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Abstract  
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clinical decision support: a framework with application to suicide prevention  

 

Hannah A. Burkhardt  

 

Chair of the Supervisory Committee: 

Trevor Cohen 

Department of Biomedical Informatics and Medical Education  

 

While artificial intelligence (AI) technologies increasingly permeate our daily lives, the 

adoption and impact of AI have fallen short of expectations in healthcare. The challenges of 

operationalizing AI in healthcare are complex and include interaction de sign (e.g. poorly 

designed user interfaces), model formulation (e.g. algorithmic bias, limited practical utility, 

trustworthiness or interpretability), and workflow context (e.g. a lack of integration into existing 

workflows; limited actionability ). Critic ally, AI projects must demonstrate overall utility, 

balancing their costs with the benefits they confer. To achieve this utility , informatics efforts are 

needed before, during, and after predictive model development, to mediate effective, 

sustainable, and interoperable AI deployment to support clinical workflows.  

In this work, I investigated how human -centered design methods, needs-driven model 

development, utility -oriented evaluation methods, and standards-based software design can be 

leveraged collectively to address the unique challenges faced by healthcare AI, and achieve 

clinically impactful AI implementations. The two key contributions resulting from it are  (1) a 



 

 

generalizable framework for the needs-driven operationalization of AI to support healthca re 

workflows and clinical decision making, and (2) the application of this framework to conceive, 

implement and evaluate AI support for suicide prevention.  

To apply this framework, I used human -centered design methods to assess technological 

support needs for Caring Contacts, an evidence-based suicide prevention intervention, revealing 

opportunities for AI -based cognitive support. Using neural transfer learning from publicly 

available social media data, I developed accurate natural language processing models for risk -

based prioritization of patient messages. Through utility -oriented evaluation metrics, I 

demonstrated that this model has the potential to positively impact clinical practice. 

Incorporating this model, I devised a standards -based, reusable, interoperable, workflow-

integrated information system for cognitive support of Caring Contacts. I developed blueprints 

for a FHIR data representation model and information system architecture, and implemented 

and shared an open-source software application. 

Together, this work contributes towards bridging the historical implementation gap by 

furthering methods for  the design, development, and delivery of AI-supported interventions, 

and by guiding future attempts to realize the potential of AI in clinical settin gs. 
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Chapter 1. Introduction  & overview 

1.1 The need for AI  in healthcare 

The US healthcare system today is unsustainable, inequitable, and often dangerous to 

patients. It is the most expensive healthcare system in the world: costs as a share of GDP rose 

steadily over the past two decades, reaching 19% in the US in 2020, compared to less than 13% 

for  the OECD nation  ranked second (Canada) [1], while population health indicators such as life 

expectancy are low [2]  (Figure 1.1). Since 2019, both life expectancy and healthcare expenditures 

have been affected by the COVID-19 epidemic across the world , and in the United  States, we 

have seen the steepest decline in life expectancy and the greatest increase in costs. Medical error 

is the third leading cause of death in the US [3] . Health disparities run rampant, with racial and 

ethnic minorities experiencing worse outcomes than majority groups despite decades-old efforts 

to address such inequities [4] .  

To restructure healthcare and address these issues, the so-called triple aim  [5]  (reducing 

costs; improving population health; improving patient experience) has been proposed, and has 

since been expanded by a fourth (improving care team wellbeing) [6]  and then a fifth aim 

(improving equity and inclusion)  [7] . The idea of the learning health system is a pathway 

through whi ch these aims may be achieved [8]. A learning health system is one where ñscience, 

informatics, incentives, and culture are aligned for enduring improvement and i nnovation; best 

practices are seamlessly embedded in the care process; patients and families are active 

participants in all elements; and new knowledge is captured as an integral by-product of the care 

experienceò [7] . Health information technology, and data analytic methods in particular, are key 

components of this vision [8,9] , as they provide mechanisms to learn what works best from both 

research and experience and update how healthcare is delivered accordingly [10] . In 2017, the 

Digital Health Learning Collaborative, a taskforce of the National Academies of Medicine (NAM ; 
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formerly known as Institutes of Medicine, IOM ), identified  artificial intelligence ( AI ) as having 

central importance in facilitating improvements in healthcare [7] .  

 

Figure 1.1 Life expectancy vs. healthcare expenditures for a selection of countries (2000 -2020 OECD 
data).  

As our lives increasingly unfold online, digital technologies and AI  permeate every aspect 

of our lives, from the movies that are suggested to us on popular streaming services to email 

response suggestions and personal assistants on our smartphones. Although AI  in medicine has 

been a subject of research for decades [11ï13], the healthcare industry has lagged behind in 

adopting such technologies to improve medical care [7,14ï17]. Recently, advances in machine 

learning, particularly in the area of artificial neural networks and deep learning, have resulted in 

performance metrics matching or exceeding those of human experts in several medical use cases 

[18,19], fueling renewed hope that computer-assisted technologies may soon have substantial 

impacts on healthcare quality and outcomes [16]. So far, such developments have not 

materialized, illustrating the numerous challenges in translating the power of AI  into clinical 

care improvements. Using these techniques to make a difference in practice requires addressing 

a host of other concerns, ranging from ethics, policy and legal issues, costs, culture and 

acceptability, to integration, standardization, and interaction design considerations.  
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1.2 Challenges for AI  in healthcare 

The 2019 report by the NAM, titled ñArtificial Intelligence in Medicine: The Hope, the 

Hype, the Promise, the Perilò [7] , summarized the challenges and opportunities of using AI  in 

healthcare settings. The authors argue that we must avoid falling victim to unrealistic 

expectations in order to prevent subsequent disillusionment and the abandonment of these 

promising technologies, as happened twice before in the so-called ñAI wintersò: first in the 

1970s, and again in the late 1980s. In outlining a path forward, the report emphasizes the 

thoughtful exploration and deployment of AI  in a way that is safe and effective, leveraging 

known best practices from human-centered design, software engineering, and implementation 

science, and aiming for augmented intelligence rather than full automation.  

AI  deployments in healthcare require three properties to be successful: safety, 

actionability, and utility  [14]. Safety means that first and foremost, patient harm must be 

prevented. In the augmented intelligence approach, AI  provides guidance to augment clinical 

decision making and to help avoid errors. This ñhuman in the loopò approach positions AI  as 

assistance to a clinical professional, rather than an agent making autonomous healthcare 

decisions, addressing questions of safety; however, the interpretability and credibility of outputs  

are prerequisites for this approach. To be safe for all patients also means to provide benefits 

equitably across patient groups, such that no individual group is disadvantaged as a result of AI , 

or systematically excluded from reaping its benefits. Finall y, the data AI  models utilize must be 

current and correct , so that erroneous predictions may be avoided. Aspects of the information 

infrastructure may play a key role in this regard, as they may contribute to or hinder data fidelity  

[20] . Therefore, high-quality data must be available and accessible at the time it is needed as an 

input to a prediction model, and it must be in the expected format  so it can be processed 

correctly .  
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Actionability means that healthcare AI applications must be carefully designed to meet a 

specific need. Demonstrations of the feasibility of high -accuracy predictive models for certain 

prediction tasks may motivate their integration into clinical care, only to discover that the 

information pro vided by the model has little practical value at the point of care [21]. For 

example, knowing an ICU patientôs sepsis risk may not have any practical impact on how doctors 

and nurses care for the patient: Intensive care patients are likely already subject to continuous 

monitoring protocols, with staff ready to intervene immediately in case of an emergent crisis. 

Therefore, knowing that the sepsis risk is high  would not be actionable for this patient. Instead 

of asking ñHow can I incorporate AI  in this workflow?ò, researchers and developers must ask: 

ñWhat do healthcare professionals need help with?ò For example, it may be more useful for a 

clinical decision support (CDS) system to determine the most effective ICU monitori ng protocol 

for a patient given their parameters, and issue a recommendation only if there are specific 

actions that could be taken to meaningfully reduce the risk .  

Utility means that the deployment of the AI  model must have some tangible effect on 

outcomes. This could be time saved by a provider, an overall reduction in healthcare costs, high-

quality years of life gained, improved population health metrics, or another metric  [14]. The 

theoretical benefits must  be framed in the context of the constraints of the deployment setting, 

such as limited work capacity [15]. These constraints may also impact the system parameters, 

such as decision thresholds, that maximize clinical utility  [22] . The potential utility of a  system 

is further impacted by its financial costs, which are exacerbated by complex technical and 

integration requirement s [20] . Healthcare organizations use a broad range of different 

information technology systems, wit h a single organization sometimes using dozens of different 

systems. Models and applications may already exist, but may have been developed for specific 

electronic health record (EHR) systems, limiting their potential for reuse. Designing sustainable 

infor mation infrastructures can cut down on development and maintenance costs and enable 

reuse by other organizations. The consistent and systematic use of data standards and 
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interoperability frameworks can enable rapid application development  [23]  as well as the 

portability of informatics systems across implementation sites using different technology 

vendors. Additionally, making software reusable and freely available can facilitate the use of 

digital health interventions in resource -limited settin gs where development costs would 

otherwise be prohibitive . The principles for operationalizing AI in healthcare are summarized in 

Table 1.1. 

Table 1.1 Principles for operationalizing AI in healthcare  

1.3 Making AI  useful in healthcare 

A considerable amount of existing biomedical and health informatics research is relevant 

to these principles. Human-centered design methods are being applied to health-specific 

problems and solutions, which has resulted in an extensive body of design principles and 

recommendations for a broad range of digital health interventions. Researchers have 

investigated AI  for medicine for decades [11ï13], and due to recently renewed interest by 

biomedical informaticists as well as computer scientists, the machine learning and predictive 

modeling literature is ever -growing [7,13,18,19]. The inform atics community and international 

standards organizations continue to make leaps in developing and disseminating data standards 

for biomedical knowledge and processes, and provide countless freely available tools, 

frameworks, and resources to help develop sustainable healthcare software [24ï27]. However, 

there is a lack of work synthesizing these advances for applications with real-world clinical 

Safety  Actionability  Utility  

- Focus on augmented 
intelligence 

- Ensure interpretability & 
credibility by collaborating 
with clinicians  

- System design & data 
sources enable data and 
predictions that are 
current, correct, and 
available 

- Avoid algorithmic bias  

- Design for 
demonstrated 
information needs  

- Design task-
oriented model 
outputs  

- Ensure actionability 
by collaborating 
with clinicians  

- Weigh anticipated 
system benefits against 
costs  

- Optimize parameters 
based on deployment 
constraints 

- Reduce development, 
integration, 
maintenance, and reuse 
costs by using current 
data standards 
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impact  [14,16,17,28]. Consequently, there is a disconnect between advancing and optimizing 

these individual process and system components via methodological research and putting them 

to use in systems that work as a whole. For example, machine learning methodology researchers 

tend to focus on optimizing predictive accuracy, and seldom take clinical utility into account, 

even though high accuracy alone may not result in high utility  [15]. 

Despite high interest in using AI  to improve digital interventions and healthcare in 

general, there is no comprehensive framework, best practice, or guideline for the 

operationalization of AI  in healthcare [21]. An extensive literature search revealed only one 

recently proposed framework [15,21]. This framework  lays out steps for making AI  useful in 

clinical practice , focusing on predictive  model suitability  and utility  issues. However, AI has 

more to offer than predictive modeling (such as of risk scores), with different techniques 

necessitating different approaches to design, development, and implementation. For example, 

for systems intended to support human performance on tasks involving problem solving, 

decision making, and memory, informaticians may draw on cognitive engineering approaches 

[29] . Additionally , informatics  efforts are needed before, during,  and after AI  components are 

developed and evaluated to inform  overall system design and to ensure the sustainable, 

interoperable deployment of models into clinical care workflows. Therefore,  in this work , I 

develop an end-to-end framework  to guide health informatics p rojects involving AI , 

spanning the systematic assessment of the clinical use case and corresponding user 

needs (including  clinical cognition and decision making), as well as design efforts involving 

stakeholders; development of algorithms that meet the identified  needs while addressing 

common challenges; and implementation of  sustainable, interoperable information systems 

with  the potential  to impact clinical care. 
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1.4 The case of Caring Contacts 

Mental health is among the most critical health issues of our era. Suicide rates have 

increased by 28% over the past two decades and suicide is now one of the leading causes of 

death, with some populations, e.g. military veterans, disproportionately affected [30ï32] . 1.2 

million U.S. adults and 629,000 adolescents aged 12-17 attempted suicide in 2020 [31]. In 2018, 

the suicide rate was nearly 2.5 times the homicide rate [33]  (Figure 1.2). While suicide attempts 

and deaths have far-reaching emotional and economic effects within the affected communities, 

they represent only the tip of the iceberg: 12.2 million U.S. adults and 3 million adolescents had 

serious thoughts of suicide in 2020 [31]. Suicidal thoughts are the result of debilitating 

emotional suffering, yet it can be difficult to reach out for help, a nd many affected individuals do 

not receive the support they need.  

 

Figure 1.2 Suicide rates compared to homicide rates. Preliminary data is shown in gray. Data source: 
CDC.  

In many cases, suicide deaths occur despite opportunities for intervention: 45% of 

people who die from suicide had a primary care encounter in the month leading up to their 

suicide [34] . Regular suicide risk screening at primary care encounters is effective in identifying 

individuals at elevated risk, particularly in vulnerable populations; for example, in a study of 

individuals with psychotic disorders, Simon et al. fou nd that 59% of those with a suicide attempt 

indicated at least some level of suicidal ideation on the PHQ-9 questionnaire in the past year 
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[35] . The Joint Commission now prescribes several suicide prevention measures for healthcare 

organizations, including completing safety planning with suicidal individuals evaluated in 

Emergency Departments (EDs) [36] , which includes determining personalized warning signs 

and coping strategies, identifying family members and friends to contact for both dis traction 

and support, and listing mental health professionals and services to contact in the event of a 

suicidal crisis [37] .  

An increasing amount of evidence supports the efficacy of post-discharge follow-up 

contacts. Social isolation, which has been hypothesized to be a key contributor to suicide risk, is 

counteracted by providing patients with a sense of connectedness to members of their health 

care team [38,39]  in interventions such as Caring Contacts [40,41] . Caring Contacts, now 

recommended by clinical practice guidelines [42]  and used by healthcare organizations across 

the United States, has been shown to be effective in reducing suicidal thoughts and behaviors, 

suicide attempts, and suicide completion in many studies, including clinical trials  [38,40,41,43] ; 

the evidence is strongest for suicide attempts, with effects ranging from 20% to 60% reduction 

at 1 year after enrollment [44] . 

Caring Contacts entails care team members, suicide prevention professionals, or 

supportive staff (e.g., behavioral health providers, social workers, clerical staff)  periodically 

sending brief messages of unconditional care and concern to individuals who are or previously 

were at risk of suicide (e.g. ñHope this week is going well for you.ò [40] ). Caring Contacts 

programs tend to enroll individuals with known risk, e.g. those with a suicide -related encounter. 

Different modes of message delivery (postal mail [39,43,45,46] , emails [47] , text messages 

[40] ), schedules (e.g. monthly or every couple of months, and on special occasions such as 

birthdays), and levels of personalization (e.g. personalized reminders of support resources, 

previously mentioned coping strategies, or no personalization) have been used. The parameters 

of the intervention depend on the program goals, the healthcare organizationôs constraints, and 

the specific patient population targeted. For example, Reger et al. [48]  investigated the 
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preferences of 154 veterans regarding delivery mode, message content, and message frequency, 

and found that monthly messages delivered via letters or postcards were most preferred. Across 

three large randomized trials, Comtois et al. [40,49,50]  refined Caring Contacts via text message 

and found that a two-way, text message-based version of the intervention was acceptable and 

effective in a population of military service members, while being significantly easier and 

cheaper to administer. In intervention designs with two -way communication, patients may reply 

to messages if they wish, and will receive further tailored support from Caring Contacts staff in 

response.  

However, organizations wishing to implement Caring Con tacts face challenges in 

deciding how to make judicious use of available resources, address patient safety, and reach 

recipients in a meaningful way. The Caring Contacts intervention is labor -intensive, as it 

requires time commitments from clinicians and s upport staff as well as physical and 

technological resources (and materials for letters or postcards in the case of analog Caring 

Contacts). Messages must be sent on a specified schedule, and some implementation sites 

customize messages for their target po pulations or even for each recipient. Organizations must 

carefully weigh the advantages and disadvantages of different modalities (e.g., mail, email, text 

message) for staff and resource requirements. For example, emails and texts are presumed to be 

cheaper and faster than sending Caring Contacts messages via postal mail , because they avoid 

the logistical challenges of postal mail management. It is also easier to program a sending 

schedule and keep track of message history with emails and texts. On the other hand, 

interventions based on postal mail technology are not impacted by internet availability and 

technology literacy.  

Most Caring Contacts messages sent via mail never receive a response requiring clinical 

action, but emails and text messages may yield responses indicating that the recipient is 

experiencing distress or an acute crisis. In this case, mental health practitioners have an 

obligation to provide immediate support; p rograms must have an appropriate response and 
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safety plan for such cases. The need to monitor message exchanges and follow up quickly when 

the need arises is imperative to patient safety , necessitating a low patient-to-staff ratio in 

current intervention designs . As a result, Caring Contacts interventions can only enroll 

comparatively few patients using current formats, and many organizations have had to abandon 

plans to implement Caring Contacts due to overwhelming logistical and risk management 

difficulties with  an unfavorable cost-benefit tradeoff.  

