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While artificial intelligence (AI) technologies increasingly permeate our daily lives, the 

adoption and impact of AI have fallen short of expectations in healthcare. The challenges of 

operationalizing AI in healthcare are complex and include interaction design (e.g. poorly 

designed user interfaces), model formulation (e.g. algorithmic bias, limited practical utility, 

trustworthiness or interpretability), and workflow context (e.g. a lack of integration into existing 

workflows; limited actionability). Critically, AI projects must demonstrate overall utility, 

balancing their costs with the benefits they confer. To achieve this utility, informatics efforts are 

needed before, during, and after predictive model development, to mediate effective, 

sustainable, and interoperable AI deployment to support clinical workflows.  

In this work, I investigated how human-centered design methods, needs-driven model 

development, utility-oriented evaluation methods, and standards-based software design can be 

leveraged collectively to address the unique challenges faced by healthcare AI, and achieve 

clinically impactful AI implementations. The two key contributions resulting from it are (1) a 



 

 

generalizable framework for the needs-driven operationalization of AI to support healthcare 

workflows and clinical decision making, and (2) the application of this framework to conceive, 

implement and evaluate AI support for suicide prevention.  

To apply this framework, I used human-centered design methods to assess technological 

support needs for Caring Contacts, an evidence-based suicide prevention intervention, revealing 

opportunities for AI-based cognitive support. Using neural transfer learning from publicly 

available social media data, I developed accurate natural language processing models for risk-

based prioritization of patient messages. Through utility-oriented evaluation metrics, I 

demonstrated that this model has the potential to positively impact clinical practice. 

Incorporating this model, I devised a standards-based, reusable, interoperable, workflow-

integrated information system for cognitive support of Caring Contacts. I developed blueprints 

for a FHIR data representation model and information system architecture, and implemented 

and shared an open-source software application. 

Together, this work contributes towards bridging the historical implementation gap by 

furthering methods for the design, development, and delivery of AI-supported interventions, 

and by guiding future attempts to realize the potential of AI in clinical settings. 
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Chapter 1. Introduction & overview 

1.1 The need for AI in healthcare 

The US healthcare system today is unsustainable, inequitable, and often dangerous to 

patients. It is the most expensive healthcare system in the world: costs as a share of GDP rose 

steadily over the past two decades, reaching 19% in the US in 2020, compared to less than 13% 

for the OECD nation ranked second (Canada) [1], while population health indicators such as life 

expectancy are low [2] (Figure 1.1). Since 2019, both life expectancy and healthcare expenditures 

have been affected by the COVID-19 epidemic across the world, and in the United States, we 

have seen the steepest decline in life expectancy and the greatest increase in costs. Medical error 

is the third leading cause of death in the US [3]. Health disparities run rampant, with racial and 

ethnic minorities experiencing worse outcomes than majority groups despite decades-old efforts 

to address such inequities [4].  

To restructure healthcare and address these issues, the so-called triple aim [5] (reducing 

costs; improving population health; improving patient experience) has been proposed, and has 

since been expanded by a fourth (improving care team wellbeing) [6] and then a fifth aim 

(improving equity and inclusion) [7]. The idea of the learning health system is a pathway 

through which these aims may be achieved [8]. A learning health system is one where “science, 

informatics, incentives, and culture are aligned for enduring improvement and innovation; best 

practices are seamlessly embedded in the care process; patients and families are active 

participants in all elements; and new knowledge is captured as an integral by-product of the care 

experience” [7]. Health information technology, and data analytic methods in particular, are key 

components of this vision [8,9], as they provide mechanisms to learn what works best from both 

research and experience and update how healthcare is delivered accordingly [10]. In 2017, the 

Digital Health Learning Collaborative, a taskforce of the National Academies of Medicine (NAM; 
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formerly known as Institutes of Medicine, IOM), identified artificial intelligence (AI) as having 

central importance in facilitating improvements in healthcare [7].  

 

Figure 1.1 Life expectancy vs. healthcare expenditures for a selection of countries (2000-2020 OECD 
data).  

As our lives increasingly unfold online, digital technologies and AI permeate every aspect 

of our lives, from the movies that are suggested to us on popular streaming services to email 

response suggestions and personal assistants on our smartphones. Although AI in medicine has 

been a subject of research for decades [11–13], the healthcare industry has lagged behind in 

adopting such technologies to improve medical care [7,14–17]. Recently, advances in machine 

learning, particularly in the area of artificial neural networks and deep learning, have resulted in 

performance metrics matching or exceeding those of human experts in several medical use cases 

[18,19], fueling renewed hope that computer-assisted technologies may soon have substantial 

impacts on healthcare quality and outcomes [16]. So far, such developments have not 

materialized, illustrating the numerous challenges in translating the power of AI into clinical 

care improvements. Using these techniques to make a difference in practice requires addressing 

a host of other concerns, ranging from ethics, policy and legal issues, costs, culture and 

acceptability, to integration, standardization, and interaction design considerations.  
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1.2 Challenges for AI in healthcare 

The 2019 report by the NAM, titled “Artificial Intelligence in Medicine: The Hope, the 

Hype, the Promise, the Peril” [7], summarized the challenges and opportunities of using AI in 

healthcare settings. The authors argue that we must avoid falling victim to unrealistic 

expectations in order to prevent subsequent disillusionment and the abandonment of these 

promising technologies, as happened twice before in the so-called “AI winters”: first in the 

1970s, and again in the late 1980s. In outlining a path forward, the report emphasizes the 

thoughtful exploration and deployment of AI in a way that is safe and effective, leveraging 

known best practices from human-centered design, software engineering, and implementation 

science, and aiming for augmented intelligence rather than full automation.  

AI deployments in healthcare require three properties to be successful: safety, 

actionability, and utility [14]. Safety means that first and foremost, patient harm must be 

prevented. In the augmented intelligence approach, AI provides guidance to augment clinical 

decision making and to help avoid errors. This “human in the loop” approach positions AI as 

assistance to a clinical professional, rather than an agent making autonomous healthcare 

decisions, addressing questions of safety; however, the interpretability and credibility of outputs 

are prerequisites for this approach. To be safe for all patients also means to provide benefits 

equitably across patient groups, such that no individual group is disadvantaged as a result of AI, 

or systematically excluded from reaping its benefits. Finally, the data AI models utilize must be 

current and correct, so that erroneous predictions may be avoided. Aspects of the information 

infrastructure may play a key role in this regard, as they may contribute to or hinder data fidelity 

[20]. Therefore, high-quality data must be available and accessible at the time it is needed as an 

input to a prediction model, and it must be in the expected format so it can be processed 

correctly.  
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Actionability means that healthcare AI applications must be carefully designed to meet a 

specific need. Demonstrations of the feasibility of high-accuracy predictive models for certain 

prediction tasks may motivate their integration into clinical care, only to discover that the 

information provided by the model has little practical value at the point of care [21]. For 

example, knowing an ICU patient’s sepsis risk may not have any practical impact on how doctors 

and nurses care for the patient: Intensive care patients are likely already subject to continuous 

monitoring protocols, with staff ready to intervene immediately in case of an emergent crisis. 

Therefore, knowing that the sepsis risk is high would not be actionable for this patient. Instead 

of asking “How can I incorporate AI in this workflow?”, researchers and developers must ask: 

“What do healthcare professionals need help with?” For example, it may be more useful for a 

clinical decision support (CDS) system to determine the most effective ICU monitoring protocol 

for a patient given their parameters, and issue a recommendation only if there are specific 

actions that could be taken to meaningfully reduce the risk.  

Utility means that the deployment of the AI model must have some tangible effect on 

outcomes. This could be time saved by a provider, an overall reduction in healthcare costs, high-

quality years of life gained, improved population health metrics, or another metric [14]. The 

theoretical benefits must be framed in the context of the constraints of the deployment setting, 

such as limited work capacity [15]. These constraints may also impact the system parameters, 

such as decision thresholds, that maximize clinical utility [22]. The potential utility of a system 

is further impacted by its financial costs, which are exacerbated by complex technical and 

integration requirements [20]. Healthcare organizations use a broad range of different 

information technology systems, with a single organization sometimes using dozens of different 

systems. Models and applications may already exist, but may have been developed for specific 

electronic health record (EHR) systems, limiting their potential for reuse. Designing sustainable 

information infrastructures can cut down on development and maintenance costs and enable 

reuse by other organizations. The consistent and systematic use of data standards and 
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interoperability frameworks can enable rapid application development [23] as well as the 

portability of informatics systems across implementation sites using different technology 

vendors. Additionally, making software reusable and freely available can facilitate the use of 

digital health interventions in resource-limited settings where development costs would 

otherwise be prohibitive. The principles for operationalizing AI in healthcare are summarized in 

Table 1.1. 

Table 1.1 Principles for operationalizing AI in healthcare 

1.3 Making AI useful in healthcare 

A considerable amount of existing biomedical and health informatics research is relevant 

to these principles. Human-centered design methods are being applied to health-specific 

problems and solutions, which has resulted in an extensive body of design principles and 

recommendations for a broad range of digital health interventions. Researchers have 

investigated AI for medicine for decades [11–13], and due to recently renewed interest by 

biomedical informaticists as well as computer scientists, the machine learning and predictive 

modeling literature is ever-growing [7,13,18,19]. The informatics community and international 

standards organizations continue to make leaps in developing and disseminating data standards 

for biomedical knowledge and processes, and provide countless freely available tools, 

frameworks, and resources to help develop sustainable healthcare software [24–27]. However, 

there is a lack of work synthesizing these advances for applications with real-world clinical 

Safety Actionability Utility 

− Focus on augmented 
intelligence 

− Ensure interpretability & 
credibility by collaborating 
with clinicians 

− System design & data 
sources enable data and 
predictions that are 
current, correct, and 
available 

− Avoid algorithmic bias 

− Design for 
demonstrated 
information needs 

− Design task-
oriented model 
outputs  

− Ensure actionability 
by collaborating 
with clinicians 

− Weigh anticipated 
system benefits against 
costs  

− Optimize parameters 
based on deployment 
constraints 

− Reduce development, 
integration, 
maintenance, and reuse 
costs by using current 
data standards 
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impact [14,16,17,28]. Consequently, there is a disconnect between advancing and optimizing 

these individual process and system components via methodological research and putting them 

to use in systems that work as a whole. For example, machine learning methodology researchers 

tend to focus on optimizing predictive accuracy, and seldom take clinical utility into account, 

even though high accuracy alone may not result in high utility [15]. 

Despite high interest in using AI to improve digital interventions and healthcare in 

general, there is no comprehensive framework, best practice, or guideline for the 

operationalization of AI in healthcare [21]. An extensive literature search revealed only one 

recently proposed framework [15,21]. This framework lays out steps for making AI useful in 

clinical practice, focusing on predictive model suitability and utility issues. However, AI has 

more to offer than predictive modeling (such as of risk scores), with different techniques 

necessitating different approaches to design, development, and implementation. For example, 

for systems intended to support human performance on tasks involving problem solving, 

decision making, and memory, informaticians may draw on cognitive engineering approaches 

[29]. Additionally, informatics efforts are needed before, during, and after AI components are 

developed and evaluated to inform overall system design and to ensure the sustainable, 

interoperable deployment of models into clinical care workflows. Therefore, in this work, I 

develop an end-to-end framework to guide health informatics projects involving AI, 

spanning the systematic assessment of the clinical use case and corresponding user 

needs (including clinical cognition and decision making), as well as design efforts involving 

stakeholders; development of algorithms that meet the identified needs while addressing 

common challenges; and implementation of sustainable, interoperable information systems 

with the potential to impact clinical care. 
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1.4 The case of Caring Contacts 

Mental health is among the most critical health issues of our era. Suicide rates have 

increased by 28% over the past two decades and suicide is now one of the leading causes of 

death, with some populations, e.g. military veterans, disproportionately affected [30–32]. 1.2 

million U.S. adults and 629,000 adolescents aged 12-17 attempted suicide in 2020 [31]. In 2018, 

the suicide rate was nearly 2.5 times the homicide rate [33] (Figure 1.2). While suicide attempts 

and deaths have far-reaching emotional and economic effects within the affected communities, 

they represent only the tip of the iceberg: 12.2 million U.S. adults and 3 million adolescents had 

serious thoughts of suicide in 2020 [31]. Suicidal thoughts are the result of debilitating 

emotional suffering, yet it can be difficult to reach out for help, and many affected individuals do 

not receive the support they need.  

 

Figure 1.2 Suicide rates compared to homicide rates. Preliminary data is shown in gray. Data source: 
CDC. 

In many cases, suicide deaths occur despite opportunities for intervention: 45% of 

people who die from suicide had a primary care encounter in the month leading up to their 

suicide [34]. Regular suicide risk screening at primary care encounters is effective in identifying 

individuals at elevated risk, particularly in vulnerable populations; for example, in a study of 

individuals with psychotic disorders, Simon et al. found that 59% of those with a suicide attempt 

indicated at least some level of suicidal ideation on the PHQ-9 questionnaire in the past year 
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[35]. The Joint Commission now prescribes several suicide prevention measures for healthcare 

organizations, including completing safety planning with suicidal individuals evaluated in 

Emergency Departments (EDs) [36], which includes determining personalized warning signs 

and coping strategies, identifying family members and friends to contact for both distraction 

and support, and listing mental health professionals and services to contact in the event of a 

suicidal crisis [37].  

An increasing amount of evidence supports the efficacy of post-discharge follow-up 

contacts. Social isolation, which has been hypothesized to be a key contributor to suicide risk, is 

counteracted by providing patients with a sense of connectedness to members of their health 

care team [38,39] in interventions such as Caring Contacts [40,41]. Caring Contacts, now 

recommended by clinical practice guidelines [42] and used by healthcare organizations across 

the United States, has been shown to be effective in reducing suicidal thoughts and behaviors, 

suicide attempts, and suicide completion in many studies, including clinical trials [38,40,41,43]; 

the evidence is strongest for suicide attempts, with effects ranging from 20% to 60% reduction 

at 1 year after enrollment [44]. 

Caring Contacts entails care team members, suicide prevention professionals, or 

supportive staff (e.g., behavioral health providers, social workers, clerical staff) periodically 

sending brief messages of unconditional care and concern to individuals who are or previously 

were at risk of suicide (e.g. “Hope this week is going well for you.” [40]). Caring Contacts 

programs tend to enroll individuals with known risk, e.g. those with a suicide-related encounter. 

Different modes of message delivery (postal mail [39,43,45,46], emails [47], text messages 

[40]), schedules (e.g. monthly or every couple of months, and on special occasions such as 

birthdays), and levels of personalization (e.g. personalized reminders of support resources, 

previously mentioned coping strategies, or no personalization) have been used. The parameters 

of the intervention depend on the program goals, the healthcare organization’s constraints, and 

the specific patient population targeted. For example, Reger et al. [48] investigated the 
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preferences of 154 veterans regarding delivery mode, message content, and message frequency, 

and found that monthly messages delivered via letters or postcards were most preferred. Across 

three large randomized trials, Comtois et al. [40,49,50] refined Caring Contacts via text message 

and found that a two-way, text message-based version of the intervention was acceptable and 

effective in a population of military service members, while being significantly easier and 

cheaper to administer. In intervention designs with two-way communication, patients may reply 

to messages if they wish, and will receive further tailored support from Caring Contacts staff in 

response.  

However, organizations wishing to implement Caring Contacts face challenges in 

deciding how to make judicious use of available resources, address patient safety, and reach 

recipients in a meaningful way. The Caring Contacts intervention is labor-intensive, as it 

requires time commitments from clinicians and support staff as well as physical and 

technological resources (and materials for letters or postcards in the case of analog Caring 

Contacts). Messages must be sent on a specified schedule, and some implementation sites 

customize messages for their target populations or even for each recipient. Organizations must 

carefully weigh the advantages and disadvantages of different modalities (e.g., mail, email, text 

message) for staff and resource requirements. For example, emails and texts are presumed to be 

cheaper and faster than sending Caring Contacts messages via postal mail, because they avoid 

the logistical challenges of postal mail management. It is also easier to program a sending 

schedule and keep track of message history with emails and texts. On the other hand, 

interventions based on postal mail technology are not impacted by internet availability and 

technology literacy.  

Most Caring Contacts messages sent via mail never receive a response requiring clinical 

action, but emails and text messages may yield responses indicating that the recipient is 

experiencing distress or an acute crisis. In this case, mental health practitioners have an 

obligation to provide immediate support; programs must have an appropriate response and 
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safety plan for such cases. The need to monitor message exchanges and follow up quickly when 

the need arises is imperative to patient safety, necessitating a low patient-to-staff ratio in 

current intervention designs. As a result, Caring Contacts interventions can only enroll 

comparatively few patients using current formats, and many organizations have had to abandon 

plans to implement Caring Contacts due to overwhelming logistical and risk management 

difficulties with an unfavorable cost-benefit tradeoff. 

At the same time, preventive healthcare is often not reimbursed by payors in the US, and 

clinicians are already overloaded and burned out [6]. The resulting resource shortages have 

precluded the broad adoption of this potentially labor-intensive intervention despite its 

demonstrated effectiveness. Therefore, Caring Contacts stands to benefit from computer-

assisted and AI approaches that can reduce the workload and support scaling, making it possible 

to administer the intervention to more patients without incurring prohibitive resource 

requirements.  

Unfortunately, it is not currently known how an AI-supported Caring Contacts 

application should be optimally designed, developed, and implemented. Caring Contacts 

provides an exemplary opportunity for the development of a generalizable framework for 

integrating AI into healthcare.  

1.5 Aims of this work 

The central research question of this work is:  

How can human-centered design, value-oriented model development and evaluation 

methods, and standards-based software development principles be leveraged to achieve AI 

implementations with clinical utility? 

To examine this question, I investigate the use of cognitive needs assessment methods 

and interoperability standards to support the development of AI models using patient-generated 

language data to support clinicians in the context of the Caring Contacts suicide prevention 
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intervention. In doing so, I follow a novel, generalizable guiding framework for the needs-driven 

operationalization of AI to support clinical care. 

Aim 1. Establish technological support needs for an application supporting 

the delivery of the Caring Contacts intervention. Informatics applications must be 

carefully designed to meet user needs by engaging stakeholders throughout the design and 

development process. Stakeholders include clients, clinicians, and support staff who might 

interact with the application. In aim 1 of this work, I follow the principles of human-centered 

design to conduct key informant interviews and surveys to investigate the context of use and 

user needs, and then use findings to establish design considerations. Aim 1 contributes design 

requirements in three parts: (a) the needs around the routine administration of the Caring 

Contacts intervention, such as scheduling and sending messages; (b) the requirements for AI-

enabled decision support components (flagging high-urgency messages and providing cognitive 

support for composing appropriate follow-up messages); and (c) considerations for data and 

workflow integration. 

Aim 2. Develop a predictive model of suicide risk from patient-generated 

natural language and a metric for evaluating the clinical utility of such models. The 

analysis of patient-generated natural language offers opportunities to realize the translational 

potential of AI in mental health care while addressing challenges of data fidelity and availability. 

In aim 2, based on the requirements from aim 1, I develop neural network-based predictive 

models of suicide risk (used as an indicator of message urgency). These models assign scores 

representing the probability that a patient requires immediate intervention, and address the 

challenge of small clinical dataset size by exploring the use of transfer learning with publicly 

available non-clinical datasets. The models are evaluated not only in terms of traditional 

performance metrics but also with respect to their clinical utility. For this purpose, I devised a 

novel metric of clinical utility (average time to response in urgent messages) for triage tasks. 

Aim 2 contributes a risk prediction model and the novel metric. 
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Aim 3. Conceptualize and implement a FHIR-based software application for 

reusable, interoperable, workflow-integrated, AI-supported Caring Contacts. In 

aim 3 of this work, based on the specification established in aim 1, I develop a Fast Healthcare 

Interoperability Resources (FHIR)-based data representation model for the Caring Contacts 

intervention and operationalize it in a SMART-on-FHIR-based software application. The 

system ingests patient-generated text messages in real-time and leverages predictive modeling 

for prioritizing messages in need of immediate intervention, as developed in aim 2. The use of 

current health data standards and frameworks supports interoperability and integration 

into clinical workflows. I assess data model requirements and synthesize a FHIR representation 

model to meet these requirements. Additionally, I demonstrate an architectural pattern for 

information systems incorporating patient-generated data (PGD) at the point of care. Further, I 

present a discussion of the application design, functionality, and utility in light of the design 

considerations and requirements, considering the strengths and limitations of the system design 

and architecture. Aim 3 contributes a formal specification of how to use FHIR to model Caring 

Contacts data and workflows, an application architecture for AI-based CDS using continuously 

generated PGD, and an open-source, freely available software embodying these principles.  
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Finally, the findings and implications of these aims are unified in Chapter 9, which 

describes a generalizable framework for the needs-driven operationalization of AI in healthcare 

and discusses how this work embodies the principles of this framework.  

Additionally, Chapter 4, Chapter 5, and Chapter 7 describe related scientific work I 

conducted leading up to and during this doctoral research.  

In Chapter 4, I describe work in which I developed and evaluated linguistic markers of 

behavioral activation. The behavioral theory of depression purports that behavioral activation, 

i.e. the participation in meaningful, rewarding activities, is inversely associated with depression 

symptoms in a positive feedback loop; thus, the extent of activation, or lack thereof, is not only 

indicative of depression, but also serves as a therapeutic target. Harnessing distributional 

semantics to develop groups of related terms collectively describing the theoretical constructs of 

behavioral activation, I quantified behavioral activation in patient messages sent as part of text-

based therapy sessions. I demonstrated that patient language can be used to measure 

longitudinal patient trajectories and inform intervention strategies. The techniques described in 

this work are relevant to suicide prevention. Linguistic indicators of suicide-related concepts, 

such as social isolation, could be used to extract clinically actionable insights from patient 

messages and inform personalized avenues to support individuals experiencing suicidal 

thoughts and behaviors. 

In the research covered in Chapter 5, I investigated GoEmotions [51], a neural approach 

to extracting emotions from patient language and compared it to a well-established word 

counting approach. Depression affects individuals in different ways, as it is experienced as a 

heterogeneous combination of behavioral and thought patterns. The specifics of each patient’s 

experience, including their emotional state, should therefore guide interventions. Fine-grained 

emotions may be more predictive for this purpose than sentiment, i.e. positive or negative 

polarity [52–54]. I showed that several extracted emotion features, including pride and disgust, 

correlate with depression and anxiety symptoms. These features may inform clinical 
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intervention on account of these emotions’ relationships with established clinical constructs 

such as self-image and perceptions of social desirability. This work could therefore inform 

clinical decision support tools in the context of text-based interventions for depression therapy 

and related goals such as suicide prevention. The term “clinical decision support tool” is used in 

this work to refer to any tool that supports clinical decision making. 

In a project describe in Chapter 7, I developed, described, and shared a FHIR-based, 

consumer-oriented application for COVID-19 symptom tracking. The COVID-19 pandemic, 

which took hold in the U.S. in February 2020 as I was starting my doctoral research, had a 

significant impact not only on population health but also on informatics research. Amidst 

comprehensive efforts to curb infections, public health authorities recommended that 

individuals self-monitor symptoms potentially indicative of an infection, such as fever, a sore 

throat, and shortness of breath. To support these efforts, I collaborated with public health 

researchers to develop and provide the general public with a mobile patient-reported outcomes 

(PRO)-application called StayHome. For rapid development and out-of-the-box interoperability 

with public health reporting agencies, we leveraged FHIR to its full extent, using it as the 

primary data model as well as the driver of business logic in a novel application design pattern 

we termed “FHIR-native”. This work informed the FHIR-focused design of the suicide 

prevention tool developed as part of this dissertation. Additionally, both are open-source 

projects, and due to overlap in several areas, e.g. the use of the CarePlan resource, I was able to 

reuse some of StayHome’s application code for the Caring Contacts application.  
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Chapter 2. Background and related work 

2.1 Human-centered AI 

2.1.1 Emulation vs. application 

Artificial intelligence (AI) research has historically had two complementary but 

contrasting foci. They have been called AI and intelligence augmentation (IA), or, as 

Shneiderman calls them, the emulation goal vs. the application goal of AI [55,56]. Emulation 

research concerns the development of human-like devices and products. Although these may 

have applications, such as humanoid robots intended to socialize with elders and help them 

around the house, the research often focuses on goals such as passing the Turing test, rather 

than solving any particular application problem. On the other hand, application goal research 

concerns the development of solutions for human problems; these are often not emulation-

based, as human qualities may be unnecessary or even a hindrance when addressing real-world 

problems. Artificial intelligence (AI) research has historically had two complementary but 

contrasting focuses. They have been called AI and intelligence augmentation (IA), or, as the 

influential huma-computer interaction researcher Ben Shneiderman calls them, the “emulation 

goal” vs. the “application goal” of AI [55,56]. Emulation research concerns the development of 

human-like devices and products. Although these may have applications, such as humanoid 

robots intended to socialize with elders and help them around the house, the research often 

focuses on goals such as passing the Turing test, rather than solving any particular application 

problem. On the other hand, application goal research concerns the development of solutions 

for human problems; these are often not emulation-based, as human qualities may be 

unnecessary or even a hindrance when addressing real-world problems. 

Shneiderman argues that today, the emulation goal manifests in intelligent agents, 

simulated teammates, autonomous systems, and humanoid designs [55]. In his evaluation, 
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technologies designed to automatically complete tasks that are conventionally done by humans 

are misguided.  

However, there is precedent for paradigm shifts in the level of automation that is 

considered acceptable. For example, until the 1950s, elevators were operated by people; today, 

all elevators are “autonomous”, i.e. they are not directly supervised by human beings, and 

human intervention is needed only in cases of failure [57]. Many tasks could feasibly be 

completely automated if technology were sufficiently mature to be universally trusted. 

A similar paradigm shift occurred recently in the realm of natural language processing. 

Shneiderman contends that a human-like understanding of natural language or images falls 

squarely within the emulation category. High-quality voice assistants are commonplace now; yet 

Amazon’s Alexa, the first widely adopted in-home voice-controlled personal assistant, was 

introduced to the consumer market only 7 years ago, in 2015 [58]. At first, there was significant 

concern over such voice assistants, particularly with respect to security and privacy [59]. 

However, as this technology has matured, it has become ubiquitous and well-accepted. Despite 

Shneiderman’s criticism of natural language processing and voice recognition, he acknowledges 

that personal assistants would not have been possible without it. Emulation research, even if it 

does not seem immediately applicable to any real-world problem, will therefore be needed to 

drive innovation. 

Such paradigm shifts must be expected to occur at a different rate in healthcare, a highly 

regulated, risk-averse environment that tends to resist disruption. The technology adoption 

lifecycle, defined as part of Diffusion of Innovation theory by Rogers [60], is initially driven by 

innovators and early adopters, until the technology matures and is widely adopted by the 

majority of users, who need to see evidence that the innovation works, including demonstrated 

success by others who have adopted the innovation. In healthcare, cost-benefit tradeoffs must be 

carefully weighed with any new technology, making evidence that an innovation works 

indispensable. Individuals and organizations are less likely to be early adopters who do not need 
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to be convinced of the benefits of change. In this environment, a focus on applications, as 

Shneiderman advocates, is paramount. Technology that is not user-friendly or without clear 

benefits may not be adopted; similarly, technology that requires other systemic shifts before it 

will be useful may not be adopted. Instead, technology must have clear benefits, and must be 

demonstrably effective in delivering on its promises. Designers of any technology in the 

healthcare realm must be sensitive to this.  

Combined with the challenges described in Section 1.2, it is becoming increasingly clear 

that the adoption of healthcare AI will require an increased focus on problem-oriented 

applications. Shneiderman’s recommendation to conceptualize AI as the basis for powerful tools 

operating under human supervision that ultimately enable human agency is in line with the 

ideas of researchers in biomedical informatics, such as the authors of the NAM report [7], who 

increasingly recognize the need for a focus on augmentation as opposed to automation. 

2.1.2 Automation vs. augmentation 

The NAM recommends that the AI opportunities within healthcare are tackled via 

human-centered AI tools focusing on augmented AI, i.e. tools that support human beings as 

decision makers rather than replace them [7]. AI algorithms and human beings have different 

strengths: algorithms can detect subtle statistical patterns and use them to make inferences in 

new scenarios. Human beings have uniquely complex cognitive abilities, such as recognizing 

abstract high-level patterns, the ability to hold and act on moral beliefs, and empathy. Human 

beings assisted by technology, sometimes called human-AI teams or human-machine 

collaborations, combine these strengths in order to accomplish tasks better than either part of 

the team could hope to achieve individually [61]; for example, by a division of labor where AI 

automatically completes routine tasks, so that human experts may focus on more complex tasks. 

By extension, there is learning involved, as with any situation where human beings learn to use 

tools for a particular purpose; for example, human beings might learn what kinds of mistakes 
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the algorithm makes, and therefore when predictions are likely to be more or less reliable. This 

idea is central to biomedical informatics, articulated by Charles Friedman with the Fundamental 

Theorem of Informatics [62]: “A person working in partnership with an information resource in 

‘better’ than the same person unassisted.” In other words, informatics is concerned with the unit 

formed by human beings and assistive technologies, rather than technological capabilities alone; 

an information resource that does not provide value does not satisfy the theorem. 

Importantly, technology should have appropriate safeguards in place. It should not act 

completely autonomously when not appropriate, and in any case, human operators should be 

able to take over control [55]. Human operators should be able to choose not to act on a 

prediction, e.g. if the prediction is believed to be incorrect or if the action is otherwise felt to be 

inappropriate. This means that in most cases, decisions should not be executed automatically, 

should be easily reversed, or contingencies should be in place in case of failure. Generally, 

designs should build confidence and trust, for example by including appropriate explanations 

[63]. 

In informatics, there is significant precedent for using human-centered design methods 

to effectively design digital health tools including clinical decision support tools. For example, 

Hartzler et al. identified the information needs of patients preparing to have discussions about 

lung cancer transplantation with clinicians, and designed and evaluated an information display 

accordingly [64]. Faiola et al. used human-centered design methods to design visualizations 

intended to support clinical decision making in the ICU by relieving cognitive load, 

demonstrating improved speed in decision making [65]. The amount of human-centered design 

research in medicine has increased exponentially in recent years (Figure 2.1). There are many 

examples of work applying human-centered design methods to effectively design digital health 

tools, including clinical decision support tools; for instance, Hartzler et al. identified the 

information needs of physicians preparing to have discussions about lung cancer 

transplantation with patients, and designed and evaluated an information display accordingly 
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[64]. As another example, Faiola et al. used human-centered design methods to design 

visualizations intended to support clinical decision making in the ICU by relieving cognitive 

load, demonstrating improved speed in decision making [65].  

 

Figure 2.1 Number of results for "human-centered design" in Pubmed Central by year 

However, these methods have been underutilized in conceptualizing AI use cases. A large 

fraction of current machine learning research is done on a few well-defined prediction tasks with 

benchmark datasets, i.e. datasets that happened to be available, or because certain methods are 

promising and important to develop further. Although the importance of standardized 

prediction tasks with large benchmark datasets and generalizable evaluation metrics for the 

advancement of machine learning methods cannot be overstated, their relevance and 

applicability to solutions for real problems can fall short.  

For example, while Google’s innovative and impactful research into detecting diabetic 

retinopathy from retina images [66] made an important contribution for machine learning 

methods research, the authors claims to clinical usefulness are contingent upon other systemic 

changes in how healthcare is delivered. They suggest that retinal fundus images may be used to 

augment or replace other markers such as lipid panels, but lipid panels are used for many 

purposes and therefore routinely collected. Only 14% of Americans visit an eye doctor in any 
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given year [67], but 78% had a wellness visit (physical or general purpose check-up) [68]. 

Wellness visits usually include lipid panels if indicated. Additionally, other variables give a good 

indication of cardiovascular risk, such as age, blood pressure, and body mass index, and 

assessing these variables may be sufficient to exclude cardiovascular disease as a likely diagnosis 

in many cases, eliminating the need to order further expensive testing such as lipid panels or 

retinal images. Using retina images for this purpose may be feasible if their acquisition were 

simplified – and there is potential for this, as evidenced by recent research demonstrating the 

feasibility of smartphone-based retina imaging [69]. However, as reported in 2020, Google 

Health researchers discovered a number of practical challenges when they operationalized their 

model in community clinics in Thailand, including inconsistent image quality causing high false 

positives, variations in workflows and conditions across clinics, concerns about the added 

workload imposed by the new workflow, and poor internet connectivity causing system lag and 

significant delays in care. The authors emphasize the importance of testing and refining how 

models fit into workflows, stating that “there is a need for the HCI community to develop 

approaches for designing and evaluating machine learning systems in clinical settings” [70]. In 

other words, the technology as well as the deployment and workflow design must be revised 

before clinical utility can be achieved.  

The above example illustrates the need to carefully assess context of use and workflow 

needs. Recognizing that providing more information or automating certain processes does not 

necessarily improve overall performance, cognitive engineering is a problem-driven approach 

that uses users’ cognitive needs to inform the design of tools such as information representation 

aids, advisory systems, training systems, and automation [29]. For example, designers may ask: 

What are the tasks? What contributes to the complexity of those tasks? What tools can facilitate 

this work? Human-centered approaches will accelerate AI adoption in healthcare, beginning 

with methods of cognitive engineering to determine challenges and opportunities in current 

workflows. 
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2.1.3 Cognitive engineering 

Cognitive engineering [29,71–73], a field with roots in cognitive science, spans 

knowledge capture, cognitive analysis, and the development of cognitive support requirements. 

It is related to human-centered design, but places a special focus on human cognition. Utilizing 

unique methods for this purpose, cognitive engineers aim to understand and account for domain 

complexities; the knowledge, skills, and problem solving strategies employed by domain experts 

to deal with these complexities; and goals, functions, processes, and constraints specific to the 

work domain. 

Knowledge capture methods focus on characterizing the work domain as well as the 

knowledge and skills of domain practitioners. Techniques include interviews, focus groups, and 

observation. As part of these techniques, researchers may use the critical decision method [74], 

cognitive task analysis [75], artifact analysis [76], and more. The critical decision method entails 

eliciting and analyzing past critical incidents and the processes that were involved in addressing 

them, ranging from assessing the situation to formulating goals and determining the sequence 

of actions that will accomplish these goals [72]. This includes developing an understanding of 

factors contributing to and hindering effective handling of these incidents. Cognitive task 

analysis is the analysis of individual tasks and the relevant knowledge, skills, and problem 

solving strategies. Developing diagrams outlining tasks, their relationships with each other, and 

associated challenges may be helpful. Artifact analysis is an analysis of the existing artifacts used 

to reduce cognitive load by offloading it to physical objects, e.g. decision aids created by 

practitioners as they work, or existing information technology tools, and their current role in 

practitioners’ work, including how they support or hinder performance of work tasks. Norman 

argues that cognitive artifacts created by practitioners are uniquely insightful because they 

provide a direct window into their mental models [77]. Then, using the new knowledge of tasks 

and the skills, tools, and strategies used to perform them, cognitive support requirements can be 

developed by explicitly linking cognitive analysis results and to features in a digital solution.  
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Cognitive engineering has been used to better understand many types of work 

environments, including in the healthcare domain. For example, Bauer et al. [78] used field 

observations, interviews, and artifact analysis to characterize the role of paper-based flowsheets, 

discovering, for example, that the tabular format supported easy comparisons across time; in 

other words, flowsheet layout “contributes to cognitive processing in the tasks for which they are 

designed” [78]. At the same time, they discovered shortcomings of the paper-based format, e.g. 

the limited capacity of a ½” by ¾” sized box for handwritten entries and the need to manually 

calculate and enter fluid balance (calculated from fluid input and output). They inferred 

cognitive support requirements for electronic flowsheets, including the need to retain the 

tabular format to enable easy comparisons and automated calculation of fluid balance. 

However, cognitive engineering and human-centered design methods have been 

underutilized for the design and development of AI. Shneiderman argues that a lack of focus on 

human problems and their solutions has resulted in excessive automation, and that human-

centered AI will result in powerful tools that strike the balance between automation and 

empowering human agency where it matters [55,79]. Xu holds that human factors design is not 

sufficiently considered in current AI research; in his evaluation, involving human-computer 

interaction professionals to match AI to human needs will be pivotal in avoiding another AI 

winter [80]. Adler-Milstein contends that fully automating tasks such as diagnosis is unlikely to 

garner trust with clinicians. She argues that cognitive overload due to digitization is a major 

challenge for healthcare professionals today, and suggests that lightening this load by re-

envisioning AI to support clinical cognition is the way forward [81]. These calls support broad 

application of human-centered methods to healthcare AI, with a focus on cognition. 

2.2 Patient-generated natural language data for clinical decision support 

Published reports of live deployments of AI in medicine largely use electronic health 

record (EHR) data. EHR data are a valuable resource, as they are automatically created as part 
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of routine care. Because they are often used for billing, they are usually comprehensive and well-

structured. Additionally, EHR data are stored in the healthcare organization’s own information 

systems, making them highly available for decision support modules running in the same 

system. However, there are challenges with using EHR data for predictive modeling. Models can 

only use data that are entered, often manually, in the medical record. The forces driving data 

entry, e.g. billing and regulatory requirements and clinician judgments of what is important, 

determine which data are entered and how and when data entry occurs. Data entry errors may 

happen if data are entered manually. Missing data are often not missing at random; for example, 

the presence of a lactate test result may in itself be informative of a patient’s condition if a 

physician ordered the test based on suspicion of sepsis. Consequently, EHR data may be a 

suboptimal data source for clinical decision support (CDS) or AI models in some cases, e.g. if 

complete and up-to-date information is essential.  

Patient-generated data (PGD) are an alternative data source for predictive modeling. 

PGD are data created outside the clinical care setting by patients and include health-related data 

such as patient-reported outcomes collected via screening surveys, physical activity data 

captured automatically by wearables, and more [82]. PGD also span data that are not inherently 

health-related but may be used for healthcare-related purposes, such as social media posts or 

smartphone-generated location data. Because they originate with the patient, and are often 

captured by consumer devices and services, PGD tend to be located in disparate systems, all 

external to the EHR. Sharing personal data with healthcare organizations for the purpose of 

improving patient care may confer improved patient engagement and patient-provider 

communication [83]. Using PGD for clinical decision making is facilitated by EHR integration, 

which is difficult for many reasons, including data interoperability, organizational infrastructure 

and policies, and data governance [84]. Even if data can be integrated, providers may choose not 

to make use of them due to a lack of directly actionable insights afforded by them [85]. Overall, 

PGD are underutilized in clinical care and decision making [84–86], let alone computer-assisted 
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CDS. This is unfortunate, as automatically captured PGD can be more accurate [87] than 

conventionally collected data; for example, body weight data automatically uploaded by a Wi-Fi-

enabled bathroom scale would be more accurate than patient-reported body weight, which is 

known to be a systematically underreported quantity [88]. PGD are complete and patient-

focused, in that they are recorded without being filtered through a provider lens. If they are 

accessible in real time, they are also uniquely suited to real-time decision support for emergent 

situations. Therefore, using PGD for CDS can help address the challenges of high fidelity and 

real-time availability.  

Patient-generated natural language data as a subset of PGD further have a unique 

potential to inform mental health interventions. Language reflects thoughts and feelings via 

stylistic and word choices in addition to overt content topics [89–91]. Language is also used as 

the primary mode of delivery of psychotherapy, supporting its further innovative use to help 

providers deliver mental health care. In the context of suicide prevention, indicators of danger 

to self or others as well as contextual information about an emergent crisis may also be from 

patient language [92–94]. When used as a basis for AI, PGD – and specifically, patient language 

data, e.g. from text messages – can therefore illuminate mental state and intervention strategies 

while addressing challenges of incompleteness and recency.  

Unfortunately, decision support is difficult to operationalize using patient-generated 

data. Facebook [95] and others [96] reportedly implemented mechanisms by which posts 

seriously expressing suicidal ideation are flagged directly on social media platforms; however, 

there have been numerous concerns with these projects, ranging from privacy concerns to 

whether social media companies have the appropriate expertise and resources to assess and 

address health concerns [97–99]. Integrating emergent signals into the clinical workflow to 

support decision making by medical professionals, e.g. within an established suicide prevention 

intervention, would address these concerns; however, integrating PGD into clinical workflows is 
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at an early stage [85]. At the time of this writing, there have been no attempts to integrate 

predictions of suicide risk based on PGD into clinical care. 

2.3 Machine learning for clinical problems 

2.3.1 Transfer learning 

AI and machine learning applications have seen fewer successes in health and healthcare 

than in the consumer products realm. Machine learning, and particularly methods of natural 

language processing (NLP) that use deep neural networks, have an unprecedented need for data, 

requiring training examples in the order of magnitude of thousands to millions. In the general 

domain, public or private data can be harvested readily for secondary use. For example, 

Bidirectional Encoder Representations from Transformers (BERT), a transformer model that 

was first reported in 2019 by Devlin and colleagues at Google [100] and that has inspired a rich 

body of work focusing on large, deep language models for natural language processing, is 

trained on publicly available unlabeled data: a corpus of over 11,000 full-text books (800 million 

words), as well as the entirety of articles in Wikipedia, a publicly available encyclopedia or 

articles written by independent contributors (2500 million words). Commercial systems, such as 

the recommendation systems [101] used by Amazon and Netflix, are commonly trained using 

large, privately held datasets, e.g. as collected from millions of customer transactions.  

In the medical domain, fewer large datasets are available. Some data are publicly 

available, such as post-market drug safety surveillance reports collected and archived by the 

Federal Drug Administration (FDA) in the FDA Adverse Event Reporting System (FAERS) 

[102]. Other datasets are made available to researchers formally requesting access under 

reasonable conditions of responsible custodianship; for example, Medical Information Mart for 

Intensive Care (MIMIC), a de-identified dataset of EHR data acquired during routine hospital 

care representing 50,000 hospital admissions, can be accessed under the terms of a data use 

agreement after researchers complete relevant training [103]. De-identification is particularly 
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difficult for text data and may be incomplete, necessitating such data use agreements to ensure 

researchers’ good faith. Finally, researchers with ties to healthcare organizations, e.g. academic 

medical centers, may be able to harness EHR data collected as part of ongoing care for 

secondary use.  

However, for many more clinical use cases that could greatly benefit from AI, there are 

no large publicly available datasets. Many types of data may not be routinely collected, and 

therefore unavailable from operational EHR systems, including patient-generated data. 

Additionally, data are only routinely collected for inventions that are already part of standard 

care. In these cases, data may be purposely collected, or there may be an opportunity to obtain 

data from research conducted for other purposes (e.g. clinical trials). Furthermore, creating 

labeled datasets presents a challenge for both primary and secondary use data. Although 

unlabeled data have uses, e.g. for creating domain-specific pre-trained models, many 

applications will require labeled data; in the medical domain, clinical experts must be consulted 

to create labels. Both purposeful collection and labeling cause dataset size to be limited by 

manpower. Finally, even if the resources required to collect and label data have been invested, 

many datasets cannot be shared: Health data are sensitive in nature and must be safeguarded 

carefully, lest we cause harm to research participants by disclosing their private information to 

unauthorized parties; this applies even to de-identified data, as cases of personal identities being 

linked to data that have been de-identified according to established criteria have been reported 

[104,105].  

Fortunately, it may be possible to leverage large general-domain datasets and models for 

clinical problems using transfer learning. Transfer learning enables the application of signal 

from one task to another, related task. This is reminiscent of human learning, where knowledge 

from one learning event is applied to a different but related task; for example, my 2-year old 

niece learned to identify ripe tomatoes using color and other aspects of appearance, and now 

demonstrates remarkable accuracy in assessing the ripeness of a broad assortment of fruits and 
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vegetables. Recent developments in transfer learning have resulted in tremendous 

improvements in predictive performance across a wide range of NLP tasks, including drug 

efficacy classification [106], human activity recognition [107], and cross-lingual learning [108].  

Contextualized pretrained language models are the perhaps most widely used transfer 

learning approach to NLP today. Devlin’s BERT is a pretrained language model that can be 

repurposed for a wide range of NLP tasks and has spawned a cascade of BERT-related research, 

including the development of many domain-adapted BERT models, further trained on domain-

specific corpora to increase specificity of the learned representations to tasks within the domain 

space. A field of research in its own right, domain adaption has yielded models such as 

BioBERT, further trained on biomedical research literature [109]; ClinicalBERT, further trained 

on clinical notes [110]; and MentalBERT, further trained on mental health related Reddit posts 

[111]. BERT learns to generate contextual representations for words or sentences using the 

context in which they appear. Notably, representations learned from similar domains but for 

completely different tasks can be effectively transferred. The original task BERT is trained for is 

predicting a word given its context, i.e. predicting a hidden word given the words and sentences 

to its left and right (bidirectional). However, BERT representations can be effectively transferred 

towards other tasks, such as classification, by using the pretrained weights for input and hidden 

layers, and changing the classification layer to modify the types of outputs that are produced. In 

this way, the fine-tuning phase of the transfer learning process involves learning how to 

combine the existing linguistic information for the purposes of solving the new prediction 

problem. 

Transfer learning thus provides a unique opportunity to enhance clinical prediction tasks 

with signal derived from publicly available data. First, the proliferation of domain-adapted pre-

trained language models offers opportunities to leverage large, unlabeled, domain-specific 

corpora. Second, publicly available labeled datasets hold promise to augment clinical data, 

helping to overcome its limitations. However, transfer learning for this purpose has been 
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underutilized. As further described in the next section, a wealth of suicide risk prediction 

research has been conducted using only public data (specifically, social media posts) or only 

clinical data (specifically, EHR data); however, to the best of my knowledge, none have 

leveraged transfer learning to combine them. 

2.3.2 Suicide risk prediction 

2.3.2.1 Structured EHR data 

Suicide-related machine learning models have been developed and evaluated with 

various data sources, machine learning methods, and performance metrics. The availability of 

data collected as part of routine healthcare in the EHR for secondary use has enabled a range of 

predictive modeling applications, including flagging patients who show evidence of elevated 

sepsis risk [112], are likely to miss upcoming appointments [113], or may benefit from advanced 

care planning [114]. Suicide-related prediction models using EHR data have proliferated as well. 

