role License Prefix 

physicians, fellows MD 

physicians, fellows OP 

physicians, fellows FE 

physicians, fellows TR 

physician residents OL 

physician residents ML 

Occ/phys therapists, assistants OT 

Occ/phys therapists, assistants PT 

Occ/phys therapists, assistants OC 

Occ/phys therapists, assistants P1 

Counselors, therapists, social workers CG 

Counselors, therapists, social workers LH 

Counselors, therapists, social workers RC 

Counselors, therapists, social workers GT 

Counselors, therapists, social workers SW 

Counselors, therapists, social workers SA 

Counselors, therapists, social workers SC 

Counselors, therapists, social workers LW 

Counselors, therapists, social workers RE 

Counselors, therapists, social workers FX 
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Counselors, therapists, social workers CP 

pharm: pharmacists, interns, techs PH 

pharm: pharmacists, interns, techs IR 

pharm: pharmacists, interns, techs VA 

Physician assistant OA 

Physician assistant TA 

Physician assistant PA 

Respiratory therapists LR 

Medical assistants/techs MR 

Medical assistants/techs PC 

Medical assistants/techs NC 

Medical assistants/techs CM 

Medical assistants/techs HC 

Medical assistants/techs NS 

Dentists, residents DE 

Dentists, residents GA 

Dentists, residents DF 

Dentists, residents DR 

Podiatrists PO 

Dieticians DI 

Nurses: RN & LPN RN 

Nurses: RN & LPN LP 

Nurses: NP AP 
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Psychologists PY 

Speech language pathologists LL 

*Less than 10 personnel with the following rare licenses were not 

placed into grouped roles for analyses by role: LD (audiologist), 

NT (naturopathic physician license), MA (massage therapist 

license), MW (midwife license), PS (prosthetist license) 
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Chapter 5. CONCLUSION 

5.1 OVERVIEW 

 The three use cases described in Chapters 2-4 address the study aims by advancing our 

understanding of 1) the fitness for use of varied electronic health record and clinical workstation 

log data with and without privacy preserving technologies as well as 2) methods to conduct these 

assessments. Assessing fitness for use and privacy-preserving technologies are interconnected 

because applying these technologies produces a privacy-utility tradeoff. To manage the tradeoff, 

one must be able to assess both privacy (out of scope for this work) and utility. As the use of 

synthetic data rises, so will the importance of fitness for use assessments on both original and 

synthetic data. Synthetic data that are broadly distributed will reach less expert users than those 

who have access to the original data. Thus, in addition to helping those creating synthetic data 

manage tradeoffs, fitness for use assessments will provide guidance to synthetic data end-users 

on 1) the approximate similarity between the synthetic data and the original data as well as 2) the 

overall limitations of the likely inaccessible (to the end-users, at least at the time of analyzing the 

synthetic data) original data which have a downstream effect on the synthetic data. 

 Synthetic data can be generated a variety of ways, however, so the results from one 

synthetic dataset's utility analysis do not necessarily relate to the performance of synthetic data 

generated for the same purpose but by a different method. Each use case studied in this 

dissertation analyzed synthetic data generated using distinct methods. Thus, our study results 

related to synthetic data must be interpreted in light of the synthetic data generation methods 

used which are outlined below. 

 The synthetic data in use case 1 (Chapter 2) were produced by Synthea. Synthea 

generates synthetic data using PADARSER, the Publicly Available Data Approach to the 
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Realistic Synthetic EHR[1], which creates synthetic data that use publicly available statistics and 

clinical practice guidelines in an attempt to create realistic EHR data.[2]  MDClone generated the 

synthetic data in use case 2 (Chapter 3) using a computational derivation approach which takes 

real data then creates synthetic data modeled from the real data to match the co-variance and 

quantitative distributions of the real data.[3] In brief, the proprietary MDClone synthetic data 

generation process has three main steps and data are generated on-demand with their output in 

the tidy format.[4] First, its query tool is used for cohort identification to select a cohort of 

interest from the real data. Then, features of interest are selected to be extracted from each user 

within the cohort of interest resulting in a matrix of features of interest for patients within the 

cohort. Then, statistical models of groups of similar patients are created through the use of "a 

variation of a kernel density estimation of the multivariate probability density" which are used to 

create synthetic data representing the cohort (and their features) of interest.[3] In use case 3 