At the same time, preventive healthcare is often not reimbursed by payors in the US, and 

clinicians are already overloaded and burned out [6] . The resulting resource shortages have 

precluded the broad adoption of this potentially labor -intensive intervention  despite its 

demonstrated effectiveness. Therefore, Caring Contacts stands to benefit from computer-

assisted and AI approaches that can reduce the workload and support scaling, making it possible 

to administer the intervention to more patients  without incurring prohibitive resource 

requirements.   

Unfortunately, it is not currently known how an AI -supported Caring Contacts 

application should be optimally designed, developed, and implemented. Caring Contacts 

provides an exemplary opportunity for the development of a generalizable framework for 

integrating AI  into healthcare.  

1.5 Aims of this work  

The central research question of this work is :  

How can human-centered design, value-oriented model development and evaluation 

methods, and standards -based software development principles  be leveraged to achieve AI 

implementations  with clinical utility ? 

To examine this question, I investigate the use of cognitive needs assessment methods 

and interoperability standards to support the development of AI  models using patient-generated 

language data to support clinicians in the context of the Caring Contacts suicide prevention 
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intervention . In doing so, I follow a novel, generalizable guiding f ramework for the needs-driven 

operationalization of AI  to support  clinical care. 

Aim 1. Establish technological support needs  for a n  application supporting 

the delivery of the Caring Contacts intervention . Informatics applications must be 

carefully designed to meet user needs by engaging stakeholders throughout the design and 

development process. Stakeholders include clients, clinicians, and support staff who might 

interact with the application.  In aim 1 of this work, I  follow  the principle s of human-centered 

design to conduct key informant interviews  and surveys to investigate the context of use and 

user needs, and then use findings to establish design considerations. Aim 1 contributes  design 

requirements  in  three parts: (a) the needs around the routine administration of the Caring 

Contacts intervention, such as scheduling and sending messages; (b) the requirements for AI-

enabled decision support components (flagging high-urgency messages and providing cognitive 

support for composing appropr iate follow-up messages); and (c) considerations for data and 

workflow integration . 

Aim 2. Develop  a predictive model of suicide risk from patient -generated 

natural language and  a metric for evaluating the clinical utility of such models . The 

analysis of patient -generated natural language offers opportunities to realize the translational 

potential of AI  in mental health care while addressing challenges of data fidelity and availability. 

In aim 2, based on the requirements from aim 1, I develop neural network -based predictive 

models of suicide risk (used as an indicator of message urgency). These models assign scores 

representing the probability that a patient requires immediate intervention, and address the 

challenge of small clinical dataset size by exploring the use of transfer learning with publicly 

available non-clinical datasets. The models are evaluated not only in terms of traditional 

performance metrics but also with respect to their clinical utility. For this purpose, I devised a 

novel metric of clinical utility (average time to response in urgent messages) for triage tasks. 

Aim 2 contributes  a risk prediction model and the novel metric.  
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Aim 3. Conceptualize and implement a  FHIR -based  software application for 

reusable, interoperable, work flow -integrated , AI -supported Caring Contacts . In 

aim 3 of this work, b ased on the specification established in aim 1, I develop a Fast Healthcare 

Interoperability Resources ( FHIR )-based data representation model for the Caring Contacts 

intervention and operationalize it in a SMART -on-FHIR -based software application. The 

system ingests patient-generated text messages in real-time and leverages predictive modeling 

for prioritizing  messages in need of immediate intervention, as developed in aim 2. The use of 

current health data standards and frameworks supports interoperability and integration 

into  clinical  workflows. I assess data model requirements and synthesize a FHIR representatio n 

model to meet these requirements. Additionally, I  demonstrate an architectural pattern for 

information system s incorporating patient -generated data (PGD) at the point of care. Further , I 

present a discussion of the application design, functionality , and utility  in light of  the design 

considerations and requirements, considering the strengths and limitations of the system design 

and architecture. Aim 3 contributes a formal specification of how to use FHIR to model Caring 

Contacts data and workflows, an application architecture  for AI -based CDS using continuously 

generated PGD, and an open-source, freely available software embodying these principles.  
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Finally, the findings and implications of these aims are unified in  Chapter 9, which 

describes a generalizable framework for the needs-driven operationalization of AI in healthcare 

and discusses how this work embodies the principles of this framework.   

Additionally, Chapter 4, Chapter 5, and Chapter 7 describe related scientific work  I 

conducted leading up to and during  this doctoral  research.  

In  Chapter 4, I describe work in which I developed and evaluated linguistic markers of 

behavioral activation . The behavioral theory of depression purports that  behavioral activation, 

i.e. the participation in meaningful, rewarding activities , is inversely associated with depression 

symptoms in a positive feedback loop; thus, the extent of activation, or lack thereof, is not only 

indicative of depression, but also serves as a therapeutic target.  Harnessing distributional 

semantics to develop groups of related terms collectively describing the theoretical constructs of 

behavioral activation, I  quantified  behavioral activation in patient messages sent as part of text-

based therapy sessions. I demonstrated that  patient language can be used to measure 

longitudinal patient trajectories and inform intervention strategies. The techniques described in 

this work  are relevant to suicide prevention. Linguistic indicators of suicide -related concepts, 

such as social isolation, could be used to extract clinically actionable insights from patient 

messages and inform personalized avenues to support  individuals experiencing suicidal 

thoughts and behaviors. 

In  the research covered in Chapter 5, I  investigated GoEmotions [51], a neural approach 

to extracting emotions from patient language and compared it to a well-established word 

counting approach. Depression affects individuals  in different ways , as it is experienced as a 

heterogeneous combination of behavioral and thought patterns. The specifics of each patientôs 

experience, including their  emotional state, should therefore guide interventions. Fine-grained 

emotions may be more predictive  for this purpose than  sentiment, i.e. positive or negative 

polarity  [52ï54]. I showed that several extracted emotion  features, including pride and disgust,  

correlate with depression and anxiety symptoms. These features may inform clinical 
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intervention on account of these emotionsô relationships with established clinical constructs 

such as self-image and perceptions of social desirability. This work could therefore inform 

clinical decision support  tools in the context of text-based interventions for depression therapy 

and related goals such as suicide prevention . The term ñclinical decision support toolò is used in 

this work to refer to any tool that supports clinical decision making.  

In  a project describe in Chapter 7, I developed, described, and shared a FHIR-based, 

consumer-oriented application for COVID -19 symptom tracking. The COVID-19 pandemic, 

which took hold i n the U.S. in February 2020 as I was starting my doctoral research, had a 

significant  impact not only on population health but also on informatics research. Amidst 

comprehensive efforts to curb infections, public health authorities recommended that 

individuals self-monitor symptoms potentially indicative of an infection , such as fever, a sore 

throat, and shortness of breath. To support these efforts, I collaborated with public he alth 

researchers to develop and provide the general public with a mobile patient -reported outcomes 

(PRO)-application  called StayHome. For rapid development and out-of-the-box interoperability 

with public health reporting agencies , we leveraged FHIR to its full extent, using it as the 

primary data model as well as the driver of business logic in a novel application design pattern 

we termed ñFHIR-nativeò. This work informed the FHIR -focused design of the suicide 

prevention tool developed as part of this dissertation . Additionally,  both are open-source 

projects, and due to overlap in several areas, e.g. the use of the CarePlan resource, I was able to 

reuse some of StayHomeôs application code for the Caring Contacts application.  
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Chapter 2. Background and related work 

2.1 Human -centered AI 

2.1.1 Emulation vs. application  

Artificial intelligence ( AI ) research has historically had two complementary but 

contrasting  foci. They have been called AI and intelligence augmentation (IA), or, as 

Shneiderman calls them, the emulation goal vs. the application goal of AI  [55,56] . Emulation 

research concerns the development of human-like devices and products. Altho ugh these may 

have applications, such as humanoid robots intended to socialize with elders and help them 

around the house, the research often focuses on goals such as passing the Turing test, rather 

than solving any particular application problem . On the other hand, application goal research 

concerns the development of solutions for human problems; these are often not emulation -

based, as human qualities may be unnecessary or even a hindrance when addressing real-world 

problems. Artificial intelligence (AI) research has historically had two complementary but 

contrasting  focuses. They have been called AI and intelligence augmentation (IA), or, as the 

influential huma -computer interaction researcher Ben Shneiderman calls them, the ñemulation 

goalò vs. the ñapplication goalò of AI  [55,56] . Emulation research concerns the development of 

human-like devices and products. Although  these may have applications, such as humanoid 

robots intended to socialize with elders and help them around the house, the research often 

focuses on goals such as passing the Turing test, rather than solving any particular application 

problem. On the other hand, application goal research concerns the development of solutions 

for human problems; these are often not emulation -based, as human qualities may be 

unnecessary or even a hindrance when addressing real-world problems . 

Shneiderman argues that today, the emulation goal manifests in intelligent agents, 

simulated teammates, autonomous systems, and humanoid designs [55] . In his evaluation , 
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technologies designed to automatically complete tasks that are conventionally done by humans 

are misguided.  

However, there is precedent for paradigm shifts in the level of automation that is 

considered acceptable. For example, until the 1950s, elevators were operated by people; today, 

all elevators are ñautonomousò, i.e. they are not directly supervised by human beings, and 

human intervention is needed only in cases of failure [57] . Many tasks could feasibly be 

completely automated if technology were sufficiently mature to be universally trusted.  

A similar paradigm shift  occurred recently in the realm of natural language processing. 

Shneiderman contends that a human-like understanding of natural language or images falls 

squarely within the emulation category. High-quality voice assistants are commonplace now; yet 

Amazonôs Alexa, the first widely adopted in-home voice-controlled  personal assistant, was 

introduced  to the consumer market only 7 years ago, in 2015 [58] . At first, there was significant 

concern over such voice assistants, particularly with respect to security and privacy  [59] . 

However, as this technology has matured, it has become ubiquitous and well-accepted. Despite 

Shneidermanôs criticism of natural language processing and voice recognition, he acknowledges 

that  personal assistants would not have been possible without it. Emulation  research, even if it  

does not seem immediately applicable to any real-world problem , will  therefore be needed to 

drive innovation.  

Such paradigm shifts must be expected to occur at a different rate in healthcare, a highly 

regulated, risk-averse environment that  tends to resist disruption.  The technology adoption 

lifecycle, defined as part of Diffusion of Innovation theory  by Rogers [60] , is initially  driven by 

innovators and early adopters, until the technology matures and is widely adopted by the 

majority  of users, who need to see evidence that the innovation works, including demonstrated 

success by others who have adopted the innovation. In healthcare, cost-benefit tradeoffs must be 

carefully weighed with any new technology, making evidence that an innovation works 

indispensable. Individuals and organizations are less likely to be early adopters who do not need 



 

 26 

to be convinced of the benefits of change. In this environment, a focus on applications, as 

Shneiderman advocates, is paramount. Technology that is not user-friendly  or without clear 

benefits may not be adopted; similarly, t echnology that requires other systemic shifts before it 

will b e useful may not be adopted. Instead, technology must have clear benefits, and must be 

demonstrably effective in delivering on its promises . Designers of any technology in the 

healthcare realm must be sensitive to this.  

Combined with the challenges described in Section 1.2, it is becoming increasingly clear 

that the adoption of healthcare AI will require an increased focus on problem -oriented 

application s. Shneidermanôs recommendation  to conceptualize AI as the basis for powerful tools 

operating under human supervision  that ultimately enable  human agency is in line with  the 

ideas of researchers in biomedical informatics , such as the authors of the NAM report  [7] , who 

increasingly recognize the need for a focus on augmentation as opposed to automation . 

2.1.2 Automation vs. augmentation  

The NAM recommends that the AI  opportunities within healthcare are tackled via 

human-centered AI  tools focusing on augmented AI , i.e. tools that support human beings as 

decision makers rather than replace them [7] . AI  algorithms and human beings have different 

strengths: algorithms can detect subtle statistical patterns and use them to make inferences in 

new scenarios. Human beings have uniquely complex cognitive abilities, such as recognizing 

abstract high-level patterns, the ability to hold and act on moral beliefs, and empathy. Human  

beings assisted by technology, sometimes called human-AI teams or human-machine 

collaborations , combine these strengths in order to accomplish tasks better than either part of 

the team could hope to achieve individually [61]; for example, by a division of labor where AI 

automatically complet es routine tasks, so that human experts may focus on more complex tasks. 

By extension, there is learning involved, as with any situation where human beings learn to use 

tools for a particular purpose; for example, human beings might  learn what kinds of mistakes 
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the algorithm makes, and therefore when predictions are likely to be more or less reliable. This 

idea is central to biomedical informatics, articulated by  Charles Friedman with the Fundamental 

Theorem of Informatics  [62] : ñA person working in partnership with an information resource in 

óbetterô than the same person unassisted.ò In other words, informatics is concerned with the unit 

formed by human beings and assistive technologies, rather than technological capabilities alone;  

an information resource that does not provide  value does not satisfy the theorem. 

Importantly,  technology should have appropriate safeguards in place. It should not act 

completely autonomously when not appropriate, and in any case, human operators should be 

able to take over control [55] . Human operators should be able to choose not to act on a 

prediction, e.g. if the prediction is believed to be incorrect or if the action is otherwise felt to be  

inappropriate.  This means that in most cases, decisions should not be executed automatically, 

should be easily reversed, or contingencies should be in place in case of failure. Generally, 

designs should build confidence and trust, for example by including  appropriate explanations  

[63] . 

In informatics, there is significant precedent for using human -centered design methods 

to effectively design digital health tools including clinical decision support tools. For example, 

Hartzler et al. identified the information needs of patients preparing to have discussions about 

lung cancer transplantation with clinicians , and designed and evaluated an information display 

accordingly [64] . Faiola et al. used human-centered design methods to design visualizations 

intended to support clinical decision making in the ICU by relieving cognitive load, 

demonstrating  improved speed in decision making [65] . The amount of human-centered design 

research in medicine  has increased exponentially in recent years (Figure 2.1). There are many 

examples of work applying human-centered design methods to effectively design digital health 

tools, including clinical decision support tools ; for instance, Hartzler et al. i dentified the 

information needs of physicians preparing to have discussions about lung cancer 

transplantation with patients, and designed and evaluated an information display accordingly 
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[64] . As another example, Faiola et al. used human-centered design methods to design 

visualizations intended to support clinical decision making in the ICU by relieving cognitive 

load, demonstrating improved speed in decision making [65] .  

 

Figure 2.1 Number of results for "human -centered design" in Pubmed Central by year  

However, these methods have been underutilized in conceptualizing AI  use cases. A large 

fraction of current machine learning research is done on a few well-defined prediction tasks wi th 

benchmark datasets, i.e. datasets that happened to be available, or because certain methods are 

promising and important to develop further. Although  the importance of standardized 

prediction tasks with large benchmark datasets and generalizable evaluation metrics for the 

advancement of machine learning methods cannot be overstated, their relevance and 

applicability to solutions for real problems can fall short.  

For example, while Googleôs innovative and impactful research into detecting diabetic 

retinop athy from retina images [66]  made an important contribution for machine learning 

methods research, the authors claims to clinical usefulness are contingent  upon other systemic 

changes in how healthcare is delivered. They suggest that retinal fundus images may be used to 

augment or replace other markers such as lipid panels, but lipid panels are used for many 

purposes and therefore routinely collected. Only 14% of Americans visit an eye doctor in any 
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given year [67] , but 78% had a wellness visit (physical or general purpose check-up) [68] . 

Wellness visits usually include lipid panels if indicated. Additionally, other variables give a good 

indication of cardiovascular risk, such as age, blood pressure, and body mass index, and 

assessing these variables may be sufficient to exclude cardiovascular disease as a likely diagnosis 

in many cases, eliminating the need to order further expensive testing such as lipid panels or 

retinal images. Using retina images for this purpose may be feasible if their acquisition were 

simplified  ï and there is potential for this , as evidenced by recent research demonstrating the 

feasibility of  smartphone-based retina imaging [69] . However, as reported in 2020 , Google 

Health researchers discovered a number of practical challenges when they operationaliz ed their 

model in communi ty clinics in Thailand , including inconsistent image quality causing high false 

positives, variations in workflows and conditions across clinics,  concerns about the added 

workload imposed by the new workflow , and poor internet connectivity  causing system lag and 

significant delays in care. The authors emphasize the importance of testing and refining how 

models fit into workflows , stating that ñthere is a need for the HCI community to develop 

approaches for designing and evaluating machine learning systems in clinical settingsò [70] . In 

other words, the technology as well as the deployment and workflow design must be revised 

before clinical utility can be achieved.  

The above example illustrates the need to carefully assess context of use and workflow 

needs. Recognizing that providing more information or automating certain processes does not 

necessarily improve overall performance, cognitive engineering is a problem-driven approach 

that uses usersô cognitive needs to inform the design of tools such as information representation 

aids, advisory systems, training systems, and automation [29] . For example, designers may ask: 

What are the tasks? What contributes to the complexity of those tasks? What tools can facilitate 

this work? Human -centered approaches will accelerate AI adoption in healthcare, beginning 

with methods of cognitive engineering to determine challenges and opportunities in current 

workflows.  
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2.1.3 Cognitive engineering 

Cognitive engineering [29,71ï73], a field with roots in cognitive science, spans 

knowledge capture, cognitive analysis, and the development of cognitive support  requirements.  

It is r elated to human-centered design, but places a special focus on human cognition . Utilizing  

unique methods for this purpose, cognitive engineers aim to understand and account for domain 

complexities; the knowledge, skills, and problem solving strategies employed by domain experts 

to deal with these complexities; and goals, functions, processes, and constraints specific to the 

work domain . 