For example, Simon et al. [115] used logistic regression models to predict suicide attempts and 

suicide deaths in a dataset of almost 3 million patients across 7 institutions, with incidence rates 

of 0.82% and 0.04%, respectively. Their models achieved an AUROC (C-statistic) of 0.853 for 

predicting attempts and 0.833 for predicting deaths in the 90 days following a primary care 

visit. The most important predictors for attempts included the presence of a depression 

diagnosis, suicide attempt history, drug or alcohol abuse history, and a high PHQ-9 item 9 score 

in the past year. The most important predictors for suicide death included having a mental 

health emergency department visit in the past 3 months or mental health inpatient stay in the 

past year, alcohol abuse history, benzodiazepine (an anti-anxiety medication) prescription, and 

presence of a depression diagnosis. In a cohort of 118,252 patients with a 0.21% incidence rate, 

Zheng et al. [116] used a deep neural network with 3 hidden layers to predict suicide attempts in 

the following 1 year using a range of structured EHR data including demographics, diagnoses, 

procedures, and medication orders, achieving an AUROC of 0.769. The neural model 
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significantly improved upon their logistic regression baseline model, which achieved an AUROC 

of 0.607. Although individual feature importance within the model was not assessed, the 

features most strongly associated with increased odds of a suicide attempt included suicide 

attempt history, mental health disorders, and substance abuse history. Walsh et al. developed a 

random forest model for suicide risk detection using structured EHR data including 

demographics and diagnoses, as well as medication data extracted from clinical notes, in a  

cohort of 3,250 patients who had an ICD code for self-injury with confirmed suicidal intent, and 

12,695 controls with no history of suicide attempt [117]. The most predictive features were 

demographic factors (age, gender, and race), as well a history of suicide attempts and mood 

disorders. The model achieved an AUROC of 0.770 for predicting suicide attempts within 7 days, 

compared to 0.804 for the Columbia Suicide Severity Rating Scale (C-SSRS) standardized 

instrument; combining the model with the instrument resulted in an AUROC of 0.907 [118]. 

2.3.2.2 Unstructured EHR data 

While structured EHR data such as diagnoses and attempt history are clearly highly 

relevant to predicting future attempts and deaths, clinical notes contain rich information that 

may not appear in any structured or coded data elements. This information may further benefit 

predictive models. McCoy et al. [119] conducted a survival analysis of suicide death that 

included both structured data such as demographics and visit history, as well as measures of 

positive and negative valence in discharge notes, quantified using a dictionary-based word-

counting approach. The dataset contained 845,417 hospital discharges with a suicide death 

incidence rate of 0.1% in the follow-up period (up to 9 years, median 5.2 years). The model 

achieved a modestly improved AUROC (C-statistic) of 0.741, compared to 0.737 for the baseline 

model that used coded data only. There have also been efforts to extract clinically relevant 

constructs from EHR notes; for example, Zhang et al. [120] extracted suicide-related psychiatric 

stressors such as physical and sexual abuse, health issues, and pressure from work or school 
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from clinical notes via named entity recognition, demonstrating high correlations with suicidal 

behaviors. 

2.3.2.3 Patient-generated data 

Regarding PGD, a large body of work leverages social media data for NLP-based suicide 

classification as well as depression detection. Depression is closely related to suicide because of 

the increased incidence of suicidal behavior in this condition. Facebook is reported to have 

developed an approach to flagging user posts that are concerning with respect to suicide, 

integrating n-gram linear regression with metadata such as posting time [95]. In a 

crowdsourced dataset of 171 depressed and 305 non-depressed users with an average of 4,533 

twitter posts each, De Choudhury et al. demonstrated that features extracted using Linguistic 

Inquiry and Word Count (LIWC) [121,122], including valence of affect and pronoun usage, as 

well user engagement metrics (e.g. reciprocity) and usage of depression-related terms, predicted 

depression with 74% precision and 63% recall [123]. LIWC is a dictionary-based word-counting 

tool with predefined term categories. It is widely used by researchers investigating connections 

between mental state and language, and has an extensive track record of validation [122]. Huang 

and colleagues [124] developed models for classifying posts on Chinese microblog platform Sina 

Weibo (similar to Twitter). The authors identified and verified 53 suicide deaths and collected 

30,000 posts from the corresponding users, along with 600,000 posts from 1000 other, 

randomly selected users. They combined emotional valence (positive and negative) measures, 

pronoun counts, part-of-speech tags, and metadata such as posting time. Their best models 

achieved 79% precision and 60% recall. The 2019 CLPsych Shared Task competition challenged 

participants of the CLPsych conference [125] to develop predictive models of suicide risk in a 

dataset of Reddit posts annotated by experts and crowdworkers [126], resulting in several high-

performing models of various types, with the best-performing model combining a support vector 

model with several neural network-based models in an ensemble. This best model achieved an 
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F1-score of 0.922 for distinguishing unconcerning posts from those indicating some level of 

suicide risk. In the 2021 CLPsych Shared Task challenge, participants developed machine 

learning models to assess suicide risk in Twitter posts of 97 individuals who died by suicide or 

survived a suicide attempt within 6 months, and 97 matched controls, donated through 

OurDataHelps.org [127]. The best model achieved an F1-score of 0.815, using a dictionary-based 

approach that used LIWC, priors informed by domain knowledge, and logistic regression [128]. 

Priors were calculated from LIWC category effect sizes reported in a previous study by 

Eichstaedt et al. [129], who investigated the association between depression and LIWC 

categories in Facebook posts. 

Finally, researchers have investigated using patient-generated natural language to 

improve our understanding of the underpinnings of mental health disorders. A large body of 

work investigating the linguistic manifestations of schizophrenia and psychosis uses natural 

language data collected as part of research studies [130]. Such studies have furthered 

understanding of cognitive processes and deficits in mental disorders. For example, one study 

elicited speech with prompts such as “tell me the story of Cinderella” and used latent semantic 

analysis to show that in thought disorders, semantic coherence is disrupted [131]. Purposely 

elicited speech may also be used to predict future onset of mental illness: Gooding et al. 

predicted schizophrenia onset after 10 years on the basis of thought disorder identified via 

manual linguistic analysis of interview transcripts with 94% accuracy [132]. 

2.3.2.3.1 Clinical settings 

However, specialized data collection is infeasible for the goal of leveraging real-time 

natural language analysis to improve ongoing patient care. Applications must use data that is 

readily available at the point of care, so it is more feasible to use language exchanged in the 

context of ongoing clinical care. Sonnenschein et al. used LIWC to analyze transcripts of routine 

cognitive behavioral therapy sessions conducted with 85 patients, containing over 500,000 
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words spoken by patients, and found that “sadness” and “anxiety” words were significantly 

associated with depression and anxiety diagnoses, respectively [133]. However, there are 

complexities associated with the face-to-face setting, e.g. the requirement to transcribe audio 

signals to written text before it can be analyzed. The recent spike in adoption of telehealth 

solutions for psychotherapy [134] has yielded data that is automatically collected in real-time. 

Research investigating clinical decision support tools based on such data has direct applicability 

to clinical settings, as the required data would be readily available to a deployed tool for real-

time inference.  

My work described in Chapter 4 is an example of such research. In a dataset of 10,000 

patients undergoing chat-based psychotherapy while completing depression (9-item Patient 

Health Questionnaire, PHQ-9) and anxiety (7-item General Anxiety Disorder questionnaire, 

GAD-7) questionnaires at regular intervals, I developed and evaluated linguistic markers of 

behavioral activation [135]. Behavioral activation is a psychological construct related to planning 

and participating in pleasant activities, a behavioral pattern that is reduced in depression; 

because intentional reinforcement of such behaviors reduces symptoms, the activation of such 

behaviors is targeted in behavioral activation therapy [136]. Markers corresponded to 

depression severity scores and predicted longitudinal trajectories previously determined by 

latent growth analysis, i.e. whether a patient experienced improvements over time.  

In another study using the same dataset, described in Chapter 5, I investigated LIWC 

variables with an established relationship to depression and anxiety, as well as fine-grained 

emotions extracted using a BERT-based neural approach, finding that they were highly 

explanatory of depression and anxiety symptom scores in mixed-effects linear regression. 

Additionally, using a random forest model, I found that the LIWC features were complementary 

with fine-grained emotion features for the purpose of predicting depression and anxiety status 

[137]. Depression and anxiety are highly heterogeneous, i.e. they are experienced in many 

different ways; in the context of psychotherapy, a clear understanding of patients’ emotional 
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experience is a prerequisite to tailoring mental health support strategies accordingly. Therefore, 

such features have direct applicability to real-time clinical decision support. 

Sharma et al. explored the use of real-time AI insights to improve empathy in text-based 

peer support conversations. They developed an approach to measuring empathy in messages 

written in response to individuals seeking mental health support from peers on the TalkLife 

platform, along three dimensions (emotional reaction, interpretation, and exploration) [138]. 

They then used this approach to develop and evaluate a computational model based on 

reinforcement learning, which is capable of suggesting revisions to improve empathy, in line 

with best practices in therapy [139]. They conducted a pilot test deployment on the TalkLife 

platform, asking active users to utilize their tool to improve empathy in their peer support 

messages. According to human raters, the rewritten messages were more empathetic than the 

originals 47% of the time, equivalent 16% of the time, and worse 37% of the time [140].  

In summary, there is promising evidence of the utility of patient-generated data for 

improving mental health care, including suicide prevention. However, work utilizing patient-

generated natural language data to support ongoing care remains sparse, particularly in 

comparison to work utilizing non-clinical data such as social media posts. 

2.3.3 Metrics of model performance 

Suicide is a rare event. Measuring the performance of predictive models is complicated 

by the resulting class imbalances. The area under the receiver operating characteristic curve, or 

AUROC, is a tradeoff between sensitivity and specificity over a range of decision thresholds, and 

is commonly used, but may not be a good indicator of performance in tasks with inherently 

class-imbalanced data, such as those related to suicide [141]. Other available metrics, such as the 

area under the precision/recall-curve (AUPRC; a tradeoff between precision and recall over a 

range of decision thresholds) and F1-score (the harmonic mean between positive predictive 

value, or precision, and recall, at one decision threshold), may be better choices; however, they 
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too may not capture how useful the model will be in a real-world setting. Shah, Milstein, and 

Bagley [17] argue that ultimately, the only metric that matters is whether a prediction from a 

model results in a beneficial change in patient care. Although such beneficial changes, e.g. 

improvements in patient outcomes or provider satisfaction, cannot be determined with certainty 

at model development time due to the number of unpredictable factors influencing clinical 

utility, some performance metrics will approximate this utility more closely than others.  

In suicide risk prediction modeling, such alternative metrics of how much utility a 

predictive model can provide have been reported. Motivated by the reality of resource 

constraints in the healthcare system, Shing et al. [142] re-conceptualized the suicide risk 

prediction problem as a prioritization task. A ranked retrieval problem, the task is to assign good 

relative priorities, i.e. sorting examples in a way that makes positive examples likely to occur 

near the top, and negative examples likely to occur near the bottom. For example, in an internet 

search, the best (i.e. most likely to be positive) results should be ranked at the top. In a setting 

where a user works through results in order of priority (i.e. from most to least likely to be 

positive), with a finite capacity to review results, the relative ordering of results determines how 

many positive examples are addressed and how many are missed. Time-biased gain (TBG) [143] 

is an information retrieval evaluation metric used in the setting where a human expert reviews 

positive predictions in order, investing a certain amount of time per item to verify the prediction 

and take appropriate action, under the constraint of a fixed time budget. Shing et al. [142] 

further refine this idea for the specific task of reviewing posts of social media users in a 

hierarchical manner: Users are ranked based on a user-level risk score; reviewing an individual 

user result entails reviewing that user’s individual posts in order of post-level risk score. They 

then develop a hierarchical attention approach that jointly optimizes these ranking tasks. In the 

social media post review setting envisioned by the authors, the resulting model can be expected 

to increase the number of at-risk users that can be identified in a given amount of time, 

compared to a model optimized for a more traditional metric. 
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2.4 Designing interoperable, reusable, and scalable health information 

technology systems 

Informatics implementations may fall short of making real-world impact despite being 

well-designed and meeting user needs, for reasons of utility. Financial or organizational costs of 

development may be prohibitive for organizations in low resource settings, and even in well-

funded settings, maintenance costs may be too high to continue the informatics interventions 

after dedicated research funding runs out. Costs are partly driven by the need to integrate with 

different platforms or because available tools use proprietary formats and protocols that are 

difficult to reuse in different contexts. However, international standards organization Health 

Level Seven International (HL7) has published healthcare data standards and frameworks, e.g. 

Fast Healthcare Interoperability Resources (FHIR) [26] and Substitutable Medical Applications 

Reusable Technologies (SMART) [25], that are now well known and widely adopted. Relying on 

these formats and frameworks can therefore reduce the costs of implementation and 

maintenance, both at the initial development site and at other healthcare organizations wishing 

to implement similar interventions, by reducing staff requirements (less time needed to become 

familiar with data formats and exchange protocols) and technical resources needed (open-

source tools, such as the HAPI FHIR server, are available). Further, integration with EHRs and 

other standards-enabled healthcare information systems is, in theory, automatically supported. 

For these reasons, the economic cost savings of achieving fully interoperable health information 

systems has been estimated at $77.8 billion [144], and the US government now mandates the 

implementation of FHIR by HIT organizations [145,146]. 

2.4.1 FHIR 

FHIR is the successor to the HL7 messaging standard, which was only intended for 

messaging. In contrast, the FHIR specification includes not only comprehensive data exchange 

protocols (API specifications), but also defines complex search functions, data conversion 
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operations, task and workflow modeling components, and of course, an extensive list of detailed 

resource specifications. In some cases, FHIR resources may be sufficient to model most or all of 

an application’s data representation needs. This allows applications to further reduce the 

duplication of data modeling efforts: simple applications, such as those with few functions 

outside of creating, reading, updating, and deleting (CRUD) data, may be modeled completely 

with FHIR resources and operations. As described in Chapter 7, a team of collaborators and I 

described this approach, termed FHIR-native, and used it to develop StayHome, a mobile-

friendly, interoperable, reusable symptom tracker application for COVID-19 self-monitoring 

[23]. FHIR was used as the primary data structure. Due to its status as a validated and 

internationally accepted data format, FHIR is commonly used for exchanging data, with 

dedicated modules performing on-demand conversions between operational data structures and 

FHIR formats when data exchange APIs are invoked; however, the FHIR-native approach 

further extends the use of FHIR by utilizing it as its internal data structure as well. This enabled 

the use of HAPI - an open-source, freely available FHIR server - as the primary operational 

database server implementation, saving the effort of developing one from scratch. Because the 

FHIR-native approach relies almost completely on FHIR data structures and APIs, it maximizes 

time saved on data structure and API design: the initial functional version of StayHome was 

published and made available to the public only 2 months after development started. Because 

StayHome is completely open source and makes extensive use of freely available resources, 

myself and others will not only be able to build on the FHIR-native approach, but can reuse the 

software code itself. 

In addition to structural interoperability, semantic interoperability is essential. FHIR is 

intentionally highly flexible, allowing certain concepts to be represented in different ways. 

Although this can be a barrier to true portability and reusability of FHIR products, it cleanly 

separates knowledge engineering problems from issues of technical capability. This allows team 

members with clinical expertise to contribute early on. However, semantic interoperability thus 
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requires the development, sharing, and reuse of technical documentation on how to use FHIR 

for a particular use case. This purpose is served by Implementation Guides (IGs) and FHIR 

Profiles. For example, how to use FHIR to model questionnaires, questionnaire responses, and 

related knowledge artifacts is well-defined in the Structured Data Capture (SDC) IG.  

Although the use of FHIR for patient-generated data has been largely limited to this kind 

of data – i.e. patient-reported outcomes (PROs), which are usually collected with structured 

questionnaires – other uses have been described in Profiles. As PGD become more ubiquitous, 

guidance and tools have increasingly become available for this category of use cases [147]. 

However, many specific uses remain to be explored and are as of yet without specific guidance. 

Newly developed use cases for FHIR should therefore develop technical documentation, such as 

IGs and profiles, particularly if it is expected that many different implementations sites may 

benefit from this guidance. 

2.4.2 SMART-on-FHIR 

SMART-on-FHIR [25] is an authentication and integration framework originally 

conceived in 2009 (as SMART Classic) as a way to position the EHR as a platform for third-

party applications. After the release of FHIR as an HL7 standard in 2013, it was re-

conceptualized to use FHIR as its basis [148]. SMART-on-FHIR allows users to launch custom 

FHIR-based applications directly from the EHR context, with the application interface being 

shown as part of the EHR interface, removing the need to manage separate logins or windows. 

SMART-on-FHIR entails the exchange of authentication and authorization credentials as well as 

FHIR resources with the host system. The host system is most commonly an EHR, but could be 

any system that implements the FHIR specification; as a result, SMART-on-FHIR apps can 

easily be deployed as standalone systems by substituting a bare-bones FHIR server, such as the 

open-source HAPI implementation [149]. Additionally, applications are portable between FHIR-

enabled systems without requiring extensive customization. Although differences in how 
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resources are used to represent site-specific data may require customization of business logic, 

the technical integration components are universal, so an application developed to work with an 

Epic system could be readily deployed in, for example, a Cerner system. SMART-on-FHIR apps 

can be written by independent app developers who have complete control over business logic 

and user interface, while allowing the appropriate use of FHIR resources internal to the host 

system. In this way, it enables completely customizable CDS functions without requiring EHR 

vendors to support each app, and without disrupting the user workflow. 

2.5 Guiding frameworks for useful, practical AI deployments 

An extensive literature search revealed only one recently proposed framework guiding 

the operationalization of AI in healthcare. Developed in 2020 by members of Dr. Nigam Shah’s 

research group at Stanford, the framework [15,21] outlines sequential steps in the process of 

designing, developing, implementing, and evaluating AI in the clinical setting. Jung et al. [15] 

describe that informaticians should begin by clearly articulating the modeling problem and the 

intervention triggered by the model’s output: What is the prediction target and what data are 

used to make the prediction? Given a prediction, what action would someone take? It is 

important to formulate the model in terms of data that are available at prediction time. Next, an 

appropriate model is developed and validated, ensuring the model is fair. Performance metrics 

should be carefully considered to determine the best candidate model. If a performant and 

feasible model can be developed, informaticians then proceed to design a deployment strategy 

and assess the resulting system’s potential utility, weighing the costs and benefits in the context 

of constraints and workflow requirements. Given that a favorable cost-benefit tradeoff is 

anticipated, the system may then be deployed and prospectively evaluated in a clinical trial.  

Jung et al. consider issues of utility in a novel way, positing that the overall value derived 

from using predictive models in practice is constrained by the clinical setting in which they are 

deployed. Performance metrics traditionally used for machine learning models, e.g. AUROC or 
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the F1 measure, may therefore not be good metrics of the model’s value in practice. For example, 

in a ranked retrieval setting where human experts review documents in order of priority, with a 

fixed constraint on total time spent, metrics such as hierarchical TBG [142], which captures the 

number of items of interest discoverable in a ranked list given a time budget, may be more 

appropriate. Similarly, depending on the workflow context, false positives, false negatives, true 

positives, and true negatives may have distinct costs or benefits, introducing nuance into how 

sensitivity and specificity should be balanced to maximize utility. One example is described by 

Jung et al. [15], who evaluated a model recommending patients for enrollment in advanced care 

planning, in a clinic where the number of seats in the intervention is limited – a work capacity 

constraint. In this case, low specificity may be very expensive, as every false positive (a patient 

being enrolled in the intervention even though they are unlikely to benefit from it) fills one of a 

finite number of slots, removing an opportunity to enroll a “true positive” (a patient who would 

benefit greatly from the intervention). Bayati and colleagues [22] additionally consider 

parameters of the deployment environment to determine clinical utility. They describe an 

approach to calculating the value, in US Dollars, of deploying a model predicting readmissions, 

given the probability of a readmission, the cost of readmission, and the cost of an intervention 

that reduces the probability of readmission. If a readmission is unlikely, the cost of the 

intervention is higher than the cost of readmission weighed by its probability, and is thus not 

justified. Conversely, there is a threshold probability of readmission at which the intervention is 

expected to have a net cost benefit. The model’s goal is to determine each patient’s probability 

such that the most beneficial course of action can be selected. The probability threshold at which 

the model must discriminate well is thus directly determined by the cost of readmission and the 

cost of the intervention. 

Both examples support Li et al.’s [21] framing of clinical utility from a systems 

perspective. They argue that AI-supported informatics technology should be designed 

holistically, starting with a clinical problem, and ending with a complete system that can be 
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evaluated in terms of how well it solves that clinical problem. Human-centered design methods 

and user experience design, including stakeholder interviews and workflow analysis, should 

precede design and development efforts. AI components, though core enablers of the resulting 

software system, must be designed, developed, implemented, and evaluated in the context of the 

larger software system.  

Jung’s framework focuses on the important issues of algorithm suitability and utility, 

specifically in the context of predictive models such as risk scorers. While innovative in its 

considerations of the constraints of the system in which an algorithm would be deployed – e.g. 

data availability at prediction time and limitations on clinical utility imposed by work capacity – 

further informatics efforts are needed before, during, and after the model development and 

evaluation steps outlined in this framework. First, systematic assessments of clinical and 

information needs are needed to inform AI components. Such assessments may reveal that AI 

beyond predictive modeling is needed, e.g. for cognitive support helping users decide on follow-

up actions after an elevated risk has been identified. Such AI would then require dedicated 

design, development, and evaluation efforts, e.g. to determine how best to organize information. 

Second, model evaluation metrics that effectively capture the magnitude of the benefit the 

system is expected to provide may need to be developed. Third, to support ongoing efforts to 

promote interoperability and reusability, developing sustainable, standards-based information 

models and software systems should also be a key concern; such considerations may affect 

calculations of utility, and must therefore be incorporated as a key part of any operationalization 

project.  

2.6 Contributions 

In light of the gaps in the current literature, this work makes the following contributions. 

Biomedical informatics contribution. AI approaches must be carefully tailored to 

meet the needs of specific user-defined tasks, and must be evaluated in terms of their utility for 
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those tasks. Thus, general machine learning approaches often fall short. This disconnect is a 

monumental problem in the current landscape of healthcare AI. The overarching contribution of 

this work is a generalizable framework for the needs-driven operationalization of AI to support 

workflows and clinical decision making in healthcare. Compared to prior guidance, it highlights 

the need to comprehensively assess and design for users’ cognitive needs; to develop and make 

use of clinically relevant metrics of model performance; and to design and develop standards-

based software. This work therefore contributes to understanding and resolving this disconnect. 

Additionally, there is little precedent for NLP-based suicide risk assessment using 

clinician-patient communications to inform clinical practice. Aim 2 contributes the knowledge 

that neural network-based methods can perform well in clinical settings with data scarcity, such 

as suicide risk classification in patient communications, by leveraging large, publicly available 

datasets, e.g. of social media posts, via transfer learning. Aim 2 further contributes a novel 

metric of a model’s clinical utility that incorporates constraints of the clinical environment. 

Human-centered design contribution. Aim 1 elucidates important insights into the 

cognitive demands of administering the Caring Contacts intervention and contributes design 

considerations for digital tools supporting healthcare professionals in meeting these demands, 

including considerations for AI-based cognitive support tools. These findings may be 

generalizable to other mental health informatics use cases. 

Health data standards contribution. Aim 3 of this work contributes a roadmap for 

using FHIR to represent Caring Contacts artifacts and workflows, including blueprints for a 

FHIR data representation model incorporating patient-generated natural language data, and an 

application architecture for applications continuously ingesting externally generated text data, 

processing them with machine learning, and integrating them into EHR-based workflows for 

CDS. Aim 3 also contributes open-source, freely available, reusable code that embodies and 

exemplifies the use of FHIR and SMART-on-FHIR to enable interoperability, portability, and 

reusability of AI-based decision support tools. This ready-to-use software artifact has broad 
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applicability and the potential to empower healthcare organizations to improve patient 

outcomes.  

Behavioral health contribution. Caring Contacts is an intervention with 

demonstrated effectiveness [44], but logistical challenges and low capacity have hindered its 

adoption. By developing a novel information system that leverages AI to lighten the workload 

burden of the intervention, I address these challenges. Data standards and interoperability 

technologies enable the reuse of this information system across healthcare institutions and 

further tips the cost-benefit balance for potential implementation sites discouraged by the 

intervention’s requirements. This work contributes an open-source software artifact that can be 

directly reused by other healthcare institutions, potentially improving the adoption of this 

effective but under-utilized intervention, and benefitting numerous individuals at risk of suicide. 

At the time of this writing, plans are underway to further refine and deploy this tool across a 

range of settings including clinics and service organizations serving veterans.  
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Chapter 3. Identifying opportunities for informatics-

supported suicide prevention: the case of Caring Contacts 

In the work described in this chapter, I began the process of designing, developing, and 

implementing an informatics tool for Caring Contacts by establishing technological support 

needs, engaging stakeholders in a formal needs assessment. I applied ideas of cognitive 

engineering to better understand the clinical problems in suicide prevention, the cognitive tasks 

involved in solving them, and the strategies human experts employ in this process. Based on my 

findings, I developed design considerations, which informed the subsequent aims of this work.  
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Abstract. Suicide is the tenth leading cause of death in the United States. Caring Contacts 

is a suicide prevention intervention involving care teams sending brief messages expressing 

unconditional care to patients at risk of suicide. Despite solid evidence for its effectiveness, 

Caring Contacts has not been broadly adopted by healthcare organizations. Technology has the 

potential to facilitate Caring Contacts if barriers to adoption were better understood. This 

qualitative study assessed the needs of organizational stakeholders for a Caring Contacts 

informatics tool through interviews that investigated barriers to adoption, workflow challenges, 

and participant-suggested design opportunities. We identified contextual barriers related to 
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environment, intervention parameters, and technology use. Workflow challenges included time-

consuming simple tasks, risk assessment and management, the cognitive demands of authoring 

follow-up messages, accessing and aggregating information across systems, and team 

communication. To address these needs, we propose design considerations that focus on 

automation, cognitive support, and data and workflow integration. Future work will incorporate 

these findings to design informatics tools supporting broader adoption of Caring Contacts. 

3.1 Introduction 

Suicide is a major public health concern [30–32]; at the same time, our lives increasingly 

unfold online, making new data sources available that enable the development of new 

supportive technologies. A range of suicide-related risk prediction models have been developed 

by the informatics and computer science communities [92,150], but little is known about how to 

integrate such models to support clinical practice at the point of care. This study endeavors to 

take these technologies a step closer toward translational impact by identifying opportunities for 

informatics support within an evidence-based suicide prevention intervention. 

Caring Contacts is an effective suicide prevention; however, it has not been widely 

adopted. Organizations wishing to implement Caring Contacts face challenges in deciding how 

to make judicious use of available resources, address patient safety, and reach recipients in a 

meaningful way. Informatics approaches hold promise for addressing these challenges. The 

Caring Contacts intervention is potentially labor-intensive, such as when interventions with 

two-way communication yield responses indicating that the recipient is experiencing distress or 

an acute crisis. Programs must have an appropriate response and safety plan to reliably provide 

timely support in such cases. A promising area of investigation for informatics is, therefore, how 

to leverage suicide risk prediction models to triage responses to Caring Contacts messages.  

However, as recommended by published frameworks that guide the operationalization of 

predictive models for clinical decision support (CDS), a thorough understanding of the context 
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of use and user needs must be established before model development begins [14,15]. Carefully 

designing informatics tools with the opinions and experiences of organizational stakeholders in 

mind is critical to successful adoption [151]. Therefore, there is a need to engage stakeholders to 

understand how an informatics tool can help address barriers to the adoption and delivery of 

Caring Contacts among healthcare organizations. 

To address this research gap, we drew on principles of human-centered design [151] to 

describe specific barriers to Caring Contacts adoption faced by healthcare organizations, 

delineate workflow challenges faced by intervention staff, and formulate design considerations 

that can guide the development of informatics tools supporting the Caring Contacts 

intervention. The objective of this study was to characterize specific barriers to adoption, 

workflow challenges, and implementation bottlenecks among organizational stakeholders, 

including program coordinators, leadership, social workers, and intervention staff, affecting the 

Caring Contacts suicide prevention intervention. Findings inform design considerations for the 

development of informatics tools that help address these barriers. 

3.2 Methods 

We conducted a needs assessment using qualitative interviews to inform design 

considerations that meet user needs by directly engaging organizational stakeholders. The 

methods used for this study follow the principles of human-centered design as outlined by 

Maguire et al. [151] to establish the context of use and user needs. The Institutional Review 

Board of the University of Washington approved study procedures.  

To understand how an informatics tool can help address the barriers to the adoption and 

delivery of Caring Contacts, we engaged organizational stakeholders with experience in 

planning, implementing, and delivering Caring Contacts. We purposively sampled interview 

participants with diverse perspectives as professionals in various roles, including program 

coordinators (e.g., principal investigators, care directors) and Caring Contacts authors (social 
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workers, psychologists, clerical staff). We recruited participants from programs using different 

message modalities (i.e., mail, email, text message) and in different intervention settings, 

including research (i.e., intervention research such as clinical trials) and clinical settings (i.e., 

routine primary care, specialty care, and public health programs). We recruited through the 

authors’ existing professional networks of suicide prevention researchers and practitioners. We 

recruited professionals conducting suicide prevention programs serving marginalized groups, 

including Native American, rural, veteran, and active duty military communities. These 

recruitment efforts yielded mostly program coordinators, so we employed snowball sampling to 

reach additional participants in social work and clerical staff roles. 

Table 3.1 Interview guide topics and example prompts 

CC = Caring Contacts 

Topics Example prompts 

A. Overall 
intervention 
structure, 
goals, and 
high-level 
challenges 

Goals and 
expectations 

What does your program seek to accomplish? 
How do you align patient expectations with the intervention 
goals? 
What related risks are there? How are they addressed? 

Barriers to 
intervention 
adoption 

From your perspective, what’s the biggest reason why CC is 
not more broadly adopted? 
How is the intervention funded?  
What resource limitations impact the intervention? 

Team 
makeup and 
dynamics 

What roles have to be fulfilled to support CC? 
Who do you work with to support CC? 
How do you communicate with team members? 

B. Task-
specific 
challenges 
and 
corresponding 
design 
opportunities 

Workflow 
challenges  
by task 

Which tasks take the most time? 
Which tasks are most difficult? 
How do you solve the problems involved with these tasks? 
What do you need to complete the individual tasks (people, 
information)? 

Design 
opportunities 
by task 

How could an informatics platform assist with these 
challenges? 
What are the most important things you require from a CC 
information system?  

Which tasks could be automated, and which tasks should not 
be automated? 

 

Data was collected via semi-structured interviews. The interview guide was developed 

based upon Caring Contacts implementation challenges in prior research (Table 3.1). Across 
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three large randomized trials Comtois et al. [40,49,50] refined Caring Contacts via text message 

and, based on expert consensus, collected an initial list of challenges and bottlenecks that a 

digital solution might help address. Topic areas for inquiry were based on this expert input and 

organized around the structure of the workflow (i.e., eligibility determination and enrollment; 

scheduling and sending caring contacts; monitoring for incoming patient responses; 

determining urgency and how to follow up; authoring follow-up messages; creating any external 

documentation). Interviews were structured to flow from general intervention considerations to 

technology-specific challenges and design opportunities to identify where informatics tools 

might facilitate adoption and cost-effective, time-efficient delivery of the intervention. The 

interview guide was pilot tested with AK, who served as domain expert and interviewee, due to 

her experience as both a social worker serving as a Caring Contacts author and as a researcher 

acting as a champion.  

Interviews lasted 45-60 minutes and were conducted via video conference by HAB, a 

Ph.D. student. The video conference software recorded and transcribed interviews for 

qualitative analysis. No bias due to a power differential was expected due to the relative 

seniority of participants and the absence of a professional relationship between interviewer and 

interviewee. We conducted interviews until reaching saturation, i.e., until no new themes 

emerged [152]. 

In accordance with guidance from Ancker et al. [153], we followed a four-stage process to 

conduct a deductive qualitative data analysis. First, we developed a codebook based on the 

topics for inquiry identified from expert input (KAC). Second, to enhance the reliability of 

coding, two authors (HAB, ML) independently coded one-third of transcripts. Codes applied by 

HAB and ML were compared in consensus meetings. The definitions for the codes in the 

codebook were iteratively refined based on feedback from the consensus process until there was 

agreement in coding between coders. Codes were applied to all interview transcripts by one 

author (HAB) [154,155]. Third, to discover themes within our topics of inquiry, coded excerpts 
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were grouped by similarity into emerging themes [155]. Fourth, we utilized member checking to 

verify the face validity of the themes. 

3.3 Results 

Sixteen individuals completed interviews (P1-P16), representing 12 unique Caring 

Contacts programs (Table 3.2). The organizations included large health systems (research and 

ongoing programs), community-based health advocacy groups (ongoing programs), military 

(research program), and a managed care organization (ongoing program). The populations 

served by the programs included both rural and urban communities, veterans, active duty 

military, and indigenous communities. Several programs sent caring messages via multiple 

modalities, depending on patient preference. Of the 14 participants (88%) who completed the 

demographic survey, nine (64%) were female, four were male (29%), and one was non-binary 

(7%). Ten identified as white (71%), four as Asian (29%), and one as Hispanic or Latino (7%). Six 

(43%) were mid-career professionals aged 40 to 49; six (43%) were 39 or younger, and two 

(14%) were older. Two (14%) worked primarily with indigenous communities and one (7%) was 

a suicide prevention professional with lived experience of suicidal thoughts and behaviors. 

Table 3.2 Participant characteristics 

  Participants (N=16) 
n (%) 

Programs (N=12) 
n (%) 

Role Coordinator 6 (38%)  
Author 5 (31%)  
Both coordinator and 
author 

5 (31%)  

Setting Research 11 (69%) 7 (64%) 
Clinical (ongoing care) 5 (31%) 4 (36%) 

Modality Mail 6 (38%) 4 (36%) 
Text 11 (69%) 4 (36%) 
Email 5 (31%) 7 (64%) 
Phone 1 (6%) 1 (9%) 

 

We report findings from interviews across the two topic areas in our interview guide: (A) 

barriers and facilitators in the overall work system surrounding the intervention structure, 
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goals, and high-level challenges involved with adoption, implementation, and overall success of 

current Caring Contacts programs, and (B) challenges and their potential solutions surrounding 

the day-to-day tasks of the workflow.  

3.3.1 Overall work system barriers and facilitators 

Three themes reflect workflow barriers expressed by participants: Context and 

environment, Intervention parameters, and Technology.  

Context and environment. This theme describes issues stemming from Caring 

Contacts intervention settings, ranging from incentive structures, policies, and public health 

trends to business considerations at the healthcare organization level. Several participants 

mentioned difficulties in obtaining organizational buy-in. For example, P15, a program 

coordinator with lived experience of suicidal thoughts and behaviors, was concerned that 

compared with conventional approaches to mental health treatment, Caring Contacts could fuel 

skepticism: 

“Initially, there was a lot of resistance … I was working on trying to find sustainability 

funding, and then it was like no we don't want to do this … I think part of that is the uhm, not 

really truly believing in the fact that peer support can make a difference, the way other support 

cannot. And so I think there's some of the older school thinking behind that decision making.” 

(P15) 

Resource scarcity was a consistent theme limiting implementation efforts, ranging from 

a lack of funding for programs to insufficient staff, staff time, or necessary expertise. For 

example, P7, a Caring Contacts author on a research program, shared staffing and funding 

constraints: 

“I think it would be great to offer [Caring Contacts] as another support system, but we 

also know that takes someone to do them, right. I mean it’s going to be part of someone's 



 

 59 

workload, or maybe them being hired in for just that purpose, so it would really depend on 

whether or not they have the funding.” (P8) 

Other barriers at the organizational level include the lack of focus on prevention and 

mental health in current incentive structures, resulting in difficulties aligning unreimbursed 

prevention efforts with organizational priorities. For instance, P10, a message author working in 

clinical care, shared challenges with insurance reimbursement: 

“How do we stop people from falling through the cracks in the medical field? They come 

in for something that's medical, and unfortunately society says that medical and mental health 

are two separate things and they're not. They are one big element that we should be treating 

the same, but instead insurance says, you can go to the hospital for your heart, but if you're 

having mental health issues we're not paying for therapy.” (P10)  

P9, a researcher, emphasized that the litigious nature of the current healthcare landscape 

requires carefully defining the scope of practice for liability reasons: 

“Someone asked me a question like, I think it was a psychiatrist who asked me, … I'm 

providing my care, but once they're discharged my relationship with that person it's over like 

that legal clinical relationship is over. Are you asking me to like maintain this kind of legal you 

know clinic relationship past that, and I was like I kind of like - well, well yeah, so, not to, 

maybe. You know it's a valid question, and it does raise some issues of like liability too right. 

… Valid questions.” (P9)  

In addition to barriers to implementing Caring Contacts, participants also described 

several contextual and environmental facilitators. For example, organizational culture, such as 

an organizational mission to reduce suicides and attempts in the served population, resulted in 

healthcare organizations prioritizing suicide prevention. P10 shared: 
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“Our organization believes in it so much that they fund my position fully… we want to 

implement [Zero Suicide] fully, they have completely backed me … whatever I feel like I need 

to do for our patients to help them.” (P10) 

The expectation that suicide prevention will save money in the long run facilitated 

investments in Caring Contacts for organizations with payment structures that incentivize cost-

effective care, as P13, a community health clinic director, shared: 

“When you look at return on investment, we can also say that the savings do accrue to 

the health plan. Again this isn’t why we did [Caring Contacts], but if you are a hospital, for 

instance, you could say, well, yes, this is good because it reduces suicidality, you know 

completed suicide, suicide attempts. But the savings don’t actually accrue to the hospital, or to 

an outpatient provider. Ethically, morally, clinically it’s the correct thing to do, but, in our case 

– again, this wasn’t the driver – but we should see a financial benefit from reduced 

hospitalizations and ED visits” (P13) 

Finally, P11, a coordinator and message author in a clinical care program, added 

regulatory requirements as another incentive for Caring Contacts: 

“I think a big piece of what helped our system get to where it is, is the Joint Commission 

requirements as far as addressing Suicide Prevention and assessment” (P11) 

Intervention parameters. Participants also described barriers and facilitators 

regarding intervention parameters, i.e. the intervention design and implementation specifics. 

This includes program goals and operating procedures, such as how people will be referred to 

the program, eligibility criteria, the number and timing of messages, the content of the initial 

Caring Contacts messages, whether to include disclaimers, and whether the program entails 

one-way or two-way communication. Considering the wide variety of intervention designs 

reported, each organization must carefully consider its individual approach, which takes time 

and effort. Establishing policies and communicating expectations that attenuate potential risks 
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of the intervention causing harm was a primary objective some participants described. For 

example, P3, a program coordinator and message author in a research study, described the 

challenges of developing efficient referral procedures: 

“Another barrier …, in terms of kind of the complexity of moving information from the 

health system to the hotline, is just figuring out what that process looks like. So we have over 

900 referring providers that are helping get patients referred to [the study], so training all of 

the providers that this resource exists and that it's available.“ (P3) 

P5, a message author in a research study, added: 

“I think having good protocols in order to respond well over text is probably the most 

time-consuming thing.” (P5) 

Establishing expectations with patients was mentioned as an essential component of 

avoiding patient harm. P7 shared the need to clarify with patients what types of support the 

program is or is not designed to deliver: 

“We tell participants we're not a crisis service. And so we tell them we're not available 

24 hours” (P7) 

Further, adapting the intervention to the needs of specific populations and individual 

patients was time-consuming. Caring Contacts message authors must tailor the text, message 

schedules, and delivery modes for recipients of different age groups and cultural groups (e.g., 

indigenous communities, veterans, and healthcare workers). For example, P16, a program 

coordinator working with indigenous communities in a public health setting, shared: 

“Our biggest lift is creating the messages [our population identifies with]” (P16)  

P7 explained that messages should be caring and undemanding: 

“Caring contacts is based upon the idea that if you feel connected to people in your 

community and you don't feel like a burden, you feel like you like belong, that your risk of 
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suicide goes down… It's never asking someone to do something or telling them to do something, 

it should just be like generally positive, encouraging good vibes.” (P7) 

P8 added that messages should not be too generic or repetitive: 

“We don't like to repeat the same old thing, because it makes them feel like it's not 

personal for one thing, that like it's just computer-generated. And technically, it was software, 

but technically it was a human behind it.” (P8) 

The simplicity of Caring Contacts was seen as a barrier when the complexity of its 

logistics was overlooked. P4 shared: 

“It's a combination of that it gets sold as a simple suicide prevention intervention. The 

concept is simple, right? It’s mail. Yeah. The logistics of sending and managing a year's worth 

of mail is not simple.” (P4) 

Technology use. Technology was generally perceived as a facilitator, but was described 

as a barrier when it was difficult to use, introduced inefficient workflows, obscured needed 

information, or did not function correctly. For example, P5 reported that some software was not 

usable because it required specialized skills to operate: 

"One of the reasons that we had a lot of issues with our Access Database is that it 

requires like special SQL code and stuff for it, that me and my coworkers are not specialized to 

program” (P5) 

P12, a coordinator of a community-based program, described how software bugs 

necessitated labor-intensive workarounds: 

“The capability to notify staff when a patient texts back … is really important. Because 

in the beginning, that email notification wasn’t working. We ran into issues where I was seeing 

… no one responding back to this patient and it's been, you know, a day already. And I would 

reach out to the clinical care pointers and they're like Oh, we never got an email. … That 

actually happened, like, a few times. So that's why, like every day, I would monitor and also 
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have another clinical care coordinator, instead of relying on notification coming through … 

they would be in the portal, and they would check in the morning, midday, and then in the 

evening… those are kind of the type of bottlenecks that we did not anticipate” (P12) 

Further, there were technology-related barriers arising from the characteristics and 

perceptions of the served population. Internet access and technology literacy were barriers to 

patient adoption of digital health tools, especially for elderly patients and those belonging to 

rural and native communities. For instance, P4 shared: 

“There's a lot of disconnect … especially with age. Like I have folks… like, I have to walk 

them through the steps of how to use their phone. … I have one who doesn’t… know how to send 

a text message, and he doesn't want to know how to send a text message either.” (P4)  

In contrast, technology was a facilitator when it eased data and workflow integration 

between different systems (e.g., transferring patient information between electronic health 

record (EHR) systems and text message platforms), provided mechanisms to plan and execute 

tasks (e.g., automatic message scheduling and sending), or captured data automatically (e.g., 

text message conversation history, call durations). For example, P3 shared how workflow 

integration with referring providers and data sharing across intervention staff facilitates the 

Caring Contacts intervention: 

“We have a best practice advisory alert the fires in Epic which informs providers that 

you have a patient that may be eligible… We also built out through EpicCare Link the ability 

to share portions of patient charts with the hotline directly, so they can see directly the safety 

plan that was developed… there's a lot of technology that is facilitating this work for us.” (P3) 
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3.3.2 Task-specific workflow challenges and participant-suggested design 

opportunities 

Five themes reflect workflow challenges and design opportunities reported by 

participants: Time-consuming simple tasks, Managing risk, Authoring helpful follow-up 

messages, Accessing data across sources/systems, and Team communication and collaboration.  

Time-consuming simple tasks. The workload imposed by suicide prevention efforts 

was a recurring theme, and is particularly concerning in the context of the resource constraints 

we identified as system-wide barriers. The burden due to inefficient workflows emerged as a 

significant bottleneck in both clinical and clerical tasks completed by Caring Contacts authors. 

Program coordinators are affected by this as well, because productivity levels will determine 

staffing requirements. Participants described considerable time spent on repetitive manual 

tasks, such as eligibility determination, scheduling and sending templated messages, and 

documenting communications. For example, P1 explained: 

“Every person I enroll, I want them to get 11 texts on this schedule, you know, one day, 

one week, one month, two months. You couldn't just tell it that; you had to literally go in there 

and every single message, pick the date and time.” (P1)  

On the other hand, P14, a Caring Contacts message author in a research study, shared 

that automation of such tasks is a big help: 

“The fact that it just sends out texts for us automatically on a schedule and we don't 

have to manually type or send a text is obviously very helpful.” (P14)  

P10 described the manual nature of documenting contacts and their hopes for future 

technological assistance: 

“In our EHR, I write that a caring contact did go out and what date it went out. … I 

type it out because I'm the only one. I’m sure that, as the system hires more zero suicide 
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coordinators, because that's the hope, that they may put something in that you can just hit a 

button for. But for now, I just type it out.” (P10)  

Managing risk. Participants reiterated that first and foremost, patient harm must be 

avoided. This requires vigilance regarding the content of outgoing messages, monitoring and 

assessing risk in patient responses, and composing follow-up communications. Managing risk is 

a shared responsibility between all stakeholders, and therefore, both Caring Contacts authors 

and program leadership/coordinators are affected. One key component is timeliness. 