(chapter 4), the synthetic data were generated using a computational derivation approach as well 

but the methods were dissimilar from MDClone's in multiple ways. In contrast to the MDClone 

methods, a different, open-source model was used which is applied to an entire real data set 

producing synthetic data with matching conformance to the real data set. The model used was a 

probabilistic autoregressive (PAR) model[5] contained in the Synthetic Data Vault's Deep Echo 

package.[6] The PAR model is particularly well suited for modeling time-series. Additionally, 

the model accepts user-defined parameters that identify groups of rows associated with a single 

entity (e.g. a specific SSO user in use case 3), and gives users the ability to generate a custom 

number of rows per entity as well as number of entities along with other customizations. Thus, 

not only were three separate use cases studied in this dissertation but also three separate synthetic 

datasets generated for different purposes by different methods. 
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 The three dissertations aims were addressed through the analyses described in Chapters 

2-4. The second chapter addressed aim 1 by creating a repository of clinical findings from the 

Cochrane Database of Systematic Reviews(CDSR)[7] that can augment traditional clinical trials 

and enable broad fitness for use determinations of synthetic and original EHR data by replicating 

these findings within EHR data. Of the 50 CDSR reviews assessed, 30% were eligible for our 

repository of findings which suggests the feasibility of replication.  

 The second and third chapter addressed Aim 2 by assessing the utility of real and 

synthetic electronic health records to conduct observational research in varied contexts. In 

chapter two, we replicated 31 COVID-19 related outcomes studied[8] within the Cochrane 

Database of Systematic Reviews on two real and one synthetic (Synthea COVID-19) 

database[9,10] by making use of the Characterizing Health Associated Risks, and Your Baseline 

Disease In SARS-COV-2 (CHARYBDIS)[11] open-source software package. We compared the 

results of replications within our databases to the results reported in the CDSR. Then, we 

performed a qualitative analysis to investigate why the calculated outcomes in each database 

may differ from the outcome result in the CDSR. We found that our real and synthetic EHR 

databases did have lower values for prevalence and incidence of cardiovascular events compared 

to the CDSR review’s weighted averages for the vast majority of outcomes. We observed 

heterogeneity between databases. The Synthetic data set released in the Spring of 2020 likely 

was not fit for use for analysis of cardiovascular outcomes related to COVID-19. Improvements 

to the UWM-CRD database over time were observed in the improved 2021 UWM-CRD 

performance relative to the same database's results a year prior. 

In chapter three, we analyzed real and synthetic individual-level electronic health record 

data from the National COVID Cohort Collaborative (N3C) to assess whether or not the 
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synthetic data could be used for geospatial and temporal epidemic analyses[12]. We decided to 

focus on analyses that were of common interest such as epidemic curves for key indicators and 

creation of public-facing dashboards. We conducted both replication of studies and also 

compared general summary statistics between the real and synthetic data. Overall, we found that 

synthetic data could successfully be used to analyze geospatial and temporal trends. However, 

we found that analyses using small sample sizes or populations were limited, in part due to 

purposeful data label suppression - an attribute disclosure countermeasure. More specifically, we 

found that a caveat to synthetic data use was its utility to analyze rural N3C populations since 

nearly all zip codes with <10 tests were censored and much more likely to be rural within the 

original data. In those cases, we believe users should consider data fitness for use. 

 In chapter four, we addressed aim 3 by using Imprivata Onesign SSO[13] log data - both 

real and synthetic - from the UW Medicine Health system to inform customized SSO 

authentication protocols and reported on the utility of observational SSO log data to do so. We 

characterized SSO behaviors broadly and also considered two potential SSO implementation 

changes and their simulated impacts stratified by user role and location. The first potential 

change was variation of the challenge period from 1-12 hours in 1-hour increments. The second 

was requiring a challenge for each new workstation a user logs into with and without 

incorporating their prior workstation access history. We piloted the creation and use of synthetic 

SSO log data to re-create portions of our analysis in an effort to protect the privacy of worker 

data. Overall, we found that shared clinical workstation login behavior varies between 

individuals, roles and locations. Characteristics such as shift length have an observable effect on 

the burden of changes to challenge periods. To reduce burden, policies that operate by detecting 

outlier behavior in user authentication should incorporate prior user history to the model or rules-
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based system before rolling out such a policy. These findings should be factored into policy 

discussions as they present an opportunity to afford users customized authentication solutions, 

which is the number one thing workers would like in exchange for employer use of their data. 

Synthetic data that were generated from a model[6] trained for a limited number of epochs on a 

subset of the real performed well on conformance but poorly on replicating the results of 

analyses conducted on the real data. The synthetic data performed better at modeling users' 

general cadence of workstation access than they did modeling users' movements from one 

workstation to another. Regarding utility of the data, SSO log data and the roles data they were 

merged with showed that granular authentication behavior patterns and the effects of simulated 

policy changes can be gleaned from these data. However, role data for nearly half of the SSO 

users is reported by each users' manager in a free text field which led to these users being 

excluded from our analysis due to poor data quality. 