Knowledge capture methods focus on characterizing the work domain  as well as the 

knowledge and skills of domain practitioners.  Techniques include interviews, focus groups, and 

observation. As part of these techniques, researchers may use the critical decision method  [74] , 

cognitive task analysis [75] , artifact analysis [76] , and more. The critical decision  method entails 

eliciting  and analyzing past critical incidents  and the processes that were involved in addressing 

them, ranging from assessing the situation to formulating goals  and determining the sequence 

of actions that will accomplish the se goals [72] . This includes developing an understanding of 

factors contributing to and hindering effective handling of these incidents. Cognitive task 

analysis is the analysis of individual tasks and the relevant knowledge, skills , and problem 

solving strategies. Developing diagrams outlinin g tasks, their relationships  with each other, and 

associated challenges may be helpful. Artifact analysis  is an analysis of the existing artifacts  used 

to reduce cognitive load by offloading it  to physical objects, e.g. decision aids created by 

practitione rs as they work, or existing information technology tools,  and their  current role in 

practitionersô work, including  how they support or hinder perform ance of work tasks. Norman 

argues that cognitive artifacts created by practiti oners are uniquely insightful  because they 

provide a direct window into their mental models  [77] . Then, using the new knowledge of tasks 

and the skills, tools, and strategies used to perform them , cognitive support  requirements can be 

developed by explicitly linking  cognitive analysis results and to features in a digital solution.   
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Cognitive engineering has been used to better understand many types of work 

environments , including in the healthcare domain. For example, Bauer et al. [78]  used field 

observations, interviews, and artifact analysis to characterize the role of paper-based flowsheets, 

discovering, for example, that the tabular format supported easy comparisons across time; in 

other words, flowsheet layout ñcontributes to cognitive processing in the tasks for which they are 

designedò [78] . At the same time, they discovered shortcomings of the paper-based format, e.g. 

the limit ed capacity of a İò by Ĳò sized box for handwritten entries and the need to manually 

calculate and enter fluid balance (calculated from fluid input and output) . They inferred 

cognitive support requirements for electronic flowsheets, including  the need to retain the  

tabular format  to enable easy comparisons and automated calculation of fluid bala nce. 

However, cognitive engineering and human-centered design methods have been 

underutilized for the design and development of AI. Shneiderman argues that a lack of focus on 

human problems and their solutions has resulted in excessive automation, and that human-

centered AI will result in  powerful tools  that strike the balance between automation and 

empowering human agency where it matters [55,79]. Xu holds that human  factors design is not 

sufficiently considered in current  AI research; in his evaluation, involving human -computer 

interaction  professionals to match AI t o human needs will be pivotal in avoiding another AI 

winter  [80] . Adler-Milstein contends that fully automating tasks such as diagnosis is unlikely to 

garner trust with clinicians. S he argues that cognitive overload due to digiti zation is a major 

challenge for healthcare professionals today, and suggests that lightening this load by re -

envisioning AI  to support clinical cognition  is the way forward [81] . These calls support broad 

application of  human-centered methods to healthcare AI, with a focus on cognition. 

2.2 Patient-generated natural language data for clinical decision support  

Published reports of live deployments of AI in medicine largely use electronic health 

record (EHR) data. EHR data are a valuable resource, as they are automatically created as part 
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of routine care. Because they are often used for billing, they are usually comprehensive and well-

structured. Additionally, EHR data are stored in the healthcare organizationôs own information 

systems, making them highly available for decision support modules running in the same 

system. However, there are challenges with using EHR data for predictive modeling. Models can 

only use data that are entered, often manually , in the medical record. The forces driving data 

entry , e.g. billing and regulatory requirements  and clinician judgments of what is important , 

determine which data are entered and how and when data entry occurs. Data entry errors may 

happen if data are entered manually. Missing data are often not missing at random; for example, 

the presence of a lactate test result may in itself be informative of a patientôs condition if a 

physician ordered the test based on suspicion of sepsis. Consequently, EHR data may be a 

suboptimal data source for clinical decision support ( CDS) or AI models in some cases, e.g. if 

complete and up-to-date information is essential.  

Patient-generated data (PGD) are an alternative data source for predictive modeling. 

PGD are data created outside the clinical care setting by patients and include health-related data 

such as patient-reported outcomes collected via screening surveys, physical activity data 

captured automatically by wearables, and more [82] . PGD also span data that are not inherently 

health-related but may be used for healthcare-related purposes, such as social media posts or 

smartphone-generated location data. Because they originate with the patient, and are often 

captured by consumer devices and services, PGD tend to be located in disparate systems, all 

external to the EHR. Sharing personal data with healthcare organizations for the purpose of 

improving patient care may confer improved patient en gagement and patient-provider 

communication [83] . Using PGD for clinical decision making is facilitated by EHR integration, 

which is difficult for many reasons, including data interoperability, organizational infrastructure 

and policies, and data governance [84] . Even if data can be integrated, providers may choose not 

to make use of them due to a lack of directly actionable insights afforded by them [85] . Overall, 

PGD are underutilized in clinical care and decision making [84ï86] , let alone computer-assisted 



 

 33 

CDS. This is unfortunate, as automatically captured PGD can be more accurate [87]  than 

conventionally collect ed data; for example, body weight data automatically uploaded by a Wi-Fi-

enabled bathroom scale would be more accurate than patient-reported body weight, which is 

known to be a systematically underreported quantity [88] . PGD are complete and patient-

focused, in that they are recorded without being filtered through a provider lens. If they are 

accessible in real time, they are also uniquely suited to real-time decision support for emergent 

situations. Therefore, using PGD for CDS can help address the challenges of high fidelity and 

real-time availability.  

Patient-generated natural language data as a subset of PGD further have a unique 

potential to inform mental health interventions. Language reflects thoughts and feelings via 

stylistic and word choices in addition to overt content topics [89ï91]. Language is also used as 

the primary mode of delivery of psychotherapy, supporting its further innovative u se to help 

providers deliver mental health care.  In the context of suicide prevention, indicators of danger 

to self or others as well as contextual information about an emergent crisis may also be from 

patient language [92ï94] . When used as a basis for AI , PGD ï and specifically, patient language 

data, e.g. from text messages ï can therefore illuminate mental state and i ntervention strategies 

while addressing challenges of incompleteness and recency.  

Unfortunately, decision support is difficult to operationalize using patient -generated 

data. Facebook [95]  and others [96]  reportedly implemented mechanisms by which posts 

seriously expressing suicidal ideation are flagged directly on social media platforms; however, 

there have been numerous concerns with these projects, ranging from privacy concerns to 

whether social media companies have the appropriate expertise and resources to assess and 

address health concerns [97ï99] . Integrating emergent signals into the clin ical workflow to 

support decision making  by medical professionals, e.g. within an established suicide prevention 

intervention,  would address these concerns; however, integrating PGD into clinical workflows is 
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at an early stage [85] . At the time of this writing,  there have been no attempts to integrate 

predictions of suicide risk based on PGD into clinical care. 

2.3 Machine learning for clinical problems  

2.3.1 Transfer learning  

AI  and machine learning applications have seen fewer successes in health and healthcare 

than in the consumer products realm. Machine learning, and particularly methods of natural 

language processing (NLP) that use deep neural networks, have an unprecedented need for data, 

requiring training examples in the order of magnitude of thousands to millions. In the general 

domain,  public or private data can be harvested readily for secondary use. For example, 

Bidirectional Encoder Representations from Transformers (BERT), a transformer model  that  

was first reported in 201 9 by Devlin and colleagues at Google [100]  and that has inspired a rich 

body of work focusing on large, deep language models for  natural language processing, is 

trained on publicly available unlabeled data: a corpus of over 11,000 full-text books (800 million 

words), as well as the entirety of articles i n Wikipedia , a publicly available encyclopedia or 

articles written by independent contributors  (2500 million words) . Commercial systems, such as 

the recommendation systems [101] used by Amazon and Netflix, are commonly  trained using 

large, privately held datasets, e.g. as collected from millions of customer transactions.  

In the medical domain, fewer large datasets are available. Some data are publicly 

available, such as post-market drug safety surveillance reports collected and archived by the 

Federal Drug Administration (FDA) in the FDA Adverse Event Reporting System (FAERS)  

[102] . Other datasets are made available to researchers formally requesting access under 

reasonable conditions of responsible custodianship ; for example, Medical Information Mart for 

Intensive Care (MIMIC ), a de-identified dataset of EHR data acquired during routine hospital 

care representing 50,000 hospital admissions , can be accessed under the terms of a data use 

agreement after researchers complete relevant training  [103] . De-identification is particularly 
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difficult for text data  and may be incomplete, necessitating such data use agreements to ensure 

researchersô good faith. Finally , researchers with ties to healthcare organizations, e.g. academic 

medical centers, may be able to harness EHR data collected as part of ongoing care for 

secondary use.  

However, for many more clinical use cases that could greatly benefit from AI , there are 

no large publicly available datasets. Many types of data may not be routinely collected, and 

therefore unavailable from operational EHR systems, including  patient -generated data. 

Additionally, data are only routinely collected  for  inventions  that are already part of standard 

care. In these cases, data may be purposely collected, or there may be an opportunity to obtain 

data from research conducted for other purposes (e.g. clinical trials ). Furthermore , creating 

labeled datasets presents a challenge for both primary and secondary use data. Although  

unlabeled data have uses, e.g. for creating domain-specific pre-trained models, many 

applications will requ ire labeled data; in the medical domain, clinical expert s must be consulted 

to create labels. Both purposeful collection and labeling cause dataset size to be limited by 

manpower. Finally , even if the resources required to collect and label data have been invested, 

many datasets cannot be shared: Health data are sensitive in nature and must be safeguarded 

carefully , lest we cause harm to research participants by disclosing their private information to 

unauthorized parties ; this applies even to de-identified  data, as cases of personal identities being 

linked to data that have been de-identified according to established criteria  have been reported 

[104,105].  

Fortunately , it may be possible to leverage large general-domain datasets and models for 

clinical problems using transfer learning. Transfer learning enables the application of signal 

from one task to another, related task. This is reminiscent of  human learning , where knowledge 

from one learning event is applied to a different but related task ; for example, my 2-year old 

niece learned to identify ripe tomatoes using color and other aspects of appearance, and now 

demonstrates remarkable accuracy in assessing the ripeness of a broad assortment of fruits and 
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vegetables. Recent developments in transfer learning have resulted in tremendous 

improvements in predictive performance across a wide range of NLP tasks, including drug 

efficacy classification [106] , human activity recognition  [107] , and cross-lingual learning [108] .  

Contextualized pretrained language models are the perhaps most widely used transfer 

learning approach to NLP today. Devlinôs BERT is a pretrained language model that can be 

repurposed for a wide range of NLP tasks and has spawned a cascade of BERT-related research, 

including the development of many domain-adapted BERT models, further  trained on domain-

specific corpora to increase specificity  of the learned representations to tasks within the domain 

space. A field of research in its own right, domain adaption has yielded models such as 

BioBERT, further trained on biomedical research literature  [109] ; ClinicalBERT, further  trained 

on clinical notes [110]; and MentalBERT, further trained on mental health related Reddit posts 

[111]. BERT learns to generate contextual representations for word s or sentences using the 

context in which they appear. Notably, representations learned from similar domains but for 

completely different tasks can be effectively transferred. The original task BERT is trained for is 

predicti ng a word given its context, i.e. predicting a hidden word given the words and sentences 

to its left and right  (bidirectional) . However, BERT representations can be effectively transferred 

towards other tasks, such as classification, by using the pretrained weights for input and hidden 

layers, and changing the classification layer to modify the types of outputs that are produced. In 

this way, the fine-tuning phase of the transfer learning process involves learning how to 

combine the existing linguistic information  for the purposes of solving the new prediction 

problem. 

Transfer learning  thus provides a unique opportunity to enhance clinical prediction tasks 

with signal derived from publicly available data.  First,  the proliferation of  domain-adapted pre-

trained language models offers opportunities to leverage large, unlabeled, domain-specific 

corpora. Second, publicly available labeled datasets hold promise to augment clinical data, 

helping to overcome its limit ations. However, transfer learning for this purpose has been 
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underutilize d. As further described in the next section, a wealth of suicide risk prediction 

research has been conducted using only public  data (specifically, social media posts) or only 

clinical data (specifically, EHR data) ; however, to the best of my knowledge, none have 

leveraged transfer learning to combine them. 

2.3.2 Suicide risk prediction  

2.3.2.1 Structured EHR data  

Suicide-related machine learning models have been developed and evaluated with 

various data sources, machine learning methods, and performance metrics. The availability of 

data collected as part of routine healthcare in the EHR for secondary use has enabled a range of 

predictive modeling applications, including flagging patients who show evidence of elevated 

sepsis risk  [112], are likely to miss upcoming appointments  [113], or may benefit from advanced 

care planning [114]. Suicide-related prediction models using EHR  data have proliferated as well . 

For example, Simon et al. [115] used logistic regression models to predict suicide attempts and 

suicide deaths in a dataset of almost 3 million patients across 7 institutions , with incidence rates 

of 0.82% and 0.04%, respectively. Their models achieved an AUROC (C-statistic)  of 0.853 for 

predicting attempts and 0.833 for  predicting  deaths in the 90 days following a primary care 

visit . The most important predictors  for attempts includ ed the presence of a depression 

diagnosis, suicide attempt history, drug or alcohol abuse history, and a high PHQ-9 item 9 score 

in the past year. The most important predictors for suicide death included having a mental 

health emergency department visit in the past 3 months or mental health inpatient stay in the 

past year, alcohol abuse history, benzodiazepine (an anti -anxiety medication) prescription , and 

presence of a depression diagnosis. In a cohort of 118,252 patients with a 0.21% incidence rate, 

Zheng et al. [116] used a deep neural network with 3 hidden layers to predict suicide attempts  in 

the following 1 year using a range of structured EHR data including  demographics, diagnoses, 

procedures, and medication orders, achieving an AUROC of 0.769. The neural model 
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significant ly improved upon their logistic regression baseline model, which achieved an AUROC 

of 0.607. Although  individual feature importance within the model was not assessed, the 

features most strongly  associated with increased odds of a suicide attempt included suicide 

attempt history, mental health disorders, and substance abuse history. Walsh et al. developed a 

random forest model  for  suicide risk detection using structured EHR data including 

demographics and diagnoses, as well as medication data extracted from clinical notes , in a  

cohort of 3,250 patients who had an ICD code for self-injury  with  confirmed  suicidal intent , and 

12,695 controls with no history of suicide attempt  [117]. The most predictive features were 

demographic factors (age, gender, and race), as well a history of suicide attempts and mood 

disorders. The model achieved an AUROC of 0.770 for predicting suicide attempts within  7 days, 

compared to 0.804 for the Columbia Suicide Severity Rating Scale (C-SSRS) standardized 

instrument; combining the model with the instrument resulted in an AUROC of 0.907  [118]. 

2.3.2.2 Unstructured EHR data  

While structured EHR data such as diagnoses and attempt history are clearly highly 

relevant to predicting future attempts and deaths , clinical notes contain rich information that 

may not appear in any structured or coded data elements. This information  may further benefit 

predictive models. McCoy et al. [119] conducted a survival analysis of suicide death that 

included both  structured data such as demographics and visit history, as well as measures of 

positive and negative valence in discharge notes, quantified using a dictionary -based word-

counting approach. The dataset contained 845,417 hospital discharges with a suicide death 

incidence rate of 0.1% in the follow -up period (up to 9 years, median 5.2 years). The model 

achieved a modestly improved AUROC (C-statistic)  of 0.741, compared to 0.737 for the baseline 

model that used coded data only. There have also been efforts to extract clinically relevant 

constructs from EHR notes; for example, Zhang et al. [120]  extracted suicide-related psychiatric 

stressors such as physical and sexual abuse, health issues, and pressure from work  or school 
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from clinical notes via named entity recognition , demonstrating high correlations with suicidal 

behaviors. 

2.3.2.3 Patient-generated data 

Regarding PGD, a large body of work leverages social media data for NLP-based suicide 

classification as well as depression detection. Depression is closely related to suicide because of 

the increased incidence of suicidal behavior in this condition . Facebook is reported to have 

developed an approach to flagging user posts that are concerning with respect to suicide, 

integrating n -gram linear regression with  metadata such as posting time [95] . In a 

crowdsourced dataset of 171 depressed and 305 non-depressed users with an average of 4,533 

twitter posts each, De Choudhury et al. demonstrated that  features extracted using Linguistic 

Inquir y and Word Count (LIWC)  [121,122], including  valence of affect and pronoun usage, as 

well user engagement metrics (e.g. reciprocity ) and usage of depression-related terms, predicted 

depression with 74% precision and 63% recall [123]. LIWC is a dictionary -based word-counting 

tool  with predefined term categories. It is widely used by researchers investigating connections 

between mental state and language, and has an extensive track record of validation [122]. Huang 

and colleagues [124] developed models for classifying posts on Chinese microblog platform Sina 

Weibo (similar to Twitter) . The authors identified and verified 53 suicide deaths and collected 

30,000 posts from the corresponding users, along with 600,000 posts from  1000 other, 

randomly selected users. They combined emotional valence (positive and negative) measures, 

pronoun counts, part -of-speech tags, and metadata such as posting time.  Their best models 

achieved 79% precision and 60% recall. The 2019 CLPsych Shared Task competition  challenged 

participants of the CLPsych conference [125] to develop predictive models of suicide risk in a 

dataset of Reddit posts annotated by experts and crowdworkers [126], result ing in several high-

performing model s of various types, with the best-performing  model combining a support vector 

model with several neural network-based models in an ensemble. This best model achieved an 
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F1-score of 0.922 for distinguishing unconcerning posts from those indicating  some level of 

suicide risk. In t he 2021 CLPsych Shared Task challenge, participants developed machine 

learning models to assess suicide risk in Twitter posts  of 97 individuals who died by suicide or 

survived a suicide attempt within 6 months , and 97 matched controls, donated through 

OurDataHelps.org [127]. The best model achieved an F1-score of 0.815, using a dictionary -based 

approach that  used LIWC, prior s informed by domain knowledge, and logistic regression [128] . 