Participants perceived intense pressure to provide high-quality support promptly, especially in 

urgent crisis situations. P3 shared the need to keep close track of patients: 

“Just having a better way to track and make sure nobody falls through the cracks. I 

think all of us have a lot of anxiety about potentially causing harm by introducing this 

relationship and then someone drops accidentally when they really need help, I mean that ’s 

like the worst thing that could happen… it’s a big concern.” (P3)  

P6 shared frustration about manually collecting relevant information when time is of the 

essence: 

“Being on call, you know… if I get a text message at, you know, one o'clock in the 

morning, and it's something distressful, and I don't even know who this person is because it 

wasn't one of my [patients], now I've got to, you know, … gather my wits about me, trying to 

get on it, get some insight and some direction, and to be able to respond as quickly as possible 

and as accordingly as possible to ensure that person gets connected and is safe.” (P6)  

Reviewing historical interactions can also reveal sensitive issues. P1 shared that bringing 

up something that is difficult for the patient to think or talk about should be avoided: 

“If you mentioned their access to clinical care, and like the last few times they wrote 

back … with you know some degree of distress you might not want to [mention their access to 

care] again.” (P1)  
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P12 shared an approach to automatic flagging of potentially high-risk messages, which 

could help address risk management concerns: 

“Say if a patient texts back and uses any of the words like, you know, hurt, kill, like any 

of those words, the system flags it … then sends an automated response text back to the member 

letting them know resources if they need help, and then also we get notified too … [we were] 

able to review that list and anytime we want to add new words to that list we can do that” 

(P12) 

Authoring helpful follow-up messages. Apart from the scheduled, pre-written (or 

templated) Caring Contacts messages, the ongoing execution of the program may require being 

responsive to patients who reach out for further support. While most responses from patients 

are straightforward expressions of gratitude, there are rare patient responses that express 

distress and require careful consideration to determine follow-up actions based on each 

patient’s individual situation. In these cases, participants emphasized that writing follow-up 

messages is a complex cognitive task. P1 shared: 

“Authoring responses is a lot of work.” (P1)  

If the intervention team determines that a Caring Contacts recipient is experiencing 

adversity, the team must extrapolate the patient’s needs (e.g., crisis support vs. encouraging 

words) and compose an appropriate follow-up message. Message authors may review the 

patient’s history and known coping mechanisms. P14 shared: 

“We look in their medical record and see if there is a safety plan … their supports and 

coping mechanisms and things like that.” (P14)  

Assessing patients and their communications accurately is another concern. P1 shared 

the potential need to incorporate patient-specific factors, such as a patient’s baseline risk level, 

to avoid missing warning signs: 
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“There was one person that we classified as urgent where it kind of took a little nuance 

to get it, you know, for him it was urgent.” (P1)  

Finally, P16 added that a message author might customize message resources based on 

the patient’s individual needs: 

“If somebody responds back and is like, oh sorry, I got a really bad grade on my math 

test, so that's why I told you I was feeling down. And then we'll respond back and be like, oh 

that's such a bummer, did you know that, you know, if you ever want some more resources 

about math tutoring or anything like that to try out … From where you're located, here are 

some resources for that area, specifically.” (P16)  

Accessing data across sources/systems. Participants reported referring to 

information from several systems throughout the intervention workflow. For example, when 

evaluating a patient response or composing follow-up messages, staff might review prior 

message exchanges within the messaging system, but they might also refer to external 

information such as the patient’s demographics, details of their clinical history (e.g., suicidality 

questionnaire responses, previously documented safety plans), their current healthcare 

providers, and past or upcoming appointments. These data may be in one or more EHR systems, 

intervention-specific records (e.g., patient notes kept by intervention staff), or other data 

sources (e.g., text-messaging platform). Caring Contacts authors are affected by these challenges 

in terms of productivity and ease of use. Program coordinators have to take these challenges into 

account when making intervention design and implementation decisions, balancing feasibility 

and affordability with ease of use and intervention reach. For example, P11 shared that EHR 

data can be informative: 

“Risk factors are broad that could be someone having particular diagnoses …. [or] 

they're missing a bunch of appointments” (P11)  

P6 shared that integrating patient data in a single access point is desirable: 
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“If there was some way to provide all of that in a centralized location, where maybe ... 

you could write notes or keep a log of all the service members versus having to go to an excel 

spreadsheet and open up, and like kind of toggle back and forth, if you could have that kind of 

functionality … with one application” (P6) 

P11 shared that access to and integration of different systems is a benefit: 

“The benefit of us having a work system is that a lot of who we're working with is kind 

of integrated into our current system, so I can typically see the documentation of the therapist 

or the treatment team, or whoever it may be. And also communicate with them in the electronic 

health record. Our behavioral health system uses one and our like medical side, like the hospital 

and stuff they use a separate one, but we can access them both.” (P11) 

Team communication and collaboration. Caring Contacts team members have 

different responsibilities, expertise, and roles, ranging from behavioral health providers and 

social workers to program administrators and clerical support staff. Participants describe 

collaboration across team members as critical to completing intervention tasks requiring diverse 

expertise. This affects all Caring Contacts authors. For example, P16 described routing messages 

to follow-up specialists based on content:  

“If it's a concerning thing, he will route it to our concerning message team, within our 

protocol for what to do whenever we receive a concerning message/post/email. And 

depending on why it's concerning, it goes to certain people.” (P16) 

Sharing information across the team is essential for efficient handoff. P10 shared that 

different staff collect patient information at different points in a patient’s journey, requiring the 

transfer of notes: 

“Our behavioral health evaluators are the ones that will meet them in the hospital and 

do all of the treatment and engagement with them in the hospital. … they will print off a face 
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sheet and send that to me, and sometimes they will write notes like, dealing with this, please 

send them extra cards, or call and send the card” (P10)  

Similarly, sharing intervention notes and updates with referring providers can benefit 

patient care continuity. P14 shared challenges to data sharing between providers due to poor 

data integration and system access: 

“The notes that we write are kept in the research database … and their providers don't 

have access to that. If they create a safety plan with their provider or with a social worker … 

then that is included in their chart and is visible to [both us and] their provider, but if we create 

the safety plan, their provider doesn't have access to that.” (P14)  

Finally, sharing the workload between intervention staff is necessary, especially when 

staff cover for each other (e.g., after hours). Thus, team communication is essential and 

represents a barrier when inefficient or when misunderstandings occur. P11 shared the need to 

communicate how the workload is balanced across team members: 

“Just some sort of way to know that someone else did it even if it's not fully documented 

yet…. That's something that we run into as a team, that we try to support each other, but if we 

don't get the opportunity to communicate something like that, it just, it doesn't go as smoothly.” 

(P11)  

3.4 Discussion 

Through this needs assessment, we established the context of use, identified barriers to 

adopting the Caring Contacts suicide prevention intervention among organization stakeholders, 

and identified opportunities for informatics tools to help address these barriers. Our findings 

broadly fall into two categories: overall work system barriers and facilitators and task-specific 

workflow challenges.  

Any informatics tool must be designed with the context of use in mind. The work system 

themes that establish this context included high-level contextual and environmental obstacles, 
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intervention design and implementation issues, and system-level technology concerns. While it 

may not be possible to address all barriers and challenges directly with an informatics tool, they 

must be accounted for, as they place constraints on tool design and deployment. For example, a 

significant limitation is that the incentive structures currently in place in the U.S. healthcare 

system are not favorable to preventive care. To make Caring Contacts broadly feasible within 

this constraint, we must prioritize the judicious use of human resources to control costs.  

Task-level workflow challenges represent pain points in current workflows and therefore 

reflect opportunities for informatics tools to help. Five themes emerged from these workflow 

challenges. We now present design considerations for addressing these challenges within the 

work system constraints, including context of use/environment, intervention design, and 

technology use, along with examples illustrating how informatics support could be implemented 

in future work.  

 

 

Figure 3.1 Summary of findings mapped to design considerations for informatics-supported suicide 
prevention. Work system constraints are shown on the outer circle. Workflow challenges are shown 

in bubbles. Design considerations for addressing challenges are shown in the inner circle. 
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Our findings point to three cross-cutting design considerations that are key to addressing 

these workflow challenges: Automation, Cognitive support, and Data and workflow integration 

(Figure 3.1). 

Automation. Resource scarcity emerged as a recurring theme. The workload imposed by 

Caring Contacts can present an insurmountable barrier to implementation. Informatics tools 

can help alleviate this burden, as many repetitive tasks could be partially or fully automated. 

These tasks include checking patient suitability or eligibility for Caring Contacts, scheduling 

initial messages, and sending automated responses to texts or emails. There are also 

opportunities to integrate predictive modeling tools. For example, several promising approaches 

to personalized risk modeling using Natural Language Processing (NLP) and machine learning 

have been reported [92,150]; such methods could be used to trigger automatic responses with a 

crisis line phone number to a patient who expresses immediate intent for self-harm and to flag 

and prioritize messages for follow-up. Messages could also be automatically routed to staff with 

appropriate expertise based on message content. 

Information retrieval and synthesis for cognitive support. Authoring follow-up 

messages can be a demanding cognitive task. For this purpose, intervention staff must not only 

collect various pieces of relevant information, but also synthesize and harmonize that 

information in order to make clinical judgments and formulate follow-up actions. Participants 

described using different kinds of data and insights, including a recipient’s health history (e.g., 

demographics, diagnoses, appointments), risk and protective factors (e.g., social determinants 

of health), and interaction history (e.g., to determine what kinds of messages were previously 

well received). Informatics tools could provide cognitive support by aggregating and 

synthesizing information from different data sources in an easily digestible format (e.g., a 

timeline of challenging life events and corresponding trends in suicide risk) to reveal insights for 

CDS. A system could also draw links between available resources and patients’ resource needs 

and present suggestions to authors accordingly. Opportunities for advanced cognitive support 
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tools include mining message exchange histories for patterns in patient communication and 

automatic extraction of clinically relevant insights and therapeutic opportunities (e.g., 

symptoms, risk factors emerging from patient communications, warning signs).  

Data and workflow integration. The intervention workflows that informatics tools for 

Caring Contacts should support require communication between systems and people with 

different roles and responsibilities. For example, programs may aim to provide some level of 

support around the clock, which means that follow-up specialists may not know individual 

patients well (e.g., when covering for someone else); Caring Contacts tools may draw on 

previously described technology-facilitated handoff approaches [156] to support these 

workflows. Additionally, it is essential to avoid miscommunications, e.g. to prevent harm due to 

a patient in need of support not receiving a response due to a lack of clarity regarding patient 

assignments. Tools should therefore provide planning tools such as task and priority lists. 

Information exchange with other health information technology platforms is also critical. 

Automatically incorporating external patient information, e.g. safety plans from the referring 

providers’ EHRs, can benefit intervention staff as they evaluate and follow up with patients, 

without requiring duplicated data entry efforts. Similarly, sharing intervention notes and 

updates back to the referring provider’s EHR could support ongoing care or insurance 

reimbursement. Data integration can also facilitate reporting on outcome metrics to help Caring 

Contacts program coordinators monitor and improve the program. Additionally, workflow 

integration is an essential component of reducing the workload imposed by working in multiple 

information systems. While data and workflow integration between health information 

technology platforms are well established requirements, they have been prohibitively difficult to 

enable for many reasons, including privacy and governance concerns, technical infrastructure, 

and diverging data formats [7,157,158]. Fortunately, health data standards and exchange 

protocols are maturing, and today we have well-adopted, freely available standards such as Fast 

Healthcare Interoperability Resources (FHIR) [26] and workflow integration tools such as 
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SMART-on-FHIR [25] and CDS Hooks [159] that make it possible to overcome some of these 

barriers. For example, SMART-on-FHIR could enable users to launch Caring Contacts 

workflows directly from within the EHR, automatically pulling in relevant patient record 

information. Additionally, FHIR includes API endpoints for common data exchange tasks; for 

example, with appropriate permissions in place, an external system can use a FHIR endpoint to 

automatically file a clinical note to any EHR implementing FHIR. 

Recently, there has been a proliferation of suicide-related risk prediction models [150] 

using diverse data sources, e.g. patient-generated natural language data [92] from Facebook 

[95], Twitter [160], and Reddit [161] posts, query terms used for internet searches [94], and 

EHR data such as diagnoses [115]. These approaches demonstrate promise, but it is unclear how 

to operationalize such models to make a clinical impact, which motivates the current work. CDS 

tools have been intensely investigated in the field of biomedical informatics, and guidelines for 

designing effective decision support have been published [162]. Based on these guidelines, 

critical questions for CDS tools for Caring Contacts include: Who has the ability to act upon risk 

predictions in a way that impacts outcomes? When and how can they benefit from predictions? 

At that point, what data is available for inference? What else is needed for a clinician to act upon 

the new knowledge within their established workflows? These questions illustrate the 

complexity of creating decision support tools with the potential to improve clinical care and 

impact patient outcomes, which is further underscored by the scarcity of examples of success 

described in the literature. To guide such work, Shah et al. [15] developed a framework for 

making predictive models useful in practice. Here, we aimed to complete the indispensable first 

step described in this framework: establishing the use case for a suicide risk assessment model. 

Our work identified several use cases for artificial intelligence tools, and helps answer the 

questions listed above. It also revealed a broad set of challenges and opportunities related to 

end-to-end workflow support, suggesting the need to adopt a broader perspective. In order to 

realize the translational impact of new and existing predictive technologies, we must therefore 
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design a CDS system that supports the workflow comprehensively. Our design considerations 

provide holistic guidance for both the workflow and artificial intelligence components that 

Caring Contacts informatics support tools may include. In future work, we will use these 

findings to design and develop an informatics tool suitable for a pilot deployment.  

This work must be considered in light of its limitations. Our participants were sampled 

from our existing professional network and subscribers of a suicide prevention mailing list who 

responded to a volunteer request, which may have biased our sample toward those who already 

perceive more benefits than barriers to Caring Contacts implementation. While we tried to 

capture broad perspectives on barriers, our focus on technology may have biased participants’ 

responses. Finally, this work investigated the perspectives of the potential users of Caring 

Contacts information technology who administer the intervention, rather than the perspectives 

of patient users who are the targets of the intervention. Prior work has investigated the 

acceptability of the intervention to patients [40,43]; however, if the use of novel informatics 

tools were to change the patient experience of the intervention, it would be necessary to re-

engage patients to ensure acceptability.  

3.5 Conclusion 

This work identified barriers to adoption, workflow challenges, and design opportunities 

for informatics tools supporting the Caring Contacts suicide prevention intervention among 

organizational stakeholders. With newfound clarity regarding the opportunities for technology 

support, including CDS tools such as risk prediction models, this work contributes to realizing 

the translational potential of informatics interventions to benefit clinical care. 
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Chapter 4. Behavioral activation and depression 

symptomatology: Longitudinal assessment of linguistic 

indicators in text-based therapy sessions 

Aim 1 of this dissertation revealed that follow-up message authoring can be a cognitive 

burden in the Caring Contacts intervention, in part due to the need to review patients’ message 

histories for content that should be taken into account. There is therefore an opportunity for an 

AI-based tool to automatically extract such content items to lighten this burden. For the purpose 

of clinical decision support, it is imperative that extracted insights be actionable. Clinically 

validated theoretical constructs can serve this purpose, as long as they not only inform the 

clinical understanding of a patient’s pathology, but also intervention strategies.  

In the work described in this chapter, my co-authors and I investigated the use of LIWC 

and distributional semantics to automatically extract clinically relevant insights in a large corpus 

of patient-generated text, focusing on behavioral activation therapy for depression. Reduced 

behavioral activation, i.e. participation in rewarding activities, is a hallmark of depression; 

therapy may aim to induce such behaviors, triggering a positive feedback loop that leads to 

symptom improvement. Reduced behavioral activation is therefore both a symptom and an 

intervention target. Currently, therapists utilizing behavioral activation therapy measure 

symptoms and therapy progress by regularly administering a validated questionnaire 

instrument, which interrogates the seven dimensions of behavioral activation: satisfaction with 

activities, breadth of activities, autonomous decision-making regarding activities, deriving a 

sense of accomplishment from achieving activity-related goals, planning for long-term goals, 

enjoyment of effort, and structuring daily activities. These seven items are therefore clinically 

validated, actionable constructs. In this work, I developed and evaluated an approach to 
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automatically measuring these dimensions of behavioral activation using patient-generated 

natural language.  

Therefore, this work is uniquely relevant to informatics-supported suicide prevention. 

The constructs of behavioral activation are relevant to depression, and may be directly 

applicable because depression is closely related to suicidal thoughts and behaviors. However, in 

future work, my approach could also be used to develop ways to capture clinically actionable 

constructs specific to suicide, such as hopelessness or entrapment. 

 

A version of this chapter was previously published by the Journal of Medical Internet 

Research (JMIR) under a Creative Commons Attribution 4.0 International License. © the 

authors. 

Burkhardt HA, Alexopoulos GS, Pullmann MD, Hull TD, Areán PA, Cohen T. Behavioral 

Activation and Depression Symptomatology: Longitudinal Assessment of Linguistic Indicators 

in Text-Based Therapy Sessions. J Med Internet Res. 2021;23(7):e28244. doi:10.2196/28244 

 

Abstract. Background: Behavioral Activation (BA) is rooted in the behavioral theory of 

depression, which states that increased exposure to meaningful, rewarding activities is a critical 

factor in the treatment of depression. Assessing constructs relevant to BA currently requires the 

administration of standardized instruments, such as the Behavioral Activation for Depression 

Scale (BADS), which places a burden on patients and providers, amongst other potential 

limitations. Previous work has shown that depressed and non-depressed individuals may use 

language differently and that automated tools can detect these differences. The increasing use of 

online chat-based mental health counseling presents an unparalleled resource for automated 

longitudinal linguistic analysis of patients with depression, with the potential to illuminate the 

role of reward exposure in recovery.  

https://creativecommons.org/licenses/by/4.0/
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Objective: This work investigates how linguistic indicators of planning and participation 

in enjoyable activities identified in online, text-based counseling sessions relate to depression 

symptomatology over time.  

Methods: Using distributional semantics methods applied to a large corpus of text-based 

online therapy sessions, we devised a set of novel BA-related categories for the Linguistic 

Inquiry and Word Count (LIWC) software package. We then analyzed the language used by 

10,000 patients in online therapy chat logs for indicators of activation and other depression-

related markers using LIWC.  

Results: Despite their conceptual and operational differences, both previously 

established LIWC markers of depression and our novel linguistic indicators of activation are 

strongly associated with depression scores (PHQ-9) and longitudinal patient trajectories. 

Emotional tone, pronoun rates, words related to sadness, health, and biology, and BA-related 

LIWC categories appear to be complementary, explaining more of the variance in the PHQ score 

together than they do independently.  

Conclusions: This study enables further work in automated diagnosis and assessment of 

depression, the refinement of BA psychotherapeutic strategies, and the development of 

predictive models for decision support. 

4.1 Introduction 

Over 20% of adults in the United States have a mental illness [32]. Depression is among 

the most common mental health disorders: over 19 million adults suffered major depressive 

episodes in 2019. Effective delivery of mental health services is a challenge for many reasons, 

including that individuals respond differently to therapy [163,164]. To maximize treatment 

benefits, mental health care providers must continually assess progress and adjust treatment 

plans [163]. From a research perspective, longitudinal information about known and 

hypothesized mechanisms of recovery is a prerequisite to the refinement of current 
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interventions and can inform the development of new ones. Validated survey instruments exist 

to assess symptoms and other constructs relevant to therapy delivery and progress [165]; 

however, repeatedly filling out questionnaires places a burden on patients and providers, 

limiting the frequency with which these data can be collected. In contrast, using already 

available data created as part of routine care obviates the need for additional data collection. 

Additionally, it has been argued that subjective self-reports present potential limitations, for 

example due to cognitive and memory bias [166]; while careful scale design can alleviate these 

problems, objective, naturalistic measurements may be preferable.  

4.1.1 Behavioral activation and engagement 

The behavioral theory of depression states that depressed individuals participate in 

fewer pleasant activities and derive less pleasure and feelings of accomplishment from such 

activities [167]; in other words, they exhibit reduced behavioral activation. This phenomenon is 

self-exacerbating: reduced activation represents a loss of positive feelings that further reduces 

activation. Neurobiological findings suggest that dysfunction of reward networks (especially in 

Reward Valuation, Effort Valuation, Action Selection, Preference-based Decision-making, and 

Reward Learning) is a central process perpetuating depression [168,169]. For this reason, 

“reward exposure” aiming to induce behavioral activation has been thought to reactivate and 

retrain reward networks and improve depression [170]. Behavioral Activation (BA) therapies are 

therapeutic approaches based on the relationship between depressive symptomatology and 

engagement with pleasant activities. They aim to reduce depression symptoms by activating the 

reward system, and have been shown to be as effective as learning-based therapies while being 

easier to understand for patients and easier to deliver for therapists [167]. An example is the 

streamlined, evidence-based psychotherapeutic strategy called Engage [168], which aims to 

systematically address disengagement from participation in pleasurable activities in a structured 

approach by incorporating reward exposure and addressing barriers in three behavioral 
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domains: negativity bias, apathy, and emotional dysregulation. A recent randomized controlled 

trial showed that Engage is as effective as problem-solving therapy in treating late-life major 

depression, while having the advantage of being less complex; Engage required 30% less 

training time compared to problem-solving therapy [171].  

To better understand the relationship between BA-based therapies and therapeutic 

response in depression, robust metrics of the underlying theoretical constructs that minimize 

reliance on patients’ and providers’ subjective reports are needed. Text-based therapy sessions 

provide a unique opportunity to develop such metrics because all language exchanged in these 

encounters is archived. 

4.1.2 Language as an indicator of mental state 

Language reflects both conscious and subconscious thoughts and feelings [89–91]. 

Previous work has shown that depressed individuals use language differently than non-

depressed individuals in a manner anticipated by cognitive theories of depression. For example, 

depressed individuals use more first-person singular pronouns (“I”, “me”, “my”, etc.) than non-

depressed individuals [172,173], indicating increased self-focused attention, a language use 

consistent with Pyszcynski and Greenberg’s integrative model of depression [174]. Depression 

has also been shown to be associated with a lack of social integration or social disengagement 

[175–177]. For this reason, Rude et al. [172] anticipated a reduction in use of first-person plural 

pronouns (“we”, “us”, etc.) in depressed college students, but had too low a base rate to assess its 

impact in the sample available for analysis. Stirman et al. [177] found that suicidal poets used 

fewer first-person plural pronouns than nonsuicidal poets. Linguistic indicators of positive and 

negative affect differ in depression, and have shown utility in social media-based predictive 

models of depression [123,172]. These findings are consistent with the emphasis on negative 

valence in Beck’s influential depression theory [178]. Finally, prior work has investigated 

content word usage by depressed individuals compared to control groups without depression. 
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These include words related to sadness, as well as words related to somatic health concerns 

(health and biology words, with the biology category combining body, health, sexual, and 

ingestion words) [129,133]. Given these findings, the question arises whether variations in 

language use related to the behavioral theory of depression can be detected through natural 

language processing. 

One approach to capturing emotional affect, linguistic style, and topics in written text is 

to calculate the percentage of words belonging to defined categories, such as positive affect 

words, pronouns, or words related to certain topics, e.g. health or leisure. The Linguistic Inquiry 

and Word Count (LIWC) software package, a tool developed to study linguistic indicators of 

mental states, embodies this technique and was used to quantify relevant pronouns and affect 

words in the work discussed above. As reviewed by Pennebaker et al. [122], numerous 

experiments have validated LIWC’s categories. However, while LIWC constructs such as ‘leisure’ 

are related to the notion of activation, they do not provide a comprehensive account of how 

engagement might manifest in language. For example, categories of relevance to BA, such as the 

breadth of activities one engages in or the extent to which one derives a sense of 

accomplishment from setting and achieving activity goals, are not represented in LIWC’s 

standard dictionaries. 

Distributional representations of words learned from large amounts of electronic text 

can help construct comprehensive sets of terms similar to the curated sets used by LIWC to 

represent categories. Also known as semantic vectors or word embeddings, these 

representations are learned from text, with a typical approach involving first initializing random 

vectors of user-defined dimensionality, and then iteratively updating them to make vectors for 

words appearing in similar contexts similar to one another. With neural embeddings, this is 

achieved by training a neural network model to predict the words surrounding an observed 

word, and retaining some of the neural network weights after training to serve as word 

embeddings. Empath [179] is a tool designed to support rapid computer-assisted construction of 
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user-defined term sets using such embeddings to find terms that are similar to an initial set of 

seed terms. Term sets constructed in this way have a strong correlation with the corresponding 

LIWC categories, which were constructed in a completely manual process. In essence, Empath’s 

approach uses distributional representations of words to identify similar terms to a set of seed 

terms based on their distributional statistics across a large text corpus. In this way, a small seed 

set of terms can be rapidly expanded to provide adequate coverage, with the expanded list 

provided to manual reviewers for pruning of those terms considered to be inconsistent with the 

category of interest. Empath’s vector representations are derived from a corpus of fiction. 

Though generally harder to come by, customized in-domain training corpora are known to 

produce better word representations in clinical domains [180]. 

For the current work, we developed a metric of behavioral activation, using 

distributional representations derived from a large corpus of naturally occurring language from 

online therapy chat messages (n=2,527,783), and characterized its relationship to indicators of 

depression severity. We hypothesized that linguistic markers of activation would be more 

frequent in milder depression than in severe depression and that longitudinal changes in these 

markers would reflect the trajectories of patients’ depression; patients who improve over time 

should also show an increase in behavioral activation. We further hypothesized that linguistic 

markers of behavioral activation would capture a separate, clinically meaningful dimension of 

depression symptomatology – namely, engagement in meaningful, rewarding activities – 

compared to the established linguistic indicators, which capture psychological manifestations of 

depression (self-focused attention/social integration (function word usage) and emotional tone) 

and content topics (sadness, health, biology words). Therefore, the behavioral activation metric 

should capture information beyond that reflected by established markers. We tested these 

hypotheses in the subset of messages from the time period where evaluations of the severity of 

depression were available for participants at regular intervals (n=1,051,025).  
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4.2 Methods 

4.2.1 BA lexicon 

We developed a lexicon of related words, collectively representing the construct of 

activation as used in BA. We constructed a set of 66 unique representative seed terms, informed 

by the Activation subscale of the Behavioral Activation for Depression Scale (BADS) [181], a 

validated instrument used to identify subjective engagement levels. The subscale consists of 

seven questions, each aiming to capture a unique component of the construct. Seed terms were 

selected manually for each question in collaboration with G.A., a clinician investigator with 

extensive experience in BA approaches (Table 4.1). 

Table 4.1 Seed terms derived by the authors from the individual questions on the “Activation” 
subscale of the Behavioral Activation for Depression Scale (BADS).  

The name we assigned for each item (for brevity) is shown in parentheses. Note that there are 104 
total words in the right column, including duplicates (e.g. “goals” appears in accomplishment, long-

term, and structure), for a total of 66 unique terms.  

Item Derived seed terms 

I am content with the amount and 
types of things I did. (satisfaction) 

accomplish, achieve, satisfaction, satisfied, enjoy, 
content, contentment, accomplishment, love, proud, 
inspired, inspiring, enthuse, affirm 

I engaged in a wide and diverse array 
of activities. (breadth) 

activity, active, participate, involved, event, 
powerlifting, watercoloring, exercise, sport, 
basketball, restaurant, hobby, craft, art, music, 
instrument, piano 

I made good decisions about what type 
of activities and/or situations I put 
myself in. (decisions) 

decision, planning, plan, contest, competition, 
opportunity, chance, spontaneous, whim, spur, 
attentive, affirm, commit, focus 

I was an active person and 
accomplished the goals I set out to do. 
(accomplishment) 

goals, accomplish, progress, goal, achieve, effort, 
content, contentment, accomplishment, proud 

I did things even though they were 
hard because they fit in with my long-
term goals for myself. (long-term) 

goals, progress, goal, effort, planning, plan, 
challenge, attentive, birth, commit, change, invest, 
life, payoff, benefit 

I did something that was hard to do 
but it was worth it. (effort) 

effort, enjoy, excited, energized, energizing, love, 
contest, competition, challenge, chance, fun, 
enthusiastic, inspired, inspiring, enthuse, event, 
affirm, commit, change, focus, fuel, invest, 
invigorate 

I structured my day’s activities. 
(structure) 

goals, progress, goal, planning, plan, structure, 
attentive, event, routine, schedule, regular 
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We expanded the sets of terms for the novel LIWC construct by using methods of 

distributional semantics, which generate vector representations of words from their 

distributional statistics in text, such that words occurring in similar contexts will have similar 

vector representations [182,183]. Specifically, we used the open source Semantic Vectors 

software package [184–186] to train 100-dimensional word embeddings using the skipgram-

with-negative-sampling algorithm [187] on a set of 2.5 million de-identified messages sent by 

Talkspace clients (>165 million total words). Embeddings were trained over 10 epochs, using a 

sliding window radius of 2 and a subsampling frequency threshold of 10-5. Words occurring 

fewer than five times in the corpus were excluded from training. This minimum frequency 

threshold is employed to restrict model consideration to those terms that occur in a sufficient 

number of contexts to inform a distributional representation, and to constrain the number of 

vectors to save time (during nearest neighbor search) and disk space. We did not attempt to 

optimize this parameter, but note that it is the default in the canonical implementation of the 

skipgram-with-negative-sampling algorithm [188]. For each seed term, we then added the 30 

most related terms as determined by the cosine similarity between the seed term’s vector 

representation and the vectors for all other terms. We chose to add 30 because this number 

appeared to achieve high coverage while imposing a manageable workload for manual pruning. 

Note that stemming is not necessary, as this process will capture all forms of a word appearing 

in the training text, while preserving their semantic nuances; further, keeping all words 

appearing in the raw text ensures consistency between our dictionary and the texts to be 

assessed. For illustrative examples of similar words, see Table 4.2. 
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Table 4.2 Examples of seed terms and similar terms with corresponding similarity score, calculated 
by computing the similarity between word vectors.  

aTerms were extracted from our chat message corpus and thus include common typographical 
errors. bWords that were removed in the filtering process. 

Seed term Similar termsa Similarity score 

Proud 
 

Accomplished 0.729 
Accomplishment 0.679 
Accomplishments 0.673 
Impressed 0.667 
Prouder 0.663 
Gussied 0.646 

Active 
 

Inactiveb 0.659 
Activity 0.633 
Powerlifter 0.607 
Motivated 0.605 
Mighy 0.600 
Intramural 0.592 

Decision 
 

Decisions 0.863 
Choice 0.841 
Deciding 0.723 
Hyphenating 0.697 
Choices 0.693 
Decide 0.671 

Goal 
 

Goals 0.865 
Attainable 0.761 
Achievable 0.740 
Acheive 0.725 
Aim 0.722 
Accomplish 0.717 

Commit 
 

Committing 0.828 
Committed 0.788 
Babydaddyb 0.708 
Committ 0.708 
Commitment 0.706 
Sucideb 0.682 

Effort 
 

Efforts 0.729 
Concertedb 0.718 
Valiant 0.690 
Handsomenessb 0.687 
Timeanda 0.662 
Independentsa 0.648 

Routine 
 

Routines 0.874 
Schedule 0.708 
Nighttime 0.698 
Regimen 0.691 
Rhythm 0.682 
Schefule 0.682 
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These lists of terms were manually filtered to remove irrelevant or inaccurate terms. 

Then, we solicited feedback and suggestions from G.A. Feedback was incorporated at the seed 

term and manual filtering steps. The process was iteratively repeated until the lexicon was found 

to be satisfactorily inclusive and specific. Finally, the expanded lists of words, one per seed term, 

were combined to form seven partially overlapping sub-concepts according to Table 4.1, as well 

as one overarching activation category. In the overarching activation category, duplicate terms 

were removed to prevent double counting. We obtained a set of 1059 unique words, which 

represent the overarching idea of behavioral activation. The words originating from each of the 

seven items in the activation subscale of the BADS yielded the sub-concepts: satisfaction (227 

words), breadth (341 words), decisions (205 words), accomplishment (154 words), long-term 

planning (240 words), enjoyment of effort (342 words), and structure (216 words). LIWC was 

then used to measure the frequency of words belonging to each construct as a metric of patient 

engagement in behavioral activation. 

4.2.2 LIWC  

The Linguistic Inquiry and Word Count (LIWC) [121,122] software package, developed 

by Pennebaker and his colleagues over the past two decades, was used for linguistic analysis. 

LIWC derives features from narrative text by counting the number of words in a text that 

correspond to categories in LIWC’s lexicon (or dictionary), with categories defined by lists of 

words that fall into them. LIWC returns the percentage (or proportion) of words in a text that 

correspond to each category. For example, consider the following excerpt from an interview with 

singer, songwriter and poet Leonard Cohen: 

“When I speak of depression, I speak of a clinical depression that is the background of 

your entire life, a background of anguish and anxiety, a sense that nothing goes well, that 

pleasure is unavailable and all your strategies collapse.” [189] 
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This excerpt is 40 words long, and the words’ depression’ (n=2), ‘anguish’ (n=1) and 

‘anxiety’ (n=1) fall into LIWC’s negative emotion category. Therefore, LIWC returns a 

percentage score of 10% (100*4/40) for this category. Other categories are measured similarly 

by estimating the frequency with which words they include occur in a unit of text. However, 

LIWC also includes a set of composite categories that are derived by combining individual 

categories. As negative and positive affect are both potentially informative, for parsimony, we 

considered the composite emotional tone variable, which combines the positive and negative 

emotion categories. A high tone score indicates a predominance of positive over negative 

emotion words, and a low score indicates the opposite. A score of 50 indicates a balance between 

positive and negative affect [121]. 

Additionally, we measured the usage rates of first-person singular pronouns, first-person 

plural pronouns, and words belonging to the content categories health, biology, and sadness. 

Finally, we measured linguistic indicators of behavioral activation by counting the number of BA 

lexicon words overall, and in each subcategory, in every patient’s messages. 

4.2.3 Data 

This work utilized de-identified chat messages sent during routine online therapy, 

collected for a previously reported study by Hull et al. [190]. Clients took part in messaging 

therapy, conducted by a licensed, certified clinical professional via the Talkspace online 

platform, over 12 weeks. The platform provides a paid service open to all, and the service may be 

covered by some insurers. Therapists and clients converse via written, asynchronous messaging 

on the platform, and therapists utilized a range of therapeutic strategies. The platform also 

allows users to send video and audio messages, though these were not used in the current work. 

Only client messages, collected during the course of therapy, were used in this study. 

Participants completed Patient Health Questionnaire 9-item (PHQ-9) questionnaires at baseline 

as well as every three weeks during therapy. The PHQ-9 is a validated self-report questionnaire 



 

 87 

commonly used to assess depression severity, scored on a scale of 0-27 [165]. For further details 

on the platform, data collection process, and study population, see Hull et al. [190].  

The participants (N=10,718) were young (79% 35 years old or younger; none under 18), 

educated (74.9% Bachelor’s degree or higher), and mostly female (78.9%). Data on race and 

ethnicity are not systematically collected by the digital platform and are missing for most 

participants. There were a total of 24,387 PHQ-9 assessments with corresponding messages, 

with 37.6% of participants (n=4,035) only completing the baseline assessment, 24.5% (n=2,626) 

completing 2 assessments, 18.3% (n=1,962) completing 3 assessments, 9.7% (n=1,038) 

completing 4 assessments, and 9.9% (n=1,057) completing 5 assessments. The mean baseline 

PHQ was 13.36 (SD 4.96) and did not significantly vary with the total number of assessments 

completed. The mean end PHQ was 10.80 (SD 5.83) and was significantly lower the more 

assessments were completed. Patients participated in chat conversations throughout the study 

period, as well as in the three weeks leading up to the baseline assessment in some cases, which 

were included when available (weeks -3 through -1). Messages were aggregated by concatenating 

them (i.e. combining messages in sequence), creating a single ‘document’ as unit of analysis. For 

studies 1 and 2, each PHQ score was used to label the pooled messages from the period on which 

the questionnaire asks respondents to reflect (the two previous weeks). PHQ-9 questionnaires 

were filled out at the beginning of weeks 0, 3, 6, 9, and 12. For study 3, messages were pooled by 

week (starting with week -3), and each series of (up to) 15 datapoints has one trajectory label. 

On average, participants had 7.4 weeks of messages and wrote 770 words per week; patients 

completed 2.2 assessments on average and wrote 2,133 words per completed assessment. At 

baseline, the number of words written did not vary significantly with depression severity 

(p=0.33). There were 79,096 weeks of messages and 23,950 PHQ assessments with messages. 

For discussion of the relationship between demographic and engagement factors and treatment 

outcomes, please see Hull et al. [190].  



 

 88 

4.2.3.1 Trajectory labels 

Based on patients’ longitudinal PHQ-9 and GAD-7 scores, Hull et al. clustered patients 

using latent growth modeling and assigned the following labels to the six trajectory groups that 

emerged: Acute Recovery, Recovery, Depression Improvement, Anxiety Improvement, Chronic, 

and Elevated Chronic. The middle two categories appeared to capture patients who improved in 

some symptoms but not others. Additionally, improvements in PHQ (or lack thereof) were less 

clear than in the other groups. Because the individuals in these groups are thus outside the 

simple definitions of depression “improvement” and “non-improvement”, they were not 

included in analyses of binary improvement status. A subset of 6,760 patients was used for 

trajectory analysis. Of these patients, which Hull et al. identified as strictly “improving” or “non-

improving”, 47.2% (n=3,189) improved (classified as Recovery or Acute Recovery), and 52.8% 

(n=3,571) did not improve (classified as Chronic or Elevated Chronic). 

The present work focuses on ascertaining the utility of linguistic markers to predict 

depression symptom improvement only; therefore, when using trajectories, we simplified 

trajectories into a binary “improvement” label, with the two recovery classes in the improvement 

group and the two chronic classes in the non-improvement group.  

4.2.4 Statistical analysis 

4.2.4.1 Study 1: Association of linguistic markers with PHQ 

To validate the basic premise of LIWC and the BA concept, we investigated the 

relationship between linguistic markers and PHQ-9 scores using the (up to) five measurements 

of linguistic indicators with corresponding PHQ-9 scores per patient. For this analysis, each pair 

of PHQ-9 assessment and corresponding message log was treated as a data point. We first 

determined whether the established LIWC metrics as well as our novel BA metric are 

statistically significantly different between patients with different depression symptom severity. 

Severity was defined by the clinical depression symptomatology groups used by the PHQ scoring 
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system: minimal (PHQ ≤ 4), mild (PHQ = 5-9), moderate (PHQ = 10-14), moderately severe 

(PHQ = 15-19), and severe (PHQ ≥ 20). Further, the average difference in each linguistic marker 

for each unit difference in PHQ score was determined using mixed-effects linear regression, 

treating the patient identity as a random effect. 

4.2.4.2 Study 2: Utility of BA subconstructs 

Each question of the BADS activation subscale aims to capture a distinct dimension of 

the theoretical construct. To determine the difference between the components and the potential 

clinical value of the sub-components compared to pronoun usage, affect measures, and the 

overall BA concept, we conducted regression analyses on combinations of different variable 

subsets. For each analysis, we determined the variance explained by each subset of predictors in 

a mixed-effects model with PHQ-9 score as the outcome, treating participant identity as a 

random effect. Predictors were combinations of (1) subsets of the established LIWC variables 

(first-person singular pronouns, first-person plural pronouns, emotional tone, or all three; 

sadness, health, biology, or all three) and (2) subsets of the behavioral activation variables (the 

overall construct, each of the seven subconstructs, all seven subconstructs, and all seven 

subconstructs plus the overall construct). Comparing the amount of variance explained (R2) 

between baseline models and models that include additional variables yields insights into the 

extent to which the added variables provide further information. However, chance associations 

alone can increase R2 even if variables provide little usable additional information; therefore, 

we additionally determined the Akaike information criterion (AIC), which penalizes model fit in 

response to model complexity. A non-increased AIC in conjunction with an increased R2 should 

therefore signal that added variables contained new information. 

4.2.4.3 Study 3: Association of linguistic markers with patient trajectories 

To determine the association between different linguistic indicators and outcome, 

mixed-effects linear regression was used to compare the rates of change of the variables over 
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time between patient trajectories (whether patients were improving, i.e. classified as Recovery 

or Acute Recovery, or non-improving, i.e. classified as Chronic or Elevated Chronic).  

We compared the average change in each variable per 1-week difference (regression 

slope). For this analysis, messages were aggregated by week, yielding a time series with up to 15 

data points for each patient. Thus, we calculated how PHQ scores and linguistic indicators 

changed with time in the improving and non-improving groups, controlling for the within-

patient dependency of samples. Specifically, for each of the two groups, we fitted a mixed-effects 

linear regression model of the following form: 

𝑌𝑖𝑗 = 𝛽0 +  𝛽1𝑋𝑖𝑗 + 𝛾0𝑖 + 𝛾1𝑖𝑋𝑖𝑗 + 𝜖𝑖𝑗  

Where 𝑌𝑖𝑗 is the variable of interest measured for participant i in week j, e.g. PHQ, 

activation, or satisfaction. 𝑋𝑖𝑗  is the week number. 𝛽0and 𝛽1are the fixed effect (time) 

parameters. 𝛾0𝑖 and 𝛾1𝑖 are the random effects (participant ID) parameters. Calculations were 

done using the statsmodels package in Python [191]. 

4.3 Results 

4.3.1 Study 1: Relationship between linguistic indicators and PHQ scores 

Using LIWC to measure the percentage of words belonging to the overall activation 

construct (including all terms related to any of the subconstructs), the average level of activation 

across the baseline chat logs was 3.66 (SD 0.89) and varied significantly with the depression 

symptom severity category (Figure 4.1), as did the LIWC emotional tone measure and the LIWC 

pronoun measures (first-person singular and first-person plural). Less depressed individuals 

used more “we” pronouns and fewer “I” pronouns. All individuals expressed more negative 

affect than positive (tone < 50), with the most depressed individuals exhibiting an emotional 

tone balance most extremely tipped toward negative affect (lowest scores). The topic-related 

word categories were also significantly different between severity groups, with sadness having 
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the most pronounced differences between groups. The health and biology categories appear to 

show increased usage in more depressed individuals, but have remarkably large confidence 

intervals for the least depressed group (none/minimal). Higher overall behavioral activation 

levels were detected for lower depression levels, indicating that patients with more severe 

depression symptoms discussed activities and associated feelings of enjoyment and reward less 

than their less-depressed counterparts.  

 

Figure 4.1 Mean of each LIWC measure by depression symptom severity category at baseline. 

Minimal (PHQ<=4, n=393), mild (PHQ=5-9, n=1,865), moderate (PHQ=10-14, n=4,109), moderately 
severe (PHQ=15-19, n=3,002), severe (PHQ>=20, n=1,331). Bootstrapped 95% confidence intervals 

are shown. All variables shown had statistically significantly different means across groups 
according to one-way ANOVA (p<0.05). 

4.3.2 Study 2: Utility of subconstructs 

The variance in the overall PHQ score explained (R2) by the 109 models fitted to all 

possible combinations of the LIWC and BA variable sets is shown in Figure 4.2. The amount of 

variance explained for each baseline model is shown as bars with strokes, and comparison 
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values are shown without. Darker colors indicate better fit as measured by the AIC. At baseline, 

emotional tone is more informative than “I” or “we”. The health category is the most informative 

topic category; the three topics together explain more variance than the tone and pronoun 

variables together, and also have better fit. All LIWC variables together explain the most 

variance without detracting from model fit. Of the activation subconstructs, the decision, long-

term planning, and daily structure components are most informative; again, all variables 

together explain the most variance. Including tone added more to satisfaction, breadth, 

accomplishment, and effort than to decisions, long-term planning, and daily structure. LIWC-

package constructs alone (tone, I, we; content topics) accounted for 68.3% of the variance, while 

the combination of our newly created behavioral activation sub-constructs plus total score alone 

accounted for 69.7% of the variance. The highest R2 of 80.4% was achieved by the model that 

included all variables: emotional tone, function words (I, we), all three topic categories, and all 

seven sub-components of activation, along with the overall activation level. Interestingly, 

including the overall BA concept along with the BA subconstructs appeared to improve both R2 

and fit compared to the subconstructs alone.  

 

Figure 4.2 Variance explained (R2) by each subset of variables in a mixed-effects model with PHQ 
score as the outcome.  

Baselines are shown with outlines (left column and top row). Compare columns to the first column 
for the increase in R2 due to standard LIWC variables compared to activation variables alone; 

compare rows to the first row for the increase in R2 due to activation variables compared to standard 
LIWC variables alone. Colors indicate the relative Akaike information criterion (darker colors 

indicate better fit). 
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4.3.3 Study 3: Relationship with patient trajectories 

Figure 4.3 shows the average change in each linguistic marker per week in the improving 

and non-improving group. Several linguistic indicators showed average amounts of change over 

time that were significantly different between the two groups.  

Of the established LIWC markers, emotional tone, first person singular pronouns, first 

person plural pronouns, and biology words were different between groups. Interestingly, biology 

word usage decreased less in the non-improving group than in the improved group, while health 

word usage decreased more in the non-improving group. Sadness was reduced in both groups 

over time, with a larger change in the improving group, though the difference between groups 

was not statistically significant.  

 

Figure 4.3 Regression coefficients and corresponding 95% confidence intervals of the Mixed Effects 
models, i.e., the average change in the given variable for each treatment week.  

* = p<0.05 

Of the linguistic markers of behavioral activation, the markers for satisfaction with 

activities and rewarding effort had the most pronounced difference between groups, along with 

the overall activation marker. The fitted fixed effects models are shown in Figure 4.4. Neither 
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the breadth of activities discussed or mentions of feelings of accomplishment were different 

between groups. 

 

Figure 4.4 Fixed effects of the fitted linear mixed effects models for the improving and non-
improving groups for Activation (overall).  

Improving: activation = 3.837 + week * 0.039. Non-improving: activation = 3.598 + week * 0.006 

4.4 Discussion 

In this work, we developed an approach to measuring behavioral activation from 

patients’ natural language and demonstrated that this metric, like scores collected with the 

validated PHQ-9 depression symptom questionnaire, can discriminate between patients on 

positive and adverse trajectories. Furthermore, we demonstrated that activation can be 

measured in terms of its distinct, clinically meaningful sub-constructs, each of which is 

complementary to established linguistic indicators (affect, pronouns, content categories), and 

has potentially different uses in future research and applications. Additionally, we demonstrated 

that established linguistic indicators obtained using LIWC are associated with changes in 

depression symptomatology as measured with the PHQ in a large sample of online therapy 

clients.  

At baseline, the depression severity experienced by patients in this study was well 

captured by linguistic markers. The established LIWC markers of affect, pronouns, and topic 

categories were significantly different between PHQ-9 severity groups. Remarkably, sadness and 

the indicator of self-focus show nearly identical patterns across groups. Though depression 
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without sadness does occur, sadness is perhaps most famous marker of depression, and the 

agreement between first person singular pronouns and the marker of sadness confirms the 

theory of self-focused attention and provides further support for the measurement of self-focus 

using LIWC. Further, even at baseline, BA is markedly different between depression severity 

groups. The presence of this association at baseline provides support for the connection between 

activation and depression symptoms on which BA therapies are based.  

Notably, not all variables are able to differentiate all depression severity groups. For 

example, tone appears to be clearly different between the moderately severe and severe groups 

at baseline, while activation cannot differentiate between the two. Conversely, mean activation is 

different between moderately depressed individuals and those with only minimal symptoms, 

while tone was not significantly different between these groups. That not all variables 

differentiate may be related to the polymorphous clinical presentation of depression; patients 

experience different combinations of symptoms to varying degrees [192]. The heterogeneous 

presentation of depression suggestions that any single metric can only partially capture the 

clinical severity of depression and underscores the importance of measuring multiple aspects of 

depressive symptomatology. Combining several complementary markers, each carrying some 

unique information, can maximize predictive power by capturing different dimensions of 

depressive psychopathology. 

The mechanisms underlying improvement due to BA therapies are not sufficiently well 

understood. A comparison of different BA approaches found that most result in similar benefits, 

even though they include slightly different protocols, suggesting that some elements of the 

various activation approaches may be unnecessary [167]. By investigating the individual 

components of the activation subscale of the BADS in isolation, we showed that each contributes 

further information: Considering the individual parts, rather than just the overall idea of 

activation, explains more variance in regression models without deteriorating model fit, which 

might be expected if more variance was explained merely because more variables were included. 
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This finding suggests that the features capture distinct dimensions of activation and that some 

dimensions may be more important than others. For example, we found that the idea of breadth 

(corresponding to BADS item “I engaged in a wide and diverse array of activities.“) was the least 

predictive of patient improvement over time. Manos et al. previously showed factor analysis that 

a modified version of this item (“I engaged in many different activities”) should be retained in a 

short version of the BADS [193]. However, the current work interpreted the item as capturing 

activity diversity specifically, counting ideas such as ‘exercise’, ‘restaurant’, and ‘instrument’, 

similar to the Pleasant Events Schedule (PES) questionnaire. The PES asks respondents for the 

number of times they participated in activities on a list of 320 activities in the past 30 days, 

including “Playing baseball or softball”, “Going to a restaurant”, and “Playing a musical 

instrument” [194]. Manos et al. point out that PES may not represent the key functional 

activities of every respondent and therefore may not accurately capture activation, and their 

rewording of the item removes some of the focus on activity diversity. Our findings support the 

idea that focusing on activity diversity may not be beneficial for the identification of linguistic 

markers of behavioral activation. Future work might modify the dictionary created here to 

remove the specific named activities. Further research may also grant insights into opportunities 

to refine treatment interventions and protocols. For example, it may be prudent to explore 

modifying BA therapies to remove any emphasis on activity diversity and focus on frequency of 

patients’ activities of choice. 