5.2 LIMITATIONS 

5.2.1 Aim 1 Limitations 

Our study (the first half of Chapter 2) was limited in its size and scope. This was due to our 

strategic decision to conduct the additional yet timely, important, and relevant (to Aim 2) work 

of assessing the fitness for use of National COVID Cohort Collaborative synthetic data (Chapter 

3). To accommodate the extra study, the scope of aim 1 was decreased. The final review of the 

CDSR to assess replication feasibility consisted of evaluating 50 total reviews and their 

outcomes.  
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5.2.2 Aim 2 Limitations 

The replications conducted in Chapter 2 were on more than 30 outcomes yet they were from a 

single Cochrane Review with a focus on COVID-19 and cardiovascular events. Thus, our 

replications are best suited to aiding the assessment of fitness for use of EHR data in either or 

both of these domains. The Synthea COVID-19 data assessed were limited in size and have been 

improved upon in future iterations. To date, no privacy analysis has been published on the 

synthetic data assessed in Chapter 2 nor Chapter 3 to provide context for their utility in relation 

to their privacy. Both synthetic data sets tested are, to some extent, outdated since they have not 

been modeled on the most recent source data. In Chapter 3 we recognize that other statistical 

techniques may have been superior methods to detect significant differences between epidemic 

curves. Additionally, the Wilcoxon signed-rank and paired t-tests used in Chapter 3 assume the 

null hypothesis that the original and synthetic datasets are equivalent. Equivalence testing, which 

flips the null hypothesis, may be better suited. Equivalence testing was not used due to the 

challenge of selecting an equivalence bound without knowing what threshold(s) data end-users 

would find most applicable. 

5.2.3 Aim 3 Limitations 

Most analyses in Chapter 4 were limited to just users who had medical licenses, which excluded 

roughly half of the unique users found in the SSO data. Location data groupings were very high-

level due to a lack of clinically meaningful mappings from the workstation to the type of care 

provided at that time at that location. Only one synthetic data generation model was tested and 

the model likely could have been trained for more epochs with a larger sample size to generate 

more realistic synthetic data. No privacy analysis was conducted on the synthetic data to quantify 

a privacy-utility tradeoff. Additionally, our evaluation of the impact of changes to authentication 
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policy were retrospective and simulated opposed to a real-world implementation. Due to the 

impact of COVID-19, the time period of data analysis was restricted to one quarter of the year. 

The National Research Network[14] did not develop standards for EHR log data over the course 

of our study which limited our ability to create a standardized analysis. 

5.3 FUTURE WORK AND RECOMMENDATIONS 

5.3.1 Immediate Considerations 

In future work, we will increase the quantity of synthetic data sets assessed, the quantity and 

variety of domains of Cochrane reviews to be replicated, and expand beyond prevalence and 

incidence to study other outcomes such as the effects of interventions. Regarding synthetic N3C 

data specifically, future work conducting equivalence testing specific to well-defined, high-

impact use cases may be merited. Other statistical techniques such as equivalence testing, 

bhattacharyya distance[15,16], or adversarial challenges[17] could be used in the future to 

compare similarity between epidemic curves. Our results also may inform future N3C 

discussions about data set balancing ranging from 1) creation of artificially balanced hybrid data 

sets to improve statistical models’ performance on underrepresented data, 2) source partners 

sending a random sample of negative tests alongside all positive tests, or 3) expansion of data 

ingestion from rural regions. The synthetic data used in Chapter 4 would be improved by training 

for a significantly longer duration and with a larger training data set. 

 

5.3.2 Long-Term Directions 

Over time, the repository of clinical findings (Chapter 2) must be built out larger in quantity of 

findings and in breadth of domains. The repository would likely benefit from incorporating high-
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quality evidence beyond the CDSR. Our work in Chapter two will hopefully become less novel 

over time due to increased use of EHR real-world data to augment traditional clinical trials and 

increased use of systematic review replication to conduct fitness for use assessments of EHR 

data. Eventually, our work would be a good candidate for an OHDSI network study[18]. The 

realization of our framework in a software package could become a part of the OHDSI Methods 

Library[19] open-source software collection alongside the Data Quality Dashboard.[20] 

 Once the N3C synthetic data privacy analysis is complete, our utility results described in 

Chapter 3 must be compared to the privacy afforded by the data set. Since the code for the 

analysis is stored within the N3C enclave, the analysis can and should be rerun with multiple sets 

of the synthetic data generated with varying levels of privacy. Doing so will allow a true analysis 

of the privacy-utility tradeoff of these data and, in part, the MDClone system more broadly. 

Methods to compare the equivalence of two epidemic curves should also be studied further and 

improved upon. Currently, there are no clear gold standards to do so which makes analyzing the 

utility of geospatial synthetic data more challenging. 