Priors were calculated from LIWC category effect sizes reported in a previous study by 

Eichstaedt et al. [129], who investigated the association between depression and LIWC 

categories in Facebook posts. 

Finally, researchers have investigated using patient-generated natural language to 

improve our understanding of  the underpinnings of  mental health disorders . A large body of 

work  investigating the linguistic manifestations of schizophrenia and psychosis  uses natural 

language data collected as part of research studies [130] . Such studies have furthered 

understanding of cognitive processes and deficits in mental disorders . For example, one study 

elicited speech with prompts such as ñtell me the story of Cinderellaò and used latent semantic 

analysis to show that in thought disorder s, semantic coherence is disrupted [131]. Purposely 

elicited speech may also be used to predict future onset of mental illness: Gooding et al. 

predicted schizophrenia onset after 10 years on the basis of thought disorder identified via 

manual linguistic analysis of interview transcripts  with 94% accuracy [132]. 

2.3.2.3.1 Clinical settings 

However, specialized data collection is infeasible for the goal of leveraging real-time 

natural language analysis to improve ongoing patient care. Applications must use data that is 

readily available at the point of care, so it is more feasible to use language exchanged in the 

context of ongoing clinical care. Sonnenschein et al. used LIWC to analyze transcripts of routine 

cognitive behavioral therapy sessions conducted with 85 patients , containing over 500,000 
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words spoken by patients, and found that ñsadnessò and ñanxietyò words were significantly 

associated with depression and anxiety diagnoses, respectively [133]. However, there are 

complexities associated with the face-to-face setting, e.g. the requirement to transcribe audio 

signals to written text before it can be analyzed. The recent spike in adoption of telehealth 

solutions for psychotherapy [134] has yielded data that is automatically collected  in real-time. 

Research investigating clinical decision support tools based on such data has direct applicability 

to clinical settings, as the required data would be readily available to a deployed tool for real-

time inference.  

My work described in Chapter 4 is an example of such research. In a dataset of 10,000 

patients undergoing chat-based psychotherapy while completing depression (9-item Patient 

Health Questionnaire , PHQ-9) and anxiety (7-item General Anxiety Disorder questionnaire, 

GAD-7) questionnaires at regular intervals , I developed and evaluated linguistic markers of 

behavioral activation  [135]. Behavioral activation is a psychological construct related to planning 

and participating in pleasant activities, a behavioral pattern that is reduced  in depression; 

because intentional reinforcement of such behaviors reduces symptoms, the activation of such 

behaviors is targeted in behavioral activation  therapy [136]. Markers corresponded to 

depression severity scores and predicted longitudinal trajectories  previously determined  by 

latent growth analysis, i.e. whether a patient experienced improvements over time.  

In another study  using the same dataset, described in Chapter 5, I  investigated LIWC 

variables with an established relationship to depression and anxiety, as well as fine-grained 

emotions extracted using a BERT-based neural approach, finding that they were highly 

explanatory of depression and anxiety symptom scores in mixed-effects linear regression. 

Additionally, using a random forest model, I found that the LIWC features were complementary 

with fine -grained emotion features for the purpose of predicting depression and anxiety status 

[137]. Depression and anxiety are highly heterogeneous, i.e. they are experienced in many 

different ways; in the context of psychotherapy, a clear understanding  of patientsô emotional 
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experience is a prerequisite to tailoring mental health support strategies accordingly. Therefore, 

such features have direct applicability to real-time clinical decision support.  

Sharma et al. explored the use of real-time AI insigh ts to improve empathy in  text-based 

peer support conversations. They developed an approach to measuring empathy in messages 

written in response to individual s seeking mental health support from peers on the TalkLife 

platform,  along three dimensions (emotional reaction, interpretation, and exploration)  [138] . 

They then used this approach to develop and evaluate a computational model based on 

reinforcement learning,  which is capable of suggesting revisions to improve empathy, in line 

with best practices in therapy [139]. They conducted a pilot test deployment on the TalkLife 

platform, asking active users to utilize  their  tool to improve empathy in their peer support 

messages. According to human raters, the rewritten messages were more empathetic than the 

originals 47% of the time, equivalent 16% of the time, and worse 37% of the time [140] .  

In summary, there is promising  evidence of the utility of patient -generated data for 

improving  mental health care, including suicide  prevention . However, work utilizing patient -

generated natural language data to support ongoing care remains sparse, particularly in 

comparison to work util izing non-clinical  data such as social media posts. 

2.3.3 Metrics of model performance 

Suicide is a rare event. Measuring the performance of predictive  models is complicated 

by the resulting  class imbalances. The area under the receiver operating characteristic curve, or 

AUROC, is a tradeoff between sensitivity and specificity over a range of decision thresholds, and 

is commonly used, but may not be a good indicator of performance in tasks with inherently 

class-imbalanced data, such as those related to suicide [141]. Other available metrics, such as the 

area under the precision/recall -curve (AUPRC; a tradeoff between precision and recall over a 

range of decision thresholds) and F1-score (the harmonic mean between positive predictive 

value, or precision, and recall, at one decision threshold), may be better choices; however, they 



 

 43 

too may not capture how useful the model will be in a real-world setting . Shah, Milstein, and 

Bagley [17] argue that ultimately, the only metric that matters is whether  a prediction from a 

model results in a beneficial change in patient care. Although  such beneficial changes, e.g. 

improvements in patient outcomes  or provider satisfaction,  cannot be determined with certainty  

at model development time due to the number of unpredictable factors influencing clinical 

utility, some performance metrics will app roximate this utility more closely than others.  

In suicide risk prediction  modeling, such alternative metrics of how much utility a 

predictive model can provide have been reported. Motivated by the reality of resource 

constraints in the healthcare system, Shing et al. [142] re-conceptualized the suicide risk 

prediction problem as a prioritization task . A ranked retrieval problem, the task is to assign good 

relative priorities , i.e. sorting examples in a way that makes positive examples likely to occur 

near the top, and negative examples likely to occur near the bottom. For example, in an internet 

search, the best (i.e. most likely to be positive) results should be ranked at the top. In a setting 

where a user works through results in order of priorit y (i.e. from most to least likely  to be 

positive) , with a finite capacity to review results, the relative ordering of results determines how 

many positive examples are addressed and how many are missed. Time-biased gain (TBG) [143] 

is an information retrieval evaluation metric used in  the setting where a human expert reviews 

positive predictions in order , investing a certain amount of time per item  to verify the prediction 

and take appropriate action, under the constraint of a fixed time budget . Shing et al. [142] 

further refine this idea for the specific task of reviewing posts of social media users in a 

hierarchical manner: Users are ranked based on a user-level risk score; reviewing an individual 

user result entails reviewing that userôs individual posts in order of  post-level risk score. They 

then develop a hierarchical attention approach that jointly optimizes these ranking tasks . In the 

social media post review setting envisioned by the authors, the resulting model can be expected 

to increase the number of at-risk users that can be identified in a given amount of time,  

compared to a model optimized for a more traditional metric.  
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2.4 Designing interoperable, reusable, and scalable health information 

technology systems 

Informatics implementations may fall short of making real -world impact despite being 

well-designed and meeting user needs, for reasons of utility. Financial or organizational costs of 

development may be prohibitive  for organizations in low resource settings, and even in well-

funded settings, maintenance costs may be too high to continue the informatics interventions 

after dedicated research funding runs out. Costs are partly  driven by the need to integrate with 

different platforms or because available tools use proprietary formats and protocols that are 

difficult to reuse in different contexts. However, international standards organization Health 

Level Seven International (HL7) has published healthcare data standards and frameworks, e.g. 

Fast Healthcare Interoperability Resources (FHIR)  [26]  and Substitutable Medical Applications 

Reusable Technologies (SMART) [25] , that are now well known and widely adopted. Relying on 

these formats and frameworks can therefore reduce the costs of implementation and 

maintenance, both at the initial development site and at other healthcare organizations wishi ng 

to implement similar interventions, by reducing staff requirements (less time needed to become 

familiar with data formats and exchange protocols) and technical resources needed (open-

source tools, such as the HAPI FHIR server, are available). Further, integration with EHRs and 

other standards-enabled healthcare information systems is, in theory, automatically supported. 

For these reasons, the economic cost savings of achieving fully interoperable health information 

systems has been estimated at $77.8 billion [144], and the US government now mandates the 

implement ation of FHIR  by HIT organizations [145,146]. 

2.4.1 FHIR  

FHIR is the successor to the HL7 messaging standard, which was only intended for 

messaging. In contrast, the FHIR specification  includes not only comprehensive data exchange 

protocols (API specifications) , but also defines complex search functions, data conversion 
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operations, task and workflow modeling components, and of course, an extensive list of detailed 

resource specifications. In some cases, FHIR resources may be sufficient to model most or all of 

an applicationôs data representation needs. This allows applications to further reduce  the 

duplication of data modeling efforts : simple applications , such as those with few functions 

outside of creating, reading, updating, and deleting (CRUD) data, may be modeled completely 

with FHIR resources and operations. As described in Chapter 7, a team of collaborators and I 

described this approach, termed FHIR -native, and used it to develop StayHome, a mobile-

friendly, interoperable, reusable symptom tracker application for COVID -19 self-monitoring  

[23] . FHIR was used as the primary data structure. Due to its status as a validated and 

internationally accepted data format, FHIR  is commonly used for exchanging data, with 

dedicated modules performing on-demand conversions between operational data structures and 

FHIR formats when data exchange APIs are invoked; however, the FHIR -native approach 

further extend s the use of FHIR by utilizing it as its internal data structure as well. This enabled 

the use of HAPI - an open-source, freely available FHIR server - as the primary operational 

database server implementation, saving the effort of developing one from scratch. Because the 

FHIR -native approach relies almost completely on FHIR data structures and APIs, it maximizes 

time saved on data structure and API design: the initial functional version of StayHome was 

published and made available to the public only 2 months after development started. Because 

StayHome is completely open source and makes extensive use of freely available resources, 

myself and others will not only be able to build on the FHIR -native approach, but can reuse the 

software code itself.  

In addition to structural interoperability, semanti c interoperability is essential. FHIR is 

intentionally highly flexible , allowing certain concepts to be represented in different ways. 

Although  this can be a barrier to true portability and reusability of FHIR products , it  cleanly 

separates knowledge engineering problems from issues of technical capability. This allows team 

members with clinical  expertise to contribute early on . However, semantic interoperability thus  
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requires the development, sharing, and reuse of technical documentation on how to use FHIR 

for a particular use case. This purpose is served by Implementation Guides (IGs) and FHIR 

Profiles. For example, how to use FHIR to model questionnaires, questionnaire responses, and 

related knowledge artifacts is well-defined in the Structured Data Capture (SDC) IG.  

Although  the use of FHIR for patient -generated data has been largely limited to this kind 

of data ï i.e. patient-reported outcomes (PROs), which are usually collected with structured 

questionnaires ï other uses have been described in Profiles. As PGD become more ubiquitous, 

guidance and tools have increasingly become available for this category of use cases [147]. 

However, many specific uses remain to be explored and are as of yet without specific guidance. 

Newly developed use cases for FHIR should therefore develop technical documentation, such as 

IGs and profiles, particularly if it is expected that many different implementations sites may 

benefit from this guidance. 

2.4.2 SMART-on-FHIR  

SMART-on-FHIR  [25]  is an authentication and integration framework  originally 

conceived in 2009 (as SMART Classic) as a way to position the EHR as a platform for third -

party applications . After the release of FHIR as an HL7 standard in 2013, it was re-

conceptualized to use FHIR as its basis [148] . SMART-on-FHIR  allows users to launch custom 

FHIR -based applications directly from the EHR context , with the application  interface being 

shown as part of the EHR interface, removing the need to manage separate logins or windows. 

SMART-on-FHIR entails the exchange of authentication and authorization credentials as well as 

FHIR resources with the host system. The host system is most commonly an EHR, but could be 

any system that implements the FHIR specification; as a result, SMART-on-FHIR apps can 

easily be deployed as standalone systems by substituting a bare-bones FHIR server, such as the 

open-source HAPI implementation  [149]. Additionally, applications are portable between FHIR -

enabled systems without requiring extensive customization. Although differences in how 
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resources are used to represent site-specific data may require customization of business logic, 

the technical integration components are universal, so an application developed to work with an 

Epic system could be readily deployed in, for example, a Cerner system. SMART-on-FHIR apps 

can be written by independent app developers who have complete control over business logic 

and user interface, while allowing the appropriate use of FHIR resources internal to the host 

system. In this way, it enables completely customizable CDS functions without requiring  EHR 

vendors to support each app, and without disrupting the user workflow.  

2.5 Guiding frameworks for useful, practical AI  deployments 

An extensive literature search revealed only one recently proposed framework guiding 

the operationalization of AI in healthcare. Developed in 2020 by members of Dr. Nigam Shahôs 

research group at Stanford, the framework [15,21] outlines sequential steps in the process of 

designing, developing, implementing, and evaluating AI  in the clinical setting . Jung et al. [15] 

describe that informaticians should begin by clearly articulating the modeling problem and the 

intervention triggered by the modelôs output: What is the prediction target and what data are 

used to make the prediction? Given a prediction, what action would someone take? It is 

important to formulate the model in terms of data that are available at prediction time. Next, an 

appropria te model is developed and validated, ensuring the model is fair. Performance metrics 

should be carefully considered to determine the best candidate model. If a performant and 

feasible model can be developed, informaticians then proceed to design a deployment strategy 

and assess the resulting systemôs potential utility, weighing the costs and benefits in the context 

of constraints and workflow requirements. Given that a favorable cost -benefit tradeoff is 

anticipated, the system may then be deployed and prospectively evaluated in a clinical trial.  

Jung et al. consider issues of utility in a novel way, positing that the overall value derived 

from using predictive models in practice is constrained by the clinical setting in which they are 

deployed. Performance metrics traditionally used for machine learning models, e.g. AUROC or 
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the F1 measure, may therefore not be good metrics of the modelôs value in practice. For example, 

in a ranked retrieval setting where human experts review documents in order of priority , with a 

fixed constraint on total time spent, m etrics such as hierarchical  TBG [142], which captures the 

number of items of interest discoverable in a ranked list given a time budget, may be more 

appropriate . Similarly, d epending on the workflow context, false positives, false negatives, true 

positives, and true negatives may have distinct costs or benefits, introducing nuance into how 

sensitivity and specificity should be balanced to maximize utility.  One example is described by 

Jung et al. [15], who evaluated a model recommending patients for enrollment in  advanced care 

planning , in  a clinic where the number of seats in the intervention is limited ï a work capacity 

constraint. In this case, low specificity may be very expensive, as every false positive (a patient 

being enrolled in the intervention even though they are unlikely to benefit from it) fills one of a 

finite number of slots, removing an opportunity to enroll a ñtrue positiveò (a patient who would 

benefit greatly from the intervention). Bayati and colleagues [22]  additionally consider 

parameters of the deployment environment to determine clinical utility. They  describe an 

approach to calculating the value, in US Dollars, of deploying a model predicting readmissions, 

given the probability of a readmission, the cost of readmission, and the cost of an intervention 

that reduces the probability of readmission. If a readmission is unlikely, the cost of the 

intervention is higher than the cost of readmission weighed by its probability, and is thus not 

justified. Conversely, there is a threshold probability of readmission at which the intervention is 

expected to have a net cost benefit. The modelôs goal is to determine each patientôs probability 

such that the most beneficial course of action can be selected. The probability threshold at which 

the model must discriminate  well is thus directly determined by the cost of readmission and the 

cost of the intervention.  

Both examples support Li et al.ôs [21] framing of clinical utility  from a systems 

perspective. They argue that AI-supported informatics technology should be designed 

holistically, starting with a clinical problem,  and ending with a complete system that can be 
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evaluated in terms of how well it solves that clinical problem . Human -centered design methods 

and user experience design, including stakeholder interviews and workflow analysis, should 

precede design and development efforts. AI  components, though core enablers of the resulting 

software system, must be designed, developed, implemented, and evaluated in the context of the 

larger software system.  

Jungôs framework focuses on the important issues of algorithm suitability  and utility , 

specifically in the context of predictive models such as risk scorers. While innovative in its 

considerations of the constraints of the system in which an algorithm would be deployed ï e.g. 

data availability at prediction time and limitations on clinical utility imposed by work capacity ï 

further informatics efforts are needed before, during,  and after the model development and 

evaluation steps outlined in this framework. First, systematic assessments of clinical and 

information needs are needed to inform  AI  components. Such assessments may reveal that AI  

beyond predictive modeling is needed, e.g. for cognitive support helping users decide on follow-

up actions after an elevated risk has been identified. Such AI would then require dedicated 

design, development, and evaluation efforts, e.g. to determine how best to organize information. 

Second, model evaluation metrics that effectively capture the magnitude of the benefit the 

system is expected to provide may need to be developed. Third, to support ongoing efforts to 

promote interoperability and reusability, developing sustainable, standards -based information 

models and software systems should also be a key concern; such considerations may affect 

calculations of utility, and must therefore be incorporated as a key part of any operationalization 

project.  