Our analysis shows that emotional tone, “I”, and “we“ are strongly associated with 

patient trajectory, consistent with prior work. Both the improving and non-improving groups 

shifted their tone to be more positive over the treatment period (positive, non-zero slope), which 

may be an effect of participating in therapy – e.g. participants may be focusing on solutions 

rather than problems in conversations with their therapists. While the sadness category was also 

strongly associated with patient trajectories, the effect was less pronounced than may have been 

expected, considering that feelings of sadness are perhaps the most common symptom of 
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depression. Surprisingly, the health topic decreased in usage more in those not on a positive 

trajectory than those who experienced improvement, while the “biological processes” topic 

group decreased more in the improving group. The biological processes topic group contains 

health words, as well as ingestion, sexual, and body words. That patients on the path to recovery 

discuss these topics less as time passes may indicate that they experience fewer somatic 

symptoms. 

In addition to the overall BA construct, we found several sub-constructs that were 

strongly associated with patient trajectory, i.e. satisfaction, decisions, long-term planning, effort, 

and structure all showed significant differences between the improving and non-improving 

group (p<0.05). The breadth of activities and feelings of accomplishment were the most similar 

between these groups out of all activation sub-constructs. However, the addition of breadth to 

the established LIWC markers resulted in more variance explained without a reduction in 

goodness of fit. In fact, breadth was the third most informative single activation construct when 

included alongside all topic and pronoun variables and tone. In other words, while breadth 

alone is not explanatory, it is informative in the context of other predictors such as emotional 

affect. This observation may indicate that discussing activities without positive feelings is not 

indicative of improvement; activities must also be perceived as rewarding. 

Pennebaker et al. first began developing and using LIWC in the 1990s [122]. Counting 

words belonging to semantic and syntactic categories is simple yet effective, as demonstrated in 

countless experiments across several fields [122]. For example, LIWC has been used to compare 

linguistic style and content between essays written by depressed and non-depressed students 

[172]. In this study, depressed students exhibited increased use of first-person singular 

pronouns and negative affect. De Choudhury et al. used LIWC categories, including emotional 

tone and linguistic style, and other indicators to predict vulnerability to depression from another 

passively collected record of naturally occurring digital discourse, namely social media data 

[123,195]. Their findings provide further evidence that both affect and linguistic style are 
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predictive of current and future depression. LIWC has also been used in the clinical setting. 

Sonnenschein et al. [133] compared linguistic markers in transcripts from in-person 

psychotherapy session between patients with depression (without anxiety) and anxiety (without 

depression) and found a significant difference in emotion expression, but only minor differences 

in pronoun usage; the study did not include healthy controls. Molendijk et al. [196] found 

significant differences in pronoun usage as well as negative emotion between essays written by 

psychiatric and non-psychiatric patients, but found that the effect was not specific to depression. 

A detailed review of LIWC applications is available elsewhere [122].Despite this extensive 

existing work utilizing LIWC, sample sizes have historically been small: the largest sample size 

in Edwards et al.’s meta-analysis of first person singular pronoun use in depression was 966 

[173]. Containing chat conversations from over 10,000 individuals over almost three years, with 

over 74 million words, our dataset of naturally occurring language is considerably larger than 

any used to validate the relationship between LIWC variables and depression in previous 

experiments. Our results provided further validation of LIWC’s tone and pronoun related 

variables, in the context of scores from a validated, standardized instrument for measurement of 

symptomatology. Changes in established LIWC variables are consistent with case-control 

differences demonstrated in prior research [123,172,177], with tone and first-person plural 

pronouns increasing as symptoms decrease, and first-person singular pronoun usage decreasing 

with improvement in symptoms. Therefore, we showed that these metrics indeed reflect 

depression symptom status in this dataset, providing further strong support for their 

relationship to depression. However, in the context of the current data, BA variables explained 

more of the variance in the PHQ data than pre-existing LIWC constructs. 
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4.4.1 Limitations  

Reliance on the PHQ-9 is a limitation because this instrument focuses exclusively on 

symptoms of depression. Future studies may use instruments assessing wellbeing and social 

adjustment. 

The trajectories used to categorize patients as improving or otherwise were assigned via 

unsupervised learning and do not directly correspond to the total change in PHQ over the course 

of treatment. Rather, they account for the entire series of depression and anxiety scores over the 

treatment period. A participant may have an absolute decrease in PHQ score (e.g. 16, 18, 15, 

corresponding to a total change in PHQ of one point between the beginning and end of 

treatment); however, the patient may not be experiencing clinically meaningful progress. Thus, 

depending on the entirety of the PHQ-9 as well as GAD-7 scores over the treatment period, the 

model may not assign an “improvement” category for such a patient. Many patients only had 

one or two scores, and some participants with identical sets of scores were assigned to different 

groups. However, mixed-effects linear regression confirmed that depression symptoms as 

measured by PHQ-9 scores improve significantly more for patients in the improving group than 

for patients in the non-improving group. Thus, we believe that the categories are sufficiently 

accurate for our purposes. While we excluded the “gray area” trajectories of Depression 

Improvement and Anxiety Improvement, it worth noting that analyses were repeated with these 

included, and results, though less clear, were not different and our conclusions held; this is the 

expected result of introducing additional noise. Another potential limitation of the trajectories is 

that even the “non-improving” group showed a slope in PHQ that was significantly different 

from 0; we believe that this is an effect of unsupervised learning (i.e. the trajectories clustered 

into groups labeled as ‘chronic’ are distinct from the other clusters, but not necessarily entirely 

without improvement) coupled with the fact that therapy and just the simple passage of time 

(regression to the mean) is at least somewhat effective for most people. A truly “non-improving” 

control group is therefore difficult to carve out in this dataset, possibly because such people 
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represent a minority of participants and were thus not assigned a separate cluster by the 

unsupervised approach. Future work on this dataset may consider using the more granular 

patient trajectories if the degree of improvement or exacerbation is of interest. For example, a 

patient may be responding well (“remission”), but there may be room for improvement (“acute 

remission”); alerting providers to this situation could result in additional efficiency of care. 

The lexicon of words collectively representing activation developed in this work was 

based solely on the messages in this data set. This approach ensured that the concept represents 

language usage in our specific study population. While domain-specific texts generally work 

better for distributional semantics than more general corpora, they may also result in artifacts 

with limited generalizability. Our study population was predominantly young (55% were 

between 26 and 35 years old) and, considering that they used a paid online therapy service, 

presumably financially stable. 28.5% were residents of California or New York, and 78.9% were 

female. This striking gender imbalance is consistent with previously reported gender imbalances 

in both online and face-to-face therapy. For example, Chester et al. [197] report that 70% of 

online therapy clients are female and a recent comparable online mental health service in 

Australia [198] reportedly had 72% female clients. Sagar-Ouriaghli et al. [199] report that 

women are 1.6 times more likely to receive any form of mental health treatment than men. 

Nevertheless, the makeup of our study population must be considered in future applications of 

our results. Geographically and demographically diverse groups may significantly differ in their 

word choice and usage, and as a result, the lexicon may not be generalizable to other groups. 

Word count approaches such as the one employed by LIWC have limitations. While most 

modern NLP methods account for negations, counting words does not. LIWC has a separate 

“negation” category, but it only considers single words, and thus does not assign negation 

statuses to individual concepts. For example, describing having planned the day’s activities and 

not having planned the day’s activities would both count toward our structure concept in the 

same way. Because both statements reflect that the patient engaged with the idea of planning 
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their day’s activities, this is arguably a minor limitation. Still, our results indicate that context is 

more important for some concepts than others; for example, breadth is only informative when 

considered alongside other markers such as emotional affect to contextualize it. In our future 

work, we plan on utilizing approaches that can account for negations. 

A potential limitation is that the therapy sessions in this work did not specifically use BA 

therapy. However, behavioral activation is a common pathway of many therapies, which 

through a variety of interventions increase exposure of depressed patients to meaningful, 

rewarding experiences.  

An important factor to consider when proposing such automated analyses is the degree 

to which passive monitoring of therapist-client communication for the purpose of measuring BA 

may be construed as invasive or intrusive. While we did not directly engage with patients in the 

current work, we note that our recent work in the suicide prevention domain provides some 

indication that passive monitoring of this sort may be acceptable to patients when conducted by 

a trusted party, with 68% of survey participants indicating that the automated analysis of 

personalized web search data for suicide prevention would be acceptable provided this triggered 

minimally invasive interventions (such as connection to a support network or therapist) only 

[94]. 

Another limitation of the study is the absence of qualitative review that could examine 

the accuracy of our ratings. 

4.4.2 Future work 

An additional implication of the potentially causative mechanism of activation is that it 

should occur before symptom improvement. While more direct measures of sentiment and 

mindset reflect an individual's current thoughts and feelings, “activity” topic analysis may reveal 

long-term dimensions of patient trajectory. Discussing activities, plans for activities, or even 

avoidance of activities shows that a patient engages with the ideas surrounding BA and may 
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indicate that a patient is moving toward or already part of a positive feedback loop of self-

perpetuating improvements. Consequently, one may expect metrics of activation to predict 

longer-term changes more accurately than word use analysis, which may be confounded by the 

mood of the moment, and thus capture a separate and clinically meaningful dimension of 

symptomatology and treatment success.  

Our results show that the BA sub-constructs of decisions (independent decision-

making), long-term (planning for the long term and acting accordingly), and structure 

(structuring daily activities) are parallel in terms of the amount of variance they explain. Let us 

call these activities. Similarly, satisfaction, accomplishment (a sense of having accomplished 

something), and effort (enjoyment due to effort exerted) are similar to each other. Let us call 

these reactions. Activities alone were more explanatory of improvement than reactions alone; in 

other words, activities are explanatory even without considering emotional tone. Adding tone 

increased the amount of variance explained for reactions to the levels for activities alone. In 

other words, reactions are more informative when considered alongside tone than without, 

whereas adding tone makes comparatively little difference for activities. A possible explanation 

is that merely discussing feelings of satisfaction, or lack thereof, may not correspond to 

improvement. However, engaging in long-term planning, scheduling activities, and structuring 

routines does correspond to symptom improvement. Mentions of being satisfied may only be 

triggered positively once the positive feedback loop is set in motion. Conversely, this pattern is 

in agreement with the helplessness theory [174,200], which states that experiencing negative 

consequences to reward-seeking behavior perpetuates the avoidance phenomenon, and 

therefore continuing depression symptoms, by supporting a negative outlook on the future. 

Therefore, it requires additional information about the patient’s tone to be informative of 

current symptom severity. Therefore, an opportunity for future work is to investigate the 

temporal relationship between symptom improvement and the constructs in the activities group 

compared to those in the reactions group. One may be more useful than the other to predict 
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long-term changes. Ascertaining the timeline of changes in these different activation metrics 

relative to patient trajectories is a prerequisite to the translation of linguistic indicators into 

clinical insights. 

Recently, a broad range of sophisticated natural language processing techniques have 

gained traction. Our work here demonstrated that theme and affect analysis conducted via 

established, straightforward methods such as word counting both reflect and potentially predict 

depression status. It is plausible that more advanced methods may surpass those used here. 

Consequently, future work is set to include a deep neural network model trained on GoEmotions 

[51], a large corpus of social media posts annotated for the extent to which they express a set of 

emotion categories [201]. 

Having validated the linguistic indicators of depression and activation presented here, 

the question of how to incorporate them effectively into care processes remains. Predictive 

analytics solutions must be operationalized effectively to improve health outcomes. Accordingly, 

future work should focus on testing and iteratively refining these measures as part of care 

delivery. For example, metrics of depression symptom severity and behavioral activation may be 

automatically extracted from patient messages on virtual chat therapy platforms and used to 

guide the therapist in recognizing whether a patient responds well to therapy or if a change in 

direction is appropriate. 

4.5 Conclusion 

This work makes several key contributions. First, we devised a computational method to 

automatically assess theoretical constructs of BA from patient language. Second, building on 

prior work demonstrating that activation has a close relationship with depression scores, we 

demonstrated this new metric reflects depression symptom severity. Third, we validated 

established linguistic markers of depression in a large corpus of naturally occurring language 

collected as part of psychotherapy sessions, presenting differences between participants with 
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low and high PHQ-9 scores. Fourth, we showed that both the well-established LIWC measures 

as well as the novel BA measures have utility in predicting longitudinal patient trajectories. 

Finally, we demonstrated that our metrics of the individual subconstructs of BA capture distinct 

dimensions of the underlying mechanisms and may lend themselves to unique clinical insights. 

This work therefore enables further work in automated diagnosis and assessment of depression, 

as well as refinement of BA psychotherapeutic strategies. 
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Chapter 5. Comparing emotion feature extraction 

approaches for predicting depression and anxiety 

Aim 1 (Chapter 3) of this dissertation revealed the need to take patients’ unique situation 

into account when providing support for the purpose of suicide prevention. Current and 

historical emotional state are important indicators not only of patient well-being, but also of 

ways to best support the patient. For example, a patient who has been experiencing grief due to 

the loss of a loved one may benefit from educational materials for coping with grief; on the other 

hand, a patient who has a tendency to react to difficult situations with anger may benefit from 

emotion regulation strategies. However, comprehensively reviewing the history of messages 

exchanged between intervention staff and the patient for patterns of emotional expression can 

be time intensive, suggesting an opportunity for automated emotion extraction.  

In the work described in this chapter, my co-authors and I investigated two different 

approaches to extracting emotion features from text written by patients as part of asynchronous, 

message-based therapy. Similar to the work described in aim 2 (Chapter 6), this work benefitted 

from social media data: GoEmotions, the neural emotion extraction approach used here, was 

trained on Reddit posts annotated for 27 fine-grained emotions. I demonstrated the ability to 

use these two approaches to extract emotion from text messages exchanged between clients and 

their therapists during the course of treatment, and found that extracted features were 

associated with depression and anxiety symptom severity. 

This work is also uniquely relevant to informatics-support suicide prevention. The 

emotion feature extraction approaches investigated here could be used to extract emotions from 

current and historical messages exchanged in the Caring Contacts intervention. This may inform 

how intervention staff interact with a patient to validate and support them, or what materials 

clinicians share with the patient to help them bolster their coping strategies. 
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Abstract. The increasing adoption of message-based behavioral therapy enables new 

approaches to assessing mental health using linguistic analysis of patient-generated text. Word 

counting approaches have demonstrated utility for linguistic feature extraction, but deep 

learning methods hold additional promise given recent advances in this area. We evaluated the 

utility of emotion features extracted using a BERT-based model in comparison to emotions 

extracted using word counts as predictors of symptom severity in a large set of messages from 

text-based therapy sessions involving over 6,500 unique patients, accompanied by data from 

repeatedly administered symptom scale measurements. BERT-based emotion features 

explained more variance in regression models of symptom severity, and improved predictive 

modeling of scale-derived diagnostic categories. However, LIWC categories that are not directly 

related to emotions provided valuable and complementary information for modeling of 

symptom severity, indicating a role for both approaches in inferring the mental states 

underlying patient-generated language. 

5.1 Introduction 

Almost 10% of adults in the United States receive mental health counseling [202]. The 

principle of measurement-based care dictates that medical treatments should be initiated and 

https://creativecommons.org/licenses/by/4.0/
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evaluated over time based on repeated assessments of patient symptoms and symptom 

trajectory [163]. In the context of talk therapy, mental health practitioners estimate treatment 

progress based on patients’ current and historical verbal communications. For evaluating 

depression and anxiety severity, expressions of emotional state are key aspects of such 

communications [178,203,204]. 

While prior work predominantly focused on sentiment, i.e. positive/negative polarity, 

expression of fine-grained emotions [52,53] may give further insights into depression and 

anxiety symptomatology. For example, pride may be impacted by depression in a unique way. 

Gruber et al. [54] showed that pride, a positive emotion relating to the self, is inversely 

correlated with depression, which is often associated with a poor self-image. At the same time, 

they found a smaller effect on joy and amusement, concluding that grouping these emotions into 

“positive affect” may result in a loss of nuance. 

The increasing adoption of digital mental health tools and services, particularly message-

based therapy, has afforded new opportunities to assist practitioners in quantifying depression 

and anxiety severity by assessing emotion in patient-generated text. Linguistic Inquiry and 

Word Count (LIWC) [121,122] is a software package designed to count words belonging to pre-

defined categories with an extensive track record of validation for the detection of linguistic 

indicators of mental state [122]. It is commonly used to measure positive and negative affect, a 

limited set of specific emotions (sadness, anxiety, and anger), and other linguistic dimensions 

related to style and topic. Several LIWC categories have established relationships with 

depression, including the affect category sadness (e.g. “sad”, “cry”, “suffer“), the topic category 

health (e.g. “alcohol”, “rash”, “self-care”), and the syntactic category first-person pronouns (e.g. 

“I”, “me”, “my”). LIWC has been used to measure depression levels in social media posts 

[123,195,205,206], therapy conversations [133,135], and other written texts [172,177]. LIWC 

measurements have also been shown to distinguish between patients with depression and those 

with anxiety disorders [133], correlate with self-reported measures of anxiety and worry in 
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written descriptions of emotional responses to COVID-19 [207], and predict whether posts 

emanated from anxiety-related subreddits [208]. 

However, word counting methods cannot address linguistic phenomena such as negation 

(“not bad”), sarcasm, and context-dependence (for example, in the case of polysemy, words have 

multiple meanings that can only be disambiguated in context), and manually defined 

dictionaries may omit synonyms for terms they encode. Prior work suggests that neural network 

(NN)-based natural language processing (NLP) techniques can account for such phenomena and 

may therefore improve upon this straightforward word-counting method in their ability to 

identify concepts related to symptom severity. Shen and Rudzicz found that the performance of 

machine learning models identifying whether or not Reddit posts were drawn from anxiety-

related subreddits improved when these models included neural word embeddings rather than 

LIWC-derived features [208]. However, the distributed representations of posts used in this 

work do not relate directly to interpretable emotion features. Further, contemporary 

transformer-based NN language models offer advantages over neural word embeddings in their 

ability to leverage proximal cues (such as "not") when interpreting the contextual meaning of a 

word. As noted by the authors, this work suggests a need for further research on automated 

assessments of linguistic indicators of anxiety disorders, involving larger data sets and explicit 

diagnostic assessments. 

Therefore, using a large set of messages from text-based therapy session, we investigated 

if emotions extracted using a Bidirectional Encoder Representations from Transformers (BERT) 

[100] based model trained on GoEmotions, a large dataset of Reddit posts annotated with 27 

fine-grained emotions [51], are stronger predictors of depression and anxiety status than counts 

of emotion-related word categories (LIWC). To this end, we first determined the association of 

each feature with the outcomes of interest in univariate regression analyses. Further, in order to 

provide clinical decision support to mental health practitioners, it is paramount to be able to 

classify previously unseen messages as indicating depression and/or anxiety. We therefore 
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proceeded to train and evaluate a machine learning classifier using emotion features in 

conjunction with established depression-related LIWC features to predict depression and 

anxiety status in a held-out test set. 

5.2 Methods 

5.2.1 Data 

We utilized a corpus of messaging therapy sessions from over 6,500 unique patients 

previously collected via the Talkspace platform [190]. Talkspace offers a paid service utilizing 

licensed and credentialed therapists to conduct asynchronous, message-based therapy 

conversations. All patients and clinicians give written consent to the use of their data in a de-

identified, aggregate format as part of the user agreement before they begin using the platform. 

Over the course of 12 weeks, patients engaged in two-way messaging therapy and completed 

depression questionnaires (9-item Patient Health Questionnaire, PHQ-9 [165]) as well as 

anxiety questionnaires (7-item General Anxiety Disorder questionnaire), every 3 weeks. For 

each available score, patient messages from the period in question (“(o)ver the last two (2) 

weeks”) were concatenated into a single unit of analysis (“document”), resulting in up to 4 

labeled data points per patient (weeks 3, 6, 9, and 12). All messages without a corresponding 

score were excluded from analysis. Data from baseline assessments were removed, as 

preliminary analysis suggested that messages before the week 0 mark introduced spurious 

associations due to differences between typical therapy dialog and the patient-therapist 

matching process, combined with generally worse symptom severity scores at the beginning of 

the study period. Participants were young (79% were 35 years old or younger), educated (75% 

had a Bachelor’s degree or higher), and predominantly female (79%). Race and ethnicity were 

not systematically collected. There were over 13,000 text documents with both PHQ-9 and 

GAD-7 scores, totaling over 24 million words from over 337,000 messages. The original study 

was approved as exempt by the local institutional review board. The current study concerned 
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secondary analysis of previously collected de-identified data, which is not considered human 

subjects research; nonetheless, data were stored on a secure server with study team member 

access only. All textual data were thoroughly de-identified by an automated algorithm before 

leaving their source, with all names, places, contact information, social media identifiers, and 

mentions of specific events removed. 

LIWC 2015 was used to obtain the following word-count-based features: first-person 

singular pronouns (“I”), first-person plural pronouns (“we”), bio, health, sadness, anxiety, 

anger, positive emotion, and negative emotion. These features were selected on account of their 

track record of correlation with indicators of depression and anxiety in previous work [122]. 

A BERT-based GoEmotions classifier pipeline using fine-tuned models available from 

the Hugging Face transformer library1 was used to extract emotion features from each 

document. This model has been shown to approximate published results for performance in 

extracting emotions from the GoEmotions dataset (macro-average F1 score of ≈0.5 to ≈0.7, 

depending on the granularity of the emotions concerned). For further details of the training 

corpus and procedures used, we refer the reader to Demszky et al. [51]. After splitting 

documents into sentences and extracting emotions from the first 512 tokens of each sentence, 

scores were averaged over all sentences in a document to yield one set of emotion scores for the 

two-week period concerned. Only 38 of ≈13,000 documents contained sentences that were 

truncated due to being over 512 tokens long. The pipeline provides several output settings, 

resulting in different sets of emotions being extracted. Two sets of emotions were extracted. 

First, we extracted the set of 6 basic emotions proposed by Ekman [209], consisting of sadness, 

joy, surprise, disgust, anger, fear, and a neutral category, which was assigned by annotators 

when they felt that no particular emotion was expressed. Second, we extracted the full set of 28 

categories that were used to annotate the GoEmotions corpus, consisting of 27 fine-grained 

 

1 https://github.com/monologg/GoEmotions-pytorch 
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emotions described by Cowen and Keltner [201], plus a neutral category. Finally, we calculated 

positive and negative emotion features by averaging the scores belonging to positive and 

negative emotions. The negative GoEmotions Ekman emotions are anger, disgust, fear, and 

sadness; joy is the only positive Ekman emotion. Negative fine-grained GoEmotions (Cowen) 

emotions encompass anger, annoyance, disappointment, disapproval, disgust, embarrassment, 

fear, grief, nervousness, remorse, and sadness. Admiration, amusement, approval, caring, 

desire, excitement, gratitude, joy, love, optimism, pride, and relief are the positive emotions in 

the fine-grained GoEmotions set. The interested reader is referred to Demszky et al. [51] for 

further details on these groupings. 

5.2.2 Comparison of variables 

A common approach to identifying associations of individual variables with an outcome 

of interest is to determine the statistical significance of the association between each candidate 

variable and the outcome by fitting univariate regressions. Linear regression models, however, 

require observations to be independent of each other. Because patients contribute between 1 and 

4 observations in our dataset, this independence assumption is not met: two observations from 

the same patient may be expected to be more like each other than two observations from 

different patients. Mixed-effect linear regressions can be used to account for this. In such 

models, the within-patient and between-patient effects of the predictor variables on the outcome 

are separately accounted for. In other words, in addition to the “fixed effect” of the predictor 

variables on the outcome (the effect of interest), we model a “random effect” that is different for 

each patient, which is arbitrary but consistent across all observations for a given patient. In 

essence, the outcome is the linear combination of an emotion’s global relationship to PHQ-

9/GAD-7 scores and the patient-specific relationship of the emotion on scores (plus an intercept 

term for each effect as well as a residual error term). The univariate mixed-effect linear 
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regression models for each emotion variable model the patient identity as a random effect and 

are of the following form: 

𝑌𝑖𝑗 =  𝛽0 + 𝛽1𝑋𝑖𝑗 + 𝛾0𝑖 + 𝛾1𝑖𝑋𝑖𝑗 + 𝜖𝑖𝑗 

Where Yij is the ith outcome (PHQ-9 score, GAD-7 score) for patient i, Xij is the level of 

emotion in the jth document written by patient i, β0 and β1 are the fixed effect parameters 

(emotion), and γ0i and γ1i are the random effect parameters (patient ID), and ϵij is the residual 

error for patient i’s jth document. Models were fitted via Maximum Likelihood Estimation using 

the Statsmodels package for Python [191]. Statsmodels calculates p-values using t-tests. We 

report the explanatory power of each feature as the amount of variance explained (R2). 

Following a similar process, we fitted bivariate mixed-effects models using the positive 

and negative emotion variables from each feature source. 

5.2.3 Prediction 

Next, using the Scikit-Learn package for Python [210], we trained random forest 

classifiers to predict binary depression (MDD) and anxiety (GAD) status from 49 features: 7 

Ekman emotion categories from GoEmotion, as well as the positive and negative emotion 

variables calculated from Ekman emotions; 27 fine-grained emotions plus neutral, as well as the 

positive, and negative emotion variables calculated from the 27 fine-grained emotions; 5 LIWC 

emotion variables (positive emotion, negative emotion, anxiety, anger, sadness); and 4 LIWC 

variables with an established relationship to depression (I, we, biology, health) 

[123,129,133,135,172]. We first trained random forest classifiers using each individual feature 

set. Then, we trained models using combinations of these feature sets to evaluate their relative 

contribution (LIWC non-emotion variables combined with each set of emotion variables from 

the three sources). Then, we trained another random forest classifier on all available features. 

For this model, relative feature importance was calculated using SHAP [211]. 
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To avoid information leakage due to within-patient effects [212], data were split into 

training and test sets such that all observations from an individual patient were kept within the 

same fold. Patients were assigned to the training (80%) and test (20%) populations, resulting in 

a training set of 4,913 patients (with 10,006 observations) and a test set of 1,638 patients (with 

3,321 observations). Average PHQ-9 across all observations did not significantly differ between 

training and test observations. 

Hyperparameters (number of estimators, maximum number of features, maximum tree 

depth, minimum number of samples for splitting, minimum number of samples per leaf, using 

or not using bootstrap) were automatically selected (based only on the training data) via 3-fold 

cross-validation, a process where, for each hyperparameter combination, each of the three folds 

is held out in turn, while a model is trained on the remaining 2 folds; this way, 3 scores are 

produced per hyperparameter combination, and their average represents the score for that 

hyperparameter set. Finally, the hyperparameters that produced the best score are selected, and 

a final model with those hyperparameters is trained on all training data, then tested on the held-

out test set. 

A binary prediction target was used to align predictions with the clinical task of 

classifying a diagnosis as present or absent. A cut-off between 8 and 11 was previously found to 

have a clinically acceptable tradeoff between sensitivity and specificity when dichotomizing 

PHQ-9 scores for diagnosis of major depressive disorder (MDD) [213]. Therefore, we considered 

a PHQ-9 score of 10 or more (depression severity of moderate, moderately severe, or severe) as 

indicating MDD for the purposes of this work. A PHQ-9 score of 9 or less (depression severity of 

mild or none) was considered non-depressed. As the GAD-7 has been found to have acceptable 

properties for identification of generalized anxiety disorder (GAD) at a cutoff of 7-10 [214,215], a 

GAD-7 score of 10 or more was considered an indicator of GAD, and a score of 9 or less was 

considered an indicator of a negative diagnosis for this condition. 
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5.3 Results 

5.3.1 Comparison of variables 

Figure 5.1 PHQ-9 and GAD-7 score variance explained by comparable features from LIWC, 
GoEmotions (Ekman set), and GoEmotions (fine-grained set) 

The variance in PHQ-9 and GAD-7 scores, respectively, explained by each individual 

emotion variable and by variable pairs is shown in Figure 5.1, Table 5.1, and Table 5.2. Emotion 

variables that were obtainable from all three feature sources were anger and sadness as well as 

the summary dimensions of positive and negative emotion. With BERT-based models, these are 

composites of individual predictions returned by the model, while LIWC returns a summary 

value as an individual feature. The variance in PHQ-9 scores explained by these directly 

comparable variables is shown in Figure 1, along with the variance explained by the combination 

of positive and negative emotion features. The three feature extraction approaches resulted in 

features that explained similar portions of the variance; LIWC explained slightly more, except 

for anger and sadness, where the GoEmotions Ekman and GoEmotions Cowan variables 

explained more, respectively. The GoEmotions Cowan variable for sadness was more 

explanatory than the GoEmotions Ekman variable, but the Ekman anger variable outperformed 

the fine-grained anger variable. 
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Table 5.1 PHQ-9 score univariate mixed-effects linear regression models coefficients and variance 
explained.  

* p<0.05. ** p<0.001 

GoEmotions 
sadness 18.84 (16.50 - 21.18)** 0.782 
admiration -16.62 (-18.80 - -14.44)** 0.781 
annoyance 12.61 (9.67 - 15.55)** 0.778 
disappointment 19.01 (16.87 - 21.14)** 0.778 
joy -16.40 (-19.33 - -13.48)** 0.778 
pride -64.35 (-78.54 - -50.16)** 0.777 
excitement -28.34 (-33.18 - -23.49)** 0.777 
disapproval 16.11 (12.99 - 19.23)** 0.776 
approval -7.81 (-9.27 - -6.36)** 0.776 
confusion 9.65 (7.30 - 11.99)** 0.775 
relief -24.19 (-30.79 - -17.59)** 0.774 
neutral -0.83 (-1.60 - -0.06)* 0.774 
anger 18.67 (14.38 - 22.97)** 0.774 
disgust 29.79 (21.72 - 37.86)** 0.774 
optimism -6.15 (-8.28 - -4.03)** 0.773 
realization -1.08 (-2.74 - 0.59) 0.773 
amusement -10.96 (-14.85 - -7.07)** 0.772 
fear 10.75 (7.44 - 14.06)** 0.771 
nervousness 3.44 (0.84 - 6.05)* 0.771 
caring -2.77 (-6.03 - 0.49) 0.771 
gratitude -2.87 (-9.79 - 4.05) 0.771 
embarrassment 11.85 (4.25 - 19.45)* 0.771 
curiosity 0.03 (-2.56 - 2.62) 0.771 
desire 2.08 (-1.10 - 5.26) 0.771 
love -1.96 (-5.22 - 1.31) 0.771 
surprise -4.00 (-10.18 - 2.18) 0.771 
grief 134.76 (104.49 - 165.03)** 0.770 

GoEmotions Ekman 
joy -9.31 (-10.21 - -8.41)** 0.788 
anger 18.53 (16.46 - 20.61)** 0.783 
sadness 15.81 (14.06 - 17.56)** 0.779 
disgust 48.43 (37.93 - 58.93)** 0.778 
neutral -0.11 (-1.17 - 0.96) 0.775 
surprise 4.11 (2.47 - 5.75)** 0.774 
fear 4.52 (2.25 - 6.80)** 0.772 

LIWC 
sad 1.21 (1.02 - 1.40)** 0.781 
i 0.25 (0.21 - 0.29)** 0.777 
anger 0.84 (0.65 - 1.02)** 0.776 
health 0.66 (0.52 - 0.80)** 0.775 
anx 0.19 (0.05 - 0.34)* 0.774 
we -0.53 (-0.65 - -0.41)** 0.774 
bio 0.41 (0.33 - 0.50)** 0.774 
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Table 5.2 GAD-7 score univariate mixed-effects linear regression models coefficients and variance 
explained.  

* p<0.05. ** p<0.001 

GoEmotions 
sadness 15.04 (12.96 - 17.12)** 0.728 
admiration -15.02 (-16.97 - -13.07)** 0.727 
neutral -1.00 (-1.72 - -0.29)* 0.725 
joy -16.99 (-19.53 - -14.44)** 0.724 
approval -6.80 (-8.14 - -5.47)** 0.724 
fear 18.62 (15.32 - 21.93)** 0.724 
annoyance 12.83 (10.20 - 15.46)** 0.724 
excitement -22.74 (-26.98 - -18.49)** 0.723 
pride -56.42 (-69.75 - -43.09)** 0.723 
disappointment 14.05 (12.12 - 15.97)** 0.723 
disapproval 12.97 (10.18 - 15.76)** 0.723 
nervousness 11.91 (9.36 - 14.46)** 0.723 
confusion 8.41 (6.33 - 10.48)** 0.721 
anger 19.29 (15.38 - 23.19)** 0.721 
relief -22.16 (-28.05 - -16.28)** 0.720 
optimism -6.86 (-8.84 - -4.89)** 0.719 
realization -1.48 (-2.99 - 0.02) 0.718 
amusement -10.34 (-13.73 - -6.96)** 0.717 
curiosity -0.00 (-2.44 - 2.43) 0.717 
caring -1.94 (-5.11 - 1.24) 0.716 
gratitude -3.54 (-7.67 - 0.59) 0.716 
desire 1.25 (-1.55 - 4.06) 0.716 
love -3.66 (-7.08 - -0.23)* 0.716 
surprise -6.42 (-11.87 - -0.97)* 0.716 
embarrassment 10.33 (3.08 - 17.58)* 0.716 
grief 118.01 (90.79 - 145.22)** 0.716 
disgust 25.72 (18.68 - 32.76)** 0.715 

GoEmotions Ekman 
joy -8.62 (-9.42 - -7.82)** 0.736 
anger 15.92 (14.08 - 17.76)** 0.727 
disgust 44.78 (35.38 - 54.18)** 0.726 
sadness 12.38 (10.83 - 13.93)** 0.725 
neutral -0.21 (-1.18 - 0.76) 0.722 
fear 12.15 (9.97 - 14.33)** 0.722 
surprise 3.27 (1.79 - 4.75)** 0.720 

LIWC 
anx 0.73 (0.59 - 0.86)** 0.729 
i 0.17 (0.13 - 0.21)** 0.726 
sad 0.89 (0.72 - 1.05)** 0.726 
anger 0.93 (0.76 - 1.10)** 0.724 
we -0.36 (-0.47 - -0.25)** 0.723 
health 0.46 (0.33 - 0.59)** 0.717 
bio 0.28 (0.21 - 0.36)** 0.716 
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The combination of positive and negative emotion explained more variance than either 

positive or negative emotion alone, except when LIWC positive emotion was assessed for GAD-

7. Notably, LIWC’s positive emotion variable appears to be more explanatory than anger, 

sadness, and negative emotion for both PHQ-9 and GAD-7, and even the combination of 

positive and negative emotion for GAD-7. 

All individual emotions, as quantified by each of the three feature extraction approaches, 

are shown in Table 5.1. Expressions of realization, caring, gratitude, curiosity and desire were 

not significantly associated with either anxiety or depression. Love and surprise were not 

predictive of depression, but were associated with anxiety. Both were significantly associated 

with sadness, fear, and nervousness; however, sadness was more strongly related to depression, 

and fear and nervousness were more strongly related to anxiety. Joy was roughly equally 

associated with anxiety and depression, across both GoEmotions feature sets. The emotions with 

the largest differences between more and less depressed individuals were grief, pride, 

excitement, relief, and disgust. The emotions with the largest differences with respect to anxiety 

were grief, disapproval, approval, relief, and disgust. 

5.3.2 Prediction 

In contrast to the multivariate models, results from predictive modeling experiments 

show a clear advantage for deep learning models, with the best overall performance by ROC and 

F1 score achieved using GoEmotions Cowen features for both MDD and GAD. As shown in Table 

5.3, the models including only the non-emotion LIWC features achieved an area under the 

receiver-operator characteristic curve (AUROC) of 0.577 for MDD and 0.549 for GAD. When 

using emotion features only, the fine-grained GoEmotions set performed best. For both MDD 

and GAD, adding LIWC emotion features to LIWC non-emotion features improved predictive 

performance less than adding GoEmotions Ekman features, which improved the model less than 

adding the fine-grained GoEmotions set. Using all emotion features concurrently (“all three”) 
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slightly improved performance for both GAD and MDD (by F1 score but not ROC in the latter 

case). 

The relative importance of all features for the MDD and GAD models is shown in Table 

5.4. Fear was ranked higher for predicting GAD than for predicting MDD. Sadness was ranked 

higher for predicting MDD than for predicting GAD. 

5.4 Discussion 

In this work, we showed that neural network models such as the BERT-based 

GoEmotions classifier can outperform LIWC, a straightforward, broadly adopted word-counting 

method for extracting emotion features from natural language. We further confirmed that some 

emotions not traditionally associated with depression and anxiety can be predictive of these 

diagnoses; specifically, pride. Finally, we showed that using LIWC features together with 

emotion features derived using GoEmotions predict depression/anxiety status with reasonable 

accuracy. This finding is important, in that further development of such tools could lead to 

better detection of emotional change during treatment in a way that could be derived naturally 

in the client/clinician encounter. NLP applied to such naturalistic data has been used for 

measuring clinician skills in delivering psychotherapy with some success [216]; here, rather than 

using such tools for quality measurement, linguistic analysis of affect could be used to detect 

depression/anxiety severity and client response to treatment. 

Both LIWC variables and GoEmotions variables explained a large portion of the variance 

in univariate mixed-effect regressions: R2 values ranged from 0.770 to 0.788 when modeling 

PHQ-9 scores as outcome, and from 0.715 to 0.736 when modeling GAD-7 scores as outcome. 

Therefore, LIWC and GoEmotions features both capture valuable information. GoEmotions 

features marginally outperformed 2 out of 4 of the equivalent LIWC features for predicting 

GAD-7 and 3 out of 4 features for predicting PHQ-9. For predicting binary depression (MDD) 
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and anxiety (GAD) status, the emotion set resulting in the best predictive performance when 

combined with LIWC’s non-emotion features was the full GoEmotions set. 

Table 5.3 AUROCs, F1 score (positive class), precision, and recall of random forest model trained 
with just the non-emotion LIWC features, and trained with the non-emotion LIWC features plus 

LIWC emotion, GoEmotion Ekman and the full GoEmotion feature sets, for predicting MDD (PHQ-9 
score ≥ 10) and GAD (GAD7 score ≥ 10). 

 AUROC F1 Precision Recall 

MDD 

LIWC non-emo 0.577 0.413 0.525 0.341 

LIWC emo  0.621 0.471 0.561 0.405 

GoEmo Ekman 0.643 0.493 0.583 0.427 

GoEmo  0.662 0.522 0.613 0.455 

LIWC non-emo +     

LIWC emo 0.640 0.484 0.569 0.420 
GoEmo Ekman 0.655 0.498 0.585 0.434 

GoEmo 0.671 0.514 0.615 0.441 

All three 0.671 0.520 0.612 0.453 

GAD 

LIWC non-emo 0.549 0.290 0.478 0.209 

LIWC emo 0.613 0.405 0.541 0.324 

GoEmo Ekman 0.643 0.443 0.550 0.371 

GoEmo 0.652 0.444 0.565 0.366 

LIWC non-emo +     
LIWC emo 0.617 0.401 0.529 0.324 
GoEmo Ekman 0.637 0.441 0.548 0.369 

GoEmo  0.654 0.451 0.568 0.374 

All three  0.657 0.456 0.567 0.382 

 

However, despite the availability of pre-trained models, neural networks can have high 

computational demands. Consequently, using BERT-based models may not be justified if the 

cost of model inference outweighs the potential benefits. Therefore, the decision to include these 

features should be evaluated for each individual predictive analytics project and dataset, 

weighing the added predictive performance observed at development time with the costs to 

include the features in production (e.g. a deployed clinical decision support tool continuously 

evaluating patient-generated messages in real-time), given the available compute resources. 

Similarly, on-device processing to preserve data privacy can be accomplished with LIWC [217], 
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but doing this with a BERT-based model would challenge some contemporary and most legacy 

smartphone devices. 

Depression affects individuals in many ways and expresses itself in various behavioral 

and thought patterns that may not be fully captured with the high-level categories of positive 

and negative affect. GoEmotions’ main strength therefore lies in its ability to extract fine-

grained features spanning the breadth of human emotion, capturing depressed individuals’ 

emotional experiences comprehensively. The different emotion feature sets appeared to be 

somewhat complementary, as evidenced by the additive performance metrics shown in Table 

5.3; however, when predicting depression, the combination of non-emotion LIWC features and 

fine-grained GoEmotions features was as predictive as all features combined, suggesting that all 

signal is contained within this feature subset. In this work, this breadth enabled us to delineate 

differences in how different types of emotions are associated with depression and anxiety. 

Depression severity was associated with large differences in grief, pride, excitement, 

relief, and disgust. In agreement with generally lower reactivity [203], less excitement was 

predictive of depression. Grief manifestations are similar to depression symptoms; though grief 

in itself is not pathological, it often co-occurs with depression [218]. Additionally, depressed 

individuals expressing less pride than their non-depressed counterparts might be expected on 

account of lower self-image, and matches findings presented by Gruber et al. [54]. Caused by a 

perception of violations of moral and social norms, internally directed disgust, also termed self-

disgust or self-loathing, has been reported to be associated with both depression and anxiety 

symptoms [219]. We further found that increased disapproval - and conversely, decreased 

approval - were associated with anxiety symptoms. This may be explained by disturbances in 

interpersonal sensitivity and an inclination to be self-critical, which have been described as 

characteristic of anxiety [219]. 
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Table 5.4 Random forest classifier features in order of importance (most important first) for 
predicting MDD and GAD, as calculated by SHAP [211].  

GE = GoEmotions. GEE = GoEmotions Ekman 

 MDD GAD 

1 LIWC we GE negemo 

2 GEE posemo GEE negemo 

3 GEE joy GEE joy 

4 GEE sadness GEE posemo 

5 GE negemo GE posemo 

6 LIWC bio LIWC bio 

7 GE disappointment GE fear 

8 GEE negemo GE sadness 

9 LIWC sad LIWC health 

10 LIWC i LIWC we 

11 LIWC health LIWC posemo 

12 GE posemo GE realization 

13 GE excitement GEE sadness 

14 GE admiration GE nervousness 

15 GE sadness GEE fear 

16 GEE anger LIWC negemo 

17  GE confusion GE pride 

18 GE pride LIWC anx 

19 GE disapproval GE joy 

20 GE joy LIWC i 

21 GEE disgust GE disappointment 

22 GE realization GE admiration 

23 LIWC posemo GEE anger 

24 GE relief GE excitement 

25 GE approval GE disgust 

26 GE disgust GE confusion 

27 LIWC negemo GEE disgust 

28 GE grief GE grief 

29 GEE fear GE neutral 

30 GEE neutral GE relief 

31 GE fear GEE neutral 

32 GE desire GEE surprise 

33 GE remorse LIWC sad 

34 GE curiosity GE desire 

35 GE nervousness GE neutremo 

36 GE embarrassment GE curiosity 

37 LIWC anx GE gratitude 

38  GE optimism GE disapproval 

39 GE amusement GE love 

40 GE neutremo GE embarrassment 

41 GE neutral GE anger 
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42 GE gratitude GE approval 

43 GE love GE annoyance 

44 GE annoyance GE amusement 

45 GE surprise GE remorse 

46 GEE surprise GE caring 

47 LIWC anger GE surprise 

48 GE caring GE optimism 

49 GE anger LIWC anger 

 

Non-emotion LIWC features have established utility for predicting depression and 

anxiety. These features capture aspects of symptomatology outside emotion, such as increased 

self-focus, social isolation, and usage of health-related words. Nonemotion LIWC features would 

therefore be expected to be complementary to emotion features, and our work confirms that and 

leveraging both may achieve the best results. We trained a machine learning model using these 

features in conjunction with emotion features to predict depression (AUROC 0.671) and anxiety 

(AUROC 0.657). That these models show similar performance using the same features to predict 

different outcomes may be explained by the large overlap in symptoms between anxiety and 

depression, e.g. both are characterized by negative self-talk and hopelessness. Additionally, 

depression and anxiety are often comorbid; indeed, in this dataset, 74.5% of assessments with a 

GAD-7 score above the diagnosis threshold also had a positive depression finding, and 70.6% of 

positive anxiety questionnaires also had a positive anxiety finding. 

There are important ethical considerations when analyzing patient-generated natural 

language to infer mental state. Any passive monitoring of patient-generated data may be 

considered invasive. Due to the sensitive nature of personal health data, such data are subject to 

protections that do not apply to non-health data. When health-related insights are derived from 

data that may be neither private nor health-related (e.g. social media posts), obtaining informed 

consent and handling inferences with appropriate care is paramount. While academic studies 

such as the current work are governed by rigorous institutional ethics guidelines regarding 

consent and data sharing, different rules apply to healthcare organizations and commercial 
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entities. The use of technologies such as the ones presented here may be acceptable if conducted 

by trusted entities, such as healthcare providers, in order to support care [94]; on the other 

hand, consumers may be wary of commercial entities conducting such analyses. Further 

research, as well as applications of the findings presented here, must take such considerations 

into account. 

This work has several limitations. The data used here stem from predominantly female, 

young, and well-educated participants, and results may therefore not generalize to populations 

with a different makeup. If predictive algorithms were to be deployed in practice, fairness may 

be a concern if predictive performance differs for underrepresented groups. In addition, the 

GoEmotions dataset used to train the BERT-based models is drawn from Reddit, which has 

been shown to have a disproportionately high representation of young male users [220]. Though 

it is encouraging that models trained on these data produce features that correlate well with 

symptom severity in the current study, the development of annotated datasets drawn from a 

more diverse population may lead to models that better address linguistic and cultural 

differences in the ways in which emotions are expressed. 

Several features used in the random forest classification model are expected to be highly 

redundant (e.g. GoEmotions Cowen sadness, GoEmotions Ekman sadness, and LIWC sadness; 

calculated negative emotion variables that are calculated using sadness). However, 

interdependent features should not affect the random forest’s ability to leverage all features 

optimally to optimize predictive performance. 