 Chapter four highlights the necessity of creating EHR log data standards. Our work was 

presented in the fall of 2020 to National Research Network members who agreed that work 

should be done to enable dynamic mapping of workstation location to the type of care provided 

at that workstation. This would necessitate knowledge representation progress to 1) describe the 

expanse of unique care locations 2) define strict criteria for each location (e.g. what are the 

inclusion/exclusion criteria to be an ICU) and their relationships at varying levels of granularity. 

The dynamic mappings could then be likely be created by querying against the electronic health 

records accessed at each workstation to determine the care being provided at that time at that 
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workstation.  Chapter four also points to the value of a prospective study that actually puts the 

potential policy changes into practice.  

5.4 IMPLICATIONS 

5.4.1 Implications for broad determination of fitness for use of EHRs, log data both real and 

synthetic 

Our findings from Chapter 2 point to a lack of EHR database readiness at the beginning of the 

COVID-19 pandemic to conduct observational research using the OMOP CDM. The Synthea 

COVID-19 data set released in the Spring of 2020 was likely not fit for use in the context we 

assessed it in, and the UWM-CRD as of September 2020 lacked standardized derived elements 

which dramatically reduced its utility for the same task at hand (COVID-19 prevalence/incidence 

research and cardiovascular events). We showed that the UWM-CRD's fitness for use was 

improved over time, however, which demonstrates the value of our fitness for use assessment in 

general and to aid iterative data quality improvement efforts. Our results and methods may help 

improve broad fitness for use and pandemic preparedness by allowing institutions and/or 

developers to proactively, rather than reactively, assess and improve the fitness for use of their 

data by focusing on replications relevant to future analyses of high priority. Our framework 

could potentially be used to assess the fitness for use of data submitted to N3C. 

5.4.2 Implications for healthcare worker data, privacy and authentication 

Health systems should begin their own evaluations of their authentication policy to determine if 

their users could benefit from a more customized approach. Additionally, health systems should 

take a close look at whether or not they are responsibly using worker data and what 

solutions/processes (e.g. privacy preserving technologies) they might employ to balance privacy 
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with usability. At UW Medicine, leadership should consider a shift length-based approach for 

setting the challenge period. Since the current challenge period is 4 hours, leadership might 

consider leaving the challenge period at 4 hours for workers who do 8-hour shift and increasing 

the challenge period to 6 hours for those who do 12-hour shifts. 

5.4.3 Implications for National COVID Cohort Collaborative (N3C) synthetic data access 

and use 

Our evaluation[6] should provide N3C leadership confidence in the utility of these specific 

MDClone synthetic data - modeled on the N3C limited data set - to allow for geospatial and 

temporal analyses that do not require small sample sizes. However, we did uncover biases in the 

data that 1) N3C leadership should work to ameliorate through any combination of the three 

suggestions we provided and 2) users should be aware of. Additionally, our analysis will give users 

a sense for the how to map the results from our study onto their own fitness for use requirements 

of the data. Thus, they can determine whether the data are good enough or not for their task(s) at 

hand.  Last, our study provides a foundational step towards building up rigorous methods to assess 

the utility of synthetic geospatial and temporal epidemiologic data. Our methods and the design of 

our data visualizations hopefully will reduce the burden for others to do similar and/or expanded 

analyses. 

5.5 CONCLUSIONS 

We demonstrated the feasibility of replicating CDSR reviews using electronic health record data 

for both synthetic and real data as a method to assess their fitness for use. Our EHR databases 

did have lower values for prevalence and incidence of cardiovascular events - likely due to a 

variety of the challenges in capturing outcomes in structured data - compared to the CDSR 
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review’s weighted averages for the vast majority of outcomes. We observed heterogeneity 

between databases. The Synthea COVID-19 data set released in the Spring of 2020 may not be 

fit for use for analysis of cardiovascular outcomes. 

 In general, synthetic National COVID Cohort Collaborative (N3C) data were 

successfully used to analyze geospatial and temporal trends. Analyses using small sample sizes 

or populations were limited, in part due to purposeful data label suppression - an attribute 

disclosure countermeasure. Users should consider data fitness for use in these cases. 

 SSO log data and the roles data they were merged with showed that granular, 

heterogenous behavior patterns and the effects of simulated policy changes can be gleaned from 

these data. This heterogeneity should be factored into policy discussions and presents an 

opportunity to afford healthcare workers customized authentication solutions However, obtaining 

information regarding the type of care being provided at each workstation remains challenging 

and a target for future work. Synthetic SSO data performed poorly, particularly on modeling user 

behaviors accessing workstations likely due to a combination of: heterogenous and skewed 

source data, a large number of unique workstations, and limited training of the model. 
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