2.6 Contributions  

In light of the gaps in the current literature, this work makes the following contributions.  

Biomedical i nformatics contribution.  AI  approaches must be carefully tailored to 

meet the needs of specific user-defined tasks, and must be evaluated in terms of their utility for 
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those tasks. Thus, general machine learning approaches often fall short. This disconnect is a 

monumental problem in  the current landscape of healthcare AI . The overarching contribution of 

this work is a generalizable framework for the needs-driven operationalization of AI  to support  

workflows and clinical decision making in healthcare. Compared to prior guidance, it highlights 

the need to comprehensively assess and design for usersô cognitive needs; to develop and make 

use of clinically relevant metrics  of model performance; and to design and develop standards-

based software. This work therefore contributes to understan ding and resolving this disconnect. 

Additionally, there  is little precedent for NLP -based suicide risk assessment using 

clinician -patient communications  to inform clinical practice . Aim 2 contributes the knowledge 

that  neural network -based methods can perform well in clinical settings with data scarcity, such 

as suicide risk classification  in patient communications , by leveraging large, publicly available 

datasets, e.g. of social media posts, via transfer learning. Aim 2 further contributes a novel 

metric  of a modelôs clinical utility  that incorporates constraints of the clinical  environment . 

Human -centered design  contribution.  Aim 1 elucidates important insights into the 

cognitive demands of administering the Caring Contacts intervention and  contrib utes design 

considerations for  digital tools supporting healthcare professionals in meeting these demands, 

including  considerations for AI -based cognitive support  tools. These findings may be 

generalizable to other mental health informatics use cases. 

Heal th  data standards  contribution.  Aim 3 of this work  contributes a roadmap for 

using FHIR to represent Caring Contacts artifacts and workflows, including  blueprints for a 

FHIR data  representation model incorporating patient -generated natural language data, and an 

application architecture for applications continuously ingesting externally generated text data, 

processing them with machine learning, and integrating them into EHR -based workflows for 

CDS. Aim 3 also contributes open-source, freely available, reusable code that  embodies and 

exemplifies the use of FHIR  and SMART-on-FHIR to enable interoperability, portability, and 

reusability of AI -based decision support tools. This ready-to-use software artifact has broad 
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applicability and the potential to empower healthcare organizations to improve patient  

outcomes.  

Behavioral health  contribution.  Caring Contacts is an intervention with 

demonstrated effectiveness [44] , but logistical challenges and low capacity have hindered its 

adoption . By developing a novel information system that  leverages AI  to lighten  the workload 

burden of the intervention , I address these challenges. Data standards and interoperability 

technologies enable the reuse of this information system across healthcare institutions and 

further tips the cost -benefit balance for potential implementation sites discouraged by the 

interventionôs requirements. This work contributes an open-source software artifact that can be 

directly reused by other healthcare institution s, potentially  improving the adoption of this 

effective but under-utilized  intervention, and  benefitting numerous individuals at risk of suicide.  

At the time of this writing, plans are underway to further refine  and deploy this tool across a 

range of settings including  clinics and service organizations serving veterans.  
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Chapter 3. Identifying opportunities for informatics -

supported suicide prevention: the case of Caring Contacts 

In the work described in this chapter, I  began the process of designing, developing, and 

implementing an informatics tool for Caring Contacts by  establishing technological support 

needs, engaging stakeholders in a formal needs assessment. I applied ideas of cognitive 

engineering to better understand the clinical problems  in suicide prevention,  the cognitive tasks 

involved in solving the m, and the strategies human experts employ in this process. Based on my 

findings, I developed design considerations, which informed the subsequent aims of this work .  
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Abstract. Suicide is the tenth leading cause of death in the United States. Caring Contacts 

is a suicide prevention intervention involving care teams sending brief messages expressing 

unconditional care to patients at risk of suicide. Despite solid evidence for its effectiveness, 

Caring Contacts has not been broadly adopted by healthcare organizations. Technology has the 

potential t o facilitate Caring Contacts if barriers to adoption were better understood. This 

qualitative study assessed the needs of organizational stakeholders for a Caring Contacts 

informatics tool through interviews that investigated barriers to adoption, workflow  challenges, 

and participant -suggested design opportunities. We identified contextual barriers related to 
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environment, intervention parameters, and technology use. Workflow challenges included time -

consuming simple tasks, risk assessment and management, the cognitive demands of authoring 

follow -up messages, accessing and aggregating information across systems, and team 

communication. To address these needs, we propose design considerations that focus on 

automation, cognitive support, and data and workflow i ntegration. Future work will incorporate 

these findings to design informatics tools supporting broader adoption of Caring Contacts.  

3.1 Introduction  

Suicide is a major public health concern [30ï32]; at the same time, our lives increasingly 

unfold online, making new data sources available that enable the development of new 

supportive technologies. A range of suicide-related risk prediction models have been developed 

by the informatics and computer science communities [92,150] , but little is known about how to 

integrate such models to support clinical practice at the point of care. This study endeavors to 

take these technologies a step closer toward translational impact by identifying opportunities for 

informatics support within  an evidence-based suicide prevention intervention.  

Caring Contacts is an effective suicide prevention; however, it has not been widely 

adopted. Organizations wishing to implement Caring Contacts face challenges in deciding how 

to make judicious use of available resources, address patient safety, and reach recipients in a 

meaningful way. Informatics approaches hold promise for addressing these challenges. The 

Caring Contacts intervention is  potentiall y labor-intensive, such as when interventions with 

two-way communication  yield responses indicating that the recipient is experiencing distress or 

an acute crisis. Programs must have an appropriate response and safety plan to reliably provide 

timely suppor t in  such cases. A promising area of investigation for informatics  is, therefore, how 

to leverage suicide risk prediction models to triage responses to Caring Contacts messages.  

However, as recommended by published frameworks that guide the operationalization of 

predictive models for clinical decision support (CDS), a thorough understanding of the context 
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of use and user needs must be established before model development begins [14,15]. Carefully 

designing informatics tools with the opinions and experiences of organizational stakeholders in 

mind is critical to successful adoption [151]. Therefore, there is a need to engage stakeholders to 

understand how an informatics tool can help address barriers to the adoption and delivery of 

Caring Contacts among healthcare organizations. 

To address this research gap, we drew on principles of human-centered design [151] to 

describe specific barriers to Caring Contacts adoption faced by healthcare organizations, 

delineate workflow challenges faced by intervention staff, and formulate design considerations 

that can guide the development of informatics tools  supporting the Caring Contacts 

intervention.  The objective of this study was to characterize specific barriers to adoption, 

workflow challenges, and implementation bottlenecks among organizational stakeholders, 

including program coordinators, leadership, social workers, and intervention staff,  affecting the 

Caring Contacts suicide prevention intervention.  Findings inform design considerations for the 

development of informatics tools that help address these barriers. 

3.2 Methods 

We conducted a needs assessment using qualitative interviews to inform design 

considerations that  meet user needs by directly engaging organizational stakeholders. The 

methods used for this study follow the principles of human-centered design as outlined by 

Maguire et al. [151] to establish the context of use and user needs. The Institutional Review 

Board of the University of Washington approved study procedures.  

To understand how an informatics tool can help address the barriers to the adoption and 

delivery of Caring Contacts, we engaged organizational stakeholders with experience in 

planning, implementing, and delivering Caring Contacts. We purposively sampled interview 

participants with diverse perspectives as professionals in various roles, including program 

coordinators (e.g., princi pal investigators, care directors) and Caring Contacts authors (social 
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workers, psychologists, clerical staff). We recruited participants from programs using different 

message modalities (i.e., mail, email, text message) and in different intervention settings, 

including research (i.e., intervention research such as clinical trials) and clinical settings (i.e., 

routine primary care, specialty care, and public health programs). We recruited through the 

authorsô existing professional networks of suicide prevention researchers and practitioners. We 

recruited professionals conducting suicide prevention programs  serving marginalized groups, 

including Native American, rural, veteran, and active duty military communities. These 

recruitment efforts yielded mostly pro gram coordinators, so we employed snowball sampling to 

reach additional participants in social work and clerical staff roles.  

Table 3.1 Interview guide topics and example prompts  

CC = Caring Contacts  

Topics  Example prompts  

A. Overall 
intervention 
structure, 
goals, and 
high-level 
challenges 

Goals and 
expectations 

What does your program seek to accomplish? 
How do you align patient expectations with the intervention 
goals? 
What related risks are there? How are they addressed? 

Barriers to 
intervention 
adoption  

From your perspective, whatôs the biggest reason why CC is 
not more broadly adopted? 
How is the intervention funded?  
What resource limitations impact  the intervention?  

Team 
makeup and 
dynamics 

What roles have to be fulfilled to support CC? 
Who do you work with to support CC? 
How do you communicate with team members? 

B. Task-
specific 
challenges 
and 
corresponding 
design 
opportunities  

Workflow 
challenges  
by task 

Which tasks take the most time? 
Which tasks are most difficult?  
How do you solve the problems involved with these tasks? 
What do you need to complete the individual tasks (people, 
information)?  

Design 
opportunities 
by task 

How could an informatics platform assist with these 
challenges? 
What are the most important things you require from a CC 
information system?  

Which tasks could be automated, and which tasks should not 
be automated? 

 

Data was collected via semi-structured interviews. The interview guide was developed 

based upon Caring Contacts implementation challenges in prior research ( Table 3.1). Across 
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three large randomized trials Comtois et al. [40,49,50]  refined Caring Contacts via text message 

and, based on expert consensus, collected an initial list of challenges and bottlenecks that a 

digital solution might help address. Topic areas for inquiry were based on this expert input and 

organized around the structure of the workflow (i.e., eli gibility determination and enrollment; 

scheduling and sending caring contacts; monitoring for incoming patient responses; 

determining urgency and how to follow up; authoring follow -up messages; creating any external 

documentation). Interviews were structur ed to flow from general intervention considerations to 

technology-specific challenges and design opportunities to identify where informatics tools 

might facilitate adoption and cost -effective, time-efficient delivery of the intervention. The 

interview guid e was pilot tested with AK, who served as domain expert and interviewee, due to 

her experience as both a social worker serving as a Caring Contacts author and as a researcher 

acting as a champion.  

Interviews lasted 45-60 minutes and were conducted via video conference by HAB, a 

Ph.D. student. The video conference software recorded and transcribed interviews for 

qualitative analysis. No bias due to a power differential was expected due to the relative 

seniority of participants and the absence of a professional relationship between interviewer and 

interviewee. We conducted interviews until reaching saturation, i.e., until no new themes 

emerged [152]. 

In accordance with guidance from Ancker et al. [153], we followed a four-stage process to 

conduct a deductive qualitative data analysis. First, we developed a codebook based on the 

topics for inquiry identified from expert input (KAC). Second, to enhance the reliability of 

coding, two authors (HAB, ML) independently coded one -third of transcripts. Codes applied by 

HAB and ML were compared in consensus meetings. The definitions for the codes in the 

codebook were iteratively refined based on feedback from the consensus process until there was 

agreement in coding between coders. Codes were applied to all interview transcripts by one 

author (HAB)  [154,155]. Third, to discover themes within our topics of inquiry, coded excerpts 
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were grouped by similarity into emerging themes  [155]. Fourth, we utilized member checking to 

verify the face validity of the themes. 

3.3 Results 

Sixteen individuals completed interviews (P1-P16), representing 12 unique Caring 

Contacts programs (Table 3.2). The organizations included large health systems (research and 

ongoing programs), community -based health advocacy groups (ongoing programs) , military 

(research program), and a managed care organization (ongoing program) . The populations 

served by the programs included both rural and urban communities, veterans, active duty 

military, and indigenous communities. Several programs sent caring messages via multiple 

modalities, depending on patient preference. Of the 14 participants (88%) who completed the 

demographic survey, nine (64%) were female, four were male (29%), and one was non-binary 

(7%). Ten identified as white (71%), four as Asian (29%), and one as Hispanic or Latino (7%). Six 

(43%) were mid -career professionals aged 40 to 49; six (43%) were 39 or younger, and two 

(14%) were older. Two (14%) worked primarily with indigenous communities and one (7%) was 

a suicide prevention professional with lived experience of suicidal thoughts and behaviors. 

Table 3.2 Participant characteristics  

  Participants (N=16 )  
n  (%)  

Programs (N=12)  
n  (%)  

Role  Coordinator  6 (38%)  
Author  5 (31%)  
Both coordinator and 
author  

5 (31%)  

Setting  Research  11 (69%) 7 (64%) 
Clinical  (ongoing care)  5 (31%) 4 (36%) 

M odality  Mail  6 (38%) 4 (36%) 
Text  11 (69%) 4 (36%) 
Email  5 (31%) 7 (64%) 
Phone  1 (6%) 1 (9%) 

 

We report findings from interviews across the two topic areas in our interview guide: (A) 

barriers and facilitators  in the overall work system surrounding the intervention structure, 
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goals, and high-level challenges involved with adoption, implementation, and overall success of 

current Caring Contacts programs, and (B) challenges and their potential solutions  surrounding 

the day-to-day tasks of the workflow.  

3.3.1 Overall work system barriers and facilitators  

Three themes reflect workflow barriers expressed by participants: Context and 

environment , Intervention parameters , and Technology.  

Context and environment.  This theme describes issues stemming from Caring 

Contacts intervention settings, ranging from incentive structures, policies, and public health 

trends to business considerations at the healthcare organization level. Several participants 

mentioned difficulties in obtaining organizational buy -in. For example, P15, a program 

coordinator with lived experience of suicidal thoughts and behaviors, was concerned that 

compared with conventional approaches to mental health treatment, Caring Contacts could fuel 

skepticism: 

ñInitially, there was a lot of resistance é I was working on trying to find sustainability 

funding, and then it was like no we don't want to do t his é I think part of that is the uhm, not 

really truly believing in the fact that peer support can make a difference, the way other support 

cannot. And so I think there's some of the older school thinking behind that decision making.ò 

(P15) 

Resource scarcity was a consistent theme limiting implementation efforts, ranging from 

a lack of funding for programs to insufficient staff , staff time, or necessary expertise. For 

example, P7, a Caring Contacts author on a research program, shared staffing and funding 

constraints:  

ñI think it would be great to offer [Caring Contacts ] as another support system, but we 

also know that takes someone to do them, right. I mean itôs going to be part of someone's 
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workload, or maybe them being hired in for just that purpose, so it would really depend on 

whether or not they have the funding.ò (P8) 

Other barriers at the organizational level includ e the lack of focus on prevention and 

mental health in current incentive structures, resulting in difficulties aligning unreimbursed 

prevention efforts with organizational priorities . For instance, P10, a message author working in 

clinical care, shared challenges with insurance reimbursement: 

ñHow do we stop people from falling through the cracks in the medical field? They come 

in for something that's medical, and unfortunately society says that medical and mental health 

are two separate things and they're not. They are one big element that we should be treating 

the same, but instead insurance says, you can go to the hospital for your heart,  but if you're 

having mental health issues we're not paying for therapy.ò (P10)  

P9, a researcher, emphasized that the litigious nature of the current healthcare landscape 

requires carefully defining the scope of practice for liability reasons: 

ñSomeone asked me a question like, I think it was a psychiatrist who asked me, é I'm 

providing my care, but once they're discharged my relationship with that person it's over like 

that legal clinical relationship is over. Are you asking me to like maintain this kind of legal you 

know clinic relationship past that, and I was like I kind of like - well, well yeah, so, not to, 

maybe. You know it's a valid question, and it does raise some issues of like liability too  right. 

é Valid questions.ò (P9)  

In addition to barrier s to implementing Caring Contacts, participants also described 

several contextual and environmental facilitators. For example,  organizational culture, such as 

an organizational mission to reduce suicides and attempts in the served population, resulted in 

healthcare organizations prioritizing suicide prevention.  P10 shared: 
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ñOur organization believes in it so much that they fund my position fullyé we want to 

implement [Zero Suicide] fully, they have completely backed me é whatever I feel like I need 

to do for our patients to help them.ò (P10) 

The expectation that suicide prevention will save money in the long run facilitated 

investments in Caring Contacts for  organizations with payment structures that incentivize cost -

effective care, as P13, a community health clinic director, shared: 

ñWhen you look at return on investment, we can also say that the savings do accrue to 

the health plan. Again this isnôt why we did [Caring Contacts ], but if you are a hospital, for 

instance, you could say, well, yes, this is good because it reduces suicidality, you know 

completed suicide, suicide attempts. But the savings donôt actually accrue to the hospital, or to 

an outpatient provider. Ethically, morally, clinically itôs the correct thing to do, but, in our case 

ï again, this wasnôt the driver ï but we should see a financial benefit from reduced 

hospitalizations and ED visitsò (P13) 

Finally, P11, a coordinator and message author in a clinical  care program, added 

regulatory requirements as another incentive for Caring Contacts: 

ñI think a big piece of what helped our system get to where it is, is the Joint Commission 

requirements as far as addressing Suicide Prevention and assessmentò (P11) 

Intervention parameters. Participants also described barriers and facilitators 

regarding intervention parameters, i.e. the intervention design and implementation specifics. 