This work enables and informs future work. We showed that BERT-based emotion 

features are associated with depression and anxiety status; however, this work did not assess 

longitudinally if changes in emotion track with changes in depression and anxiety. While 

existing work demonstrated this relationship for depression-related LIWC features [135], future 

work may aim to ascertain whether changes in emotion features over time also predict 

longitudinal patient trajectories. This work also informs feature selection for future work in 
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depression and anxiety prediction. Emotion variables can be obtained with a range of extraction 

approaches. Our results indicate the GoEmotions variables may be a better choice than LIWC 

for emotions. Nevertheless, LIWC features have a place in future work. LIWC’s syntactic and 

topic features were shown in prior work to be associated with depression scores as well as 

longitudinal patient trajectories and continued to demonstrate utility in this work. 

We determined that fine-grained emotions measured in the language of individuals are 

associated with and predict anxiety and depression status. The associations we found reflect 

previous findings. This work thus contributes evidence of the reliability of such measurement 

approaches, supporting the use of these methods in future work investigating the nature of 

depression and anxiety. For example, these features could aid investigations into depression 

phenotypes through cluster analysis, as well as psychology research investigating the differential 

expression of similarly-valenced emotions in depression and anxiety, e.g. by aiding data 

collection. 

Additionally, this work has important clinical implications. Measurement-based care is 

facilitated by periodic progress assessments, but additional data collection incurs additional 

workload. In text-based therapy, depression and anxiety status may instead be automatically 

determined from already-available patient messages. In clinical settings, interpretability is 

essential; thus, models based on interpretable features such as emotions may be preferred over 

black-box models classifying raw text directly. Future work may therefore investigate 

opportunities to leverage emotion-based predictive models for clinical decision support. 

5.5 Conclusion 

Extraction methods differ in the quality of emotion features extracted. With the data and 

approaches presented here, emotion features extracted by the GoEmotions BERT-based model 

not only explained more variance in univariate mixed-effect regressions, but also contributed 

significantly to predictions of depression and anxiety status by a random forest classifier. 
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Further, while non-emotion variables obtained from LIWC remain valuable in linguistic 

modeling tasks, GoEmotions’ level of granularity offers clinically relevant nuance that prevailing 

tools cannot capture. 
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Chapter 6. From benchmark to bedside: Transfer learning 

from social media for suicide risk prediction with patient-

generated text 

Aim 1 (Chapter 3) revealed two opportunities for AI in the context of Caring Contacts. 

The first opportunity concerns cognitive support for message authoring, such as extracting 

clinically actionable insights from messages. I developed and published an approach to 

extracting clinical constructs of depression, which are actionable because they are also 

therapeutic targets (Chapter 4). I also investigated extracting emotions from patient-generated 

text, which might inform how clinicians respond to patients (Chapter 5). But Aim 1 also 

confirmed that suicide risk scoring is promising, as long as it can be used to augment human 

cognition rather than automate it. In the work described in this chapter, I therefore developed a 

prioritization model for suicide risk assessment. Rather than automating the clinical decision of 

whether a given patient needs follow-up, this model is intended to triage incoming messages so 

urgent ones can be prioritized. I envision a workflow where clinicians still review and respond to 

all messages, with the ultimate decision of whether to follow-up and how remaining with the 

human expert; however, the model is leveraged to pre-sort the message queue, so that messages 

that are more likely to require urgent intervention are reviewed first. I took a utility-oriented 

approach to establish whether the model could be expected to have practical impact: I developed 

a utility metric incorporating workflow factors and used it to evaluate my model in terms that 

are meaningful to stakeholders and can inform decision making regarding model 

implementation. 

 

Abstract. Suicide is a leading cause of death in the US. Automatic risk detection 

approaches can facilitate timely intervention. Natural language processing has demonstrated 
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utility for predicting suicide risk from patient language, with research efforts in this area 

stimulated by publicly-available performance benchmark sets using expert-annotated social 

media posts. However, research utilizing data from clinical settings is relatively scarce. Though 

annotated social media data are relatively abundant, it is not apparent whether these datasets 

offer utility for clinical settings, given differences in the nature of the communication concerned. 

Neural transfer learning, through which information learned from training for one task is 

brought to bear when training for another, is a promising methodology to extend the utility of 

previously annotated data. However, it remains unclear whether this approach can bridge the 

gap between social media and clinically derived patient-generated text for automated suicide 

risk assessment. Additionally, the metrics typically used to evaluate prior approaches do not 

easily translate to the operational value that may be expected from a model in a real-world 

deployment. In a clinical dataset, we demonstrate a BERT-based suicide risk prediction 

approach that uses transfer learning with social media posts to alleviate the limitations of the 

clinical dataset’s small size and demonstrate its anticipated utility using a novel metric. Results 

show that the approach outperforms baseline approaches and approximates human 

performance for this task.  

6.1 Introduction 

Mental health is a critical health issue in our era, and suicide is now a leading cause of 

death in the United States [30–32]. Caring Contacts is a promising intervention that reduces 

suicidal thoughts and behaviors, suicide attempts, and suicide completion [44]. However, 

resource shortages have precluded the broad adoption of this potentially labor-intensive 

intervention. In intervention designs with two-way communication, patients may reply to 

messages if they wish, and will receive further tailored support from Caring Contacts staff in 

response, increasing the level of support but adding workload for care teams.  
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In Chapter 3, we conducted extensive interviews with clinical and administrative 

stakeholders experienced with Caring Contacts interventions, revealing opportunities for 

machine learning methods to alleviate this workload burden and therefore make it possible to 

provide scalable suicide crisis support; for example, natural language messages sent by patients 

to intervention staff may be automatically triaged for urgent follow-up [221]. However, the 

development of predictive models is hampered by the size and availability of clinical suicide risk 

datasets. Training state-of-the-art neural network-based natural language processing (NLP) 

models from scratch requires considerable amounts of data [222], and while this has been 

ameliorated to some degree in recent years by neural transfer learning approaches leveraging 

unlabeled datasets [223], models perform best with large amounts of training data, i.e. 

thousands of labeled examples or more. Obtaining this amount of labeled data is typically not 

feasible in clinical settings, where data privacy and security are carefully controlled [157,158], 

making it difficult to share labeled datasets for reuse or to collaborate on benchmark dataset 

development. Resource limitations in healthcare settings may also impede annotation efforts 

locally. Additionally, while existing real-world healthcare data, such as from electronic health 

records (EHRs), can be harvested for secondary use, patient-generated natural language data is 

not commonly collected as part of routine healthcare operations, so those data must be 

purposely collected, further limiting the size of related datasets. 

In contrast, vast amounts of publicly available social media data are continuously 

generated; they are also more easily annotated because the comparatively lower level of privacy 

concern allows outsourcing, e.g. via crowdsourcing platforms, or by teams of collaborating 

expert annotators. Outside of structured interventions, suicidal individuals do reach out to peers 

in informal settings such as on social media platforms, and a substantial amount of work has 

now been published on predicting suicide risk from the natural language occurring in social 

media posts. For example, Coppersmith et al. predicted expert suicide risk from a range of social 

media data [93], and Shing et al. [126] created a publicly available annotated dataset of Reddit 
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posts and demonstrated the ability to assess suicide risk in this benchmark dataset. As part of 

the 2019 CLPsych Shared Task challenge, several machine learning approaches were 

benchmarked against this dataset, and deep learning techniques demonstrated the most 

promising performance [125]. The clinical and social media settings differ in many respects, but 

there is also substantial overlap; for example, message length and formality may differ, but both 

are natural language written by patients, conveying patients’ perspectives in their own words. If 

datasets, trained models and findings from work conducted with social media could be 

effectively transferred to clinical risk prediction algorithms, this would contribute substantially 

to alleviating the data challenges for clinical risk prediction models.  

Prior work in the realm of transfer learning suggests that information is transferable 

between domains and tasks, i.e. it is possible to use data from a different domain or task to 

augment learning for a task with data scarcity by leveraging available datasets that are related 

but distinct, e.g. with a different input feature space or data distribution [224]. Selecting a 

domain-specific pre-trained language model is a well-established approach to leveraging 

multiple data sources: By choosing a pre-trained model that has been exposed to mental health-

related language and screening tasks as a starting point, it is possible to boost performance in 

related tasks. After pre-training on general-purpose text, such models are further pre-trained on 

domain-specific corpora. Like the original training of these models, this training is unsupervised 

(or “semi-supervised”, with the language itself providing implicit labels): models are trained to 

predict held-out (“masked”) words, amongst other objectives that do not require the assignment 

of labels by annotators. For example, BioBERT, a base BERT model further pre-trained on 

biomedical research literature, improves performance on biomedical tasks compared to base 

BERT [109]. However, domain-adapted pre-trained models must be further optimized for 

individual prediction tasks via fine-tuning of model parameters for a particular ML task using 

labeled data. Multi-stage pre-training and fine-tuning protocols have been proposed, notably by 

Howard and Ruder [225]. Here, we apply such an approach to harness the power of large, 
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publicly available social media datasets to mitigate the problem of small dataset size in clinical 

suicide risk prediction. We hypothesized that neural transfer learning from social media 

datasets would provide an effective mechanism through which to leverage publicly available 

social media data, annotated for a benchmark task, for suicide risk prediction in a clinically 

derived data set. 

While artificial intelligence (AI) has the potential to fundamentally transform the way 

healthcare is delivered, many promising use cases for AI have failed to impact patient care 

meaningfully. A lack of demonstrated operational utility of existing models has been identified 

as one of the most significant barriers to achieving the adoption of AI into clinical practice [14]. 

Developing ways to accurately capture a model’s potential clinical utility is therefore essential. 

Clinical trials are critical to establishing the safety and efficacy of drugs, interventions, medical 

devices, and more, and represent the gold standard of evidence in biomedicine, including for 

biomedical AI [226]. Yet, they are underutilized for this purpose, partly because the desire to 

accelerate adoption is difficult to align with the substantial time and resource requirements of 

clinical trials [227]. Accordingly, model utility should be established before proceeding with 

clinical trials. In contrast, standardized machine learning performance metrics, such as the area 

under the receiver operator characteristic curve (AUROC), are easy to assess, widely used, and 

generally recommended in machine learning research. While such metrics are indispensable to 

making model performance comparable across settings, the ultimate value of a predictive model 

intended for clinical use is determined by its real-world impact on healthcare delivery, which 

depends on many factors; predictive accuracy is only one of these factors. Evaluation 

approaches that accurately estimate anticipated model benefits must therefore consider these 

factors by incorporating those parameters of the deployment environment that can be assessed 

at development time. For example, Jung et al. assessed the clinical utility of a model 

recommending advanced care planning, and found that the model’s utility was constrained by 

the health system’s capacity to provide this service [15]. Their evaluation helped them devise a 
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strategy for harmonizing the model with practical constraints to realize optimal utility. Bayati et 

al. performed a cost-effectiveness analysis of the impact of intervening on the basis of model 

predictions, incorporating both the cost of a post-discharge intervention and its potential to 

reduce near-term readmission [22]. The authors estimated that using the system would reduce 

readmissions by 18.2%, and costs by 3.8%. Here, we develop a utility metric, average time to 

response in urgent messages (ATRIUM), for a suicide risk prediction model within the Caring 

Contacts workflow, and use it to evaluate our models. 

6.2 Methods 

6.2.1 Data 

To explore the effect of transfer learning with social media data for the purpose of 

suicide risk prediction in a clinical dataset, we used the University of Maryland Reddit 

Suicidality Dataset (Version 2), a dataset of Reddit posts from suicidal individuals curated by 

Shing and colleagues [125,126], henceforth the social media (SM) dataset. Specifically, we used 

the portion of the dataset annotated for the task of flagging high-risk individuals amongst 

Redditors with posts in the /r/SuicideWatch subreddit. Using their posts, user risk levels were 

rated by crowd workers as well as by 4 experts: a suicide prevention coordinator at the Veteran’s 

Administration, a committee co-chair at National Suicide Prevention Lifelines Standards, a 

doctoral student with training in suicide assessment and treatment, and an ED psychiatrist. 

Posts were rated on the following scale: a – no risk, b – low risk, c – moderate risk, d – severe 

risk. Note that the user-level rating results in all posts belonging to the same user receiving the 

same class label. The “flagging” task consists of distinguishing unconcerning utterances (a) from 

those indicating an elevated risk that may warrant intervention (b, c, d). The dataset contains 

1105 posts with 222 words each on average, with 82.3% of posts expressing some level of risk. 

While Reddit does not collect the demographic information of its users, a 2016 report estimated 
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that 69% of users were male and 58% were 18-29 years old; 63% were white, 10% were black, 

and 14% were Hispanic [228]; however, these numbers are likely to differ between subreddits. 

Our clinical dataset consists of text messages collected as part of the Caring Contacts Via 

Text (CCVT) clinical trial, which investigated the effectiveness of Caring Contacts to reduce 

suicidal thoughts and behaviors [40]. In this trial, Comtois and colleagues randomized 658 

military service members across three military installations to either standard care, or a text 

message-based Caring Contacts intervention combined with standard care. All participants 

reported suicidal ideation at baseline, and 44.3% had previously attempted suicide. Participants 

in the Caring Contacts condition received 11 text messages over the course of the 12-month 

intervention period.  

In CCVT, patients either do not respond, or respond to scheduled messages with one of 

the three levels described above. Study staff responded based on their clinical judgment of 

whether the patient needed urgent support and availability. A patient may respond to an 

automatically scheduled message, e.g. “Hi there, hope your week has been good!”, with a 

message indicating distress, for example, “Thanks, but this week has been horrible.” While the 

study protocol did not prescribe any particular response time frame, study staff treated such 

messages more urgently than others. If the message indicated an acute crisis, staff immediately 

followed up with a text message and a phone call, rather than a text message alone. In contrast, 

a patient may respond positively or neutrally, e.g. “Thank you!”. Most messages of this kind 

were still responded to, but not with urgency, i.e. with some delay. Staff were notified of every 

incoming message, and judged urgency as messages were received. After the study concluded, 

study staff annotated messages for the level of distress expressed by the message author (i.e. 

message urgency) on the following scale: 0 – none; 1 – difficulty; 2 – non-urgent distress; 3 – 

urgent distress/crisis. The dataset consists of 1229 messages from 221 unique users, who were 

82% male and 25.2 years old on average (standard deviation 6.3). 66.0% were white, 10.0% were 

African American, 9.1% were Hispanic or Latino, 3.0% were Asian/Pacific Islander, 1.2% were 
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American Indian/Alaska Native, and 9.1% were Mixed or other. See Comtois et al. [40] for 

further details on the participant population and study protocol. 18.8% of messages expressed at 

least some difficulty. Each message contains 9.3 words on average. The two datasets were 

aligned for the single binary classification task of flagging messages for follow-up, i.e. 

distinguishing messages labeled “a” from those labeled “b”, “c”, or “d”, and messages labeled “0” 

from those labeled “1”, “2”, or “3”, respectively. Grouping the classes this way was necessary 

because of the relative rarity of messages labeled “2” (3.3%) and “3” (1.1%) in the CCVT dataset. 

This aligns with the intended purpose of the SM “flagging” data subset. Clinician experts 

confirmed that performing this simplified version of the task is still clinically useful. 

Table 6.1. Data characteristics. *Pew Research Center estimates  

 SM CCVT 

Context 
Setting Social media platform Reddit Clinical trial among military 

service members 
Population Reddit users proactively 

seeking advice online 
Individuals identified by 
clinical experts to be at suicide 
risk  

Message 
audience/confidentiality 

Anonymous post to the general 
public 

Initiated in a confidential one-
on-one setting with a suicide 
prevention professional; text 
messages from/to personal 
mobile phones 

Purpose of messages Social media posts e.g. to seek 
advice or empathy 

Caring Contacts 

Participant characteristics 
Number of participants 621 221 
Sex male 69%* 82% 
Age 58% 18-29 * 

33% 30-49 * 
7% 50-64 * 
1% 65+ * 

Mean 25.6 (SD 6.3) 

Race/Ethnicity   
White 63%* 66.0% 
Black 10%* 10.0% 
Hispanic 14%* 9.1% 
Message characteristics 
Message count 1105 1229 
Indicating risk/urgency 82.3% 18.2% 
Words in message, mean 
(SD) 

222.0 (250.9) 9.3 (10.2) 
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Distribution and data characteristics differ between these data sets (Table 6.1). Texts 

were produced by different people (clinically identified individuals at suicide risk in a 

population of military service members vs. Reddit users proactively seeking advice online), in a 

different setting (confidential one-on-one setting with a suicide prevention professional within a 

clinical trial vs. an anonymized suicide watch forum available to all members of the general 

public), for a different purpose (Caring Contacts vs. a range of social media motivations such as 

seeking advice or empathy). The documents are significantly longer (mean length of 222 vs. 9 

words) and the class distribution differs significantly (82.3% vs. 18.8% positive, i.e. 5:1 vs 1:5) 

for SM versus CCVT respectively. These differences pose challenges for transfer learning. 

Serendipitously, the two datasets also have important similarities that transfer learning may be 

able to capitalize on: both contain text written by an individual pre-disposed to suicidal thoughts 

and behaviors, population demographics are similar, and even though label definitions have 

different nuances, the labels can be grouped in the same way (i.e. no risk vs. any level of risk).  

6.2.2 BERT model 

Bidirectional Encoder Representations from Transformers (BERT) is a deep learning 

architecture for NLP reported by Devlin and colleagues at Google in 2019 [100]. Using natural 

language documents as inputs, the BERT model develops representations for words based on 

the contexts in which they appear; notably, in contrast to prior models, both the preceding and 

subsequent text is used (bidirectionality). BERT was initially trained on large amounts of 

natural language in an unsupervised (or “semi-supervised”) manner, learning to predict held out 

(“masked”) words and the sequence in which sentences occur. This pre-training informs the 

contextual representations it derives from previously unseen text, providing both initial 

representations of words (or their components) and initial weights through which to estimate 

their influence in context. These contextual representations can then be used toward a wide 
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range of prediction tasks, including text classification, part-of-speech tagging, and question 

answering.  

When using BERT for new tasks, it can help to use a model pre-trained on a corpus with 

domain relevance. Several domain-specific pre-trained BERT models are available for use; for 

example, BioBERT, trained on biomedical research literature, improves upon base BERT in 

biomedical tasks [109]. Here, we used Public Health Surveillance (PHS)-BERT [229] as a base 

model because it has a demonstrated performance advantage on suicide-related prediction tasks 

compared to other biomedically relevant pre-trained models such as BioBERT and the mental 

health-specific MentalBERT [111]. Additionally, in preliminary exploratory work, PHS-BERT 

outperformed other pre-trained BERT models in our setting. 

6.2.3 Utility metric: Average Time to Response In Urgent Messages (ATRIUM) 

We aimed to develop a way to measure clinical utility in terms of average time to 

response in urgent messages (ATRIUM). The metric assumes that the clinical setting is such that 

we have work capacity to respond to a set number of messages quickly, i.e. prioritize them, and 

respond to the others at a later time, i.e. deprioritize them. The algorithmic problem is to assign 

messages to the prioritize bucket and the deprioritize bucket, such that as many urgent 

messages as possible get prioritized, and as few urgent messages as possible get deprioritized. 

Thus, a machine learning model aiming to assist in the message triage process should assign 

each message a score such that urgent messages get a higher score than non-urgent messages; 

we then take the top ranked messages and prioritize them. Assuming a set work capacity for 

prioritization, i.e. a capacity of 𝑘, the model’s accuracy might be measured in terms of precision 

at 𝑘. However, we are also interested in minimizing the number of urgent messages that would 

incorrectly be deprioritized, i.e. the number of urgent messages that did not make it into the top 

𝑘 predictions. We therefore define two parameters: 𝑎, the number of urgent messages within the 

top 𝑘; and 𝑈, the total number of urgent messages. Note that 𝑎/𝑘 is equivalent to the precision 
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at 𝑘, and the number of missed urgent messages is 𝑈 − 𝑎. 𝑈 depends on the data and is therefore 

treated as a constant here; 𝑎 is specific to the model. 𝑘, in practice, is a tradeoff between costs 

and benefits, i.e. the implementing healthcare organization’s staff availability compared to the 

amount of time that can be saved, and will depend on the organization. 

Let 𝑇𝑢𝑟𝑔𝑒𝑛𝑡 and 𝑇𝑛𝑜𝑛−𝑢𝑟𝑔𝑒𝑛𝑡 be the response times that can be expected for prioritized and 

de-prioritized messages, respectively. We define ATRIUM to be the average response time 

across urgent messages, given that 𝑎 of them will correctly be treated with urgency, i.e. 

responded to with a delay of 𝑇𝑢𝑟𝑔𝑒𝑛𝑡, and the remaining U-a messages will incorrectly be treated 

without urgency, i.e. responded to with a delay of 𝑇𝑛𝑜𝑛−𝑢𝑟𝑔𝑒𝑛𝑡. In other words, ATRIUM is a 

weighted average of quick and slow response times, as follows: 

𝐴𝑇𝑅𝐼𝑈𝑀(𝑎, 𝑈) =
𝑎𝑇𝑢𝑟𝑔𝑒𝑛𝑡 + (𝑈 − 𝑎)𝑇𝑛𝑜𝑛−𝑢𝑟𝑔𝑒𝑛𝑡

𝑈
= (

𝑎

𝑈
) 𝑇𝑢𝑟𝑔𝑒𝑛𝑡 + (1 −

𝑎

𝑈
) 𝑇𝑛𝑜𝑛−𝑢𝑟𝑔𝑒𝑛𝑡 

We drew upon the observed response times in the CCVT clinical study dataset for 

messages annotated as urgent and non-urgent to define the random variables 𝑇𝑢𝑟𝑔𝑒𝑛𝑡 and 

𝑇𝑛𝑜𝑛−𝑢𝑟𝑔𝑒𝑛𝑡. In other words, we assume that in our dataset, all urgent messages were treated 

with priority, and all non-urgent messages were deprioritized; in other words, 𝑘 =  𝑎 =  𝑈. We 

use the observed response times for messages annotated as urgent as the basis for 𝑇𝑢𝑟𝑔𝑒𝑛𝑡, and 

the observed response times for messages annotated as non-urgent as the basis for 𝑇𝑛𝑜𝑛−𝑢𝑟𝑔𝑒𝑛𝑡. 

These response times therefore capture the human baseline for response times, i.e. what might 

be expected in a setting where all urgent messages are responded to quickly, and all non-urgent 

messages are responded to slowly.  

We use the set of observed response times to empirically define the probability 

distributions for 𝑇𝑢𝑟𝑔𝑒𝑛𝑡 and 𝑇𝑛𝑜𝑛−𝑢𝑟𝑔𝑒𝑛𝑡, respectively. We use all messages where paired 

timestamps were available, i.e. where a patient replied and staff responded to the reply with 

another text message. Some responses were sent after more than 600 minutes; we determined 

via manual review that reasons included technical errors (message did not go through) and 
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responsible staff being out of the office for the day (response sent between 8am and 9am the 

following day). For this analysis, we consider these to be non-representative of the response 

time distribution and therefore exclude them. 421 patient messages with timestamped responses 

remained, with 79 (18.8%) expressing some level of difficulty, and 321 (81.2%) being positive or 

neutral. Response times were approximately normally distributed for each class, with a slight 

skew towards earlier times for urgent messages. The average response times were 𝑇𝑢𝑟𝑔𝑒𝑛𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

106.2 𝑚𝑖𝑛 and 𝑇𝑛𝑜𝑛−𝑢𝑟𝑔𝑒𝑛𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 130.6 𝑚𝑖𝑛, respectively.  

6.2.3.1 Random baseline 

If there were no triage, and response times were instead assigned randomly, the number 

of correctly predicted urgent messages among the top 𝑘 predictions, 𝑎, would follow a 

hypergeometric probability distribution, which describes the probability of 𝑎 successes in 𝑘 

draws, without replacement, from a finite population of size 𝑁 that contains exactly 𝑈 objects of 

interest, and has the following expected value: 

𝑎 =  𝑘 (
𝑈

𝑁
) 

At each k, we therefore consider this to be the value of 𝑎 that would be seen in a random 

ranking of messages (i.e. no triage), to be improved upon by any alternative approach.  

6.2.3.2 Human baseline 

As mentioned above, the theoretical maximum capacity for the number of messages that 

can be treated with priority depends on staff availability. The CCVT trial was staffed such that 

staff shortages would not be responsible for patients in urgent need receiving a delayed 

response. We therefore assume that, in this dataset, every urgent message was recognized as 

urgent and handled accordingly (recognizing that response times will vary due to many real-life 

factors within the empirical probability distribution), and every non-urgent message was 

recognized as such and handled without urgency. We thus assume that the capacity matched the 
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number of urgent messages in the dataset. In this dataset, there were 79 urgent messages, i.e. 

𝑘 = 𝑎 = 𝑈 = 79. ATRIUM is defined such that it is equivalent to the observed data at 𝑘 = 79 (see 

Table 6.3). For different values of 𝑘, we define 𝑎 for the human baseline as follows: 

𝑎 = {
𝑈 𝑖𝑓 𝑘 > 𝑈

𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

6.2.3.3 Calculation of expected values for ATRIUM 

To calculate the expected value of 𝐴𝑇𝑅𝐼𝑈𝑀 for each model, we first determine 𝑎 at each 

𝑘 ∈ {1, … , 𝑁} where 𝑁 is the total number of messages in the dataset. This is accomplished as 

described above for the human and random baselines; for the machine learning models, we rank 

order the set of 421 predictions corresponding to timestamped messages, and count the number 

of correct instances in the top-ranked k predictions, for each k. Next, we determine the expected 

values for ATRIUM for each model, given 𝑈 and 𝑎 for each 𝑘, using expected urgent and non-

urgent response times from previous or expert knowledge. We use 𝑇𝑢𝑟𝑔𝑒𝑛𝑡 = 106.2 𝑚𝑖𝑛 and 

𝑇𝑛𝑜𝑛−𝑢𝑟𝑔𝑒𝑛𝑡 = 130.6 𝑚𝑖𝑛 as point estimates.  

6.2.4 Model development 

We trained and evaluated a bag-of-words baseline model, a BERT-based suicide risk 

classifier, and a BERT-based suicide risk prediction classifier that additionally leverages 

supervised transfer learning from an annotated social media dataset, using cross-validation.  

6.2.4.1 Training and performance calculation using cross-validation 

Models were trained and predictions for all examples were obtained using 5-fold cross-

validation. Data were split into 5 subsamples in a stratified manner by user, such that all 

documents from a single participant appeared in the same fold and the label frequency was 

approximately retained within each fold. In each of 5 rounds, 4 folds of the data were pooled and 

used to train the model as described below, and predictions are produced for the remaining fold. 
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We train 5 models in this way to obtain one prediction for each instance in the entire dataset. 

Reported performance metrics are calculated on this set of predictions. We ranked only the 

predictions for messages for which paired timestamps were available in order to calculate 𝑎, and 

calculate ATRIUM, i.e. the average time to response across all urgent messages.  

This process was repeated 5 times, randomly splitting the data into 5 folds differently 

each time. Reported metrics refer to the median performance across these 5 different 

randomizations. 

6.2.4.2 Bag of words baseline 

We trained and evaluated a bag of words baseline model following a standard approach 

that has been widely used in clinical applications on account of its ready interpretability. We 

removed stop words, punctuation, and special characters from each document and lemmatized 

words using Natural Language Tool Kit (NLTK) [230]. Then, for each document 𝑗, we construct 

a feature vector 𝑏𝑗 = [𝑤0, 𝑤1, … 𝑤𝑛] where 𝑛 is the number of unique words in the corpus and 𝑤𝑖 

is the count of that word in document 𝑗. We then fit a logistic regression model, support vector 

machine, and random forest model and determine performance across the entire set using the 

cross-validation data splits and training procedure described in the preceding section. 

Hyperparameters were selected using Scikit-Learn’s GridSearchCV [210], applied to a validation 

partition (10%) of each training split. 

6.2.4.3 BERT model 

The first set of BERT models was trained by fine-tuning PHS-BERT (from the 

Huggingface library of pre-trained models [231]) on the CCVT dataset using the 5-fold cross-

validation procedure described above. We trained on 90% of each training split for up to 12 

epochs using a learning rate of 10-6, and select the best-performing epoch according to the cross-

entropy loss calculated on the remaining 10% of the training data (the validation set). To 
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account for class imbalance, the loss function (cross-entropy) was modified to weight classes 

according to the reciprocal of their frequencies in the training data, i.e. approximately 1:5. 

In accordance with common practice, we initially selected a small learning rate of 10-5. 

The learning rate of 10-6 was selected after we observed that this initial learning rate resulted in 

the cross-entropy loss calculated on the validation set increasing after only a single epoch of 

training. This selection of a lower learning rate is consistent with the common practice of 

reducing the learning rate in neural transfer learning to mitigate the loss of knowledge from 

prior pre-training due to overly aggressive fine-tuning, also known as catastrophic forgetting. 

6.2.4.4 BERT model with transfer learning 

The second BERT model was trained in two stages. We first fine-tuned a PHS-BERT 

model with 90% of the SM dataset (training set) for up to 12 epochs using a learning rate of 10-5, 

carrying forward the best-performing epoch as determined using the remaining 10% of the data 

(validation set). We then followed the 5-fold cross-validation procedure described above to 

continue the training process using the CCVT training set, training for up to 12 epochs using a 

learning rate of 10-5, again selecting the best-performing epoch according to the performance 

metrics achieved on the validation set as before. To account for class imbalance, the loss 

function was modified to weight classes in both phases according to the reciprocal of their 

frequencies in the respective training datasets, i.e. approximately 5:1 and 1:5 for the SM and 

CCVT datasets, respectively. 

6.2.4.5 BERT model with transfer learning using Howard & Ruder learning rates 

We additionally trained a BERT model using a contemporary approach to selecting 

learning rates to optimize multi-stage transfer learning, described by Howard and Ruder [225]. 

This involves three techniques – discriminative fine-tuning, slanted triangular learning rates 

(STLR), and gradual unfreezing – aimed at counteracting catastrophic forgetting. Discriminative 

fine-tuning involves selecting learning rates that are exponentially larger for later layers than 
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earlier ones. Tuning each layer with a different learning rate in this way allows more prior 

knowledge to be retained in earlier layers. STLR involves linearly increasing the learning rate for 

a set number of training iterations, and then linearly decreasing it for the remainder of the 

training iterations, allowing the model to first select a general region of the parameter space, 

and to then slowly converge within that region. These two techniques are combined for the first 

transfer learning phase. In the second transfer learning phase, i.e. the classifier fine-tuning 

phase, we additionally employ gradual unfreezing. Here, we first freeze the layers of the model, 

i.e. set the learning rates to zero, and then unfreeze one layer per epoch, starting with the last 

layer. For a detailed description of these techniques, see Howard and Ruder [225]. 

In accordance with the multi-phase fine-tuning approach by described by Howard & 

Ruder,  we used the first two techniques for fine-tuning the PHS-BERT model using the SM 

dataset in the first transfer learning phase, using 12 epochs and a target (maximum) learning 

rate for the last layer of 10-5. As per Howard & Ruder’s recommendation for the values of the 

scheduling parameters, each layer’s target rate is the previous layer’s rate multiplied by 2.6; 

within each layer, the learning rate is linearly increased starting from 1/32th of the target rate, 

until it reaches the target rate after 10% of iterations, and is then linearly decreased until it 

reaches the starting point again at the last iteration. We combined all three techniques in the 

next transfer learning phase to further tune the model to the CCVT data set, using 12 epochs and 

a target learning rate of 10-3; that is, all layers except the last one were frozen in the first epoch, 

all layers except the last two were frozen in the second epoch, and so on. This rate was selected 

after the model did not seem to improve from epoch to epoch with smaller rates, as evidenced by 

the cross-entropy loss on the validation set. A requirement for larger learning rates should 

perhaps be expected in this approach, which further constrains the amount that can be learned 

by partially freezing the model. We additionally incorporated class weighting as before. 
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6.3 Results 

Our experiments were designed to answer two main questions. The first was whether 

transfer learning from the social media set would improve performance with our clinically-

derived data. As shown in Table 6.2, all models achieve competitive AUROCs. Precision and 

recall are well balanced in all neural models, possibly a result of class weighting. In terms of F1 

score, the best transfer learning approach achieved a 6.3% (0.063) improvement over the BERT 

model that did not use transfer learning, and a 21.2% (0.212) improvement over the best bag-of-

words baseline model. The best transfer learning approach, which used learning rate scheduling 

optimized for transfer learning proposed by Howard and Ruder, improved upon the baseline 

transfer learning model by 1.3% (0.013). These are substantial improvements in performance for 

deep learning models over classical machine learning approaches, and for the BERT models 

with transfer learning over their counterpart trained without this step, and for the model with 

customized learning rate schedules over all others. 

Table 6.2. Median performance metrics across 5 runs with different cross-validation splits, 
calculated on aggregated predictions on the test splits. 

Precision@79 represents an idealized scenario in which staff are available to triage exactly the 
number of urgent messages in the set. 

 
Acc. F1 Pr. Rc. AUROC AUPRC Pr. @79 

Bag of Words        
Logistic regression 0.868 0.585 0.687 0.509 0.858 0.660 0.595 
SVM 0.854 0.581 0.607 0.558 0.801 0.542 0.595 
Random Forest 0.858 0.455 0.753 0.326 0.890 0.656 0.608 

PHS-BERT + CCVT 0.902 0.734 0.721 0.741 0.947 0.825 0.722 
PHS-BERT + SM + CCVT 0.924 0.784 0.798 0.768 0.955 0.860 0.785 
PHS-BERT + SM + CCVT 
with Howard & Ruder 
LRs 

0.925 0.797 0.793 0.772 0.961 0.875 0.785 

 

The second question concerned the extent to which improvements in classification 

performance would be reflected by a measure of clinical utility. In Table 6.3 and Figure 6.1, we 

present the estimates for the time saved on average per urgent message due to the use of each 

model as a better (i.e. more relevant to a clinical setting) approximation of model performance. 
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The difference between ATRIUM in a scenario without triage (random baseline) and the 

ATRIUM achievable with predictive model use is shown in parentheses in Table 6.3. 

Table 6.3. Average time to response in urgent messages (ATRIUM) (time saved compared to 
baseline), calculated using the model with the median performance metrics. 

k of 79 represents an idealized scenario in which staff are available to triage exactly the number of 
urgent messages in the set. 

k 20 50 79 100 120 150 

0. Random baseline 129.6 
(0.0) 

127.8 
(0.0) 

126.1 
(0.0) 

125.0 
(0.0) 

123.8 
(0.0) 

121.7 
(0.0) 

1. Bag of words (LR) 125.1 
(4.5) 

119.3 
(8.5) 

116.2 
(10.0) 

114.6 
(10.4) 

112.4 
(11.4) 

111.6 
(10.1) 

2. PHS-BERT + CCVT 124.4 
(5.1) 

117.0 
(10.7) 

113.1 
(13.0) 

111.0 
(14.1) 

109.1 
(14.8) 

108.2 
(13.5) 

3. PHS-BERT + SM + CCVT 124.4 
(5.2) 

116.8 
(11.0) 

111.6 
(14.5) 

109.5 
(15.6) 

107.5 
(16.4) 

106.9 
(14.8) 

4. PHS-BERT + SM + CCVT 
with Howard & Ruder LR 

124.3 
(5.3) 

116.7 
(11.1) 

111.5 
(14.6) 

109.1 
(15.9) 

107.6 
(16.2) 

107.5 
(14.2) 

5. Human triage 124.4 
(5.2) 

115.4 
(12.4) 

106.2 
(19.9) 

106.1 
(18.9) 

106.2 
(17.6) 

106.2 
(15.4) 

 

The random baseline model represents the time to response that would be expected if no 

triage was done, i.e. whether a message was treated with urgency was random. The bag of words 

model markedly improves upon this random baseline, saving approximately 10.4 minutes for 

each urgent message with 𝑘 = 100. The non-transfer BERT model outperforms the bag of words 

baseline, saving an estimated 14.1 minutes per urgent message. The best performing model is 

the one leveraging transfer learning with Howard and Ruder’s strategy for selecting learning 

rates, which saves about 15.9 minutes per urgent message over the no-triage baseline at 𝑘 =

100. Response times for urgent messages that might be expected when using this classifier to 

perform automatic triage closely resemble what might be expected if a human being were to 

conduct ongoing triage: approximately 18.9 minutes saved per urgent message over random 

triage at 𝑘 = 100. These estimates show that the advantages in classification performance shown 

in Table 6.2 are indicative of faster response times, of a magnitude that suggests the potential 

for real clinical impact.  
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Figure 6.1 Average time to response in urgent messages (ATRIUM) vs. k.  

“Bag of words” is the best bag of words model by F1 score, which used Logistic Regression. 

As expected, more time can be saved if 𝑘 is set higher; this is true even for the random 

triage model. The time saved over random triage therefore begins to decline at the (artificial) 

optimum with 𝑘 = 79 for the human triage model. The machine learning models do not have 

this artificial peak so this pattern does not hold for them; this is an artifact of the data used in 

our approach to creating the human baseline, which has 79 positive examples.  

6.4 Discussion 

This work found that transfer learning with annotated social media data developed to 

serve as a benchmark for a shared task evaluation to promote research improves suicide risk 

classification performance with messages collected in the context of a clinical intervention. We 

also developed an evaluation approach that estimates clinical utility in a way that is intuitively 

more meaningful to clinical stakeholders than conventional metrics. 

Our findings demonstrate that transfer learning has a significant impact on 

performance. In our case, we not only use a BERT model augmented by additional pre-training 
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with demonstrated success for suicide risk prediction [229] from the Huggingface library of pre-

trained models [231], but also leverage a dataset of labeled social media posts for additional 

transfer learning. Though there are similarities, the distribution and characteristics of the SM 

data differ from the clinical data that is the target of our final model. We found that 

incorporating this social media data markedly boosts the F1 score, from 0.734 to 0.797. This 

finding demonstrates that combining small clinical datasets with more easily available non-

clinical datasets can benefit clinical prediction tasks, despite differences in data characteristics 

and distribution. 

We also developed a utility metric for models employed for message triage within the 

Caring Contacts workflow. When evaluating the utility of models, it is important to assess not 

only standardized performance metrics (AUROC, AUPRC), but also the performance metrics 

that are most relevant for the setting of the problem (Precision at k). To move further along the 

continuum from “in-situ” model performance to clinical utility, also it is important to assess the 

model’s practical value in terms of quantities relevant and intuitively meaningful to 

stakeholders. Though impressive, it is not obvious what practical difference the improvement in 

F1 score would make for the model user. This is in part because the F1 score measures model 

performance in terms of class predictions (rather than probabilities as a balanced tradeoff 

between positive predictive value and sensitivity). However, allowing the dynamic selection of a 

classification threshold is more appropriate in a clinical setting where sensitivity may be valued 

over specificity or vice versa. Assessing precision at k for a range of values for k is more 

insightful, as it allows stakeholders to consider the tradeoff between model performance at k 

and the cost of achieving that particular k (work capacity which depends on staffing), aiding in 

decision making for implementation design. Yet, precision at k may not be easily understood by 

clinical stakeholders, and does not capture the magnitude of effect on the workflow that can be 

expected. Here, we demonstrate one approach to estimating this clinical impact in terms of time 

saved per urgent message in minutes. We estimated that, compared to employing no triage, on 
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average approximately 19.9 minutes could be shaved off each urgent message response time if 

this model were to be employed for automatic triage of incoming messages (at 𝑘 = 79). This is 

within 1 minute per message of the expected time saved with human triage.  

This metric can also inform allocation of staff needed when scaling the intervention in 

order to achieve a maximum time to response. Scaling allows organizations to benefit more 

patients, but may incur prohibitive staffing requirements if human beings were responsible for 

all triage. Assessing ATRIUM for each triage approach across a range of values for the work 

capacity 𝑘 allows comparisons of staffing requirements for each triage approach, given an 

acceptable average response time. For example, if an organization were to determine that an 

ATRIUM of at most 110 min should be targeted, using the bag of words model would require 

enough staff to reach a work capacity of almost 170; in contrast, the best BERT model might 

accomplish an ATRIUM of 110 min at a work capacity of only k=90, corresponding to a 47% 

reduction in staffing needs. 

6.4.1 Ethical and practical considerations for suicide prevention on social media vs. 

healthcare settings 

Our lives are increasingly digitized, with immense amounts of data automatically created 

or collected by consumer technologies. Smartphone logs, sensor data, and social media data – 

known as patient-generated data in the health informatics space – have enabled a proliferation 

of technologies promising to benefit human health within the consumer realm. Social media 

data, in particular, hold unprecedented promise; they have mediated the development of new 

markers of mental health symptomatology in depression and anxiety [205,206,208,232], and 

Facebook have developed and operationalized machine learning to detect users with high 

suicide risk on their platform [95,96].  

These data also represent a unique opportunity to benefit clinical care by improving 

provider understanding of patient health: recent work, including our own, has demonstrated the 
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potential of utilizing patient-generated natural language data in clinical settings, showing that 

language indicators extracted from logs of message-based clinical psychotherapy sessions can 

predict patient trajectories in depression [137,190].  

Indeed, leveraging these data for clinical purposes may be more ethical, practical, and 

acceptable to users. Barnett and Torous argue that clinicians, not advertising companies, should 

have the responsibility to identify and help suicidal individuals [98]. Besides the ethical and 

privacy concerns surrounding publicly traded companies inferring sensitive health information 

about their users [99,233] and acting on it without explicit consent [93], commercial entities 

operating such technologies may not be able to respond appropriately to an emergent crisis 

[98]. Some have warned that bad actors may purposely target individuals identified as 

vulnerable in public forums [97,233]; others have argued that only medical professionals should 

engage in triage and intervention [98,99]. Model developers at Facebook humbly state, “Our 

expertise at building social networking and scalable software systems in no way qualified us to 

reinvent suicide prevention” [95]. Undoubtedly, trained clinical professionals are best equipped 

for suicide prevention. 

Integrating emergent signals into the clinical workflow to support diagnosis and 

treatment by medical professionals is a path forward. Because intervention decisions remain 

with the qualified clinician, such use of patient-generated data is perhaps most responsible and 

effective. Yet, the intersection between social media research and clinical decision support 

research remains small. More work investigating how to translate the advances made with 

consumer technology to clinical settings is therefore needed.  

The current research advances our understanding of how best to leverage mental health 

insights originating outside the healthcare setting as part of ongoing clinical care. We 

demonstrated an approach to applying the advances made with social media data toward 

empowering qualified clinicians to deliver better care. Thus, this research helps realize the 
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translational potential of social media derived signal to detect suicide risk in the context of an 

established clinical relationship. 

6.4.2 Limitations 

The CCVT dataset is comparatively small and specific to the Caring Contacts 

intervention. Nonetheless, it reflects a real clinical use case for suicide risk prediction. It is likely 

that different sites will have to develop their own models customized to their Caring Contacts 

participants; however, our approach demonstrates the feasibility of using larger, more easily 

available datasets to optimize performance on these small ones. 

We have made a number of assumptions in order to estimate clinical utility. First, we 

assume that the CCVT dataset is a “gold standard” representing what human triage can achieve; 

however, response times were not a primary outcome of the trial and should therefore be 

considered noisy. While the study protocol included guidance for staff with respect to clinical 

judgment and response timing, and staff made every effort to follow this guidance, there was no 

explicit instruction to respond to certain messages more quickly than others – other than 

messages indicative of an acute crisis, which were addressed by immediately reaching out to 

participants via phone call. Staff triage and response would have been limited by many practical 

constraints, e.g. work hours. We did our best to filter the dataset via manual review of response 

times that seemed non-representative, but this does not fully alleviate the problem. If the 

original study protocol had explicitly encouraged staff to respond as quickly as possible to 

messages expressing any level of adversity and deprioritize all others, there would likely be a 

larger difference between response times for the two groups in this dataset.  

Second, the distribution of response times varied significantly even within each class, 

with substantial overlap between the distributions. In a real clinical practice setting, staff 

estimates of severity would likely be more fine-grained than “urgent” vs. “not urgent”. In this 
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study, we grouped messages into just two urgency levels, resulting in the loss of some of this 

granularity and blurring the boundaries between groups.  

Third, the choice of summary statistic used to estimate workflow factors may influence 

utility calculations. For example, in our case, compared to the average response times of 106.2 

min and 116.2 min for urgent and non-urgent messages, respectively, the median response times 

were lower (88.6 min vs. 116.2 min). Here, the use of the median, rather than the average, did 

not substantially change calculated utilities: the bag-of-words model saved 10.2 min over the 

random baseline, the best transfer model saved 22.3 min over the random baseline, and the 

human triage approach saved 22.7 min over the random baseline. However, in practice, the 

choice of summary statistic may be meaningful and should be carefully considered to avoid 

over- or under-estimating utility. Finally, the trial was well-staffed to support the number of 

enrollees, and may represent a best-case scenario for staffing constraints, which are likely to be 

more severe in settings where funding to support personnel is more limited. Nevertheless, we 

believe that our aim of proposing a potentially practical and interpretable metric and using it to 

estimate the clinical utility is achieved: even if it is only an estimate subject to several 

assumptions, it is more interpretable than another performance metric that may mean very little 

to clinical stakeholders. 

6.4.3 Future work 

Further optimizations to the presented training process are possible. For example, it is 

possible that additional hyperparameter tuning, such as an exhaustive search for optimal 

hyperparameters in the Howard & Ruder learning rate selection strategy (target learning rates, 

division factor, number of iterations of learning rate growth, etc.), would further improve 

performance.  

The best-performing model presented here would be expected to perform well in the 

clinical setting that produced the CCVT dataset. We are currently developing an informatics-
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supported pilot implementation of Caring Contacts, which includes this model as a clinical 

decision support component. 

6.5 Conclusion 

Advances in suicide prediction work using social media data are promising, but the 

growing divide between cutting edge NLP research and the realities of clinical practice raises 

questions of the applicability of models emerging from this research to clinical settings. Yet, this 

is where such models have the highest potential to produce tangible improvements ethically and 

effectively. We demonstrated the feasibility of offsetting the limitations of the small size of 

clinical datasets with neural transfer learning using related, more easily available non-clinical 

data from a publicly-available benchmark; further, we demonstrated practical value to clinical 

practice using the novel time utility metric. Thus, this work contributes toward bridging the 

historical implementation gap by translating state-of-the-art NLP advances to data from clinical 

settings and formally estimating utility toward improved clinical care.  
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Chapter 7. StayHome: A FHIR-native mobile COVID-19 

symptom tracker and public health reporting tool 

Aim 1 revealed that the workload burden imposed by Caring Contacts combined with a 

lack of financial resources in preventive care is a barrier to adoption. Additionally, data and 

workflow integration, e.g. as accomplished by leveraging data standards such as FHIR, are 

essential for successful digital tools for Caring Contacts. 