This includes program goals and operating procedures, such as how people will be referred to 

the program, eligibility criteria, the number and timing of messages, the content of the initial  

Caring Contacts messages, whether to include disclaimers, and whether the program entails 

one-way or two-way communication.  Considering the wide variety of intervention  designs 

reported, each organization must carefully consider its individual approach , which takes time 

and effort . Establishing policies and communicating expectations that attenuate potential risk s 
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of the intervention causing harm was a primary objective some participants described. For 

example, P3, a program coordinator and message author in a research study, described the 

challenges of developing efficient referral procedures: 

ñAnother barrier é, in terms of kind of the complexity of moving information from the 

health system to the hotline, is just figuring out what that process looks like. So we have over 

900 referring providers that are helping get patients referred to [the study], so training a ll of 

the providers that this resource exists and that it's available.ñ (P3) 

P5, a message author in a research study, added: 

ñI think having good protocols in order to respond well over text is probably the most 

time-consuming thing.ò (P5) 

Establishing expectations with patients was mentioned as an essential component of 

avoiding patient harm. P7 shared the need to clarify with patients what types of support the 

program is or is not designed to deliver: 

ñWe tell participants we're not a crisis service. And so we tell them we're not available 

24 hoursò (P7) 

Further, adapting the intervention to the needs of specific populations and individual 

patients was time-consuming. Caring Contacts message authors must tailor the text, message 

schedules, and delivery modes for recipients of different age groups and cultural groups (e.g., 

indigenous communities, veterans, and healthcare workers). For example, P16, a program 

coordinator working with indigenous communities in a public health setting, shared:  

ñOur biggest lift is creating the messages [our population identifies with]ò (P16)  

P7 explained that messages should be caring and undemanding: 

ñCaring contacts is based upon the idea that if you feel connected to people in your 

community and you  don't feel li ke a burden, you feel like you like belong, that your risk of 
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suicide goes downé It's never asking someone to do something or telling them to do something, 

it should just be like generally positive, encouraging good vibes.ò (P7) 

P8 added that messages should not be too generic or repetitive: 

ñWe don't like to repeat the same old thing, because it makes them feel like it's not 

personal for one thing, that like it's just computer -generated. And technically, it was software, 

but technically it was  a human behind it.ò (P8) 

The simplicity of Caring Contacts was seen as a barrier when  the complexity of its 

logistics was overlooked. P4 shared: 

ñIt's a combination of that it gets sold as a simple suicide prevention intervention. The 

concept is simple, right? Itôs mail. Yeah. The logistics of sending and managing a year's worth 

of mail is not simple.ò (P4) 

Technology  use . Technology was generally perceived as a facilitator, but was described 

as a barrier when it was difficult to use, introduced inefficien t workflows, obscured needed 

information, or did not function correctly. For example, P5 reported that some software was not 

usable because it required specialized skills to operate: 

"One of the reasons that we had a lot of issues with our Access Database is that it 

requires like special SQL code and stuff for it, that me and my coworkers are not specialized to 

programò (P5) 

P12, a coordinator of a community-based program, described how software bugs 

necessitated labor-intensive workarounds:  

ñThe capability to notify staff when a patient texts back é is really important. Because 

in the beginning, that email notification wasnôt working. We ran into issues where I was seeing 

é no one responding back to this patient and it's been, you know, a day already. And I would 

reach out to the clinical care pointers and they're like Oh, we never got an email. é That 

actually happened, like, a few times. So that's why, like every day, I would monitor and also 
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have another clinical care coordinator, instead of relying on no tification coming through é 

they would be in the portal, and they would check in the morning, midday, and then in the 

eveningé those are kind of the type of bottlenecks that we did not anticipate ò (P12) 

Further, there were technology-related barriers arisi ng from the characteristics and 

perceptions of the served population. Internet access and technology literacy were barriers to 

patient adoption of digital health tools, especially for elderly patients and those belonging to 

rural and native communities. Fo r instance, P4 shared: 

ñThere's a lot of disconnect é especially with age. Like I have folksé like, I have to walk 

them through the steps of how to use their phone. é I have one who doesnôté know how to send 

a text message, and he doesn't want to know how to send a text message either.ò (P4)  

In contrast , technology was a facilitator  when it eased data and workflow integration 

between different systems (e.g., transferring patient information between electronic health 

record (EHR) systems and text message platforms), provided mechanisms to plan and execute 

tasks (e.g., automatic message scheduling and sending), or captured data automatically (e.g., 

text message conversation history, call durations). For example, P3 shared how workflow 

integration with referri ng providers and data sharing across intervention staff facilitates the 

Caring Contacts intervention:  

ñWe have a best practice advisory alert the fires in Epic which informs providers that 

you have a patient that may be eligibleé We also built out through EpicCare Link the ability 

to share portions of patient charts with the hotline directly, so they can see directly the safety 

plan that was developedé there's a lot of technology that is facilitating this work for us.ò (P3) 
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3.3.2 Task-specific workflow challenges and participant-suggested design 

opportunities  

Five themes reflect workflow challenges and design opportunities reported by 

participants: Time-consuming simple tasks, Managing risk , Authoring helpful follow -up 

messages, Accessing data across sources/systems, and Team communication and collaboration .  

Time -consuming simple tasks . The workload imposed by suicide prevention efforts 

was a recurring theme, and is particular ly concerning in the context of the resource constraints 

we identified as system-wide barriers . The burden due to inefficient workflows emerged as a 

significant bottleneck in both clinical and clerical tasks completed by Caring Contacts authors. 

Program coordinators are affected by this as well, because productivity levels will determine 

staffing requirements. Participants described considerable time spent on repetitive manual 

tasks, such as eligibility determination, scheduling and sending templated messages, and 

documenting communications. For example, P1 explained: 

ñEvery person I enroll , I want them to get 11 texts on this schedule, you know, one day, 

one week, one month, two months. You couldn't just tell it that ; you  had to literally go in there 

and every single message, pick the date and time.ò (P1)  

On the other hand, P14, a Caring Contacts message author in a research study, shared 

that automation of such tasks is a big help: 

ñThe fact that it just sends out texts for us automatically on a schedule and we don't 

have to manually type or send a text is obviously very helpful.ò (P14)  

P10 described the manual nature of documenting contacts and their hopes for future 

technological assistance: 

ñIn our EHR, I write that a caring contact did go out and what date it went out.  é I 

type it out because I'm the only one. Iôm sure that, as the system hires more zero suicide 
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coordinators, because that's the hope, that they may put something in that you can just hit a 

button for. But for now , I just type it out .ò (P10)  

Managing risk.  Participants reiterated that first and foremost, patient harm must be 

avoided. This requires vigilance regarding the content of outgoing messages, monitoring and 

assessing risk in patient responses, and composing follow-up communications. Managing risk is  

a shared responsibility between all stakeholders, and therefore, both Caring Contacts authors 

and program leadership/coordinators are affected. One key component is timeliness. 

Participants  perceived intense pressure to provide high-quality  support prompt ly, especially in 

urgent crisis situations. P3 shared the need to keep close track of patients: 

ñJust having a better way to track and make sure nobody falls through the cracks. I 

think all of us have a lot of anxiety about potentially causing harm by intr oducing this 

relationship and then someone drops accidentally when they really need help, I mean that ôs 

like the worst thing that could happené itôs a big concern.ò (P3)  

P6 shared frustration about manually collecting relevant information when time is of the 

essence: 

ñBeing on call, you knowé if I get a text message at, you know, one o'clock in the 

morning , and it's something distressful , and I don't even know who this person is because it 

wasn't one of my [patients], now I've got to, you know, é gather my  wits about me , trying to 

get on it, get some insight and some direction, and to be able to respond as quickly as possible 

and as accordingly as possible to ensure that person gets connected and is safe.ò (P6)  

Reviewing historical interactions can also reveal sensitive issues. P1 shared that bringing 

up something that is difficult for the patient to think or talk about should be avoided:  

ñIf you mentioned their access to clinical care, and like the last few times they wrote 

back é with you know some degree of distress you might not want to [mention their access to 

care] again.ò (P1)  
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P12 shared an approach to automatic flagging of potentially high-risk messages, which 

could help address risk management concerns: 

ñSay if a patient texts back and uses any of the words like , you know , hurt , kill, like any 

of those words, the system flags it é then sends an automated response text back to the member 

letting them know resources if they need help, and then also we get notified too é [we were] 

able to review tha t list and anytime we want to add new words to that list we can do that ò 

(P12) 

Authoring helpful follow -up messages.  Apart  from the scheduled, pre-written (or 

templated) Caring Contacts messages, the ongoing execution of the program may require being 

responsive to patients who reach out for further support. While most responses from patients 

are straightforward expressions of gratitude, there are rare patient responses that express 

distress and require careful consideration to determine follow -up actions based on each 

patientôs individual situation. In these cases, participants emphasized that writing follow-up 

messages is a complex cognitive task. P1 shared: 

ñAuthoring responses is a lot of work.ò (P1)  

If the intervention team determines that a  Caring Contacts recipient is experiencing 

adversity, the team must extrapolate the patientôs needs (e.g., crisis support vs. encouraging 

words) and compose an appropriate follow-up message. Message authors may review the 

patientôs history and known coping mechanisms. P14 shared: 

ñWe look in their medical record and see if there is a safety plan é their supports and 

coping mechanisms and things like that. ò (P14)  

Assessing patients and their communications accurately is another concern. P1 shared 

the potential need to incorporate patient -specific factors, such as a patientôs baseline risk level, 

to avoid missing warning signs: 
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ñThere was one person that we classified as urgent where it kind of took a little nuance 

to get it, you know, for him it was urgent. ò (P1)  

Finally, P16 added that a message author might customize message resources based on 

the patientôs individual needs: 

ñIf somebody responds back and is like, oh sorry , I got a really bad grade on my math 

test, so that's why I told you I was feeling down. And  then we'll respond back and be like, oh 

that's such a bummer, did you know that, you know, if you ever want some more resources 

about math tutoring or anything like that to try out é From where you're located, here are 

some resources for that area, specifically.ò (P16)  

Accessing data across sources/systems . Participants reported referring to 

information from several systems throughout the intervention workflow. For example, when 

evaluating a patient response or composing follow-up messages, staff might review prior 

message exchanges within the messaging system, but they might also refer to external 

information such as the patientôs demographics, details of their clinical history (e.g. , suicidality 

questionnaire responses, previously documented safety plans), their current healthcare 

providers, and past or upcoming appointments. These data may be in one or more EHR systems, 

intervention -specific records (e.g., patient notes kept by intervention staff), or other data 

sources (e.g., text-messaging platform). Caring Contacts authors are affected by these challenges 

in terms of productivity and ease of use. Program coordinators have to take these challenges into 

account when making intervention design and implementation decisions, balancing feasibility 

and affordability with ease of use and intervention reach. For example, P11 shared that EHR 

data can be informative: 

ñRisk factors  are broad that could be someone having particular diagnoses  é. [or] 

they're missing a bunch of appointmentsò (P11)  

P6 shared that integrating patient data in a single access point is desirable: 
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ñIf there was some way to provide all of that in a centralized location, where maybe ... 

you could write notes or keep a log of all the service members versus having to go to an excel 

spreadsheet and open up, and like kind of toggle back and forth, if you could have that kind of 

functionality é with one applicationò (P6) 

P11 shared that access to and integration of different systems is a benefit: 

ñThe benefit of us having a work system is that a lot of who we're working with is kind 

of integrated into our current system, so I can typically see the documentation of the therapist 

or the treatment team, or whoever it may be. And also communicate with them in the electronic 

health record. Our behavi oral health system uses one and our like medical side, like the hospital 

and stuff they use a separate one, but we can access them both.ò (P11) 

Team communication and collaboration.  Caring Contacts team members have 

different responsibilities, expertise, a nd roles, ranging from behavioral health providers and 

social workers to program administrators and clerical support staff. Participants describe 

collaboration across team members as critical to completing intervention tasks requiring diverse 

expertise. This affects all Caring Contacts authors. For example, P16 described routing messages 

to follow -up specialists based on content:  

ñIf it's a concerning thing, he will route it to our concerning message team, within our 

protocol for what to do whenever  we receive a concerning message/post/email. And 

depending on why it's concerning , it goes to certain people.ò (P16) 

Sharing information across the team is essential for efficient handoff. P10 shared that 

different staff collect patient information at different p oints in a patientôs journey, requiring the 

transfer of notes: 

ñOur behavioral health evaluators are the ones that will meet them in the hospital and 

do all of the treatment and engagement with them in the hospital. é they will print off a face 
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sheet and send that to me, and sometimes they will write notes like, dealing with this, please 

send them extra cards, or call and send the cardò (P10)  

Similarly, sharing intervention notes and updates with referring providers can benefit 

patient care continuity. P14 shared challenges to data sharing between providers due to poor 

data integration and system access: 

ñThe notes that we write are kept in the research database é and their providers don't 

have access to that. If they create a safety plan with their provide r or with a social worker é 

then that is included in their chart and is visible to [both us and] their provider, but if we create 

the safety plan, their provider doesn't have access to that.ò (P14)  

Finally, sharing the workload between intervention staff is necessary, especially when 

staff cover for each other (e.g., after hours). Thus, team communication is essential and 

represents a barrier when inefficient or when misunderstandings occur. P11 shared the need to 

communicate how the workload is balanced across team members: 

ñJust some sort of way to know that someone else did it even if it's not fully documented 

yeté. That's something that we run into as a team, that we try to support each other, but if we 

don't get the opportunity to communicate  something like that, it just, it doesn't go as smoothly.ò 

(P11)  

3.4 Discussion 

Through this needs assessment, we established the context of use, identified barriers to 

adopting the Caring Contacts suicide prevention intervention among organization stakeholde rs, 

and identified opportunities for informatics tools to help address these barriers. Our findings 

broadly fall into two categories: overall work system barriers and facilitators and task -specific 

workflow challenges.  

Any informatics tool must be designed with the context of use in mind.  The work system 

themes that establish this context included high-level contextual and environmental obstacles, 



 

 70 

intervention design and implementation issues, and system-level technology concerns. While it 

may not be possible to address all barriers and challenges directly with an informatics tool , they 

must be accounted for, as they place constraints on tool design and deployment. For example, a 

significant limitation is that the incentive structures currently in place in the U.S. healthcare 

system are not favorable to preventive care. To make Caring Contacts broadly feasible within 

this constraint, we must prioritize the judicious use of human resources to control costs.  

Task-level workflow challenges represent pain points in current workflows and therefore 

reflect opportunities for informatics tools to help. Five themes emerged from these workflow 

challenges. We now present design considerations for addressing these challenges within the 

work system constraints, including context of use/environment, intervention design, and 

technology use, along with examples illustrating how informatics support could be implemented 

in future work.  

 

 

Figure 3.1 Summary of findings mapped to design considerations for informatics -supported suicide 
prevention . Work system constraints are shown on the outer circle. Workflow challenges are shown 

in bubbles. Design considerations for addressing ch allenges are shown in the inner circle.  
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Our findings point to three cross -cutting design considerations that are key to addressing 

these workflow challenges: Automation, Cognitive support , and Data and workflow integration  

(Figure 3.1). 

Automation.  Resource scarcity emerged as a recurring theme. The workload imposed by 

Caring Contacts can present an insurmountable barrier to implementation. Informatics tools 

can help alleviate this burden, as many repetitive tasks could be partially or fully automated. 

These tasks include checking patient suitability or eligibility for Caring Contacts, scheduling 

initial messages, and sending automated responses to texts or emails. There are also 

opportunities to integrate predictive modeling tools. For example, several promising approaches 

to personalized risk modeling using Natural Language Processing (NLP) and machine learning 

have been reported [92,150] ; such methods could be used to trigger automatic responses with a 

crisis line phone number to a patient who expresses immediate intent for self-harm and to flag 

and prioritize messages for follow-up. Messages could also be automatically routed to staff with 

appropriate expertise based on message content. 

Information retrieval and synthesis for cognitive support . Authoring follow -up 

messages can be a demanding cognitive task. For this purpose, intervention staff must not only 

collect various pieces of relevant information, but also synthesize and harmonize that 

information in order to make clinical judgments and formulate follow -up actions. Participants 

described using different kinds of data and insights, including a recipientôs health history (e.g., 

demographics, diagnoses, appointments), risk and protective factors (e.g., social determinants 

of health), and interaction history (e.g., to de termine what kinds of messages were previously 

well received). Informatics tools could provide cognitive support by aggregating and 

synthesizing information from different data sources in an easily digestible format (e.g., a 

timeline of challenging life ev ents and corresponding trends in suicide risk) to reveal insights for 

CDS. A system could also draw links between available resources and patientsô resource needs 

and present suggestions to authors accordingly. Opportunities for advanced cognitive support 
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tools include mining message exchange histories for patterns in patient communication and 

automatic extraction of clinically relevant insights and therapeutic opportunities (e.g., 

symptoms, risk factors emerging from patient communications, warning signs).   

Data and workflow integration . The intervention workflows that informatics tools for 

Caring Contacts should support require communication between systems and people with 

different roles and responsibilities. For example, programs may aim to provide some level of 

support around the clock, which means that follow -up specialists may not know individual 

patients well (e.g., when covering for someone else); Caring Contacts tools may draw on 

previously described technology-facilitated handoff approaches [156] to support these 

workflows. Additionall y, it is essential to avoid miscommunications, e.g. to prevent harm due to 

a patient in need of support not receiving a response due to a lack of clarity regarding patient 

assignments. Tools should therefore provide planning tools such as task and priority  lists. 

Information exchange with other health information technology platforms is also critical. 