The work described in this chapter introduces FHIR-native, an approach to FHIR data 

modeling and FHIR-based application development that maximizes reliance on data standards 

and tools developed and maintained by the standards community. This reduces the need for 

customized data modeling and infrastructure development. In this way, FHIR-native enables 

rapid application development and facilitates cost-effective deployments built on freely 

available, open-source tools, while ensuring out-of-the-box interoperability. This work was 

conducted early in the COVID-19 pandemic: the first US case was reported in February 2020, 

and we began work on this project the same month. Amidst rapidly changing public health 

guidance and stay-at-home orders, we recognized the urgent need for digital tools to support 

symptom tracking. By using the FHIR-native approach, we were able to design, develop, and 

deploy StayHome within just a few months.  

The FHIR-native approach is also uniquely suited for suicide prevention applications. 

Besides meeting the core requirement of data and workflow integration through the use of 

FHIR, this approach is advantageous for prevention interventions and other settings where 

minimizing development, maintenance, and deployment costs is of the essence. However, it 

requires that all data and state required by the application can be represented using FHIR 

resources. Fortunately, this is the case, as established in Chapter 8.  
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Abstract. As the COVID-19 pandemic continues to unfold and states experience the 

impacts of reopened economies, it is critical to efficiently manage new outbreaks through 

widespread testing and monitoring of both new and possible cases. Existing labor-intensive 

public health workflows may benefit from information collection directly from individuals 

through patient-reported outcomes (PROs) systems. Our objective was to develop a reusable, 

mobile-friendly application for collecting PROs and experiences to support COVID-19 symptom 

self-monitoring and data sharing with appropriate public health agencies, using Fast Healthcare 

Interoperability Resources (FHIR) for interoperability. We conducted a needs assessment and 

designed and developed StayHome, a mobile PRO administration tool. FHIR serves as the 

primary data model and driver of business logic. Keycloak, AWS, Docker, and other technologies 

were used for deployment. Several FHIR modules were used to create a novel “FHIR-native” 

application design. By leveraging FHIR to shape not only the interface strategy but also the 

information architecture of the application, StayHome enables the consistent standards-based 

representation of data and reduces the barrier to integration with public health information 

systems. FHIR supported rapid application development by providing a domain-appropriate 

data model and tooling. FHIR modules and implementation guides were referenced in design 

and implementation. However, there are gaps in the FHIR specification that must be recognized 

and addressed appropriately. StayHome is live and accessible to the public at 

https://stayhome.app. The code and resources required to build and deploy the application are 

available from https://github.com/uwcirg/stayhome-project. 

https://stayhome.app/
https://github.com/uwcirg/stayhome-project
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7.1 Introduction 

SARS-CoV-2, a novel coronavirus which causes the disease COVID-19, was first reported 

in December 2019 in China [234] and quickly spread globally, causing millions to contract the 

virus and fall ill. In the US, the disease was first discovered in a Washington State nursing home 

in February 2020. As of August 2020, the virus has claimed over 170 thousand American lives 

[235]. Starting in April 2020, states imposed severe limitations on businesses and individuals in 

an attempt to curb spread. As of August 2020, states have relaxed stay-at-home orders and are 

experiencing diverse outcomes from reopened economies. Blueprints to minimize the increased 

outbreaks include public health efforts such as widespread testing, identification of cases, and 

intensive contact tracing [236]. States are rapidly scaling up the number of individuals 

conducting contact tracing investigations to meet this need, which means that the contact 

tracing workforce is comparatively inexperienced, yet meets with high caseloads. An additional 

exacerbating factor is that many sources of essential data, such as community-based testing, 

medical records, and public health records are managed in ways that inhibit their effective 

linkage. Informatics solutions may ease and support this labor-intensive, manual work. We can 

draw on the experiences of patient-centered systems in clinical informatics, which recognize 

that often the patient and their reported experiences may be the best links between information 

managed in disparate locations and systems. In the context of COVID-19, this may include 

events such as testing and clinical visits, as well as personal information such as contacts and 

travel, and clinically relevant symptom monitoring. 

Individuals are encouraged to wash their hands, wear masks, maintain physical distance 

from others, and self-monitor for symptoms in order to recognize when further steps become 

necessary. Proactively tracking symptoms may allow recognition of emerging symptomaticity, 

allowing earlier self-isolation and reducing transmissions, and is therefore a core need of the 

community. Maintaining a diary of symptoms, possible exposures, virus and antibody testing, 
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and travel history has the additional potential benefit of providing public health agencies with 

reliable information to conduct case investigations, should that need arise. 

The more people keep and are willing to share such records, the greater the benefit may 

be to the community. Symptom trackers and exposure diaries should therefore be easy to use 

and accessible to everyone, including vulnerable populations. Choosing a mobile-accessible 

design supports this goal due to the ubiquity of mobile phones and the potential to reach more 

individuals from vulnerable communities. In 2019, over 80% of individuals and over 50% of 

older adults in the United States owned a smartphone; 17% had internet access only on their 

phone, with higher proportions for poor populations (26%) as well as Black (23%) and Hispanic 

(25%) minority groups [237].  

Individuals should be able to share diaries of COVID-relevant observations directly and 

easily with the relevant agencies if they so choose. Using health data standards can lower the 

barrier to sharing symptom tracker and exposure diary data with third parties. The Fast 

Healthcare Interoperability Resources (FHIR) [26] standard may facilitate data sharing, both 

with electronic health records (EHRs) for use in clinical care, and with public health to benefit 

contact tracing. 

7.1.1 Representative COVID-19 apps 

The COVID-19 pandemic has prompted the development of numerous consumer 

applications intended to support individuals, to complement traditional public health 

surveillance efforts, or both. Some examples of these apps, grouped into broad categories, are 

shown in Table 7.1. As a longitudinal symptom tracker, StayHome represents a less common 

application type, in contrast with “low-tech” symptom screeners and “high-tech” contact tracing 

apps. Yet, there have been examples of such applications seeing high adoption and even 

enabling disease research: A symptom tracker launched in the UK on March 24, 2020 (“COVID 
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Symptom Study App”) gained 700,000 users within 24 hours and ultimately contributed to the 

reporting that loss of sense of taste or smell is associated with COVID-19 infection [238–240]. 

StayHome first and foremost supports self-monitoring by individuals. Supporting public 

health efforts is a secondary goal enabled by StayHome if a need arises. 

7.1.2 FHIR 

Lack of standardization can both delay access and reduce the quality of the data available 

to public health agencies. To address broad issues of health data interoperability, Health Level 

Seven International (HL7) has published the FHIR standard. Applicable healthcare 

organizations are required to implement and maintain the FHIR application programming 

interface (API) per the Interoperability and Information Blocking Rule of the 21st Century Cures 

Act (effective June 2020) [145,146]. FHIR describes a standard representation for many 

common entities in the healthcare domain, defines relations between these entities, and 

describes a variety of computational methods for operating on these entities. The FHIR 

specification describes recurrent healthcare application business requirements in dedicated 

modules, accessible via the documentation index on the FHIR website 

(https://www.hl7.org/fhir/). Two examples are the Workflow Module and the Clinical 

Reasoning Module. The Workflow Module describes how care plans and specific care-related 

workflows can be characterized, scheduled, and executed. The Clinical Reasoning Module 

provides a mechanism to represent and evaluate clinical knowledge in an entirely FHIR-native 

way, that is, using FHIR-compliant data structures, operations, and logical expression languages 

like FHIRPath [241] and the Clinical Quality Language (CQL). 
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Table 7.1 Comparison of COVID app modalities 

 Description Example Data collected Longitudinal 

Symptom 
checker / 
screener 

Allows the user 
to enter their 
symptoms and 
receive medical 
advice. 
Uses the 
responses to 
recommend one 
of several 
possible next 
steps, e.g. 
continuing to 
practice social 
distancing or 
contacting a 
healthcare 
provider. 

Apple’s “COVID-
19 Screening 
Tool” [242] 
 
CDC’s 
“Symptom Self-
Checker” [243] 

Symptoms 
associated with 
COVID-19 (e.g. 
fever, cough), 
risk factors (e.g. 
age, 
comorbidities), 
recent travel, 
possible 
exposures. 

No. Applications 
are designed for 
one-off use and 
do not collect 
data 
longitudinally. 

Contact 
tracing apps 

Keeps track of 
people users 
have been in 
contact with by 
collecting 
location and 
proximity data, 
and alerts users 
of possible 
exposures. May 
utilize a range of 
technologies, 
e.g. Bluetooth, 
GPS, or Google 
and Apple’s joint 
API. 

BlueTrace 
(Singapore) 
[244] 
 
Corona-Warn-
App (Germany) 
[245] 

Collects records 
of which other 
devices a device 
was near over 
the past days or 
weeks, enabling 
alerting of 
possibly exposed 
individuals in 
the case of a 
positive test. 

Yes. 
Applications 
track location or 
proximity 
information over 
time. 

Longitudinal 
symptom 
tracker / 
contact diary 

Helps users 
track symptoms, 
possible 
exposures, and 
other data over 
time, potentially 
enabling 
discovery of 
longitudinal 
trends.  

COVID 
Symptom Study 
App (UK) [239] 
 
StayHome 

Symptoms 
associated with 
COVID-19 (e.g. 
fever, cough), 
risk factors (e.g. 
age, 
comorbidities), 
recent travel, 
possible 
exposures. 
 
Data is collected 
repeatedly (e.g. 
once daily) 

Yes. 
Applications 
track symptoms 
and other data 
over time. 
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The FHIR specification is flexible in how it can model data and workflows. 

Supplementary standard operating procedures and constraints are published in Implementation 

Guides (IGs), supplying additional details and restrictions required for true interoperability, and 

offering guidance on how to use FHIR to solve particular problems. For example, the US Core IG 

places restrictions on entity attributes and terminologies (e.g. ICD-10-CM). Additionally, the 

Structured Data Capture (SDC) IG guides the interoperable and FHIR-compliant 

implementation of data entry forms. Given the broad nature of the FHIR specification and the 

existence of mature IGs that address the requirements of the StayHome application, there is an 

opportunity to use FHIR as the underlying model for both application data and business logic. 

7.1.3 Significance 

To address the need for community-based self-monitoring and exposure tracking, to 

support individuals’ decision making and contact tracing efforts in case of infection, we 

developed StayHome, a reusable, mobile-friendly, longitudinal symptom tracker designed and 

developed following user-centered design principles. StayHome allows regular logging of 

symptoms and other information, and review of data over time.  

StayHome is unique in that it is implemented not just to exchange data using FHIR, but 

to adopt FHIR resources for internal representation of data and business logic, a design 

approach we call “FHIR-native”. Traditionally, FHIR and its predecessors, such as the HL7v2 

messaging standard, are used first and foremost to support an interoperable interface strategy. 

In line with this primary goal of FHIR, StayHome’s use of the standard enables interoperability 

with other health informatics systems, such as EHR systems and public health informatics 

systems. However, StayHome also leverages FHIR as internal information architecture, using 

the standard’s domain models to represent both data and business logic. This holistic use of 

FHIR makes the application a generic PRO tool independent from any specific health problem, 

PRO use case, or host system. 
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StayHome is open source and freely available to anyone to use, modify, and implement 

for clinical and consumer health informatics applications (under the BSD 3-Clause license) at 

https://github.com/uwcirg/stayhome-client and associated repositories. 

With FHIR adoption increasing, informaticists are exploring how best to use it to 

address important issues in health informatics. We share lessons learned from developing and 

deploying this application, which we hope will benefit others in designing and developing 

applications using this new standard. 

7.2 Methods 

7.2.1 Needs assessment & design 

In February 2020, before Washington State’s stay-home-orders were put in place and 

before the outbreak was officially characterized as a pandemic, we recognized the potential 

benefits of a symptom tracker application. To inform the requirements for such an application, 

we solicited input from students in an undergraduate class about science, evidence, and health, 

conducted by one of the authors (WL), where COVID-19 had become a frequent topic of 

discussion. This process included informal conversations with the students as well as a 

structured survey asking participants about their COVID-19 concerns, and how a smartphone 

application might help them with those concerns (HB, WL, SK). Project team members (SK, HB, 

WL) then tabulated survey results and used content analysis methodology to identify and 

prioritize user-centered design features. The University of Washington IRB determined on July 

6, 2020 that Ethics approval was not required for this project. 

With the pandemic actively unfolding, there was an immediate need for the application. 

We therefore aimed to keep the user experience simple, using standard mobile UI components 

and interaction patterns where possible, while maintaining a user-centric approach to 

application design by conducting user tests and revising based on feedback in an iterative 

fashion. 

https://github.com/uwcirg/stayhome-client
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7.2.2 FHIR 

In addition to using FHIR resources to represent our data model, we also made use of 

the FHIR RESTful API [246] to create and update both metadata (e.g. Questionnaire resources) 

and data (e.g. Patient resources) and the FHIR Search API for data retrieval. Concepts from the 

Workflow Module (e.g. definitional resources) were used for PRO workflow execution. We 

dynamically encoded logic via FHIRPath expressions as part of questionnaire display items, per 

the Clinical Reasoning Module and SDC guidance. Internationalization was implemented using 

guidance from the Implementation Support Module. The Consent resource was employed in 

conjunction with guidance from the Security and Privacy Module to record data sharing 

preferences. We referenced the Terminology Module to implement a custom code system for 

app-internal messages/notifications. Extended operations, as described in the Exchange 

Module, were used to expand answer option value sets. 

7.2.3 Development and deployment 

Mobile applications exist within several disjoint consumer app ecosystems characterized 

by different hardware, software, and process constraints, which is a barrier to mobile app 

development and maintenance. Cross-platform mobile application development frameworks are 

available to address this challenge, allowing the use of a single codebase for developing Android, 

iOS, and web applications. This work utilized Google’s Flutter [247] cross-platform mobile 

application development framework. 

Figure 7.1 shows an overview of the overall system architecture. In addition to the client 

applications (community facing and administrative), the system includes Keycloak [248] as an 

Open ID Connect identity provider, a reverse proxy for role-based access control (“map-api”), 

and HAPI FHIR version 4.2.0 as a FHIR API server and persistent data store.  

Amazon Web Services (AWS) cloud infrastructure provides high availability and 

scalability for each server component, and Docker supports continuous integration (CI) and 
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deployment. StayHome is internationalized to English, Spanish, Haitian Creole, and German, 

with automated string export and import processes.  

GitLab and GitHub were used for version control and to make our work publicly 

accessible. The full code for the StayHome app, the authorization reverse proxy server, and 

Docker files needed for deployment are open-source and freely available. 

 

Figure 7.1 StayHome system architecture.  

In addition to the client applications (community facing and administrative), the system includes 
Keycloak as an identity provider, a reverse proxy for role-based access control (“map-api”), and 

HAPI FHIR version 4.2.0 as a FHIR API server and persistent data store. 

We began software development in February 2020 and published version 1.0 on March 

27, 2020. StayHome is live and accessible to the public at https://stayhome.app. 

A companion dashboard application (“stayhome-dashboard”) was developed to allow 

administrators to view and manage data and users. This application supports public health 

surveillance and reporting workflows by providing search and filter functionality and allowing 

review of usage statistics and user level-information such as location (for users who choose to 

https://github.com/uwcirg/stayhome-dashboard
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share that information). The appearance of user data from the client-app is based on “opt-in” 

permissions given by the user of the client app. Further, the dashboard provides a venue to host 

future functionality, such as advanced reporting and data visualization. 

7.3 Results 

7.3.1 Needs assessment & design 

There were 63 undergraduate students enrolled in the class; about 40 students were 

present in class when we conducted the assessment in February 2020. Participants indicated 

that they were concerned about infection and developing the disease and that they were unsure 

of how to protect themselves and others. Many were wondering how they would be able to tell if 

they had contracted the virus. Some participants indicated that they measured their body 

temperature daily. With word of mouth being a major information source and official sources 

recommending caution or even de-emphasizing the seriousness of the outbreak, participants 

expressed uncertainty that fueled a need for reliable information. Based on these conversations 

with potential users, it became apparent that we had the opportunity to develop an application 

to address the need for daily self-monitoring of symptoms and clinical signs. 

We aimed for a simple, functional design. However, navigation design was challenging 

and the subject of several design iterations. Our goal was to streamline the user experience so 

users could quickly find frequent actions, while still allowing easy access to less-frequently used 

functions. For example, the symptom assessment questionnaire might be completed daily. In 

contrast, the risk factors and exposures questionnaires would only be filled out once (or in the 

case of a relevant event). Additionally, we wanted to avoid confusion and provide reassurance in 

how data would be collected and used, so we opted to display lay-person-friendly terms and 

conditions and detailed explanations in-line with the controls that asked for such information. 

Figure 7.2 shows screenshots of the current user interface. 
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Figure 7.2 StayHome application UI.  

From left to right: Login/start screen, home screen, questionnaire screen, trends review screen.  

7.3.2 FHIR 

The use of FHIR supported the rapid development of the StayHome application by 

providing a domain-appropriate data model and query framework. FHIR specifies the general 

structure (i.e. applicable data elements) of resources describing various concepts in health and 

healthcare applications; there is, however, significant flexibility in how these resources can 

support individual use cases. This section gives an overview of some of the parts of the FHIR 

specification used, and how they support the StayHome use case. See Figure 7.3 for an overview 

of how resources work together. 
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Figure 7.3 FHIR resources used by StayHome. 

7.3.2.1 Resources 

Patient. The patient resource links individual users’ personal information and settings 

with their account login managed by the external identity provider service. StayHome uses 

Patient resources to manage demographics, contact information, and language preference (the 

application does not require users to enter this information). 

CarePlan. This resource specifies a set of questionnaires. A definitional resource is 

defined on the application level, which is then instantiated for each new user. Instantiation 

allows subsequent, person-specific adjustment of the set of questionnaires to be administered 

and provides the opportunity to personalize the frequency of individual instruments. CarePlan 
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resources reference the patient they belong to via the subject element and list the questionnaires 

in the activity element.  

Questionnaire. This resource defines the content of each PRO instrument and is thus 

central to StayHome. It consists of a list of display items, which can be either an answerable 

question or help text. Each item includes answer options coded for interoperability (e.g. LOINC 

codes), selection behavior (e.g. single answer vs. multiple answer), and formatting information 

(e.g. section headers vs. help text), as appropriate. Items can also represent calculated quantities 

(e.g. score totals), conditionally displayed items to support branching logic, and conditional user 

messages (e.g. a “high risk” and a “low risk” message, presented based on the calculated score 

total). For an excerpt from the symptom assessment questionnaire, see Figure 7.3. 

QuestionnaireResponse resources record responses to questionnaires. 

Consent. StayHome enables users to indicate their data sharing preferences using 

Consent resources. Each of these resources indicates whether an individual user consented to 

share their data with the stated organization. 

Organization. This resource type is used to identify entities to whom sharing consent 

can be given, e.g. public health agencies, researchers, and potential community partners, and is 

referenced by Consent resources. 

7.3.2.2 Query API 

StayHome utilizes FHIR’s built-in search APIs in several ways. First, resources are 

queried by ID in cases where that ID is known, e.g. in CarePlans, which specify their component 

Questionnaires by ID. Second, the application retrieves relevant resources with simple search 

queries, e.g. to retrieve the Patient resource corresponding to the logged-in user. Finally, 

multiple combined search and filter criteria are used to retrieve bundles of resources for specific 

use cases; for example, to plot response history for individual questions. The administrative 

dashboard uses such a query to retrieve records. The “map-api” reverse proxy ensures that only 
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resources with proper authorization access are returned, i.e. those belonging to the logged-in 

user, or on the dashboard, those referring to patients who consented to share data.  

7.3.2.3 Internationalization 

  "text": "Start date", 
  "_text": { 
    "extension": [ 
      { 
        "url": "http://hl7.org/fhir/StructureDefinition/elementdefinition-
translatable", 
        "valueBoolean": true 
      }, 
      { 
        "url": "http://hl7.org/fhir/StructureDefinition/translation", 
        "extension": [ 
          { 
            "url": "lang", 
            "valueCode": "de" 
          }, 
          { 
            "url": "content", 
            "valueString": "Anfangsdatum" 
          } 
        ] 
      }, 
      { 
        "url": "http://hl7.org/fhir/StructureDefinition/translation", 
        "extension": [ 
          { 
            "url": "lang", 
            "valueCode": "es" 
          }, 
          { 
            "url": "content", 
            "valueString": "Fecha de inicio" 
          } 
        ] 
      } 
    ] 
  }, 

Code snippet 7.1 JSON example of a string element with two translations. The string is tagged as user-
facing with the Translatable extension. 

To display questionnaires in different languages according to user choice, we utilized 

both the Translatable and Translation extensions following guidance from the Implementation 
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Support Module (Internationalization section). The Translatable extension tags strings as user-

facing. We added an automatic extraction step to push untranslated English strings to the CI 

pipeline. After receiving translations from translators working in translation software such as 

Transifex [249], translations were inserted back into the FHIR resources using the Translation 

extension (Code snippet 7.1). 

7.3.2.4 Calculated Questionnaire Items 

The FHIR Structured Data Capture (SDC) IG describes how to use expressions and 

extensions to support calculated display items, such as score totals. StayHome employs 

FHIRPath as an expression language, and the ordinalValue extension attaches numeric values to 

categorical response options. The freely available fhirpath.js [250] library is used to calculate the 

value of the expressions in real-time as the user enters questionnaire responses. The 

Questionnaire resource includes the expression shown in Code snippet 7.2 for this purpose. 

QuestionnaireResponse.item.answer.extension.where(url.contains('valueOrdina
l')).valueDecimal.aggregate($this + $total, 0) 

Code snippet 7.2 FHIRPath expression used by StayHome to calculate the sum of all selected 
answers’ ordinal values (score total). 

7.4 Discussion 

In this work, we designed, developed, and deployed a mobile-friendly, FHIR-native, PRO 

tool with application to COVID-19 symptom assessment and exposure diary functions. This 

information system administers questionnaires and organizes information using FHIR for the 

representation of both application content and behavior. 

7.4.1 FHIR-native approach  

7.4.1.1 Advantages 

Using FHIR in general and in a FHIR-native application context has significant 

advantages (Table 7.2). The FHIR standard emerged from the modeling work of many experts 
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and thus provides an excellent starting point for an application-specific data model in the health 

domain. While our application’s needs are comparatively simple, starting with data structures 

capable of accommodating advanced data and process models obviated the need to restructure 

the data model in the face of new business requirements. Existing FHIR server implementations 

such as HAPI provide routine functionality, such as create, read, update, and delete (CRUD) 

APIs, as well as advanced domain-specific tooling, such as CQL support, allowing developers to 

focus on their application’s unique requirements. Because FHIR specifies the interface between 

clients and servers, implementations are interchangeable as long as they comply with this 

interface. This allows the operation of apps directly against either standalone FHIR servers or 

other FHIR-compliant servers, e.g. those belonging to EHRs or public health information 

systems. FHIR also facilitates the exchange of information between systems, known as 

interoperability, though carefully following implementation guides is required to achieve 

semantic interoperability. 

Beyond data exchange, we leveraged FHIR as the internal information architecture. This 

approach facilitated rapid application development by reducing the need to design and refine a 

data model, as well as the tooling to support it. Because FHIR resources (e.g. definitional 

resources and questionnaires) drive application content and behavior, PRO functionality is 

reusable for any FHIR-compliant questionnaire. The application requires no custom server code 

and operates entirely within the FHIR specification, facilitating the reuse of StayHome as a 

generic FHIR-enabled questionnaire administration tool. FHIR can accommodate complex 

business logic in an elegant, standardized way, making possible a wide range of applications that 

require no server code. 

7.4.1.2 Disadvantages 

There are disadvantages to using FHIR, which may intensify for FHIR-native 

applications. Though the ability to use existing server implementations and tools offsets the 
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time investment required to use FHIR, the complexity and size of the FHIR specification and its 

extended documents may be a barrier to adoption. Additionally, in some domains, e.g. in the 

consumer health application realm, FHIR may not be widely adopted, reducing the immediate 

benefit of interoperability-readiness. Further, many use cases, clinical and non-clinical, are not 

modeled by FHIR. While the standard is flexible and extensible to new scenarios, there is a risk 

of tipping the balance from using it appropriately to counterproductively shoehorning 

application data and business logic into FHIR. For example, if resources or resource elements 

cannot be understood outside of the StayHome context or are not compatible with 

recommendations laid out in commonly used IGs such as US Core, the use of FHIR may turn out 

to be a burden. 

Finally, despite the guidance from FHIR modules and IGs, many implementation and 

representation choices remain with the developer, and these design choices may be imperfect. 

For example, we considered using a single, unmodifiable CarePlan resource to define the set of 

questionnaires at the application level. We instead chose to instantiate a user-level CarePlan 

resource with reference to an application-level definitional resource (template) to allow 

personalization of app content. This instantiation introduced additional barriers for content 

maintenance: adding new questionnaires to the definitional resource required updating every 

user’s CarePlan instance as well (previous versions are still accessible via the history API). This 

experience underscored the need to make representational choices carefully and with specific 

use cases in mind; to ground decisions in implementation guides, which address many common 

difficulties, as much as possible; and to accept the fact that updating large numbers of resources 

as part of application updates may ultimately be unavoidable as business requirements evolve. 
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Table 7.2 FHIR/FHIR-native advantages and disadvantages. 

Pros Cons 

− Represents modeling work of many 
experts 

− Specifies common requirements and 
corresponding tools/APIs (e.g. storage 
functionality, queries, versioning, CRUD 
operations, data formats, localization) 

− Specifies advanced functionality; specific 
implementations (e.g. HAPI) might 
provide further functions that become 
automatically available to FHIR-native 
apps (e.g. Async to export bulk data, 
terminology services to translate codes, 
advanced searches, subscriptions, CQL) 

− In theory, EHR workflow integration out 
of the box with SMART [251] 

− In principle, standard data format 
enables immediate interoperability with 
other systems: Resources can be 
consumed by other apps and other apps’ 
resources could be consumed by 
StayHome 

− IGs help with solving common challenges 
and further semantic interoperability 

− FHIR implementations are 
interchangeable (e.g. HAPI, Azure and 
Google Cloud FHIR servers, EHR with 
FHIR APIs, public health system with 
FHIR APIs)  

− Clients are independent of the server / 
can operate out of any FHIR-compliant 
server (e.g. a standalone system or an 
EHR). 

− PRO functionality is reusable to any 
questionnaire that can be specified as 
FHIR  

− Built-in backward compatibility 
(between the data model and different 
versions of client apps) 

− Standard terminologies enable 
translating the application to work in a 
new context (e.g. to use LOINC instead of 
SNOMED) 

− Complex: it can be challenging to 
determine the intent of different pieces, 
and what applies to a particular use case; 
takes time to work through; developing 
compliant applications requires 
consideration of constraints from 
different places 

− Specific application constraints and 
requirements may not have been 
considered when developing the spec 

− Does not specify all functionality 
required for a complete app, e.g. access 
control, workflows for non-clinical use 
cases 

− FHIR does not model some 
specialized/complex clinical use cases  

− Risk of forcing data and business logic 
into FHIR in a way it wasn’t intended for, 
compromising interoperability and 
application reusability in practice 

− May currently be limited in some 
application domains, e.g. wearables and 
other consumer health applications 

7.4.2 Development and deployment 

For our user-facing application, we chose Flutter as a solution to cross-platform mobile 

application development, but quickly felt the impact of using emerging technologies. For 
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example, there was no FHIR resource library for the Dart programming language, requiring us 

to generate and test the data model and serialization code. On the other hand, using an actively 

evolving framework enabled us to take advantage of cutting-edge technology. For example, 

Flutter Web was first released in the beta channel in December 2019. Not long before our initial 

release, we recognized that our group did not have the necessary resources and expertise to 

overcome the challenges of mobile app publishing (e.g. registering as a non-profit entity, 

integrating iOS application builds in our CI pipeline), within an acceptable time frame. Flutter 

Web, while suffering idiosyncrasies typical of beta-stage software, was an alternative that 

became available just in time for us to publish StayHome as a web application instead.  

Web applications have many benefits over native applications. They provide the same 

experience on different platforms, including desktop, maximizing reach while minimizing the 

additional development effort required to support many different platforms. Deployments (such 

as when a new version is published) affect end-users minimally, as client browser apps will 

automatically retrieve the latest version of the web application when reloading, eliminating the 

need to update local application installs. Additionally, some development teams may find 

deploying a web application to be straightforward compared to completing the steps required to 

get a native mobile application approved and published on each of the major platform app 

stores. While web applications may provide suboptimal UX compared to native apps, there is an 

opportunity to narrow that gap via Progressive Web Application (PWA) or “installable web 

application” setups. Other drawbacks of non-native applications include limitations for 

integration with local hardware (e.g. Bluetooth, camera) and barriers in using notifications.  

Authentication and authorization for FHIR were challenges, as fine-grained data access 

control is an infrastructure requirement not adequately addressed by FHIR. While solutions 

such as SMART-on-FHIR and Interceptors for HAPI FHIR were a possibility for authentication 

and authorization, we instead implemented a lightweight reverse proxy server as a single 

solution for both authentication and authorization. This approach removed the need to manage 
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and secure credentials within the StayHome app and allowed us to keep the server 

implementation (e.g. HAPI vs. EHR) interchangeable and independent of the client app. While 

comparatively simple conceptually and in practice, this “non-standard SMART-on-FHIR” setup 

adds a custom layer in our system architecture. We are actively investigating the use of a so-

called standalone SMART-on-FHIR application setup to simplify our authorization system. 

7.4.3 Future work 

Future work includes implementing a fully SMART compliant launch flow. Additionally, 

there is an opportunity to further leverage FHIR to support more advanced functionality, for 

example, by using extraction as described in the SDC module to create Observation resources 

from QuestionnaireResponse resources. 

While we provided the application for use to members of our immediate community to 

support community members as soon as possible and to collect further feedback, accomplishing 

broad adoption of the app requires resources and expertise, including marketing and consumer 

support, that lie outside of our capabilities and resources. However, the application may be 

useful for specific programs, such as research projects and community health programs, with 

well-defined objectives and user groups. Such small- to medium-scale implementations thus 

represent an important future direction for this work.  

7.5 Conclusion 

We presented StayHome, a FHIR-native PRO tool applied as a COVID-19 symptom 

tracking application and public health reporting tool. We deployed this tool in a software system 

that includes a community member-facing web application, authentication/authorization layer, 

FHIR server, and administrative dashboard application. Code and resources are open source 

under the terms of the BSD 3-Clause license. As a mobile-friendly web application, StayHome 

maximizes reach. StayHome addresses core community needs by providing users with a tool to 
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self-track possible symptoms and exposures and supports them in following public health 

recommendations for their personal health. The use of FHIR enables user-controlled 

interoperability with, for example, public health contact tracing and case investigation systems, 

an area the authors are actively working on with the Washington State Department of Health 

through the CommonCircle initiative. We innovatively operationalized FHIR beyond its use as a 

messaging standard, leveraging it as an internal information architecture to represent 

application content and behavior. Thus, we created a questionnaire administration tool that is 

easily reusable for other use cases by simply updating FHIR resources. The tool can operate out 

of any host system, e.g. a standalone FHIR server, an EHR, or another FHIR-compliant server. 

During this process, we found that there are advantages and disadvantages in the use of FHIR 

and the FHIR-native approach. We applied FHIR in a novel way by using it as internal 

information architecture, but also found that the right level of FHIR use can be a balancing act 

that depends on individual application requirements and constraints. We used emerging 

technologies, tried-and-true technologies, and custom system components, finding benefits and 

tradeoffs for each. We also recognized that pre-existing expertise is a factor in deployment 

considerations. We provide our code in several open source repositories, freely available under 

the BSD 3-Clause license at https://github.com/uwcirg/stayhome-client and in associated 

repositories. We hope that the StayHome application benefits the community in working to stay 

safe and flatten the curve. Additionally, we hope that the code and resources found in our 

Github repositories and the considerations shared in this manuscript benefit others in their 

efforts to develop and operationalize FHIR applications in general and PRO applications in 

particular. 

https://github.com/uwcirg/stayhome-client
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Chapter 8. A FHIR-based approach to text message-based 

suicide prevention: Informatics-Supported Administration 

of Caring Contacts (ISACC) 

In addition to opportunities for automation and cognitive support, aim 1 (Chapter 3) 

revealed that data and workflow being spread across multiple different systems poses a host of 

challenges. Consequently, a core design focus for informatics tools for Caring Contacts should be 

to enable data and workflow integration. Further, in aim 2, I developed a prioritization model of 

suicide risk, which has the potential to facilitate scalable deployment of Caring Contacts when 

leveraged for message triage. In the work described in this chapter, I therefore investigated how 

automation and cognitive support can be provided in an interoperable, workflow-integrated 

way. Specifically, considering that health data standards FHIR and SMART-on-FHIR provide 

mechanisms for interoperability and portability, I developed a FHIR-native data representation 

model for text message-based suicide prevention and a SMART-on-FHIR application 

architecture capable of utilizing my prioritization model for real-time triage. Finally, I 

implemented the Informatics-Supported Administration of Caring Contacts (ISACC) tool, a 

standards-based, open-source, AI-supported information system for Caring Contacts, 

demonstrating the feasibility of using FHIR and SMART-on-FHIR for this purpose. 

 

Abstract. Background: Suicide is a leading cause of death in the United States. Caring 

Contacts, a text message-based intervention, is effective in reducing suicide, attempts, and 

ideation, but adoption is hampered by a lack of appropriate technological support. Achieving 

interoperability for patient-generated data (PGD), such as text messages, to enable their use 

within clinical workflows is difficult because of diverging practices between consumer and 

clinical technologies. Similarly, ensuring portability and reusability of clinical decision support 
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(CDS) across systems is challenging due in part to variations in data formats and 

communication protocols across health information systems. Having seen broad acceptance and 

adoption, current data and messaging standards such as Fast Healthcare Interoperability 

Resources (FHIR) enable seamless data exchange and software re-use. However, there are few 

reports on how to use FHIR to represent PGD that is continuously generated and available only 

from sources external to the EHR, or how to architect FHIR-based systems to ingest this data 

and process it for CDS in real time. 

Objectives: To design, develop, and share a FHIR-based, interoperable, portable, open-

source software system for suicide prevention that uses patient text messages to provide CDS 

within clinical workflows.  

Methods: Based on a needs assessment conducted with suicide preventionists 

representing a range of healthcare organizations and clinical settings, we developed a list of 

possible solutions to meet these needs. We then determined application requirements for an 

initial version of the tool (minimum viable product, MVP), assessed the corresponding data 

model requirements, and designed a FHIR representation model that meets these requirements. 

We developed a system architecture capable of supporting the required data artifacts and use 

cases, including real-time processing of PGD with machine learning, and developed a freely 

available software artifact embodying these principles. 

Results: The Informatics-Supported Administration of Caring Contacts (ISACC) system 

consists of a web client app and a server application continuously monitoring for and processing 

SMS communications via machine learning, both of which use SMART-on-FHIR to authenticate 

against the FHIR API host system (e.g. Electronic Health Records (EHR) system). FHIR is used 

to represent data and business logic as well as for communication; externally generated data is 

transformed into FHIR representations for this purpose. All transactions between client, server, 

and host are conducted via FHIR APIs, so the system can be supported by any host system 

implementing the appropriate FHIR APIs. The system has the capability to make use of two 
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different natural language processing (NLP)-based machine learning models, one for assigning 

suicide risk scores to patient-generated messages, and one for extracting clinically actionable 

concepts from these messages. The system invokes the models in real-time and presents 

inferences as part of the workflow. The system leverages FHIR data structures, APIs, and the 

SMART-on-FHIR integration protocol in a way that both supports the intended use cases and 

corresponds to best. The software developed as part of this work is freely available from 

https://github.com/uwcirg/isacc-environments and linked repositories. 

Conclusion: We demonstrated the feasibility of using FHIR and SMART-on-FHIR as the 

basis for a suicide prevention CDS system that leverages text PGD and NLP to support clinical 

workflows, enabling out-of-the-box interoperability and portability. The system serves as a 

blueprint for a range of systems seeking to leverage PGD in clinical workflows. Code is freely 

available to use, adapt, and implement under the BSD 3-Clause license. Next steps include a 

pilot implementation of the tool at several clinics. 

8.1 Introduction 

Caring Contacts is an effective suicide prevention intervention, but avenues for more 

efficient delivery must be explored before it can be widely adopted. Across three large 

randomized trials, Comtois et al. [40,49,50] refined Caring Contacts via text message and, based 

on expert consensus, collected an initial list of challenges and bottlenecks that a digital solution 

may help address. In Chapter 3, I expanded and refined this list and developed design 

considerations for a digital tool supporting the Caring Contacts intervention [221]. Key 

requirements included the automation of labor-intensive workflow components, providing 

cognitive support at appropriate points in the workflow, and enabling seamless data and 

workflow integration. Specifically, tools that help providers manage text message streams as 

part of the electronic delivery of Caring Contacts, including artificial intelligence (AI)-based 

clinical decision support (CDS) to prioritize messages based on content and support staff in 

https://github.com/uwcirg/isacc-environments
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composing follow-up messages, are needed. In Chapter 4, Chapter 5, and Chapter 6, I explored 

avenues for such cognitive support.  

Our finding of the importance of data and workflow integration confirms long-standing 

guidance for effective CDS, which emphasizes the need to avoid adding additional workflow 

steps and to provide information at the right time, to the right person; and to provide the right 

information, i.e. information that is actionable [162,252]. Fortunately, we now have technologies 

that can be harnessed to meet these needs. Data and workflow integration standards and 

protocols are available and have seen broad adoption in recent years. An internationally 

recognized standards specification for health-related data structures and exchange protocols, 

Fast Healthcare Interoperability Resources (FHIR) [26] is now mandated as part of the 21st 

Century Cures act [145,146] requiring U.S. health information technology vendors to enable 

interoperability. Technologies such as SMART-on-FHIR [25], an authentication and integration 

framework for FHIR-based health apps, are available to develop such applications and integrate 

them seamlessly into clinical workflows. However, it is not clear how these technologies can be 

harnessed in conjunction with AI to provide automation and cognitive support in an 

interoperable, workflow-integrated way in the context of the Caring Contacts suicide prevention 

intervention. 

8.1.1 Contributions of this work 

In this work, we designed and developed a FHIR-based information system for Caring 

Contacts. The system incorporates patient-generated data (PGD) and leverages machine 

learning for CDS. We outline the data model requirements for this application, and present how 

FHIR can be used to meet these requirements. We present detailed documentation of how to use 

FHIR for this application area. Further, we make the code freely available under the BSD 3-

Clause license. Using Shaw’s categories of software engineering research contributions [253], 

our contributions are as follows: 
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1. A novel, FHIR-native data representation model for AI-supported, text message-based 

suicide prevention interventions 

2. An architectural style/design pattern for applications reading data from sources external 

to electronic health record (EHR) systems, processing them in real-time with AI to 

extract clinically actionable signal, and integrating these insights into clinical workflows 

3. An implemented tool (open-source software artifact) that embodies 1 and 2 

8.2 Related work 

8.2.1 FHIR & CDS with SMART-on-FHIR 

The landscape of healthcare information technology is fragmented for a number of 

reasons. Health data are created in many different settings, and medical sub-domains have 

developed their own approaches to storing, processing, and reusing these data. Health 

information technology (HIT) vendors have independently developed purpose-built solutions, 

resulting in siloed systems with proprietary data structures and data exchange strategies; 

consequently, data exchange between systems is difficult, requiring case-by-case interface 

solutions, and driving up integration costs. This also results in systems not being easily portable 

between settings, i.e. informaticians may need to undertake substantial customizations in order 

to deploy their apps at healthcare organizations with different technology ecosystems. If systems 

are not interoperable and workflows are not seamlessly integrated, the user experience suffers, 

as clinical users must navigate many different systems and duplicate data entry efforts. These 

inefficiencies severely affect the usefulness of HIT. Additionally, the vision of the Learning 

Healthcare System [8,10] can only be achieved if data from different sources can be collected 

and harmonized for secondary use, i.e. analytics. Cost-effectiveness, usability, and sustainability 

considerations are therefore key components of developing health information systems.  

This has led to the increased recognition of the importance of standards-based HIT in 

recent years. Health information technology data standards have a rich history, most recently 
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culminating in international standards organization Health Level Seven International (HL7) 

releasing FHIR [26]. FHIR was designed to address many of the shortcomings of its 

predecessors that caused low adoption, such as a failure to make use of contemporary 

technologies, e.g. XML or JSON, in favor of the less pervasive RDF format [25]. FHIR is a 

specification of the structure of resources, such as Patient and Observation resources, which 

represent clinical, administrative, and infrastructure-related concepts. However, FHIR also 

specifies application programmer interface (API) endpoints, which constitute ways to interact 

with a database server that deals in these resources, using HTTP. For example, it specifies how 

patient records can be queried by RESTful web services, by fields such as phone number. FHIR 

is now broadly adopted, with the major EHR vendors implementing FHIR APIs [159]; however, 

it is important to note that vendors are at different stages in the implementation process. 

Additionally, the implementation of write-APIs is limited by important questions of data 

governance and quality, which must be carefully considered before APIs can be made available 

to third parties. 

Substitutable Medical Applications and Reusable Technologies (SMART) on FHIR 

[25,159] is a framework for authentication and authorization of apps seeking to consume FHIR 

resources from a FHIR-enabled host system, such as an EHR implementing FHIR. It provides a 

way to launch apps within this host system, transferring the launch context to the launched app, 

such that end users need not re-authenticate, re-select the appropriate patient chart, or 

repeatedly specify which functionality they want to access. SMART-on-FHIR apps can be 

written by independent app developers who have complete control over business logic and user 

interface, while allowing the appropriate use of FHIR resources internal to the host system. In 

this way, it enables completely customizable CDS functions without needing the EHR vendor to 

specifically support each app, and without disrupting the user workflow. 
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8.2.2 Use of FHIR for PGD  

PGD provide a unique opportunity to enhance clinical care. Rather than being created by 

doctors and other healthcare workers as part of clinical care, PGD originate with the patient. 

They span many types of data including patient-reported outcomes data (PROs), such as 

experience data collected via questionnaires; consumer health device data, such as from 

wearables or Wi-Fi-enabled bathroom scales; and many other types of data created by and/or 

belonging with the patient, such as smartphone location logs and social media posts [82].  

Leveraging PGD for health-related applications is a promising frontier. PGD contains 

information that cannot be found elsewhere in the EHR, and may have unprecedented 

completeness and quality, particularly if automatically captured [87]. As a result, this has been a 

fruitful area of research. Numerous examples exist in the machine learning literature of using 

PGD for making health-related inferences, e.g. for predicting depression and anxiety from 

location and physical activity data [254] or from social media data [123,205]. 

However, integrating PGD and PGD-derived insights into clinical care raises many 

unique challenges. Besides questions of patient privacy, PGD is difficult to get into clinicians’ 

hands for reasons of interoperability and other technical challenges [84]. Various approaches 

have been used to overcome these challenges. Some have used patient portals to circumvent 

interoperability and security/privacy challenges [255], but using patient portals may not be 

possible or optimal in some cases for a range of reasons. Since 2011, Sim and colleagues have 

been developing Open mHealth [256,257], a framework to standardize PGD such as sensor data 

from wearables. Open mHealth includes schemas for a wide range of patient-generated health 

data, such as activity, body weight, sleep, and blood pressure data. While the Open mHealth 

standard is not inherently interoperable with EHR systems, OMH on FHIR [258] provides a 

pathway to converting this structured patient-generated data into FHIR resources. Torous et al. 

[259] developed a system for capturing and integrating PGD from patients; however, this system 

is intended to be a comprehensive PGD system capable of handling high volumes of raw sensor 
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data, and thus the authors found FHIR too limiting for two reasons: first, the lack of semantic 

interoperability standards for PGD (i.e. there is no broadly accepted Implementation Guide, 

such as US Core [260] for other data), and second, the lack of write access to FHIR APIs 

implemented by prevailing EHR vendors. This led Torous and colleagues to use proprietary 

APIs and data structures to fulfill their specific needs. Finally, Apple’s HealthKit is a powerful 

framework for consumers to collect their health data, including their clinical health record data, 

in a centralized location; it uses FHIR to obtain records from healthcare organizations [261]. 

However, integration of PGD from HealthKit back into the EHR requires vendor-specific 

solutions; for example, Epic integration is mediated by the patient portal application MyChart 

[262]. Other reports in the literature describe applications conceptualized and designed as 

FHIR-based applications, but have not been implemented; others were never intended to 

automatically and continuously ingest PGD [85,263].  

Integrating natural language data has further unique challenges. For example, in case a 

patient chooses to share natural language data such as social media posts, diary entries, or text 

message logs, the usefulness of raw data is significantly limited. Even with structured data, the 

volume of data and low likelihood of clinical relevance limit their clinical usefulness [85]; while 

numeric data can be plotted over time or checked against defined normal ranges, this is not 

possible with free text data because it is not inherently computable. Unsurprisingly, a 2020 

systematic review on PGD and EHR integration found no studies using patient-generated 

natural language data [85].  

8.2.3 FHIR and text messages 

There are few published examples of FHIR being used to model text messages.  

Bass et al. [264] developed Configurable Assessment Messaging Platform for 

Interventions (CAMPI), a platform enabling communication between health intervention teams 

and patients via SMS. In one implementation, CAMPI was used to deliver text messages 
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containing intervention content on a pre-programmed schedule with tapering frequency - first 

daily, then weekly, and finally monthly. In another, the system was used to collect participants’ 

self-reported stress levels, with participants being able to text back their responses. CAMPI uses 

a message templating approach, where messages can be specified with placeholders, e.g. “Hi 

[name], Please complete the following survey…”. A delivery timeframe is specified for scheduled 

messages, and the system keeps carefully manages message delivery status to avoid sending 

duplicated messages, which is required because of the potentially asynchronous nature of text 

message delivery channels. Though CAMPI does not make use of FHIR, their use case aligns 

well with ours, and the authors suggest FHIR as an avenue for future work exploring EHR 

integration.  