Automatically incorporating external patient information, e.g. safety plans from the referring 

providersô EHRs, can benefit intervention staff as they evaluate and follow up with patients, 

without requiring duplicated data entry efforts. Similarly, sharing intervention notes and 

updates back to the referring providerôs EHR could support ongoing care or insurance 

reimbursement. Data integration can also facilita te reporting on outcome metrics to help Caring 

Contacts program coordinators monitor and improve the program. Additionally, workflow 

integration is an essential component of reducing the workload imposed by working in multiple 

information systems. While data and workflow integration between health information 

technology platforms are well established requirements, they have been prohibitively difficult to 

enable for many reasons, including privacy and governance concerns, technical infrastructure, 

and diverging data formats [7,157,158]. Fortunately, health data standards and exchange 

protocols are maturing, and today we have well-adopted, freely available standards such as Fast 

Healthcare Interoperability Resources ( FHIR ) [26]  and workflow integration tools such as 
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SMART-on-FHIR  [25]  and CDS Hooks [159] that make it possible to overcome some of these 

barriers. For example, SMART-on-FHIR could enable users to launch Caring Contacts 

workflows directly from within the EHR, automatically pulling in relevant patient record 

informatio n. Additionally, FHIR includes API endpoints for common data exchange tasks; for 

example, with appropriate permissions in place, an external system can use a FHIR endpoint to 

automatically file a clinical note to any EHR implementing FHIR.  

Recently, there has been a proliferation of suicide-related risk prediction models  [150] 

using diverse data sources, e.g. patient -generated natural language data [92]  from Facebook 

[95] , Twitter  [160] , and Reddit [161] posts, query terms used for internet searches [94] , and 

EHR data such as diagnoses [115]. These approaches demonstrate promise, but it is unclear how 

to operationalize such models to make a clinical impact, which motivates the current work. CDS 

tools have been intensely investigated in the field of biomedical informatics, and guidelines for 

designing effective decision support have been published [162]. Based on these guidelines, 

critical questions for CDS tools for Caring Contacts include: Who has the ability to act upon risk 

predictions in a way that impacts outcomes? When and how can they benefit from predictions? 

At that point, what data is available for inference? What else is needed for a clinician to act upon 

the new knowledge within their established workflows? These questions illustrate the 

complexity of creating decision support tools with the potential to improve clinical care and 

impact patient outcomes, which is further underscored by the scarcity of examples of success 

described in the literature. To guide such work, Shah et al. [15] developed a framework for 

making predictive models useful in practice. Here, we aimed to complete the indispensable first 

step described in this framework: establishing the use case for a suicide risk assessment model. 

Our work identified several use cases for artificial intelligenc e tools, and helps answer the 

questions listed above. It also revealed a broad set of challenges and opportunities related to 

end-to-end workflow support, suggesting the need to adopt a broader perspective. In order to 

realize the translational impact of n ew and existing predictive technologies, we must therefore 
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design a CDS system that supports the workflow comprehensively. Our design considerations 

provide holistic guidance for both the workflow and artificial intelligence components that 

Caring Contacts informatics support tools may include.  In f uture work, we will use these 

findings to design and develop an informatics tool suitable for a pilot deployment.  

This work must be considered in light of its limitations. Our participants were sampled 

from our existing professional network and subscribers of a suicide prevention mailing list who 

responded to a volunteer request, which may have biased our sample toward those who already 

perceive more benefits than barriers to Caring Contacts implementation. While  we tried to 

capture broad perspectives on barriers, our focus on technology may have biased participantsô 

responses. Finally, this work investigated the perspectives of the potential users of Caring 

Contacts information technology who administer the inter vention, rather than the perspectives 

of patient users who are the targets of the intervention. Prior work has investigated the 

acceptability of the intervention to patients  [40,43] ; however, if the use of novel informatics 

tools were to change the patient experience of the intervention, it would be necessary to re-

engage patients to ensure acceptability.  

3.5 Conclusion 

This work identified barriers to adoption, workflow challenges, and design opportunities 

for informatics tools supporting the Caring Contacts suicide prevention intervention among 

organizational stakeholders. With newfound clarity regarding the opportuniti es for technology 

support, including CDS tools such as risk prediction models, this work contributes to realizing 

the translational potential of informatics interventions to benefit clinical care.  
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Chapter 4. Behavioral activation and depression 

symptomatology: Longit udinal assessment of linguistic 

indicators in text-based therapy sessions 

Aim 1 of this dissertation revealed that follow -up message authoring can be a cognitive 

burden in the Caring Contacts intervention, in part due to the need to review patientsô message 

histories for content that should be taken into account.  There is therefore an opportunity for an 

AI -based tool to automatically extract such content items to lighten this burden. For the purpose 

of clinical decision support, it is imperative  that extracted insights be actionable. Clinically 

validated theoretical constructs can serve this purpose, as long as they not only inform the 

clinical understanding of a patientôs pathology, but also intervention strategies.  

In the work described in this chapter, m y co-authors and I investigated the use of LIWC 

and distributional semantics to automatically extract clinically relevant insights in a large corpus 

of patient -generated text, focusing on behavioral activation therapy for depression. Reduced 

behavioral activation, i.e. participation in rewarding activities, is a hallmark of depression; 

therapy may aim to induce such behaviors, triggering a positive feedback loop that leads to 

symptom improvement. Reduced behavioral activation is therefore both a symptom and  an 

intervention target. Currently, therapists utilizing behavioral activation therapy measure 

symptoms and therapy progress by regularly administering a validated questionnaire 

instrument, which interrogates the seven dimensions of behavioral activation: satisfaction with 

activities, breadth of activities, autonomous decision-making regarding activities , deriving a 

sense of accomplishment from achieving activity -related goals, planning for long-term goals, 

enjoyment of effort , and structur ing daily activit ies. These seven items are therefore clinically 

validated, actionable constructs. In this work, I developed and evaluated an approach to 
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automatically measuring these dimensions of behavioral activation using patient -generated 

natural  language.  

Therefore, this work is uniquely relevant to informatics -supported suicide prevention . 

The constructs of behavioral activation  are relevant to depression, and may be directly 

applicable because depression is closely related to suicidal thoughts and behaviors. However, in 

future work, my approach could also be used to develop ways to capture clinically actionable 

constructs specific to suicide, such as hopelessness or entrapment. 

 

A version of this chapter was previously published by the Journal of Medical I nternet 

Research (JMIR) under a Creative Commons Attribution 4.0 International License . ©  the 

authors. 

Burkhardt HA, Alexopoulos GS, Pullmann MD, Hull TD, Areán PA, Cohen T. Behavioral 

Activation  and Depression Symptomatology: Longitudinal Assessment of Linguistic Indicators 

in Text-Based Therapy Sessions. J Med Internet Res. 2021;23(7):e28244. doi:10.2196/28244  

 

Abstract. Background: Behavioral Activation (BA) is rooted in the behavioral theory of 

depression, which states that increased exposure to meaningful, rewarding activities is a critical 

factor in the treatment of depression. Assessing constructs relevant to BA currently requires the 

administration of standardized instruments, such as the Behavioral Activation for Depression 

Scale (BADS), which places a burden on patients and providers, amongst other potential 

limitations. Previous work has shown that depressed and non-depressed individuals may use 

language differently and that automated tools can detect these differences. The increasing use of 

online chat-based mental health counseling presents an unparalleled resource for automated 

longitudinal linguistic analysis of  patients with depression, with the potential to illuminate the 

role of reward exposure in recovery.  

https://creativecommons.org/licenses/by/4.0/
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Objective: This work investigates how linguistic indicators of planning and participation 

in enjoyable activities identified in online, text -based counseling sessions relate to depression 

symptomatology over time.  

Methods: Using distributional semantics methods applied to a large corpus of text -based 

online therapy sessions, we devised a set of novel BA-related categories for the Linguistic 

Inquiry and Wor d Count (LIWC) software package. We then analyzed the language used by 

10,000 patients in online therapy chat logs for indicators of activation and other depression -

related markers using LIWC.  

Results: Despite their conceptual and operational differences, both previously 

established LIWC markers of depression and our novel linguistic indicators of activation are 

strongly associated with depression scores (PHQ-9) and longitudinal patient trajecto ries. 

Emotional tone, pronoun rates, words related to sadness, health, and biology, and BA-related 

LIWC categories appear to be complementary, explaining more of the variance in the PHQ score 

together than they do independently.  

Conclusions: This study enables further work in automated diagnosis and assessment of 

depression, the refinement of BA psychotherapeutic strategies, and the development of 

predictive models for decision support.  

4.1 Introduction  

Over 20% of adults in the United States have a mental illness [32] . Depression is among 

the most common mental health disorders: over 19 million adults suffered major depressive 

episodes in 2019. Effective delivery of mental health services is a challenge for many reasons, 

including that individuals respond differently to therapy [163,164]. To maximize treatment 

benefits, mental health care providers must continually assess progress and adjust treatment 

plans [163]. From a research perspective, longitudinal information about known and 

hypothesized mechanisms of recovery is a prerequisite to the refinement of current 
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interventions and can inform the development of new ones. Validated survey instruments exist 

to assess symptoms and other constructs relevant to therapy delivery and progress [165]; 

however, repeatedly filling out questionnaires places a burden on patients and providers, 

limiting the frequency with which these data can be collected. In contrast, using already 

available data created as part of routine care obviates the need for additional data collection. 

Additionally, it has been argued that subjective self-reports present potential limitations, for 

example due to cognitive and memory bias [166]; while careful scale design can alleviate these 

problems, objective, naturalistic measurements may be preferable.  

4.1.1 Behavioral activation and engagement 

The behavioral theory of depression states that depressed individuals participate in 

fewer pleasant activities and derive less pleasure and feelings of accomplishment from such 

activities [167]; in other words, they exhibit reduced behavioral activation. This phenomenon is 

self-exacerbating: reduced activation represents a loss of positive feelings that further reduces 

activation. Neurobiological findings suggest that dysfunction of reward networks (especially in 

Reward Valuation, Effort Valuation, Action Selection, Preference -based Decision-making, and 

Reward Learning) is a central process perpetuating  depression [168,169]. For this reason, 

ñreward exposureò aiming to induce behavioral activation has been thought to reactivate and 

retrain reward network s and improve depression [170]. Behavioral Activation (BA) therapies are 

therapeutic approaches based on the relationship between depressive symptomatology and 

engagement with pleasant activities. They aim to reduce depression symptoms by activating the 

reward system, and have been shown to be as effective as learning-based therapies while being 

easier to understand for patients and easier to deliver for therapists [167]. An example is the 

streamlined, evidence-based psychotherapeutic strategy called Engage [168] , which aims to 

systematically address disengagement from participation in pleasurable activiti es in a structured 

approach by incorporating reward exposure and addressing barriers in three behavioral 
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domains: negativity bias, apathy, and emotional dysregulation. A recent randomized controlled 

trial showed that Engage is as effective as problem-solving therapy in treating late -life major 

depression, while having the advantage of being less complex; Engage required 30% less 

training time compared to problem -solving therapy [171].  

To better understand the relationship between BA-based therapies and therapeutic 

response in depression, robust metrics of the underlying theoretical constructs that minimize 

reliance on patientsô and providersô subjective reports are needed. Text-based therapy sessions 

provide a unique opportunity to develop such metrics  because all language exchanged in these 

encounters is archived. 

4.1.2 Language as an indicator of mental state 

Language reflects both conscious and subconscious thoughts and feelings [89ï91]. 

Previous work has shown that depressed individuals use language differently than non-

depressed individuals in a manner anticipated by cognitive theories of depression. For example, 

depressed individuals use more first-person singular pronouns (ñIò, ñmeò, ñmyò, etc.) than non-

depressed individuals [172,173], indicating increased self-focused attention, a language use 

consistent with Pyszcynski and Greenbergôs integrative model of depression [174]. Depression 

has also been shown to be associated with a lack of social integration or social disengagement 

[175ï177]. For this reason, Rude et al. [172] anticipated a reduction in use of first -person plural 

pronouns (ñweò, ñusò, etc.) in depressed college students, but had too low a base rate to assess its 

impact in the sample available for analysis. Stirman et al. [177] found that suicidal poets used 

fewer first-person plural pronouns than nonsuicidal poets. Linguistic indicators of positive and 

negative affect differ in depression, and have shown utility in social media-based predictive 

models of depression [123,172]. These findings are consistent with the emphasis on negative 

valence in Beckôs influential depression theory [178]. Finally, prior work has investigated 

content word usage by depressed individuals compared to control groups without depression. 
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These include words related to sadness, as well as words related to somatic health concerns 

(health and biology words, with the biology category combining body, health, sexual, and 

ingestion words) [129,133]. Given these findings, the question arises whether variations in 

language use related to the behavioral theory of depression can be detected through natural 

language processing. 

One approach to capturing emotional affect, linguistic style, and topics in written text is 

to calculate the percentage of words belonging to defined categories, such as positive affect 

words, pronouns, or words related to certain topics, e.g. health or leisure. The Linguistic Inquiry 

and Word Count (LIWC) software package, a tool developed to study linguistic indicators of 

mental states, embodies this technique and was used to quantify relevant pronouns and affect 

words in the work discussed above. As reviewed by Pennebaker et al. [122], numerous 

experiments have validated LIWCôs categories. However, while LIWC constructs such as óleisureô 

are related to the notion of activation, they do not provide a comprehensive account of how 

engagement might manifest in language. For example, categories of relevance to BA, such as the 

breadth of activities one engages in or the extent to which one derives a sense of 

accomplishment from setting and achieving activity goals, are not represented in LIWCôs 

standard dictionaries.  

Distributional representations of words  learned from large amounts of electronic text 

can help construct comprehensive sets of terms similar to the curated sets used by LIWC to 

represent categories. Also known as semantic vectors or word embeddings , these 

representations are learned from text, with a typical approach involving first initializing random 

vectors of user-defined dimensionality, and then iteratively updating them to make vectors for 

words appearing in similar contexts similar to one another. With neural embeddings, this i s 

achieved by training a neural network model to predict the words surrounding an observed 

word, and retaining some of the neural network weights after training to serve as word 

embeddings. Empath [179] is a tool designed to support rapid computer -assisted construction of 
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user-defined term sets using such embeddings to find terms that are similar to an initial set of 

seed terms. Term sets constructed in this way have a strong correlation with the corresponding 

LIWC categories, which were constructed in a completely manual process. In essence, Empathôs 

approach uses distributional representations of words to identify similar terms to a set of seed 

terms based on their distributional statistics across a large text corpus. In this way, a small seed 

set of terms can be rapidly expanded to provide adequate coverage, with the expanded list 

provided to manual reviewers for pruning of those terms considered to be inconsistent with the 

category of interest. Empathôs vector representations are derived from a corpus of fiction. 

Though generally harder to come by, customized in-domain training corpora are known to 

produce better word representations in clinical domains [180] . 

For the current work, we developed a metric of behavioral activation, using 

distributional representations derived from a large corpus of naturally occurring language from 

online therapy chat messages (n=2,527,783), and characterized its relationship to indicators of 

depression severity. We hypothesized that linguistic markers of activation would be more 

frequent in milder depression than in severe depression and that longitudinal changes in these 

markers would reflect the trajectories of patientsô depression; patients who improve over time 

should also show an increase in behavioral activation. We further hypothesized that linguistic 

markers of behavioral activation would capture a separate, clinically meaningful dimension of 

depression symptomatology ï namely, engagement in meaningful, rewarding activities ï 

compared to the established linguistic indicators, which capture psychological manifestations of 

depression (self-focused attention/social integration (function word usage) and emotional tone) 

and content topics (sadness, health, biology words). Therefore, the behavioral activation metric 

should capture information beyond that reflected by established markers. We tested these 

hypotheses in the subset of messages from the time period where evaluations of the severity of 

depression were available for participants at regular intervals (n= 1,051,025).  
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4.2 Methods 

4.2.1 BA lexicon 

We developed a lexicon of related words, collectively representing the construct of 

activation as used in BA. We constructed a set of 66 unique representative seed terms, informed 

by the Activation subscale of the Behavioral Activation for Depression Scale (BADS) [181], a 

validated instrument used to identify subjective engagement levels. The subscale consists of 

seven questions, each aiming to capture a unique component of the construct. Seed terms were 

selected manually for each question in collaboration with G.A., a clinician investigator with 

extensive experience in BA approaches (Table 4.1). 

Table 4.1 Seed terms derived by the authors from the individual questions on the ñActivationò 
subscale of the Behavioral Activation for Depression Scale (BADS).  

The name we assigned for each item (for brevity) is shown in parentheses. Note that there are 104 
total  words in the right column, including duplicates (e.g. ñgoalsò appears in accomplishment, long-

term, and structure), for a total of 66 unique terms.  

Item  Derived seed terms  

I am content with the amount and 
types of things I did. (satisfaction)  

accomplish, achieve, satisfaction, satisfied, enjoy, 
content, contentment, accomplishment, love, proud, 
inspired, inspiring, enthuse, affirm  

I engaged in a wide and diverse array 
of activities. (breadth)  

activity, active, participate, invol ved, event, 
powerlifting, watercoloring, exercise, sport, 
basketball, restaurant, hobby, craft, art, music, 
instrument, piano  

I made good decisions about what type 
of activities and/or situations I put 
myself in. (decisions) 

decision, planning, plan, contest, competition, 
opportunity, chance, spontaneous, whim, spur, 
attentive, affirm, commit, focus  

I was an active person and 
accomplished the goals I set out to do. 
(accomplishment)  

goals, accomplish, progress, goal, achieve, effort, 
content, contentment, accomplishment, proud  

I did things even though they were 
hard because they fit in with my long-
term goals for myself. (long-term)  

goals, progress, goal, effort, planning, plan, 
challenge, attentive, birth, commit, change, invest, 
life, payoff, benefit  

I did something that was hard to do 
but it was worth it. (effort)  

effort, enjoy, excited, energized, energizing, love, 
contest, competition, challenge, chance, fun, 
enthusiastic, inspired, inspiring, enthuse, event, 
affirm, commit, change, focus, fuel, invest, 
invigorate  

I structured my dayôs activities. 
(structure)  

goals, progress, goal, planning, plan, structure, 
attentive, event, routine, schedule, regular 
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We expanded the sets of terms for the novel LIWC construct by using methods of 

distributional seman tics, which generate vector representations of words from their 

distributional statistics in text, such that words occurring in similar contexts will have similar 

vector representations [182,183]. Specifically, we used the open source Semantic Vectors 

software package [184ï186] to train 100 -dimensional word embeddings using the skipgram-

with -negative-sampling algorithm [187] on a set of 2.5 million de-identified messages sent by 

Talkspace clients (>165 million total words). Embeddings were trained over 10 epochs, using a 

sliding window radius of 2 and a subsampling frequency threshold of 10-5. Words occurring 

fewer than five times in the corpus were excluded from training. This minim um frequency 

threshold is employed to restrict model consideration to those terms that occur in a sufficient 

number of contexts to inform a distributional representation, and to constrain the number of 

vectors to save time (during nearest neighbor search) and disk space. We did not attempt to 

optimize this parameter, but note that it is the default in the canonical implementation of the 

skipgram-with -negative-sampling algorithm [188] . For each seed term, we then added the 30 

most related terms as determined by the cosine similarity between the seed termôs vector 

representation and the vectors for all other terms. We chose to add 30 because this number 

appeared to achieve high coverage while imposing a manageable workload for manual pruning. 

Note that stemming is not necessary, as this process will capture all forms of a word appearing 

in the training text, while preserving their semantic nuance s; further, keeping all words 

appearing in the raw text ensures consistency between our dictionary and the texts to be 

assessed. For illustrative examples of similar words, see Table 4.2. 
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Table 4.2 Examples of seed terms and similar terms with corresponding similarity score, calculated 
by computing the similarity between word vectors.  

aTerms were extracted from our chat message corpus and thus include common typographical 
errors. bWords that were r emoved in the filtering process.  

Seed term  Similar terms a Similarity score  

Proud 
 

Accomplished 0.729 
Accomplishment  0.679 
Accomplishments 0.673 
Impressed 0.667 
Prouder 0.663 
Gussied 0.646 

Active 
 

Inactive b 0.659 
Activity  0.633 
Powerlifter  0.607 
Motivated  0.605 
Mighy  0.600  
Intramural  0.592 

Decision 
 

Decisions 0.863 
Choice 0.841 
Deciding 0.723 
Hyphenating  0.697 
Choices 0.693 
Decide 0.671 

Goal 
 

Goals 0.865 
Attainable  0.761 
Achievable 0.740 
Acheive 0.725 
Aim 0.722 
Accomplish 0.717 

Commit  
 

Committing  0.828  
Committed  0.788 
Babydaddyb 0.708 
Committ  0.708 
Commitment  0.706 
Sucideb 0.682 

Effort  
 

Efforts  0.729 
Concertedb 0.718 
Valiant  0.690  
Handsomenessb 0.687 
Timeanda 0.662 
Independentsa 0.648 

Routine 
 

Routines 0.874 
Schedule 0.708 
Nighttime  0.698 
Regimen 0.691 
Rhythm 0.682 
Schefule 0.682 
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These lists of terms were manually filtered to remove irrelevant or inaccurate terms. 

Then, we solicited feedback and suggestions from G.A. Feedback was incorporated at the seed 

term and manual filtering steps. The process was iteratively repeated until the lexicon was found 

to be satisfactorily inclusive and specific. Finally, the expanded lists of words, one per seed term, 

were combined to form seven partially overlapping sub-concepts according to Table 4.1, as well 

as one overarching activation  category. In the overarching activation category, duplicate terms 

were removed to prevent double counting. We obtained a set of 1059 unique words, which 

represent the overarching idea of behavioral activation. The words originating from each of the 

seven items in the activation subscale of the BADS yielded the sub-concepts: satisfaction (227 

words), breadth  (341 words), decisions (205 words), accomplishment (154 words), long-term 

planning (240 words), enjoyment of effort  (342 words), and structure  (216 words). LIWC was 

then used to measure the frequency of words belonging to each construct as a metric of patient 

engagement in behavioral activation. 

4.2.2 LIWC  

The Linguistic Inquiry and Word Count (LIWC)  [121,122] software package, developed 

by Pennebaker and his colleagues over the past two decades, was used for linguistic analysis. 

LIWC derives features from narrative text by counting the number of words in a text that 

correspond to categories in LIWCôs lexicon (or dictionary), with categories defined by lists of 

words that fall into them. LIWC returns the percentage (or proportion) of words in a text that 

correspond to each category. For example, consider the following excerpt from an interview with 

singer, songwriter and poet Leonard Cohen: 

ñWhen I speak of depression, I speak of a clinical depression that is the background of 

your entire life, a background of anguish and anxiety, a sense that nothing goes well, that 

pleasure is unavailable and all your strategies collapse .ò [189]  
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This excerpt is 40 words long, and the wordsô depressionô (n=2), óanguishô (n=1) and 

óanxietyô (n=1) fall into LIWCôs negative emotion category. Therefore, LIWC returns a 

percentage score of 10% (100*4/40) for this category. Other categories are measured similarly 

by estimating the frequency with which words they include occur in a unit of te xt. However, 

LIWC also includes a set of composite categories that are derived by combining individual 

categories. As negative and positive affect are both potentially informative, for parsimony, we 

considered the composite emotional tone variable, which combines the positive and negative 

emotion categories. A high tone score indicates a predominance of positive over negative 

emotion words, and a low score indicates the opposite. A score of 50 indicates a balance between 

positive and negative affect [121]. 

Additionally, we measured the usage rates of first-person singular pronouns, first -person 

plural pronouns, and words belonging to the content cat egories health, biology, and sadness. 

Finally, we measured linguistic indicators of behavioral activation by counting the number of BA 

lexicon words overall, and in each subcategory, in every patientôs messages. 

4.2.3 Data 

This work utilized de -identified chat messages sent during routine online therapy, 

collected for a previously reported study by Hull et al. [190] . Clients took part in messaging 

therapy, conducted by a licensed, certified clinical professional via the Talkspace online 

platform, over 12 weeks. The platform provides a paid service open to all, and the service may be 

covered by some insurers. Therapists and clients converse via written, asynchronous messaging 

on the platform, and t herapists utilized a range of therapeutic strategies. The platform also 

allows users to send video and audio messages, though these were not used in the current work. 

Only client messages, collected during the course of therapy, were used in this study. 

Participants completed Patient Health Questionnaire 9 -item (PHQ-9) questionnaires at baseline 

as well as every three weeks during therapy. The PHQ-9 is a validated self-report questionnaire 
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commonly used to assess depression severity, scored on a scale of 0-27 [165]. For further de tails 

on the platform, data collection process, and study population, see Hull et al. [190] .  

The participants (N=10,718) were young (79% 35 years old or younger; none under 18), 

educated (74.9% Bachelorôs degree or higher), and mostly female (78.9%). Data on race and 

ethnicity are not systematically collected by the digital platform and are missing for most 

participants. There were a total of 24,387 PHQ-9 assessments with corresponding messages, 

with 37.6% of participants (n=4, 035) only completing the baseline assessment, 24.5% (n=2,626) 

completing 2 assessments, 18.3% (n=1,962) completing 3 assessments, 9.7% (n=1,038) 

completing 4 assessments, and 9.9% (n=1,057) completing 5 assessments. The mean baseline 

PHQ was 13.36 (SD 4.96) and did not significantly vary with the total number of assessments 

completed. The mean end PHQ was 10.80 (SD 5.83) and was significantly lower the more 

assessments were completed. Patients participated in chat conversations throughout the study 

period, as well as in the three weeks leading up to the baseline assessment in some cases, which 

were included when available (weeks -3 through -1). Messages were aggregated by concatenating 

them (i.e. combining messages in sequence), creating a single ódocumentô as unit of analysis. For 

studies 1 and 2, each PHQ score was used to label the pooled messages from the period on which 

the questionnaire asks respondents to reflect (the two previous weeks). PHQ-9 questionnaires 

were filled out at the beginning of weeks 0, 3, 6, 9, and 12. For study 3, messages were pooled by 

week (starting with week -3), and each series of (up to) 15 datapoints has one trajectory label. 

On average, participants had 7.4 weeks of messages and wrote 770 words per week; patients 

completed 2.2 assessments on average and wrote 2,133 words per completed assessment. At 

baseline, the number of words written did not vary significantly with depression severity 

(p=0.33). There were 79,096 weeks of messages and 23,950 PHQ assessments with messages. 

For discussion of the relationship between demographic and engagement factors and treatment 

outcomes, please see Hull et al. [190] .  
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4.2.3.1 Trajectory labels 

Based on patientsô longitudinal PHQ-9 and GAD-7 scores, Hull et al. clustered patients 

using latent growth modeling and assigned the following labels to the six trajectory groups that 

emerged: Acute Recovery, Recovery, Depression Improvement, Anxiety Improvement, Chronic, 

and Elevated Chronic. The middle two categories appeared to capture patients who improved in 

some symptoms but not others. Additionally, improvements in PHQ (or lack thereof) were less 

clear than in the other groups. Because the individuals in these groups are thus outside the 

simple definitions of depression ñimprovementò and ñnon-improvementò, they were not 

included in analyses of binary improvement status. A subset of 6,760 patients was used for 

trajectory analysis. Of these patients, which Hull et al. identified as strictly ñimprovingò or ñnon-

improvingò, 47.2% (n=3,189) improved (classified as Recovery or Acute Recovery), and 52.8% 

(n=3,571) did not improve (classified as Chronic or Elevated Chronic). 

The present work focuses on ascertaining the utility of linguistic markers to predict 

depression symptom improvement only; therefore, when using trajectories, we simplified 

trajectories into a binary ñimprovementò label, with the two recovery classes in the improvement 

group and the two chronic classes in the non-improvement group.  

4.2.4 Statistical analysis 

4.2.4.1 Study 1: Association of linguistic markers with PHQ  

To validate the basic premise of LIWC and the BA concept, we investigated the 

relationship between linguistic markers and PHQ -9 scores using the (up to) five measurements 

of linguistic indicators with corresponding PHQ -9 scores per patient. For this analysis, each pair 

of PHQ-9 assessment and corresponding message log was treated as a data point. We first 

determined whether the established LIWC metrics as well as our novel BA metric are 

statistically significantly diffe rent between patients with different depression symptom severity. 

Severity was defined by the clinical depression symptomatology groups used by the PHQ scoring 
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system: minimal (PHQ  Ò 4), mild (PHQ  = 5-9), moderate (PHQ = 10-14), moderately severe 

(PHQ = 15-19), and severe (PHQ Ó 20). Further, the average difference in each linguistic marker 

for each unit difference in PHQ score was determined using mixed-effects linear regression, 

treating the patient identity as a random effect.  

4.2.4.2 Study 2: Utility of BA subc onstructs 

Each question of the BADS activation subscale aims to capture a distinct dimension of 

the theoretical construct. To determine the difference between the components and the potential 

clinical value of the sub-components compared to pronoun usage, affect measures, and the 

overall BA concept, we conducted regression analyses on combinations of different variable 

subsets. For each analysis, we determined the variance explained by each subset of predictors in 

a mixed-effects model with PHQ-9 score as the outcome, treating participant identity as a 

random effect. Predictors were combinations of (1) subsets of the established LIWC variables 

(first -person singular pronouns, first -person plural pronouns, emotional tone, or all three; 

sadness, health, biology, or all three) and (2) subsets of the behavioral activation variables (the 

overall construct, each of the seven subconstructs, all seven subconstructs, and all seven 

subconstructs plus the overall construct). Comparing the amount of variance explained (R2) 

between baseline models and models that include additional variables yields insights into the 

extent to which the added variables provide further information. However, chance associations 

alone can increase R2 even if variables provide little usable additional information; therefore, 

we additionally determined the Akaike information criterion (AIC), which penalizes model fit in 

response to model complexity. A non-increased AIC in conjunction with an increased R2 should 

therefore signal that added variables contained new information.  

4.2.4.3 Study 3: Association of linguistic markers with patient trajectories  

To determine the association between different linguistic indicators and outcome, 

mixed-effects linear regression was used to compare the rates of change of the variables over 



 

 90 

time between patient trajectories (whether patients were improving, i.e. classified as Recovery 

or Acute Recovery, or non-improving, i.e. classified as Chronic or Elevated Chronic).  

We compared the average change in each variable per 1-week difference (regression 

slope). For this analysis, messages were aggregated by week, yielding a time series with up to 15 

data points for each patient. Thus, we calculated how PHQ scores and linguistic indicators 

changed with time in the improvi ng and non-improving groups, controlling for the within -

patient dependency of samples. Specifically, for each of the two groups, we fitted a mixed-effects 

linear regression model of the following form:  

ὣ ‍  ‍ὢ ‎ ‎ὢ ‭  

Where ὣ  is the variable of interest measured for participant i in week j, e.g. PHQ, 

activation, or satisfaction. ὢ  is the week number. ‍and ‍are the fixed effect (time) 

parameters. ‎ and ‎  are the random effects (participant ID) parameters. Calculations were 

done using the statsmodels package in Python [191]. 

4.3 Results 

4.3.1 Study 1: Relationship between linguistic indicators and PHQ scores 

Using LIWC to measure the percentage of words belonging to the overall activation 

construct (including all terms related to any of the subconstructs), the average level of activation 

across the baseline chat logs was 3.66 (SD 0.89) and varied significantly with the depression 

symptom severity category (Figure 4.1), as did the LIWC emotional tone measure and the LIWC 

pronoun measures (first -person singular and first -person plural). Less depressed individuals 

used more ñweò pronouns and fewer ñIò pronouns. All individuals expressed more negative 

affect than positive (tone < 50), with the most depressed individuals exhibiting an emotional 

tone balance most extremely tipped toward negative affect (lowest scores). The topic-related 

word categories were also significantly different between severity groups, with sadness having 
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the most pronounced differences between groups. The health and biology categories appear to 

show increased usage in more depressed individuals, but have remarkably large confidence 

interv als for the least depressed group (none/minimal). Higher overall behavioral activation 

levels were detected for lower depression levels, indicating that patients with more severe 

depression symptoms discussed activities and associated feelings of enjoyment and reward less 

than their less-depressed counterparts.  

 

Figure 4.1 Mean of each LIWC measure by depression symptom severity category at baseline . 

M inimal (PHQ<=4, n=393), mild (PHQ=5 -9, n=1,865), moderate  (PHQ=10 -14, n=4,109), moderately 
severe (PHQ=15 -19, n=3,002), severe (PHQ>=20, n=1,331). Bootstrapped 95% confidence intervals 

are shown. All variables shown had statistically significantly different means across groups 
according to one -way ANOVA (p<0.05) . 

4.3.2 Study 2: Utility of subconstructs  

The variance in the overall PHQ score explained (R2) by the 109 models fitted to all 

possible combinations of the LIWC and BA variable sets is shown in Figure 4.2. The amount of 

variance explained for each baseline model is shown as bars with strokes, and comparison 
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values are shown without. Darker colors indicate better fit as measured by the AIC. At baseline, 

emotional tone is more informative than ñIò or ñweò. The health category is the most informative 

topic category; the three topics together explain more variance than the tone and pronoun 

variables together, and also have better fit. All LIWC variables together explain the most 

variance without detracting from model fit. Of the activation subconstructs, the decision, long -

term planning, and daily structure components are most informative; again, all variables 

together explain the most variance. Including tone added more to satisfaction, breadth, 

accomplishment, and effort than to decisions, long-term planning, and daily structure. LIWC -

package constructs alone (tone, I, we; content topics) accounted for 68.3% of the variance, while 

the combination of our newly created behavioral acti vation sub-constructs plus total score alone 

accounted for 69.7% of the variance. The highest R2 of 80.4% was achieved by the model that 

included all variables: emotional tone, function words (I, we), all three topic categories, and all 

seven sub-components of activation, along with the overall activation level.  Interestingly, 

including the overall BA concept along with the BA subconstructs appeared to improve both R2 

and fit compared to the subconstructs alone.  

 

Figure 4.2 Variance explained (R2) by each subset of variables in a mixed -effects model with PHQ 
score as the outcome.  

Baselines are shown with outlines (left column and top row). Compare columns to the first column 
for the increase in R2 due to sta ndard LIWC variables compared to activation variables alone; 

compare rows to the first row for the increase in R2 due to activation variables compared to standard 
LIWC variables alone. Colors indicate the relative Akaike information criterion (darker color s 

indicate better fit).  
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4.3.3 Study 3: Relationship with patient trajectories  

Figure 4.3 shows the average change in each linguistic marker per week in the improving 

and non-improving group. Several linguistic indicators showed average amounts of change over 

time that were significantly different between the two groups.  

Of the established LIWC markers, emotional tone, first person singular pronouns, first 

person plural pronoun s, and biology words were different between groups. Interestingly, biology 

word usage decreased less in the non-improving group than in the improved group, while health 

word usage decreased more in the non-improving group. Sadness was reduced in both groups 

over time, with a larger change in the improving group, though the difference between groups 

was not statistically significant.  

 

Figure 4.3 Regression coefficients and corresponding 95% confidence intervals of the Mixed Effects 
models, i.e., the average change in the given variable for each treatment week.  

* = p<0.05  

Of the linguistic markers of behavioral activation, the markers for satisfaction with 

activities and rewarding effort had the most pronounced difference between groups, along with 

the overall activation marker. The fitted fixed effects models are shown in Figure 4.4. Neither 


















































































































































































































































































































