As part of their extensive library of technical frameworks, Integrating the Healthcare 

Enterprise (IHE) International published a trial implementation FHIR Profile titled Mobile 

Alert Communication Management (mACM), intended to guide the implementation of basic 

alerting services with a low barrier to entry [265]. The profile details the use of FHIR resources, 

specifically Communication and CommunicationRequest, to model text message alerts for two 

use cases: alerting health workers to a crisis, and for patient care reminders (e.g. for upcoming 

appointments or medication reminders) intended for patients and caregivers. The authors 

envision a transaction pattern involving two actors: the alert aggregator, which holds the details 

of alerts to be disseminated and manages them, including dispatching them to a 

communications platform for delivery; and the alert reporter, who originates or relays alerts, 

translating them in order to make them interoperable with the alert aggregator. Further, the 

profile specifies additional constraints on CommunicationRequest and Communication 

resources, such as changing the cardinality of several attributes such that at least one entry is 

required (e.g. the cardinality of the category attribute in CommunicationRequest resources is 

changed from [0..*] to [1..*], with the coding marking the resources appropriately for 

dissemination by the alert aggregator). This FHIR report/profile is intended to cover a broad 
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range of use cases and is concordantly general; here, we follow these recommendations where 

appropriate and applicable both for application transaction pattern (and therefore, architecture 

design) and for the FHIR data representation model design. 

8.2.4 FHIR for representing machine learning inferences 

FHIR has been used in conjunction with machine learning applications. For example, 

Hong et al. [266] developed a natural language processing (NLP) pipeline that extracts entities 

from clinical notes, and generates the relevant FHIR resources, such as Condition and 

Procedure resources. For example, the pipeline might recognize mentions of hypertension and 

hypercholesterolemia (and associated attributes such as onset date and status) in a clinical note, 

and create a Condition resource for each. The intention is to alleviate the duplicated effort of 

describing conditions in a note and also adding them as discrete entries on the problem list. 

FHIR extensions were defined to characterize the NLP origin of the resources; for example, the 

name and version of the NLP system that extracted the term, and the line and offset in the input 

note that corresponds to the entity. FHIR extensions have advantages and disadvantages: they 

allow extending the data model with properties of any name or type, resulting in near unlimited 

flexibility; at the same time, this exacerbates issues of semantic interoperability, which requires 

that data structures and the range of possible values are well-defined. Further, the authors 

conceptualize NLP outputs in terms of standard value sets; for example, an extracted condition’s 

Condition.clinicalStatus should be framed in terms of the HL7 value set 

ConditionClinicalStatusCodes. The authors additionally note the necessity of combining 

existing structured EHR data with the NLP outputs in order to create sufficiently contextualized 

FHIR resources; for example, inferences may be attached to existing resources, or may reference 

existing resources such as a Patient resource. The authors populate some attributes according 

to metadata from the source document, e.g. the type of the source document may be used to 
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populate the Condition.category attribute in terms of ConditionCategoryCodes, and the 

Condition.recordedDate may match the source document’s Condition.recordedDate.  

8.2.5 FHIR-native 

FHIR enables interoperability between health information technology systems with 

different underlying data representation models by specifying the formats and APIs used for 

data exchange. However, unlike its predecessors, such as the HL7v2 messaging standard, FHIR 

provides much more than an interface strategy. The specification consists of a comprehensive 

representation model for common data types in the clinical domain. A community-powered 

standard, FHIR is the product of the data modeling efforts of numerous clinical and technical 

experts. Additionally, it specifies schemes for common transactions, such as creating, reading, 

updating, and deleting (CRUD) data, as well as for more complex tasks such as querying and 

transforming resources. It is therefore a suitable starting point for any application working with 

clinical data.  

We previously developed an approach to FHIR application data modeling termed FHIR-

native [23]. In the FHIR-native approach, FHIR is the application’s primary underlying 

information model, representing data, state, and business logic. This removes the need for 

ancillary, non-FHIR database systems and allows us to leverage existing tools, such as open-

source reference implementations, to their full extent. In settings where apps operate out of an 

EHR system, the EHR’s database is used as the primary data store. 

This approach may not be appropriate for complex applications or use cases not covered 

by the FHIR standard. FHIR is designed to cover 80% of the use cases in the medical domain; in 

other words, resources are intended to meet the most common needs [267,268]. As a result, 

FHIR applications for certain specialized use cases may have data modeling requirements for 

which FHIR is not appropriate. Applications for these use uses require an additional data 

representation model beyond FHIR. However, where its application is possible, FHIR-native 
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can facilitate rapid development and support system scalability and affordability by maximizing 

the reuse of existing knowledge and tools and minimizing the need for custom solutions and 

system components. 

8.3 Methods 

8.3.1 Application requirements 

We previously conducted a needs assessment in a purposive sample of 16 interview 

participants [221]. 11 (69%) participants were invention staff on a Caring Contacts research 

study, and 5 (31%) worked with programs delivered as part of ongoing care. 11 (69%) 

participations used text messages to deliver the intervention. Based on our previously reported 

needs assessment, we developed a model of the current workflow (Figure 8.1). There are three 

primary actors in the work system: the patient, clinical Caring Contacts team members, and 

clerical team members. In real-world settings, the same staff, e.g. social workers, often fulfill 

both roles; however, there have also been implementations where an assistant takes on clerical 

tasks and a clinician, e.g. behavioral health provider, fulfills the clinical role.  

The first actor in the work system is the patient. Patients receive messages on a pre-

determined schedule via the designated communication channel, based on patient preference or 

the healthcare organization’s capabilities. For example, messages may be sent via text message, 

email, or postal mail. Patients may or may not reply to these scheduled messages; if they do, 

they may then receive follow-up communication from the Caring Contacts team. 

Clinical roles complete a range of tasks requiring clinical judgment. For example, they 

may monitor incoming messages, triage them and decide how to follow up, and also complete 

the follow-up. In writing follow-up messages, clinical staff must ensure compliance with the 

“spirit of Caring Contacts”, i.e. messages should be caring, undemanding, and appropriate for 

the patient’s situation and needs. A range of information may be referenced to complete this 

task, including intervention-specific records such as intake notes summarizing patient 



 

 187 

information and intervention strategy; patient information from an EHR, if available, including 

the patient’s suicide safety plan, care team, diagnoses, appointments, and history of depression 

or suicidality score questionnaires; and the message exchange history, which might provide 

insight into the patient’s communication style and baseline risk level. Clinical staff may also 

create appropriate documentation of intervention midpoints or events, such as clinical notes 

intended for the patient’s primary care or behavioral health provider.  

 

Figure 8.1. Current workflow & actors (without ISACC). Labels A-E correspond to elements of 
workflow. 

Unlike clinical tasks, clerical tasks require little to no clinical expertise. While clinicians 

may complete these tasks in settings without clerical support, shifting them to assistant staff or 

information technology can free up clinicians for clinical work. Clerical work includes 

administrative and logistic tasks, such as determining eligibility based on predefined criteria, 

enrolling participants and entering their data in the appropriate databases, and scheduling the 

Caring Contacts messages. They also keep track of patients and their message schedules over 
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time, e.g. by checking the patient list daily to determine who should receive a message that day, 

printing cards, preparing postal mailings, and creating emails and text messages as appropriate.  

 

Figure 8.2. Proposed workflow & actors (with ISACC). Labels A-E correspond to elements of 
workflow. 

In our prior work [221], we identified three ways in which technology could support and 

augment this workflow: automation, cognitive support, and data and workflow integration. The 

need for automation arises from the workload demands of the intervention combined with 

resource scarcity. Currently (Figure 8.1), intervention staff spend significant amounts of time on 

manual, time-consuming tasks, such as keeping track of message schedules, manually creating 

and sending messages, and monitoring incoming messages to ensure no urgent calls for help are 

missed; at the same time prevention efforts are often not reimbursed by payors, constraining the 

amount of time that can be dedicated to such programs. A second area of opportunity for 

informatics tools is cognitive support for clinical decision making, e.g. with informative 

dashboards or automatic risk assessment algorithms, which would further free up staff to 
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support patients rather than wasting time on busywork. Finally, the need for improved data and 

workflow integration in current workflows is evident from duplicated data entry efforts and 

inefficient workarounds for communication between stakeholders such as behavioral health 

providers, social workers, and administrative assistants.  

Figure 8.2 shows features informatics tools may implement to realize these design 

considerations to achieve a re-distribution of tasks and responsibilities. ISACC is depicted as the 

fourth actor in the work system, which  interacts with the patient, clinician, and clerical actors. 

ISACC alleviates workload burden by automating or supporting tasks from both the clinical and 

clerical roles. At enrollment time (A), the tool may help with candidate identification and 

automated message scheduling, and simplify the workflow by automatically pulling in existing 

patient information if applicable and saving appropriate documentation e.g. the patient’s 

enrollment status back to the EHR. As the program progresses, the tool may automatically send 

out communications as they become due (B), using the EHR to determine the most current 

contact information and patient name, and recording what messages were sent and when. The 

system would also continuously monitor for patient replies (C) and in the event that a 

participant replies to a scheduled message, prioritize the message for follow-up using NLP, alert 

staff of the message and its priority, and optionally send an automated response if the 

implementing organization chooses to do so; during this process, the application will file the 

message and associated risk score to the EHR. Next, staff may compose a follow-up message 

(D). ISACC can substantially assist in this process by harmonizing and presenting relevant 

patient information from several sources. The EHR may contain demographics, diagnoses, 

depression score history, a suicide safety plan, and more. There may also be intervention-

specific information such as intake notes and message history. ISACC may also provide 

reference information the user may find useful, such as response templates or resources for  
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Table 8.1 Design opportunities (possible ISACC features) 

CC = Caring Contacts 

Design consideration Features (Possible solutions) Workflow 
step 
(Task) 

1. Automation 
Resource scarcity 
combined with the 
workload imposed by CC is 
a barrier. Informatics tools 
can help by automating 
simple or repetitive tasks, 
and using machine 
learning (e.g. risk 
modeling, automated 
information extraction) to 
help focus human expertise 
where it is most needed.  

candidate identification (eligibility) A 
automatic scheduling based on template 
(customizable) 

A 

automatic sending of CC based on schedule B 
automatically triggered follow-ups (e.g. for urgent 
late night messages) 

C 

alerting CC staff of new messages C 
prioritizing messages for follow-up (e.g. by patient 
baseline risk, urgency, timing) 

C 

automatic routing/delegation (e.g. based on 
expertise, availability) 

C 

automatic extraction of clinically relevant insights 
from messages 

D 

auto-generate clinical note contents based on 
template 

E 

2. Information 
retrieval and synthesis 
for cognitive support 
Authoring effective follow-
up messages requires 
consideration of patients’ 
unique circumstances. 
Different kinds of data 
from different sources are 
used for this. Informatics 
tools can help by 
aggregating and 
synthesizing this 
information, and by 
making contextualized 
suggestions. 

display current and historical patient info 
(demographics, questionnaire history, …) 

D.a. 

display current and historical intervention info 
(intake notes, message history) 

D.a. 

display current and historical machine learning 
insights (urgency scores, extracted themes)  

D.b. 

display intervention reference information 
(resources, message templates, …)  

D.a. 

suggestions based on patient needs (what resources 
to include, what messages are likely to be well 
received, rewrite suggestions) 

D.b. 

3. Data and workflow 
integration 
CC workflows require 
communication between 
systems and people with 
different roles and 
responsibilities. 
Informatics tools can help 
by providing planning 
tools, facilitating 
information exchange with 
external systems, and 
enabling workflow 
integration across systems.  

Launch workflow from within an existing system A, B, C, D 
show/integrate data from external systems when 
appropriate (no double data entry, login into 
multiple systems) 

A, B, C, D 

share patient data back to external systems (e.g. file 
clinical notes for ongoing care and insurance 
reimbursement) 

A, B, C, D, 
E 

capture (& share) patient- and intervention-level 
metrics for reporting 

A, B, C, D, 
E 

patient referral/enrollment status tracking (for 
handoff) 

A 

staff assignments (and temporary delegations)/staff 
work queue management 

C, D 

action logs/task status management C, D 
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copy-pasting (e.g. crisis line number). Finally, the current and historical insights extracted from 

messages with NLP are displayed here, namely risk scores and extracted message themes. The  

final step (E) is filing appropriate documentation for any action taken. ISACC can help by 

automatically generating the note text with the patient’s enrollment information, the messages 

sent to and received from the patient, and what follow-up actions were taken within the system. 

The note may also be filed automatically to the EHR.  

8.4 Results 

We developed a minimum viable product (MVP) of the Informatics-Supported 

Administration of Caring Contacts (ISACC) application, implementing the subset of features 

shown in Supplemental Table 1, using HAPI, SMART-on-FHIR, ReactJS, and Twilio. The code is 

open source and freely available on GitHub. The following sections contain detailed descriptions 

of the FHIR representation model, application architecture, and workflow. 

8.4.1 FHIR representation model 

The requirements for the FHIR data model arise from the application requirements 

(Table 8.1). Our FHIR data model design follows the FHIR-native approach [23], which involves 

using FHIR not only for data exchange, but to represent data, state, and business logic. 

Therefore, the FHIR data model is designed to capture all aspects of the application’s data 

requirements. Figure 8.2 shows these data model requirements and lists the FHIR 

resources/attributes that can be used for each requirement. The resources reference each other 

as shown in Figure 8.3. See Supplemental Table 1 for the mapping between application 

requirements and data model requirements. The following sections describe the usage of each 

resource in detail. 
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Figure 8.3. Domain model and resource organization. Layer 4 (Financial) is omitted because it is not 
applicable. 

8.4.1.1 PlanDefinition 

Caring Contacts involves the use of pre-defined but customizable message plans. For 

example, a healthcare organization may choose to send a message at one-week intervals, 

tapering down to two-week intervals after the first month. Many programs additionally send a 

message on the patient’s birthday and on holidays. Similar to the templating approach we 

developed for StayHome, a COVID-19 symptom tracking app [23], the current work defines a 

template plan that is instantiated for each patient as appropriate. As described in the Clinical 

Reasoning Module of the FHIR standard1, we use the PlanDefinition resource to represent the 

 

1 https://www.hl7.org/fhir/clinicalreasoning-module.html 
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message schedule template to be instantiated later as a CarePlan resource. Each implementing 

organization develops a custom template according to their goals, preferences, and patient 

population, and deposits a corresponding PlanDefinition resource with the appropriate 

identifier in the FHIR database. The template is instantiated for each individual patient at 

enrollment time, allowing customizations of timing and message content on an individual basis. 

Templated messages are defined in the action attribute as ActivityDefinition resources. 

8.4.1.2 ActivityDefinition 

This resource type is used to define individual messages in the default message template, 

using a value of CommunicationRequest for the kind attribute. Each message is specified to go 

out in the specified week of the program, on the specific day of the week, at the specified time of 

day, using the timingTiming.repeat attribute. Further, the message content is defined using 

the dynamicValue attribute, with a path value of payload.contentString and an 

expression.expression value of the message string, which may contain the “{name}” 

placeholder, to be replaced with the patient’s first name. A limitation of this use of templating 

language is that the user interface must convey clearly what placeholders are available and what 

values they will be replaced with; additionally, custom code must be written to perform the 

substitution.  

8.4.1.3 CarePlan 

We use the CarePlan resource to represent each participant’s Caring Contacts plan. This 

includes the intervention-specific notes (intake notes), which may be amended throughout the 

course of the intervention but are not episodic, i.e. there are not multiple notes created 

throughout the intervention; rather, staff maintain one note per patient. However, the note is 

specific to the current instance of the Caring Contacts program, i.e. if the patient participated at 

two different points in their life, we would expect to have two different notes, and so the notes 

should be directly linked to the CarePlan. We therefore use the description attribute for this 



 

 194 

note. The CarePlan resource instantiates the organization-level PlanDefinition, and uses the 

instantiates attribute to reference this template. The required intent attribute is set to plan. 

We additionally use the status attribute to represent the patient’s enrollment status, utilizing 

the default value set binding (RequestStatus). The initial value upon creation will be active; 

program completion will result in a status of complete, and unenrollment without completion 

will result in a status of revoked. The resource is marked as a Caring Contacts-specific resource 

using the category attribute. The appropriate patient resource is referenced with the subject 

attribute. The activity attribute will reference all CommunicationRequest and 

Communication resources belonging to this particular Caring Contacts plan. 

8.4.1.4 CommunicationRequest 

Once the message schedule is created, CommunicationRequest resources are created 

according to the schedule: for each message, the message content and date/time are resolved 

using the placeholders and patient’s program start date. Each resource will contain the message 

content in the payload.contentString attribute and the planned instance of sending in the 

occurrenceDateTime attribute. Further, the patient resource is referenced in the recipient 

attribute. The status attribute is initially set to active, but updated to completed once the 

request is executed, or to on-hold if the request failed to execute. The CarePlan the resource 

belongs to is referenced using the basedOn attribute. 

8.4.1.5 Communication 

Communication resources are created for each delivered message throughout the course 

of the intervention. When a CommunicationRequest.occurrenceDateTime happens, the 

messaging API (e.g. Twilio) is invoked to send an SMS message to the phone number with 

system sms in the linked Patient resource’s telecom attribute. Upon successful delivery, a 

Communication resource is created with a basedOn attribute referencing the 
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CommunicationRequest, a partOf attribute referring to the appropriate CarePlan resource, 

and with the category attribute marking the resource as a Caring Contacts message. Further, 

the payload attribute contains the message content, the sent attribute contains the delivery 

date and time, and the recipient attribute contains a reference to the patient. The medium 

attribute contains indicates that the message was sent via SMS using the SMSWRIT code from the 

ParticipationMode (http://terminology.hl7.org/ValueSet/v3-ParticipationMode) code 

system. Further, the resource status is set to completed; the status of the linked 

CommunicationRequest is updated to completed as well. 

Communication resources are also created for incoming messages. When the SMS 

provider notifies ISACC that a patient responded, the patient is identified via phone number, 

and a resource is created that references that patient in the sender attribute. The partOf 

attribute will reference the patient’s currently active ISACC CarePlan. The status will be 

completed, the category will mark the Communication as a received message, and the medium 

will be set to a Coding with system ParticipationMode and value SMSWRIT. The sent attribute 

will be populated with the current time, and the payload.contentString attribute will contain 

the message text.  

The message priority and message themes as extracted by the machine learning modules 

will be populated in the priority and extension attributes, respectively. Previous approaches 

suggest the creation of Observation resources for suicide risk scores. However, the risk scores 

calculated as part of ISACC do not correspond to any standardized idea of risk score, e.g. a score 

calculated from patient answers on the Columbia Suicidality Screener questionnaire. Rather, 

they represent a probability of a particular message being urgent, and it may not be appropriate 

to consider this score outside of the context of that communication. We therefore represent the 

score using the priority attribute of Communication resources, rather than creating 

Observation resources. Future work may explore the use of Observation resources if machine 
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learning can be used to infer suicide risk measurements that are valid and meaningful outside of 

the message context. 

Finally, Communication resources are also created when Caring Contacts staff send a 

manual message to a patient, such as well following up with the patient about a message they 

sent. After the appropriate messaging API is invoked and the message is successfully delivered, a 

Communication resource is created with a reference to the patient’s CarePlan in the partOf 

attribute, a status of completed, a category indicating the message type, a medium with 

system ParticipationMode and code SMSWRIT, the delivery time in the sent attribute, a 

reference to the patient in the recipient attribute, and the appropriate 

payload.contentString attribute. 

In each case where a Communication is created, the CarePlan resource is updated to 

reference it within its activity attribute. 

8.4.1.6 DocumentReference 

We use DocumentReference resources to represent progress notes regarding the Caring 

Contacts intervention. The note text is contained in the content.attachment.data attribute as 

html-formatted text. The format is indicated by the content.contentType attribute having a 

value of text/html. The category attribute designates the note type as Progress Note 

(http://loinc.org/11506-3), and also as Caring Contacts note 

(http://isacc.app/CodeSystem/note-type/isacc-progress-note). Further, the status attribute will 

be current, and the date attribute will be the document creation time, and subject will 

reference the relevant patient. 

8.4.1.7 Patient 

For the purposes of ISACC, Patient resources must at minimum contain a telecom 

entry with ContactPoint.system value of sms, at least one name entry with a non-null given 
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attribute, and a birthDate which will be used to schedule a birthday message. Further, ISACC 

will look for emergency contact information in the contact attribute, such that the 

contact.relationship has a coding of type PatientContactRelationship 

(http://hl7.org/fhir/ValueSet/patient-contactrelationship) and value C (Emergency Contact). 

8.4.1.8 Other patient information 

ISACC displays the most recent value for Observation resources of the following kind, if 

present: First, those with code 44261-6 (PHQ-9 depression questionnaire scores); second, those 

with code 93373-9 (Columbia Suicidality Screener score). Further, the diagnosis name 

(condition.code.coding.display), onset date (condition.onsetDateTime), and status 

(condition.clinicalStatus.coding.code; e.g. active vs. resolved) are shown for each of the 

patient’s linked Condition resources. Finally, name (participant.member.display) and role 

(participant.role.coding.display) are displayed for each provider in the patient’s 

CareTeam. 
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Table 8.2 FHIR modeling requirements for ISACC  

All data needed to preserve state and support application logic are modeled in FHIR. 

Data model need FHIR resource & attribute Comments 

System-level 
message 
schedule 
template 

System-level 
message 
schedule 
template  

PlanDefinition(where={id=cc-message-
schedule-template}) 
PlanDefinition.actions 
 
Content and time of day for birthday message: 
PlanDefinition.action(where={ 
trigger.type=named-event and 
trigger.name=birthday}) 

Each message should have message content, 
time spacing, i.e. how many weeks or 
months to go between messages, and time of 
day. Should be able to specify different time 
of day for each message. Support birthday 
message. 

Scheduled 
message 

Content: 
ActivityDefinition.dynamicValue(where={path
=payload.contentString}).expression.expressio
n  
 
Time spacing & time of day: 
ActivityDefinition.timingTiming.repeat.period  
ActivityDefinition.timingTiming.repeat.period
Unit 
ActivityDefinition.timingTiming.timeOfDay 

 

Patient/interve
ntion-level 
message 
schedule 
 

Patient/interve
ntion-level 
message 
schedule 

CarePlan(where={intent==plan, status=active, 
subject=patient, category= 
http://isacc.app/CodeSystem/careplan-
type|isacc-message-plan}) 
Careplan.activity consisting of 
CommunicationRequests with: 
CommunicationRequest.payload 
CommunicationRequest.occurrenceDateTime 
CommunicationRequest.recipient 

 

Patient/interve
ntion-level 
notes 

CarePlan.description Intake notes, may be amended later. There 
can be only one note per Patient per 
CarePlan 

Enrollment 
status 

CarePlan.status 
active 
completed 

status==revoked if program was not 
completed (e.g. if patient wishes to no longer 
receive messages) 
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revoked status==complete if all messages in message 
schedule have been sent 

Message record 
 

Message 
priority 

Communication.priority 
routine 
urgent 

urgency level (priority) for each received 
message 

Message 
response status 

Communication(where={recipient=patient, 
sort=-sent, _count=1}).sender 

 

Message 
response time 

Communication(where={recipient=patient, 
sort=-sent, _count=1}).sent 

To find the amount of time since patient-
initiated message was received 

Message type Communication.category 
http://isacc.app/CodeSystem/communication
-type | isacc-auto-sent-message 
http://isacc.app/CodeSystem/communication
-type | isacc-manually-sent-message 
http://isacc.app/CodeSystem/communication
-type | isacc-received-message 

Distinguish automatically sent messages 
from manual messages 

Message 
delivery status 

Communication.status 
completed if successful 
not-done with 
Communication.statusReason==system-error 
if there was a technical failure preventing 
successful delivery 

Keep track of message sending success for 
outgoing messages 

Progress note 
record 

Note type, date, 
and content 

DocumentReference(where={category=http://
loinc.org|11506-3 or category= 
httpn://isacc.app/CodeSystem/note-type | 
isacc-progress-note}) 
DocumentReference.date 
DocumentReference.attachment.data 

File patient note to EHR when response 
authoring workflow is being finished. 
Mark the note as a Progress Note (LOINC 
11506-3) as well as a caring contacts note for 
easy retrieval. 

Patient record 
 

Patient name  Patient.name.given Name to be used to address patient in 
message. 
The patient may in theory have a preferred 
name that is different from their given name. 
The use attribute requires NameUse and 
does not allow extension, but a future 
version may consider adding a Caring 
Contacts -specific name preference, for 
example as an extension. 
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Patient contact 
information  

Patient.telecom(where={use=sms}) Contact details to which Caring Contacts 
messages should be delivered (channel e.g. 
SMS, phone call; actual contact detail e.g. 
phone number, email address). Only SMS 
for now; in the future, add 
use=phone/use=email. 
Patients may have multiple contact details, 
even multiple phone numbers. Some phone 
numbers may not be private (e.g. a shared 
phone) or may not have the ability to receive 
SMS. Need the ability to designate a contact 
point for Caring Contacts that may be 
different from the contact point that is 
preferred for other doctor’s office 
communication. 

Patient birthday Patient.birthDate To schedule birthday message, and for 
identification purposes. 

Observation 
records 

Observation 
name, date, and 
value 

Observation.code 
Observation.value 
Observation.effectiveDateTime 

 

Diagnosis 
records 

Diagnosis 
name, date, and 
status 

Condition.code.coding.display 
Condition.onsertDateTime 
Condition.clinicalStatus.coding 

 

Care team 
records 

Name, role, and 
contact 
information for 
each care team 
member 

CareTeam.participant.member 
CareTeam.participant.role.coding 
CareTeam.participant.telecom 
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8.4.2 Application architecture 

The system components are shown in Figure 8.4.  

 

Figure 8.4. ISACC application overview. 

The system involves 1. a SMART-on-FHIR web client application; 2. a server app asynchronously 
providing the message service for sending and receiving messages as well as running machine 

learning models; 3. a host system implementing FHIR APIs, such as an EHR; 4. a message dispatch 
service, such as Twilio, for sending and receiving messages. Patients receive messages as SMS text 

messages at their designated phone numbers. 

8.4.2.1 SMART-on-FHIR web client   

This is the user-facing application providing functionality for enrolling, managing, and 

communication with patients in the Caring Contacts intervention. The user begins by initiating 

the application launch from within the FHIR host system, such as an EHR. This establishes an 

appropriately authenticated connection between the ISACC application and the EHR, allowing 

the application to collect patient information from the relevant EHR chart, including first name, 

last name, and date of birth for identification purposes. Contact details, as required by ISACC to 

send messages, as well as emergency contact information are also retrieved from the host 

system, or can be entered if not available.  

At enrollment time, a message schedule is generated from a configurable template 

defined on the system level. Users can then remove or add messages and change the messages’ 

ISACC
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client: 

Enrollment 
Scheduling 
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FHIR resource management 
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Machine learning inference 
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text and date/time, as needed. The patient’s first name can be included within the message text 

using a placeholder. Users can also enter patient- or program-specific notes, such as intake 

notes. Once the user completes this workflow, the schedule is created in the host system’s 

database as a CarePlan via FHIR API, and CommunicationRequest resources are generated 

accordingly.  

Once the patient has been enrolled and their messages scheduled, users can access the 

messaging view. This view includes patient information for reference: that entered during 

enrollment, as well as any data available in the linked EHR, which may include the patient’s 

suicide safety plan, PHQ-9 (depression questionnaire) scores, Columbia Screener (suicidality) 

scores, diagnosis information, and details of the care team. The application also provides a view 

of all relevant messages (Communication resources) that have been exchanged so far. Using this 

view, the user can also send messages to the patient, such as responses to patient replies or one-

off communications.  

8.4.2.2 Messaging service (server app) 

This continuously running server app manages FHIR resources, dispatches and receives 

SMS communications, and utilizes available machine learning models to draw and store 

inferences about the messages. To accomplish this, it is in continuous communication with the 

host system via FHIR APIs, polling for CommunicationRequest resources and executing 

requests as appropriate. When CommunicationRequest resources are triggered, the service 

creates the message, obtains the appropriate contact details needed to send the message, and 

requests the message be sent via an API to the communication platform. Once the SMS API 

reports that a message was sent, the service creates a Communication resource with the details 

and status of the message and marks the CommunicationRequest as complete. The server app 

also acts as contact point for the SMS platform, which passes along incoming SMS messages via 

a call to a defined webhook. Once such a message is received, the service uses a machine 
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learning model to draw inferences (calculate a risk score), then creates a Communication 

resource containing the message details and inferences. The Communication resource is 

deposited in the FHIR database and will be thus be shown in the web client app when it is next 

viewed. 

ISACC uses the best-performing BERT model developed in Chapter 6. The fully trained 

model is deposited in the file system and thus available to the application at runtime. Upon 

receipt, the model is loaded into memory and used to predict a binary urgency label for the 

received message. A label of 1 is represented as a priority of stat in the Communication 

resource; routine is used for a label of 0. 

Of note is that the SMART-on-FHIR web client and the messaging service app do not 

stand in communication with each other. While each application interacts with the FHIR 

database, they are independent actors in the system. This allows the SMART-on-FHIR web 

client to maintain its status as confidential client, i.e. an application that only interacts with the 

FHIR host and no other outside service. 

8.4.2.3 SMART-on-FHIR host (EHR) 

This could be an EHR system such as Epic or Cerner. However, a significant advantage 

of using FHIR and SMART-on-FHIR, which are standardized protocols, is that ISACC is 

completely portable between systems as long as FHIR and SMART-on-FHIR APIs are provided. 

If an EHR system is not available or if the available system does not implement all the required 

APIs, a host system harness can be used. ISACC was developed using fEMR, our open-source, 

“free-standing” SMART-on-FHIR host system internally developed for another project1, which 

can be used for development and demo purposes; fEMR could also be used as the primary host 

system in an operational implementation of ISACC. While this reduces the benefits derived from 

 

1 https://github.com/uwcirg/cosri-environments 
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using FHIR and SMART-on-FHIR – for example, separate credentials would have to be 

maintained and duplicated data entry efforts may be required – it represents a useful waypoint 

along the pathway of EHR integration.  

8.4.2.4 Message dispatch system 

Here, we demonstrate the feasibility of ISACC using SMS for communication using the 

commercial messaging vendor, Twilio1. However, another API-based communication platform 

could be substituted. For example, a system that sends and receives communications via email 

instead of SMS. A traditional postal mail process for Caring Contacts could be incorporated as 

well, as long there is a way to dispatch outgoing messages (e.g. a task to printing service or work-

queue for a post card to be written by hand) and optionally, receive incoming messages.  

8.4.3 Workflow overview 

This section illustrates the user-facing functionality that ISACC implements to support 

the workflow as shown in Figure 8.2. There are three views: the patient list, the patient 

enrollment view, and the messaging view. 

8.4.3.1 Patient list 

The patient list view (Figure 8.5) is the launch point for the Smart-on-FHIR application, 

and may thus be part of the EHR system that serves as application host. In standalone systems, 

this FHIR host system role is fulfilled by our SMART-on-FHIR harness app, called fEMR. This 

view shows a list of all patient records in the system. In fEMR, new client records can be created 

by entering first name, last name, and date of birth. Once in the system, patients can be enrolled 

in a program (that is, a message schedule can be created); to begin this process, users launch the 

SMART-on-FHIR web client app in enrollment mode from the patient list view. To review 

 

1 https://www.twilio.com/ 
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patient messages and to send new messages, users launch the SMART-on-FHIR web client app 

in messaging mode. In fEMR, the patient list view also includes a column displaying if a 

response has been received but not reviewed, and if so, how long ago that messages was 

received. If the message was received more than 1 business day ago, this column also indicates 

this with an additional flag. Another column shows an indicator icon if the outstanding message 

appears to be urgent. The urgency and time indicators will only be shown until Caring Contacts 

staff follow up. Deployment of ISACC within a commercial EHR system will require 

corresponding column configuration according to the EHR vendor’s instructions.  

 

Figure 8.5. Patient list 

8.4.3.2 Patient enrollment 

The enrollment view (Figure 8.6) allows the user to specify the message schedule for a 

patient being newly enrolled in the intervention. Initially, the default message schedule 

(configured by the organization in a system-level template) is shown, which contains the default 

timing and text for each message. Date, time of day, and message content can then be 
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customized for each message, if desired; messages can also be added or removed. Users may use 

placeholders, such as “{name}” to substitute the patient’s preferred name. A birthday message is 

generated as part of the schedule if the patient's date of birth falls between the first and last 

scheduled message. Patient intake notes can be entered here as well. Completing this enrollment 

step will cause appropriate records to be created in the database, which will then trigger SMS 

messages to be sent as specified.  

 

Figure 8.6. Enrollment view 

8.4.3.3 Messaging 

The message view (Figure 8.7) shows the history of exchanged messages and allows users 

to write replies. Patient information and patient notes are shown for reference, and can be 

amended if needed. If available, e.g. from a linked Electronic Health Record system such as 



 

 207 

Epic, the most recent PHQ-9 (depression) and Columbia (suicidality) questionnaire scores, 

diagnoses, and provider information are shown. Messages that the system determined to be 

urgent are highlighted. Language use patterns and expressions that may be related to suicide 

risk (e.g. entrapment, hopelessness) are flagged. Users can write new messages, which will be 

shown in a different color to differentiate them from the scheduled, automatically sent Caring 

Contacts messages. 

 

Figure 8.7. Messaging view 
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8.5 Discussion 

In this work, we used findings from a previously published needs assessment study [221] 

to develop a list of possible features that would address these user needs. We then developed 

application requirements for an initial implementation of such an application, selecting a subset 

of features to implement for the purposes of a minimum viable product (MVP) for ISACC. Based 

on these functional requirements, we determined the data modeling needs and assessed the 

feasibility of using FHIR to meet these needs, demonstrating that FHIR is capable of accounting 

for all the data model needs for Caring Contacts arising from this and prior work. We 

additionally developed an architecture for an information technology system capable of 

ingesting PGD and making machine learning inferences in real-time, honing SMART-on-FHIR 

to enable portability to commercially available EHR systems. Finally, we implemented a 

functional MVP embodying these designs, demonstrating the feasibility of the system. We 

provide the MVP in a freely available, open-source repository under the BSD 3-Clause license.  

8.5.1.1 A FHIR architecture for PGD and machine learning 

To the best of our knowledge, there have been no reports of applications that 

automatically ingest and process PGD and integrate them into clinical workflows in a 

meaningful way. This is because of challenges ranging from system architecture questions to 

data representation and workflow integration questions. SMART-on-FHIR is promising, but 

there are unresolved questions of how it can be leveraged to enable workflow integration in this 

context, and how it might be set up to continuously query for external data. Using FHIR as basis 

for data modeling raises questions of data representation choices, and questions of where and 

how this data is deposited in a FHIR database. Finally, there are workflow integration 

considerations that will directly affect clinical utility, i.e. of how external data can be made not 

only clinically meaningful, but also actionable within clinical workflows.. 
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This work represents a proof of concept for this use case. We designed an architecture for 

a SMART-on-FHIR-based application system that includes a continuously running, 

asynchronous service that stands in communication with the source of PGD via API, processes 

incoming data using machine learning in order to add clinical meaning, and translates it into 

FHIR resources. We further designed and developed a user-facing client application according 

to findings from a systematic user needs assessment, integrating PGD and insights generated 

from it into an existing workflow that stands to benefit from this. This system serves as a 

blueprint for similar systems that may use different kinds of PGD, applying different kinds of AI, 

and solve different clinical problems.  

8.5.1.2 ISACC Requirements 

The previously published needs assessment determined that any informatics tool 

supporting the Caring Contacts suicide prevention intervention should focus on three core 

needs: full or partial automation of labor-intensive, time-consuming tasks; providing cognitive 

support to human experts as they complete clinical tasks; and providing data and workflow 

integration to facilitate team communication and reduce the workload burden imposed by 

workflows being spread across multiple information systems. ISACC addresses these needs in 

the following ways. 

 

1. Automation 

a. ISACC allows the definition of a message schedule template on the organization 

level, with message content and timing for each message. The template is 

instantiated at enrollment time, using the patient name, birthday, and enrollment 

date as appropriate. The creation of a message schedule is therefore simplified 

because neither message text nor dates and times have to entered manually. The 
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process of setting up the message schedule for a newly enrolled patients is thus 

reduced to only a few clicks. 

b. ISACC automatically sends out messages according to the schedule via SMS. Staff 

members therefore do not have to manually keep track of schedules and send 

messages by hand on the planned dates, removing the daily task of sending out 

scheduled messages entirely. 

c. ISACC alerts designated staff if a patient replies to a Caring Contacts  message, 

removing the need to check for replies at regular intervals. 

d. ISACC automatically triages messages for follow-up, allowing staff to be more 

flexible with time spent on triage and composing follow-up messages. In contrast 

to current workflows, staff will only have to review a small subset of incoming 

messages in an urgent manner if ISACC is used, and can follow up with patients 

who do not need an urgent response at a later, perhaps more convenient time, 

e.g. in batch. 

e. ISACC allows users to auto-generate progress notes for the purpose of clinical 

documentation. In contrast to current workflows, where staff have to type up 

clinical notes manually, this task is reduced to only a few clicks. 

2. Cognitive support 

a. ISACC displays selected patient information for reference. In contrast to current 

workflows, where staff may have to review large parts of patient charts, this 

supports the cognitive processes involved with clinical reasoning and decision 

making by removing the cognitive burden of mentally filtering information. 

b. ISACC allows staff to review and amend intervention notes in the same view 

where message history is reviewed and follow-up messages are composed.  

c. ISACC highlights messages that appear to indicate elevated risk. This directs 

clinicians’ attention, improving efficiency of the message review process. 
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3. Data and workflow integration 

a. ISACC is launched directly from within the patient context in the EHR, removing 

the need to log in to a separate system and search for the correct patient record. 

In contrast to information technology ecosystems with disjointed platforms, this 

improves workflow efficiency and removes opportunities for errors, e.g. opening 

the wrong patient record. 

b. ISACC uses a single, collaboratively created intervention note per patient, which 

serves as a place to communicate about the intervention strategy, e.g. things to 

keep in mind about the patient.  

c. ISACC retrieves all patient data, including text messages and questionnaire 

scores, from linked FHIR databases, e.g. patient demographics from the EHR. 

This removes the need for duplicated data entry of the patient’s emergency 

contact information, primary care provider name and contact information, and 

other relevant information that is already present in the EHR. 

d. ISACC uses the FHIR host’s database system as primary data store, i.e. data 

created by ISACC is automatically deposited into the EHR. As a result, records 

created by ISACC, e.g. CarePlan and Communication resources, are available to 

and findable by the host system (e.g. EHR) and other applications utilizing the 

EHR’s database. For example, depending on EHR configuration, the Caring 

Contacts plan may automatically appear in the EHR’s CarePlan tab, and 

messages may automatically appear alongside other patient communications in 

the appropriate sections of the patient chart in the EHR. Similarly, message 

urgency scores are saved in this database. In contrast to current workflows, this 

allows other care team members, such as behavioral health providers, to easily 

review intervention progress. 
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e. Because ISACC uses the FHIR host’s database system as its primary database, all 

data created and used by ISACC is available to reporting tools operating on this 

database, e.g. the wide range of reporting tools that are available as part of 

commercial EHR systems. For example, program coordinators could use the 

reporting tools they are already familiar with to write reports for the number of 

messages sent and received, or the amount and content of urgent messages and 

the timing of responses to such messages. 

f. Because ISACC uses the host system’s patient list functionality, patient list 

functions widely available as part of commercial EHR systems can be easily 

leveraged to benefit the Caring Contacts workflow. For example, users may be 

able to create patient lists that only contain the patients they are responsible for, 

or they may use extensive column configuration options to customize the patient 

list display according to their needs.  

8.5.1.3 Alternative designs 

This section describes some possible alternative approaches for the design decisions that 

we made and provides further reasoning for our design choices in light of these alternatives. 

8.5.1.3.1 FHIR representation choices 

In this work, we used the FHIR-native approach [23], i.e. we used FHIR as our primary 

and only data store. In this approach, FHIR is used to model every aspect of the application. We 

demonstrated that this approach is feasible for ISACC. Thus, we realized the benefits of the 

FHIR-native approach, e.g. removing the need for a separate database. However, the design 

choices enabling this have tradeoffs. FHIR is flexible and comprehensive, but it is intended for 

clinical data, which limits what data may be appropriate for FHIR. For example, the use of the 

Communication.priority attribute to store message urgency is reasonable and appropriate, as 

urgency informs the order in which messages should be read and addressed by users, similar to 
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e-mail priority flags. However, priority requires the use of the appropriate value binding, 

which limits the possible values to routine, urgent, asap, and stat. Our machine learning 

model is a binary classifier, i.e. it outputs a probability between 0 and 1 for each of two possible 

classes, and we chose to store the most likely class prediction using one of two priorities: 

routine or urgent. This is appropriate, as these two values fully capture the level of detail 

needed within the clinical workflow. We do not store the raw probability calculated by the 

model. However, while this raw number may not be immediately relevant in a clinical context, it 

is possible to imagine a use for this score, e.g. for error analysis of the model’s real-world 

performance. Therefore, by reducing the data to elements deemed clinically relevant as per the 

FHIR specification, there is information loss. We could counteract this loss by utilizing a 

separate, ISACC-specific database to be used only for data that is not appropriate for the clinical 

data store; or, we could store the raw number as a generic resource extension. However, in 

keeping with the parsimonious intentions of FHIR and the FHIR-native paradigm, we chose not 

to do so. 

The urgency is a proxy for suicidality, so one alternative to using 

Communication.priority might be to store it as a “suicidality score” in an Observation. 

However, we felt that the calculated risk/urgency score is not sufficiently meaningful outside of 

the Communication context to justify an Observation. Although it is valid to define an internal 

code set for the application, Observation resources are intended for standardized observations 

(i.e. those of a type belonging to a controlled vocabulary and, therefore, a specified clinical). It is 

valid to define a local vocabulary for ISACC, but this might limit the discoverability or usefulness 

of these resources outside of ISACC, e.g. in the EHR context. Another alternative is the 

Condition resource, representing a patient’s suicidal ideation as a condition akin to a diagnosis, 

problem list item, or symptom. Conditions have onset (start) and resolution (end) dates, which 

may be convenient as the beginning and end of a period of time where a patient requires 

specialized support, as defined per clinical protocol. However, it is not trivial to infer patient 
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state, including start and end times of that state, from individual patient messages. For example, 

if a patient were to send a concerning message, but then immediately follow up with a positive 

message such as “Never mind, I’m okay” or “But otherwise I’m doing really well”, one might 

argue that the Condition be marked as resolved, but it may be equally valid to keep it active. 

Such an inference of the clinical implications of an urgent message may not be valid, or may not 

be in line with the implementing organization’s values. Representing the algorithm’s outputs 

strictly as what they are, i.e. predicted urgency of an individual incoming text message, avoids 

making possibly invalid assumptions about the value’s implications. Another alternative is the 

Task resource, which represents a generic workflow step and its status. Here, it may be used to 

represent the follow-up task, i.e. a Task resource may be created to represent the need to follow 

up with a patient who may be in distress, and marked complete once follow-up is completed. 

This would be a direct representation of the workflow implication of an urgent message, which is 

only implied by representing the urgency score itself. However, this approach is not robust to 

variations in organization-specific intervention design decisions. For example, if organizations 

decided that not all urgent messages should trigger follow-up, or that non-urgent messages 

should be followed up as well, then this representation model would have to be adjusted. 

Many clinical data elements may be present in different types of observations, and it may 

not be straightforward to find the specific information one is looking for. Such is the case here 

with CareTeam. There are numerous possible approaches to finding practitioners that are 

associated with a given patient, e.g. by finding all providers linked to the patient’s encounters. 

However, this would yield many practitioners that would not be good contact points for the 

patient in the event of a crisis, e.g. those with a limited scope of practice such as physical 

therapists, or those who are not part of the patient’s local care team, e.g. a doctor they saw when 

they got sick on vacation that one time. Another alternative is using patient attributes such as 

generalPractitioner. However, this attribute would not yield all the people that might be 

appropriate in the context of suicide prevention, which includes social workers, case managers, 
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and behavioral health providers. Similarly, filtering providers by specialty can be tricky because 

there is a very long if not infinite list of specialties, depending on the value sets used, and it may 

not be possible to foresee how they are used by a particular organization. Ultimately, the best 

ways to query for a given patient’s providers will depend on how data is represented. Here, we 

chose to use the CareTeam resource, which is a curated resource of practitioners who are 

responsible for a given patient in a given context. The main limitation of this is that an 

appropriate CareTeam resource may not exist, or the resource may not include the appropriate 

list of practitioners. However, with this approach, there is a possibility of allowing ISACC users 

to easily edit the resource to be fit for use in the Caring Contacts context. 

8.5.1.3.2 Using SMART-on-FHIR 

A traditional approach may have conceptualized this system as a standalone system with 

its own credentialing system and database. This approach has advantages. For example, it would 

not depend on any host system being available and providing the appropriate APIs. The system’s 

database would be independent, allowing a higher degree of control over database contents and 

structure. Minimal data representations could be used that do not contain extraneous elements 

that may not be applicable to the Caring Contacts use case. However, there are significant 

drawbacks to this design that severely limit its clinical usefulness. Because credentialing would 

be separate, users would have to maintain usernames and passwords for multiple systems. 

Without a launch point within the EHR, users who had been reviewing patient information 

within the EHR would have to search for and open the corresponding patient record in the 

separate system. This is not only effortful, but also carries a risk of opening the wrong patient’s 

record. The existence of separate databases would necessitate managing patient information in 

two different places, and would require users to manually keep shared elements in sync and 

establishing a process for handling conflicts. Further, it would be difficult to share intervention 

information, e.g. enrollment status, message content, or calculated risk scores, with the patient’s 



 

 216 

healthcare providers, as this would involve import/export processes or manual transcription. 

This approach significantly reduces ancillary data management tasks and workflow overhead, 

and therefore supports intervention scaling. 

8.5.1.3.3 Using patient portals to support Caring Contacts 

Another approach to designing a Caring Contacts system is to set up automated patient 

portal messages. This approach has the advantage that it can be achieved without introducing 

additional technology components. The entire setup can be achieved via EHR configuration. 

However, EHR configuration can be time consuming and costly in itself, as it requires 

specialized expertise and often requires the involvement of vendor representatives. Additionally, 

the patient experience is changed if messages arrive within a patient portal. In order to see the 

messages, patients would have to first log in to their patient portal app on their smartphone or 

on a computer, which can be a barrier if internet access is limited, or if patients expect that the 

messages are routine and “not important”. This would compromise intervention effectiveness; a 

key component is to be undemanding, i.e. to minimize the effort required on the patient’s part to 

partake in the intervention, and leveraging communication channels that they are used to and 

already use anyway is a key component of that.  

8.5.1.3.4 Using “simple” database solutions 

Another possible alternative is to operate a simple database, e.g. as a spreadsheet or 

Access database, to keep track of individuals and their messages. While this approach does not 

introduce any additional technology and therefore minimizes technology costs, it is associated 

with significant workload burdens. Spreadsheets would have to be manually updated, as 

messages are sent via separate pathways. Searching for and sorting patients would be simple 

enough, but more advanced functionality might be difficult or impossible. For example, data 

validation to prevent duplicated or invalid entries, e.g. due to typographical errors, may be 

possible only with additional technical setup and configuration, and may require users to have 
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certain technical skills. While this approach may be sufficient if only a few patients are enrolled 

or if users are well-trained, it is unlikely to scale well.  

There is also no opportunity to impose a workflow on such a database. The power of 

custom applications is that operating procedures and workflows can be encoded, reducing the 

need for users to manually keep track of tasks and remember the steps to performing these 

tasks. Additionally, advanced functionality such as machine learning components may be 

difficult or impossible to incorporate in such solutions. Shareable intervention-specific solutions 

not only make this possible, but facilitate broader intervention adoption by providing out-of-

the-box solutions to common problems, as described in the next section. 

8.5.1.4 Clinical utility 

Workflow integration considerations are a major factor in developing tools that 

effectively support clinical workflows and decision making. Recommendations made by 

guidance such as the "Ten Commandments for Effective Clinical Decision Support” [162] and 

the “Five Rights of Clinical Decision Support” [252] include avoiding introducing additional 

workflow steps e.g. by requiring users to switch to a different context, and providing information 

at the right time within the workflow (where it is neither too early nor too late to act on it), via 

the right channel (presentation mode, platform, etc.), to the person who actually has the ability 

and capacity to act on it. These and other issues apply to AI-based CDS. Safety, actionability, 

and utility have been identified as core issues that must be addressed to achieve adoption of AI 

into healthcare [14]. Workflow issues may preclude actionability of AI outputs, such as when 

inferences are not presented at the right time or in the right context, or if outputs are not 

connected to interventions that may modify them. Poor workflow integration may also affect 

utility, such as when clinicians disregard AI outputs because they are presented too frequently 

or intrusively (i.e. alert fatigue), or because obtaining AI-based insights requires clinicians to 

take extra steps.  
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Raw PGD are difficult to integrate into clinical workflows in a meaningful way. They 

often come in large volumes, e.g. in the case of sensor data from wearables, and it is often not 

immediately apparent if they contain clinically relevant information. As a result, reviewing these 

data may not have a favorable cost-benefit tradeoff when time is limited. This constitutes a 

significant limitation on how useful such data can be for the purpose of supporting clinical care 

via CDS. While summary statistics and data visualization may help clinicians determine the 

relevance of numeric data quickly, this is more difficult with natural language data. Patient-

generated natural language data, e.g. social media data or patient-clinician communications, 

must be processed using NLP, lest they must be read and assessed individually.  

Processing PGD to distill clinically relevant, actionable insights, and appropriately 

integrating these insights into clinical workflows, is thus paramount to harnessing their 

potential for CDS. However, these are difficult problems, requiring careful human-centered 

design and model development efforts. Furthermore, the variability in health information 

technology infrastructure and operating procedures between organizations might necessitate 

that workflow integration is designed and developed anew for each site.  

Developing reusable, interoperable CDS systems that define how clinically relevant 

insights can be extracted from raw PGD and integrated into a workflow, in a manner that is 

robust to variations in technology infrastructure, can reduce the effort required to develop 

effective integration. Although solutions still have to be tailored to each individual site – for 

example, models may have to be retrained to perform well on certain patient populations, or 

workflow parameters may have to be modified to fit an organization’s unique vision – shared 

solutions can provide a starting point that improves the feasibility of effective AI-based CDS by 

reducing design and development costs. 
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8.5.2 Limitations 

This work should be considered in light of its limitations. SMART-on-FHIR applications 

are intended to work in conjunction with EHR systems. While this is a significant strength, as it 

has the potential to address a wide range of barriers encountered in the realm of health 

information technology, it requires that both parties fulfill their roles appropriately. As of 2020, 

vendors are legally required to support FHIR APIs per the 21st Century Cures Act [145] for the 

US Core data elements [260], but current implementations have many limitations. For example, 

few EHRs give write access to external applications. This is expected and perhaps appropriate, 

as allowing external applications to modify the contents of databases used for ongoing clinical 

care raises concerns of data governance and quality. Healthcare organizations would have to 

ensure that data originating with external applications is correct and complete. EHR vendors 

and healthcare organizations must define their own business rules for validating resources 

before allowing them to be deposited into their databases, and this process is time and resource 

intensive. Therefore, there are currently no clear expectations of the timelines for enabling write 

access in prevailing EHR systems.  

However, this limitation should not discourage the wide adoption of FHIR and SMART-

on-FHIR. Designing and developing tools according to accepted standards ensures that tools 

will work without the need for extensive software changes once the appropriate APIs are made 

available by vendors. In the meantime, the portability afforded by FHIR, i.e. the fact that tools 

can work with a wide range of different host systems, enables developers to provide their own 

FHIR host system harnesses, e.g. our fEMR, with the expectation of supplanting them with an 

operational EHR system when possible. Another possible transitional solution is to integrate 

with an EHR system to read existing data, but to use a separate FHIR server for maintaining 

application-specific data. Because the FHIR interface is identical across FHIR-compliant 

database servers, such a configuration is readily achievable by choosing the appropriate server 

address for each database transaction. 
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8.5.3 Future work 

This works enables further research investigating the use of PGD in FHIR-based CDS 

tools. Specifically for text message-based interventions, future work may directly build upon the 

FHIR representation model and application architecture we presented, reusing the code that we 

made available.  

In the context of Caring Contacts, this work informs the design and development of 

informatics tools to support this intervention. By providing the artifacts of our design and 

development process, we enable healthcare organizations with diverse needs and regulatory 

constraints to build on our work to develop tools that meet their needs. They may use our design 

considerations, software specification/suggested feature list, they may use the source code for 

our implementation as a starting point to write their own application, or they may use our 

application as is.  

Future work may also explore further additions to ISACC functionality. We implemented 

a minimum set of features in this iteration, but there are numerous further opportunities to 

support users, including two promising applications for AI: extracting clinically actionable 

message themes, and writing support for follow-up message composition. Clinically actionable 

message themes may include linguistic markers of depression or suicidality that may serve as 

intervention targets. For example, in prior work [135] we developed an approach to extracting 

metrics of behavioral activation, i.e. the degree to which individuals take an active part in their 

own lives by planning and participating in pleasurable activities, and validated their correlations 

with symptom severity in a large sample of written messages exchanged between patients and 

psychotherapists in teletherapy; ISACC could make use of such techniques to alert intervention 

staff to an opportunity to encourage patients to participate in activities they used to enjoy. 

Writing support may be provided in the form of automatic message scoring for being “in the 

spirit of Caring Contacts” i.e. being empathetic but undemanding; recent work by Sharma et al. 

[139,140] demonstrated not only the ability to measure empathy from natural language, but to 
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suggest changes to a given message that would make it more empathetic. ISACC could make use 

of this to assist intervention staff in writing high-quality follow-up messages. 

For the ISACC project, a pilot test is our next step. To prepare the ISACC application for 

deployment, we will further refine it using scenario-based usability testing, with scenarios based 

on the specific intervention designs that our participating pilot clinics plan on implementing. 

8.6 Conclusion 

Suicide prevention interventions face many unique challenges that may be addressed 

with carefully designed digital tools. Designing and developing such tools with interoperability 

and reusability in mind is critical to facilitate broad adoption and maximize the benefits for 

suicide prevention. Also, while patient-generated natural language data represent an 

opportunity in the Caring Contacts intervention, much work remains in investigating how to 

effectively integrate them into clinical workflows for the purpose of NLP-based clinical decision 

support. We developed blueprints for a FHIR-native data representation model and a SMART-

on-FHIR application architecture for a software system supporting the Caring Contacts suicide 

prevention intervention, leveraging patient-generated data and machine learning to support 

clinical workflows, and demonstrated their feasibility by using them to implement and share a 

functional open-source application. The data model, application architecture, and implemented 

tool exemplify approaches to facilitating adoption of AI in healthcare and contribute toward 

broader adoption of Caring Contacts. 
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In the preceding chapters, I developed an informatics tool for Caring Contacts, a text 

message-based suicide prevention intervention, focusing on assessing workflow and AI needs 

comprehensively, evaluating clinical utility early on, and leveraging health data standards where 

possible. The approaches I adopted aim to address recurring challenges facing AI applications 

for healthcare, and are generally applicable to a range of use cases for AI-based informatics 

tools. The next section therefore describes a generalizable framework that incorporates 

recommendations for a needs-driven, utility-oriented, standards-based approach to 

operationalizing AI in healthcare. 
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Chapter 9. A framework for needs-driven, utility-oriented, 

standards-based AI in healthcare  

In this work, I developed and applied a generalizable framework for the needs-driven 

operationalization of artificial intelligence (AI) to support healthcare workflows and clinical 

decision making. This comprehensive end-to-end framework is intended to guide biomedical 

informatics projects involving AI. An extension to a framework by Jung and colleagues [15], it 

spans the design, development, and implementation of AI for clinical decision support (CDS). I 

propose three specific extensions to the framework, shown in the boxes labeled 1-3 in Figure 9.1. 

 

Figure 9.1. An extended framework for making predictive models useful in practice, with three 
additions (1-3) 

9.1 Needs-driven design 

First, I propose the inclusion of a systematic assessment of the clinical use case and 

corresponding user needs, including for clinical cognition and decision making, in collaboration 

with stakeholders. Specifically, cognitive engineering [29,71,269] approaches should be 

employed to understand the needs and design solutions for augmented AI components. The 
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existing framework emphasizes the use of human-centered design methods to understand user 

needs in the context of the clinical environment, and to develop and evaluate systems in the 

context of the clinical problem to be solved. However, both Li [21] and Jung [15] presume a use 

case focused on machine learning models that output risk predictions, exploring issues around 

making such risk scores clinically useful. Although risk scoring is an important area for AI, there 

are opportunities for AI to improve clinical care beyond such predictive modeling [270]. As 

Shneiderman argues, augmented intelligence, rather than automation, is the approach more 

suitable for developing useful, commercially viable applications [55,63,79]. This is because 

useful applications take a wide range of forms, many of which will not aim to automate 

classification tasks conventionally completed by human experts [55]. Additionally, this approach 

was expressly recommended in a special publication by the National Academic of Medicine on 

AI applications for health [7].  

Cognitive engineering is the field concerned with augmenting human performance 

through computer assistance by supporting human cognitive processes [29]. Cognitive 

engineering approaches can be employed to characterize the cognitive tasks practitioners face as 

part of their work (such as diagnostic reasoning and care planning), as well as the cognitive 

processes involved in completing them(such as problem-solving, judgment, decision making, 

attention, perception, and memory). This approach thus illuminates possible avenues for AI to 

support the performance of medical practitioners. For example, the memory burden imposed by 

cross-referencing multiple sources of information and simultaneously filtering out irrelevant 

details may prove to be a significant cognitive bottleneck in formulating a clinical decision [271]. 

As a possible solution, the system might collect, summarize, filter, and present relevant 

information, such that it directly supports the processes of clinical comprehension and problem 

solving employed by clinical experts. For example, systems might develop and present 

intermediate constructs, or knowledge structures formed by experts as part of clinical cognition, 

such as clusters of symptoms that may point to a pattern indicative of a certain diagnosis [272]. 
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This way, the system empowers human experts to focus their cognitive capacities on analyzing 

data and making clinical judgments and decisions by lowering the cognitive load imposed by the 

required steps. Adler-Milstein and colleagues term this objective “wayfinding”, contrasting it 

with directly providing conclusions (e.g. diagnoses), a strategy unlikely to be trusted because it 

fails to acknowledge the complexity of the clinical task [81]. 

9.1.1 Application of needs-driven design in the current work 

In this work, I employed needs assessment interviews to elucidate challenges and 

opportunities for informatics support within the Caring Contacts suicide prevention 

intervention (Chapter 3). I focused my investigation on two areas: first, contextual barriers to 

adoption, i.e. the constraints on the work system that provide the parameters within which any 

informatics tool operates; and second, challenges specific to individual workflow tasks. The 

second area concerns the individual tasks that intervention staff perform as part of their suicide 

prevention role and their mental models for completing them. I asked what problems needed to 

be solved and how they approached the solution. Further, I asked participants to share the most 

difficult parts of each task and describe in what ways they were demanding. I also asked them to 

share thoughts on, or experiences with, scenarios where those difficulties were alleviated. The 

challenges participants shared fell into five themes (Figure 9.2): 

1. Routine, time-consuming tasks pose challenges on account of being labor-intensive, 

taking away time and focus from patient care.  

2. Managing risk is a shared responsibility between stakeholders. Organizations should 

not promise services they do not have the capacity to provide. Vigilance is required 

regarding outgoing message content, monitoring and assessing risk in patient 

responses, and composing follow-up communications. Accurately assessing patient 

risk is paramount but can be complex. In the event of a patient response, clinicians 

consider not only overt message content, but also medical history, communication 
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style and personal attitudes, personal risk and protective factors, historical 

engagement with the healthcare system or prevention program, and more. Time 

pressure exacerbates the difficulty of this task, as swift and effective action is 

required to support a patient in an urgent crisis.  

3. Authoring follow-up messages is sometimes trivial, but other times, it requires 

careful consideration. What follow-up message content is most useful will depend on 

individual patient factors. Staff may remind patients of the coping mechanisms they 

previously acknowledged as being helpful to them. If a safety plan is on file, staff may 

reiterate parts of that plan. Also, patients might face unique challenges that affect 

how staff can support them; for example, recommending a check-in with a behavioral 

health provider for a patient without access to care may be useless at best and 

harmful at worst.  

4. Accessing and integrating information across multiple data sources and 

information systems incurs a workload burden and is cognitively demanding, 

especially when systems contain conflicting information. 

5. Team communication is sometimes challenging, particularly when stakeholders 

work in different physical environments and information systems.  

From these challenge-related themes, I developed design considerations for tools to 

support intervention staff in their day-to-day work.  

First, I determined that fully or partially automating certain tasks should be a central 

focus for such tools. For example, in some programs, staff manually track message schedules 

each day, typing out or handwriting messages scheduled for that day. An information system 

could automatically schedule messages based on a template and send out messages according to 

that schedule, freeing up staff for other tasks. A system might also automatically assess the risk 

level expressed in incoming messages, alert staff of potentially urgent messages, and pre-sort 
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follow-up tasks in order of predicted priority, reducing the cognitive burden of assessing risk 

from scratch.  

The second design focus should be on data and workflow integration. There should be a 

way for care team members to communicate about the patient in a centralized location or shared 

interface, rather than requiring users to log in to multiple systems. For example, intervention 

staff might access the system functions relevant to Caring Contacts from within the same 

electronic health record (EHR) chart that ongoing behavioral health providers use. Further, 

duplicated data entry should be relieved by enabling data exchange between systems, reducing 

the need to cross-reference multiple systems and reconcile conflicting information. 

Third, tools should provide cognitive support for authoring follow-up messages. 

Aggregating patient data, filtering them for relevance, and presenting them in a digestible 

information display can help direct the attention of clinical staff, lightening cognitive burdens. A 

tool might also tag, extract, and highlight clinically relevant content from the medical history or 

the history of exchanged messages, such as risk and protective factors, which authors may want 

to incorporate. Offering relevant resources to include, e.g. crisis services located near the 

patient’s geographic location, or suggesting revisions to in-progress messages to enhance them, 

for example to enhance empathy as demonstrated by Sharma et al. [140], also present avenues 

for cognitive support to help message authors increase message relevance and effectiveness. 
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Figure 9.2 Summary of findings mapped to design considerations for informatics-supported suicide 
prevention.  

Work system constraints are shown on the outer circle. Workflow challenges are shown in bubbles. 
Design considerations for addressing challenges are shown in the inner circle. 

9.1.2 Conclusion regarding recommendations for needs-driven design 

Much current machine learning work relevant to suicide prevention investigates suicide 

risk prediction, for example, based on EHR or social media data [92,150]. While I determined 

that there is a place for such suicide risk scoring models to support Caring Contacts, I also found 

a host of other opportunities for informatics support, using both AI-based and non AI-based 

approaches. The needs within the workflow are much broader than what appears to have been 

anticipated by machine learning researchers in the informatics and computer science 

communities. The best informatics tools for Caring Contacts will combine holistic workflow 

support functionality with various task-oriented, needs-driven AI components. Much current 

machine learning work relevant to suicide prevention investigates suicide risk prediction, for 

example, based on EHR or social media data [92,150]. While I determined that there is a place 

for such suicide risk scoring models to support Caring Contacts, I also found a host of other 
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opportunities for informatics support, using both AI-based and non AI-based approaches; AI-

based opportunities included but went beyond prediction. The needs within the workflow are 

much broader than what appears to have been anticipated by machine learning researchers in 

the informatics and computer science communities. The best informatics tools for Caring 

Contacts will combine holistic workflow support functionality with various task-oriented, needs-

driven AI components.  

In agreement with contemporary proposals [55,56,80,81,273], these findings suggest 

that human-centered needs assessments that include elements focusing on clinical cognition 

have the potential to not only capture needs comprehensively but also to lend critical insights 

into what specific AI components may be helpful. Therefore, a generalized recommendation for 

a cognitive needs assessment is warranted. 

9.2 Utility-oriented development 

Throughout the design (1), development (2), implementation (3), and evaluation (4) 

stages for AI in healthcare, effectiveness should be evaluated. Evaluations will happen at various 

points along the spectrum from in-silico to in-vivo, in terms of metrics increasingly reflective of 

clinical impact. Jung and colleagues describe utility evaluations at the implementation stage 

(stage 3), after model development and validation (stage 2) are complete, to guide deployment 

strategies. However, if it becomes apparent that modifications to model conceptualization, 

design, or development are necessary, downstream revisions will be required. Shifting 

estimations of in-vivo effectiveness to earlier stages in this process will require fewer 

downstream revisions, preventing the waste of resources later on. This is in line with the 

common wisdom in the software engineering discipline: bugs found during the requirements 

gathering process, design, development, deployment, and maintenance phases are each 

exponentially more expensive to fix than those found earlier in this sequence. 
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As Jung et al. [15] demonstrated, workflow factors will critically affect utility and should 

therefore be estimated and incorporated when assessing the practical benefits of deploying the 

model for clinical use. Standardized system-centric metrics of predictive model performance, 

e.g. AUROC or the F1-score, are critical to compare performance across models but neglect to 

consider the impact of workflow parameters. In a clinical deployment, models with low 

performance scores might have a significant practical impact; conversely, models with high 

AUROC and F1 scores may have a negligible impact. Impact will depend on the aspects of the 

workflow that the model aims to modulate and the extent to which such modulation is possible. 

For example, rather than predictive accuracy, the true test of utility might be how many minutes 

can be saved in a particular workflow. If time requirements are determined mainly by factors 

outside the model’s purview, even a high-performing model will not have a high impact. On the 

other hand, if the model critically impacts time requirements for every correct prediction, 

benefits might accumulate to substantial time savings even in the face of low sensitivity.  

Therefore, it is vital to consider workflow constraints as early as possible, to test whether 

the model is performant enough to impact the chosen workflow at the designated workflow step. 

If model developers articulate performance in workflow-relevant terms that are intuitively 

interpretable, stakeholders can make well-informed decisions regarding the project's next steps. 

If impact cannot be expected confidently, informatics teams may choose to reassess machine 

learning approaches, workflow choices, and integration points within those workflows. Hence, I 

propose that clinical utility estimations are incorporated even at model development time (stage 

2) before moving on to deployment planning (stage 3).  

9.2.1 Application of utility-oriented development in the current work 

In Chapter 3, I assessed the context of use and user needs within Caring Contacts and 

found that manual message triage is prohibitively labor-intensive. Accurate, timely triage is 

essential to avoid patient harm, but low resource availability limits staffing. Leveraging human 
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experts for triage is therefore not feasible for large-scale Caring Contacts. Automated triage of 

incoming patient messages for follow-up would reduce staffing requirements, facilitating cost-

effect scaling of the intervention. In the work described in Chapter 6, I therefore developed and 

evaluated a machine learning model for classifying message urgency. The goal of the model is to 

alleviate potential delays in message response time in cases where a timely response is critical, 

but human triage is unavailable. The model’s performance should be measured in the context of 

this goal, i.e. assigning relative priorities for clinician follow-up such that urgent messages can 

be addressed first. The model’s potential for clinical utility should be measured in intuitively 

interpretable, workflow-relevant terms, i.e. the average response time for urgent messages. I 

compared several conditions: 

− Absence of triage, i.e. messages are addressed in random order. This represents a 

setting where human triage is not available, for example, due to program scale. 

− Automated triage. This represents a setting where an (imperfect) AI component 

is used to prioritize messages. 

− Human triage. This represents what might be achieved in the ideal, but poorly 

scalable setting where human experts complete all triage. 

The first and third conditions provide a lower and upper bound on the average response 

time, respectively. In order to have any utility at all, a model must outperform random triage. 

The performance target is that of human triage. However, that automated triage will not match 

human performance levels should be expected; thus, the reduction in staffing requirements 

afforded by automated triage comes at the expense of accuracy. Candidate models should be 

assessed and compared to determine the model that minimizes this need for compromise.  

To accomplish this, I first estimated the workflow factors constraining response time. 

Using data collected as part of a clinical trial of two-way, text message-based Caring Contacts, 

and given the work capacity of research staff in this clinical trial, I estimated the potential 

response time that could be achieved for urgent messages, and the response time expected for 
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messages not considered urgent. These anticipated response times are invariants estimated 

from real-world data. In practice, they might also be provided by subject matter experts. I then 

devised a formula for determining the average response time in urgent messages (ATRIUM), in 

minutes, over a range of work capacities, given triage performance. The work capacity is a 

parameter that might guide deployment strategies akin to Jung; therefore, it is important to 

estimate response time over a range of work capacities.  

 

Figure 9.3 Average time to response in urgent messages (ATRIUM) for different triage approaches, 
given work capacity k, i.e. the number of messages that can be addressed with urgency 

If work capacity is assumed to be equivalent to that in the clinical trial (arguably a best-

case scenario on account of the availability of independent funding to support it), I determined 

that the following response times should be expected (Figure 9.3). If Caring Contacts were 

deployed without triage – either human or machine – urgent messages would be expected to 

receive a response after 126.4 minutes, on average. In contrast, human triage resulted in an 

estimated average response time of 106.2 minutes for urgent messages. I developed and 

evaluated several machine learning approaches,  resulting in average expected response times 

for urgent messages ranging from 116.1 minutes to 111.6 minutes. In other words, human triage 

saved about 20 minutes per urgent message compared to responding randomly, and machine 
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triage saved between 10 and 15 minutes per message, depending on the machine learning 

techniques employed. The best model achieved an average response time within 5 minutes of 

that estimated with human triage.  

These results demonstrate that machine learning can support the scaling of the 

intervention with minimal compromise to response time. I articulate model performance in 

workflow-relevant terms: Clinical stakeholders can use figures such as “10 minutes” and “20 

minutes” to clearly visualize if the model meaningfully impacts care provision for a person 

facing a suicidal crisis and seeking urgent support. Additionally, clinical stakeholders can use 

this metric to design a deployment environment that maximizes clinical utility based on model 

performance: Clinical stakeholders can choose a staffing level that results in a value for the work 

capacity 𝑘 that results in an acceptable tradeoff between staffing requirements and response 

times. This is akin to Jung, who discussed using utility calculations across different model 

configurations to inform deployment designs that optimize utility; namely, they compared the 

effects of increasing inpatient vs. outpatient capacity given model performance. 

9.2.2 Conclusion regarding recommendations for utility-oriented development 

My findings demonstrate the feasibility of estimating clinical utility at model 

development time. The true clinical impact of the model depends on the deployment conditions 

and is, therefore, unknowable at development time. However, utility estimations performed at 

this stage can inform implementation decisions better than AUROC or F1 scores, which may be 

not only uninterpretable for clinical stakeholders, but also meaningless without consideration of 

workflow factors. This work has provided one example of a development-time utility metric, but 

priorities will vary across problems, and factors such as net financial benefits may be more 

pertinent than time constraints in other applications. Other examples include time utility (via 

hierarchical TBG) as demonstrated by Shing et al. [142], and cost utility (in US Dollars) as 
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demonstrated by Jung et al. [15] and Bayati et al. [22]. Thus, development-time utility 

evaluation is valuable, and its inclusion in a generalized framework is warranted. 

9.3 Standards-based system implementation 

Data and messaging standards are now widely recognized as keystones for achieving the 

vision of the learning health system, which recently culminated in the 21st Century Cures Act 

mandating that healthcare organizations implement and maintain standards-based application 

programming interfaces (APIs) [145,146]. Currently, many digital health and healthcare AI 

“delivery systems” do not make use of these standards: standalone, purpose-built solutions such 

as LAMP [259] are common, as are systems that make use of EHR vendors-specific capabilities 

to run predictive models or integrated predictions back into the workflow, e.g. the VSAIL model 

for predicting suicide risk from structured EHR data [118]. While vendor support at least 

enables some knowledge sharing amongst organizations using the same vendor, organizations 

may still have to design and develop their own models, workflows, and integration strategies for 

CDS. Solutions that are interoperable with existing systems and that can be reused across 

implementation sites with minimal duplication of work will accelerate the widespread, equitable 

adoption of AI in healthcare. Sharing work in this way is integral to allowing all organizations to 

benefit from healthcare AI, even those who do not have the expertise or funds to design and 

develop their own. The implementation of sustainable, interoperable AI-based information 

systems should therefore be prioritized.  

Fortunately, standards-based software development paradigms, standardized 

vocabularies and ontologies, CDS-specific technologies, and best practice operating procedures 

are available and finding broader adoption [159]. I propose the inclusion of considerations for 

portability, interoperability, and standardization. Which approaches and technologies are 

appropriate will depend on the use case but may include the following: 
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− standardized vocabularies, e.g. International Classification of Diseases (ICD) 

[274], Systematized Nomenclature of Medicine – Clinical Terms (SNOMED-CT) 

[275], and Logical Observation Identifiers Names and Codes (LOINC) [276] 

− data model and information exchange standards, such as Health Level 7 (HL7) 

Version 3 [277] and HL7 Fast Healthcare Interoperability Resources (FHIR) [26] 

− standardized clinical knowledge expression approaches, such as the Arden Syntax 

[278] and Clinical Quality Language (CQL) [279] 

− workflow integration protocols, including Substitutable Medical Applications and 

Reusable Technologies (SMART) -on-FHIR [25] and CDS Hooks [280] 

− reproducibility considerations such as code, data, and model sharing 

9.3.1 Application of standards-based system implementation in the current work 

In Chapter 3, I assessed barriers to adoption and opportunities for technology support 

within Caring Contacts and found that data and workflow integration represented a significant 

opportunity to address challenges. Patient data were reported to be spread across multiple 

systems, requiring duplicative data entry, cognitive effort to consolidate information from 

different sources, and multiple logins. Overall, participants reported variations in workflow, but 

challenges and needs had common threads across all programs represented by participants, 

suggesting the feasibility of a shared solution. In Chapter 8, I therefore conceptualized, 

implemented, and shared a standards-based information system called Informatics-Supported 

Administration for Caring Contacts (ISACC).  
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Figure 9.4. ISACC application architecture 

To accomplish this, I first developed an application requirements specification for ISACC 

based on the design considerations set in Chapter 3. I then assessed the corresponding data 

model requirements and developed a FHIR representation scheme to meet these requirements. 

Next, I devised a FHIR-based system architecture (Figure 9.4) that supports the application 

requirements, including real-time classification of patient-generated text messages for urgency 

using the machine learning model developed in Chapter 6. Finally, I developed and shared a 

functional open-source software application embodying these ideas. 

FHIR enables interoperability via a shared data model with a well-defined specification 

that health information technology vendors are now required to implement. In ISACC, data and 

workflow integration is achieved via SMART-on-FHIR, which allows database and user interface 

sharing between the EHR and ISACC, eliminating the disadvantages of multiple databases and 

credentialing systems. This standardization also enables portability between different health 

systems: ISACC is reusable at other implementation sites without requiring customizations to 

data structures and exchange protocols. ISACC uses controlled vocabularies and value sets, 

supporting semantic interoperability, and uses FHIR resources to store and track machine 
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learning inferences. Finally, in the spirit of reproducibility, transparency, and reusability, ISACC 

is an open-source application for use or adaptation by informatics researchers and developers. 

ISACC’s approach to the integration of AI components facilitates AI adoption as well as 

clinical utility. A core challenge with patient-generated data (PGD) is their raw and variable 

nature. PGD are often ample, requiring extensive review and synthesis to determine any 

clinically actionable signal within, and thus may not be useful to clinicians operating under time 

constraints. This is especially true for natural language data, which would require clinicians to 

read and assess each document carefully to determine clinical relevance. Thus, to realize the 

potential of PGD, they should be processed before they can be effectively integrated at the point 

of care. ISACC accommodates AI components that infer clinically meaningful insights from 

incoming PGD, translates them into FHIR resources of a well-defined, standardized form, and 

deposits them in a shared database. Secondary use of insights like suicide risk scores, e.g. for 

reporting or research, is also enabled by this database sharing. Although organizations may 

tailor models to ensure high performance for their unique patient population, the infrastructure 

for using these models and the integration of outputs into workflows in clinically useful ways is 

shared. It does not have to be redesigned from scratch. 

I thus demonstrated the feasibility of using FHIR and SMART-on-FHIR as the basis for a 

suicide prevention information system that leverages PGD and machine learning to support 

clinical workflows, enabling out-of-the-box interoperability and portability. 

9.3.2 Conclusion regarding standards-based system implementation 

Workflow integration issues, which are challenging because of expertise, funding, 

variability in data, and more, limit the successful and effective use of AI in clinical practice. My 

findings demonstrate the feasibility of shareable data and workflow integration, reducing the 

need to solve this complex problem repeatedly. This suggests that standards-based system 

design and development can facilitate the development and adoption of clinically useful AI. 
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Using standards to design for interoperability, portability, and reusability is a core requirement 

for new health information technology, and should be for AI-based clinical decision support 

systems, as well. Therefore, this general recommendation is warranted. 
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Chapter 10. Discussion & Conclusion 

Artificial intelligence (AI) holds significant promise to improve health and healthcare. 

The reasons why this promise has not come to fruition are complex, with challenges at every 

step along the continuum from design to development, implementation, and evaluation. In this 

work, I investigated solutions to several of these challenges and presented the larger 

implications of my findings. However, overcoming these challenges will require significant 

efforts over the coming years and decades – this work represents a small piece of the puzzle.  

In this dissertation, I investigated how needs-driven design, utility-oriented model 

development and evaluation methods, and standards-based software can be leveraged 

collectively to address the unique challenges faced by healthcare AI, and achieve clinically 

impactful AI implementations.  

In my first aim (Chapter 3), I used human-centered design methods to assess 

technological support needs for Caring Contacts, an evidence-based suicide prevention 

intervention. Using stakeholder interviews and qualitative analysis, I characterized the 

challenges hampering the broad adoption of Caring Contacts and elucidated opportunities for 

technology support. I found that designers of digital tools should focus on automating routine, 

labor-intensive tasks, integrating data and workflows for improved workflow efficiency, and 

providing cognitive support for clinical follow-up tasks. In my second aim (Chapter 6), I 

developed a predictive model of suicide risk from patient-generated natural language and a 

metric for evaluating its clinical utility. I found that leveraging social media data for neural 

transfer learning significantly enhances predictive accuracy for risk-based prioritization of 

patient messages. I formulated a utility-oriented evaluation metric articulating clinical utility in 

workflow-relevant terms, the average time to response in urgent messages (ATRIUM). I 

demonstrated that this model has the potential to impact clinical practice positively. In my third 

aim (Chapter 8), I developed blueprints for a standards-based, reusable, interoperable, 
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workflow-integrated information system for workflow and cognitive support of Caring Contacts. 

I then implemented and shared an open-source software application embodying these 

blueprints, demonstrating the feasibility of an AI-based system using patient-generated data 

(PGD) for clinical decision support (CDS). 

10.1 Contributions 

A framework for the needs-driven, utility-oriented, standards-based 

operationalization of AI for healthcare. The overarching contribution of this work is a 

generalizable framework for the operationalization of AI to support workflows and clinical 

decision making in healthcare. Compared to prior frameworks for clinical AI implementations, 

the specific additions are: 

- Needs-driven design: Use cognitive needs assessments to discover opportunities for 

AI and inform the design of AI components.  

- Utility-oriented development: Define use case-specific utility metrics and use them 

as part of AI development. 

- Standards-based implementation: When implementing AI-based tools, utilize 

appropriate standards for portability and interoperability.  

These recommendations address specific key challenges that have hampered the 

adoption of AI, contributing toward resolving the historical implementation gap of healthcare 

AI. 

 

Application of this framework to conceive, implement and evaluate AI 

support for suicide prevention. Several contributions result from applying this framework 

toward AI-supported information technology for the Caring Contacts suicide prevention 

intervention.  
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In aim 1, I  contribute an improved understanding of how suicide prevention 

interventions are conducted in practice, and the clinical cognition involved. While the 

underutilization of Caring Contacts was known, my work illuminated the specific reasons for 

this. I identified previously unrecognized opportunities for technological support, contributing 

to the path forward with design considerations for AI-enabled digital tools for this intervention. 

While human-centered design methods are broadly used to assess needs and design digital 

health tools, I specifically demonstrated the vital role cognitive needs assessments play in AI 

design and development.  

In aim 2, I develop and evaluate natural language processing (NLP) approaches to 

suicide risk prediction in a clinical dataset using neural transfer learning. Publicly available 

social media data has been used for suicide prediction, but the applicability of such work to 

prediction tasks in clinical settings was previously unknown. I established the utility of publicly 

available social media benchmark data for downstream tasks involving patient-generated data 

from a clinical setting, and showed that contemporary techniques that facilitate the transfer of 

linguistic information further enhance this utility. Thus, aim 2 contributes towards addressing 

the limited availability of clinical data for machine learning. Aim 2 also contributes a novel 

metric of clinical utility. While time and cost utility metrics have been developed and used for 

other purposes, use case-specific, workflow-relevant metrics are needed to establish the utility of 

using AI to support. I contribute a metric that provides stakeholders with evidence of practical 

impact that is more relevant and interpretable than conventional measures of predictive 

performance.  

In aim 3, I develop a standards-based information system incorporating patient-

generated data (PGD) and AI for workflow and clinical decision support at the point of care. 

While Fast Healthcare Interoperability Resources (FHIR) is now widely used, no guidance for 

leveraging FHIR for text message-based suicide prevention is available. I devised a FHIR-native 

data representation model for AI-supported Caring Contacts, providing a starting point for 
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applications with similar data representation needs and contributing towards semantic 

interoperability of such applications. Further, the SMART-on-FHIR paradigm holds promise for 

applications with PGD-based AI, but the specifics of how to apply this technology to this case are 

not well understood. I developed an application architecture that continually takes in patient-

generated data, infers clinically relevant insights, and uses SMART-on-FHIR for workflow 

integration, and demonstrated its feasibility through an implemented tool, contributing toward 

a better understanding of how to use SMART-on-FHIR in conjunction with PGD. Aim 3 further 

contributes a freely available software artifact illustrating these blueprints. 

Finally, this work collectively makes an important contribution to suicide prevention. 

Caring Contacts is an example of an intervention that stands to benefit from AI, but the many 

challenges described throughout this work complicate the realization of this benefit. In 

investigating these challenges in the context of Caring Contacts, I produced solutions directly 

applicable to this intervention. The Informatics-Supported Administration of Caring Contacts 

(ISACC) application is the result of these efforts and represents an important contribution 

towards facilitating broader adoption of this effective but under-utilized suicide prevention 

intervention.  

10.2 Generalizability 

In this work, I attempted to develop a generalizable framework for AI in healthcare, but 

health informatics is a heterogeneous field encompassing multifaceted methods and 

applications. There are, therefore, limitations to the applicability of this work. 

Here, I have focused on patient-generated natural language data. Other types of data, 

both internal and external to the Electronic Health Record (EHR), can serve as the basis for AI, 

e.g. structured PGD such as sensor data from wearables, patient-reported outcomes data (PROs) 

entered via (EHR-internal) questionnaires, public health data such as from opioid prescription 

databases, clinical notes, and structured EHR data such as medications, diagnoses, and vital 
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signs. My recommendations are not directly dependent on the type of data used, but the relative 

importance of the challenges they address may vary. Additionally, different data types will 

precipitate additional challenges and may require unique approaches. Specifically, EHR data, a 

valuable source of evidence commonly used as the basis for AI-powered CDS, differ in many 

respects from PGD. Though the recommendations in the novel framework are applicable, the 

challenges encountered for such CDS systems will differ from those in PGD-based systems.  

Additionally, I focused on individual users’ cognitive needs in this work. Other nuanced 

approaches to capturing needs may be appropriate depending on the setting. For example, in 

collaborative or team-based settings, which are common in clinical work, adopting a higher-

level sociotechnical perspective may reveal additional barriers and opportunities for computer-

supported co-operative work. 

This work is concerned with suicide prevention. There are unique considerations with 

this problem space. For example, suicidal crises are comparatively rare, but exceptionally high-

impact events. In the U.S. healthcare system, prevention interventions face cost-related 

challenges not shared by interventions with costs that are immediately reimbursable by payors: 

Cost utility largely depends on intervention costs and insurance reimbursement considerations. 

Machine learning techniques and evaluation approaches may vary for different problems; for 

example, publicly available data to counteract the limitations of clinical data may not be 

available, or workflow parameters needed for development-time utility estimations may not be 

available. Considerations for workflow integration differ between health problems and 

deployment sites. Although the recommendations in the framework are intended to guide 

informaticians in finding scenario-specific solutions, I validated the framework in the context of 

suicide prevention; consequently, other application areas may reveal the need for further 

recommendations.  

The framework’s evaluation step (step 4) was not included in this work for reasons of 

scope. Consequently, recommendations for this phase, beyond previously published guidance, 
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cannot be made or evaluated on the basis of this work. However, as the ultimate test of system 

success, evaluation is an indispensable part of developing effective AI-based CDS systems. 

Future work will evaluate the impact of ISACC in a range of clinical settings. 

Intervention design and, as a result, workflow integration considerations may vary 

significantly between implementation sites. I assessed needs comprehensively by interviewing 

participants with different roles, representing a range of organizations, and serving diverse 

patient populations. Understanding that implementing organizations’ needs and preferences 

will differ, I designed and developed ISACC with configurability in mind. Yet, customizations of 

varying degrees will be required before deployment at different sites can be completed. Further 

development may be necessary, e.g. if organizations wish to use ISACC for email or postal mail-

based interventions. 

Finally, the broader adoption of Caring Contacts will depend on factors outside the 

control of any informatics tool. While tools should be developed to account for contextual 

constraints, there are reasons why even the best tools will not be adopted. For example, even 

with reduced resource requirements, some organizations will not have the capacity for a suicide 

prevention program. Other health issues may be prioritized. Technology availability and literacy 

issues may preclude technological interventions altogether, for example, in low-income 

countries or within certain patient populations. 

10.3 Future work 

Future work may apply the framework to different settings, revealing how the framework 

can be expanded or refined further to account for the limitations mentioned in the preceding 

section. Additionally, future work that includes the evaluation phase may reveal opportunities to 

expand the framework and make it more useful for this phase. 

Aim 1 revealed a range of opportunities for AI support, including mining message 

histories for relevant, clinically actionable content. While Chapter 4 and Chapter 5 presented 
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preliminary work to this end, further work is needed to fully develop such AI components and 

realize these opportunities for AI support for Caring Contacts. Similarly, aim 1 revealed 

opportunities for information displays incorporating such extracted information as well as EHR 

data. Such information displays represent an important opportunity for cognitive support. 

Future work may include iterative design and evaluation of such information displays using 

human-centered design methods. 

An extensive body of work explores the use of structured EHR data for suicide 

prediction, with promising results. Future work could investigate multimodal suicide risk 

prediction based on both patient-generated natural language and structured EHR data to 

improve prediction performance further.  

Concerning Caring Contacts, future work entails developing ISACC further and ensuring 

its applicability to individual deployment settings. Extensive usability and integration testing 

will be needed to ready the application for pilot testing and eventual deployment.  

10.4 Conclusion 

In this dissertation, I identified several key challenges to the adoption of AI in healthcare, as 

well as gaps in existing guidance for addressing these challenges, and developed a framework 

that fills these gaps. I evaluated the framework in the context of suicide prevention with Caring 

Contacts and found that my additions resulted in an improved understanding of the problem 

and a clearer formulation of solutions, an evaluation approach that more closely reflects real-

world value, and an information system that lowers important barriers associated with 

dissemination and deployment. Though a small piece in the puzzle, this work contributes 

towards bridging the historical implementation gap by furthering methods for design, 

development, and delivery of AI-supported interventions, and by guiding future attempts to 

realize the potential of AI in clinical settings. 
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Supplemental materials for Chapter 8 
Supplemental Table 1. Functional requirements for ISACC.  

MVP: Minimum viable product. ML: Machine learning. 

Requirement Part of 
MVP 

Data model needs Design 
opp. # 

1. Patient enrollment   
 

1.1. SMART-on-FHIR app launch with single existing patient x Patient record 3.1, 3.2 
1.2. Ability to create a brand new individual patient record (existing fEMR functionality) x Patient record  

1.3. Patient record setup   
 

1.3.1. Enter intervention notes x Patient/intervention-level notes 
 

1.3.2. Read-only display of EHR patient data for reference x Patient record 
Other resources referring to the 
patient 

3.2 

1.3.3. Select preferred name to use for patient (from available names)  Patient name 3.2 

1.3.4. Specify communication mode (SMS vs. email vs. post card) and address (phone number, email 
address, or physical address) for patient (only SMS supported at first) 

x Patient contact information 3.2 

1.3.5. Post-condition: Patient record marked as enrolled x Enrollment status 3.2, 3.3 
1.4. Message schedule setup   

 

1.4.1. Pull in system-level schedule template x System-level message schedule 
template 
Patient/intervention-level message 
schedule 

1.2 

1.4.2. Populate correct date for birthday message x Patient birthday 1.2, 3.2 
1.4.3. Populate holiday messages for all holidays between first and last regularly scheduled message   1.2 
1.4.4. Populate patient’s name for name placeholders x Patient record 1.2, 3.2 

1.4.5. Allow date/time and message editing x Message-level date and time 
 

1.4.6. Allow adding and removing messages x Patient/intervention-level message 
schedule 

 

1.5. Editing   
 

1.5.1. Allow retroactive changes to preferred patient name   
 

1.5.2. Allow retroactive changes to preferred communication mode   
 

1.5.3. Allow retroactive changes to message schedule   
 

1.5.4. Scrap message schedule and create a new one    

2. Patient monitoring (list view)   
 

2.1. Display list of patients x Patient record 3.1, 3.2 
2.2. Display patient enrollment status x Enrollment status 3.1, 3.2 

2.3. Display last, first, sex, DOB, record number for each patient on patient list  x Patient record  
2.4. Flag patients with an unanswered high-priority reply x Message priority 

Message response status 
1.6 

2.5. Flag patients with any unanswered reply x Message response status 1.6 
2.6. Flag patients with an unanswered reply older than 24 business hours (1 business day) x Message response status 

Message response time 
1.6 

2.7. Allow user-level setting of what days are work days    
2.8. Default sorting: high risk on top, then in order of reply received x Message priority 

Message response time 
1.6 
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2.9. Unenroll patient x Enrollment status  
2.10. Remove patient record x Patient record  

3. Work planning   
 

3.1. Staff assignment of patient   3.5 
3.2. Automatic assignment of follow-up tasks based on availability   3.5, 1.7 

3.3. Follow-up task status tracking   3.6 
4. Messaging service (async worker)   

 

4.1. SMART-on-FHIR backend service with all enrolled patients x Patient record 
Enrollment status 

3.1, 3.2 

4.2. Monitoring replies   
 

4.2.1. Listen for replies from external service such as Twilio SMS API (only SMS supported at first) x  
 

4.2.2. Score replies w/ ML x Message priority 1.6 
4.2.3. Assign themes/markers w/ ML   1.8 

4.2.4. Create Communication record (to save reply to DB) incl. score and themes x Message record 3.3, 3.4 
4.2.5. Issue alerts for high-priority replies (only Email supported at first)  x Message priority 

Message response status 
1.5 

4.2.6. Issue alerts for any received replies (only Email supported at first) x Message response status 1.5 
4.3. Sending messages   

 

4.3.1. Trigger message sending when scheduled message time occurs x Patient/intervention-level message 
schedule 

1.3 

4.3.2. Create Communication record if successful x Message record 
Message delivery status 

3.3, 3.4 

4.3.3. Trigger auto-generated response under certain circumstances (TBD)   1.4 
5. Patient message response authoring tool   

 

5.1. SMART-on-FHIR app launch with single existing patient x Patient record 
 

5.2. Message entry field, send message via appropriate pathways (via API) on accept x Message record 
 

5.3. Create Communication record when message is sent successfully x Message record 
Message delivery status 

 

5.4. Adding current impression to communication as note    
5.5. Information display   

 

5.5.1. Display essential patient information (name, sex, dob, contact info (phone, email, emergency 
contact), identifier) 

x Patient record 2.1, 3.2 

5.5.2. Other EHR data   
 

5.5.2.1. Demographics x Patient record 
 

5.5.2.2. Diagnoses x Diagnosis records 
 

5.5.2.3. Care team x Care team records 
 

5.5.2.4. Appointments   
 

5.5.2.5. Suicide safety pan   
 

5.5.2.6. most recent PHQ-9, CSS x Observation records 
 

5.5.3. Display historical patient PRO scores (PHQ-9, CSS)   2.1, 3.1 
5.5.4. Display history of exchanged messages x Message records 2.2 

5.5.5. Display CARING CONTACTS  intake notes x Patient/intervention-level notes 2.2 
5.5.6. Display risk level (urgency) for current/visible message(s) x Message priority 2.3 
5.5.7. Display historical message risk scores x Message priority 2.3 

5.5.8. Display themes for current/visible message(s)   2.3 
5.5.9. Display historical message themes   2.3 

5.5.10. Display configurable list of resources (each with name/identifier and resource text)   2.4 
5.5.11. Allow choosing configurable follow-up message template   2.4 
5.5.12. Display empathy score of the message being written   2.5 
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5.5.13. Show rewrite suggestions    2.5 
6. File patient note to EHR (When response authoring workflow is being finished)   

 

6.1. Allow configuration of note template(s) and note filing frequencies, with reasonable defaults    
6.2. Allow different note templates for different events (w/ configuration)    
6.3. Generate note text x Patient record 

Enrollment status 
Patient/intervention-level message 
schedule 
Message records 

1.9 

6.4. Allow note editing before filing x  
 

6.5. Display templated note for copy-paste x  
 

6.6. Create FHIR resource for note x Progress Note record 3.3 
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